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Summary

The thesis was conducted during a period of six months at the University of

Santa Barbara in collaboration with prof. Eyal Dassau12, PhD, Francis J. Doyle

III12, PhD, Dale Seborg12,PhD . An abstract of the thesis was submitted for the

Diabetes Technology Meeting (DTM) Bethesda, Maryland 8th-10th November.

For people with type 1 diabetes mellitus, the pancreatic β-cell is completely

unable to produce insulin, and thus they require an insulin therapy for all their

life in order to survive. The common insulin therapy consists of multiple daily

insulin injections. In the last forty years, a new approach to provide continuous

insulin delivery has been introduced and it consists of three main elements: a

continuous glucose monitoring sensor, an insulin pump and a control algorithm.

This system is called Artificial Pancreas System (APS). The aim of this research

is to develop and evaluate a novel, model-based proportional-integral-derivative

(PID) control law for algorithmic insulin dosage computation.

The proposed PID design method is based on the Internal Model Control

(IMC) approach and a simple dynamic model proposed by van Heusden et al.

[1]. This third-order-plus-time-delay linear model has a single adjustable param-

eter that is personalized based on the subject’s TDI value. Thus, the model is

developed using readily available clinical information and does not require time-

consuming experimental tests. The resulting model is then approximated by a

second-order-plus time model which allows the controller settings to be calcu-

lated using the IMC design method. This design method has a single adjustable

1Department of Chemical Engineering, University of California, Santa Barbara, CA, USA
2Sansum Diabetes Research Institute, Santa Barbara, CA, USA



parameter that allows the controller to be tuned to be more, or less, aggressively.

As a consequence, the three PID degrees of freedom are reduced to two: model

gain (K) and controller aggressiveness (τc).

The proposed controller design method is evaluated in silico study using

the FDA-approved UVA/Padova metabolic simulator. Ten simulated subjects

are used to determine a conservative value of the IMC design parameter, both in

the case of fixed model gain and in the case of personalized gains, with a single

announced meal. Then the same subjects are used to evaluate the performance

considering changes of ± 50% in the insulin sensitivity. Subsequently, a different

population of ten subject is used to perform a validation test with three unan-

nounced meals. The personalized PID controllers perform better than controllers

based on a fixed model. Neither approach result in hypoglycemia for any of the

20 subjects.

Simulation studies have demonstrated that the proposed controller design

method is practical (no special tests required) and superior to controllers based

on non-personalized models.
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Introduction

The term diabetes mellitus (DM) covers a group of common metabolic disorders

that cause an increase in blood glucose concentration, called hyperglycemia. In

the medical field, distinct types of DM exist, and are caused by a complex interac-

tion between genetic, environmental and behavioral factors. The causes that lead

to hyperglycemia are different, such as decrease of insulin secretion, decrease of

glucose use, and increase of glucose production [2]. Consequences for people who

suffer from this disorder are serious and dangerous, since DM compromises the

correct function of other metabolic pathways and causes haemodynamic changes,

leading to the damage of the eyes, kidney, and nerves [2]. In the USA, DM is

the main cause of renal failure, non-traumatic amputation of the lower limb and

blindness in adults. Even though all the kinds of DM are characterized by hyper-

glycemia, there are many different types depending on the causes. Classification

of DM is based on the pathogenesis processes that lead to hyperglycemia [2, 3].

Currently, there are two main categories of DM: type 1 and type 2. Type 1

diabetes mellitus (T1DM) is caused by the destruction of the insulin-producing β-

cells in the pancreas which leads to an insulin deficit. It can be further divided into

subcategories. First, insulin-dependent type 1 is defined by the damage immune-

mediated of the β-cells. Second, type 1 idiopathic is characterized by a deficient

secretion of insulin by the pancreas, but without any proof of autoimmune de-

struction of β-cells [3].

Type 2 DM (T2DM), once known as not insulin-dependent, is characterized

by insulin resistance either by relative or absolute deficit of insulin, causing a

heterogeneous set of diseases with the common factors of insulin-dependence at

different levels, alteration in insulin secretion, and increased production of glucose



[3].

During the last two decades, the presence of DM has significantly increased.

In the occidental world the number of diabetes cases of a specific population over

a certain period exceeds 3% of the general population. Between 1976 and 1994

the spread of DM among adults in the USA increased from 8.9% to 12.3%. Fur-

thermore, the number of patients affected by DM increased with the population

age, differing from an incidence of 1.5% in individuals between 20 and 39 years to

20% in individuals over 75 years old. In the same way, alteration in postprandial

glycemia increased from 6.5% to 9.7% [3].

Numerous epidemiological studies highlight that the number of type 1 and 2

DM patients dramatically depends on geographic location, and revealing the in-

fluence of different genetic and environmental factors. Furthermore, recent studies

assert that the prevalence of T2DM is 10 times greater than T1DM in the Euro-

pean population and even more in Asia and Pacific countries. Additionally, type

2 DM is likely to rapidly increase in the future because of the growing rate of obe-

sity and the decrease of physical activity, mostly in the industrialized countries

[3].

With regards to T1DM, it was found that the disease affects subjects with

a particular genetic susceptibility. The prevalence of type 1 DM is higher in

northern countries: indeed Scandinavia shows the highest prevalence of type 1

DM and Finland shows an incidence of 35 cases per 100,000. On the other hand,

countries bordering the Pacific have the lowest incidence, reaching incidence of

1-3 case per 100,000 in Japan and China. North Europe and USA shared the

same incidence of 8-17 cases per 100,000 [2].

T1DM generally starts in an infant-juvenile age, and it requires insulin ad-

ministration for the entire life of the patient, since the destruction of the β-cells

causes an absolute hormone deficiency. Because of the complete lack of insulin

secretion, T1DM can be considered to be the most critical type of diabetes and

this is why many studies are focused on it.

The most common therapy is insulin delivery by daily insulin injections, but

this approach does not reproduce the real dynamics of insulin secretion. In fact,

continuous insulin secretion is provided by the pancreas and is called basal insulin.
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In addition, another dose of insulin is delivered after meal ingestion according

to the glucose concentration in the blood. Because of this biphasic behavior of

insulin secretion, new approaches that are able to mimic it are desired [3]. A novel

technique has been developed in the last four decades consisting of the use of an

insulin pump that provides continuous insulin administration.

The most critical part of this new approach lies in the development of a

feasible, robust and safe algorithm for insulin delivery which, along with the

pump and a glucose sensor, form the artificial pancreas system. The main aim of

this system is to improve patients’ lives by avoiding the dangerous situations of

hypo- and hyperglycemia [4].
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Chapter 1

The Artificial Pancreas System

In this chapter brief physiological overview of the insulin production and the

characteristics of the diabetes mellitus are provided. Furthermore, the artificial

pancreas system is presented along with a description of its elements.

1.1 Physiology of the Pancreas

The Pancreas is an organ located in the abdomen with two different functions:

exocrine and endocrine. The exocrine function is the production and secretion of

digestive enzymes; the cells of the pancreas which have this purpose are known as

pancreatic acini. The endocrine function is the production of several important

hormones such as insulin and glucagon, and cells involved in this secretion are

called isles of Langherans or pancreatic islets. Each distinct type of islet cell is

involved in the production of a different hormone: the β-cells (or B cells) secrete

insulin, whereas α-cells (or A cells) provide glucagon. Another molecule that is

secreted by the islet cells is somatostatin which is produced by δ-cells (D cells).

This hormone has the capability of inhibiting the secretion of both insulin and

glucagon [5].

Insulin is a protein hormone composed of two chains: A and B, with 21 and

30 amino acids, respectively. Insulin’s task is to control organic metabolism since

it induces glucose to enter from the extracellular fluid into cells. The insulin ef-

fect is felt by the target cells, which are insulin-dependent. These target cells are
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Figure 1.1: Insulin secretion by pancreatic islets and insulin path throughout the

blood before reaching the target cells [6].

mainly muscle cells (both cardiac and skeletal), adipose tissue cells and liver cells.

When insulin is secreted, it circulates throughout the blood and reaches the in-

sulin receptors of the cells as shown in Figure 1.1. Once the insulin hormone binds

to the cell receptors, they stimulate cytoplasmic vesicles containing the glucose

transporter, inducing them to reach the plasma membrane and then merge with

it. An increase in the number of glucose transporters in the plasma membrane

facilitates the glucose movement from the extracellular fluid into the cells by fa-

cilitated diffusion. Plasma glucose concentration plays the most important role in
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controlling the insulin secretion. Stimulation and activation of pancreatic β-cells

depends on changes in plasma glucose concentration. If plasma glucose concen-

tration increases, e.g after a meal, the β-cells are activated and the secretion of

insulin begins. On the other hand, a decrease in plasma glucose concentration

leads to removal of the insulin secretion stimulus [5].

Figure 1.2 provides a schematic representation of the glucose-insulin mecha-

nism. An increase in plasma glucose concentration causes a rapid stimulation of

insulin secretion and consequently an increase in plasma insulin concentration.

Afterwards, plasma insulin passes to the liver which degrades half of it, avoiding

liver glucose output since insulin inhibits conversion of the glycogen into glucose.

The other half of plasma insulin induces cells of the insulin-dependent tissues to

uptake glucose. As a result of the two different actions of the insulin, one over the

cells and the other over the liver, the plasma glucose concentration is returned to

normal, around 80-140 mg/dl [5].

The antagonist of insulin is glucagon which has the function of reducing the

insulin concentration in the plasma, and therefore stops the insulin action and in

this way prevents hypoglycemia.

1.2 Type 1 Diabetes Mellitus

T1DM is an autoimmune disorder characterized by destruction of insulin-producing

β-cells in the pancreas. The consequence of this damage is the loss of endoge-

nous secretion of insulin that is essential to maintain euglycemia, causing life-

threatening hyperglycemia and keto-acidosys. As written above, the lack of in-

sulin secretion causes a loss in the ability to regulate glycemic levels in people

affected by T1DM, thus making them suffer from long periods of hyperglycemia

without proper insulin management [3, 7].

This process usually develops in a few years, and hyperglycemia rises when

10% of the beta cells are still working. At that point, functional β-cells still exist,

but they are not able to supply a minimum level of insulin needed to maintain

euglycemia. Nevertheless, during this phase, glycemic control can be reached with

modest insulin administration. Unfortunately, this is a temporary phase and it
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Figure 1.2: Effect of plasma glucose concentration over insulin secretion [5].

ends when all β-cells are completely destroyed by the autoimmune process [3, 2].

1.3 Type 2 Diabetes Mellitus

Type 2 Diabetes Mellitus is a disorder characterized by insulin resistance and

partial or absolute deficit of insulin which is caused by progressive β-cell deteri-

oration. Most of the causes of this disease are genetic, it usually appears later in

life and it is associated with cardiovascular risk factors such as obesity. Indeed,

the majority of T2DM patients are obese with a high prevalence of fat in the

intra-abdominal area [3].

Typically, in T2DM there is a progressive reduction of β-cell secretion. Since
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frequently T2DM patients show also a lack of willingness to follow dietetic and

behavioral therapy, it is often necessary to have more complex therapy scheme

before the insulin. Since the recourse to insulin therapy is often the final stage for

T2DM and the disease typically emerges in older age, insulin therapy is mostly

focused on T1DM patients [3].

1.4 Insulin Therapy

The insulin hormone is synthesized by pancreatic β-cells and once in the blood, it

flows throughout the hematic system and reaches the target organs: liver, muscles

and adipose tissue. In the target organs, insulin has the role of keeping suitable

glycemic levels either in the fasting phase (80 and 100 mg/dl), both nightly and

between meals, or in the pre-and postprandial phase (less than 140 mg/dl), af-

ter the meal intake. As a result of the complete lack of insulin in T1DM, the

liver overproduces glucose and prevents food glucose from being completely used.

The possibility to produce artificial insulin was discovered in 1920s and as a

result, a fatal disease turned into a treatable condition requiring life-long insulin-

replacement therapy [8]. It should be emphasized that the therapy goal is not

only survival, but also the prevention of chronic complications associated with

diabetes. Hypoglycemia can lead to a coma, and even death while hyperglycemia

can bring on several chronic diseases.

Insulin, like all proteins, cannot be taken orally because it would be degraded

by digestive enzymes, T1DM treatment consists of providing insulin either with

daily insulin injections or continuous insulin infusion (CII). Both therapy ap-

proaches require intravenous capillary glucose measurement in order to determine

the daily insulin dose for euglycemia [7].

With daily insulin injections, the insulin administration is provided in a subcu-

taneous way by either syringe or pen. Injection must be given in the subcutaneous

tissue where specific enzymes lie and where there are capillaries which are suit-

able for carrying insulin. If the insulin is injected too deeply, an intramuscular

administration would occur and the time of absorption would be modified causing

unpredictability of the absorption process [3].
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The CII therapy was introduced about twenty-five years ago and consists of

the use of a pump in order to provide continuous insulin administration. The use

of CII, along with continuous glucose sensing and a control strategy necessary to

bring a person with diabetes as close as possible to euglycemia, gives rise to a

closed-loop system known as the Artificial Pancreas (AP) [4].

1.5 Artificial Pancreas System

The history of the Artificial Pancreas (AP) dates back to four decades ago when

closed-loop control was used to regulate blood glucose in individuals with T1DM

[7]. In general, the AP is a system that, on the basis of measurements of the level

of blood glucose, delivers the needed quantity of insulin with the use of an insulin

pump based on an algorithm. There are two main approaches for the implemen-

tation of the AP System(APS). The first approach is the use of subcutaneous-

subcutaneous (sc-sc) in which an sc route for both glucose monitoring and insulin

delivery is adopted. On the other hand, an intravenous-intraperitioneal method

exists in which glucose monitoring is achieved by intravenous measurements and

intraperitioneal insulin is delivered [9].

In this paper an sc-sc body interface will be considered. The three main el-

ements of the APS are a subcutaneous glucose monitor (CGM), a continuous

subcutaneous insulin infusion (CSII) pump and the control algorithm which con-

trols the insulin dose. A schematic overview of this closed-loop system is shown

in Figure 1.3 [4].

Besides these three elements, other features are enclosed in APS such as a

safety algorithm, modeling, communication and interfaces. Hence, the APS is

often described as a puzzle and the primary piece of this puzzle regards safe

communication and data transfer between the three main elements listed above.

Naturally, the system provides a clear human interface in order to give all the

information needed to physicians and patients as well as a safety system using

interlocks, checklists and alarms [4].

In order to provide the right amount of insulin, it is sensible to understand and

take into account the dynamics of insulin delivery of an healthy pancreas. The
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Figure 1.3: APS: blood glucose concentration is detected by the CGM sensor and

on the basis of this information the control algorithm can calculate the amount of

insulin necessary to achieve the final goal that is blood euglycemia. The calculated

insulin amount is delivered by the CSII [4].

pancreas of healthy subject continually produces a small basal amount of insulin

in order to keep glucose hematic levels stable. Furthermore, after each meal, an

insulin amount (bolus) is added to this basal insulin caused by the blood glucose

growth in the postprandial phase [3, 10]. As a result, in a healthy pancreas, the

response to a glucose clamp will show a biphasic behavior[11]. In the same way, a

subcutaneous pump should be able to provide the physiologic delivery of insulin

described above, releasing insulin in two ways:

• continuous for 24 hours through basal infusion, in order to hold glucose

blood value stable
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• intermittent during a postprandial phase using an insulin bolus in order to

control glucose blood after carbohydrate intake in a meal.

The insulin boluses and the basal insulin rate are based on an insulin-to-

carbohydrate ratio (I:C) and a correction factor (CF). These two parameters are

calculated through the use of measurements of the blood glucose concentration.

The I:C rate expresses the unit of insulin necessary to compensate for the amount

of carbohydrate (CHO), whereas the CF gives the unit of insulin necessary to

reduce the blood glucose concentration. The way in which the previous value is

obtained empirically is tailored to specific individuals. The combination of the

two values allows the calculation of the amount of insulin required in order to

control the blood glycemia at each given moment as a function of blood glucose

level and CHO intake [12].

However, control of glycemia is a rather complicated process which in healthy

subjects concerns various neural and hormonal inputs from the brain, gut, liver,

and pancreas; thus, the two values mentioned previously might not be sufficient

to achieve a good insulin administration. Moreover, the process is affected by

various situations such as meal type, stress levels and exercise. As a consequence,

insulin requirements differ throughout the day and from day to day; therefore, the

initial setting needs to be fine-tuned to prevent insulin overdosing or under-dosing

[7, 4].

Currently, this biphasic behavior can be achieved with the use of only the

insulin pump, which provides bolus and basal insulin delivery. The new insulin

pumps can provide four different ways to supply the bolus [10]:

a) only one infusion with the total amount of the insulin bolus

b) two infusions with half of the total amount of the insulin bolus for

each

c) two infusions, one with half of the total amount of the insulin bolus

delivered in the usual way, and the other delivered over a prolonged

period of time

d) one infusion of the total amount of insulin in the form of a basal rate.
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1.5.1 Continuous Subcutaneous Insulin Infusion (CSII)

Pump

Figure 1.4: Insulin Pump.[13]

The CSII pump is an electric-powered syringe pump which delivers rapid

action insulin. The rapid-acting human insulin, or an analog, is mainly used

for the CSII pump since their pharmacodynamic and pharmacokinetic behavior

mimics physiological insulin behavior. Moreover, this kind of insulin minimizes

the formation of crystals inside the plastic tubes of the pump, thus reducing the

possibility of obstructions. The syringe is linked to the subcutaneous abdomen

tissue by an infusion set in whose end a metal or Teflon needle is placed. The

abdomen tissue is the ideal place for insulin infusion since the uptake is more

rapid and constant in that region [10].

