
Università degli Studi di Padova

Facoltà di Ingegneria

Corso di Laurea Magistrale
in Ingegneria Informatica

Design and development
of a generalized LIDAR

point cloud streaming framework
over the web

Laureando Relatore

Alberto Nale Prof. Massimo Rumor

Anno Accademico 2014/2015

ii

iii

To my grandfather
and Don Valentino

iv

My greetings go to my family and to all those who have supported me
during this long journey. Thanks to my mother and father and to my sister

and brother-in-law for the trust they placed in me and for the patience
whereas they were waiting for this goal.

"C’est le temps que tu
a perdu pour ta rose

qui fait ta rose si importante."

Antoine de Saint-Exupéry, Le Petit Prince

"È il tempo che tu
hai perduto per la tua rosa

che ha fatto la tua rosa così importante."

Antoine de Saint-Exupéry, Il Piccolo Principe

v

vi CONTENTS

Contents

1 Introduction 3

2 Objectives and reasons 5
2.1 Database choice . 6
2.2 Tiling . 6
2.3 Decimation operation . 6
2.4 Three.js . 6
2.5 Web Services . 7
2.6 Measurement . 7

3 Preliminary notions 9
3.1 LIgth Detection And Ranging (LIDAR) 9

3.1.1 las format . 10
3.2 Point cloud . 11
3.3 Level of detail (LOD) . 11
3.4 No-SQL . 12
3.5 LIDAR data managing . 16

4 Software and libraries 17
4.1 PostgreSQL . 17

4.1.1 Libpqxx . 17
4.2 PostGIS . 18
4.3 WebGL . 19
4.4 Three.js . 21

4.4.1 BufferGeometry . 22
4.5 PCL (Point Cloud Library) 22

5 Data Management 25
5.1 Problem . 25
5.2 Point Cloud dataset . 26
5.3 Tiling . 26

5.3.1 Specific case study analysis 27

CONTENTS vii

5.3.2 MongoDB . 27
5.4 Point cloud simplification . 28

6 Implementation 31
6.1 System . 31
6.2 LOD creation . 31

6.2.1 Algorithm Overview 33
6.2.2 Space Optimization . 34

6.3 C++ interface code . 34
6.4 Visualization . 35

7 Tests and Results 37
7.1 Padua LIDAR data . 37
7.2 LOD decimation results . 38
7.3 Measurement on LIDAR . 40

7.3.1 Implementation . 41
7.3.2 Points sticking . 42

7.4 Measurement results . 42

8 Conclusions 45
8.1 Future Improvements . 45

List of Figures 47

List of Tables 48

Bibliography 51

viii CONTENTS

Abstract

Modern technologies give us large amount of data we have to store, manage
and use. LIDAR data, retrieved by laser systems carried by airplanes, heli-
copters or cars, require the storage of millions of point information concerning
the space we are scanning. A very important requirement when dealing with
these data is velocity of retrieval, not a trivial problem for a web applica-
tion, so it is important to find a fast method to stream LIDAR data. This
work illustrates the implementation of a web application which gets LIDAR
data from a PostreSQL database and, using an interface written in C++
language, creates n different levels of detail of the point cloud data and saves
them into related files. Afterwards data are read from the files and shown
on the screen. A first operation implemented on the data displayed is linear
point to point measurement.

2

Chapter 1

Introduction

In recent years, we have witnessed the emergence of a new class of applica-
tions that must deal with large volumes of streaming data such as financial
data analysis on feeds of stock tickers, sensor-based environmental monitor-
ing, and network traffic monitoring. Traditional database management sys-
tems (DBMS) which are very good at managing large volumes of stored data,
fall short in serving this new class of applications, which require low-latency
processing on live data from push-based sources.

Today more than ever, large amounts of data are available on the web to
be visualized and consulted. Millions of video can be viewed on Youtube, a lot
of people play games online, some TV channels allow to watch their programs
in streaming simply connecting to their websites. This large amount of data
entails to improve technology to manage them. Big data have to be analyzed
to find useful information and maybe reduce their size by removing useless
points. This large amount of data has to be cleverly stored, managed and
processed. One of the most important problems is the efficient streaming
of these data. Data streaming is now used in different kinds of application
including mobile apps and web sites. The widespread presence of devices
such as smartphones, tablets, smart TVs and media players force the web to
evolve to sustain near real-time data transfer to provide streaming services.

Another area of interest where big data are very important is GIS envi-
ronment. A Geographic Information System (GIS) is a system built to catch,
store, manage and represent geographic data. In the geospatial sphere, large
amounts of data descend from modern technologies such as LIDAR. LIDAR
is a remote sensing technology that measures distance by illuminating a tar-
get with a laser and analyzing the reflected light. Hardware is connected to
flying machines used to collect geographical information from different places
in the world. Data then can be downloaded and are ready to be analyzed
and processed. Point clouds collected in that way are regularly used to build

4 CHAPTER 1. INTRODUCTION

a model of the surface of the scanned area with the intent of studying that
portion of reality.

LIDAR data usage covers various sectors, such as gaming, networking,
navigation, 3D imaging and so on. LIDAR allows any physical object to be
re-created in a computer domain. Whether it is a building, a car or a whole
country, LIDAR has the ability to reproduce a number of scenes. Once in
the digital realm they can be rendered using a pseudo-color representation
of the real-world point or they can be transferred to a 3D software and be
re-created with actual photographic textures mapped onto the surfaces. This
enables the user to create highly detailed, accurate models in a very short
space of time when compared to other modeling methods. In the gaming
industry this can be used for a number of purposes. It will allow the quick
and precise creation of whole cities.

It can also be used to recreate every undulation in a race track, giving
players the most accurate reproduction of their favourite circuit. As regard
their real-world application, LIDAR systems make recording the scene of
accidents and crimes quick and easy. By using a ground based LIDAR system
it is possible to record the scene of a car accident within a few minutes,
enabling emergency services to clear the scene and then to reproduce it later
on in the digital realm. This reduces traffic jams as well as preserves the
evidence before something is compromised. All of the data are recorded
with a geographical position that allows them to be used in various software
packages for an extra level of accuracy.

Chapter 2

Objectives and reasons

The need of this work was the implementation of a framework capable of
transforming raw LIDAR data in order to visualize them in streaming over
the web. Nowadays you can download and install different tools able to man-
age point cloud data.
So why did we want to build a framework to stream data over the web?
LIDAR data can be difficult to use for many processes without specific tech-
nical software. Streaming them over the web allows to centralize data access
decreasing data storage requirements and hardware costs. The only require-
ment is an available Internet connection. In this way there are no hardware
dependencies and, without using any additional plugin, you can directly ac-
cess and visualize data from your web browser. Another important advan-
tage is the convergence of the storage: there aren’t local copies of the data
so there is no need to line up local modifies reducing the possibility of data
inconsistency. This benefit allows the total control of updates and upgrades
operations applying changes directly to the source data. Improvements and
fixes are applied once and are available for everyone in every place of the
world.
So, in order to solve a complicated problem, break it into different pieces
is an efficient strategy that allows to build the solution step by step. The
first part of the development was occupied by the analysis of the problem:
it was necessary to find out a technique to manage large amount of data.
In this phase the problem was decomposed into different small pieces. First
of all LIDAR data have to be saved into specific structures which could fast
calculate them.
After that the need was to process them to reach the aim of level of detail
creation. The next chapters will explain what the problems faced during this
specific task were. The last objective was the realization of linear measure-
ment of data drawn on the screen.

