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Alla mia Famiglia 

 

 

 

 

 

 

 

 

 

Non ho particolari talenti, sono solo appassionatamente curioso. 

- Albert Einstein 

 

Sometimes it is the very people who no one imagines anything of,  

who do the things that no one can image. 

- Alan Turing in “The Imitation Game” 
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Abstract 

Image augmentation, and in general data augmentation techniques, can greatly improve the 

performances of deep neural networks through the creation of artificial patterns, in fact the 

presence of these new patterns helps the network to generalise thus avoiding overfitting, i.e. 

the excessive adaptation of the network to the training data. The application of these 

techniques has become increasingly important, especially in fields where data availability is 

scarce, such as the medical field.  

This work reports various non-traditional image augmentation techniques based on filtering 

and mixup operations in the frequency domain, tone mapping, background change and others. 

To evaluate the performance and benefits, these techniques are applied to the Kvasir-SEG 

dataset, which is then used to train the DeepLabV3+ semantic segmentation model.  
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Sommario 

L’image augmentation, e in generale, le tecniche di data augmentation, possono migliorare 

notevolmente le prestazioni delle reti neurali profonde attraverso la creazione di pattern 

artificiali, i quali aiutano la rete a generalizzare evitando così l’overfitting, cioè l’eccessivo 

adattamento della rete ai dati di addestramento. L’applicazione di tali tecniche è diventata 

sempre più importante, soprattutto nei campi in cui la disponibilità di dati è scarsa, come in 

quello medico.  

Questo lavoro riporta varie tecniche non tradizionali di image augmentation basate su 

operazioni di mescolanza e filtraggio nel dominio della frequenza, mappatura dei toni, 

cambiamento di sfondo ed altre. Per valutare le prestazioni ed i benefici, tali tecniche vengono 

applicate al dataset Kvasir-SEG, utilizzato poi per addestrare il modello di segmentazione 

semantica DeepLabV3+.  
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Chapter 1  
 

Introduction 

Several studies and publications over the years have identified colorectal cancer as one of the 

most commonly diagnosed cancers.  

For example, to mention a few, in 2008 [1] colorectal cancer was one of the most commonly 

diagnosed cancers along with lung and breast cancer. In 2012, as reported in [2], colorectal 

cancer was the second most commonly diagnosed cancer in women and the third among men 

with an estimated 693,900 deaths and 1.4 million cases. Then, if we focus on the United 

States, we can observe that in 2015 [3] colorectal cancer was the second leading cause of 

death and then became third in 2017 [4]. 

Since the presence of polyps, and therefore a failure to identify them, is the main cause of 

colorectal cancer, an early detection, in order to have an equally early removal, becomes very 

important to increase the chances of survival. 

However, the identification of polyps is not a trivial task; on the contrary, sometimes, it 

becomes difficult and temporarily expensive even for the most experienced medical doctors 

because of the variety of their classes, each with different size, shape, position and colour 

intensity. In fact, as reported in [5], according to the size and type of polyps there is a 

percentage between 14% and 30% of unidentified polyps, so the presence of an automated 

system for the polyps recognition would be much more efficient, useful and effective for 

decreasing the cases of these types of cancers. 

 

Nowadays we can find the application of computer vision techniques in innumerable fields 

such as self-driving cars, pedestrian detection, traffic flow analysis, X-ray analysis and many 

others. In fact, in recent decades with the ever-faster evolution of machine learning and thanks 

to the performance of deep artificial neural networks, greater than or equal to those of 

humans, many diagnostic tasks have been entrusted to automated systems. 
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This work focuses on a specific task of computer vision called semantic segmentation; this 

technique aims to label each pixel of an image and it is widely used in autonomous driving, 

robot vision and understanding, localisation, medical image analysis, scene understanding and 

others.  

In detail, various non-traditional data augmentation techniques are proposed and tested with 

the aim of improving the performance of the DeepLabV3+ semantic segmentation 

architecture, trained with the Kvasir-SEG dataset that contains images of gastrointestinal 

polyps.  

 

 

1.1 Motivation / Purpose 

With the spread of deep learning, most semantic segmentation problems are tackled using 

architectures based on deep neural networks. But to be effective, the optimisation through the 

learning algorithm of the huge number of parameters that constituting the deep artificial 

neural networks, a large number of training examples are required. 

This structural constraint can, as in the medical field, become a problem. Indeed, in medicine 

there are very few publicly accessible datasets containing a significant amount of labelled 

samples because of a several factors such as privacy, time and domain-specific knowledge to 

manually annotate large datasets.   

A solution to this phenomenon, widely used in recent years, is called Data Augmentation: the 

main topic of this work. 

 

 

1.2 Aims of this work 

The primary objective of this project is to propose non-traditional data augmentation 

techniques and verify how much these can help the deep neural network in the semantic 

segmentation of polyps. 

In addition to this, other goals include checking how much performance improves by 

combining the proposed techniques with the basic ones used as post-processing method and 

how performance changes using combinations of the proposed techniques. 



Chapter 1  Introduction 

3 

 

1.3 Thesis Structure 
The exposition and explanation of the terminology and theory that make up this work are 

contained in Chapter 2. 

In Chapter 3 are exposed the proposed methods, the composition of the dataset in which they 

are applied and the architecture on which the results obtained are extracted. 

The definition of the used metrics, the results, and the comparison of these with other data 

augmentation methods are reported in Chapter 4. 

Finally, Chapter 5 contains the conclusions extracted from the reported experiments and 

possible future developments. 
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Chapter 2  
 

Background 

 

 

2.1 Data augmentation and its benefits  

In general, data augmentation is a method used to increase the performance of a machine 

learning model through the creation of synthetic data from existing data. This technique is 

widely used in the various fields of deep learning because of the big necessity of input data 

required by deep artificial neural networks to learn at their best. As we can read in the 

literature, examples of different fields in which data augmentation is used are: Natural 

Language Processing [6], Time Series Analysis [7], Deep Graph Learning [8] and many 

others.  

This procedure has as its main objective to increase the size of the training set in order to 

make the model more robust to variations of the input data. Specifically, data augmentation is 

used to improve robustness in machine learning models where the amount of data is scarce 

and becomes often essential to reduce overfitting. 