Technological progress in coming years will further improve instrument per-

formance, leading to a reduction in weight and size (new models measure 5 × 8.6

× 2 cm and weight about 100 g). Over the years, the metal needle of the infusion

set has been replaced by a Teflon catheter which is introduced into the body by

a metal runner, immediately removed after the catheter insertion.

A schematic figure of the main parts of the pump is provided in Figure 1.5.

It consists of the main device which encloses a disposable reservoir of insulin

(300 units), a mechanism for the delivery of insulin at different rates, and a

microcomputer which executes the program using batteries [10].



10 1. THE ARTIFICIAL PANCREAS SYSTEM

Figure 1.5: Insulin pump components [10].

It is important to emphasize that the main issue in the use of a CSII pump

is the delay in action since the subcutaneous insulin absorption needs time. In

particular, after the injection of a regular subcutaneous bolus, insulin takes up

to 120 min to be absorbed and able to have peak glucose. From a safety point of

view, this slow insulin absorption may cause insulin under-delivery which, if not

controlled, can lead to ketoacidosis [14].

Another limit of the CSII therapy is the need for training patient. This therapy

has best results with well-trained patients who are motivated in learning and self-

monitoring [5]. On the other hand, patients with a low willingness might impair

the required management of pump treatment. Moreover, an external pump can

be uncomfortable for the patient, and therefore the quality of life may worsen

because of this choice of therapy [3].

1.5.2 Continuous Glucose Monitoring (CGM)

Continuous glucose monitoring techniques were first introduced about ten years

ago in order to provide a retrospective analysis of glucose profiles. Afterwards,

real-time device were developed that gave on-line readings of blood glucose con-

centration [14]. The first commercially available continuous glucose monitoring

device was the MiniMed R⃝ continuous glucose monitoring system (CGMS; Min-

iMed Inc., Sylmar, CA). It was composed of a sterile, disposable subcutaneous

glucose sensor which collected measurements of glucose concentration in the in-
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Figure 1.6: A CGM device [15].

terstitial fluid. The sensor was connected via external electrical cable to a small

monitor and information was sent to the control algorithm usually via a wireless

system. The glucose concentration was measured every 10 s and an average value

was stored and provided to the controller every five minutes for a total of 288

measurements each day [15].

Since CGM information is the basis of the control algorithm of the AP system,

a good knowledge of CGM limitations and issues is essential. First, it should be

taken into account that the glucose concentration that is detected is interstitial

and significantly different from the actual blood glucose when conditions change

quickly. In order to reduce this difference, a device calibration is required with

several daily blood glucose samples. Studies indicate that relevant improvements

in CGM accuracy can be achieved by calibrating the sensor during periods of

relative glucose stability [14]. A second issue which influences the CGM accuracy

is the time lag due to the blood-to-interstitial glucose transportation and the

sensor processing time.

Moreover, errors from transient loss of sensitivity and random noise complicate

issues further. Obviously, the main aim is to avoid all these complications since
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accurate readings of the CGM are fundamental for the closed-loop controller.

To this end, filtering, denoising and artifact rejection in CGM data should be

performed. Even though these issues may influence CGM accuracy, the device

provides frequent sampled data, e.g every 5-10 min, allowing for the successful

development of the APS [14].

1.5.3 Control Algorithm

The control algorithm plays a fundamental role in the artificial pancreas. Be-

cause of its great importance, many studies have been conducted over the years

developing various algorithms. However, two main types of algorithms have been

identified as the most attractive: proportional-integral-derivative (PID) control

[16, 17, 18] and model predictive control (MPC)[7, 1].

Figure 1.7: Closed-loop of the APS [11].

PID algorithms use three components in order to administrate insulin: the

deviations from a target glucose level (the proportional component), the area

under the curve between the measured and the target glucose level (the integral

component) and the rate of change in the measured glucose levels (the derivative

component). The PID controller is merely reactive since it responds to changes



1.5. ARTIFICIAL PANCREAS SYSTEM 13

in glucose concentration after their occurrence. As a result, the inherent delays

and inaccuracies in both glucose sensing and insulin delivery may lead to an

unstable system if the controller is too aggressive. In general, a good controller

design should account for time delay in measurements and insulin delivery. How-

ever, if the controller response is too slow, postprandial glucose peaks cannot

be appropriately reduced [8]. On the other hand, MPC algorithms, compute the

insulin delivery by minimizing the difference between predicted glucose concen-

trations and the target glucose levels over a prediction horizon of 1.5 to 3 hours,

or longer. Prediction of the current and future insulin infusion rates, and thus

the corresponding predicted glucose amount, is based on a model of the patient

metabolic system. Since the MPC algorithm predicts the level of glucose in the

blood due to the effect of the insulin administrated and the disturbances, e.g;

meals and physical activity, it is called proactive. This controller design is well-

suited to compensate for time delay due to subcutaneous insulin delivery and

subcutaneous glucose measurements [14, 8].

Despite the remarkable advantages that MPC algorithms show, glucose clamp

studies illustrate a biphasic insulin response and in the same manner PID can

also provide this type of response. This observation suggests that the β-cells’

behavior can be replaced with a PID controller. It is important to underline

that any controller with integral action will respond in a biphasic way. For this

reason, new methods of control algorithms have been introduced, e.g; Internal

Model Control (IMC). This type of controller is related to the PID controller

since it can be rearranged to be equivalent to a PID controller, but with less

tuning parameters, this is why it can be considered as a conventional tuning

methods for the PID controller [19].

However, with for IMC approach the model chosen to represent the insulin-

glucose dynamics is very important since the controller performance depends on

it.





Chapter 2

Control Algorithms and Models

In this chapter a brief theoretical introduction to the PID controllers and the

IMC method is provided. Furthermore, an overview of the most common model

for the glucose/insulin dynamic are presented, focusing on the control-relevant

models which are the type used for the controller implementation.

2.1 Control Algorithms

The two main controller algorithms utilized in the Artificial Pancreas design are

considered with a particular attention paid to the PID controller, since it is the

controller that is evaluated in this work.

2.1.1 Model Predictive Control

The MPC is basically composed of three main elements: the model, the cost func-

tion and the constraints.The model allows the prediction of future states of the

outputs with information about the current state, future values of the manipu-

lated variables and future values of the measurable or predictable disturbances.

The performance of the closed-loop control is calculated by minimizing the cost
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function [20, 11]. The cost function is usually a weighted quadratic form [20]:

J(k) =
N∑
i=0

(q(ysp(k + i)− y(k + i))2 + (u0(k + i)− u(k + i))2) (2.1)

y : glucose concentration

u : insulin infusion rate

q : weight

(2.2)

which penalize future deviations of the output (ym) from the set point (ysp) and

it can also include also a quadratic penalty on future control actions which can

be either the difference between u and a reference u0 or the incremental changes,

∆u(k) = u(k)− u(k− 1) [20]. Constraints are applied over the variables, e.g over

the insulin administration rates by the pump and over the glycemia which has to

be in an admissible rates.

u(k)min ≤ u(k) ≤ u(k)max (2.3)

∆u(k)min ≤ ∆u(k) ≤ ∆u(k)max (2.4)

y(k)min ≤ y(k) ≤ y(k)max (2.5)

In Figure 2.1 a schematic overview of the basic idea about MPC is provided.

The two sub-figures are divided into past and future. The top sub-figure shows

the history of both glucose (y) and insulin (u) before the current time tk. At

each time value of tk the sequence of current and future insulin delivery rates

is computed by optimizing the object function subjects to the constraints over a

future horizon of P time steps. Than, only the first control move out of M steps is

actually implemented, resulting in a new glucose value y(k + 1 ) at the next step

t(k + 1 ). The next step, at the time tk shown in the bottom sub-figure, consists

of the translation of the predictions, the control horizons and, repetition of the

same procedure, always implementing only the first control move [20, 11]. An

advantage of this optimization-based approach is that the control objective can

be weighted on the basis of the glucose hyperglycemia or hypoglycemia conditions

[11].
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Figure 2.1: MPC prediction scheme. The top portion shows the MPC algorithm

at time tk and the future model prediction both of the glucose and the insulin.

The bottom portion shows the results of glucose and insulin after the first move

of the previous prediction has been implemented and the new model prediction

computed at the time tk+1.[11]

2.1.2 Continuous PID Control

The proportional-integral-derivative (PID) controller is the predominant feedback

control algorithm in the process industries [19]. In general, the feedback control

algorithm aims to minimize the difference between the desired output value (set-

point) and the actual output measured. This difference is called the error and

it will be equal to zero only in the case in which the actual output, that is the

measured level of glucose, is exactly equal to the set point. In this case, the system
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will be perfectly controlled [19].

e(t) = ysp(t)− ym(t) (2.6)

e(t) : error signal

ysp(t) : set point

ym(t) : measured value of the controlled variable (glucose concentration)

As the name suggests, PID controller is composed of combination of three

control modes, and each of them operates a specific action over the error in order

to compute the control variable.

Proportional Control

The first contribution is proportional to the error; therefore it is called propor-

tional control mode.

u(t) = ū+Kce(t) (2.7)

u(t) : controller output (insulin infusion rate)

ū : bias (steady-state) value

Kc : controller gain

The proportional controller has two advantages:

1. By tuning the controller gain, it is possible to make the controller more or

less aggressive.

2. The sign of Kc determines whether the controller output increases or de-

creases when e(t) increases.

The value of ū is set so that the controller output is equal to its nominal steady-

state when the error is zero. For the artificial pancreas control applications, the

Kc dimension is (pmol/min/mg/dl) since u is the insulin amount and ū is the
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basal insulin Ib. The basal insulin brings the subject to their glucose steady state

which can be differ from the set point. A disadvantage of a controller with only

the proportional mode is the presence of the steady-state error called (offset) after

changing in the set point or a prolonged disturbance. However, this offset can be

eliminated by the introduction of the integral mode [19].

Integral Control

The integral control contribution is proportional to the integral of the error over

time:

u(t) = ū+
1

τI

∫ t

0

e(t∗)dt∗ (2.8)

τI : integral time

Its most important advantage is elimination of the offset. u changes as far as the

e(t∗) is different to zero, bringing the steady-state error equal to zero.

When a set point change or a significant disturbance perturbs the system, it

is possible that the controller output reaches an upper or lower limit. In this case,

even though the error is not equal to zero, the controller action cannot increase.

This situation is called controller saturation.

Furthermore, at saturation, the error usually can still be not equal to zero, and

the integral term continues to increase without producing any effect on the out-

put variable. This phenomenon is referred to as reset windup on integral windup

[19]. In the APS, the CSII pump plays the role of the control action actuator and

it is subject to a maximum delivery constraint; thus this actuator bound should

be considered while implementing a integral controller.

Derivative Control

The derivative control contribution has the aim to anticipate the error signal

variations by taking into account its rate of change. The ideal derivative action
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is:

u(t) = ū+ τD
de(t)

dt
(2.9)

τD : derivative time

Since the control output will be equal to the nominal value only with a constant

error, derivative control is never used alone [19].

Proportional-Integral-Derivative Control

Figure 2.2: Block diagram of the parallel form of PID control [19].

The combination of the three components described above gives rise to the

popular PID controller. The control law of the PID parallel form is given by[19]:

u(t) = ū+Kc

[
e(t) +

1

τI

∫ t

0

e(t∗)dt∗ + τD
de(t)

dt

]
(2.10)

u′(t) = u(t)− ū (2.11)

And the corresponding controller transfer function is:

U ′(s)

E(s)
= Kc

[
1 +

1

τs
+ τDs

]
(2.12)

U ′(s) : u’(t) Laplace transform

E(s) : e(t) Laplace transform
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A PID control disadvantage is the so-called derivative kick. It is a momentary

large value of the derivative term due to a fast change in the set point and thus

in the error change rate. The undesirable spike can be avoided by setting ysp=0

in the derivative terms [19].

2.1.3 Intuitive Description of PID Control Action

Considering the three PID components from a physical point of view, it is possible

to understand the role that each component plays in determining the insulin

infusion rate.

The proportional element provides a contribute only when the glucose con-

centration is above or below the set point value. When the glucose is at the set

point, the proportional contribution does not affect the output [21].

The integral term changes value when either the glucose concentration is above

or below the set point. Since the integral contribute is always active unless e(t) =

0, it ensures that target is always achieved when the system is at the steady-state

[21].

The derivative component increases when glucose rate of change is rising and

decreases when it is falling. As a results, each detection of glucose rate of change

leads to a change in insulin delivery independent of the current glucose level [21].

Figure 2.3 shows the response of the three PID modes of Steil et al. [21] to

a hyperglycemic clamp.[21] The blue area shows the proportional contribution

(P(n)), the green area represents the integral action (I(n)) and the pink area

shows the derivative component (D(n)).

Stability

It is essential that the closed-loop system is stable which means that the output

response is bounded for all bounded inputs [19].

Fortunately, the desired control system behavior can be achieved changing

specific control settings. This kind of setting regulation is referred to as controller

tuning [19]. Different PID controller tuning techniques exist, and they all aim to
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Figure 2.3: PID control contribution during an hyperglycemic clamp [21].

provide a good initial setting that can be later improved on-line. A method widely

used for the PID controller design for the artificial pancreas system is Internal

Model Control.

Since it is a model-based method, this technique provides the best performance

when a reasonable accurate dynamic model is available [19].

2.1.4 Controller Tuning Using The IMC method

The basic idea of the IMC method is the controller should include a model of

the controlled process. Ideally, if the process model is perfect and there are no

disturbances identified, the control will be perfect. The structures of both IMC

and the classical feedback control are shown in Figure 2.4 and Figure 2.5. The two

structures are related by an algebraic transformation. Once IMC controller G∗
c is

designed it can be implemented as the corresponding classical PID controller Gc

[19]:

Gc =
G∗

c

1− Ỹ G∗
c

(2.13)

G∗
c =

Gc

1 + Ỹ Gc

(2.14)

The relation of input to output for the IMC block diagram is:

Y =
G∗

cG

1 +G∗
c(G− G̃)

YsP +
1−G∗

cG̃

1 +G∗
c(G− G̃)

D (2.15)
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where D is an external disturbance.

Figure 2.4: Internal Model Control blocks diagram scheme [19].

Figure 2.5: Classical feedback blocks diagram scheme [19].

This G∗
ccontroller is designed in two main steps [22]:

1. Obtain a simple transfer function model (e.g, first/second order model plus

time delay) from the original process model (model approximation)

2. Calculate PID settings from simple model (PID Tuning).

Step 1: Model Approximation

This step consists of approximate an original transfer function model G0(s) form

which can be approximated either theoretically or empirically [22].

FOPTD model:

G̃(s) =
K

(τs+ 1)
e−θs (2.16)

SOPTD model:

G̃(s) =
K

(τ1s+ 1)(τ2s+ 1)
e−θs (2.17)
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Consequently, the approximate model is determined by following model parame-

ters:

a) model gain K

b) lag time constant (τ or τ1 andτ2)

c) time delay θ

In order to compute the model parameters from the higher order model, Skoges-

tad’s Half Rule [22] can be applied.

Skogestad’s Half Rule (JPC 2002)

The model approximation of the model is mainly based on two Taylor approxi-

mations of the time delay transfer function:

e−θs ≈ 1− θs (2.18)

or

e−θs =
1

eθs
≈ 1

1 + θs
(2.19)

Using the first the first approximation in (2.18), a negative numerator term

(a right half plane zero) can be approximated as a time delay:

(−T0s+ 1) ≈ e−T0s (2.20)

where T0 > 0, in the same way, a small time constant τ0 can be approximated as

a time delay using Eq. (2.19):

1

τ0s+ 1
≈ e−θ0s (2.21)

Consequently, considering either approximation Eq. (2.20) and approximation

Eq. (2.21), the effect delay is the sum of the original delay and the approximated

terms as demonstrated in [22]:

−T0s+ 1

τ0s+ 1
e−θ0s ≈ e−θ0se−T0se−τ0s = e−(θ0+T0+τ0)s = e−θs (2.22)

Consider an original model in the form:

G̃(s) =

∏
j(−Tj0 + 1)∏
i(τi0 + 1)

e−θ0s (2.23)
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lags τi0 are in descending order and Tj0 > 0.

The two approximated models are:

FOPTD model:

τ1 = τ10 +
τ20
2

(2.24)

θ =
τ20
2

+ τ20 + θ0 + 3T0 +
Ts

2
(2.25)

SOPTD model:

τ1 = τ10 (2.26)

τ2 = τ20 +
τ20
2

(2.27)

θ =
τ20
2

+ θ0 + 3T0 +
Ts

2
(2.28)

where Ts is the sampling time for the digital implementation of a PID controller

[22].

Step 2: PID tuning

In the IMC design PID tuning is a two step procedure.

1. The process model obtained with the half rule is factored as:

G̃(s) = G̃+(s)G̃−(s) (2.29)

where G̃+(s) contains time delays and any right-half plane zeros, and there-

fore it is the non-invertible component. In contrast, G̃−(s) is the invertible

term.

FOPTD model In this case the time delay term is approximated with a

Padé approximation :

e−θs =
1− θ

2
s

1 + θ
2
s

(2.30)
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Therefore, the factorization of the process model becomes:

G̃+(s) = 1− θ

2
s (2.31)

G̃−(s) =
K

(τs+ 1)( θ
2
s+ 1)

(2.32)

SOPTD model Factorization of the process model with the Taylor series

approximation:

G̃+(s) = 1− θs (2.33)

G̃−(s) =
K

(τ1s+ 1)(τ2s+ 1)
(2.34)

2. In this step, the IMC controller includes a filter f with a steady-state gain

of one with the common form:

G∗
c =

1

G̃−(s)
ff =

1

(τcs+ 1)
(2.35)

τc is an adjustable parameter which determines the speed-of-response. In

particular, if it increases, the speed of response decreases and vice versa.

