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Abstract. In this work, we provide a theoretical framework on the topological properties of a system of 

non-interacting spinless fermions in the presence of hopping between lattice sites and superconducting 

pairing. We mainly focus on two different approaches used to classify the topological phases of the system: 

the transfer matrix approach extracts information on the boundary properties of the system and is used to 

explicitly compute the wavefunctions of zero-energy states, while the bulk spectrum approach makes use 

of the energy-momentum dispersion to identify topological phase transitions with the closure of its gap. 

What characterizes topological phases is the presence of zero-energy Majorana modes localized at the 

boundary of the system. We give an overview on the application of these approaches on the Kitaev chain 

and its generalizations, focusing on the peculiarities of this system and the relations between the 

topological invariant used in the above-mentioned approaches. 
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1.   INTRODUCTION 

Topological orders in condensed matter systems have been a prolific field of research in recent years [1]. 

Boosted by Kitaev’s pioneering work [2], a lot of attention has been focused on the study and realization of 

isolated Majorana fermions in 1-dimensional and 2-dimensional superconductors [3-4], both from a 

theoretical [5-14] and an experimental standpoint [15-18]. 

Kitaev’s model, which will be referred to as Kitaev chain, describes a system of spinless fermions in a          

p-wave superconducting wire. The parameters of the system are the chemical potential 𝜇 of the lattice 

sites, the tunnelling amplitude 𝑤 that quantifies the probability of a fermion hopping from a lattice site to a 

nearest neighbour, and the superconducting gap ∆ that quantifies the p-wave pairing strength. Under 

certain conditions, the system is characterized by the appearance of zero-energy Majorana modes localized 

at the edges of the chain. This Majorana fermion is stable as long as the bulk spectrum of the system has an 

energy gap, which means it is robust under small parameter changes and as such it defines a        

topological phase of the system. 

The main reason the Kitaev chain has been at the center of such rich literature, is perhaps its applications 

to quantum computing. As a matter of fact, the Majorana fermions that stem from this system are 

intrinsically immune to quantum decoherence, therefore they can be used as reliable qbits in the 

construction of quantum gates: let us see why. 

Implementing quantum computation on a large scale has strong experimental limitations; fault tolerance is 

theoretically possible, but only if errors are kept under a threshold that is quite hard to achieve by current 

technology. This fragility comes from the fact that quantum states are sensitive to two kinds of error: a 

classical error that flips the qbit exchanging the empty state |0⟩ with the occupied state |1⟩, and a phase 

error that changes the sign of the occupied state. In a fermionic system of qbits, the conservation of the 

electric charge (or the conservation of parity in superconductors) grants that single classical errors are 

physically impossible; two simultaneous classical errors are possible, but they require interaction between 

qbits, which can be made negligible by placing a suitable medium between them. Phase errors, though, are 

still possible. Now, a phase error acts through the operator  1 − 2𝑎†𝑎 ,  where  𝑎†  and  𝑎  are the creation 

and annihilation operators of the fermion; in terms of Majorana operators  𝑐1 = 𝑎 + 𝑎
†  and                   

𝑐2 = −𝑖(𝑎 − 𝑎
†) ,  the phase error becomes  −𝑖𝑐1𝑐2 .  This shows the phase error requires interaction 

between the two Majorana modes and it is negligible as long as these are mutually isolated, as in the case 

of the Kitaev chain. 

Kitaev’s toy-model has been extended in several directions, such as breaking time-reversal symmetry [19], 

increasing the range of site hopping and p-wave pairing [20-22], adding disorder in the chemical potential 

and interaction between particles [23]. The topological properties of the Kitaev chain are preserved and 

generalized under these looser conditions, which makes the system suitable for more realistic 

implementations. 

Experimental realizations of the exotic topological superconductors that the Kitaev chain is based on, have 

been proposed in a variety of ways, for example by forming appropriate heterostructures with ordinary s-

wave superconductors, based on diverse materials such as topological insulators [24], conventional 

semiconductors [25], ferromagnetic metals and others [26]. 

This work is structured as follows. In sections 2 we will develop the mathematical framework needed to 

study Kitaev’s model and its generalizations, starting from a generic one-body Hamiltonian and focusing on 

the symmetries of the problem. In section 3 we will rework this framework using the formalism of 
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Majorana operators. In section 4 we will develop the tools to study the boundary properties of the system, 

as well as its bulk properties, and use this to detect topological phase transitions. In section 5, we will apply 

these tools to the Kitaev chain and its generalizations. 

2     SETUP 

We start from the Hamiltonian 

𝐻 = (𝑎1
†  … 𝑎𝐿

† 𝑎1  … 𝑎𝐿) ℋ 

(

 
 
 

𝑎1
⋮
𝑎𝐿

𝑎1
†

⋮

𝑎𝐿
†
)

 
 
 
 , 

that describes a system of spinless fermions in a 1-dimensional lattice (chain) with a number of sites equal 

to 𝐿, subject to an external potential and with no interaction between particles. 

𝑎𝑖
† and 𝑎𝑖  are the creation and annihilation operators, thus 

{𝑎𝑖, 𝑎𝑗} = 0 ,     {𝑎𝑖
†, 𝑎𝑗} = 𝛿𝑖𝑗  , 

where indices 𝑖 and 𝑗 span from 1 to 𝐿. 

The Hamiltonian 𝐻 needs to be self-adjoint (i.e. observable), which means ℋ must be Hermitian: 

ℋ† = ℋ . 

The first property of the system we want to implement, is particle-hole symmetry (see Appendix):  

𝜎̂𝑥ℋ
∗𝜎̂𝑥 = −ℋ ; 

here  ∗ is the complex conjugation and  𝜎̂𝑥 = 𝜎𝑥⊗ 𝟙𝐿 , where  𝜎𝑥 = (
0 1
1 0

)  is the first Pauli matrix. 

This is equivalent to writing 

ℋ = (
ℋ0 ℋ𝑝

−ℋ𝑝
∗ −ℋ0

∗) , 

where, due to ℋ being Hermitian, we must have 

ℋ0
† = ℋ0 ,     ℋ𝑝

𝑇 = −ℋ𝑝 . 

We can notice ℋ0 is coupled to the terms  𝑎𝑖
†𝑎𝑗 and 𝑎𝑖𝑎𝑗

†, that stem from an ordinary external potential 

and kinetic term, while ℋ𝑝 is coupled to the terms 𝑎𝑖𝑎𝑗 and 𝑎𝑖
†𝑎𝑗

†, that stem from pairing mechanisms such 

as superconductivity. 

Another property we may consider for the system is time-reversal symmetry: 

ℋ∗ = ℋ , 

or, in terms of ℋ0 and ℋ𝑝: 

ℋ0
∗ = ℋ0 ,     ℋ𝑝

∗ = ℋ𝑝 . 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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2.1     Diagonalization 

By diagonalizing the matrix ℋ, we can define new creation and annihilation operators that represent a 

fermion with a given energy. Due to properties (3) and (4), we can find an operator 𝒰 such that 

𝒰†𝒰 = 𝟙2𝐿 ,     𝜎̂𝑥𝒰
∗𝜎̂𝑥 = 𝒰 

or, equivalently, 

𝒰 = (𝑢
𝑇 𝑣†

𝑣𝑇 𝑢†
) , 

𝑢∗𝑢𝑇 + 𝑣∗𝑣𝑇 = 𝟙𝐿 ,     𝑢𝑣
𝑇 + 𝑣𝑢𝑇 = 𝟘𝐿 , 

which diagonalizes the Hamiltonian matrix: 

𝒰†ℋ𝒰 = 𝒟 = 𝑑𝑖𝑎𝑔(𝜀1, … , 𝜀𝐿 , −𝜀1, … , −𝜀𝐿) ; 

if we have time reversal symmetry, we can also choose 𝒰 such that 

𝒰∗ = 𝒰 . 

Defining the new creation and annihilation operators as 

(

 
 
 

𝑎̃1
⋮
𝑎̃𝐿

𝑎̃1
†

⋮

𝑎̃𝐿
†
)

 
 
 

= 𝒰†

(

 
 
 

𝑎1
⋮
𝑎𝐿

𝑎1
†

⋮

𝑎𝐿
†
)

 
 
 
 , 

the Hamiltonian takes the diagonalized form 

𝐻 = (𝑎̃1
†  … 𝑎̃𝐿

† 𝑎̃1  … 𝑎̃𝐿) 𝑑𝑖𝑎𝑔(𝜀1, … , 𝜀𝐿 , −𝜀1, … , −𝜀𝐿) 

(

 
 
 

𝑎̃1
⋮
𝑎̃𝐿

𝑎̃1
†

⋮

𝑎̃𝐿
†
)

 
 
 

=∑ 𝜀𝑖(2𝑎̃𝑖
†𝑎̃𝑖 − 1)

𝐿

𝑖=1
 

which shows  {𝜀𝑖}𝑖=1,…,𝐿  are the excitation energies for particles and  {−𝜀𝑖}𝑖=1,…,𝐿  can be interpreted as 

excitation energies for holes; due to properties (9) the transformation  {𝑎𝑖}𝑖=1,…,𝐿 → {𝑎̃𝑖}𝑖=1,…,𝐿  is 

consistent with  {𝑎𝑖
†}
𝑖=1,…,𝐿

→ {𝑎̃𝑖
†}
𝑖=1,…,𝐿

  and it is canonical, i.e. 

{𝑎̃𝑖, 𝑎̃𝑗} = 0 ,     {𝑎̃𝑖
†, 𝑎̃𝑗} = 𝛿𝑖𝑗  . 