The term overfitting identifies the phenomenon whereby the model fits (fitting) and 

memorizes too well (over) the data it has observed - those belonging to the training set - thus 

failing to generalise with data not already observed (See [9] for a better overview). 

Therefore, the data augmentation techniques want to be a solution to the resolution of these 

problems by increasing the quantity of training examples thus increasing the ability of 

generalisation of the network and solving problems of class imbalance. 
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2.2 Image augmentation  

Basically, the term “image augmentation” refers to all techniques of data augmentation where 

patterns of relative model are images. The purpose coincides with that of data augmentation, 

i.e. to create synthetic images from existing ones to improve network performance. 

The use of these techniques may seem trivial, but they can increase generalizability 

performance of the model through increasing the diversity of examples that make up the 

training set. 

The creation of artificial images can be through different ways of processing or combination 

of multiple processing, the most popular methods are described in the following sections. 

 

2.2.1 Image Rotation 

This technique is one of the simplest, but sometimes it can be really effective because, by 

randomly rotating the image clockwise or counterclockwise with random number of degrees, 

the object in the image will occupy a different region. 

     

Figure 2.1 Examples of image rotation. 

 

2.2.2 Image Shifting 

This technique consists of moving all pixels of the image horizontally or vertically without 

changing the size of image. This operation can lead to cutting off parts of the image, but it is 

very useful in problems where the object to be identified does not have a precise position. 

     

Figure 2.2 Examples of image shifting. 
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2.2.3 Image Flipping 

This operation simply consists of reflecting the image vertically or horizontally. Flipping an 

image helps the model to avoid the memorization of relationships between groups of pixels 

that compose an object. 

     

Figure 2.3 Examples of image flipping. 

 

2.2.4 Image Scaling 

Scaling an image can be seen as zooming in or zooming out the image. This effect changes 

the background and position of the object. 

     

Figure 2.4 Examples of image scaling. 

 

2.2.5 Image Noising 

Unlike humans, image imperfections can significantly alter the prediction capabilities of 

neural networks. Several studies [10], [11] have investigated and demonstrated how the 

presence of imperfections can alter this performance. These studies have identified, for 

example, noise and blurring as the worst for the most common neural networks. 

     

Figure 2.5 Examples of image noising. 

 

See for [12] more information on noise models. 
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2.2.6 Image Color Trasformation 

There are several techniques for changing the colours of an image, but all of them are based 

on changing the following four aspects of colour: brightness, contrast, saturation and hue. 

     

Figure 2.6 Examples of image color trasformation. 

 

 

2.3 Computer vision tasks 

Before giving a definition and understanding what semantic segmentation is, let us take a step 

back and identify the family to which this technique belongs: computer vision. 

Computer vision is the branch of computer science that includes techniques and algorithms to 

process images and videos through computers in order to understand, interpret and 

comprehend their content similar to what happens with the human eye. 

This field comprises several subdomains and it is used to resolve a variety of tasks. 

 

The most popular tasks, in which the various computer vision techniques are involved, are: 

• Image Classification 

It aims to determine the class to which an image belongs. This technique does not 

provide information at the pixel level. For a survey of image classification see [13]. 

 

• Object Detection 

This task focuses on identifying particular objects in the input image. In addition to 

identifying, by assigning them to their class, it creates a rectangle, technically called a 

"Bounding Box", which encloses the identified object in order to show its spatial 

position inside the image. For a survey of object detection see [14]. 
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• Semantic Segmentation 

The semantic segmentation is the process that has as objective the prediction of the 

class to which each pixel belongs; this technique then creates the corresponding 

segmentation mask for each class present in the input image. 

This method does not differentiate the different instances of the same object, as can be 

seen in the example in Figure 2.7 where all the pixels that make up the various cubes 

have the same label.  

So, it tries to identify objects belonging to the same class by doing an image 

classification at the pixel level. See next section for read more information about this 

computer vision task. 

 

• Instance Segmentation 

This technique is an evolution of the previous one, in particular it is a combination of 

semantic segmentation and object detection, so each resulting segmentation map does 

not contain all objects of the same class but only one instance of it. 

Therefore, unlike semantic segmentation, this method can identify the different 

instances of the same class, thus also knowing the number of them within the image.

 

 

Example to better understand the difference between the various tasks: 

 

Figure 2.7 Example to better understand the difference between the various computer vision tasks [15] 

 

 

See [16] for a better overview of computer vision and its other tasks. 
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2.4 Semantic segmentation before and after 

Semantic segmentation is a long-standing computer vision task, before the birth of deep 

learning many algorithms were designed to try to solve this non-trivial task, e.g. Watershed 

algorithm, image thresholding, K-means clustering, Conditional Random Fields, etc. 

For example, the oldest and simplest image thresholding algorithm, also known as “image 

binarization”, converted the original image to a greyscale image and set the value of each 

pixel to 0 (black) if the pixel intensity value is greater than a threshold value or 1 (white) if it 

is less. 

The emergence of deep neural networks also revolutionised the world of computer vision; in 

fact, the first types of networks used for semantic segmentation were Fully Convolutional 

Networks (FCN) in which, unlike CNNs, each neuron in a layer is connected to all the other 

neurons in the next layer and in which there are no constraints on input size. 

 

 
Figure 2.8 Fully Convolutional network architecture for semantic segmentation [17] 

 

As time went by, new more advanced and efficient approaches based on FCNs were 

developed, such as SegNet [18], U-Net [19] and DeepLab [20]. These new systems always 

adopt the autoencoder architecture, consisting of two modules: the encoder that performs the 

downsampling of the input image and the decoder that, on the contrary, does the upper 

sampling using the feature vector output from the encoder. 
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In detail, the encoder is a pre-trained feature extraction network, like VGGNet, ResNet, etc. 

that produces a low dimensionality dense representation of the input image, and the decoder 

recovers the resolution lost by downsampling of the encoder. 
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Chapter 3  
 

Materials and methods 

 

 

3.1 Datasets 

All the techniques proposed in this work are applied to the Kvasir-SEG [5] dataset proposed 

in 2019 by Jha et al.  

Kvasir-SEG is an open-access dataset that contains images of gastrointestinal polyps with 

their corresponding segmentation mask, annotated by medical doctor and subsequently 

verified by expert gastroenterologist. 