In order to compensate the mismatch between the process model and the

actual process, τc can be adjusted and a higher value of τc will determine a

robust control system [19]. The final IMC controller will be:

G∗
c =

1

G̃−(s)

1

(τcs+ 1)
(2.36)

Once the IMC controller with the two steps is designed, it can be easily brought

back to a PID controller with the relationship in (2.13):

Leading to the PID tuning for FOPTD model [19]:

Kc =
1

K

τ + θ
2

τc +
θ
2

(2.37)

τI = τ +
θ

2
(2.38)

τD =
τθ

2τ + θ
(2.39)

For the SOPTD model

Kc =
τ1 + τ2

K(τc + θ)
(2.40)

τI = τ1 + τ2 (2.41)

τD =
τ1τ2

τ1 + τ2
(2.42)
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2.2 Process Models

In light of the relevant role that models play for a glucose controller development,

it is quite understandable that the lack of accurate models for individual sub-

jects is a key problem in the development of reliable closed-loop control system.

A patient-model mismatch could cause hypoglycemia and the controller perfor-

mance would be reduced. In particular, it can be argued that the needs which

a model should satisfy may change in the different phases, e.g; design, tune and

validation. Indeed, models for the controller design are generally compact in or-

der to capture the system dynamic behaviors. On the other hand, the controller

tuning and validation stages should make use of more detailed simulations which

mimic the real system dynamics in a faithful way [20].

Over the years, different types of models which describe the insulin/glucose

dynamic ( also called ”glucose kinetics models”[16] ) have been proposed and an

exhaustive overview can be found in the literature citeBequette2005, Steil2005,

Cobelli2009.

Some models consist of ordinary or partial differential equations, artificial

neural networks (ANNs), fuzzy logic or expert systems. In the physiological envi-

ronment, compartmental models are often employed and they are based on ordi-

nary differential equations. The most widely used model is the so-called ”minimal

model”of Bergman et al. Figure 2.6 [23]. The aim of this model is to provide a

description of the insulin/glucose dynamic in as simple a way as possible, i.e with

a minimum number of known or assumed parameters [11, 16, 24].

The model is described by the following differential equations:

dG(t)

dt
= (p1 −X(t))G(t)− p1Gb (2.43)

dX(t)

dt
= p2X(t) + p3I(t) (2.44)

dI(t)/dt = E(t)− n(I(t)) (2.45)

The dependent variables are G(t), I(t) and X(t) indicate the plasma glucose the

plasma insulin and the insulin concentration in a remote compartment, respec-
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tively. Insulin is assumed to be delivered only through exogenous means E(t) and

the parameters pi and n are characterized by the individual patient. Gb is the

basal glucose concentration. In recent studies, it was found that this model over-

estimates the ability of glucose to facilitate its own uptake and underestimates the

contribution of elevated insulin levels [24]. Moreover, in this model, a description

of how the system behaves after a meal disturbance, and of the insulin kinetics

response to a subcutaneous insulin delivery, is not included. Other examples of

well-known models are the AIDA model and Sorensen’s model [16].

Alternatively, empirical models can be obtained from data. An effort to iden-

tify models retrieved from patient data can be found in [25] where various different

data-based modeling approaches to diabetes mellitus are analyzed. On the basis

of a patient’s daily glucose monitoring, data-base models were developed. The

glucose-insulin system was simplified and reduced at three main parts because of

the modeling goal: the Glucose Sub-Model(GSM), the Insulin-Sub-Model (ISM)

and the Glucose-Insulin-Interaction-Model (GIIM). The three parts are modeled

separately using mainly compartment models and black-box models. In partic-

ular, the GSM describes the glucose absorption from meal, the ISM describes

the absorption of insulin from insulin injection and the GIIM the interaction of

glucose and insulin in the blood systems and organs. The results of this model-

ing approach based on the patient data show that they are often inaccurate for

several reasons. One relevant cause of the accuracy problems is that clinical data

in T1DM locks sufficient excitation for model identification.

Autoregressive models (AR) have also been investigated for the blood glucose

value prediction in order to address the identifiability issues, but they are not

suitable for control applications because they do not contain an exogenous input

[1]. In order to overcome the exogenous input limit, the autoregressive exogenous

input (ARX) model have been demonstrated as a valid choice for control [4].

Fuzzy logic is also applied to the model identification aim. In a process in which

a particular change in the input variable may result in three different magnitudes

of changes in the output, the fuzzy logic provides a way to indicate that the

output might be a mix of two of the magnitudes, for example. Expert systems

are based on the knowledge of an ”expert” that has a good understanding of the
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system. For examples, this kind of model can be used as protocols for insulin

delivery in critical care. In this case, clinicians would introduce specific rules such

as the required units of insulin for a given blood glucose amount. This kind of

approach can also be implemented in a fuzzy logic-based framework [11].

The ANNs models derived by physiological description of the function of neu-

rons and neural networks in animals. An ANN model is normally used to provide

a nonlinear relationship between inputs and outputs. The procedure consists of

two steps: training and verification. In the first step, an ANN model is trained

with a known input and output data, and it finds the best data fit with an opti-

mization of the ANN parameters. Then, a verification with different input-output

data from the one used for the training is conducted [11].

2.2.1 Control-relevant Models

All the models listed above are suitable both for a control purpose and for the

prediction of the patient behavior. However, some of them are more appropriate

for prediction rather than a control purpose. An important class of models for

control system design is called control-relevant models. The main idea behind

this type of model is that they are developed for the specific control goal rather

than for the optimization of the prediction of future glucose value [1].

In order to achieve an accurate prediction of the patient’s behavior, detailed

models are more suitable, containing large number of parameters and differential

equations along with nonlinearities which are typical for biological process [24].

However, when the purpose is different from prediction, the control-relevance

issues must be addressed. An example of a model with a high level of complexity

can be the detailed compartment model of glucose-insulin interaction [26], which

contains 19 total differential equations, Figure 2.7, rather than the 3 differential

equations in the Bergman ’Minimal Model’.

As mentioned above, the performance of a model-based control, e.g IMC-

PID, is directly related to the model accuracy. In spite of the need for refined and

accurate models, a good control performance can be achieved with approximate

models whose requirements for control are based on frequency-domain arguments.

Hence, an approximate model needs to be accurate at frequencies around the



30 2. CONTROL ALGORITHMS AND MODELS

closed-loop bandwidth in order to achieve a robust control performance which is a

prerequisite in the artificial pancreas design. Indeed, if the correct frequency range

is captured, a large amount of mismatch in an open-loop simulations response can

be tolerated without leading to a decrease in the closed loop performance [1].

Figure 2.6: Schematic overview of the ’Minimal Model’ of Bergman et al. [24].

Figure 2.7: Detailed scheme for the insulin-glucose interactions [24].

Another key issue in finding proper models for control is the necessity of a

personalization of the control algorithm. The artificial pancreas should ideally
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perform safely and satisfactorily for all the patients. Unfortunately, the intra-

individual and the inter-individual variability among the subjects make it difficult

to achieve the controller robustness and if model and/or controller personalization

is not implemented. On the other hand, identification of accurate individual mod-

els is very difficult. A solution to this problem has been proposed by van Hausden

et al. [1], where parametric models are first identified to provide a model structure

that captures the the dynamic around the expected closed-loop bandwidth. Then,

a fixed model is defined which underestimates the robustness margins. Finally,

a personalization of the model is achieved by modifying the model gain of the

model for each subject on the basis of the a priori patient characteristics such as

the total daily insulin (TDI).

2.2.2 Novel PID Control Approach Based on Personalized

Model

The PID control algorithm for automated closed-loop insulin delivery system has

been widely applied. In [16] PID control algorithm was used in order to demon-

strate the feasibility of a closed-loop insulin delivery system based on subcuta-

neous insulin delivery and subcutaneous glucose sensing. In [18] the PID algo-

rithm was used to evaluate the effect of controller gain on the insulin response

to a meal. In both cases the controller gain was calculated taking into account

the subject’s TDI value. In [17] a combination of insulin boluses and PID control

with switching criteria has been evaluated.

The novel approach proposed in this thesis consists in the use of a control-

relevant model in order to design the PID controller, reducing the three tuning

terms (proportional, derivative and integral terms) to two tuning variables that

affect the controller gain: the model gain (K) and the speed of response to the

meal (τc) as showed in Eq. (2.40). Furthermore, the model gain, and consequently

the controller gain, are personalized based on the subjects’ TDI value.

The detailed of the model, personalization of the gain and controller imple-

mentation will be presented in the next chapter





Chapter 3

Controller design and

Implementation

In this chapter the details of the controller design and its implementation are pre-

sented. In particular, the main design issues are analyzed, and a brief description

of the process model identification is provide, as well. Then, each implementation

step is reported.

3.1 Main Design Issues

Even though the APS is supposed to improve glycemia control and thus avoiding

high glucose blood values, it is important to emphasize the risks it may introduce.

The main risk is hypoglycemia that occurs when the blood glucose concentration

is below 60 mg/dl. This undesirable situation usually occurs after a meal intake,

when the corresponding insulin bolus is too large. The increasing concentration

of blood glucose after a meal may cause an over-delivery by the controller which

will not be detected immediately, anditis too late to turn off the insulin delivery

[1]. For this reason, avoiding postprandial hypoglycemia turned to be the most

difficult challenge in developing an artificial pancreas controller. The main cause

of a controller failure in regulating blood glucose and avoid hypoglycemia events

is the inter-subject and intra-subject variability, leading to a patient-model mis-

match. As a results of this mismatch, the controller can be either too aggressive
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or too conservative. With a conservative controller, the meal response will be too

slow to overcome hyperglycemia, on the other hand, an aggressive controller will

provide more insulin than is desired, leading to low glycemic blood values.

The model identification is the first step in designing a robust controller al-

gorithm which minimize the risk of hypoglycemia. Then, the tuning parameters

can be optimized by using a personalized model, and thus a personalized control

algorithm.

3.2 Model Identification

The aim of this research is to use simple control-relevant models in order to

develop a PID-IMC controller for the Artificial Pancreas System, designing in-

cluding the process model dynamics. Over the years, many models have been

developed and used in order to design different controllers as decribed in Chapter

2. However, the main characteristic of this new type of control-relevant model

is that it is more focused on achieving the desired control performance rather

than providing an optimum prediction of the glucose blood concentration. Since

the main aim in developing a controller for the artificial pancreas system should

always be the safety of the patient, a valid control algorithm should either pre-

vent risk situations of hypoglycemia and at the same time meet the performance

specifications.

The personalized control-relevant models proposed by Van Heusen et al. [1]

introduce a priori information in the model in order to guarantee robustness

in case the patient’ s dynamics significantly differ from the model. The model

identification in [1] is conducted in silico with 10 representative subjects of the

UVA/Padova metabolic simulator with a protocol that cannot be performed in a

clinical environment, but with all the important information and without noise

information required. In the experiment, the total simulations lasts 72 hours, and

three bolus of 1, 2 and 3 units, respectively, is provided to the 10 subjects. The

first bolus is given after the subjects reach the fasting blood glucose. The second

bolus is delivered after 24 hours and the third bolus after 48 hours. For each

subject a transfer function is estimated. The cross-over frequency of the open-loop
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systems, frequency at which the phase angle curve crosses zero degrees, is found

to be approximately 2 × 10−4 rad/s and, therefore, the closed loop bandwidth

is expected to be between 5 × 10−5 rad/s and 4 × 10−4 rad/s [1]. The model

input is the insulin delivered by the pump and the output is the blood glucose

concentration. In Van Heusen et all. a discrete third-order transfer funtion model

is defined:

Mr(z
−1) =

G(s)

I(s)
=

Kz−3

(1− 0.98z−1)(1− 0.965z−1)2
(3.1)

where

K = −2.005× 10−4 (mg/dl)/(pmol/min)

The insulin units are (pmol/min) and the glucose units are (mg/dl). The Bode

diagram of this model is compared to the ten subjects’ Bode diagrams in Fig-

ure 3.1. The phase for the model is lower and its gain is overestimated, leading

to a more robust and conservative control if the expected closed-loop bandwidth

is correct.

Personalized Models

A conservative model fixed gain that may result in poor controller performance

when a sugnificant patient-model mismatch occurs. This problem can be min-

imyzed by replacing the fixed model gain with a gain that is personalized for

each subject using a priori information. The dynamics of the personalized model

are fixed, but, the gain is adjusted on the basis of subject’s sensitivity to insulin.

The model with the personalized gain is in the form:

Mi(z
−1) =

G(s)

I(s)
=

FsKicz
−3

(1− 0.98z−1)(1− 0.965z−1)2
(3.2)

WhereMi is the model for subject i, Fs is the safety factor,Ki is the individualized

gain which is calculated based on the subject’s total daily insulin (TDI) with the

2400 rule:

Ki =
2400

TDI
(3.3)
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Figure 3.1: Bode diagrams for the model (blue line) and for the ten subjects (gray

lines) [1].

and c is a constant determined in part by the units used and in part by a

scaling factor. In ths research, c = 1.255 × 10−6 (pmol/min/U/h). The safety

factor Fs is chosen by the physician. Its value is normally ≤ 1 and guidelines

which suggest how to select the safety factor are available in [1]. The aim of the

safety factor is to compensate the uncertainty due to the underestimation of the

TDI. In this thesis Fs is considered to be equal to 1. The design of any linear

model-based controller can be conducted using this personalized model [1].

3.3 Controller Design

The controller design consists of two main steps: (i) find a continuous low-order

approximation of the transfer function model in Eq. (3.2) and (ii) use this ap-

proximation to implement a PID controller using the IMC design method. In the

following two sections, these two steps are described.
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3.3.1 Model Approximation

In order to design an IMC controller, the first step is to find the continuous

control-relevant model starting from its discrete form.

The bilinear (Tustin) transform approximation is a simple and easy to use

method in order to relate the s- and z- domains. It is in the form:

z = esTs ≈ 1 + sTs/2

1− sTs/2
(3.4)

where Ts is the sampling period of the discrete system (Ts = 5 min) [27].

After, applying the approximation to the discrete model, the following continuous

transfer function model is obtained in the gain time-constant form (in h):

Mr(s) =
K(−0.03s+ 1)3e−0.25s

(4.12s+ 1)(2.33s+ 1)2
(3.5)

K = −8.184 (mg/dl)/(pmol/min)

Its Bode digram is shown in Figure 3.2

The expected frequency of interest is between 5×10−5 rad/s and 4×10−4 rad/s.

Since any model which shows the current dynamic behavior for this frequency

range would be satisfactory for the controller design, the Mr continuous transfer

function is a good approximation.

Next, the model in Eq. (3.6) is reduced to either a second and first-order model

plus time-delay (FOPTD or SOPTD) using Skogestad’s Half Rule in Chapter 2.

Mr(s) =
Ke−θ0s(−T0s+ 1)3

(τ10s+ 1)(τ20s+ 1)2
(3.6)

K = −8.134 (mg/dl)/(pmol/min)

T0 = −0.03 h

τ10 = 4.12 h

τ20 = 2.33 h

θ = 0.25 h



38 3. CONTROLLER DESIGN AND IMPLEMENTATION

10
−6

10
−4

10
−2

10
0

10
2

M
ag

ni
tu

de
 (

ab
s)

10
−5

10
−4

10
−3

10
−2

−540

−360

−180

0

180

P
ha

se
 (

de
g)

 

 

Bode Diagram

Frequency  (rad/sec)

tustin contiunuous function

Figure 3.2: Bode diagram of Mr continuous transfer function
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Applying Eq. (2.24) and Eq. (2.25) gives:

τ1 = τ10 +
τ20
2

= 5.3 h (3.7)

θ =
τ20
2

+ τ20 + θ0 + 3T0 +
h

2
= 3.9 h (3.8)

Obtaining the FOPTD model:

M ′
r(s) =

Ke−3.9s

5.3s+ 1
(3.9)

And applying Eq. (2.26)-2.28 gives:

τ1 = τ10 = 4.12 h (3.10)

τ2 = τ20 +
τ20
2

= 3.49 h (3.11)

θ =
τ20
2

+ θ0 + 3T0 +
h

2
= 1.56 h (3.12)

And the SOPTD model:

Mr(s)
′′ =

Ke−1.56s

(4.12s+ 1)(3.49s+ 1)
(3.13)

K = −8.184 (mg/dl)/(pmol/min)

From Figures 3.3 and 3.4 a comparison between the discrete model presented

by Van Husen et al. [1] and its continuous approximation as either a FOPTD

or SOPTD is provided. In Figure 3.3 the Bode diagrams show that the approx-

imations are similar to the discrete model in the frequency range of interest. In

Figure 3.4 the step responses of the three models are very similar. Nevertheless,

considering both the Bode diagrams and the step responses, the SOPTD model

provides the bettere approximation. For this reason the model chosen for the

IMC-PID controller desogn was the SOPTD model.
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Figure 3.3: Bode diagrams for the FOPTD, SOPTD and discrete models.
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3.3.2 PID Controller Tuning

In a SOPTD model, Eqs. 2.40 to 2.42 lead to the following PID controller settings:

Kc =
7.61

K(τc + 1.56)
(3.14)

τI = 7.61 h (3.15)

τD = 1.89 h (3.16)

3.4 Simulator PID Implementation

The two main parts of the controller part of the simulator are a setup script

and a run-time algorithm. The setup script allows the controller to be tuned

for each subject and thus provides the personalized information to the run-time

controller. The run-time algorithm applies the tuned control algorithm. The con-

trol algorithm is implemented in the form of a Simulink R⃝ block and the input

and output of the control block are fixed. In the main panel of the Simulink R⃝

simulator, Figure 3.5 the control law block is the orange block at the bottom.