2.2     Bogoliubov equations 

Moving to the index notation, the new creation and annihilation operators are defined as 

{
 

  𝑎̃𝑖
† =∑ (𝑢𝑖𝑘  𝑎𝑘

† + 𝑣𝑖𝑘  𝑎𝑘)
𝐿

𝑘=1

 𝑎̃𝑖 =∑ (𝑢𝑖𝑘
∗  𝑎𝑘 + 𝑣𝑖𝑘

∗  𝑎𝑘
†)

𝐿

𝑘=1

 ; 

eq. (12) gives us the general form of the Bogoliubov equations, which link 𝑢 and 𝑣 to ℋ0, ℋ𝑝 and the 

excitation energies 𝜀1, … , 𝜀𝐿: 

(9) 

 

 

 

 

 

(10) 

(11) 

(12) 

(13) 

(14) 

(16) 

(17) 

(15) 
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{
 

 𝜀𝑖 𝑢𝑖𝑗 =∑ (𝑢𝑖𝑘  ℋ0 𝑗𝑘 + 𝑣𝑖𝑘  ℋ𝑝 𝑗𝑘)
𝐿

𝑘=1
   

 𝜀𝑖 𝑣𝑖𝑗 = −∑ (𝑢𝑖𝑘  ℋ𝑝 𝑗𝑘
∗ + 𝑣𝑖𝑘  ℋ0 𝑗𝑘

∗ )
𝐿

𝑘=1

 . 

To have some insight on how to extract information on the system from equations (18), we must first 

introduce Majorana operators. 

3     MAJORANA OPERATORS 

For any lattice site 𝑖, we define two Majorana operators: 

𝑐2𝑖−1 = 𝑎𝑖 + 𝑎𝑖
† ,     𝑐2𝑖 = −𝑖(𝑎𝑖 − 𝑎𝑖

†) . 

In the vector-matrix notation this is written as 

(

𝑐1
⋮
𝑐2𝐿
) = √2Γ†

(

 
 
 

𝑎1
⋮
𝑎𝐿

𝑎1
†

⋮

𝑎𝐿
†
)

 
 
 
 , 

where 

Γ =
1

√2

(

 
 
 
 
 

  1    𝑖   0   0 …   0   0
  0   0   1    𝑖 …   0   0
   ⋮    ⋮    ⋮    ⋮     ⋮    ⋮ 
  0   0   0   0 …   1    𝑖
  1 −𝑖   0   0 …   0   0
  0   0   1 −𝑖 …   0   0
   ⋮    ⋮    ⋮    ⋮     ⋮    ⋮ 
  0   0   0   0 …   1 −𝑖 )

 
 
 
 
 

 ; 

we take note of the following properties of Γ: 

Γ†Γ = 𝟙2𝐿 ,     𝜎̂𝑥Γ
∗ = Γ ,     Γ†Γ = 𝑑𝑖𝑎𝑔(1,−1,… ,1,−1) . 

From (2) and (19), it is straightforward to see that Majorana operators have the following properties: 

𝑐𝛼
† = 𝑐𝛼  , 

{𝑐𝛼 , 𝑐𝛽} = 2𝛿𝛼𝛽 , 

where the indices 𝛼 and 𝛽 span from 1 to 2𝐿. 

We can write 𝐻 in terms of Majorana operators: 

𝐻 =
1

2
 (𝑐1…𝑐2𝐿) ℋ̅  (

𝑐1
⋮
𝑐2𝐿
) , 

where we have defined 

ℋ̅ = Γ†ℋΓ . 

Due to (22), properties (3) (observability of ℋ) and (4) (particle-hole symmetry) translate into 

ℋ̅† = ℋ̅ ,     ℋ̅∗ = −ℋ̅ , 

(20) 

(18) 

(19) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 



 

7 
 

while property (7) (time-reversal symmetry) translates into 

ℋ̅𝛼𝛽
∗ = (−1)𝛼+𝛽ℋ̅𝛼𝛽 . 

This means that ℋ̅, i.e. the Hamiltonian matrix in the Majorana-operator representation, can be written as  

ℋ̅ = 2𝑖𝐴 ,  where 𝐴 is a real antisymmetric matrix whose even entries vanish if and only if the system is 

time-reversal symmetric. 

3.1     Diagonalization 

Similarly to what we saw in the previous section for the creation and annihilation operators, we can 

diagonalize ℋ̅ in blocks of 2𝑥2 antisymmetric sub-matrices 

𝒰̅†ℋ̅𝒰̅ = Γ†𝐷Γ = 𝐷̅ = 𝑖 𝑑𝑖𝑎𝑔 ((
0 𝜀1
−𝜀1 0

) ,… , (
0 𝜀𝐿
−𝜀𝐿 0

)) 

and define a new set of Majorana operators 

(
𝑐̃1
⋮
𝑐̃2𝐿

) = 𝒰̅† (

𝑐1
⋮
𝑐2𝐿
) = √2Γ†

(

 
 
 

𝑎̃1
⋮
𝑎̃𝐿

𝑎̃1
†

⋮

𝑎̃𝐿
†
)

 
 
 

 , 

where we have defined 

𝒰̅ = Γ†𝒰Γ ; 

the second equivalence in (30) uses equations (14) and (20) and it shows that the definition of the new 

Majorana operators is consistent with the new creation and annihilation operators previously defined. 

Due to (22), properties (9) (orthonormality of 𝒰 and particle-hole symmetry) translate into 

𝒰̅†𝒰̅ = 𝟙2𝐿 ,     𝒰̅
∗ = 𝒰̅ , 

while property (13) (time-reversal symmetry) translates into 

𝒰̅𝛼𝛽
∗ = (−1)𝛼+𝛽𝒰̅𝛼𝛽 ; 

this means that 𝒰̅, which gives us the coefficients of the new Majorana operators {𝑐̃𝛼}𝛼=1,…,2𝐿 as linear 

functions of the starting set {𝑐𝛼}𝛼=1,…,2𝐿, is a real orthonormal matrix whose odd entries vanish if and only 

if the system is time-reversal symmetric. 

We can now write the Hamiltonian in its diagonalized Majorana form: 

𝐻 =
𝑖

2
(𝑐̃1  … 𝑐̃2𝐿) 𝑑𝑖𝑎𝑔 ((

0 𝜀1
−𝜀1 0

) ,… , (
0 𝜀𝐿
−𝜀𝐿 0

)) (
𝑐̃1
⋮
𝑐̃2𝐿

) = 𝑖∑ 𝜀𝑖
𝐿

𝑖=1
𝑐̃2𝑖−1𝑐̃2𝑖 . 

 

 

 

 

(30) 

(28) 

(29) 

(31) 

(32) 

(33) 

(34) 
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3.2     Bogoliubov equations 

Again, similarly to the previous section, we move now to the index notation. Equation (31) gives: 

{
 
 

 
 
 𝒰̅2𝑖−1,2𝑗−1 = 𝑅𝑒(𝑢𝑗𝑖 + 𝑣𝑗𝑖

∗ )

 𝒰̅2𝑖,2𝑗−1 = 𝐼𝑚(𝑢𝑗𝑖 + 𝑣𝑗𝑖
∗ )    

 𝒰̅2𝑖−1,2𝑗 = −𝐼𝑚(𝑢𝑗𝑖 − 𝑣𝑗𝑖
∗ )

 𝒰̅2𝑖,2𝑗 = 𝑅𝑒(𝑢𝑗𝑖 − 𝑣𝑗𝑖
∗ )        

 ; 

setting 

𝑢𝑖𝑗 + 𝑣𝑖𝑗
∗ = 𝜙𝑖𝑗 ,     𝑢𝑖𝑗 − 𝑣𝑖𝑗

∗ = 𝜓𝑖𝑗 

and using the first equivalence in (30), we obtain 

{
 

  𝑐̃2𝑖−1 =∑ (𝑅𝑒𝜙𝑖𝑘  𝑐2𝑘−1 + 𝐼𝑚𝜙𝑖𝑘  𝑐2𝑘)
𝐿

𝑘=1

 𝑐̃2𝑖 =∑ (−𝐼𝑚𝜓𝑖𝑘  𝑐2𝑘−1 + 𝑅𝑒𝜓𝑖𝑘  𝑐2𝑘)
𝐿

𝑘=1

 . 

Finally, plugging (36) into (18), we obtain the Bogoliubov equations  

{
 

  𝜀𝑖  𝜙𝑖𝑗 =∑ (𝜓𝑖𝑘  ℋ0 𝑗𝑘 − 𝜓𝑖𝑘
∗  ℋ𝑝 𝑗𝑘)

𝐿

𝑘=1

  𝜀𝑖  𝜓𝑖𝑗 =∑ (𝜙𝑖𝑘  ℋ0 𝑗𝑘 + 𝜙𝑖𝑘
∗  ℋ𝑝 𝑗𝑘) 

𝐿

𝑘=1

 , 

which are in accordance with (29). 

3.3     Majorana zero modes 

Equations (38) are particularly useful to examine Majorana zero modes. Let’s say the system has a state 

with excitation energy equal to zero, i.e. there is an index 𝑛 for which  𝜀𝑛 = 0 : 

{
 

  ∑ (𝜓𝑛𝑘 ℋ0 𝑗𝑘 −𝜓𝑛𝑘
∗  ℋ𝑝 𝑗𝑘)

𝐿

𝑘=1
= 0

  ∑ (𝜙𝑛𝑘 ℋ0 𝑗𝑘 + 𝜙𝑛𝑘
∗  ℋ𝑝 𝑗𝑘)

𝐿

𝑘=1
= 0

 ; 

solving this system of equations means finding the coefficients of the Majorana zero modes 𝑐̃2𝑛−1 and 𝑐̃2𝑛. 