6 CHAPTER 2. OBJECTIVES AND REASONS

Below is an explanation of the steps experienced to build the framework.

2.1 Database choice

LIDAR data contains millions of points that have to be saved into efficient
database structures. The database has to be able to manage also geographic
information contained into LIDAR data. For this reason we chose the Post-
greSQL database with the PostGIS extension: it adds support for geographic
objects allowing location queries to be run in SQL. This database implements
very useful specific functions (called spatial queries) to rapidly retrieve data.

2.2 Tiling

The first trials underline the difficulty of working with large amounts of data.
Thereby the most efficiently and useful technique to adopt is to subdivide the
point cloud into small pieces and apply the level of detail creation to them.
In this way the number of data you are working with is greatly downsized
allowing to reduce computing capacity and memory requirement. This subdi-
vision was parametrized by the number of tiles: the database was partitioned
into a fixed number of parts indexing each tile in order to easy organize it
later on the screen.

2.3 Decimation operation

A different thing are algorithms to decimate point cloud data. At this stage
we focused on the analysis of different software, libraries and applications
that could be useful to this aim. Important aspects to consider were: license,
resource requirements and accuracy of the used algorithm.

2.4 Three.js

Three.js is the most used library for 3D processing. So we obviously chose it
to implement the virtual environment. Three.js provides different structures
specifically developed to have high performance with 3D points. In partic-
ular, the THREE.PointCloud structure uses the BufferGeometry: structure
with better performances compared with its own Geometry. This is a very
efficient class for geometry management as it saves all data in buffers.

2.5. WEB SERVICES 7

2.5 Web Services
Framework construction involved also the implementation of different ser-
vices providing data to write on the screen. Two PHP services were built:
one to pass data to the scene and one to make the measurement operation.
In the first one service reads the points from the LOD files and passes them
to the Three.js environment; in the second one the data are searched into
the database.

2.6 Measurement
Measurement was the following phase: one of the big problems to solve was
catching points on the screen. THREE.RayCaster allows you to easily throw
rays from mouse pointer to the scene and retrieve the caught point. To
simplify the usability of the software we decided to help the measurement
operation implementing a point sticking algorithm. In this way when the
mouse is moving into the scene, the nearest point to the ray threw is found
and cursor is hooked into. Another aspect to consider was measure precision:
point drawn on the screen could not be into the database because of the
centroid approximation of the LOD generator algorithm. In this way thinking
measurement has to depend only on the real point into the database.

8 CHAPTER 2. OBJECTIVES AND REASONS

Chapter 3

Preliminary notions

Below is a simple description of the concepts used in this dissertation to better
understand the terminology used to explain this work. A deep analysis of
these concepts lies outside this work, but more information can be easily
retrieved on the web.

3.1 LIgth Detection And Ranging (LIDAR)

LIDAR (also written LIDAR or LIDAR) is a remote sensing technology that
measures distance by illuminating a target with a laser and analyzing the
reflected light. Although widely considered an acronym for LIght Detec-
tion And Ranging, the term LIDAR was actually created as a portmanteau
of "light" and "radar." LIDAR is popularly used as a technology to make
high-resolution maps, with applications in geomatics, archeology, geography,
geology, geomorphology, seismology, forestry, remote sensing, atmospheric
physics, airborne laser swath mapping (ALSM), laser altimetry, and contour
mapping.

LIDAR, which stands for Light Detection and Ranging, is a remote sens-
ing method that uses light in the form of a pulsed laser to measure ranges
(variable distances) to the Earth. These light pulses - combined with other
data recorded by the airborne system - generate precise, three-dimensional
information about the shape of the Earth and its surface characteristics. A
LIDAR instrument principally consists of a laser, a scanner, and a special-
ized GPS receiver. Airplanes and helicopters are the most commonly used
platforms for acquiring LIDAR data over broad areas. Two types of LI-
DAR are topographic and bathymetric. Topographic LIDAR typically uses
a near-infrared laser to map the land, while bathymetric LIDAR uses water-
penetrating green light to also measure seafloor and riverbed elevations. LI-

10 CHAPTER 3. PRELIMINARY NOTIONS

Figure 3.1: Example of LIDAR scanning operation

DAR systems allow scientists and mapping professionals to examine both
natural and manmade environments with accuracy, precision, and flexibility.
NOAA scientists are using LIDAR to produce more accurate shoreline maps,
make digital elevation models to use in geographic information systems, to
assist in emergency response operations, and in many other applications.

LIDAR data come from laser measurement systems put on plane and
allow to obtain high precision topographic measurements. Raw data consist
in a point cloud irregularly disposed on the area. After the elaboration of this
points you obtain the DTM (Digital Terrain Model) and the DSM (Digital
Surface Model): the former is obtained from punctual data "last pulse",
corresponding to the 3D representation of the physical surface of the ground;
the latter is obtained from punctual data "first pulse", corresponding to the
3D representation of all reflecting surfaces (ground, vegetation, buildings,
etc...).

Aerial LIDAR has been used for over a decade to acquire highly reliable
and accurate measurements of the Earth’s surface. In the past few years,
terrestrial LIDAR systems were produced by a small number of manufactur-
ers.

3.1.1 las format

LIDAR data are collected from LIDAR devices and organized into a special
format called las (LASer format). The LAS file format is a public file format

3.2. POINT CLOUD 11

for the interchange of 3-dimensional point cloud data among data users. This
binary file format is an alternative to proprietary systems or a generic ASCII
file interchange system used by many companies. Las data are obtained by
processing the device data with a software which combines GPS, IMU, and
laser pulse range data to produce X, Y, and Z point data. The intention of
the data format is to provide an open format that allows different LIDAR
hardware and software tools to output data in a common format 1.

3.2 Point cloud

A point cloud is a set of data points in some coordinate system. In a three-
dimensional coordinate system, these points are usually defined by X, Y, and
Z coordinates, and are often intended to represent the external surface of an
object. Point clouds may be created by 3D scanners. These devices measure
in an automatic way a large number of points on the surface of an object,
and often output a point cloud as a data file. The point cloud represents the
set of points the device has measured.

Below you can see a data set produced by a "simulated" LIDAR camera
that was flown over the MOUT model in a sweeping pattern. The data
files contain xyz information, rgba color data, and the index of the camera
frame in which the point was imaged. The "simulated" LIDAR data was
acquired by passing rays through the cameras center horizontal scanline and
the intersection of the closest visible polygon was recorded. Also, the color
information from that polygon’s texture was recorded.

3.3 Level of detail (LOD)

In computer graphics, accounting for level of detail involves decreasing the
complexity of a 3D object representation as it moves away from the viewer
or according to other metrics such as object importance, viewpoint-relative
speed or position. Level of detail techniques increase the efficiency of ren-
dering by decreasing the workload on graphics pipeline stages, usually vertex
transformations. The reduced visual quality of the model is often unno-
ticed because of the small effect on object appearance when distant or fast
moving. Level of detail is a widely used technique for virtual reality to con-
trol the quality of 3D models’ display in real time. It automatically changes
display/non-display of 3D objects, as well as display of the objects’ geometry

1ASPRS LAS specifications are available to:http://www.asprs.org/Committee-
General/LASer-LAS-File-Format-Exchange-Activities.html

12 CHAPTER 3. PRELIMINARY NOTIONS

Figure 3.2: Point cloud visualization example

and texture images with appropriate data amount and resolutions, according
to the distances between the viewing positions and viewed objects, and the
viewing angles.