Within the orange block the controller was implemented. For the first imple-

mentation of the controller, the noise introduced by the CGM sensor was not

considered, and glucose concentration values are provided to the PID controller

from the input 1 (glucose). In the PID block the PID algorithm was implemented.

3.4.1 Discrete PID Control

Since the CGM device provides samples of the subcutaneous glucose amount every

five minutes, the digital implementation of the parallel form of the PID controller

was considered. The discrete IMC-PID algorithm was implemented with an m-

file in the controller block. In order to obtain the discrete form, the integral and

derivative terms in Eq. (2.10) were replaced by difference approximations.
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∫ t

0

e(t∗)dt∗ ≈
k∑

j=1

ej∆t (3.17)

de

dt
≈ ek − ek−1

∆t
(3.18)

∆t : Ts

ek : error at the kth sampling instant fork=1,2..

With this two approximation, the discrete PID control algorithm becomes:

uk = ū+Kc

[
ek +

∆t

τI

k∑
j=1

ej +
τD
∆t

(ek − ek−1)

]
(3.19)

uk : is the controller output at the kth sampling instant.

In order to avoid the derivative kick issue, the derivative action is applied only

at the measured subcutaneous glucose concentration rather than the error signal

as well as in the continuous manner. The resulting digital PID formula will be:

uk = ū+Kc

[
ek +

∆t

τI

k∑
j=1

ej +
τD
∆t

(ym,k−1 − ym,k)

]
(3.20)
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Figure 3.5: The UVA/Padova metabolic simulator. Main panel with the control

law block at the bottom(orange).





Chapter 4

Controller With a

Non-personalized Controller Gain

In this chapter, first a population of ten representative subjects from the UVA/Padova

metabolic simulator is used to investigate the best tuning of the PID controller

for a single non-personalized model. Then, a different population of ten subjects

is used to validate the selected controller tuning. The main results for all the sim-

ulations conducted are reported in this chapter, and in Appendix all the single

subject results are reported as well.

4.1 Effect of τc

In this section the results of controller tuning are reported. Since the controller

gain is not personalized and thus is fixed for each subject, the only tuning pa-

rameter is τc. A population of ten adult subjects of the UVA/Padova metabolic

simulator is used to conduct simulations in order to evaluate the effect of τc on

the controller performance for post-prandial conditions. The scenario chosen for

the on-line tuning is:

• t=2 h: controller turned on;

• t=7 h: a single meal of 50 g CHO is given to the subject;

• t=30 h: simulation ends.
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The controller set point is 110 mg/dl for all the subjects. The simulation lasts 30

h in order to observe the entire response and determine whether or not the set

point is reached for the critical case of undershoot and hypoglycemia. Based on

the FOPTD model in Eq. (3.9), three values of τc were considered: τc=1, 2 and 5

h.

Table 4.1 shows the PID controller settings for these three values of τc. Note

that controller aggressiveness decreases as τc increases because Kc also decreases

(in absolute values).

Table 4.1: PID settings for different values of τc

τc Kc τI τD

h pmol/min mg/dl h h

1 -0.37 7.63 1.88
2 -0.26 7.63 1.88
5 -0.14 7.63 1.88

The simulation results for the three different values of τc are reported in

Figures 4.1- 4.3 and Tables 4.2 and 4.3. Observing the glucose concentration (at

the top of each figure) as well as the insulin infusion rate (at the bottom), the effect

of τc on controller of aggressiveness is quite evident. No hypo- or hyperglycemia

events occurred. Furthermore, the blood glucose concentration is never below 80

mg/dl for all the subjects and τc values. For τc = 1 h, all the subjects except ♯ 6

reach the set point. Moreover, there were only three subjects (♯ 4, 6 and 7) that

show undershoot; however, their minimum glucose values were well above the

hypoglycemia threshold of 80 mg/dl. Results for τc = 1 h do not differ so much

from the τc = 2 h case. Responses for τc = 5 h reveal a less aggressive controller

output, since none of the subjects shows glucose values below 99 mg/dl and most

of them do not reach the set point during the simulation time, the lowest glucose

value mean is 116 ± 10 mg/dl.

The idea that a more conservative response lead to higher glucose peak is

confirmed by comparing the ∆G values in Table 4.3, where the mean of the

glucose peak relative to the value at tmeal is 69 ± 22 for τc = 1 h and 83 ± 24 for



4.1. EFFECT OF τC 47

τc = 5 h. The glucose concentration remains within the glucose range 80÷ 140

(normo-glycemia range) for 66(±13)% of the time for τc = 1 h, whereas in τc =

5 h glucose concentration remains only 55(±15)% of the time in the same range.
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Figure 4.1: Post-prandial responses for τc = 1 h. The thick dashed line indicates

the set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl).
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Figure 4.2: Post-prandial responses for τc = 2 h. The thick dashed line indicates

the set point (110 mg/dl). The two thin dashed lines indicate the normo-glicemia

zone (80-140 mg/dl).
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Figure 4.3: Post-prandial responses for τc = 5 h. The thick dashed line indicates

the set point (110 mg/dl). The two thin dashed lines indicate the normo-glicemia

zone (80-140 mg/dl).
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Table 4.2: Single meal statistics: percentage of time that glucose concentration

(mg/dl) remains within the indicated range. Average values for the ten subjects.

range τc = 1 h τc = 2 h τc = 5 h

60<G<80 0 0 0
80<G<140 66 (± 13) 63 (±13) 55 (±15)
70<G<180 88 (±6) 86 (±6) 84 (±5)
180<G<250 12 (±6) 14 (±6) 16 (±5)

Table 4.3: Single meal metrics: mean and standard deviation for each τc value.

∆G is the glucose peak value relative to the value tmeal, the meal time: ∆G =

Gmax−Gmeal. Gmax is the maximum blood glucose value and Gmin is the minimum

value, during the post-prandial response. tr is the time to return to the normo-

glycemia zone after the meal.

metrics τc = 1 h τc = 2 h τc = 5 h

∆G (mg/dl) 69 (±22) 75 (±22) 83 (±24)
Gmax (mg/dl) 212 (± 21) 218 (±22) 225 (±23)
Gmin (mg/dl) 104 (±9) 108 (±9) 116 (±10)

tr (h) 6.5 (±2) 7 (±2) 9 (±2)

In Figures 4.4 and 4.5 the effect of the three different τc values for subject ♯ 5

and 6 is showed. Subject ♯ 6 shows the most undershoot among all the subject,

and when τc = 1 h the controller performance in term of time required to make

the glucose return in the normo-glycemia zone is improved (7.1 h, Table C.5)

compared to τc = 5 h (10.6 h, Table C.5), subject ♯ 6 shows a longer undershoot for

τc = 1 h, but still remains in the normo-glycemia range (88 mg/dl is the minimum

glucose value). For ♯ 5 the difference in the glucose concentration between the

effect of the τc is not so marked. However, a better performance for τc = 1 can

be observed.
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Figure 4.4: Post-prandial responses for subject ♯ 5 and different τc value. The

thick dashed line indicates the set point (110 mg/dl). The two thin dashed lines

indicate the normo-glicemia zone (80-140 mg/dl).
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Figure 4.5: Post-prandial responses for subject ♯ 6 and different τc value. The

thick dashed line indicates the set point (110 mg/dl). The two thin dashed lines

indicate the normo-glicemia zone (80-140 mg/dl).
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4.1.1 Robustness Test

Although these results show a better performance for τc = 1 h for all the subjects,

another test should be conducted in order to verify the controller robustness, be-

fore establishing the best PID controller tuning settings. The objective of the

robustness test was to verify the controller behavior for intra-subject insulin sen-

sitivity changes of ±50%. Thus, the controller output was reduced and increased

by 50%, to mimic the decrease and increase of the insulin sensitivity for the

same scenario. The robustness test results with the controller output ±50% are

reported for each τc value.

τc = 1 h

Robustness results for τc = 1 h are reported in Figus. 4.6-4.9.When the controller

output is reduced by 50%, the glucose concentration is in general higher compared

to the the one obtained with the normal controller output, for all the subjects. On

the other hand, the undershoot smaller; however, after the meal, all the subjects

return around the set point value at the end of the simulation.

With the controller output is increased by 50%, the controller aggressiveness

results in lower the glucose concentration peaks and in a pronounced undershoot,

but never below the the normo-glycemia lower bound (80 mg/dl).

Subject ♯ 6, as observed also in the previous results, show the most critical

case, therefore the three output conditions for this subject are reported. However,

for all the three conditions (normal, output controller ±50%) the controller per-

forms well, avoiding hypo- hyperglycemia events, even with the subject is more

sensitive to the insulin.
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Figure 4.6: Post-prandial responses for τc = 1 h. The thick dashed line indicates

the set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl).The controller output is reduced by 50%.
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Figure 4.7: Post-prandial responses for τc = 1 h. The thick dashed line indicates

the set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl). The controller output is increased by 50%.
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Figure 4.8: Post-prandial responses for subject ♯ 5, τc = 1 h and the three controller

output conditions (normal, increase by 50% and decrease of the 50%). The thick

dashed line indicates the set point (110 mg/dl). The two thin dashed lines indicate

the normo-glyciemia zone (80-140 mg/dl).
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Figure 4.9: Post-prandial responses for subject ♯ 6, τc = 1 h and the three controller

output conditions (normal, increase by 50% and decrease of the 50%). The thick

dashed line indicates the set point (110 mg/dl). The two thin dashed lines indicate

the normo-glyciemia zone (80-140 mg/dl).
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τc = 2 h

Robustness results for τc = 2 h are reported in Figures 4.10-4.13 and they similar

to the robustness results for τc=1 h. Nevertheless, when the controller output is

decreased, the controller action results to be less aggressive and some subjects

are not longer close to the set point at the end of the simulation.
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Figure 4.10: Post-prandial responses for τc = 2 h. The thick dashed line indicates

the set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl).The controller output is reduced by 50%.
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Figure 4.11: Post-prandial responses for τc = 2 h. The thick dashed line indicates

the set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl).The controller output is increased by 50%
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Figure 4.12: Post-prandial responses for subject ♯ 5, τc = 2 h and the three con-

troller output conditions(normal, increase by 50% and decrease of the 50%). The

thick dashed line indicates the set point (110 mg/dl). The two thin dashed lines

indicate the normo-glyciemia zone (80-140 mg/dl).
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Figure 4.13: Post-prandial responses for subject ♯ 6, τc = 2 h and the three con-

troller output conditions(normal, increase by 50% and decrease of the 50%). The

thick dashed line indicates the set point (110 mg/dl). The two thin dashed lines

indicate the normo-glyciemia zone (80-140 mg/dl).
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τc = 5 h

Robustness results for τc=5 h are reported in Figures 4.15-4.17. When the con-

troller output is reduced by 50%, the controller is less aggressive and is not able

to bring the glucose concentration close to the set point for the majority of the

subjects, even thought there are no cases of undershoot. The insulin delivered

by the pump at the bottom of the Figure 4.15 show that the controller is not

aggressive enough, since when the meal is detected (blue bar for t = 7 h), a really

small response is performed by the controller.
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Figure 4.14: Post-prandial responses for τc = 5 h. The thick dashed line indicates

the set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl).The controller output is reduced by 50%.
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Figure 4.15: Post-prandial responses for τc = 5 h. The thick dashed line indicates

the set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl).The controller output is increased by 50%.
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Figure 4.16: Post-prandial responses for subject ♯ 5, τc = 5 h and the three con-

troller output conditions (normal, increase by 50% and decrease by 50%). The

thick dashed line indicates the set point (110 mg/dl). The two thin dashed lines

indicate the normo-glyciemia zone (80-140 mg/dl).
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Figure 4.17: Post-prandial responses for subject ♯ 6, τc = 5 h and the three con-

troller output conditions(normal, increase by 50% and decrease by 50%). The

thick dashed line indicates the set point (110 mg/dl). The two thin dashed lines

indicate the normo-glyciemia zone (80-140 mg/dl).

In Tables 4.4-4.7 the robustness results for different τc values are reported

in terms of means and standard deviations. There are no cases of hypoglycemia

or hyperglycemia, and none of the subjects shows glucose concentration in the

range 60-80 mg/dl. According to the figures and tables, τc = 1 h shows the best

performance. Indeed, when the controller output is increased by 50%, the glucose

concentration remains in the range of normo-glycemia 80-140 for 73 (±12)% of

the time, whereas for τc = 5 h only for 63(±13)% of the time . Percentage of time

spent in the range 180-250 changes from 8% (±5%) to 13% (±6%) with τc = 1 h

and 5 h, respectively. When the controller output is decreased by 50%, the time

spent in the range 80-140 is 62(±14)% for τc = 1 h and 51(±15)%.
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Table 4.4: Single meal statistics: percentage of time that glucose concentration

(mg/dl) remains within the indicated range. Average values for the ten subjects,

when the controller output is increased by 50%.

range τc=1 h τc=2 h τc=5 h

60<G<80 0 0 0
80<G<140 73 (± 12) 69 (±12) 63 (±13)
70<G<180 92 (±5) 89 (±5) 87 (±6)
180<G<250 8 (±5) 11 (±6) 13 (±6)

Table 4.5: Single meal statistics: percentage of time that glucose concentration

(mg/dl) remains within the indicated range. Average values for the ten subjects,

when the controller output is decreased by 50%.

range τc = 1 h τc = 2 h τc = 5 h

60<G<80 0 0 0
80<G<140 62 (± 14) 58 (±14) 51 (±15)
70<G<180 86 (±6) 85 (±5) 82 (±5)
180<G<250 14 (±6) 16 (±5) 17 (±4)
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Table 4.6: Single meal statistics: mean and standard deviation for each τc value.

∆G is the glucose peak value relative to the value tmeal, the meal time: ∆G =

Gmax − Gmeal. Gmax is the maximum glucose concentration value. Gmin is the

minimum value. tr is the time to return to the normo-glycemia zone after the

meal. the controller output is increased by 50%.

metrics τc = 1 h τc = 2 h τc = 5 h

∆G (mg/dl) 57 (±20) 63 (±21) 73 (±22)
Gmax (mg/dl) 199 (± 19) 205 (±20) 216 (±22)
Gmin (mg/dl) 95 (±8) 100 (±8) 122 (±10)

tr (h) 5 (±2) 6 (±2) 7 (±2)

Table 4.7: Single meal metrics: mean and standard deviation for each τc value.

∆G is the glucose peak value relative to the value tmeal, the meal time: ∆G =

Gmax −Gmeal. Gmax is the maximum blood glucose value. Gmin is the minimum.

tr is the time to return to the normo-glycemia zone after the meal. the controller

output is decreased by 50%

metrics τc = 1 h τc = 2 h τc = 5 h

∆G (mg/dl) 76 (±23) 80 (±23) 86 (±25)
Gmax (mg/dl) 218 (± 22) 223 (±23) 228 (±24)
Gmin (mg/dl) 110 (±9) 114 (±10) 122 (±10)

tr (h) 7 (±2) 8 (±2) 10 (±3)
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4.1.2 Discussion

Both the results for the effect of the τc values and the robustness test show that the

best PID tuning results are for τc = 1 h. The mean values is of 6.5 h to return in

the normo-glycemia zone after the meal intake, the highest glucose concentration

value is 247 mg/dl for subject ♯ 10 when controller output decreased by 50%, and

the lowest glucose concentration value is 86 mg/dl when the controller output is

increased by 50%. These results ensure that for this value of τc a safe controller

results, avoiding any dangerous cases of hypo- or hyperglycemia.

4.2 Validation Test: Post-prandial Results

Once the effect of τc values has been analyzed and has been observed that the best

controller performance is achieved for τc = 1 h, a validation test is conducted. A

population of new 10 subjects (different from the previous 10 subjects population)

from the UVA/Padova metabolic simulator is used to investigate the controller

performance when three meals (dinner, breakfast and lunch) are provided. The

validation test scenario is:

• t=0 h (1 pm): simulation starts

• t=2 h (3 pm): controller turned on;

• t=5 h (8 pm): a meal of 50 g CHO (dinner) is given;

• t=16 h (7 am): meal of 40 g CHO (breakfast) is given;

• t=21 h (12 pm): meal of 50 g CHO (lunch) is given t;

• t=30 h (9 pm): simulation ends.

Figure 4.18 and Tables 4.8-4.11 show the validation test results. The first

important result is that none of the subjects had hypoglycemic events. More-

over, only 1.6% (±2.7%) of the time the glucose concentration remains within

the range 60-80 in average (values of 7,3, and 6 % for subjects ♯ 6, 9, and 10

respectively). The minimum glucose value is 70 mg/dl for subject ♯ 6 and, from
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Figure 4.18, it occurs around 9 pm, when another meal is given. In particular,

the controller action for subject ♯ 3 and 9 is good, since they remain in the range

70-180 for all the simulation. Only subjects ♯ 1, 6, and 10 show hyperglycemia

events; nevertheless the highest glucose values are moderate: 279, 182 and 252

mg/dl respectively. The time to return in the normo-glycemia zone after meal is

less than 7.3 h after the first meal; after the second meal some of the subjects

do not even reach the normo-glycemia zone (♯ 5, 7 and 8) before the third meal

is provided. After the third meal, the time to reach the normo-glycemia zone is

less 6.5 h for all ten subjects. Subjects ♯ 9 and 3 after the first meal return in the

normo-glycemia zone for almost all the time.

These results demonstrate that the choice of τc = 1 h guarantees a safe con-

troller action with moderate glucose concentration maximum values.
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Figure 4.18: Post-prandial responses to three meals.The thick dashed line indicates

the set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl).
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Table 4.8: Single meal statistics: percentage of time that the glucose concentration

remains within the indicated range.