In general, the equations in (39) have complex values, but in the case of time-reversal symmetry all 

quantities must be real and the system simplifies: 

{
 

  ∑ 𝜓𝑛𝑘(ℋ0 −ℋ𝑝)𝑗𝑘

𝐿

𝑘=1
= 0

  ∑ 𝜙𝑛𝑘(ℋ0 +ℋ𝑝)𝑗𝑘

𝐿

𝑘=1
= 0

 , 

which means the vectors  {𝜓𝑛𝑘}𝑘=1,…,𝐿  and  {𝜙𝑛𝑘}𝑘=1,…,𝐿  are, respectively, in the kernel of  ℋ0 −ℋ𝑝  and  

ℋ0 +ℋ𝑝 . 

 

 

(40) 

(35) 

(36) 

(37) 

(38) 

(39) 
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4     TOPOLOGICAL PHASES 

In this section, we will define two kinds of discrete topological invariants that can characterize our system. 

The value taken by the invariants, as a function of the entries of the matrices ℋ0 and ℋ𝑝, defines the 

topological phase of the system. 

4.1     Boundary invariants 

Let us further examine the meaning of ℋ0 and ℋ𝑝. In the index notation, the Hamiltonian takes the form 

𝐻 =∑ℋ0 𝑖𝑖 (2𝑎𝑖
†𝑎𝑖 − 1)

𝑖
+ 2∑ (ℋ0 𝑖𝑗 𝑎𝑖

†𝑎𝑗 +ℋ𝑝 𝑖𝑗  𝑎𝑖
†𝑎𝑗

† + ℎ. 𝑐. )
𝑖>𝑗

 ; 

where  ℎ. 𝑐.  denotes the Hermitian conjugate; this means that: 

- ℋ0 𝑖𝑖 is coupled to the term 2𝑎𝑖
†𝑎𝑖 − 1 and represents the chemical potential for the lattice site 𝑖, 

- ℋ0 𝑖𝑗 is coupled to the term  𝑎𝑖
†𝑎𝑗  and represents the hopping amplitude between sites 𝑖 and 𝑗, 

- ℋ𝑝 𝑖𝑗  is coupled to the term 𝑎𝑖
†𝑎𝑗

† and represents the pairing amplitude between sites 𝑖 and 𝑗. 

If we assume that hopping and pairing act on a finite range 𝑟, i.e. 

ℋ0 𝑖𝑗 = 0 ,     ℋ𝑝 𝑖𝑗 = 0     𝑓𝑜𝑟  |𝑖 − 𝑗| > 𝑟 , 

then, under certain conditions, equations (39) can be used recursively to construct the vectors  

{𝜓𝑛𝑘}𝑘=1,…,𝐿  and  {𝜙𝑛𝑘}𝑘=1,…,𝐿 . 

4.1.1     Transfer matrix 

The idea is the following: given the first 𝑟 components of the vectors  ( {𝜓𝑛𝑘}𝑘=1,…,𝑟  and  {𝜙𝑛𝑘}𝑘=1,…,𝑟 ),  

equations (39) for 𝑗 = 1 give us 𝜓𝑛,𝑟+1 and 𝜙𝑛,𝑟+1. Plugging these values in equations (39) for 𝑗 = 2, we get 

𝜓𝑛,𝑟+2 and 𝜙𝑛,𝑟+2 and so on up until 𝜓𝑛,𝐿 and 𝜙𝑛,𝐿.  

In general, given  {𝜓𝑛𝑘}𝑘=1,…,𝑟  and formally setting  𝜓𝑛,1−𝑟 = . . . = 𝜓𝑛0 = 0 ,  we can write: 

(

𝜓𝑛,𝑗+1
⋮

𝜓𝑛,𝑗+2−2𝑟

) = 𝑇𝑗
𝜓
(

𝜓𝑛,𝑗
⋮

𝜓𝑛,𝑗+1−2𝑟

)  ,     𝑗 = 𝑟,… , 𝐿 − 1 ; 

the 2𝑟 x 2𝑟 matrix 𝑇𝑗
𝜓

 is called a transfer matrix. Similarly, given  {𝜙𝑛𝑘}𝑘=1,…,𝑟  and formally setting  

𝜙𝑛,1−𝑟 = . . . = 𝜙𝑛0 = 0 ,  we get: 

(

𝜙𝑛,𝑗+1
⋮

𝜙𝑛,𝑗+2−2𝑟

) = 𝑇𝑗
𝜙
(

𝜙𝑛,𝑗
⋮

𝜙𝑛,𝑗+1−2𝑟

)  ,     𝑗 = 𝑟,… , 𝐿 − 1 . 

For a finite number of lattice sites 𝐿, equations (39) for  𝑗 = 𝐿 − 𝑟 + 1,… , 𝐿  represent a set of constraints 

on ℋ0 and ℋ𝑝 that are needed for the solutions of (43) and (44) to actually represent Majorana zero 

modes; in other terms, these constraints grant the existence of the zero eigenvalue 𝜀𝑛 = 0, which we 

assumed (they are equivalent to requiring  𝑑𝑒𝑡ℋ = 0 ). 

In the thermodynamic limit  𝐿 → ∞  with open boundary conditions on the left edge, the recursive 

procedure in (39) doesn’t generate any constraint on ℋ0 and ℋ𝑝; the only constraint we have, for the 

solutions of (43) and (44) to be Majorana zero modes, is that 𝑐̃2𝑛−1 and 𝑐̃2𝑛 must represent physical states, 

i.e. the vectors  {𝜓𝑛𝑘}𝑘=1,…,𝐿  and  {𝜙𝑛𝑘}𝑘=1,…,𝐿  need to be normalizable. 

(41) 

(42) 

(43) 

(44) 
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4.1.2     Edge modes 

The normalizability of  {𝜓𝑛𝑘}𝑘=1,…,𝐿  and  {𝜙𝑛𝑘}𝑘=1,…,𝐿  is related to the eigenvalues of the transfer 

matrices. Let us consider, for example, a periodic system with period 𝑃: 

ℋ0 𝑖𝑗 = ℋ0 𝑖+𝑃,𝑗+𝑃 ,     ℋ𝑝 𝑖𝑗 = ℋ𝑝 𝑖+𝑃,𝑗+𝑃 ; 

focusing on the 𝜓-type variables for simplicity, equation (45) implies  𝑇𝑗
𝜓
= 𝑇𝑗+𝑃

𝜓
 ,  so we can define the 

transfer matrix over a single period as 

𝑇𝜓 =∏ 𝑇𝑗
𝜓

𝑃

𝑗=1
 , 

so that 

(

𝜓𝑛,𝑗+𝑃
⋮

𝜓𝑛,𝑗+1−2𝑟+𝑃

) = 𝑇𝜓 (

𝜓𝑛,𝑗
⋮

𝜓𝑛,𝑗+1−2𝑟

) . 

We name  {𝜆𝑚}𝑚=1,…,𝑀  the eigenvalues of 𝑇𝜓 such that  |𝜆𝑚| < 1 ,  and  {𝑣𝑚}𝑚=1,…,𝑀  the corresponding 

eigenvectors; of course, 𝑀 must be less than or equal to the total number of eigenvalues of 𝑇𝜓, which is at 

most equal to 2𝑟. Any linear combination of  {𝑣𝑚}𝑚=1,…,𝑀  whose last 𝑟 components are equal to zero can 

be plugged into equation (47) for  𝑗 = 𝑟 ;  by applying 𝑇𝜓 recursively, this gives us a normalizable set of 

coefficients  {𝜓𝑛𝑘}𝑘=1,…,𝐿 .  At every application of the transfer matrix, the vector obtained has a smaller 

norm than the starting vector: this means that  {𝜓𝑛𝑘}𝑘=1,…,𝐿  has an exponential decay for  𝑘 → ∞ ,  

meaning that the corresponding Majorana zero mode 𝑐̃2𝑛 is localized at the left edge of the chain. 

Let us define 𝑛𝜓 as the maximum number of linearly independent combinations of  {𝑣𝑚}𝑚=1,…,𝑀 with the 

constraint of the last 𝑟 entries being equal to 0. These combinations, through equation (47), generate      

the set  {𝑐̃2𝑛𝑠}𝑠=1,…,𝑛𝜓
  of the even-index Majorana zero modes localized at the left edge of the chain.  

Notice that  𝑛𝜓 > 2  requires further degeneracy (than the one due to particle-hole symmetry) in the 0-

eigenspace of ℋ. 

Substituting 𝜓 with 𝜙, the same procedure gives us the set  {𝑐̃2𝑛𝑠−1}𝑠=1,…,𝑛𝜙
  of odd-index Majorana zero 

modes localized at the left edge of the chain. 

We can also start by taking the inverse of equation (43): given  {𝜓𝑛𝑘}𝑘=𝐿+1−𝑟,…,𝐿 and formally setting  

𝜓𝑛,𝐿+1 = . . . = 𝜓𝑛,𝐿+𝑟 = 0 ,  we can write 

(

𝜓𝑛,𝑗−1
⋮

𝜓𝑛,𝑗−2+2𝑟

) = (𝑇𝑗
𝜓
)
−1
(

𝜓𝑛,𝑗
⋮

𝜓𝑛,𝑗−1+2𝑟

)  ,     𝑗 =,… , 𝐿 + 1 − 𝑟 . 