3.4 No-SQL

A NoSQL or Not Only SQL database provides a mechanism for storage and
retrieval of data that is modeled in ways other than the tabular relations
used in relational databases. Motivations for this approach include simplicity
of design, horizontal scaling and finer control over availability. The data
structure (e.g. key-value, graph, or document) differs from the RDBMS, and
therefore some operations are faster in NoSQL and some in RDBMS. There
are differences though, and the particular suitability of a given NoSQL DB
depends on the problem it must solve.

NoSQL databases are increasingly used in big data and real-time web
applications. NoSQL systems are also called "Not only SQL" to emphasize
that they may also support SQL-like query languages. Many NoSQL stores
compromise consistency (in the sense of the CAP theorem) in favor of avail-
ability and partition tolerance. Barriers to the greater adoption of NoSQL
stores include the use of low-level query languages, the lack of standardized
interfaces, and huge investments in existing SQL. Most NoSQL stores lack
true ACID transactions, although a few recent systems, such as FairCom
c-treeACE, Google Spanner and FoundationDB, have made them central to
their designs.

The are four significant categories of NoSQL:

3.4. NO-SQL 13

• Key-values Stores : These ones use a hash table where there is a unique
key and a pointer to a particular item of data. The Key/value model is
the simplest and easiest one to implement but it is inefficient when you
are only interested in querying or updating part of a value, among other
disadvantages. Performance is enhanced to a great degree because of
the cache mechanisms that accompany the mappings. To read a value
you need to know both the key and the bucket because the real key is
a hash (Bucket+ Key). There is no complexity around the Key Value
Store database model as it can be implemented in a breeze. Not an
ideal method if you are only looking for just updating part of a value
or querying the database. When we try and reflect back on the CAP
theorem 2, it becomes quite clear that key value stores are great around
the Availability and Partition aspects but definitely lack in Consistency.
A Key/value type database seems helpful in some cases, but it has some
weaknesses as well. One is that the model will not provide any kind of
traditional database capabilities (such as atomicity of transactions, or
consistency when multiple transactions are executed simultaneously).
These capabilities must be provided by the application itself. Secondly,
as the volume of data increases, maintaining unique values as keys may
become more difficult; addressing this issue requires the introduction
of some complexity in generating character strings that will remain
unique among an extremely large set of keys.

• Column Family Stores : These are useful to store and process very
large amount of data distributed over many machines. There are still
keys but they point to multiple columns. The columns are arranged
by column family. One key difference between a key-value store and a
document store is that the latter embeds attribute metadata associated
with stored content, which essentially provides a way to query the data
based on the contents.

• Document Databases : These were inspired by Lotus Notes and are sim-
ilar to key-value stores. The model is basically versioned documents

2CAP theorem, also known as Brewer’s theorem, states that it is impossible for a dis-
tributed computer system to simultaneously provide all three of the following guarantees:

– Consistency : all nodes see the same data at the same time;

– Availability : a guarantee that every request receives a response about whether it
was successful or failed;

– Partition tolerance: the system continues to operate despite arbitrary message loss
or failure of part of the system.

14 CHAPTER 3. PRELIMINARY NOTIONS

that are collections of other key-value collections. The semi-structured
documents are stored in formats like JSON. Document databases are es-
sentially the next level of Key/value, allowing nested values associated
with each key. Document databases support querying more efficiently.

• Graph Databases : Instead of tables of rows and columns and the rigid
structure of SQL, a flexible graph model is used which, again, can scale
across multiple machines. NoSQL databases do not provide a high-level
declarative query language like SQL to avoid overtime in processing.
Rather, querying these databases is data-model specific. Many of the
NoSQL platforms allow for RESTful interfaces to the data, while other
offer query APIs.

Table 3.1 shows a quick comparison of the most important features of No-
SQL DBs. Generally, the best places to use NoSQL technology are where the
data model is simple; where flexibility is more important than strict control
over defined data structures; where high performance is a must; where strict
data consistency is not required; and where it is easy to map complex values
to known keys. Another important thing to consider is the scalability: the
system has to be easy improved and integrated with new data and new
future hypothetical features. For our purpose first two categories are both
interesting. Our system will have to sustain repeatedly queries to fetch data
during the navigation.

3.4. NO-SQL 15
K
ey
-v
al
ue
s
St
or
es

C
ol
um

n
Fa

m
ily

St
or
es

D
oc
um

en
t
D
at
ab

as
es

G
ra
ph

D
at
ab

as
es

T
yp

ic
al

ap
pl
ic
a-

ti
on

s

C
on

te
nt

ca
ch
in
g
(F
oc
us

on
sc
al
in
g
to

hu
ge

am
ou

nt
s
of

da
ta
,

de
si
gn

ed
to

ha
nd

le
m
as
si
ve

lo
ad

),
lo
gg

in
g,

et
c.

D
is
tr
ib
ut
ed

fil
e
sy
st
em

s

W
eb

ap
pl
ic
at
io
ns

(S
im

ila
r
to

K
ey
-V
al
ue

st
or
es
,b

ut
th
e
D
B

kn
ow

s
w
ha

t
th
e
V
al
ue

is
)

So
ci
al

ne
tw

or
ki
ng

,
R
ec
om

m
en
da

ti
on

s
(F
oc
us

on
m
od

el
in
g
th
e

st
ru
ct
ur
e
of

da
ta

-
in
te
rc
on

ne
ct
iv
ity

)

D
at
a

m
od

el
co
lle
ct
io
n
of

K
ey
-V
al
ue

pa
ir
s

C
ol
um

ns
->

C
ol
um

n
fa
m
ili
es

C
ol
le
ct
io
ns

of
K
ey
-V
al
ue

co
lle
ct
io
ns

"P
ro
pe

rt
y
G
ra
ph

"
-

N
od

es

St
re
ng

th
s

Fa
st

lo
ok

up
s

Fa
st

lo
ok

up
s,

go
od

di
st
ri
bu

te
d
st
or
ag
e
of

da
ta

To
le
ra
nt

of
in
co
m
pl
et
e

da
ta

G
ra
ph

al
go

ri
th
m
s
e.
g.

sh
or
te
st

pa
th
,

co
nn

ec
te
dn

es
s,

n
de
gr
ee

re
la
ti
on

sh
ip
s,

et
c.

W
ea
k-

ne
ss
es

St
or
ed

da
ta

ha
s
no

sc
he
m
a

V
er
y
lo
w
-le

ve
lA

P
I

Q
ue
ry

pe
rf
or
m
an

ce
,n

o
st
an

da
rd

qu
er
y
sy
nt
ax

H
as

to
tr
av
er
se

th
e

en
ti
re

gr
ap

h
to

ac
hi
ev
e

a
de
fin

it
iv
e
an

sw
er
.

N
ot

ea
sy

to
cl
us
te
r.

E
xa

m
pl
es

To
ky

o
C
ab

in
et
/T

yr
an

t,
R
ed
is
,V

ol
de
m
or
t,

O
ra
cl
e
B
D
B

C
as
sa
nd

ra
,H

B
as
e,

R
ia
k

C
ou

ch
D
B
,M

on
go

D
b

N
eo
4J

,I
nf
oG

ri
d,

In
fin

it
e
G
ra
ph

Ta
bl
e
3.
1:

N
o-
SQ

L
co
m
pa

re
ta
bl
e

16 CHAPTER 3. PRELIMINARY NOTIONS

3.5 LIDAR data managing
Traditional DBMS are useful to store data which do not change in time.
When you are working with LIDAR data this approach is may be not too
efficient because of queries performance but it can be improved using specific
structures. What kind of structure do we have to use?