Subject 60<G<80 80<G<140 70<G<180 180<G<250 G>250

1 0 32 68 26 6
2 0 44 91 9 0
3 0 82 100 0 0
4 0 46 92 8 0
5 0 27 70 31 0
6 7 45 65 27 8
7 0 40 84 17 0
8 0 45 84 16 0
9 3 65 100 0 0
10 6 51 74 25 2

mean(±std) 1.6(± 2.7) 48 (±15) 83(±12) 16 (±11) 2( ± 3)

Table 4.9: The glucose (mg/dl) peak value relative to the value at tmeal, the meal

time: ∆G = Gmax −Gmeal.

Subject dinner breakfast lunch

1 130 104 108
2 62 51 56
3 38 33 34
4 56 51 36
5 96 74 56
6 149 118 97
7 64 51 44
8 73 58 57
9 28 42 21
10 123 99 86

mean 82 68 59
±std ± 39 ± 28 ± 27
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Table 4.10: Time to return to the normo-glycemia zone after the meal.

Subject dinner breakfast lunch

1 6.8 h 4.7 h 4.7 h
2 5.0 4.0 3.9
3 4.3 0.0 2.0
4 5.4 4.1 4.0
5 7.3 / 5.3
6 6.1 4.9 4.7
7 7.3 / 6.4
8 6.7 / 5.6
9 4.8 0.0 0.0
10 5.7 4.5 4.5

Table 4.11: Blood glucose (mg/dl) maximum (Gmax) and minimum (Gmin) glucose

values during the post-prandial response.

Subject Gmin Gmax

1 84 279
2 112 204
3 92 168
4 90 195
5 88 245
6 70 282
7 112 199
8 111 211
9 79 171
10 72 252

mean 91 220
±std ± 15 ± 39



Chapter 5

Controllers With a Personalized

Controller Gain

The structure fo this chapter is the same as Chapter 4. The same population

of ten subjects from the UVA/Padova metabolic simulator used in Chapter 4

Section 4.1 is used to investigate the best tuning of the PID controller, when

the controller gains are personalized. Then, the different population used for the

validation test in Chapter 4 is used to validate the selected controller tuning. The

mean results for all the simulations conducted are reported in this chapter, and

in Appendix all the single subject results are reported as well.

5.1 Effect of τc

In this section the results of the controller tuning are reported. The controller

gain is now personalized for each subject based on the TDI value. The controller

gain Kc in Eq. (3.14) depends either on the process model gain (K) and on the

desired speed-of-response time constant τc. Table 5.1 reports the process model

personalized gains.The model gains can be personalized either using the subjects’

TDI, or by determining the process gain for each subject with a step test as

explained in Appendix B. However, the use of only TDI information is the better

way to personalize the gain, since it is a priori information provided by physicians.

In Table 5.1, the gain calculated by the step test are reported as well, to provide a
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comparison between the two types of gain calculations. Both TDI based gains and

step-test gains are between - 4.2 and -0.67 (mg/dl/pmol/min), which are smaller

than the fixed gain used by van Hausden [1] -8.13 (mg/dl/pmol/min). Indeed,

the fixed gain was chosen to lead to a robust and conservative controller rather

than an aggressive one, since the controller output is inversely proportional to the

model gain. These relationships can be verified in Table 5.2 where the personalized

with TDI information and non personalized controller gains for τc = 1,2,3,4 and

5 h are reported.

The same population of Chapter 4 is used to conduct simulations in order to

evaluate the effect of τc on the controller performance for post-prandial conditions.

The scenario chosen for the controller tuning is:

• t=2 h: controller turned on;

• t=7 h: a single meal of 50 g CHO is given;

• t=30 h: simulation ends.

The controller set point is 110 mg/dl for all the subjects. The simulation lasts

30 h in order to observe the entire response and determine whether or not the

set point is reached for the critical case of undershoot and hypoglycemia. Based

on the FOPTD model in Eq. (3.9) and on the more aggressive model gains, five

values of τc were considered: τc = 1, 2, 3, 4 and 5 h.

The simulation results for the three different values of τc are reported in

Figures 5.1- 5.5 and Tables 5.3 and 5.4. For τc = 1 h the personalized controller

is too aggressive, since, on average, 3(±3)% of the time the glucose concentration

is within the range 60-80 mg/dl, and all the subjects exhibit undershoot more or

less marked (subjects ♯ 6,7 and 9 show the largest undershoots). However, for none

of the τc values considered show hypoglycemia or hyperglycemia events. Similar

results are obtained for τc = 2 h, even though the undershoots are reduced; only

subjects ♯ 6 and 9 are below 80 mg/dl, and in particular only subject ♯ 9 is below

the normo-glycemia lower bound for a considerable percentage of time (20%). A

relevant improvement in the controller performance is achieved for τc = 3 h, since

only subject ♯ 9 shows a glucose concentration below 80 mg/dl, and for only 8
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Table 5.1: Process gains calculations (mg/dl/pmol/min) with step changes calcu-

lated in Appendix B and TDI.∗

Subject TDI Step test

1 -2.38 -1.29
2 -2.07 -1.04
3 -2.13 -1.37
4 -3.55 -3.65
5 -1.76 -0.67
6 -1.95 -2.84
7 -2.86 -4.18
8 -2.81 -1.51
9 -1.79 -1.00
10 -1.86 -0.98

* Van Hausden’s gain -8.13

Table 5.2: Personalized controller gains Kc (pmol/min/mg/dl)

Subject τc = 1 h τc = 2 h τc = 3 h τc = 4 h τc = 5 h

1 -1.25 -0.90 -0.70 -0.58 -0.49
2 -1.44 -1.03 -0.81 -0.66 -0.56
3 -1.40 -1.01 -0.79 -0.65 -0.55
4 -0.84 -0.60 -0.47 -0.39 -0.33
5 -1.70 -1.22 -0.95 -0.78 -0.66
6 -1.53 -1.10 -0.86 -0.70 -0.60
7 -1.04 -0.75 -0.59 -0.48 -0.41
8 -1.06 -0.76 -0.60 -0.49 -0.41
9 -1.67 -1.20 -0.94 -0.77 -0.65
10 -1.60 -1.15 -0.90 -0.74 -0.63

Van Hausden -0.37 -0.26 -0.21 -0.17 -0.14

% of the time. The less aggressive controller action for τc = 3 h results in higher

values of ∆G, Gmax, Gmin and tr, but still guarantees a good performance. For

τc = 4 and 5 h, the controller aggressiveness is further reduced, resulting in no

subjects with glucose concentration in the range 60-80 mg/dl, but increasing the

percentage of time in the range 60-80 mg/dl 11(±5)% for τc = 5 h.
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In Figures 5.6 and 5.7 the effect of the five τc values for subjects ♯ 5 and 9 is

showed. Subject ♯ 9 shows the most undershoot for all ten subjects. Comparing

the controller action for τc = 1 h and τc = 3 h, it can be observed that the better

trade-off between speed of response and undershoot occurs for τc = 3 h where the

undershoot remains above 80 mg/dl and time to return in the normo-glycemia

zone is 5.2 (±5) %.
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Figure 5.1: Post-prandial responses for τc = 1 h. The thick dashed line indicates

the set point (110 mg/dl). The two thin dashed lines indicate the normo-gyicemia

zone (80-140 mg/dl).
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Figure 5.2: Post-prandial responses for τc = 2 h. The thick dashed line indicates

the set point (110 mg/dl). The two thin dashed lines indicate the normo-glycemia

zone (80-140 mg/dl).
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Figure 5.3: Post-prandial responses for τc = 3 h. The thick dashed line indicates

the set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl).
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Figure 5.4: Post-prandial responses for τc = 4 h. The thick dashed line indicates

the set point (110 mg/dl). The two thin dashed lines indicate the normo-glycemia

zone (80-140 mg/dl).
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Figure 5.5: Post-prandial responses for τc = 5 h. The thick dashed line indicates

the set point (110 mg/dl). The two thin dashed lines indicate the normo-glycemia

zone (80-140 mg/dl).
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Figure 5.6: Post-prandial responses for subject ♯ 5 and different τc. The thick

dashed line indicates the set point (110 mg/dl). The two thin dashed lines indicate

the normo-glycemia zone (80-140 mg/dl).
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Figure 5.7: Post-prandial responses for subject ♯ 9 and different τc. The thick

dashed line indicates the set point (110 mg/dl). The two thin dashed lines indicate

the normo-glycemia zone (80-140 mg/dl).
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Table 5.3: Single meal statistics: percentage of time that the glucose concentration

(mg/dl) remains within the indicated range. Average values for the ten subjects.

range τc = 1 h τc = 2 h τc = 3 h τc = 4 h τc = 5 h

60<G<80 3 (± 7) 3 (± 6) 1 (± 2) 0 0
80<G<140 75 (± 13) 73 (± 13) 72 (± 12) 71 (± 11) 70 (± 11)
70<G<180 95 (± 7) 94 (± 4) 93 (± 4) 91 (± 5) 90 (± 5)
180<G<250 4 (± 4) 6 (± 5) 8 (± 5) 10 (± 5) 11 (± 5)

Table 5.4: Single meal metrics: mean and standard deviation for each τc value.

∆G is the glucose peak value relative to the value tmeal, the meal time: ∆G =

Gmax−Gmeal. Gmax is the maximum blood glucose value and Gmin is the minimum

value, during the post-prandial response. tr is the time to return to the normo-

glycemia zone after the meal.

metrics τc = 1 h τc = 2 h τc = 3 h τc = 4 h τc = 5 h

∆G (mg/dl) 46 (± 16) 52 (± 17) 57 (± 18) 61 (± 19) 64 (± 19)
Gmax (mg/dl) 187 (± 16) 194 (± 17) 199 (± 18) 202 (± 19) 199 (± 18)
Gmin (mg/dl) 85 (± 9) 90 (± 8) 94 (± 8) 94 (± 8) 94 (± 8)

tr (h) 4.2 (± 1.2) 4.7 (± 1.3) 5.2 (± 1.4) 55 (± 1.4) 5.8 (± 1.5)
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5.1.1 Robustness Test

In order to verify the controller behavior for intra-subject changes of ±50% in the

insulin sensitivity, as explained in Chapter 4, the controller output was reduced

or increased by 50%. In this case, the robustness test can also give information

about the controller performance, when the actual subject’s TDI value differs

from the TDI estimated by the 2400 rule Eq. (3.3). The robustness test results

with the controller output changes by ±50% are reported for each τc value in-

vestigated, except for τc = 1 h, because the performance was already poor for

normal conditions.

τc = 2 h

Robustness results for τc = 2 h are reported in Figures 5.8 - 5.11. When the

controller output is increased by 50%, all post-prandial responses result in more

oscillatory behavior, with really large undershoots especially for subject ♯ 9.
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Figure 5.8: Post-prandial responses for τc = 2 h. The thick dashed line indicates

the set point (110 mg/dl). The two thin dashed lines indicate the normo-glycemia

zone (80-140 mg/dl).The controller output is reduced by 50%.
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Figure 5.9: Post-prandial responses for τc = 2 h. The thick dashed line indicates

the set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl). The controller output is increased by 50%.
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Figure 5.10: Post-prandial responses for subject ♯ 5, τc = 2 h and the three con-

troller output conditions(normal, increase bye 50% and decrease by 50%). The

thick dashed line indicates the set point (110 mg/dl). The two thin dashed lines

indicate the normo-glycemia zone (80-140 mg/dl).
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Figure 5.11: Post-prandial responses for subject ♯ 9, τc = 2 h and the three con-

troller output conditions (normal, increase by 50% and decrease by 50%). The

thick dashed line indicates the set point (110 mg/dl). The two thin dashed lines

indicate the normo-glycemia zone (80-140 mg/dl).
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τc = 3 h

Robustness results for τc=3 h are reported in Figures 5.12 - 5.15. When the

controller is increased by 50%, the post-prandial response still show significant

undershoots, but no hypoglycemic events occur.
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Figure 5.12: Post-prandial responses for τc = 3 h. The thick dashed line indicates

the set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl).The controller output is reduced by 50%.
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Figure 5.13: Post-prandial responses for τc = 3 h. The thick dashed line indicates

the set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl).The controller output is increased by 50%



5.1. EFFECT OF τC 77

0 5 10 15 20 25 30

60
80

110

140
160

190

220

250

Time [h]

G
lu

co
se

 [m
g/

dl
]

 

 

0 5 10 15 20 25 30

1

2

3

4

5

Time [h]

In
su

lin
 [U

/h
]

 

 

normal
−50%
+50%

normal
−50%
+50%

Figure 5.14: Post-prandial responses for subject ♯ 5, τc = 3 h and the three con-

troller output conditions (normal, increase by 50% and decrease by 50%). The

thick dashed line indicates the set point (110 mg/dl). The two thin dashed lines

indicate the normo-glyciemia zone (80-140 mg/dl).
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Figure 5.15: Post-prandial responses for subject ♯ 9, τc = 3 h and the three con-

troller output conditions (normal, increase by 50% and decrease by 50%). The

thick dashed line indicates the set point (110 mg/dl). The two thin dashed lines

indicate the normo-glyciemia zone (80-140 mg/dl).
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τc = 4 h

Robustness results for τc = 4 h are reported in Figures 5.16 - 5.19, and the only

subject that show a relevant undershoot when the controller output is increased

by 50% is ♯ 9, since its response is below the normo-glycemia undershoot.
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Figure 5.16: Post-prandial responses for τc = 4 h. The thick dashed line indicates

the set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl).The controller output is reduced by 50%.
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Figure 5.17: Post-prandial responses for τc = 4 h. The thick dashed line indicates

the set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl).The controller output is increased by 50%
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Figure 5.18: Post-prandial responses for subject ♯ 5, τc = 4 h and the three con-

troller output conditions (normal, increase by 50% and decrease by 50%). The

thick dashed line indicates the set point (110 mg/dl). The two thin dashed lines

indicate the normo-glyciemia zone (80-140 mg/dl).
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Figure 5.19: Post-prandial responses for subject ♯ 9, τc = 4 h and the three con-

troller output conditions (normal, increase by 50% and decrease by 50%). The

thick dashed line indicates the set point (110 mg/dl). The two thin dashed lines

indicate the normo-glyciemia zone (80-140 mg/dl).
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τc = 5 h

Robustness results for τc=5 h are reported in Figures 5.20 - 5.23, the controller

performance is similar to the one for τc=4 h
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Figure 5.20: Post-prandial responses for τc = 5 h. The thick dashed line indicates

the set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl).The controller output is reduced by 50%.

0 5 10 15 20 25 30

60
80

110

140
160

190

220

250

Time [h]

G
lu

co
se

 [m
g/

dl
]

 

 
sub1
2
3
4
5
6
7
8
9
10

0 5 10 15 20 25 30
0

1

2

3

4

5

Time [h]

In
su

lin
 [U

/h
]

 

 
sub1
2
3
4
5
6
7
8
9
10

Figure 5.21: Post-prandial responses for τc = 5 h. The thick dashed line indicates

the set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl).The controller output is increased by 50%
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Figure 5.22: Post-prandial responses for subject ♯ 5, τc = 5 h and the three con-

troller output conditions (normal, increase by 50% and decrease by 50%). The

thick dashed line indicates the set point (110 mg/dl). The two thin dashed lines

indicate the normo-glyciemia zone (80-140 mg/dl).
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Figure 5.23: Post-prandial responses for subject ♯ 9, τc = 5 h and the three con-

troller output conditions (normal, increase by 50% and decrease by 50%). The

thick dashed line indicates the set point (110 mg/dl). The two thin dashed lines

indicate the normo-glyciemia zone (80-140 mg/dl).
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In Tables 5.5-5.8 the robustness results for different τc values are reported in

terms of means and standard deviations. When the controller output is increased

by 50%, for τc = 2 h,the glucose concentration remains in the hypoglycemia zone

0.9(±2.7)% of the time, demonstrating that the controller is robust. For τc = 3,

4 and 5 h, there are no cases of hypoglycemia, even when the controller output is

increased by 50%. The percentage of time in the other ranges are similar for τc =

3, 4 and 5 h, but for τc = 3, 3(±3)% of the time, glucose concentration is in the

range 180-250, whereas for τc = 5 h the time in the same range is 5(±5)% of the

rime. In general τc = 3 h performed the best compared to the other τc values, e.g

tr is equal to 3.9(±1.2) instead of 4.6(±1.3) for τc= 5 h, still avoiding the risk of

hypoglycemia.

When the controller output is reduced by 50%, the percentage of time in the

range 180-250 is increased, and for τc = 5 h it reaches the average of 13(±5)%.

For τc = 3 h the percentage of time in the same glucose zone is reduced and at

the same time, good performance is guaranteed even with the more conservative

controller, since the highest glucose value is 207 (± 19).

Table 5.5: Single meal statistics: percentage of time that glucose concentration

(mg/dl) remains within the indicated range. Average values for the ten subjects,

when the controller output is increased by 50%.

range τc = 2 h τc = 3 h τc = 4 h τc = 5 h

G<60 0.9 (± 2.7) 0 0 0
60<G<80 3 (± 5) 3 (± 7) 3 (± 7) 3 (± 7)
80<G<140 76 (± 12) 76 (± 13) 74 (± 14) 73 (± 14)
70<G<180 96 (± 6) 96 (± 7) 95 (± 7) 95 (± 5)
180<G<250 2 (± 2) 3 (± 3) 4 (± 5) 5 (± 5)
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Table 5.6: Single meal metrics: mean and standard deviation for each τc value.