 

 

Figure 3.1 Example images from the Kvasir-SEG dataset with additional green marking of the polyp region. 

 

As reported in the related article, the creation of this dataset was intended to overcome the 

lack of open-access datasets for comparable evaluations in this field. In fact, prior to Kvasir-

SEG there were very few easily accessible datasets with scarce data, see for example CVC-

ColonDB and CVC-ClinicDB in [21], ASU-Mayo Clinic Colonoscopy Video Database [22] 

and ETIS-Larib Polyp DB [23].  

 



Chapter 3  Materials and methods 

14 

 

Kvasir-SEG is based on the previous Kvasir [24] but unlike this one it contains 1000 images 

with their corresponding 1-bit colour depth masks (white foreground and black background) 

manually annotated by a doctor. 

In this work, as with most of the work reported in the literature - see for example [25] and 

[26] - the 1000 images in the dataset are divided as follows: 880 images make up the training 

set, while 120 images make up the validation set. 

 

 

3.2 Deeplab 

The semantic segmentation architecture used in this work is DeepLabV3+ [27], released in 

2018 by Google. DeepLabV3+ still represents one of the state-of-art architectures for 

semantic segmentation; its implementation is open source and articles related to its inner 

workings are publicly available on Arxiv. 

The DeepLabV3+ architecture is part of the larger DeepLab family: a series of encoder-

decoder models designed by Google since 2015 that includes DeepLabv1, DeepLabv2, 

DeepLabv3 and DeepLabv3+. 

The DeepLabv1 and DeepLabv2 architectures are very similar, they both use Deep 

Convolutional Neural Networks (DCNNs) with Atrous Convolution and Fully Connected 

Conditional Random Field (CRF). In DeepLabV2 new DCNNs are implemented, and a 

technology called Atrous Spatial Pyramid Pooling (ASPP) is added, see [28],[20] for more 

information. 

DeepLabv3 [29] adds image-level features [30], [31] and batch normalization [32] to the 

ASPP module to facilitate training. 

DeepLabV3+ is the latest version of the DeepLab models, it extends DeepLabV3 by including 

a decoder module to refine segmentation results (especially along object boundaries) and in 

addition it is possible to arbitrarily control encoder characteristics. 

DeepLabV3+ uses the classical encoder-decoder architecture, where the encoder (also called 

backbone) is usually a pre-trained network that extracts features from a high-resolution image 

and transforms it into a vector of lower resolution features; while the decoder has the task of 

making a “semantic projection” of the low-resolution features, learned from the encoder, into 

the higher resolution pixel space. 
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Figure 3.2 Internal structure of DeepLabV3+. 

 

Thus, the key operation of this state-of-the-art semantic segmentation architecture is atrous 

convolution, which offers a faster and more efficient alternative to standard convolution by 

allowing the widening of the visual field of filter without increasing parameters and 

computational costs. 

 

Figure 3.3 Example of comparison between standard convolution and atrous convolution in 2-D [20].   

 

 

3.3 Approach Overview 

The following sections contain descriptions of all data augmentation methods developed and 

tested in order to increase the size of the starting dataset to improve segmentation 

performance.  
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The proposed methods are grouped into families according to their operations, and the five 

families reported are: 

1. Frequency Mixup 

2. Frequency filtering 

3. Elastic 

4. Change background 

5. Tone mapping 

 

The operations described in the various sections are also applied to the relative image labels. 

 

Most of the proposed methods use a pre-computed 880x880 similarity matrix containing the 

degree of similarity between the images of the training set. The degree of similarity between 

images was calculated using the 2-D correlation coefficient (corr2 in MATLAB) due to its 

efficiency compared to the other metrics (es: Structural Similarity Index, Mean-Squared 

Error, …). See more detail in [33]. 

The 2-D correlation coefficient is calculated as follows: 

𝑟 =
∑  𝑚 ∑ (𝐴𝑚𝑛 − �̅�)(𝐵𝑚𝑛 − �̅�)𝑛

√(∑  𝑚 ∑ (𝐴𝑚𝑛 − �̅�)2
𝑛 )(∑  𝑚 ∑ (𝐵𝑚𝑛 − �̅�)2

𝑛 )
(3.1) 

where: 

• 𝐴𝑚𝑛 is the intensity of the (m, n) pixel in the image A 

• 𝐵𝑚𝑛 is the intensity of the (m, n) pixel in the image B 

• �̅� = 𝑚𝑒𝑎𝑛2(𝐴) = average intensity of image A 

• �̅� = 𝑚𝑒𝑎𝑛2(𝐵) = average intensity of image B 

 

 

3.4 Frequency mixup 

All methods belonging to this family use of the 2-D Discrete Fourier Transform (DFT) and its 

inverse, calculated through the Fast Fourier Transform algorithm. 
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The 2-D Discrete Fourier Transform Y of a matrix X of size MxN pixels is defined as: 

𝑌(𝑢, 𝑣) = ∑  

𝑀−1

𝑥=0

∑ 𝑋(𝑥, 𝑦) 𝑒−𝑗2𝜋(
𝑢𝑥
𝑀

+
𝑣𝑦
𝑁

)

𝑁−1

𝑦=0

(3.2) 

And its inverse as: 

𝑋(𝑥, 𝑦) =
1

𝑀𝑁
∑  

𝑀−1

𝑢=0

∑ 𝑌(𝑢, 𝑣) 𝑒𝑗2𝜋(
𝑢𝑥
𝑀

+
𝑣𝑦
𝑁

)

𝑁−1

𝑣=0

(3.3) 

where:  

• 𝑗 is the imaginary unit 

• 𝑢, 𝑥 ∈ [0, 𝑀 − 1] 

• 𝑣, 𝑦 ∈ [0, 𝑁 − 1] 

 

 

3.4.1 FFT mixup 1 

This method replaces the values that compose a 4x4 square in the centre of the shifted DFT of 

the original image with the respective values of a shifted DFT of a random image for all 3 

channels, for 3 random images.  