• Quadtrees Quadtree is a tree data structure in which each internal node
has exactly four children. Quadtrees work best for data that are mostly
two dimensional like map-rendering in navigation systems. In this case
it’s faster than octrees because it adapts better to the geometry and
keeps the node-structures small.

• Octrees An octree is a tree data structure in which each internal node
has exactly eight children. Each node in an octree subdivides the space
it represents into eight octants. It benefits if the data are three dimen-
sional. It also works very well if your geometric entities are clusterd in
3D space. The benefit of Oc- and Quadtrees is that you can stop gen-
erating trees anytime you wish. If you want to render graphics using a
graphic accelerator it allows you to just generate trees on an object level
and send each object in a single draw-call to the graphics API. This
performs much better than sending individual triangles (something you
have to do if you use BSP-Trees to the full extent).

• BSP-Trees are a special case really. They work very well in 2D and
3D, but generating good BSP-Trees is an art form on its own. BSP-
Trees have the drawback that you may have to split your geometry
into smaller pieces. This can increase the overall polygon-count of
your data-set. They are nice for rendering, but they are much better
for collision detection and ray-tracing. A nice property of the BSP-
trees is that they decompose a polygon-soup into a structure that can
be perfectly rendered back to front (and vice versa) from any camera
position without doing an actual sort. The order from each viewpoint
is part of the data-structure and done during BSP-Tree compilation.

The most used structure in 3D processing are otcrees. Octrees are ob-
tained by dividing recursively by 2 the grid you are considering. Starting
from the initial cube, by dividing recursively by 2 you obtain the quadtree
bringing from one to eight cubes. Iterating this operation you obtain octree.
These subdivisions are made considering data inserted into the initial cube.
The subdivision involves only cubes containing points. In particular, if the
sub-cube is totally empty or totally filled this operation is stopped. This
expedient allows to save memory space and reduce useless operations.

Chapter 4

Software and libraries

This chapter focuses the attention on the software and libraries involved in
the research activity to evaluate their performance and features.

4.1 PostgreSQL

Figure 4.1: PostgreSQL logo

"PostgreSQL is a powerful, open source
object-relational database system. It has
more than 15 years of active development
and a proven architecture that has earned it
a strong reputation for reliability, data in-
tegrity, and correctness. It runs on all major
operating systems, including Linux, UNIX
(AIX, BSD, HP-UX, SGI IRIX, Mac OS X,
Solaris, Tru64), and Windows. It is fully
ACID compliant, has full support for foreign
keys, joins, views, triggers, and stored pro-
cedures (in multiple languages). It includes
most SQL:2008 data types, including INTEGER, NUMERIC, BOOLEAN,
CHAR, VARCHAR, DATE, INTERVAL, and TIMESTAMP. It also supports
storage of binary large objects, including pictures, sounds, or video. It has
native programming interfaces for C/C++, Java, .Net, Perl, Python, Ruby,
Tcl, ODBC, among others, and exceptional documentation."

4.1.1 Libpqxx

Libpqxx is the official C++ client API for PostgreSQL. The source code for
libpqxx is available under the BSD license. This library allows you to connect

18 CHAPTER 4. SOFTWARE AND LIBRARIES

to the PostgreSQL db and retrieve data by querying it. With this library you
have full database control so you can read, write and modify it. This library
works on top of the C-level API library, libpq. Coding with libpqxx revolves
around transactions. Transactions are a central concept in database man-
agement systems, but they are widely under-appreciated among application
developers. In libpqxx, they are fundamental. With conventional database
APIs, you issue commands and queries to a database session or connection,
and optionally create the occasional transaction. In libpqxx you start with
a connection, but you do all your SQL work in transactions that you open
in your connection. You commit each transaction when it is complete; if
you do not, all changes made inside the transaction get rolled back. There
are several types of transactions with various "quality of service" proper-
ties; if you do not really want to use transactions at all, one of the available
transaction types is called nontransaction. This transaction type provides
basic non-transactional behaviour. Every command or query returns a re-
sult. Your query fetches its result data immediately when you execute it,
and stores it in the result. Result objects can be kept around for as long as
they are needed, completely separate from the connections and transactions
that originated them. You can access the rows in a result using standard
iterators, or more like an array using numerical indexes. Inside each row
you can access the fields by standard iterators, numerical indexes, or using
column names.

4.2 PostGIS

Figure 4.2: Postgis logo

PostGIS is a spatial database extender for
PostgreSQL object-relational database. It
adds support for geographic objects allowing
location queries to be run in SQL. PostGIS
is released under the GNU General Pub-
lic License (GPLv2). PostGIS is an ex-
tension to the PostgreSQL object-relational
database system which allows GIS (Geo-
graphic Information Systems) objects to be
stored in the database.

A spatial database is a database opti-
mized to store and query data that repre-
sents objects defined in a geometric space. Most spatial databases allow
representing simple geometric objects such as points, lines and polygons.
Some spatial databases handle more complex structures such as 3D objects,

4.3. WEBGL 19

topological coverages, linear networks, and TINs. While typical databases
are designed to manage various numeric and character types of data, addi-
tional functionality needs to be added for databases to process spatial data
types efficiently. These are typically called geometry or feature.

A spatial database provides a complete set of functions for analyzing
geometric components, determining spatial relationships, and manipulating
geometries. PostGIS turns the PostgreSQL Database Management System
into a spatial database by adding support for three features: spatial types,
indexes, and functions. PostgreSQL is a powerful, object-relational database
management system (ORDBMS).

4.3 WebGL

Figure 4.3: WebGL logo

"OpenGL is an application program-
ming interface - "API" for short - which
is merely a software library for access-
ing features in graphics hardware. Ver-
sion 4.3 of the OpenGL library contains
over 500 distinct commands that you
use to specify the objects, images, and
operations needed to produce interac-
tive three-dimensional computer graph-
ics applications. OpenGL is designed as
a streamlined, hardware-independent in-
terface that can be implemented on many different types of graphics hard-
ware systems, or entirely in software (if no graphics hardware is present in
the system) independent of a computer’s operating or windowing system. As
such, OpenGL doesn’t include functions for performing windowing tasks or
processing user input; instead, your application will need to use the facili-
ties provided by the windowing system where the application will execute.
Similarly, OpenGL doesn’t provide any functionality for describing models of
three-dimensional objects, or operations for reading image files (like JPEG
files, for example). Instead, you must construct your three-dimensional ob-
jects from a small set of geometric primitives (points, lines, triangles, and
patches)."

"The following list briefly describes the major operations that an OpenGL
application would perform to render an image.

• Specify the data for constructing shapes from OpenGL’s geometric
primitives.

20 CHAPTER 4. SOFTWARE AND LIBRARIES

• Execute various shaders to perform calculations on the input primitives
to determine their position, color, and other rendering attributes.

• Convert the mathematical description of the input primitives into their
fragments associated with locations on the screen. This process is called
rasterization.

• Finally, execute a fragment shader for each of the fragments generated
by rasterization, which will determine the fragment’s final color and
position.