∆G is the glucose peak value relative to the value tmeal, the meal time: ∆G =

Gmax−Gmeal.Gmax is the highest blood glucose value andGmin is the lowest value,

during the post-prandial response. tr is the time to return to the normo-glycemia

zone after the meal. The controller output is increased by 50%

metrics τc = 2 h τc = 3 h τc = 4 h τc = 5 h

∆G (mg/dl) 40 (± 16) 43 (± 16) 46 (± 16) 50 (± 17)
Gmax (mg/dl) 182 (± 16) 185 (± 16) 189 (± 16) 192 (± 17)
Gmin (mg/dl) 81 (± 11) 84 (± 10) 87 (± 9) 89 (± 8)

tr (h) 3.6 (± 1.2) 3.9 (± 1.2) 4.3 (± 1.2) 4.6 (± 1.3)

Table 5.7: Single meal statistics: percentage of time that glucose concentration

(mg/dl) remains within the indicated range. Average values for the ten subjects,

when the controller output is decreased by 50%

range τc = 2 h τc = 3 h τc = 4 h τc = 5 h

60<G<80 0 0 0 0
80<G<140 71 (± 11) 69 (± 12) 67 (± 12) 65 (± 12)
70<G<180 91 (± 5) 89 (± 5) 88 (± 5) 88 (± 5)
180<G<250 9 (± 5) 11 (± 5) 12 (± 5) 13 (± 5)

Table 5.8: Single meal statistics: mean and standard deviation for each τc value.

∆G is the glucose peak value relative to the value tmeal, the meal time: ∆G =

Gmax −Gmeal. Gmax is the maximum blood glucose value. Gmin is the minimum

value. tr is the time to return to the normo-glycemia zone after the meal. the

controller output is decreased by 50%.

metrics τc = 2 h τc = 3 h τc = 4 h τc = 5 h

∆G (mg/dl) 60 (± 19) 64 (± 20) 68 (± 20) 71 (±21)
Gmax (mg/dl) 202 (± 19) 207 (± 19) 210 (± 20) 213 (±21)
Gmin (mg/dl) 96 (± 8) 100 (± 8) 102 (± 8) 105 (±20)

tr (h) 5.5 (± 1.4) 5.9 (± 1.5) 6.3 (± 1.6) 6.6 (±1.6)
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5.1.2 Discussion

Both the results of the effect of the τc values and the robustness test show the best

PID tuning settings results when τc = 3 h. Indeed, no cases of hypo- or hyper-

glycemia occurred for the three controller conditions (normal, ±50%). Moreover

96(±7)% of the time the glucose concentration remains within the range 70-180;

in particular subjects ♯ 1, 2, 3, 7, and 8 remain in that range for 100 % of the time.

The highest glucose concentration value,among all the subjects, is 235 mg/dl for

subject ♯ 4 when the controller output is decreased by 50%; the lowest glucose

concentration value is 61 mg/dl when the controller output is increased by 50%.

5.2 Validation Test: Post-prandial Results

After analyzing the effect of τc and concluding that the best controller perfor-

mance is achieved for τc = 3 h, a validation test is conducted, as in Chapter 4.

The same population from the UVA/Padova metabolic simulator that was used

for the validation test of the non-personalized gain is used here. Again a three

meal challenge (dinner, breakfast and lunch) is evaluated. The validation test

scenario is:

• t=0 h (1 pm): simulation starts

• t=2 h (3 pm): controller turned on;

• t=5 h (8 pm): a meal of 50 g CHO (dinner) is given;

• t=16 h (7 am): meal of 40 g CHO (breakfast) is given;

• t=21 h (12 pm): meal of 50 g CHO (lunch) is given;

• t=30 h (9 pm): simulation ends.

Figure 5.24 and Tables 5.9-5.12 show the validation test results. The first

important result is that none of the subjects exhibited cases of hypoglycemia.

Nevertheless, the lowest value of the glucose concentration detected is 60 mg/dl

for subject ♯ 6 , extremely close to the hypoglycemia zone; however, this low
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glucose level occurs around 9 pm, when another meal is supposed to be given.

The percentage of time in the range 70-180 is 88(±11)% and in particular it is

100% for subjects ♯ 3 and 9. After the meal intake, the time to return to the

normo-glycemia for all the subjects is below 6.2 h, and the glucose concentration

of subject ♯ 9, after the first meal, remains in the normo-glycemia zone for the

entire simulation. The highest glucose concentration excursions, due to the meals,

occur after the the first meal (dinner), and The average maximum excursion is

of 73(±34) mg/dl (the highest value is 130 mg/dl for subject ♯ 6). After the

other meals, it gradually decreases to 60 (±28) mg/dl. The maximum value of

the glucose concentration is 260 mg/dl for subject ♯ 6, with an average for the 10

subjects of 208(±34) mg/dl. hyperglycemia only for 0.8(±1.7)% of time. These

results demonstrate that the choice of τc= 3 h guarantees a safe controller action

with moderate peak values.
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Figure 5.24: Post-prandial responses to three meals.The thick dotted line indicates

the set point (110 mg/dl). The two dotted lines indicate the normo-glyciemia zone

(80-140 mg/dl).
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Table 5.9: Single meal statistics: percentage of time that glucose concentration

(mg/dl) remains within the indicated range.

Subject G<60 60<G<80 80<G<140 70<G<180 180<G<250 G>250

1 0 9 40 79 18 3
2 0 0 53 95 6 0
3 0 0 87 100 0 0
4 0 0 54 94 6 0
5 0 4 36 86 14 0
6 0 16 47 64 21 5
7 0 0 58 94 6 0
8 0 0 65 92 8 0
9 0 0 77 100 0 0
10 0 11 55 73 19 0

mean 0 4 (±6) 57(±15) 88(±11) 10(±7) 1(±2)

Table 5.10: The glucose (mg/dl) peak value relative to the value at tmeal, the meal

time: ∆G = Gmax −Gmeal.

Subject dinner breakfast lunch

1 118 102 114
2 60 50 57
3 37 33 35
4 53 50 37
5 79 73 55
6 130 111 99
7 59 49 42
8 70 58 57
9 20 39 21
10 109 96 88

mean 73 66 60
std ±34 ±26 ±29
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Table 5.11: Time to return to the normo-glycemia zone after the meal.

Subject dinner breakfast lunch

1 4.5 h 3.6 h 3.6 h
2 4.3 3.1 3.1
3 3.6 / 1.6
4 4.9 3.5 3.3
5 5.6 4.5 4.5
6 4.7 4.1 4.0
7 6.2 3.9 4.1
8 5.6 3.3 3.2
9 2.9 / /
10 4.6 3.9 3.8

Table 5.12: Maximum ( Gmax) and minimum (Gmin) glucose concentration

(mg/dl) values during the post-prandial response.

Subject Gmin Gmax

1 76 259
2 107 200
3 92 164
4 87 190
5 76 222
6 60 260
7 95 192
8 98 205
9 82 155
10 67 238

mean 84 208
std ±14 ±34





Chapter 6

Comparison of The Controllers

Performance

In this chapter a direct comparison between the results obtained with the non-

personalized controller and the personalized controller are presented. In partic-

ular, figures and tables of the single meal post-prandial responses for both the

final controllers with the selected settings are reported along with the robustness

test when the insulin sensitivity is increased by 50%. The validation test results

for the three meal, 30 hours scenario are also included.

6.1 Normal output

Figures 6.1-6.6 and Tables 6.1 and 6.2 show the results for the personalized and

non-personalized controllers with the selected settings, for the post-prandial re-

sponse simulations in Chapter 4 and Chapter 5 and a single meal of 50 g of CHO.

With a personalization of the controller the percentage of time in the range 70-180

results is considerably improved compared to the non-personalized controller, in-

creasing from 88 (± 6)% to 93 (±4)%. Also the time in the normo-glycemia range

improves from 66(±13)% for the non-personalized controller to 72 (±13)% after

introducing the personalization. The personalized controllers reduce the highest

peak from 212 (± 21) mg/dl to 199 (±18) mg/dl, as well as the time to return in

the normo-glycemia zone after the meal (from 6.5 (± 1.8) h to 5.2(±1.2) h). The
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single subject figures show that the personalized controller is in general more

aggressive than the non-personalized, but the aggressiveness results in glucose

concentration values that are lower and a faster response leading to a better per-

formance, e.g subject ♯ 5; on the other hand, the controller personalization often

increases the undershoots, but never below the normo-glycemia zone (subject ♯

6,9 and 10).
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Figure 6.1: Post-prandial responses with a non-personalized controller. The thick

dashed line indicates the set point (110 mg/dl). The two thin dashed lines indicate

the normo-glyciemia zone (80-140 mg/dl).
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Figure 6.2: Post-prandial responses with a personalized controller. The thick

dashed line indicates the set point (110 mg/dl). The two thin dashed lines indicate

the normo-glyciemia zone (80-140 mg/dl).
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Figure 6.3: Post-prandial responses comparison for personalized (p) and non-

personalized controllers (np) for subject ♯ 5. The thick dashed line indicates the

set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl).



92 6. COMPARISON OF THE CONTROLLERS PERFORMANCE

0 5 10 15 20 25 30
60

80

110

140

160

190

220

250

Time [h]

G
lu

co
se

 [m
g/

dl
]

 

 
np
p

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

Time [h]

In
su

lin
 [U

/h
]

 

 
np
p

Figure 6.4: Post-prandial responses comparison for personalized (p) and non-

personalized controllers (np) for subject ♯ 6. The thick dashed line indicates the

set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl).
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Figure 6.5: Post-prandial responses comparison for personalized (p) and non-

personalized controllers (np) for subject ♯ 9. The thick dashed line indicates the

set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl).
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Figure 6.6: Post-prandial responses comparison for personalized (p) and non-

personalized controllers (np) for subject ♯ 10. The thick dashed line indicates the

set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl).

Table 6.1: Single meal statistics: percentage of time that glucose concentration

(mg/dl) remains within the indicated range. Average values for the ten subjects.

np=non-personalized gain, p=personalized gains

range np p

60<G<80 0 (±5) 1 (±2)
80<G<140 66 (±13) 72 (±13)
70<G<180 88 (±6) 93 (±4)
180<G<250 12 (±6) 8 (±5)
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Table 6.2: Single meal metrics: mean and standard deviation for each τc value.

∆G is the glucose peak value relative to the value tmeal, the meal time: ∆G =

Gmax−Gmeal.Gmax is the highest blood glucose value andGmin is the lowest value,

during the post-prandial response. tr is the time to return to the normo-glycemia

zone after the meal. np=non-personalized gain, p=personalized gains

metrics np p

∆G (mg/dl) 69 (±22) 57 (±18)
Gmax (mg/dl) 212 (±21) 199 (±18)
Gmin (mg/dl) 104 (±9) 94 (±18)

tr (h) 6.5 (±1.8) 5.2 (±1.2)

6.2 Controller output increased of the 50%

In Figures 6.7-6.10 the comparison between personalized and non-personalized

controllers performances for some subjects is reported, when the insulin sensitiv-

ity is increased by 50%. When the insulin sensitivity increases, the personalized

controller provides a more oscillatory post-prandial response, but only for subject

♯ 9 the performance of the personalized controller is much worse than the non-

personalized, since the undershoot is quite close to 60 mg/dl. But on the other

hand the higher glucose concentration values are considerably reduced.

Tables 6.3 and 6.4 compare personalized and non-personalized controller per-

formances. For the non-personalized controller, none of the subjects spend time in

the range 60-80 mg/dl when the insulin sensitivity is 50% higher, but for 3(±7)%

of the time the glucose concentration is in that range for the personalized con-

troller. However, all the other metrics provide better results when a controller

personalization is performed.
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Figure 6.7: Post-prandial responses comparison for personalized (p) and non-

personalized controllers (np) for subject ♯ 5. The thick dashed line indicates the

set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl). The controller output is increased by 50%.
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Figure 6.8: Post-prandial responses comparison for personalized (p) and non-

personalized controllers (np) for subject ♯ 6. The thick dashed line indicates the

set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl). The controller output is increased by 50%.



96 6. COMPARISON OF THE CONTROLLERS PERFORMANCE

0 5 10 15 20 25 30
60

80

110

140

160

190

220

250

Time [h]

G
lu

co
se

 [m
g/

dl
]

 

 
np
p

0 5 10 15 20 25 30
0

1

2

3

4

5

Time [h]

In
su

lin
 [U

/h
]

 

 
np
p

Figure 6.9: Post-prandial responses comparison for personalized (p) and non-

personalized controllers (np) for subject ♯ 9. The thick dashed line indicates the

set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl). The controller output is increased by 50%.
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Figure 6.10: Post-prandial responses comparison for personalized (p) and non-

personalized controllers (np) for subject ♯ 10. The thick dashed line indicates the

set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl). The controller output is increased by 50%.
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Table 6.3: Single meal statistics: percentage of time that glucose concentration

(mg/dl) remains within the indicated range. Average values for the ten subjects.

np=non-personalized gain, p=personalized gains

range np p

60<G<80 0 (±5) 3 (±7)
80<G<140 73 (±12) 76 (±13)
70<G<180 92 (±5) 96 (±7)
180<G<250 8 (±5) 3 (±3)

Table 6.4: Single meal metrics: mean and standard deviation for each τc value.

∆G is the glucose peak value relative to the value tmeal, the meal time: ∆G =

Gmax−Gmeal.Gmax is the highest blood glucose value andGmin is the lowest value,

during the post-prandial response. tr is the time to return to the normo-glycemia

zone after the meal. np=non-personalized gain, p=personalized gains.

metrics np p

∆G (mg/dl) 57(±20) 43 (±16)
Gmax (mg/dl) 199 (±19) 185 (±16)
Gmin (mg/dl) 95 (±8) 84 (±10)

tr (h) 5.1 (±1.5) 3.9 (±1.2)
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6.3 Validation test

Figures 6.11 and 6.12 show the non-personalized and personalized controllers

performances, respectively, in the validation test presented in Chapters 4 and

5. Figures 6.13-6.16 show the comparison between the personalized and non-

personalized controllers for the three meal test, whereas Tables 6.5 and 6.6 com-

pare the numerical results. For both the personalized and non-personalized con-

trollers, there are no cases of hypoglycemia, but the personalized controller is

able to maintain the subjects in the normo-glycemia zone for 57(±15)% and for

88(±)% in the range 70-180 mg/dl, while for the non-personalized controller the

percentage of time in the normo-glycemia zone is 48(±15)% and 83(±12)% in

the range 70-180 mg/dl. All the other metrics show that the best performance

is achieved with the personalized controller, since the post-prandial glucose con-

centration peak after the meal intake is reduced for all the subjects and never

results in hypoglycemia.
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Figure 6.11: Post-prandial responses to three meals with a non-personalized con-

troller. The thick dashed line indicates the set point (110 mg/dl). The two thin

dashed lines indicate the normo-glyciemia zone (80-140 mg/dl).
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Figure 6.12: Post-prandial responses to three meals with a personalized controller.

The thick dashed line indicates the set point (110 mg/dl). The two thin dashed

lines indicate the normo-glyciemia zone (80-140 mg/dl).
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Figure 6.13: Post-prandial responses comparison for personalized (p) and non-

personalized controllers (np) for subject ♯ 1. The thick dashed line indicates the

set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl).
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Figure 6.14: Post-prandial responses comparison for personalized (p) and non-

personalized controllers (np) for subject ♯ 5. The thick dashed line indicates the

set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl).
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Figure 6.15: Post-prandial responses comparison for personalized (p) and non-

personalized controllers (np) for subject ♯ 6. The thick dashed line indicates the

set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl).
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Figure 6.16: Post-prandial responses comparison for personalized (p) and non-

personalized controllers (np) for subject ♯ 8. The thick dashed line indicates the

set point (110 mg/dl). The two thin dashed lines indicate the normo-glyciemia

zone (80-140 mg/dl).

Table 6.5: One day statistics: percentage of time that glucose concentration

(mg/dl) remains within the indicated range. Average values for the ten subjects.

np=non-personalized gain, p=personalized gains

range np p

G < 60 0 0
60<G<80 2 (±5) 4 (±6)
80<G<140 48 (±15) 57 (±15)
70<G<180 83 (±12) 88 (±11)
180<G<250 16 (±11) 10 (±7)
G > 250 2 (±3) 1 (±2)
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Table 6.6: Single meal metrics: mean and standard deviation for each τc value.

∆Gmax is the maximum glucose peak value relative to the value tmeal, the meal

time: ∆G = Gmax −Gmeal. Gmax is the maximum blood glucose value and Gmin

is the minimum value, during the post-prandial response. np=non-personalized

gain, p=personalized gains.

metrics np p

∆Gmax (mg/dl) 82(±39) 73 (±40)
Gmax (mg/dl) 220 (±39) 208 (±34)
Gmin (mg/dl) 91 (±15) 84 (±14)



Conclusion

The aim of this work was to develop a novel and robust PID control algorithm

to control the glucose concentration in people with type 1 dabetes mellitus . A

discrete third-order control-relevant model (van Hausden et al. [1]) was approxi-

mated to a continuous, second-order plus time delay model. The model gain can

be either personalized with the subject TDI or be fixed. Then, this continuous

model was used for the PID algorithm designed based on the IMC approach.

With this approach the three PID tuning settings were calculated on the basis

of the process dynamics and the model gain and they were reduced to a single

adjustable parameter (τc).

Two types of controllers were implemented:(i) a non-personalized controller

(with a fixed model gain) and (ii) a personalized controller (with a model gain

based on the subject TDI). The investigation of the best τc value for both the

controllers was conducted in silico with a population of ten subjects of the

UVA/Padova metabolic simulator. The ten simulated subjects were used to deter-

mine a conservative value τc . This value provided good post-prandial responses

and a reasonable degree of robustness for changes of+/- 50% in the insulin sen-

sitivity. Then ten additional subjects were simulated in a validation study that

included three meals (50, 40 and 50 g CHO) during a 30 hour period. For the

validation study, the average amount of time that the glucose concentration was

in the desired range (70-180 mg/dl) was 88% for the personalized controller and

83% for the non-personalized. Similarly, the average values for the 180-250 mg/dl

range were 10% and 16% for the personalized and fixed controllers, respectively.