 

Pseudocode: 

ALGORITHM 1: FFT MIXUP 1 DATA AUGMENTATION 

 Input: original dataset  (𝑥, 𝑦) ∈ {𝑋, 𝑌} 

1 For n = 1, . . .3  

2  𝑥𝑟𝑎𝑛𝑑𝑜𝑚 ← random image from 𝑋 

3  For 𝑖 = each channel of rgb image 𝑥 

4   𝑥𝑓𝑟𝑒𝑞 ← 𝐹(𝑥[: , : , 𝑖]) 

5   𝑥𝑓𝑟𝑒𝑞_𝑟𝑎𝑛𝑑 ← 𝐹(𝑥𝑟𝑎𝑛𝑑𝑜𝑚[: , : , 𝑖]) 

6   Shift zero-frequency components of 𝑥𝑓𝑟𝑒𝑞 and 𝑥𝑓𝑟𝑒𝑞_𝑟𝑎𝑛𝑑 to the center of the 

spectrum 

7   𝑥𝑓𝑟𝑒𝑞[𝑐𝑒𝑛𝑡𝑒𝑟 𝑠𝑞𝑢𝑎𝑟𝑒 4𝑥4 𝑝𝑖𝑥𝑒𝑙] ←  𝑥𝑓𝑟𝑒𝑞_𝑟𝑎𝑛𝑑[𝑐𝑒𝑛𝑡𝑒𝑟 𝑠𝑞𝑢𝑎𝑟𝑒 4𝑥4 𝑝𝑖𝑥𝑒𝑙] 

8   𝑥𝑛𝑒𝑤[: , : , 𝑖] ← 𝐹−1(𝑥𝑓𝑟𝑒𝑞) 

9  End 

10 End 

11 Adding (𝑥𝑛𝑒𝑤, 𝑦) to {𝑋, 𝑌} 
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Figure 3.4 Example of FFT mixup 1 method application. 

 

 

3.4.2 FFT mixup 2 

This method is very similar to the previous one, but instead of replacing the FFT values of 3 

random images it takes the first 3 images most similar to the original one. 

The pseudocode of the algorithm is very similar to that in 3.4.1. 

 

     

     

Figure 3.5 Example of FFT mixup 2 method application. 

 

 

 



Chapter 3  Materials and methods 

19 

 

3.4.3 FFT mixup 3 

This method changes the values of two vertical bands in the FFT of the current image with the 

respective values of the FFT of the similar image, for the first 3 most similar images. (Note: 

the bands have their centres in the siz/4 and (siz/4 * 3) columns and are 20*2 wide). 

The pseudocode of the algorithm is very similar to that in 3.4.1. 

 

     

     

Figure 3.6 Example of FFT mixup 3 method application. 

 

 

 

3.4.4 FFT mixup 4  

For each image in the dataset, this technique considers the first 10 most similar images, then 

for each channel it does the FFT and based on the percentage of similarity between the 

original image and its similar image, it modifies each pixel with 5% probability, replacing its 

value with the average between the current value and the pixel value of the FFT of the similar 

image weighted with the percentage of similarity 

 

Pseudocode: 

ALGORITHM 2: FFT MIXUP 4 DATA AUGMENTATION 

 Input: original dataset  (𝑥, 𝑦) ∈ {𝑋, 𝑌} 

1 𝑆 = {set of 10 most similar images} = {𝑠1, 𝑠2, … 𝑠10} 

 

 
2 𝑉 = {set that contains 10 respective degrees of similarity of images in 𝑆}  

    = {𝑣1, 𝑣2, … 𝑣10} 
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3 For 𝑠𝑗 ∈ 𝑆, 𝑣𝑗  ∈ 𝑉 

 4  For 𝑖 = each channel of rgb image 𝑥 

5   𝑥𝑓𝑟𝑒𝑞 ← 𝐹(𝑥[: , : , 𝑖]) 

6   𝑥𝑓𝑟𝑒𝑞_𝑠𝑖𝑚 ← 𝐹(𝑠𝑗[: , : , 𝑖]) 

7   𝑚 =  random matrix with the same size as 𝑥 where each pixel has 5% to be 1 

and 95% to be 0. 

 
8   

𝑥𝑓𝑟𝑒𝑞(𝑚 == 1) =
(1 − 𝑣𝑗) ∗ 𝑥𝑓𝑟𝑒𝑞(𝑚 == 1) + 𝑣𝑗 ∗ 𝑥𝑓𝑟𝑒𝑞𝑠𝑖𝑚

(𝑚 == 1)

2
 

9   𝑥𝑛𝑒𝑤[: , : , 𝑖] = 𝐹−1(𝑥𝑓𝑟𝑒𝑞) 

10  End 

11 End 

12 Adding (𝑥𝑛𝑒𝑤, 𝑦) to {𝑋, 𝑌} 

 

 

     

     

Figure 3.7 Example of FFT mixup 4 method application. 

 

 

 

3.4.5 FFT mixup 5 

Same technique as described in 3.4.1 but taking the first 5 most similar images and 

substituting a 3x3 square in the centre of the FFT. 

See the pseudocode in 3.4.1. 
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Figure 3.8 Example of FFT mixup 5 method application. 

 

 

 

3.5 Frequency filtering 

3.5.1 Frequency filtering [34] 

Implementation of the frequency filtering method presented in the article [34] with 𝑟0 = 2,

𝛼 = 50, 𝑙 = 60 and theta0 angle of the shape mask different for all channels of the image. 
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Figure 3.9 Pseudocode reported in [34] 

 

     

     

     

     

Figure 3.10 Example of Frequency filtering [34] method application. 
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3.6 Elastic 

This family uses the techniques presented in APP9 of article [35] in order to evaluate the 

efficiency of this type of deformation. For a better description of the relative procedure used, 

see the individual sections. 

 

3.6.1 Elastic1 

The image created by this method uses ElasticDeformation, a technique based on the 

Albumentations library (available at https://albumentations.ai/ (accessed 05/06/22) 

• type = ‘log’ 

• alpha value = 3000 

 

As reported in [35], this method applies a randomly generated displacement field to all pixel 

of image. The displacement field is defined as: 

Δ𝑥(𝑥, 𝑦) = 𝑟𝑎𝑛𝑑(−1, +1) (3.4) 

Δ𝑦(𝑥, 𝑦) = 𝑟𝑎𝑛𝑑(−1, +1) (3.5) 

where 𝑟𝑎𝑛𝑑(−1, +1) represents a random value extracted from the standard uniform 

distribution in [-1, 1]. 