• Possibly perform additional per-fragment operations such as determin-
ing if the object that the fragment was generated from is visible, or
blending the fragment’s color with the current color in that screen lo-
cation." [1]

"WebGL is a royalty-free, cross-platform API that brings OpenGL ES
2.0 to the web as a 3D drawing context within HTML, exposed as low-level
Document Object Model inter faces. It uses the OpenGL shading language,
GLSL ES, and can be cleanly combined with other web content that is layered
on top or underneath the 3D content. It is ideally suited for dynamic 3D
web applications in the JavaScript programming language, and will be fully
integrated in leading web browsers." [2]
With WebGL, you get hardware-accelerated 3D graphics inside the browser.
You can create 3D games or other advanced 3D graphics applications, and at
the same time have all the benefits that a web application has. In addition
to these benefits, WebGL also has the following attractive characteristics:

• WebGL is an open standard that everyone can implement or use with-
out paying royalties to anyone.

• WebGL takes advantage of the graphics hardware to accelerate the
rendering, which means it is really fast.

• WebGL runs natively in the browsers that support it; no plug-in is
needed.

• Since WebGL is based on OpenGL ES 2.0, it is quite easy to learn for
many developers who have previous experience with this API, or even
for developers who have used desktop OpenGLwith shaders.

The WebGL standard also offers a great way for students and others to
learn and experiment with 3D graphics. There is no need to download and
set up a toolchain like you have to do for most other 3D APIs. To create

4.4. THREE.JS 21

your WebGL application, you only need a text editor to write your code, and
to view your creation you can just load your files into a web browser with
WebGL support.

4.4 Three.js

Figure 4.4: Three.js logo

Three.js is a cross-browser JavaScript li-
brary/API used to create and display an-
imated 3D computer graphics on a Web
browser. Three.js scripts may be used with
HTML5 canvas element, SVG or WebGL.
The source code is hosted in a repository
on GitHub. Three.js allows the creation of
GPU-accelerated 3D animations using the
JavaScript language as part of a website without relying on proprietary
browser plugins.

Three.js is one of the most used libraries for 3D programming. Three
basic objects used in this library are:

• Camera: this object provides the user’s point of view;

• Mesh: point matrix used to draw pixel on the screen;

• Scene: space in the virtual 3D world where you create geometries.

Three.js provides different kind of cameras:

• OrtographicCamera: starting with an orthogonal projection this cam-
era makes an assonometric vision;

• PerspectiveCamera: this camera uses a perspective projection.

• CubeCamera: this camera is used for rendering cube maps. It renders
scene into an axis-aligned cube.

Three.js provides, also, to mangage point cloud data using its Pointcloud
object: a geometry where each point spatial coordinate and rgba information
can be pushed into the geometry to fill it. The library indexes points using
a Buffer Geometry to efficiently retrieve them. Three.js provides also Rays:
you can catch a point on the screen (usually where the user clicked a mouse
button) by throwing a ray from the camera view to a specific direction. Using
the intersectObjects method you obtain all the objects crossed by the ray.

22 CHAPTER 4. SOFTWARE AND LIBRARIES

4.4.1 BufferGeometry

When you are working with a lot of data the performance is very important.
For this reason you have to consider the BufferGeometry object. This is a
very efficient class for geometry manage because it saves all data in buffers.
It reduces memory costs and cpu cycles.

In WebGL element indices can be only 16-bit, so in one draw call you can
address just up to 65,536 unique vertices. You can have as many triangles
as you want, but they all must use just these vertices.

In BufferGeometry this indexing problem for large number of vertices is
handled in a different way: there is just one huge index buffer and several
huge per-attribute buffers shared by all chunks and metadata about how
are chunks organized is stored in offsets array. Draw call for each chunk is
sending count indices starting from start offset (from the beginning of index
buffer) and these indices are interpreted as being themselves offset by index
number of vertices in corresponding attribute buffers (thus you can address
vertices with indices larger than 65,535). When you create buffers, you need
to take care that in each chunk only up to 65,536 vertices will be addressed.

Buffer Geometry has best performance than Geometry thanks to these
features, especially when data doesn’t change in time.

4.5 PCL (Point Cloud Library)

Figure 4.5: PCL logo

Point Cloud Library (PCL) is a standalone,
large scale, open project for 2D/3D image
and point cloud processing. PCL is released
under the terms of the BSD license, and thus
free for commercial and research use. We
are financially supported by a consortium of
commercial companies, with our own non-
profit organization, Open Perception. We
would also like to thank individual donors
and contributors that have been helping the project 1.

As you can read from the official website, PCL library is a useful open
source tool that allows you to efficiently manage point cloud data. This
library contains different tools to read point cloud data from file with different
formats, such as PCL, PLY, OBJ, as well as the PCD format: extension
created to complement other point cloud file formats. PCL library provides
tools to build kd-trees or octrees to simplify searches but also tools to filter

1PCL is available at: http://pointclouds.org/

4.5. PCL (POINT CLOUD LIBRARY) 23

data. The pcl_filters library contains outliers and noise removal mechanisms
for 3D point cloud data filtering applications.

24 CHAPTER 4. SOFTWARE AND LIBRARIES

Chapter 5

Data Management

One of the most difficult problem to solve working with point cloud is how to
cleverly manage them. Point cloud is a large dataset with millions of points
collected by modern LIDAR systems. After the acquisition it is necessary
to store them into spatial dbms using clever technique that allows you to
retrieve them with elevate performance. In this work we won’t be limited to
one kind of db structure but we aim at developing a transparent solution.
LIDAR real-time streaming is a very heavy operation so the analysis is the
most important phase.

When we are playing, or looking at a virtual reality, every second millions
of points have to be drawn on screen. This process can’t be slow or the
movement in the view won’t be fluid, threatening a correct navigation into
the space. So the aim of this work was to find an applicable solution to allow
us to stream LIDAR data in real-time.

In real world when we are looking at a scene we notice that closer objects
have higher resolutions than farther ones. In this way on the screen the
thinking is the same: the point density is higher if points are closer and
lower if points are farther. To obtain an accurate representation of the data
collected by LIDAR we have to reproduce this effect by reducing the density
of the points we draw on the screen: close-up to us we will see objects with
higher number of points meanwhile objects in the background have a lower
level of detail, so a lower number of points.

5.1 Problem

Point cloud data contain millions of points collected by LIDAR devices so
they have to be organized to fast retrieve them. Nowadays, despite newer
technology, organizing data is a considerable operation and it is important

26 CHAPTER 5. DATA MANAGEMENT

to analyze data to find out the best solution to this problem/inconvenience.
The most useful approach known at present day uses an efficient data struc-
ture called octree. After data are inserted into a similar structure, they are
easily retrieved and the search operation is faster. Next problem now is the
simplification of the point cloud to build the different levels of detail.

5.2 Point Cloud dataset

Point cloud data sets are easily retrieved on line. Point cloud are large data
sets occupying many GB of memory. The data set used for the test was
produced by a ’simulated’ LIDAR camera that was flown over the MOUT
model in a sweeping pattern. The data files contain xyz information, rgba
color data, and the index of the camera frame in which the point was imaged.

The ’simulated’ LIDAR data were acquired by passing rays through the
camera center horizontal scanline and the intersection of the closest visible
polygon was recorded. Also, the color information from that polygon’s tex-
ture was recorded.

The considered dataset contains about 640,000 points and occupies∼45MB
of memory. It represents a simulated rural scene with few buildings and some
vegetation. 1

5.3 Tiling

When data you are using contain millions of points you have to subdivide
them into small sets to be able to manage them into modern systems. Every
subset is called tile.

This technique allows you to manage a little subset of data and process
it with higher performance. In this case tiling allows us to have the total
control of every portion of the space so we know every time which tile we
have to draw on the screen.