In this case, we use the eigenvalues of 𝑇𝜓  {𝜆𝑚′}=1,…,𝑀′  such that  |𝜆𝑚′| > 1  and their eigenvectors  

{𝑣𝑚′}𝑚′=1,…,𝑀′ . We define 𝑛′𝜓 as the maximum number of linearly independent combinations of  

{𝑣𝑚′}𝑚′=1,…,𝑀′ with the constraint of the last 𝑟 entries being equal to 0 (same constraint as before); these 

combinations now generate the set  {𝑐̃2𝑛′𝑠}𝑠=1,…,𝑛′𝜓
  of even-index Majorana zero modes localized at the 

right edge of the chain. Substituting 𝜓 with 𝜙, the same procedure gives us the set  {𝑐̃2𝑛′𝑠−1}𝑠=1,…,𝑛′𝜙
  of 

odd-index Majorana edge zero modes localized at the right edge of the chain. 

(48) 

(45) 

(46) 

(47) 
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We can show that  2max{𝑛𝜓 + 𝑛′𝜓, 𝑛𝜙 + 𝑛′𝜙}  is a lower bound for the degeneracy of the 0-eigenspace of 

ℋ. Furthermore, we can show  𝑛𝜓 + 𝑛′𝜓 ≤ 𝑀 +𝑀′ − 𝑟 ≤ 𝑟 ,  meaning that the maximum range of 

hopping and pairing sets an upper bound for both the number of even-index and odd-index Majorana edge 

zero modes. 

𝑟 − 𝑛𝜓 + 𝑛′𝜓  is the number of non-localized even-index Majorana zero modes that are suppressed by 

normalization.  2𝑟 −𝑀 −𝑀′  of these correspond to missing eigenvalues (when 𝑇𝜓 is not diagonalizable) 

or eigenvalues with modulus 1. The others are due to the geometrical structure of the eigenvalues 

themselves. Let us say, for example, that  𝑟 = 2  and 𝑇𝜓  has two eigenvalues of modulus < 1, 

corresponding to (

1
0
0
0

) and (

0
0
1
0

), and two eigenvalues of modulus > 1 corresponding to (

0
1
0
0

) and (

0
0
0
1

); the 

first and the third eigenvectors generate a Majorana zero mode localized respectively at the left edge and 

at the right edge of the chain, while the second and the forth are not compatible with open boundary 

conditions and are discarded, thus we have  2 = 𝑟  edge modes. Let us say, instead, that modulus < 1 

eigenvalues correspond to (

1
0
1
0

) and (

0
1
0
1

) and modulus > 1 eigenvalues correspond to (

1
0
−1
0

) and (

0
1
0
−1

): 

in this case no combination of the first two eigenvectors, nor of the last two ones, is compatible with open 

boundary conditions, meaning there are no Majorana edge zero modes; to find a combination of 

eigenvectors compatible with open boundary conditions, we need to mix eigenvalues with modulus < 1, 

with eigenvalues with modulus > 1, but in that case the Majorana zero mode is suppressed by 

normalization. 

Finally, 𝑛𝜓, 𝑛𝜙, 𝑛′𝜓 and 𝑛′𝜙 are examples of topological invariants. Later we will see how these values are 

related in the case of the Kitaev chain. 

4.2     Bulk invariants 

Another example of a topological invariant can be examined by considering the bulk properties of our 

system. To do so, we need to switch to the momentum representation: we define the momentum creation 

and annihilation operators as the Fourier transforms of their site counterparts presented in (1) and (2): 

𝑎𝑘
† =

1

√𝐿
∑ 𝑒𝑖𝑘𝑗𝑎𝑗

†
𝐿

𝑗=1
 ,     𝑎𝑘 =

1

√𝐿
∑ 𝑒−𝑖𝑘𝑗𝑎𝑗

𝐿

𝑗=1
 ,     𝑘 ∈ 𝐾 ; 

the set of momenta 𝐾 contains 𝐿 elements in the interval (−𝜋, 𝜋] and depends on the parity of 𝐿 and on 

the boundary conditions we impose, such as periodic boundary conditions (PBC) or antiperiodic boundary 

conditions (ABC). Specifically, we find 

𝐾 =

{
 
 

 
  {0,±𝑘𝑚, 𝜋}𝑚=1,…,𝑀  ,     𝑃𝐵𝐶, 𝐿 𝑒𝑣𝑒𝑛

 {0,±𝑘𝑚}𝑚=1,…,𝑀 ,         𝑃𝐵𝐶, 𝐿 𝑜𝑑𝑑  

 {±𝑘𝑚}𝑚=1,…,𝑀 ,             𝐴𝐵𝐶, 𝐿 𝑒𝑣𝑒𝑛 

 {±𝑘𝑚, 𝜋}𝑚=1,…,𝑀 ,        𝐴𝐵𝐶, 𝐿 𝑜𝑑𝑑   

 , 

where 

(50) 

(49) 

(51) 
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𝑘𝑚 = {
 
2𝜋

𝐿
𝑚 ,              𝑃𝐵𝐶

 
2𝜋

𝐿
𝑚 −

𝜋

𝐿
 ,     𝐴𝐵𝐶

 ,          𝑀 = {
 [
𝐿 − 1

2
]  ,     𝑃𝐵𝐶

 [
𝐿

2
]  ,             𝐴𝐵𝐶

 , 

[ ] being the function that takes the integer part of a real number. 

The site creation and annihilation operators are then the inverse Fourier transforms of the momentum 

operators, i.e. 

𝑎𝑗
† =

1

√𝐿
∑ 𝑒−𝑖𝑘𝑗𝑎𝑘

†

𝑘∈𝐾
 ,     𝑎𝑗 =

1

√𝐿
∑ 𝑒𝑖𝑘𝑗𝑎𝑘

𝑘∈𝐾
 ; 

one can verify that (49) and (52) are equivalent due to the identities 

1

𝑁
∑ 𝑒𝑖𝑘(𝑗−𝑗

′)

𝑘∈𝐾
= 𝛿𝑗𝑗′  ,     

1

𝑁
∑ 𝑒−𝑖(𝑘−𝑘

′)𝑗
𝐿

𝑗=1
= 𝛿𝑘𝑘′ . 

From equations (2), (49) and (53) one can straightforwardly show that 

{𝑎𝑘, 𝑎𝑘′} = 0 ,     {𝑎𝑘
† , 𝑎𝑘′} = 𝛿𝑖𝑗  , 

i.e. the transformation  {𝑎𝑗}𝑗=1,…,𝐿
→ {𝑎𝑘}𝑘=1,…,𝐿  is canonical. 

Plugging equations (52) into equation (1), we can write the general form of the Hamiltonian in the 

momentum representation: 

𝐻 = (𝑎𝑘1
†  𝑎−𝑘1  𝑎−𝑘1

†  𝑎𝑘1  … 𝑎𝑘𝑀
†  𝑎−𝑘𝑀  𝑎−𝑘𝑀

†  𝑎𝑘𝑀) ℋ̂  

(

 
 
 
 
 
 
 
 

𝑎𝑘1

𝑎−𝑘1
†

𝑎−𝑘1

𝑎𝑘1
†

⋮
𝑎𝑘𝑀

𝑎−𝑘𝑀
†

𝑎−𝑘𝑀

𝑎𝑘𝑀
†
)

 
 
 
 
 
 
 
 

 , 

where, for the sake of simplicity, we considered ABC and 𝐿 even, so as not to include special cases 𝑘 = 0 

and 𝑘 = 𝜋.  

4.2.1     Closed boundary conditions and diagonalization 

To study the bulk properties of the system, we want ℋ̂ to be diagonal in blocks of 2𝑥2 matrices and that 

requires closed boundary conditions and translational symmetry (see Appendix). With these conditions, 

equation (55) reduces to: 

𝐻 =∑ (𝑎𝑘
† 𝑎−𝑘) ℋ𝑘 (

𝑎𝑘

𝑎−𝑘
†  
)

𝑘∈𝐾
 . 

In terms of ℋ𝑘, observability and particle-hole symmetry translate into the following properties: 

ℋ𝑘 = ℋ𝑘
† ,     𝜎𝑥ℋ−𝑘

∗ 𝜎𝑥 = −ℋ𝑘  , 

we also have time-reversal symmetry if the following condition is verified: 

ℋ−𝑘
∗ = ℋ𝑘  . 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 
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It is useful to decompose ℋ𝑘 as a linear combination of the identity and the Pauli matrices: 

ℋ𝑘 = ℎ𝑘
0  𝟙2 + ℎ𝑘

𝑥  𝜎𝑥 + ℎ𝑘
𝑦
 𝜎𝑦 + ℎ𝑘

𝑧  𝜎𝑧 = (
ℎ𝑘
0 + ℎ𝑘

𝑧 ℎ𝑘
𝑥 + 𝑖ℎ𝑘

𝑦

ℎ𝑘
𝑥 − 𝑖ℎ𝑘

𝑦
ℎ𝑘
0 − ℎ𝑘

𝑧 ) , 

where  𝜎𝑥 = (
0 1
1 0

) ,  𝜎𝑦 = (
0 𝑖
−𝑖 0

) ,  𝜎𝑧 = (
1 0
0 −1

) .  In terms of ℎ𝑘
0, ℎ𝑘

𝑥, ℎ𝑘
𝑦

, ℎ𝑘
𝑧, properties (57) become 

{
 
 

 
 (ℎ𝑘

0)
∗
= ℎ𝑘

0  ,     ℎ−𝑘
0 = −ℎ𝑘

0

(ℎ𝑘
𝑥)∗ = ℎ𝑘

𝑥 ,     ℎ−𝑘
𝑥 = −ℎ𝑘

𝑥

(ℎ𝑘
𝑦
)
∗
= ℎ𝑘

𝑦
 ,     ℎ−𝑘

𝑦
= −ℎ𝑘

𝑦

(ℎ𝑘
𝑧)∗ = ℎ𝑘

𝑧  ,     ℎ−𝑘
𝑧 = ℎ𝑘

𝑧   

 

and property (58) adds the condition 

ℎ𝑘
0 = ℎ𝑘

𝑥 = 0 . 