Neither design method resulted in hypoglycemia (<60 mg/dl).

These results show that the controllers designed are both robust, but that
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the personalized controllers performance is superior to the non-personalized con-

trollers. Therefore, in the future only the personalized controller should be con-

sider. Moreover, further tests should be performed, e.g. robustness test for three

unannounced meals and more days of simulations (3-4 days) in order to see the

controller behavior for a longer period. Simulations with the controller and insulin

bolus should be conducted to see the controller responses for the bolus, as well.

A risk of the both implemented PID controllers is the long undershoot that can

occurs after the meal. The undershoot is mostly due to the integral action of the

controller. Thus, an improvement in the controller can be obtained by limiting

the integral action with upper and lower constraints.



Appendix A

The UVA/Padova Metabolic

Simulator

In January 2008 the UVA/Padova Metabolic simulator was accepted by the Food

and Drug Administration (FDA) to replace the classic preclinical procedure of

animal trials in order to test closed-loop control strategies. The main motivation

is that the results obtained by the modeling are as credible as the results obtained

in the clinical trials, and at the same time much faster [28]. However, a control

algorithm tested in silico can perform in a different way in vivo, for this reason

a simulation only is considered as a preliminary step to test extreme situations

and the general performance of the algorithm. The schematic overview of the

UVA/Padova metabolic simulator in Figure A.1 and consists of three main parts:

in silico subject, in silico sensor and in silico pump [28].

A.1 Model Development

In silico Subject

The in silico subject is modeled with different subsystems. The glucose subsys-

tem is a two-compartment model of the glucose kinetics: the first compartment

models the insulin-independent utilization (plasma and fast equilibrating tissues),

the second compartment models the insulin-dependent utilization (peripheral tis-

sues). The insulin subsystem is also composed of two compartments: the first
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Figure A.1: Scheme of the glucose-insulin control system. the dashed line stands

for control signals and continuous lines represents fluxes of materials [29].

models the liver and the second the plasma [28, 29, 30].

The processed unit of glucose and insulin subsystems are endogenous glucose

production, glucose rate of appearance, glucose utilization and insulin secretion.

Their models were identified using a forcing function strategy. The interruption

of the endogenous glucose production is assumed to be linearly dependent on

plasma glucose concentration, portal insulin concentration and delayed insulin

signal. Glucose rate of appearance is obtained by a physiological model of glucose

intestinal absorption. The glucose transit through the stomach and intestine is

modeled by two compartments for the stomach (one for the solid phase and one

for the triturated phase) and one compartment for the gut. Glucose utilization is

assumed to consists of two compartments: one for the insulin-independent (brain

and erythrocytes) and it is constant, the second for the insulin-dependent utiliza-
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Figure A.2: Unit process models [30]. The entering arrows represents forcing func-

tion variables and the outgoing arrows are model output.

tion and is nonlinearly dependent from glucose in the tissues and it occurs in a

remote compartment [28, 29, 30].

In order to simulate type 1 diabetic subject the insulin secretion module is

substituted by a subcutaneous insulin module. The model has 26 free parameters

and the most important are hepatic and peripheral insulin sensitivity.

In silico Sensor

The in silico sensors are based on the analysis of sensor errors. CGM technology

unfortunately has still to improve in terms of sensitivity, stability, calibration

and the physiological time lag between blood and interstitial glucose concen-

tration. The sensor errors is decomposed into errors due to calibration, blood-

to-interstitial glucose transfer and random noise. The sensor simulation model

provides the worst-case scenario sensor errors and they are described by Breton

and Kovatchev [31].
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In silico Insulin Pump

The in silico insulin pump approximates the subcutaneous insulin delivery, mim-

icking time and dynamics of insulin transport from subcutaneous tissues into

blood. Furthermore, the insulin is delivered by a stepwise basal pump rate and

insulin boluses, providing discrete insulin infusion [28].

A.2 Software

The models described above are implemented into a computerized platform using

Simulink R⃝ (part of the scientific software Matlab R⃝). The user can run the

simulations by an user interface window of the software. Figure A.3 shows the

user interface in which it is possible to choose the scenario, the subjects, where

also subgroups can be selected, and some outcome metrics [28].

During the simulation it is possible to have access to some patients charac-

teristics, since these characteristics can be obtained by a screening visit of the

patient. This information is:

a) name;

b) weight, in Kg;

c) the patient fasting blood glucose concentration in mg/dl;

d) the insulin rate in U/h;

e) the optimum bolus in U/g of carbohydrates;

f) the maximum drop in mg/dl per Units of insulin;

g) the avarage total daily insulin regimen in Units of insulin.
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Figure A.3: Simulator user interface [30].





Appendix B

Step Response Test

For each subject of the simulator it is possible calculate the process gain by fitting

the glucose responses to a first-order-plus-time delay (FOPTD) model. Indeed,

the process gain K of the FOPTD model for each subject in the simulator can

be obtained by calculating the slope of the line which approximates two or more

points (a regression line) obtained by the basal insulin values changes and the

corresponding steady-state glucose changes [19].

For each subject three open-loop simulations were conducted, Figure B.1.

One simulation was conducted with the normal basal insulin, the second with a

decrease in the basal insulin of 0.1 U/h, and the third with an increase in the

basal insulin of 0.1 U/h. For each kind of basal insulin input (normal, low and

high) the three correspondent glucose steady-state conditions were measured. In

table Table B.1 the three inputs for each subject are reported and in Table B.2

the corresponding outputs.
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Figure B.1: Open-loop responses to the normal basal insulin for ten subjects of

the UVA/Padova simulator
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Table B.1: Three different basal insulin conditions (pmol/min).

Subject Regular Low High

1 127 117 137
2 137 127 147
3 143 133 153
4 89 79 99
5 118 108 128
6 172 162 182
7 137 127 147
8 114 104 124
9 113 103 123
10 102 92 112

Table B.2: Steady-state glucose values (mg/dl) corresponding to the three condi-

tions of basal insulin

Subject Regular Low High

1 141 154 128
2 138 149 128
3 144 158 131
4 146 189 117
5 141 148 135
6 142 174 117
7 144 194 111
8 142 158 127
9 143 154 134
10 154 165 145
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The three input/output conditions for each subject i (xil,yil) for l=1,2 and 3

were used to calculate the regression line for each subject [32]:

yi = mxi + q (B.1)

yi is the glucose values at the steady state (mg/d) for subject i

xi is the basal insulin (pmol/min) for subject i.

Minimizing the residual sum of squares for each subject [32] gives:

S(m, q) =
n∑

l=1

(mxl + q − yl)
2 (B.2)

(B.3)

m =

∑n
l=1 xiyi − nx̄ȳ∑n
l=1 x

2
i − nx̄2

(B.4)

The slope of each regression line m (mg/dl/pmol/min) provides the gain of

each subject which are reported in Table B.3.

Table B.3: Gain (mg/dl/pmol/min)

Subject Gain

1 -1.29
2 -1.04
3 -1.37
4 -3.65
5 -0.67
6 -2.84
7 -4.18
8 -1.51
9 -1.00
10 -0.98

mean -1.85
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Non-personalized Model Gain

Results

The results for all the subjects with the non-personalized controller are reported

in this chapter along with the robustness results.

Table C.1: Single meal statistics: percentage of time that the glucose concentration

remains within the indicated range for τc= 1 h.

Subject 60<G<80 80<G<140 70<G<180 180<G<250

1 0 76 86 15
2 0 80 91 10
3 0 60 85 15
4 0 69 91 9
5 0 54 84 16
6 0 78 86 15
7 0 86 94 6
8 0 59 100 0
9 0 47 79 21
10 0 52 83 17

mean (±std) 0 66 (±13) 88 (±6) 12 (±6)
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Table C.2: Single meal statistics: percentage of time that glucose concentration

remains within the indicated range for τc= 2 h.

Subject 60<G<80 80<G<140 70<G<180 180<G<250

1 0 73 85 16
2 0 78 89 11
3 0 57 84 17
4 0 65 88 12
5 0 50 83 17
6 0 74 83 17
7 0 84 91 9
8 0 55 100 0
9 0 44 78 22
10 0 48 82 18

mean (±std) 0 63 (±13) 86 (±6) 14 (±6)

Table C.3: SSingle meal statistics: percentage of time that glucose concentration

remains within the indicated range for τc= 5 h.

Subject 60<G<80 80<G<140 70<G<180 180<G<250

1 0 68 83 17
2 0 75 88 12
3 0 48 81 19
4 0 53 85 15
5 0 41 81 19
6 0 66 79 21
7 0 79 88 12
8 0 47 95 5
9 0 38 76 24
10 0 39 79 18

mean (±std) 0 55 (±15) 84 (±5) 16 (±5)
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Table C.4: The glucose (mg/dl) peak value relative to the value at tmeal, the meal

time: ∆G = Gmax −Gmeal.

Subject τc = 1 h τc = 2 h τc = 5 h

1 62 66 71
2 62 67 70
3 57 69 84
4 81 87 99
5 63 66 72
6 97 107 114
7 58 65 77
8 23 27 31
9 101 107 113
10 88 93 99

mean (±std) 69 (±22) 75 (±23) 83 (±24)

Table C.5: Time to return to the normo-glycemia zone after the meal.

Subject τc = 1 h τc = 2 h τc = 5 h

1 7.6 h 8.4 h 9.8 h
2 6.5 7.1 8.1
3 6.6 7.2 8.8
4 4.8 5.4 7.1
5 8.2 9.0 10.7
6 7.1 8.3 10.6
7 4.8 5.4 6.8
8 7.4 8.0 9.1
9 9.0 9.8 11.6
10 7.6 8.6 11.4

mean (±std) 6.5 (±1.8) 7.2 (±1.9) 8.7 (±2.3)



118 APPENDIX

Table C.6: Blood Glucose (mg/dl) maximum (Gmax) and minimum (Gmin) values.

Gmax Gmin

Subject τc = 1 h τc = 2 h τc = 5 h τc = 1 h τc = 2 h τc = 5 h

1 197 202 207 103 108 118
2 199 203 207 110 113 121
3 204 216 231 109 112 120
4 231 238 250 96 98 106
5 205 208 214 116 120 129
6 233 243 250 88 90 100
7 194 201 212 95 98 100
8 174 177 182 106 110 121
9 237 243 249 102 111 121
10 241 246 252 115 119 129

mean 212 218 225 104 108 116
±std ±21 ±22 ±23 ±9 ±9 ±10
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C.1 Robustness Test Single results

τc= 1 h

Table C.7: Single meal statistics: percentage of time in which the glucose values

(mg/dl) remain within the indicated ranges. τc= 1 h.The controller output is

increased of the 50%

Subject 60<G<80 80<G<140 70<G<180 180<G<250

1 0 81 93 8
2 0 84 93 7
3 0 67 94 6
4 0 77 94 6
5 0 63 87 14
6 0 84 90 10
7 0 90 99 1
8 0 71 100 0
9 0 55 82 18
10 0 57 86 14

mean (±std) 0 73 (±12) 92 (±5) 8 (±5)
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Table C.8: Single meal statistics: percentage of time that the glucose concentration

(mg/dl) remains within the indicated ranges. τc= 1 h. The controller output is

reduced of the 50%

Subject 60<G<80 80<G<140 70<G<180 180<G<250

1 0 73 84 16
2 0 78 89 11
3 0 55 83 17
4 0 64 88 12
5 0 47 83 18
6 0 73 83 18
7 0 83 91 9
8 0 55 100 0
9 0 43 78 22
10 0 47 82 19

mean (±std) 0 62 (±14) 86 (±6) 14 (±6)

Table C.9: The glucose (mg/dl) peak value relative to the value at tmeal, the meal

time: ∆G = Gmax −Gmeal. τc= 1 h.

Subject Normal -50% +50%

1 62 49 67
2 62 52 67
3 57 43 70
4 80 67 86
5 63 56 66
6 97 82 107
7 58 45 65
8 23 15 27
9 101 84 107
10 88 75 94

mean 69 76 57
±std ±22 ±23 ±20
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Table C.10: Time to return to the normo-glycemia zone after the meal for τc= 1

h.

Subject Normal -50% +50%

1 7.6 h 6.2 h 8.6 h
2 6.5 5.4 7.2
3 6.6 5.6 7.4
4 4.8 3.1 5.6
5 8.2 6.8 9.2
6 7.1 5.3 8.5
7 4.8 3.7 5.6
8 7.4 4.7 8.0
9 9.0 7.6 10.0

10.0 7.6 8.9 6.0

mean 6.5 7.4 5.1
±std ±1.8 ±2.0 ±1.5

Table C.11: Blood Glucose (mg/dl) maximum (Gmax) and minimum (Gmin) values

with τc=1 h.

highest lowest

Subject Normal -50% +50% Normal -50% +50%

1 197 185 203 103 92 110
2 199 189 203 110 103 116
3 204 190 217 109 98 114
4 231 218 237 96 93 100
5 205 199 209 116 107 121
6 233 218 243 88 82 91
7 194 181 201 95 89 99
8 174 166 177 106 95 114
9 237 220 243 102 86 111
10 241 228 247 115 104 121

mean 212 218 199 104 110 95
±std ±21 ±22 ±19 ±9 ±9 ±8
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τc = 2 h

Table C.12: Single meal statistics: percentage of time that the glucose concen-

tration (mg/dl) remains within the indicated range for τc= 2 h. The controller

output is increased of the 50%

Subject 60<G<80 80<G<140 70<G<180 180<G<250

1 0 78 87 13
2 0 82 92 8
3 0 65 87 14
4 0 73 93 7
5 0 59 85 15
6 0 81 88 12
7 0 88 96 4
8 0 63 100 0
9 0 50 81 19
10 0 55 85 15

mean (±std) 0 69 (±12) 89 (±5) 11 (±6)

Table C.13: Single meal statistics: percentage of time that the glucose concen-

tration (mg/dl) remains within the indicated range for τc= 2 h. The controller

output is decreased of the 50%

Subject 60<G<80 80<G<140 70<G<180 180<G<250

1 0 70 84 17
2 0 76 89 12
3 0 50 82 18
4 0 55 86 14
5 0 43 82 18
6 0 69 81 20
7 0 81 89 11
8 0 48 97 3
9 0 40 77 23
10 0 43 80 19

mean (±std) 0 58 (±14) 85 (±5) 16 (±5)
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Table C.14: The glucose (mg/dl) peak value relative to the value at tmeal, the meal

time: ∆G = Gmax −Gmeal. τc= 2 h.

Subject Normal -50% +50%

1 65 54 68
2 66 57 68
3 69 50 80
4 87 73 97
5 66 60 70
6 107 90 110
7 65 52 71
8 27 19 30
9 107 93 112
10 93 82 97

mean 75 80 63
±std ±23 ±23 ±21

Table C.15: Time to return to the normo-glycemia zone after the meal with τc=

2 h.

Subject Normal -50% +50%

1 8.4 h 6.9 h 9.3 h
2 7.1 5.9 7.7
3 7.2 6.0 8.2
4 5.4 4.1 6.4
5 9.0 7.4 10.1
6 8.3 6.1 9.7
7 5.4 4.3 6.3
8 8.0 6.7 8.6
9 9.8 8.2 11.0
10 8.6 6.7 10.1

mean 7.2 8.1 5.8
±std ±1.9 ±2.2 ±1.6

τc = 5 h
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Table C.16: Blood Glucose (mg/dl) maximum (Gmax) and minimum (Gmin) values

for τc = 2 h.

Gmax Gmin

Subject Normal -50% +50% Normal -50% +50%

1 202 191 205 108 98 114
2 203 194 205 113 107 120
3 216 197 227 112 104 119
4 238 224 248 98 95 106
5 208 202 213 120 111 126
6 243 226 246 90 84 95
7 201 187 206 98 93 99
8 177 170 181 110 101 116
9 243 229 247 111 94 117
10 246 235 250 119 109 126

mean 218 223 206 108 114 100
±std ±22 ±23 ±20 ±9 ±10 ± 8

Table C.17: Single meal statistics: percentage of time that the glucose concen-

tration (mg/dl) remains within the indicated range for τc= 5 h. The controller

output is increased of the 50%

Subject 60<G<80 80<G<140 70<G<180 180<G<250

1 0 74 85 15
2 0 79 90 11
3 0 57 84 16
4 0 65 89 11
5 0 51 83 17
6 0 75 84 16
7 0 84 92 8
8 0 55 100 0
9 0 45 78 22
10 0 49 82 18

mean (±std) 0 63 (±13) 87 (±6) 13 (±6)
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Table C.18: Single meal statistics: percentage of time that the glucose concen-

tration (mg/dl) remains within the indicated range for τc= 5 h. The controller

output is reduced of the 50%

Subject 60<G<80 80<G<140 70<G<180 180<G<250

1 0 65 82 18
2 0 72 87 13
3 0 43 80 20
4 0 48 82 16
5 0 36 80 20
6 0 60 76 20
7 0 75 86 14
8 0 44 94 7
9 0 34 75 23
10 0 30 78 14

mean (±std) 0 51 (±15) 82 (±5) 17 (±4)

Table C.19: The glucose (mg/dl) peak value relative to the value at tmeal, the meal

time: ∆G = Gmax −Gmeal. τc= 5 h.

Subject Normal -50% +50%

1 68.4 62.3 70.7
2 69.9 64.9 72.2
3 84.0 66.4 90.8
4 99.2 85.7 100.7
5 71.7 64.6 74.8
6 114.2 104.1 119.7
7 76.7 63.9 80.4
8 31.0 26.3 31.7
9 113.5 105.3 116.0
10 99.3 91.8 101.8

mean 82.8 85.9 73.5
±std ±23.9 ±24.6 ±22.5
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Table C.20: Time to return to the normo-glycemia zone after the meal for τc= 5

h.