Tiling is an operation you have to consider: depending on your goal
you can make different tiling subdivision to efficiently reach your purpose.
Data also have an important role in tiling: data analysis is important to
have as many information as possible to take decisions to organize them
into partitions. Working with point cloud may be useful to limit the max
number of points per tile because data density could be too heavy for render
operation. Moreover you optimize the quantity of data required allowing to

1Different datasets are available at: http://www.math.tamu.edu/ hiels-
ber/USC/ChangeDetection/MOUT.htm

5.3. TILING 27

remove worthless data for the current view and reduce time to retrieve data.
Tiling also allows to spatial organize points collecting information about their
position to make easier later operations on them. Knowing where a point is
located can be essential for some kinds of operations, such as measurements,
saving time to obtain output data.

5.3.1 Specific case study analysis

In this way, a possible solution is the usage of a No-SQL database. No-SQL
databases are built to have great performance on data which do not change
in time. However, each problem has specific requirements so the evaluation
of different kinds of No-SQL database is a very delicate phase. Important
aspects to consider are then:

• License Type

• Concurrency Control

• Transactions

• Data storage

• Characteristics : Consistency, High Availability, Partition Tolerance,
Persistence.

Transactions and concurrency control are useful to maintain consistent data,
helping to avoid inconvenients that permanently damage data. This work
pays particular attention to few important features: license and data stor-
age. Data do not change in time, so the thing to consider was the memory
requirement limit because we were working on cloud and we didn’t have
large amount of available resources with reasonable costs. Our maximum
memory size available was 2GB. Taking advantage to queries performance
and database structure, document No-SQL database take suits for us, so we
tested MongoDB to know the effectively usability of this tool.

5.3.2 MongoDB

In that way we looked for information about on the web and, after comparing
No-SQL db, we chose MongoDB for our try phase. MongoDB is a BSD No-
SQL db that uses a document-oriented storage, has a full index support and
high performance when you have to frequently read data. We configured our
system with a PostgreSQL db where we load a db with about 640000 points.
After that we downloaded and installed MongoDB 2 on our client.

2MongoDB is available at:http://www.mongodb.org/

28 CHAPTER 5. DATA MANAGEMENT

Figure 5.1: MongoDB logo

The next phase was the interrogation
of the PostgreSQL db to retrieve data.
Data were organized in tiles. After re-
trieved points contained in several tiles
we tried to load them into MongoDB
database. This operation required few
minutes. Later we tried to retrieve data
from MongoDB db: performances were
double than the PostgreSQL ones. On the average time to retrieve data was
double in the RDBMS. If you want to retrieve about 300000 points you have
to wait ten seconds with MongoDB, but more than fifteen with PostgreSQL
queries. After that we noticed that the amount of memory used was too
big: our db occupied about half a GB of RAM. DB we will use will be much
bigger than the one used in our test example so the memory requirement will
probably be out of our possibility.

This wasn’t an adoptable solution to our problem so we decided to try
another method: extract tiles from PostrgreSQL db and process them to
create different files, one for every level of detail. Spatial databases provide
spatial queries to efficiently retrieve data: these instructions differ by non-
spatial queries because they allow the use of geometry data types such as
points, lines and polygons and consider the spatial relationship between these
geometries.

5.4 Point cloud simplification

There are different algorithms to simplify point cloud data. Below we analyze
three different approaches to find the best one/most suitable to solve our
problem:

• Order and remove: This algorithm consists in ordering points and re-
moving the t’th element. Taking advantage of points organization, you
can use a simple removal operation of the t’th element. However, this
approach doesn’t guarantees to be without loss of relevance;

• Build octree with maximum number for branch: This approach builds
an octree with number of points under a branch less or equal than a
preset value. This approach is useful when data have to be query in
the future;

• Clustering : This solution puts data into a large virtual cube divided
then into sub-cubes to better identify points location. After that you

5.4. POINT CLOUD SIMPLIFICATION 29

proceed to cluster data and analyze them to reduce the number. The
important thing is that the reduction has to consider the arrangement
of the points to maintain the relevance: points can’t be random deleted
but you have to analyze their position to remove points without loss of
significance.

30 CHAPTER 5. DATA MANAGEMENT

Chapter 6

Implementation

Concerning this, we decided to use PCL library to decimate tiles with the
intent of create different levels of detail of the given point data. It was
necessary to implement an interface to read data from the database and save
them into files.

6.1 System
The system implemented is made of three different parts: PostgreSQL db, a
service to retrieve data at a specific level of detail and point cloud visualizer.
Db is used to store point cloud data. In the pre-processing phase the interface
written in C++ queries the db to build LOD files. When the web page is
charged, it calls a web service that retrieves data regarding the selected level
of detail.

6.2 LOD creation
After a first test operation we were successful in reading data from a point
cloud file (containing the same data as write above) and decimate them
obtaining three levels of detail.
PCL library uses an algorithm that subdivides data in a voxel grid. A voxel
represents a value on a regular grid in three-dimensional space. In each
voxel, all the points present will be approximated with their centroid. This
approach is a bit slower than approximating them with the center of the voxel,
but it represents the underlying surface more accurately. The algorithm has
custom input parameter that allows you to set the octree leaf size: in that
way you can calibrate the decimation operation to obtain the level of detail
you want.

31

32 CHAPTER 6. IMPLEMENTATION

This method was a good start but file read and write operations were
inefficient and worthless. So we decided to create an interface to connect
to PostgreSQL DB to retrieve data to directly feed PCL library, bypassing
useless read operation from file. The interface was built in C++ language.
To connect to the database we had to use specific PostgreSQL library named
libpqxx1. To track queries we decided to save them into files: we created a
simple file containing all the queries we will use to ask the db. This algorithm
considers an easy pre-process phase where file containing queries is created.
After that, by launching this sequence of instructions, queries are read from
the file and db is interrogated to retrieve the data of the tile. So, by passing
data to the voxel grid function, a voxel grid is built and, considering the leaf
size, data is downsampled and filter making LODs files. Then we obtained
one different file for each level of detail for every tile we made.

The algorithm pseudo code follows:
Result: Create LOD files from PostgreSQL db
connect to the db;
while there is a new tile do

read current query;
query PostgreSQL db to retrieve data;
for i← 0 to nLODs do

create voxel grid;
set raw data as input cloud;
set octree leaf size;
get cloud_filtered data;
write cloud_filtered data to the corresponding LOD file

end
end

Algorithm 1: Create LOD files from PostgreSQL db

Leaf size is an input parameter you can set before running this algorithm.
Leaf size sets the dimension of the leaves: value used to subdivide the point
cloud. After setting the leaf size, the algorithm calculates the number of
subdivision to make and uses it to compute centroids.

1Libpqxx is available at: http://pqxx.org/development/libpqxx/wiki/DownloadPage

6.2. LOD CREATION 33

6.2.1 Algorithm Overview

Looking closely we see the PCL library algorithm works as follows:
Result: Filtering point cloud
calculate point cloud bounding box;
validate leaf size parameter;
for cp in point cloud do

calculate leaf index idx ;
index_vector ← (idx, cp);

end
sort index_vector by idx;
count distinct indexes from index_vector;
prepare output vector;
for cp in point cloud do

save point into centroids vector;
i = cp + 1;
while i<index_vector(size) and index_vector[i] equal to
index_vector[cp] do

save point into temporary vector;
end
centroid += temporary;

end
centroid /= (i - cp);
for idx > cp do

copy centroid into output vector;
end

Algorithm 2: Filter point cloud
Basically, the thinking behind this algorithm is quite simple: every point

belonging to a leaf will be substituted with the centroid of that leaf calcu-
lated with formula below:∑

pts into the leaf coordinates

number of pts into the leaf
(6.1)

In this way the greater the leaf size parameter is, the greater will be the
number of points contained into the leaf and, consequently, greater will be
the reduction of this leaf. By wisely choosing the leaf size you can obtain
different levels of detail: the greater the leaf size is, the smaller the level of
detail will be.
Analyzing the pseudo code, in particular, we see that in the first step the
leaf index (idx) is calculated for every point in the point cloud and saved into

34 CHAPTER 6. IMPLEMENTATION

index_vector. After that, index_vector is ordered to count distinct indexes.
Now count is used to prepare output vector. Later centroids are calculated.
For each point in the leaf:

• save it into centroids vector;

• save other points of the same leaf into temporary vector;

The next operation adds the temporary vector to the centroid vector. After
that the average is calculated normalizing that value by dividing for the
number of points in that leaf. The last procedure copies centroids to the
output data to give back.