From the explicit expression of ℋ𝑘 in (59) we can extract its eigenvalues 𝐸𝑘
± and eigenvectors 𝑣𝑘

±: 

𝐸𝑘
± = ℎ𝑘

0 ± |ℎ𝑘⃗⃗⃗⃗ | ,     𝑣𝑘
± = (

𝑒𝑖𝜑𝑘𝜒𝑘
±

±𝑒−𝑖𝜑𝑘𝜒𝑘
∓
) , 

where we defined 

𝜒𝑘
± = √

|ℎ𝑘⃗⃗⃗⃗ | ± ℎ𝑘
𝑧

2|ℎ𝑘⃗⃗⃗⃗ |
 ,     𝑒2𝑖𝜑𝑘 =

ℎ𝑘
𝑥 + 𝑖ℎ𝑘

𝑦

|ℎ𝑘
𝑥 + 𝑖ℎ𝑘

𝑦
|
 ; 

if we call Θ𝑘 and Φ𝑘 the spherical coordinates of ℎ𝑘⃗⃗⃗⃗  with respect to the 𝑧-axis, i.e.  Θ𝑘 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
ℎ𝑘
𝑧

|ℎ𝑘⃗⃗⃗⃗  ⃗|
)   

and  Φ𝑘 = 𝑎𝑟𝑔(ℎ𝑘
𝑥 + 𝑖ℎ𝑘

𝑦
) ,  we can easily see that  𝜒𝑘

+ = 𝑐𝑜𝑠 (
Θ𝑘

2
) ,  𝜒𝑘

− = 𝑠𝑖𝑛 (
Θ𝑘

2
)  and  𝜑𝑘 =

Φ𝑘

2
 . 

Properties (60) imply that 

𝜒−𝑘
± = 𝜒𝑘

± ,     𝑒2𝑖𝜑−𝑘 = −𝑒2𝑖𝜑𝑘 

and that the eigenvalues 𝐸𝑘
± present the typical particle-hole symmetric structure we already saw in 

section 2: 

𝐸−𝑘
± = −𝐸𝑘

∓ . 

Now that we know the explicit form of its eigenvectors, we can diagonalize ℋ𝑘 too: 

𝐻 =∑ (𝑎̃𝑘
† 𝑎̃−𝑘) 𝑑𝑖𝑎𝑔(𝐸𝑘

+, 𝐸𝑘
−)

𝑘∈𝐾
 (
𝑎̃𝑘

𝑎̃−𝑘
†  
) =∑ 𝐸𝑘

+(2𝑎̃𝑘
†𝑎̃𝑘 − 1)

𝑘∈𝐾
 , 

where we have defined the new creation and annihilation operators according to 

𝑎̃𝑘
† = 𝑒𝑖𝜑𝑘  𝜒𝑘

+ 𝑎𝑘
† + 𝑒−𝑖𝜑𝑘  𝜒𝑘

− 𝑎−𝑘 

and consistently with properties (64), which also grant the transformation  {𝑎𝑘 , 𝑎−𝑘
† } → {𝑎̃𝑘 , 𝑎̃−𝑘

† }  is 

canonical. 

 

 

 

(60) 

(59) 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 
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4.2.2     Winding number 

Similarly to what we observed in section 4.1, in the case of a finite chain  𝐿 < ∞  we cannot say much about 

states with zero excitation energy. The existence of a zero eigenvalue simply translates into a constraint on 

the Hamiltonian matrices, namely  |ℎ𝑘
0| = |ℎ𝑘⃗⃗⃗⃗ |  for some  𝑘 ∈ 𝐾 . In the thermodynamic limit  𝐿 → ∞ ,  

though, we see the emergence of topological phases connected to the gap in the bulk energy spectrum. 

First, in the limit  𝐿 → ∞  we can think of the momentum as a continuous variable, i.e. 

𝑘 ∈ 𝐾 = (−𝜋, 𝜋] , 

and all information on boundary conditions and parity of 𝐿 are negligible. The bulk energy spectrum is given 

by the union of the images of the functions  𝐸𝑘
± = ℎ𝑘

0 ± |ℎ𝑘⃗⃗⃗⃗ |  over the full domain  𝑘 ∈ (−𝜋, 𝜋] ;  due to 

(65), the spectrum must then be symmetric. For continuity, we have two cases: 

I. the bulk spectrum is gapped, i.e. it is given by two disconnected intervals, one with positive values 

and one with the opposite negative values, 

II. the bulk spectrum is given by one symmetric interval and admits zero energy states. 

What we need to do then, is to construct a topological invariant that is sensitive to the closure of the gap. 

Let us first consider the case with time-reversal symmetry: from (60) and (61), we know that ℎ𝑘
0 vanishes 

and ℎ𝑘⃗⃗⃗⃗  lies on the 𝑦𝑧-plane; we can then define the winding number 

𝜔 =
1

2𝜋
∮𝑑Θ𝑘 =

1

2𝜋
∫

𝜕𝑘ℎ𝑘
𝑧

ℎ𝑘
𝑦

𝜋

−𝜋

𝑑𝑘 

that counts how many laps around the origin ℎ𝑘⃗⃗⃗⃗  does on the 𝑦𝑧-plane. Notice that 𝑤 doesn’t change under 

small changes in ℎ𝑘⃗⃗⃗⃗  unless ℎ𝑘⃗⃗⃗⃗  crosses the origin for some 𝑘̅ ∈ (−𝜋, 𝜋] ,  i.e.  𝐸𝑘̅
± = 0  and the bulk gap 

closes. Then, the winding number 𝑤 can be used as a topological invariant; the phase transitions it 

identifies require a closure of the gap, and with it the appearance of zero energy states. 

Now, we saw in section 4.1 that, in the thermodynamic limit, the zero energy states appear as Majorana 

modes localized at the edges of the chain, and their number is robust under small changes of the 

parameters of the system, i.e. its Hamiltonian. Notice that result was obtained considering open boundary 

conditions and then taking the limit  𝐿 → ∞ ,  whereas the winding number was defined starting from 

closed boundary conditions; but, as we already mentioned, in the thermodynamic limit the properties of 

the system must be independent from the starting boundary conditions. The winding number 𝜔, instead, 

detects zero energy bulk states along the phase transitions. We can say, heuristically, that, when the 

system enters a phase transition, a bulk zero energy state appears and, as soon as the transition is 

completed, the state stabilizes as a Majorana edge mode. 

4.2.3     Broken time-reversal symmetry 

When time-reversal symmetry is broken, we must take into account ℎ𝑘
0 and ℎ𝑘

𝑥 too, so our parameters span 

four dimensions and a winding number is not definable. We can notice that, for  𝑘̅ = 0, 𝜋 ,  the components 

ℎ𝑘̅
0, ℎ𝑘̅

𝑥 and ℎ
𝑘̅
𝑦

 all vanish; we can use this to define the following topological invariant: 

𝜈 = sgn(ℎ0
𝑧 ℎ𝜋

𝑧) . 

Similarly to 𝜔, a change of value of 𝜈 requires a closure of the gap; the invariant 𝜈, though, can embed less 

information than the winding number 𝑤, since it has values in the cyclic group of order two (ℤ2). We will 

see soon how these bulk invariants are related to the boundary ones in the case of the Kitaev chain. 

(71) 

(68) 

(69) 
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5     APPLICATION: KITAEV CHAIN 

The system proposed by Alexei Kitaev and its generalizations fit into the framework presented in sections 2, 

3 and 4. The basic model corresponds to the homogeneous (i.e. symmetric under translations), and time-

reversal symmetric case with nearest-neighbour interactions (i.e. range  𝑟 = 1 )  so we can write 

ℋ0 𝑖𝑖 = −
𝜇

2
 ,          ℋ0 𝑖,𝑖+𝑙 = {

 −
𝑤

2
 ,     𝑙 = 1

 0 ,          𝑙 ≥ 2
 ,          ℋ𝑝 𝑖,𝑖+𝑙 = {

 −
∆

2
 ,     𝑙 = 1

 0 ,          𝑙 ≥ 2
 , 

the other parameters being set by properties (6). Then, as in (41), the Hamiltonian of the open chain is: 

𝐻 = −∑ 𝜇(𝑎𝑖
†𝑎𝑖 −

1

2
)

𝐿

𝑖=1
−∑ (𝑤 𝑎𝑖

†𝑎𝑖+1 + ∆ 𝑎𝑖
†𝑎𝑖+1

† )
𝐿−1

𝑖=1
 . 

We can see that 𝜇 is the chemical potential of a lattice site, 𝑤 is the hopping amplitude between two 

neighbouring sites and ∆ is the relative pairing amplitude. Without loss of completeness, we can assume  

𝑤 > 0 . 