Next, three low-pass filters are then applied to the generated horizontal and vertical 

displacement fields: 

• circular averaging filter 

• rotationally symmetric Gaussian low-pass filter 

• rotationally symmetric Laplacian of Gaussian filter 

Finally, before being applied to the original image, each filtered displacement matrix is 

multiplied by an 𝑎𝑙𝑝ℎ𝑎 (𝛼) value. 

 

     

https://albumentations.ai/
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Figure 3.11 Example of elastic1 method application. 

 

 

3.6.2 Elastic2 

Same as 3.6.1 (so always type = ‘log’) but with 3 different alpha values: 1000, 2000, 3000. 

     

     

Figure 3.12 Example of elastic2 method application. 

 

 

3.6.3 Elastic3 

This method generates 6 new images: 

• Elastic deformation KU with alpha value 7000 

• Elastic deformation KU with alpha value 10000 

• Elastic deformation KU with alpha value 13000 

• Elastic Deformation SC type 'gauss' and alpha value 3000 

• Elastic Deformation SC type 'disk' and alpha value 3000 

• Elastic Deformation SC type 'log' and alpha value 3000 
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As reported in [35],  the elastic deformation KU method differs from Elastic Deformation SC 

(used in 3.6.1 and 3.6.2) in the definition of the randomly generated displacement field: 

Δ𝑥(𝑥, 𝑦) = 𝛼 ∗ 𝑟𝑎𝑛𝑑(−1, +1) (3.6) 

Δ𝑦(𝑥, 𝑦) = 𝛼 ∗ 𝑟𝑎𝑛𝑑(−1, +1) (3.7) 

 

where 𝑟𝑎𝑛𝑑(−1, +1) represents a random value extracted from the standard uniform 

distribution in [-1, 1] and 𝛼 is a scaling factor. 

 

                                 

   

 

                                 

   

Figure 3.13 Example of elastic3 method application. 

 

 

 



Chapter 3  Materials and methods 

26 

 

3.7 Change background 

This family consists of methods that attempt to cut and paste polyps from one image to 

another, enhancing the simple cut-and-paste with constraints or procedures in order to 

improve the harmony of the resulting image. 

 

3.7.1 Change background 1 

We can summarise the operations performed by this method in these 4 steps: 

1. Considers the most similar image to the current image, reconstructs the region where 

the polyp is present in the selected similar image with inpaintCoherent and 

inpaintExemplar. 

2. Pastes the polyp contained in the current image into the reconstructed background of 

the similar image at the position where the removed polyp was present. 

3. In addition to the polyp, the 15-pixel-wide edge/contour of the polyp shape is also 

taken into account, in detail: a weighted average is made according to the function 

𝑦(𝑥) = 𝑒−
𝑥

2 where 𝑥 represents the distance to the polyp shape.  

The pixels of the edge are then calculated as: 

𝑦(𝑥) ∗ 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑝𝑖𝑥𝑒𝑙 + (1 − 𝑦(𝑥)) ∗ 𝑝𝑖𝑥𝑒𝑙_𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 (3.8) 

 

4. The pasted polyp is rotated at random angles 3 times, thus generating 3 new images. 
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Figure 3.14 Example of change background 1 method application. 

 

 

3.7.2 Change background 2 

Algorithm similar to 3.7.1, but with the addition of a Reinhard tone mapping in the similar 

image found used as a background.   
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Figure 3.15 Example of change background 2 method application. 

 

 

3.7.3 change background 3 

Same as 3.7.1, but instead of only considering the image most similar to the current one, this 

method takes the image with the closest possible polyp size among the most similar images. 

In addition, the polyp that will pasted must be smaller than 150x150 and the reconstructed 

region in the found similar image must be smaller than 120x120. 

 

     

     

Figure 3.16 Example of change background 3 method application. 

 

 

3.8 Tone mapping 

This last family of techniques is based on the Stain Normalisation toolbox created by 

Nicholas Trahearn and Adnan Khan: a collection of MATLAB implementations of several 

existing techniques for stain normalisation of histological images and recently proposed stain 

normalisation algorithms such as [36] 
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(available online at https://warwick.ac.uk/fac/cross_fac/tia/software/sntoolbox/, accessed 

05/06/22) 

In particular, the methods in this family use the following techniques: 

• RGB Histogram Specification 

• Reinhard (more details in [37]) 

• Macenko (more details in [38]) 

 

 

3.8.1 Foreground similar mapping 

This method generates the new image by Reinhard tone mapping with the most similar image, 

only of the polyp.  

     

     

 

     

     

Figure 3.17 Examples of foreground similar mapping method application. 

https://warwick.ac.uk/fac/cross_fac/tia/software/sntoolbox/
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3.8.2 Background similar mapping 

Same as 3.8.1 but mapping is only done on the background (no polyp). 

 

     

     

 

     

     

Figure 3.18 Examples of background similar mapping method application. 

 

 

3.8.3 Background random mapping 3  

This method generates 3 new images by doing 3 different tone mappings respectively: 

Macenko, Reinhard, RGBHist, each mapping with a random image, only on the background. 
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Figure 3.19 Examples of background random mapping 3 method application. 

 

 

3.8.4 Background similar mapping 3   

This method generates 3 new images by doing 3 different tone mappings respectively: 

Macenko, Reinhard, RGBHist, each mapping with the image most similar to the current one, 

only on the background. 

      

     

Figure 3.20 Examples of background similar mapping 3 method application. 

 

 

3.8.5 Foreground similar mapping 3  

This method generates 3 new images by doing 3 different tone mappings respectively: 

Macenko, Reinhard, RGBHist, each mapping with the image most similar to the current one, 

only on the polyp. 
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Figure 3.21 Examples of foreground similar mapping 3 method application. 
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Chapter 4  
 

Experimental results 

 

 

4.1 Evaluation metrics 

In order to estimate the network's performances, after the application of the various data 

augmentation techniques previously introduced, some standard metrics are used. 

All metrics described below are based on the elements that make up the confusion matrix, 

which are: 

• True Positive (TP): a positive pattern is correctly classified as positive. 

• True Negatives (TN): a negative pattern is correctly classified as negative. 