There aren’t fixed values for this parameter so you have to try different
sizes to tune it to obtain the best results. Every point cloud is different from
each other so tuning leaf size is part of your application setup.

The first implementation of this algorithm worked only with point cloud
data with x, y, z coordinates. LIDAR data may contain color information.
So, to preserve point’s information, it was necessary to build a customized
class containing x, y, z coordinates and rgba values. After this little change,
data were correctly written into files without loss of useful information.

6.2.2 Space Optimization

After the first aim was achieved, we moved our attention to the space opti-
mization. Up to now, we had saved files in a human-readable text format. To
reduce the amount of memory occupied by files we decided to save them as
binary data. The interface created before was then modified to save data into
a specific format. This operation allowed us to gain about 50% of the space
occupied going from about ∼100MB to ∼50MB. This change obviously in-
volved also service modifications. These were then modified to read the new
data file type and to unpack binary data to retrieve point information.

6.3 C++ interface code
This interface has leaf sizes as input parameters. Leaf size is a float value
representing leaf dimension in meters. The C++ interface code written to
create levels of detail files follows:
. . .
/∗ Read data from db ∗/

f o r (i n t l o d = 0 ; l od < n_lods ; l od++) {
p c l : : Voxe lGr id<pc l : : PCLPointCloud2> so r ;

6.4. VISUALIZATION 35

s o r . s e t I n pu tC l o ud (c l oud) ;
s o r . s e t L e a f S i z e (l o d s [l od] , l o d s [l od] , l o d s [l od]) ;
s o r . f i l t e r (∗ c l o u d_ f i l t e r e d_b l o b) ;

fromPCLPointCloud2 (∗ c l o ud_f i l t e r e d_b l ob , ∗ c l o u d _ f i l t e r e d) ;

/∗ Write data i n t o f i l e s ∗/
}
. . .

Listing 6.1: LODs creation interface

6.4 Visualization
After obtaining LODs files, we built a simple scene where adding point
cloud data. Using Three.js, point cloud data was drawn on the screen.
To cleverly manage it, original point cloud data were divided to create a
THREE.Pointcloud object for every tile set. In this way it was easier to
work with points. A simple interface allows user to choose the level of detail
and keep points drawn on the screen. Another button enables edit mode
to allow measurement operation. Simple camera movements (like zoom and
pan) were implemented.

36 CHAPTER 6. IMPLEMENTATION

Chapter 7

Tests and Results

Below is an explanation of the dataset used in this work and the results
obtained.

7.1 Padua LIDAR data

The next step was the usage of Padua LIDAR. Entire database occupies
about 7GB and contains 21 million points (estimated). To import dataset
was necessary to implement another service able to read data from original
.las files and insert it into the database. To easy read data each .las file was
converted into human-readable text file using libLAS: libLAS is a C/C++
library for reading and writing LAS LIDAR format files. libLAS provides
also las2txt function to convert .las data to txt without loss of information.
After that, using libpq, a script, written in C++ language, was developed to
directly connect to the DB to repeatedly insert data read from the current
file. The first implementation was very inefficient because of PostgreSQL
parameter. Modifying shared_buffer parameter in postgresql.conf file and
setting it to 25% of pc’s RAM size performance augmented reducing time to
insert data.

Shared_buffer sets the amount of memory the database server uses for
shared memory buffers. The default is typically 128 megabytes (128MB), but
might be less if your kernel settings do not support it (as determined during
initdb). This setting must be at least 128 kilobytes. However, settings signif-
icantly higher than the minimum are usually needed for good performance.
This parameter can only be set at server start.

Another improvement directly derives from PostgreSQL db: instead of
using recurring insert operation there is a specific command COPY [3] used
to import data from csv files. Taking advantage of this, data were rapidly

38 CHAPTER 7. TESTS AND RESULTS

Figure 7.1: Tiles

inserted into the database. COPY rapidity is given by the fact that Post-
greSQL commit is executed after all data are populated on a database. This
improvement allows to significantly reduce time to insert data.

7.2 LOD decimation results

Working with the entire dataset is too heavy because of the big number of
data to manage. We decided, then, to process a small part of the database.
The chosen subset contained about two millions of points and it was easily
reduced.

The first operation was the subdivision in hundred tiles: as you can see in
Figure 7.1 the entire data is divided into blocks and everyone will be reduced
to create levels of detail. Purely for demonstration purposes, every tile is
colored to emphasize the subdivision.

Figure 7.2 shows the maximum level of detail created by the framework.
This step reduces the points number of 33% keeping the relevance. Going on
in this way we created the other levels of detail and then organized them to
the same scene to compare them.

Figure 7.3 accentuate levels of detail: the number of points drawn is

7.2. LOD DECIMATION RESULTS 39

Figure 7.2: Subset with the higest LOD

Figure 7.3: Level of details

40 CHAPTER 7. TESTS AND RESULTS

gradually reduced going far from the point of view: nearest points are more
detailed instead of farther ones. In this picture you can see four levels of
detail: leaf sizes are set to 2.0mt, 1.5mt, 1.0mt and 0.5mt going from the
closest to the farther level. Table 7.2 shows the percentage of reduction. In
this case four files for each tile were created making a total of four hundred
files subdivided into four folders. The total space occupied on disk is 85,5MB.

Leaf_size (mt) Number of Points Reduction (%)

Database - 2,072,935 0

LOD3 2,0 1,388,381 33,02

LOD2 1,5 839,715 59,49

LOD1 1,0 554,405 73,26

LOD0 0,5 165,867 92,00

Table 7.1: Percentage of point cloud reduction

In this work, point reduction is intentionally accentuated to underline
levels of detail creation. The first level indeed, reduces point cloud of ∼33%
going from two millions to about 1,4 millions of points. Going ahead in
this way, we reached the very high reduction (∼92%) of the last level of
detail obtaining about 165K points. All this passages achieved the goal of
conserving points relevance.

7.3 Measurement on LIDAR
One of the most useful things you can do with LIDAR data, after efficiently
drawing them on the screen, is calculating the linear distance from one point
to another. This is a difficult operation to do because of the complexity of
the point cloud. One of the most important problems to solve is catching
the exact point the user clicked over. The point density gradually decreases
looking to the horizon of the view, so points are far from each other then
catching them is more difficult. To amend to this inconvenience, it would
be interesting make sure that point clicked is effectively a point drawn on
the screen. To do this you have to automatically clasp points while mouse is
moving. Another important thing to consider is that, reducing the level of
detail, point drawn on the screen can be different compared with points in
the database because of the approximation deriving by the creation of levels
of detail. In this case, so, you have to compare points with those in the
database to obtain the best measure possible.