5.1     Transfer matrix approach 

According to (40), Bogoliubov equations for the open Kitaev chain are 

{
 (𝑤 + ∆)𝜓𝑛,𝑗−1 + 𝜇𝜓𝑛𝑗 + (𝑤 − ∆)𝜓𝑛,𝑗+1 = 0

 (𝑤 − ∆)𝜙𝑛,𝑗−1 + 𝜇𝜙𝑛𝑗 + (𝑤 + ∆)𝜙𝑛,𝑗+1 = 0
 , 

so, referring to (43) and (44), we can compute the expression for the transfer matrices: 

𝑇𝑗
𝜓
= 𝜎𝑥𝑇

−1𝜎𝑥 ,     𝑇𝑗
𝜙
= 𝑇 = (−

𝜇

𝑤 + ∆
−
𝑤 − ∆

𝑤 + ∆
1 0

) . 

The eigenvalues of 𝑇 are 

𝜆± =
−
𝜇
2𝑤 ±

√(
𝜇
2𝑤)

2
+ (

∆
𝑤)

2

− 1

1 +
Δ
𝑤

 

and, according to section 4.1, we have phase transitions when the modulus of 𝜆+ or 𝜆− crosses the value 1, 

i.e. in the following conditions: 

a) 
𝜇

2𝑤
= 1 :  the eigenvalues are  −1  and  −

𝑤−∆

𝑤+∆
 ; 

b) 
𝜇

2𝑤
= −1 :  the eigenvalues are  1  and  

𝑤−∆

𝑤+∆
 ; 

c) {
 −1 <

𝜇

2𝑤
< 1

 
∆

𝑤
 = 0            

 :  the eigenvalues are  −
𝜇

2𝑤
± 𝑖√1 − (

𝜇

2𝑤
)
2

 . 

We can then identify the following phases. 

- Phase I:  −1 <
𝜇

2𝑤
< 1  and  

∆

𝑤
> 0 .  We have two eigenvalues with amplitude less than 1, as we 

can see for example in the case  𝜇 = 0 ,  where we have  |𝜆±| = √|
∆−𝑤

∆+𝑤
| . 

(72) 

(73) 

(74) 

(75) 

(76) 
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- Phase II:  −1 <
𝜇

2𝑤
< 1  and  

∆

𝑤
< 0 . We have two eigenvalues with amplitude more than 1; in the 

case  𝜇 = 0  we now have  |𝜆±| = √|
|∆|+𝑤

|∆|−𝑤
| . 

- Phase III:  
𝜇

2𝑤
< −1  or  

𝜇

2𝑤
> 1 .  We have one eigenvalue with amplitude less than 1 and one with 

amplitude more than 1, as we can see setting  
∆

𝑤
 = 0 ,  so that we have  𝜆± = −

𝜇

2𝑤
±√(

𝜇

2𝑤
)
2
− 1 . 

To count Majorana edge modes, we have to find combinations of eigenvectors of the transfer matrix 𝑇 that 

have the last 𝑟 components equal to zero; in this case,  𝑟 = 1  and the only vector that satisfies this 

constraint is (
1
0
).  Let us recall that applying 𝑇 to (

1
0
) recursively gives us the non-normalized components  

{𝜙𝑛,𝑗}𝑗=1,…,𝐿
  of an odd-index Majorana zero mode. (

1
0
) is not an eigenvector itself but can be decomposed 

as a combination of both eigenvectors of 𝑇: to have a normalizable Majorana zero mode, both eigenvalues 

of these two components need to have magnitude less than 1, or both greater than 1; in the former case, 

the Majorana zero mode is localized at the left edge of the chain, while in the latter case it is localized at 

the right edge of the chain. 

For even-index Majorana zero modes the transfer matrix is  𝜎𝑥𝑇
−1𝜎𝑥 ,  whose eigenvalues are the inverse 

of 𝑇’s eigenvalues: this ultimately means that an even-index Majorana edge zero mode always appears in 

couple with an odd-index one at the other edge of the chain. 

According to the definitions given in section 4.1, we can conclude that: 

- phase I is topological: we have an odd-index Majorana zero mode on the left edge of the chain and 

an even-index one on the right end of the chain, i.e.  𝑛𝜙 = 𝑛′𝜓 = 1 ,  𝑛𝜓 = 𝑛′𝜙 = 0 ; 

- phase II is topological: we have an even-index Majorana zero mode on the left edge of the chain 

and an odd-index one on the right end of the chain, i.e.  𝑛𝜓 = 𝑛′𝜙 = 1 ,  𝑛𝜙 = 𝑛′𝜓 = 0 ; 

- phase III is non-topological: we have no Majorana zero modes, i.e.  𝑛𝜓 = 𝑛𝜙 = 𝑛′𝜙 = 𝑛′𝜓 = 0 . 

5.2     Bulk spectrum approach 

Returning to the Hamiltonian in (72), if we close the chain we can write the Hamiltonian in the momentum 

representation, as in (56) and (59) with 

ℎ𝑘
0 = ℎ𝑘

𝑥 = 0 ,     ℎ𝑘
𝑦
= ∆ sin𝑘 ,     ℎ𝑘

𝑧 = −(
𝜇

2
+ 𝑤 cos𝑘) ; 

the energy-momentum dispersion, as in (62), is 

𝐸𝑘
± = ±√(

𝜇

2
+ 𝑤 cos𝑘)

2

+ (∆ sin𝑘)2 . 

As we saw in section 4.2, in this approach phase transitions are characterized by a gap closure in the bulk 

spectrum. This happens when  𝐸𝑘
± = 0  for some  𝑘 ∈ (−𝜋, 𝜋] ,  which exactly corresponds to the phase 

transitions found in the transfer matrix approach, in fact: 

a) for 
𝜇

2𝑤
= 1  the gap closes at  𝑘 = 𝜋 ; 

b) for 
𝜇

2𝑤
= −1  the gap closes at  𝑘 = 0 ; 

c) for {
 −1 <

𝜇

2𝑤
< 1

∆

𝑤
 = 0             

  the gap closes at  𝑘 = cos−1 (−
𝜇

2𝑤
) . 

(77) 

(78) 
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This shows that the topological phases of the system can be identified consistently by either approach, 

corroborating the heuristic argument presented in 4.2. 

To compute the winding number 𝜔, defined in (69), for each topological phase, we have to follow the curve 

traced by the winding vector  (ℎ𝑘
𝑦
, ℎ𝑘
𝑧) .  This curve is a circle that goes clockwise for  

∆

𝑤
< 0  (which means 

𝜔 ≥ 0 )  and counterclockwise for  
∆

𝑤
> 0  (which means  𝜔 ≤ 0 );  the circle contains the origin for       

−1 <
𝜇

2𝑤
< 1  (which means  |𝜔| = 1  inside the interval and  𝜔 = 0  outside of it). 

We can also directly compute the less sensitive ℤ2-invariant 𝜈, defined in (70): it is straightforward to show 

that  𝜈 = 1  when  |
𝜇

2𝑤
| > 1  and  𝜈 = −1  when  |

𝜇

2𝑤
| < 1. 

In conclusion: 

- in phase I we have  𝜔 = −1 ,  𝜈 = −1 , 

- in phase II we have  𝜔 = 1 ,  𝜈 = −1 , 

- in phase III we have  𝜔 = 0 ,  𝜈 = 1 . 

5.3     Broken time-reversal symmetry 

As we saw from property (7), breaking time-reversal symmetry means admitting complex non-diagonal 

entries in the Hamiltonian matrix ℋ. Without loss of completeness, we can take ∆ to be real and set 

ℋ0 𝑖𝑖 = −
𝜇

2
 ,     ℋ0 𝑖,𝑖+𝑙 = {

 −
𝑤

2
𝑒𝑖𝜑 ,   𝑙 = 1

 0 ,               𝑙 ≥ 2
 ,     ℋ𝑝 𝑖,𝑖+𝑙 = {

 −
∆

2
 ,   𝑙 = 1

 0 ,        𝑙 ≥ 2
 

so that the new Hamiltonian is: 

𝐻 = −∑ 𝜇(𝑎𝑖
†𝑎𝑖 −

1

2
)

𝐿

𝑖=1
−∑ (𝑤𝑒𝑖𝜑 𝑎𝑖

†𝑎𝑖+1 + ∆ 𝑎𝑖
†𝑎𝑖+1

† )
𝐿−1

𝑖=1
 . 

In the momentum representation we obtain 

{
 
 

 
 
ℎ𝑘
0 = 𝑤 sin𝜑 sin𝑘                 

ℎ𝑘
𝑥 = 0                                     

ℎ𝑘
𝑦
= ∆ sin𝑘                           

 ℎ𝑘
𝑧 = −(

𝜇

2
+𝑤 cos𝜑 cos𝑘)

 , 

which leads to the energy-momentum dispersion: 

𝐸𝑘
± = 𝑤 sin𝜑 sin𝑘 ± √(

𝜇

2
+ 𝑤 cos𝜑 cos𝑘)

2

+ (∆ sin𝑘)2 . 

The condition for the gap closure is then 

(
𝜇

2𝑤
+  cos𝜑 cos𝑘)

2

+ (
∆

𝑤
)
2

 sin2𝑘 = sin2𝜑 sin2𝑘 

for some  𝑘 ∈ (−𝜋, 𝜋]  and it no longer identifies a 1-dimensional region in the space of parameters  
𝜇

2𝑤
  

and  
∆

𝑤
 .  Pictorially, we can say that, starting from the time-reversal symmetric case  𝜑 = 0  and moving to 

the maximal symmetry breaking case  𝜑 =
𝜋

2
 ,  the transition lines a) and b) (i.e.  