Subject Normal -50% +50%

1 9.8 h 8.2 h 10.8 h
2 8.1 6.9 8.9
3 8.8 7.0 10.1
4 7.1 5.3 8.6
5 10.7 8.8 12.3
6 10.6 7.9 12.2
7 6.8 5.3 7.9
8 9.1 7.8 9.9
9 11.6 9.6 12.8
10 11.4 8.3 14.0

mean 8.7 10.0 7.0
±std ±2.3 ±2.7 ±1.9

Table C.21: Blood Glucose (mg/dl) maximum (Gmax) and minimum (Gmin) values

for τc = 5 h.

highest lowest

Subject Normal -50% +50% Normal -50% +50%

1 207 200 209 118 107 124
2 207 202 209 121 112 125
3 231 213 238 120 110 125
4 250 237 252 106 97 111
5 214 207 217 129 120 132
6 250 240 256 100 90 104
7 212 199 216 100 98 111
8 182 177 182 121 108 126
9 249 241 252 121 107 128

mean 225 228 216 116 122 107
±std ±23 ±24 ±22 ±10 ±10 ±9



Appendix D

Personalized Model Gains Single

Results

The results for all the subjects with the personalized controller are reported in

this chapter along with the robustness results.

Table D.1: Single meal statistics: percentage of time that the glucose concentration

(mg/dl) remains within the indicated range for τc = 1 h.

Subject 60<G<80 80<G<140 70<G<180 180<G<250

1 0 84 100 0
2 0 88 100 0
3 0 72 100 0
4 0 78 95 5
5 0 70 96 4
6 9 79 94 6
7 0 92 100 0
8 0 75 100 0
9 24 41 76 11
10 0 67 92 9

mean (±std) 3 (±7) 75 (±13) 95 (±7) 4 (±4)
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Table D.2: Single meal statistics: percentage of time that the glucose concentration

(mg/dl) remains within the indicated range for τc = 2 h.

Subject 60<G<80 80<G<140 70<G<180 180<G<250

1 0 82 97 4
2 0 86 96 4
3 0 70 97 3
4 0 75 94 6
5 0 68 94 6
6 6 80 92 8
7 0 90 100 1
8 0 71 100 0
9 20 41 85 16
10 0 63 89 12

mean (±std) 3 (±6) 73 (±13) 94 (±4) 6 (±5)

Table D.3: Single meal statistics: percentage of time that the glucose concentration

(mg/dl) remains within the indicated range for τc = 3 h.

Subject 60<G<80 80<G<140 70<G<180 180<G<250

1 0 80 92 9
2 0 85 94 6
3 0 68 95 6
4 0 72 93 8
5 0 65 93 8
6 0 85 91 10
7 0 89 97 3
8 0 64 100 0
9 8 50 84 17
10 0 60 87 13

mean (± std) 1 (±2) 72 (±12) 93 (±4) 8 (±5)
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Table D.4: Single meal statistics: percentage of time that the glucose concentration

(mg/dl) remains within the indicated range for τc = 4 h.

Subject 60<G<80 80<G<140 70<G<180 180<G<250

1 0 79 88 12
2 0 84 93 7
3 0 66 91 9
4 0 69 92 8
5 0 63 87 13
6 0 84 90 11
7 0 88 96 5
8 0 62 100 0
9 0 56 83 18
10 0 57 86 14

mean (±std) 0 71 (±11) 91 (±5) 10 (±5)

Table D.5: Single meal statistics: percentage of time that the glucose concentration

(mg/dl) remains within the indicated range for τc = 5 h.

Subject 60<G<80 80<G<140 70<G<180 180<G<250

1 0 78 87 14
2 0 83 92 8
3 0 65 87 13
4 0 68 91 10
5 0 62 86 14
6 0 82 89 12
7 0 87 95 6
8 0 60 100 0
9 0 54 82 18
10 0 56 86 15

mean (±std) 0 70 (±11) 90 (±5) 11 (±5)
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Table D.6: The glucose (mg/dl) peak value relative to the value at tmeal, the meal

time: ∆G = Gmax −Gmeal.

Subject τc = 1 h τc = 2 h τc = 3 h τc = 4 h τc = 5 h

1 50 53 56 50 53
2 40 47 52 40 47
3 30 36 42 30 36
4 65 71 76 65 71
5 44 49 52 44 49
6 65 72 78 65 72
7 41 45 49 41 45
8 10 15 18 10 15
9 56 67 76 56 67
10 56 65 71 56 65

mean 46 52 57 61 64
±std ±16 ±17 ±18 ±19 ±19

Table D.7: Time to return to the normo-glycemia zone after the meal for different

τc values

Subject τc = 1 h τc = 2 h τc = 3 h τc = 4 h τc = 5 h

1 5.4 h 5.9 h 6.3 h 6.7 h 7.0 h
2 4.4 4.9 5.2 5.5 5.8
3 4.8 5.2 5.5 5.8 6.0
4 2.9 3.6 4.3 4.6 5.0
5 5.4 5.9 6.3 6.6 6.9
6 4.1 4.6 5.1 5.4 5.8
7 3.3 3.7 4.1 4.4 4.7
8 3.7 4.6 6.4 6.8 7.2
9 6.2 6.7 7.1 7.5 7.8
10 4.8 5.3 5.7 6.0 6.3

mean 4.2 4.7 5.2 5.5 5.8
±std ±1.2 ±1.3 ±1.4 ±1.4 ±1.5
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Table D.8: Blood Glucose (mg/dl) maximum values.

Subject τc = 1 h τc = 2 h τc = 3 h τc = 4 h τc = 5 h

1 179 183 185 190 193
2 176 183 188 190 193
3 177 183 189 192 196
4 216 222 227 230 233
5 186 192 195 198 200
6 201 208 214 219 222
7 176 180 185 189 192
8 160 166 169 170 173
9 192 203 212 218 223
10 209 217 223 228 231

mean 187 194 199 202 199
±std ±16 ±17 ±18 ±19 ±18

Table D.9: Blood Glucose (mg/dl) maximum values.

Subject τc = 1 h τc = 2 h τc = 3 h τc = 4 h τc = 5 h

1 83 88 93 96 99
2 97 100 112 104 106
3 87 93 97 101 104
4 93 94 96 96 97
5 93 99 103 106 108
6 74 79 81 83 84
7 85 89 91 93 95
8 90 94 99 102 105
9 64 72 79 84 89
10 88 95 100 104 106

mean 85 90 94 94 94
±std ±9 ±8 ±8 ±8 ±8
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D.1 Robustness Test Single Results

τc = 2 h

Table D.10: Single meal statistics: percentage of time that the glucose concentra-

tion (mg/dl) remains within the indicated range. τc = 2 h. The controller output

is increased of the 50%

Subject 60<G<80 80<G<140 70<G<180 180<G<250

1 11 74 100 0
2 0 89 100 0
3 0 79 100 0
4 0 80 96 5
5 0 73 100 0
6 9 81 93 5
7 0 93 100 0
8 0 79 100 0
9 14 45 80 3
10 0 70 94 6

mean (±std) 3 (±5) 76 (±12) 96 (±6) 2 (±2)
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Table D.11: Single meal statistics: percentage of time that the glucose concentra-

tion (mg/dl) remains within the indicated range. τc = 2 h.The controller output

is reduced of the 50%

Subject 60<G<80 80<G<140 70<G<180 180<G<250

1 0 79 89 11
2 0 84 93 7
3 0 67 92 8
4 0 70 92 8
5 0 64 87 13
6 0 84 90 10
7 0 88 96 4
8 0 62 100 0
9 0 57 83 17
10 0 58 87 14

mean (±std) 0 71 (±11) 91 (±5) 9 (±5)

Table D.12: The glucose (mg/dl) peak value relative to the value at tmeal, the

meal time: ∆G =Gmax-Gmeal. τc = 2 h.

Subject Normal -50% +50%

1 51 42 57
2 46 34 53
3 36 25 45
4 71 61 79
5 49 37 55
6 72 59 82
7 45 38 52
8 15 4 19
9 67 49 81
10 65 47 74

mean 52 60 40
±std ±17 ±19 ±16
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Table D.13: Time to return to the normo-glycemia zone after the meal. τc = 2 h.

Subject Normal -50% +50%

1 5.9 h 4.9 h 6.6 h
2 4.9 4.0 5.4
3 5.2 3.0 5.7
4 3.6 2.5 4.6
5 5.9 4.8 6.6
6 4.6 3.7 5.3
7 3.7 2.9 4.3
8 4.6 3.0 6.8
9 6.7 5.7 7.4
10 5.3 4.4 5.9

mean 4.7 5.5 3.6
±std ±1.3 ±1.4 ±1.2

Table D.14: Blood Glucose (mg/dl) maximum (Gmax) and minimum (Gmin) glu-

cose values during the post-prandial response. τc = 2 h.

highest lowest

Subject Normal -50% +50% Normal -50% +50%

1 183 174 189 88 77 95
2 183 170 190 100 95 103
3 183 172 192 93 84 100
4 222 212 230 94 94 96
5 192 180 197 99 87 106
6 208 195 218 79 69 82
7 180 173 188 89 81 93
8 166 155 170 95 87 102
9 203 185 217 72 56 83
10 217 200 227 95 80 103

mean 194 202 182 90 96 81
±std ±17 ±19 ±16 ±8 ±8 ±11
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τc = 3 h

Table D.15: Single meal statistics: percentage of time that the glucose concentra-

tion (mg/dl) remains within the indicated range. τc = 3 h. The controller output

is increased of the 50%

Subject 60<G<80 80<G<140 70<G<180 180<G<250

1 0 84 100 0
2 0 88 100 0
3 0 75 100 0
4 0 79 95 5
5 0 71 97 3
6 10 80 94 6
7 0 92 100 0
8 0 77 100 0
9 24 42 77 8
10 0 68 93 8

mean (±std) 3 (±7) 76 (±13) 96 (±7) 3 (±3)

Table D.16: Single meal statistics: percentage of time that the glucose concentra-

tion (mg/dl) remains within the indicated range. τc = 3 h. The controller output

is reduced of the 50%

Subject 60<G<80 80<G<140 70<G<180 180<G<250

0 78 87 14
2 0 83 92 8
3 0 65 87 14
4 0 67 90 10
5 0 61 86 14
6 0 82 88 12
7 0 86 94 6
8 0 60 100 0
9 0 53 82 19
10 0 55 85 15

mean (±std) 0 69 (±12) 89 (±5) 11 (±5)
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Table D.17: The glucose (mg/dl) peak value relative to the value at tmeal, the

meal time: ∆G = Gmax −Gmeal. τc = 3 h.

Subject Normal -50% +50%

1 52 44 60
2 51 38 57
3 42 28 50
4 76 63 84
5 52 41 58
6 78 63 87
7 49 39 57
8 18 8 22
9 76 54 89
10 71 53 79

mean 57 64 43
±std ±18 ±20 ±16

Table D.18: Time to return to the normo-glycemia zone after the meal. τc = 3 h.

Subject Normal -50% +50%

1 6.3 h 5.2 h 7.1 h
2 5.2 4.3 5.8
3 5.5 3.5 6.0
4 4.3 2.8 5.0
5 6.3 5.2 7.0
6 5.1 4.0 5.9
7 4.1 3.1 4.7
8 6.4 3.5 7.2
9 7.1 6.0 7.9
10 5.7 4.7 6.4

mean 5.2 5.9 3.9
±std ±1.4 ±1.5 ±1.2
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Table D.19: Blood Glucose (mg/dl) maximum (Gmax) and minimum (Gmin) glu-

cose values during the post-prandial response . τc = 3 h.

highest lowest

Subject Normal -50% +50% Normal -50% +50%

1 185 177 193 93 81 100
2 188 174 194 102 96 106
3 189 175 197 97 86 104
4 227 214 235 96 93 97
5 195 184 200 103 91 109
6 214 199 223 81 73 84
7 185 175 193 92 84 95
8 169 159 173 99 89 105
9 212 190 224 79 61 90
10 223 206 232 100 85 107

mean 199 207 185 94 100 84
±std ±18 ±19 ±16 ±8 ±8 ±10
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τc=4 h

Table D.20: Single meal statistics: percentage of time that the glucose concen-

tration (mg/dl) remains within the indicated range for τc = 4 h. The controller

output is increased of the 50%

Subject 60<G<80 80<G<140 70<G<180 180<G<250

1 0 83 99 1
2 0 87 100 0
3 0 71 100 0
4 0 77 95 6
5 0 70 96 4
6 9 79 93 7
7 0 92 100 0
8 0 75 100 0
9 23 40 75 14
10 0 66 91 9

mean (±std) 3 (±7) 74 (±14) 95 (±7) 4 (±5)

Table D.21: Single meal statistics: percentage of time that the glucose concentra-

tion (mg/dl) remains within the indicated range. τc = 4 h. The controller output

is reduced of the 50%

Subject 60<G<80 80<G<140 70<G<180 180<G<250

1 0 76 86 14
2 0 81 91 9
3 0 62 86 14
4 0 64 88 12
5 0 59 85 15
6 0 80 87 13
7 0 85 93 8
8 0 57 100 0
9 0 49 81 19
10 0 54 85 16

mean (±std) 0 67 (±12) 88 (±5) 12(±5)
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Table D.22: The glucose (mg/dl) peak value relative to the value at tmeal, the

meal time: ∆G = Gmax −Gmeal. τc = 4 h.

Subject Normal -50% +50%

1 55 46 62
2 54 41 60
3 45 32 54
4 79 66 86
5 55 45 60
6 83 67 94
7 53 44 63
8 20 11 24
9 82 57 94
10 75 58 83

mean 60 68 46
±std ±19 ±20 ±16

Table D.23: Time to return to the normo-glycemia zone after the meal. τc = 4 h.

Subject Normal -50% +50%

1 6.7 h 5.5 h 7.5 h
2 5.5 4.5 6.2
3 5.8 4.9 6.3
4 4.6 3.1 5.5
5 6.6 5.5 7.4
6 5.4 4.2 6.4
7 4.4 3.3 5.0
8 6.8 3.9 7.6
9 7.5 6.3 8.3
10 6.0 4.9 6.8

mean 5.5 6.3 4.3
±std ±1.4 ±1.6 ±1.2
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Table D.24: Blood Glucose (mg/dl) maximum (Gmax) and minimum (Gmin) glu-

cose values during the post-prandial response. τc = 4 h.

Gmax Gmin

Subject Normal -50% +50% Normal -50% +50%

1 190 180 197 96 84 102
2 190 178 197 104 97 108
3 192 179 201 101 89 107
4 230 217 237 96 93 99
5 198 188 203 106 94 111
6 219 203 230 83 76 85
7 189 177 198 93 86 97
8 170 162 175 102 91 107
9 218 193 229 84 66 95
10 228 211 236 103 89 109

mean 202 210 189 97 102 87
±std ±19 ±20 ±16 ±8 ±8 ±9



τc = 5 h

Table D.25: Single meal statistics: percentage of time that the glucose concentra-

tion (mg/dl) remains within the indicated range. τc = 5 h. The controller output

is increased of the 50%

Subject 60<G<80 80<G<140 70<G<180 180<G<250

1 0 82 97 3
2 0 87 97 3
3 0 70 98 2
4 0 76 94 6
5 0 68 95 6
6 8 80 93 8
7 0 91 100 0
8 0 73 100 0
9 22 40 85 15
10 0 64 89 11

mean (±std) 3 (±7) 73 (±14) 95 (±5) 5 (±5)

Table D.26: Single meal statistics: percentage of time that the glucose concentra-

tion (mg/dl) remains within the indicated range. τc = 5 h. The controller output

is reduced of the 50%

Subject 60<G<80 80<G<140 70<G<180 180<G<250

1 0 75 85 15
2 0 80 91 10
3 0 60 85 15
4 0 63 87 13
5 0 57 85 16
6 0 78 86 14
7 0 84 92 8
8 0 55 100 0
9 0 48 80 20
10 0 53 84 16

mean (±std) 0 65 (±12) 88 (±5) 13 (±5)
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Table D.27: The glucose (mg/dl) peak value relative to the value at tmeal, the

meal time: ∆G = Gmax −Gmeal. τc = 5 h.

Subject Normal -50% +50%

1 58 47 64
2 57 45 62
3 49 35 58
4 83 69 90
5 57 48 61
6 87 70 96
7 56 43 64
8 22 13 26
9 87 64 97
10 78 62 86

mean 64 71 50
±std ±19 ±21 ±17

Table D.28: Time to return to the normo-glycemia zone after the meal. τc = 5 h.

Subject Normal -50% +50%

1 7.0 h 5.8 h 7.9 h
2 5.8 4.8 6.4
3 6.0 5.1 6.6
4 5.0 3.3 5.9
5 6.9 5.8 7.8
6 5.8 4.5 6.9
7 4.7 3.6 5.4
8 7.2 4.3 7.9
9 7.8 6.6 8.6
10 6.3 5.1 7.3

mean 5.8 6.6 4.6
±std ±1.5 ±1.6 ±1.3
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Table D.29: Blood Glucose (mg/dl) maximum (Gmax) and minimum (Gmin) glu-

cose values during the post-prandial response. τc = 5 h.

Gmax Gmin

Subject Normal -50% +50% Normal -50% +50%

1 193 182 199 99 87 106
2 193 181 199 106 99 110
3 196 182 205 104 91 109
4 233 220 241 97 94 103
5 200 190 204 108 97 114
6 222 206 232 84 78 87
7 192 179 200 95 88 98
8 173 164 177 105 93 109
9 223 199 233 89 70 99
10 231 216 239 106 93 112

mean 206 213 192 99 105 89
±std ±19 ±21 ±17 ±8 ±8 ±8
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