• False Positives (FP): a negative pattern is wrongly classified as positive. 

• False Negatives (FN): a positive pattern is wrongly classified as negative. 

 

Where, in this work, the pattern is the single pixel and the positives or negatives are 

represented by pixels that actually make up the polyps or not in the ground truth masks. 

 

4.1.1 Accuracy 

Accuracy is the simplest and most intuitive metric, and it is defined as the ratio between 

correctly predicted observations and the total observations, therefore in this work as the ratio 

of correctly classified pixels to the total number of pixels of all images. 

Formally, it is defined as: 

Accuracy =
TP + TN

TP + TN + FP + FN
(4.1) 
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The problem with this metric is that it only provides a reliable assessment when we have a 

symmetrical dataset, i.e. without a severe class imbalance, in fact it is always a good practice 

to consider other metrics to better evaluate the performance of the model. 

 

4.1.2 Precision 

Precision is literally the ratio between the true positives and all positives. 

In this problem, it gives the percentage of pixels correctly classified as true positives out of all 

those classified as positives (including false positives).  

Mathematically: 

Precision =
TP

TP + FP
(4.2) 

 

4.1.3 Recall 

Recall indicates the ratio between the total number of correctly classified pixels and the total 

number of pixels that the system would have to classify correctly if it worked perfectly, it is 

defined as: 

Recall =
TP

TP + FN
(4.3) 

 

4.1.4 F2-score 

It is a metric that combines precision and recall, precisely is an instance of the Fbeta-measure 

with a beta value of 2. F2-score has the effect of increase the importance of recall and 

lowering the importance of precision, so it puts more attention on minimizing false negatives 

than minimizing false positives. 

It is mathematically defined as: 

F2 − score =
5 ⋅ Precision ⋅ Recall

4 ⋅ Precision + Recall
=

𝑇𝑃

𝑇𝑃 + 0.2 ⋅ FP + 0.8 ⋅ FN
(4.4) 
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4.1.5 Intersection over Union (IoU) 

This metric is another standard metric to evaluate a segmentation method, in particular it 

measures the ratio of the overlapping and union area between the ground truth map B and the 

predicted mask A produced by the classification model. 

Formally, this is defined by the following equation: 

IoU =
Area of Overlap

Area of Union
=

|A ∩ B|

|A ∪ B|
=

TP

TP + FP + FN
(4.5) 

 

This measure best describes the quality of the resulting segmentation. 

 

4.1.6 Dice coefficient 

The Dice coefficient is another standard metric that is calculated as ratio between twice of the 

overlap area of the predicted mask A and ground truth mask B divided by the total number of 

pixels: 

𝐷𝑖𝑐𝑒 =
2 ⋅ |𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
=

2 ⋅ 𝑇𝑃

2 ⋅ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(4.6) 

 

 

4.2 Explanation of experiments 

The results reported in this paper emerge from five experiments in which the methods 

proposed in Chapter 3 were all tested with the following configuration: 

• Input size = 224 

• Rete = resnet18 

• Loss = dice  

• Initial learning rate = 0.01 

• Number of epochs = 20 

• Mini batch size = 25 

• Optimizer = SGDM  

• Learning Rate Drop Period = 5 

• Learning Rate Drop Factor = 0.2 



Chapter 4  Experimental results 

36 

 

• Momentum = 0.9 

• L2Regularization = 0.005 

• Shuffle training images every epoch 

 

The first experiment aims to evaluate the performance of individual methods by training 

DeepLabv3+ with the configuration just described. In particular, the dataset is divided as 

described in section 3.1 and the new images generated by the respective methods are added to 

the training set.  

The second experiment, on the other hand, is aimed at verifying how the application of a post-

processing method can improve the performance of the network.   

In particular, this method (called RandBasicAug from now on) consists of applying all the 

following basic data augmentation methods to the images generated by the presented 

methods, each with 30% probability: 

• Random flipping  

• Random rotation between -45° and 45° 

• Random scaling between x0.8 and x1.2 

• Random translation with Δ𝑥 ∈ [−20, 20] and Δ𝑦 ∈ [−50, 50] 

• Random horizontal shear in the range [-30, 30]. 

• Random synthetic noise: 

o salt & pepper with density = 0.05  

o gaussian with zero-mean and variance=0.01 

o gaussian with sigma=1+0.2*rand 

Please note: only one of the following noises is chosen (each has 33,3% of being 

chosen) 

• Randomly alter color of pixels on:  

o Saturation 

o Brightness 

o Contrast 

o Hue  

Please note: only one of the following noises is chosen (each has 25% of being 

chosen) 
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The remaining 3 experiments consist of evaluating the performance of the combinations of 

proposed methods with RandBasicAug post-processing. In detail, these last experiments 

combine the methods first in pairs, then in triples and finally in quadruples. Please note that 

the combinations were created with the best performing methods, as can be seen in the tables 

in the following sections. 

 

Please note: all code was developed in MATLAB. 

 

 

4.3 Results by category 

In order to evaluate the efficiency of the proposed data augmentation techniques, we must 

first consider that with the configuration described in section 4.2, the dataset alone, without 

data augmentation, performs as follows: 

 

Method name IoU Dice F2-score Precision Recall Accuracy 

Only kvasir 0.723 0.812 0.817 0.867 0.832 0.945 

Table 4.1 Performance without data augmentation  

 

 

The following tables contain the results of the first experiment, where the methods with the 

best performance are highlighted in bold: 

 

Method name IoU Dice F2-score Precision Recall Accuracy 

FFT mixup 1 0.755 0.841 0.850 0.863 0.872 0.951 

FFT mixup 2 0.761 0.846 0.856 0.868 0.876 0.952 

FFT mixup 3 0.749 0.835 0.846 0.855 0.864 0.952 

FFT mixup 4 0.758 0.845 0.849 0.875 0.861 0.952 

FFT mixup 5 0.766 0.848 0.850 0.882 0.863 0.952 

Table 4.2 Performance of frequency mixup techniques 
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Method name IoU Dice F2-score Precision Recall Accuracy 

Frequency filtering [34] 0.760 0.846 0.857 0.859 0.877 0.952 

Table 4.3 Performance of frequency filtering techniques 

 