𝜇

2𝑤
= ±1 )  get 

(80) 

(79) 

(81) 

(82) 
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progressively closer, squeezing phases I and II, while the transition line c)  (i.e. {
 −1 <

𝜇

2𝑤
< 1

∆

𝑤
 = 0             

 ),  expands 

into a 2-dimensional critical region that takes the form of a rectangle between lines a) and b) jointed with 

two elliptical segments cut along lines a) and b) and tangent to the starting lines  
𝜇

2𝑤
= ±1 .  

The result is that topological phases I and II get smaller and smaller to the point of vanishing in the extreme 

limit of maximal symmetry breaking, while the non-topological phase III expands to the point of taking the 

whole parameter space, with the exception of an elliptical critical region centered on the origin. 

5.4     Finite number of neighbours 

We now extend Kitaev’s model considering a greater but finite number of neighbours for hopping and 

pairing, i.e.  𝑟 > 1 .  Setting 

ℋ0 𝑖𝑖 = −
𝜇

2
 ,     ℋ0 𝑖,𝑖+𝑙 = {

 −
𝑤𝑙
2
𝑒𝑖𝜑𝑙  ,   𝑙 ≤ 𝑟         

0 ,                 𝑙 ≥ 𝑟 + 1
 ,     ℋ𝑝 𝑖,𝑖+𝑙 = {

 −
∆𝑙
2
 ,   𝑙 ≤ 𝑟        

 0 ,         𝑙 ≥ 𝑟 + 1
, 

the Hamiltonian for the extended Kitaev chain is 

𝐻 = −∑ 𝜇(𝑎𝑖
†𝑎𝑖 −

1

2
)

𝐿

𝑖=1
−∑ ∑ (𝑤𝑙  𝑒

𝑖𝜑𝑙  𝑎𝑖
†𝑎𝑖+𝑙 + ∆𝑙  𝑎𝑖

†𝑎𝑖+𝑙
† )

𝐿−𝑙

𝑖=1

𝑟

𝑙=1
 . 

In the momentum representation we find: 

{
 
 
 

 
 
 ℎ𝑘

0 =∑ 𝑤𝑙  sin𝜑𝑙  sin(𝑘𝑙)
𝑟

𝑙=1
                  

ℎ𝑘
𝑥 = 0                                                         

ℎ𝑘
𝑦
=∑ ∆𝑙  sin(𝑘𝑙)

𝑟

𝑙=1
                             

 ℎ𝑘
𝑧 = −(

𝜇

2
+∑ 𝑤𝑙  cos𝜑𝑙  cos(𝑘𝑙)

𝑟

𝑙=1
)

 . 

A study of topological phase diagrams of the extended Kitaev chain, assuming hopping and pairing 

parameters proportional to a power of 𝑙 

𝑤𝑙 = 𝑤 𝑙
−𝛼 ,     ∆𝑙= ∆ 𝑙

−𝛽 , 

and using both bulk invariant and transfer matrix approaches, can be found in reference [20]. 

What we want to remark here, is the explicit relations that the topological invariants we introduced have in 

the extended Kitaev chain. For  𝑟 = 1  we saw that 

𝑛𝜙 = 𝑛′𝜓 ,     𝑛𝜓 = 𝑛′𝜙 , 

i.e. Majorana zero modes come in pairs with the odd-index one and the even-index one being localized at 

opposite edges of the chain, and this is due to the fact that the transfer matrix for the odd-index modes is 

the inverse of the one for the even-index modes and as such has inverted eigenvalues. 

Equations (87) are true for the  𝑟 > 1  time-reversal symmetric case too, since it is a consequence of the 

particular structure of the Bogoliubov equations 

{
 

  𝜇𝜓𝑛𝑗 +∑ ((𝑤𝑙 + ∆𝑙)𝜓𝑛,𝑗−𝑙 + (𝑤𝑙 − ∆𝑙)𝜓𝑛,𝑗+𝑙)
𝑟

𝑙=1
= 0

𝜇𝜙𝑛𝑗 +∑ ((𝑤𝑙 − ∆𝑙)𝜙𝑛,𝑗−𝑙 + (𝑤𝑙 + ∆𝑙)𝜙𝑛,𝑗+𝑙)
𝑟

𝑙=1
= 0

 

(83) 

(84) 

(85) 

(86) 

(87) 

(88) 
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that come from (40). In fact, we can see from (88) that after the substitutions  𝜓𝑛,𝑗−𝑙 ↔ 𝜓𝑛,𝑗+𝑙   the two 

equations are the same and lead to the same transfer matrix, i.e. 

(

𝜓𝑛,𝑗+1
⋮

𝜓𝑛,𝑗−2+2𝑟

) = 𝑇𝜙 (

𝜓𝑛,𝑗
⋮

𝜓𝑛,𝑗−1+2𝑟

) , 

where 𝑇𝜙 is defined in (44) (we removed the index 𝑗 since the system is homogeneous); thus we have 

𝑇𝜓 = 𝐴(𝑇𝜙)
−1
𝐴 , 

where we have defined  𝐴 = antidiag(1,… ,1) .  𝑇𝜓 is similar to (𝑇𝜙)
−1

, so it has inverted eigenvalues, 

which is the main point in proving (87). 

We can also see from (88) that changing the sign of ∆ results in an exchange of the roles of odd-index 

modes with even-index modes, consistently to what we saw in the case  𝑟 = 1  (transition between phase I 

and phase II); but changing the sign of ∆ also changes the winding of the vector  (ℎ𝑘
𝑦
, ℎ𝑘
𝑧) ,  as we can see in 

(85), and with it the sign of the winding number 𝜔. So, changing 𝜔 to −𝜔 results in exchanging 𝑛𝜙 with 𝑛𝜓: 

according to the phase diagram we studied for  𝑟 = 1 ,  we conclude that 

𝜔 = 𝑛𝜓 − 𝑛𝜙 . 

As for the ℤ2-invariant 𝜈, it must change sign anytime a new Majorana zero mode appears, so it must 

quantify the parity of the winding number ( 𝜈 = 1  if 𝜔 is even and  𝜈 = −1  if 𝜔 is odd). 

6     CONCLUSIONS 

The Kitaev chain has been, and is still being, studied from a great variety of angles, which can also go 

beyond the applications of the framework we have presented. For example, experimental realizations of 

this system may have to deal with the presence of disorder and particle interactions. It already has been 

shown that moderate disorder supports the topological phase [27, 28] and that repulsive interactions tend 

to loosen the conditions on the chemical potential for the system to be in the topological phase [29-31]. 

The purpose of this work was to formulate a theoretical background to study the topological properties of a 

system of non-interacting spinless fermions and show how to apply it to various generalizations of the 

Kitaev chain. We have developed two independent tools, the first meant to study the boundary properties 

of the system and the localization properties of its states, the second meant to study its bulk properties. 

Both tools lead to the identification of topological phase transitions of the system, and by applying them to 

the Kitaev chain we saw how they are actually consistent and complementary. 

 

 

 

 

 

(91) 

(90) 

(89) 
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APPENDIX: SYMMETRIES 

Let us consider a generic fermionic many-body system. In the occupation number notation, we define the 

state 

|{𝑛𝑗}𝑗⟩ =∏ (𝑎𝑗
†)
𝑛𝑖

𝑗
|0⟩ , 

where: 

- the index 𝑗 spans across a finite set {1,… , 𝐿} and labels the single-particle states, 

- |{𝑛𝑗}𝑗
⟩ is the multi-particle state with occupation numbers {𝑛𝑗}𝑗

, 

- |0⟩ is the empty state of the system, 

- 𝑛𝑗 = 0,1 means the single-particle state 𝑗 is, respectively, empty or occupied, 

- 𝑎𝑗
† is the creation operator of 𝑗. 

{|{𝑛𝑗}𝑗
⟩}
{𝑛𝑗}𝑗

 ,  i.e. the set of states defined in (92) with given occupation numbers, is a basis for the Fock 

space 𝐹 of the system. A linear or antilinear operator  𝒪: 𝐹 ⟼ 𝐹  on the Fock space can be defined, 

according to elementary linear algebra, by setting how it acts on the vectors of a basis, in this case by 

defining 𝒪 |{𝑛𝑗}𝑗⟩  for all  {𝑛𝑗}𝑗 .  Notice that, if 𝒪 is invertible, we can add a term  𝒪−1𝒪  in (92) between 

each couple of neighbouring creation operators; therefore, 𝒪 can also be defined by setting how it acts on 

the creation operators and the empty state, i.e. by defining  𝒪|0⟩  and  𝒪𝑎𝑗
†𝒪−1  for all 𝑗. 

The Fourier transform of 𝑎𝑗
† is defined as 

𝑎𝑘
† =

1

√𝐿
∑ 𝑒𝑖𝑘𝑗𝑎𝑗

†

𝑗
 , 

where 𝑘 spans across a symmetrical set of 𝐿 elements in the interval  (−𝜋, 𝜋] .  Notice that, when we 

define 𝒪 through its applications  𝒪𝑎𝑗
†𝒪−1  on the creation operators, if 𝒪 is linear then  𝒪𝑎𝑘

†𝒪−1  will be 

the Fourier transform of  𝒪𝑎𝑗
†𝒪−1 ,  whereas if 𝒪 is antilinear  𝒪𝑎𝑘

†𝒪−1  will be the Fourier transform of  

𝒪𝑎𝑗
†𝒪−1  with inverted index 𝑘. 