7.3. MEASUREMENT ON LIDAR 41

7.3.1 Implementation

A first implementation of linear measurement between two point uses rays
to locate the effective point the user has clicked on querying PostgreSQL
database to retrieve the real point which is as near as possible to the virtual
point drawn on the screen.

Pseudo code follows:
Result: Take point to point measurement
throw a ray in the direction of point clicked;
if point caught then

use this point as caught point;
else

project into the scene the coordinates of the point clicked;
set a buffer to locate the point near the ray;
query the DB to find the set of points near to that point and
search, if exists, a point nearest to the ray;
if exists then

take it as point clicked;
else

use the point found before;
end

end
Algorithm 3: Take point to point measurement

A first implementation of the measurement operation used ray picking:
every time user click on the screen, a ray is thrown to the scene. Using
intersectObjects method, belonging to RayCast object, you can find every
object ray passed through. This procedure, however, doesn’t pick only point
cloud points but allows to locate also points inside its bounding box. This
solution has also an intrinsic problem: point caught throwing the ray couldn’t
be in the original database because of the density reduction. You may pick
a point which is a voxel centroid and, for this reason, isn’t in the database
as it was calculated in the previous reduction phase.

To satisfy precision commitment it wants to make sure that ray actually
hit a point of the data drawn on the screen and then find the nearest real point
into the database to make the measurement. This idea needs to consider the
maximum level of detail to make measurement much as correct as possible.
In that way so, a specific service was built to retrieve the nearest real point
into the database. User click on the screen to keep start and end point
of the object he wants to measure and then the service is called and the
measurement is built on the effective distance of real database’s points. To

42 CHAPTER 7. TESTS AND RESULTS

faster retrieve data from the database, we decided to limit the query searching
only points near to the point clicked by the user, in a range of ±0.01%.
Doing so the number of points retrieved by the query is minimal and the
speed is higher. In that way user has a quickly reply to his query and reach
measurement faster.

7.3.2 Points sticking

An important problem to solve now is to keep the pointer sticking on real
points drawn on the screen. The relevant thing to do is to make sure that
measure takes place by two points on the screen shifting the cursor to attach
it to a point really drawn. Taking advantage of the subdivision made earlier,
it was possible to limit the search operation only to points of the specific
tile, reducing then the search domain. Catching a point, the object returned
contains also the reference to the related point cloud. So, making a simple
linear search operation, it was able to retrieve the point closest to the one
clicked. Moving mouse into the scene, you can see that the highlighted point
is always a point of the point cloud. This expedient allows to remove all non
existent points deriving by projection of the point clicked on the screen to
virtual space.

7.4 Measurement results
In the next screenshot (Figure 7.4) you can see the measurement operation
compared to the Google Maps system. This example shows a measure made
on the Prato della Valle central space. On the left you can see the mea-
surement applied to LIDAR data with the maximum level of detail (yellow
line) while on the right the measurement was made using Google Maps (blue
dotted line). As you can see, the results are very similar: our system returns
a measure that little differs (∼0,4%) from the one obtained by Google Maps.
Therefore, the measurement has to be considered reliable

7.4. MEASUREMENT RESULTS 43

Figure 7.4: Measurement comparison

44 CHAPTER 7. TESTS AND RESULTS

Chapter 8

Conclusions

This work focuses on the analysis of the LIDAR data distribution on the web.
A large amount of data is difficult to manage so it is essential to cleverly use.
This first implementation reached the expected goal of different levels of
detail creation using an open source library useful to work with point cloud
data.

8.1 Future Improvements

Future improvements include algorithm enhancement: the centroids calcu-
lation can be improved using a weighted method giving importance to the
points depending on the distance from the voxel centroid. In this way the
approximation will be more precise and data-related.

By carefully observing the results we saw that decimation removed the
Point cloud noise only partially. Therefore, in the future, it could be neces-
sary to apply noise filtering (maybe one of those supplied by the PCL library)
to remove worthless data improving the quality of the view.

Another good thing is the application of texture to the scene objects to
produce a more realistic representation of the Point cloud: after identifing
objects in the scene it would be great to apply texture to buildings, roads, to
the vegetation and other objects in the scene to improve the user’s experience.
In this way new information can be added to the scene helping the user to
move into the virtual world. In the specific case study a useful development
could be roofs identification.

Measurement is very important in LIDAR data works, therefore, mea-
surement operations must be as much precise as possible. Our results prove
that this implementation has a good accuracy comparing with Google Maps.
However, during measurement operation, you can bump into a little annoy-

46 CHAPTER 8. CONCLUSIONS

ing problem: due to the perspective view two points may overlap bringing
the user to click on the wrong point on the screen. To avoid this inconve-
nient, you could use section plane passing through points clicked and improve
measurement switching to the ortoghonal view. In this way points can not
overlap avoiding unwanted point clicking. Measurement could be also ap-
plied to roofs, squares and other objects identified to retrieve the area of the
geometry.

List of Figures

3.1 Example of LIDAR scanning operation 10
http://lidar-america.com/?p=1

3.2 Point cloud visualization example 12

4.1 PostgreSQL logo . 17
http://www.postgresql.org/

4.2 Postgis logo . 18
http://postgis.net/

4.3 WebGL logo . 19
https://www.khronos.org/webgl/wiki/Main_Page

4.4 Three.js logo . 21
http://threejs.org/

4.5 PCL logo . 22
http://pointclouds.org/

5.1 MongoDB logo . 28
http://www.mongodb.org/

7.1 Tiles . 38
7.2 Subset with the higest LOD 39
7.3 Level of details . 39
7.4 Measurement comparison . 43

Map of Italy, retrieved on Nov 26, 2014 from https://www.google.
it/maps

47

http://lidar-america.com/?p=1
http://www.postgresql.org/
http://postgis.net/
https://www.khronos.org/webgl/wiki/Main_Page
http://threejs.org/
http://pointclouds.org/
http://www.mongodb.org/
https://www.google.it/maps
https://www.google.it/maps

List of Tables

3.1 No-SQL compare table . 15

7.1 Percentage of point cloud reduction 40

48

Listings

6.1 LODs creation interface . 34

49

50 LISTINGS

Bibliography

[1] D. S. G. S. J. K. B. Licea-Kane, OpenGL R© Programming Guide Eighth
Edition. Addison-Wesley, 2013.

[2] T. Parisi, WebGL: Up and Running. O’Reilly, 2012.

[3] T. P. G. D. Group, “Postgresql copy command reference.”

51

	Introduction
	Objectives and reasons
	Database choice
	Tiling
	Decimation operation
	Three.js
	Web Services
	Measurement

	Preliminary notions
	LIgth Detection And Ranging (LIDAR)
	las format

	Point cloud
	Level of detail (LOD)
	No-SQL
	LIDAR data managing

	Software and libraries
	PostgreSQL
	Libpqxx

	PostGIS
	WebGL
	Three.js
	BufferGeometry

	PCL (Point Cloud Library)

	Data Management
	Problem
	Point Cloud dataset
	Tiling
	Specific case study analysis
	MongoDB

	Point cloud simplification

	Implementation
	System
	LOD creation
	Algorithm Overview
	Space Optimization

	C++ interface code
	Visualization

	Tests and Results
	Padua LIDAR data
	LOD decimation results
	Measurement on LIDAR
	Implementation
	Points sticking

	Measurement results

	Conclusions
	Future Improvements

	List of Figures
	List of Tables
	Bibliography