Method name IoU Dice F2-score Precision Recall Accuracy 

elastic1 0.752 0.839 0.845 0.862 0.861 0.954 

elastic2 0.760 0.842 0.844 0.872 0.857 0.955 

elastic3 0.750 0.835 0.844 0.856 0.859 0.953 

Table 4.4 Performance of elastic techniques 

 

Method name IoU Dice F2-score Precision Recall Accuracy 

change background 1 0.743 0.834 0.850 0.845 0.875 0.948 

change background 2 0.757 0.843 0.845 0.877 0.861 0.952 

change background 3 0.742 0.830 0.832 0.870 0.846 0.950 

Table 4.5 Performance of change background techniques 

 

Method name IoU Dice F2-score Precision Recall Accuracy 

foreground sim mapping 0.749 0.835 0.843 0.858 0.860 0.954 

background sim mapping 0.738 0.825 0.829 0.873 0.846 0.949 

background rand mapping 3  0.757 0.843 0.847 0.880 0.862 0.951 

background sim mapping 3  0.760 0.843 0.850 0.871 0.868 0.953 

foreground sim mapping 3  0.757 0.843 0.857 0.859 0.880 0.955 

Table 4.6 Performance of tone mapping techniques 

 

 

4.4 Results of proposed methods with RandBasicAug 

This section contains the table with the results of the second experiment, as we can see the 

application of RandBasicAug as post processing generally improves the performance of the 

proposed methods: 
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Method name IoU Dice F2-score Precision Recall Accuracy 

FFT mixup 1 0.777 0.856 0.864 0.877 0.883 0.957 

FFT mixup 2 0.787 0.863 0.870 0.883 0.886 0.959 

FFT mixup 3 0.772 0.855 0.860 0.881 0.876 0.955 

FFT mixup 4 0.762 0.848 0.852 0.881 0.865 0.952 

FFT mixup 5 0.799 0.871 0.878 0.887 0.892 0.961 

       

Frequency filtering [34] 0.754 0.841 0.848 0.873 0.865 0.952 

       

elastic1 0.760 0.844 0.844 0.875 0.853 0.955 

elastic2 0.773 0.855 0.862 0.881 0.878 0.956 

elastic3 0.769 0.851 0.858 0.876 0.872 0.953 

       

change background 1 0.756 0.841 0.847 0.871 0.862 0.952 

change background 2 0.764 0.848 0.853 0.875 0.866 0.953 

change background 3 0.749 0.834 0.833 0.888 0.846 0.953 

       

foreground sim mapping 0.753 0.840 0.847 0.856 0.863 0.954 

background sim mapping 0.765 0.851 0.852 0.880 0.862 0.954 

background rand mapping 3  0.777 0.857 0.866 0.877 0.881 0.957 

background sim mapping 3  0.765 0.845 0.853 0.873 0.872 0.954 

foreground sim mapping 3  0.776 0.855 0.862 0.884 0.877 0.955 

Table 4.7 Performance of proposed methods + RandBasicAug 

 

 

 

 

 

 

 

 

 



Chapter 4  Experimental results 

40 

 

4.5 Results of method compositions with RandBasicAug 

This section reports the results obtained by training the configuration described in Section 4.2 

by combining the methods presented in Chapter 3: 

• Combination 1 ➜ FFT mixup 5 + FFT mixup 1 

• Combination 2 ➜ FFT mixup 5 + FFT mixup 2 

• Combination 3 ➜ FFT mixup 5 + FFT mixup 3 

• Combination 4 ➜ FFT mixup 5 + FFT mixup 4  

• Combination 5 ➜ FFT mixup 5 + Frequency filtering [34] 

• Combination 6 ➜ FFT mixup 5 + change background 1  

• Combination 7 ➜ FFT mixup 5 + change background 2 

• Combination 8 ➜ FFT mixup 5 + change background 3  

• Combination 9 ➜ FFT mixup 5 + elastic1  

• Combination 10 ➜ FFT mixup 5 + elastic2  

• Combination 11 ➜ FFT mixup 5 + elastic3  

• Combination 12 ➜ FFT mixup 5 + foreground sim mapping  

• Combination 13 ➜ FFT mixup 5 + background sim mapping  

• Combination 14 ➜ FFT mixup 5 + background rand mapping 3  

• Combination 15 ➜ FFT mixup 5 + background sim mapping 3  

• Combination 16 ➜ FFT mixup 5 + foreground sim mapping 3  

 

Method name IoU Dice F2-score Precision Recall Accuracy 

Combination 1 0.794 0.866 0.877 0.884 0.897 0.958 

Combination 2 0.798 0.869 0.873 0.899 0.888 0.960 

Combination 3 0.794 0.872 0.879 0.889 0.891 0.958 

Combination 4 0.782 0.859 0.868 0.878 0.882 0.955 

Combination 5 0.787 0.864 0.876 0.877 0.899 0.958 

Combination 6 0.788 0.865 0.877 0.879 0.897 0.958 

Combination 7 0.791 0.866 0.873 0.887 0.891 0.959 

Combination 8 0.790 0.866 0.873 0.889 0.889 0.959 

Combination 9 0.795 0.869 0.881 0.880 0.903 0.959 

Combination 10 0.783 0.860 0.865 0.887 0.879 0.955 

Combination 11 0.794 0.870 0.880 0.885 0.896 0.962 

Combination 12 0.790 0.865 0.875 0.881 0.896 0.958 

Combination 13 0.789 0.866 0.878 0.882 0.896 0.958 

Combination 14 0.792 0.866 0.870 0.896 0.885 0.957 

Combination 15 0.804 0.877 0.891 0.881 0.912 0.962 

Combination 16 0.803 0.875 0.890 0.883 0.909 0.961 

Table 4.8 Performance of combinations of proposed methods step 1 with RandBasicAug 
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• Combination 18 ➜ FFT mixup 5+background sim mapping 3+FFT mixup 1             

• Combination 19 ➜ FFT mixup 5+background sim mapping 3+FFT mixup 2 

• Combination 20 ➜ FFT mixup 5+background sim mapping 3+FFT mixup 3 

• Combination 21 ➜ FFT mixup 5+background sim mapping 3+FFT mixup 4  

• Combination 22 ➜ FFT mixup 5+background sim mapping 3+Frequency filtering [34]  