Symmetries in quantum mechanics are described by unitary or antiunitary operators. A unitary operator 𝒰 

is such that  ⟨𝜓|𝒰†𝒰|𝜑⟩ = ⟨𝜓|𝜑⟩ ,  i.e.  𝒰†𝒰 = 𝟙 .  An antiunitary operator 𝒰 is such that       

⟨𝜓|𝒰†𝒰|𝜑⟩ = ⟨𝜑|𝜓⟩ ,  i.e.  𝒰†𝒰  takes the complex conjugate both on its right and on its left. Unitary and 

antiunitary operators act like canonical transformations on the creation operators, i.e.  {𝒰𝑎𝑗
†𝒰−1 = 𝑎̃𝑗

†}
𝑗
  

will be a set of new creation and annihilation operators. This means that the new empty state  |0⟩̃ = 𝒰|0⟩  

is defined by  𝑎̃𝑗|0⟩̃ = 0  for every 𝑗 and is not a degree of freedom in the construction of 𝒰. As for the 

action of 𝒰 on the Fourier-transformed creation operators 𝑎𝑘
†, this will be  𝒰𝑎𝑘

†𝒰−1 = 𝑎̃𝑘
†  if 𝒰 is unitary 

and  𝒰𝑎𝑘
†𝒰−1 = 𝑎̃−𝑘

†   if 𝒰 is antiunitary. 

So we can construct a symmetry operator by defining its applications  𝒰𝑎𝑗
†𝒰−1 = 𝑎̃𝑗

†  on the creation 

operators, and then choosing whether it acts on the Fourier transforms as  𝒰𝑎𝑘
†𝒰−1 = 𝑎̃𝑘

†  (i.e. it is unitary) 

or as  𝒰𝑎𝑘
†𝒰−1 = 𝑎̃−𝑘

†   (i.e. it is antiunitary). If we interpret 𝑗 and 𝑘 as, respectively, space and momentum 

indices, this process captures the physical meaning of the symmetry operator. 

(92) 

(93) 
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Time-reversal symmetry. 

The physical meaning of a time-reversal operation is to leave space variables unchanged and invert 

momentum variables. Therefore, we can define the time-reversal operator 𝑇 through 

𝑇𝑎𝑗
†𝑇−1 = 𝑎𝑗

† ,          𝑇𝑎𝑘
†𝑇−1 = 𝑎−𝑘

†  . 

This means that 𝑇 is antilinear and acts on the Fock space as   𝑇: |{𝑛𝑗}𝑗⟩ ⟼ |{𝑛𝑗}𝑗⟩ ,  i.e. when 𝑇 acts on a 

vector |𝜑⟩ it takes the complex conjugate of its components along the basis of vectors with given 

occupation numbers. 

We define a system to be time-reversal symmetric if its Hamiltonian 𝐻 is such that 

𝑇𝐻𝑇−1 = 𝐻 . 

If 𝐻 has the structure of a one-body operator as in (1), i.e. 

𝐻 = (𝑎𝑗1
†  … 𝑎𝑗𝐿

†  𝑎𝑗1  … 𝑎𝑗𝐿) ℋ 

(

 
 
 
 

𝑎𝑗1
⋮
𝑎𝑗𝐿

𝑎𝑗1
†

⋮

𝑎𝑗𝐿
†
)

 
 
 
 

 , 

then, by combining (95) and (96), we find  𝑇ℋ𝑇−1 = ℋ ;  but ℋ is a matrix made of scalars, so     

𝑇ℋ𝑇−1 = ℋ∗𝑇𝑇−1 = ℋ∗ ,  which gives the condition on ℋ for time-reversal symmetry: 

ℋ = ℋ∗ . 

If 𝐻 has the diagonalized form in (56), i.e. 

𝐻 =∑ (𝑎𝑘𝑖
†  𝑎−𝑘𝑖) ℋ𝑘𝑖 (

𝑎𝑘𝑖

𝑎−𝑘𝑖
†  

)
𝐿

𝑖=1
 , 

then, by combining (95) and (98), we find  𝑇ℋ𝑘𝑖𝑇
−1 = ℋ−𝑘𝑖 ;  therefore, the condition on ℋ𝑘𝑖 for time-

reversal symmetry is: 

ℋ𝑘𝑖
∗ = ℋ−𝑘𝑖  . 

Particle-hole symmetry. 

The physical meaning of this operation is to swap particles with holes, leaving space and time variables 

unchanged. Therefore, we can define the particle-hole operator 𝐶 through 

𝐶𝑎𝑗
†𝐶−1 = 𝑎𝑗 ,          𝐶𝑎𝑘

†𝐶−1 = 𝑎𝑘  . 

One can show this means that 𝐶 is antilinear and acts on the Fock space as   𝐶: |{𝑛𝑗}𝑗⟩ ⟼ 𝜉{𝑛𝑗}𝑗
|{𝑛𝑗}𝑗⟩ ,  

where 𝜉{𝑛𝑗}𝑗
 is a sign that depends on the occupation numbers of the state. 

We define a system to be particle-hole symmetric if its Hamiltonian 𝐻 is such that 

𝐶𝐻𝐶−1 = −𝐶 . 

Notice that  𝐶(𝑎𝑗1
†  … 𝑎𝑗𝐿

†  𝑎𝑗1  … 𝑎𝑗𝐿)𝐶
−1 = (𝑎𝑗1  … 𝑎𝑗𝐿  𝑎𝑗1

†  … 𝑎𝑗𝐿
† ) = (𝑎𝑗1

†  … 𝑎𝑗𝐿
†  𝑎𝑗1  … 𝑎𝑗𝐿)𝜎̂𝑥 ,  where  

𝜎̂𝑥 = 𝜎𝑥⊗ 𝟙𝐿 ;  then, by combining (101) and (96), we find  𝜎̂𝑥𝐶ℋ𝐶
−1𝜎̂𝑥 = −ℋ ,  i.e. 

(100) 

(94) 

(95) 

(96) 

(98) 

(97) 

(99) 

(101) 
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𝜎̂𝑥ℋ
∗𝜎̂𝑥 = −ℋ . 

We can also notice that  𝐶(𝑎𝑘𝑖
†  𝑎−𝑘𝑖)𝐶

−1 = (𝑎𝑘𝑖  𝑎−𝑘𝑖
† ) = (𝑎−𝑘𝑖

†  𝑎𝑘𝑖)𝜎𝑥 ;  then, by combining (101) with 

(98), we find  𝜎𝑥𝐶ℋ−𝑘𝑖𝐶
−1𝜎𝑥 = −ℋ𝑘𝑖 ,  i.e. 

𝜎𝑥ℋ−𝑘𝑖
∗ 𝜎𝑥 = −ℋ𝑘𝑖  . 

Translational symmetry. 

We can define a translation operator as the unitary operator such that 

𝑆𝑙𝑎𝑗
†𝑆𝑙

−1 = 𝑎𝑗+𝑙
†  ; 

according to (93), this means that 𝑆𝑙 acts on the momentum creation and annihilation operators as 

𝑆𝑙𝑎𝑘
†𝑆𝑙

−1 = 𝑒−𝑖𝑘𝑙𝑎𝑘
† ,     𝑆𝑙𝑎𝑘𝑆𝑙

−1 = 𝑒𝑖𝑘𝑙𝑎𝑘 . 

Let us consider a generic Hamiltonian in the momentum representation as in (55), i.e. 

𝐻 = (𝑎𝑘1
†  𝑎−𝑘1 𝑎−𝑘1

†  𝑎𝑘1  … 𝑎𝑘𝑀
†  𝑎−𝑘𝑀  𝑎−𝑘𝑀

†  𝑎𝑘𝑀) ℋ̂  

(

 
 
 
 
 
 
 
 

𝑎𝑘1

𝑎−𝑘1
†

𝑎−𝑘1

𝑎𝑘1
†

⋮
𝑎𝑘𝑀

𝑎−𝑘𝑀
†

𝑎−𝑘𝑀

𝑎𝑘𝑀
†
)

 
 
 
 
 
 
 
 

 ; 

and write ℋ̂ in blocks of 2𝑥2 matrices: 

ℋ̂ =

(

 
 
 

ℋ̂𝑘1,𝑘1 ℋ̂𝑘1,−𝑘1

ℋ̂−𝑘1,𝑘1 ℋ̂−𝑘1,−𝑘1

⋯
ℋ̂𝑘1,𝑘𝑀 ℋ̂𝑘1,−𝑘𝑀

ℋ̂−𝑘1,𝑘𝑀 ℋ̂−𝑘1,−𝑘𝑀

⋮ ⋱ ⋮
ℋ̂𝑘𝑀,𝑘1 ℋ̂𝑘𝑀,−𝑘1

ℋ̂−𝑘𝑀,𝑘1 ℋ̂−𝑘𝑀,−𝑘1

⋯
ℋ̂𝑘𝑀,𝑘𝑀 ℋ̂𝑘𝑀,−𝑘𝑀

ℋ̂−𝑘𝑀,𝑘𝑀 ℋ̂−𝑘𝑀,−𝑘𝑀)

 
 
 
 . 

Applying 𝑆𝑙 to 𝐻 ultimately means transforming  ℋ̂𝑘′,𝑘′′  into  𝑒−𝑖(𝑘
′−𝑘′′)𝑙ℋ̂𝑘′,𝑘′′  in the expression of ℋ̂. 

This shows that translational symmetry, i.e. 

𝑆𝑙𝐻𝑆𝑙
−1 = 𝐻 , 

is equivalent to requiring ℋ̂ to be diagonal in blocks of 2𝑥2 matrices. 

 

 

 

 

 

 

 

(102) 

(103) 

(104) 

(105) 

(106) 

(107) 

(108) 
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