• Combination 23 ➜ FFT mixup 5+background sim mapping 3+elastic1 

• Combination 24 ➜ FFT mixup 5+background sim mapping 3+elastic2  

• Combination 25 ➜ FFT mixup 5+background sim mapping 3+elastic3 

• Combination 26 ➜ FFT mixup 5+background sim mapping 3+change background 1  

• Combination 27 ➜ FFT mixup 5+background sim mapping 3+change background 2  

• Combination 28 ➜ FFT mixup 5+background sim mapping 3+change background 3 

• Combination 29 ➜ FFT mixup 5+background sim mapping 3+foreground sim mapping  

• Combination 30 ➜ FFT mixup 5+background sim mapping 3+background similar mapping  

• Combination 31 ➜ FFT mixup 5+background sim mapping 3+background rand mapping 3  

• Combination 32 ➜ FFT mixup 5+background sim mapping 3+foreground sim mapping 3  

 

 

Method name IoU Dice F2-score Precision Recall Accuracy 

Combination 18 0.796 0.869 0.875 0.892 0.893 0.959 

Combination 19 0.795 0.868 0.877 0.887 0.897 0.960 

Combination 20 0.789 0.864 0.872 0.883 0.887 0.957 

Combination 21 0.799 0.872 0.886 0.877 0.906 0.962 

Combination 22 0.784 0.860 0.867 0.887 0.884 0.957 

Combination 23 0.798 0.871 0.880 0.885 0.897 0.959 

Combination 24 0.797 0.869 0.883 0.881 0.906 0.958 

Combination 25 0.798 0.867 0.874 0.887 0.884 0.960 

Combination 26 0.805 0.878 0.888 0.889 0.905 0.962 

Combination 27 0.783 0.857 0.874 0.875 0.898 0.958 

Combination 28 0.808 0.878 0.887 0.891 0.906 0.964 

Combination 29 0.794 0.867 0.874 0.892 0.888 0.958 

Combination 30 0.793 0.868 0.881 0.879 0.900 0.959 

Combination 31 0.795 0.867 0.874 0.892 0.891 0.960 

Combination 32 0.791 0.864 0.880 0.874 0.904 0.959 

Combination 33 0.796 0.869 0.875 0.892 0.893 0.959 

Table 4.9 Performance of combinations of proposed methods step 2 with RandBasicAug 
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• Combination 33 ➜ FFT mixup 5+background sim mapping 3 +change background 3+change background 2 

• Combination 34 ➜ FFT mixup 5+background sim mapping 3 +change background 3+FFT mixup 4 

• Combination 35 ➜ FFT mixup 5+background sim mapping 3 +change background 3+elastic1 

 

Method name IoU Dice F2-score Precision Recall Accuracy 

Combination 33 0.808 0.880 0.890 0.890 0.907 0.963 

Combination 34 0.797 0.870 0.884 0.879 0.905 0.963 

Combination 35 0.785 0.860 0.874 0.873 0.900 0.957 

Table 4.10 Performance of combinations of proposed methods step 3 with RandBasicAug 

 

4.6 Comparison with other data augmentation method 

 

The following table contains performances reported in various works in the literature: 

Method name Backbone IoU Dice F2-score Precision Recall Accuracy 

UNet [39] - 0.471 0.597 0.598 0.672 0.617 0.894 

ResUNet [39] - 0.572 0.690 0.699 0.745 0.725 0.917 

ResUNet++ [39] - 0.613 0.714 0.720 0.784 0.742 0.917 

FCN8 [39] VGG 16 0.737 0.831 0.825 0.882 0.835 0.952 

HRNet [39] - 0.759 0.845 0.847 0.878 0.859 0.952 

DoubleUNet [39] VGG 19 0.733 0.813 0.821 0.861 0.840 0.949 

PSPNet [39] ResNet50 0.744 0.841 0.831 0.890 0.836 0.953 

DeepLabv3+ [39] ResNet50 0.776 0.857 0.855 0.891 0.862 0.961 

DeepLabv3+ [39] ResNet101 0.786 0.864 0.857 0.906 0.859 0.961 

UNet [39] ResNet34 0.810 0.876 0.862 0.944 0.860 0.968 

ColonSegNet [39] - 0.724 0.821 0.821 0.844 0.850 0.949 

DDANet [40] - 0.780 0.858 - 0.864 0.888 - 

HarDNet-MSEG [41] - 0.848 0.904 0.915 0.907 0.923 0.969 

Table 4.11 State of art performance in literature 

 

Please note that some performances reported in the table above refer to networks much deeper 

than ResNet18 used for the experiments reported. 
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Conclusions 

Semantic segmentation, i.e. the classification of each pixel of an image, is a very useful and 

important task in different fields and for different purposes, such as the early identification of 

severe diseases to reduce the risk of serious consequences in medical diagnosis. 

This work again confirms how useful data augmentation techniques are in order to improve a 

segmentation system, focusing especially on colonoscopy examinations. 

As concerns the presented methods, all of them improve (a little or a lot) the performance of 

polyp segmentation. In particular, as Table 4.7 shows, the use of RandBasicAug (described in 

section 4.2) as post-processing to the proposed methods generally improves performance. 

Moreover, as the results in Tables 4.8, 4.9 and 4.10 show, using combinations of data 

augmentation techniques leads to better performance than using them individually, especially 

if they focus on and bring out different aspects of the images with the disadvantage, however, 

of having a longer training time. 

The results in Table 4.6 confirm that the use of the pre-computed similarity matrix, and in 

general the development of techniques whose processing is between similar images performs 

slightly better in general. 

In general, as can be seen from the tables in Chapter 4, it can be inferred that a larger dataset 

generates better results, without forgetting the quality of the images that constitute it. 

 

 

5.1 Future Works 

In future works, the best and most effective of presented methods will also be used in neural 

network ensembles to see if they can offer improvements in this field as well.  
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The effectiveness of the presented methods will be tested on other datasets, on other networks 

and with other loss functions. 

In addition, the impact of using the similarity matrix, also generated using other metrics, will 

be studied in more depth. 

The methods presented will then be studied and compared with other automatic data 

augmentation approaches, known as 'learned'. 
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