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Abstract

This thesis aims to understand if financial conditions are relevant for the identification of a mon-
etary policy shock when considering a structural VAR for the U.S. economy. We model popu-
lar proxies for financial conditions - excess bond premium, national financial conditions index,
global financial cycle - and a set of standard macroeconomic indicators to appreciate the re-
sponse of ”Main Street” and ”Wall Street” to an exogenous hike in the federal funds rate. As an
identification strategy, we impose sign restrictions on both the impulse response functions and
the systematic components of the monetary policy rule. Using data for the period 1973–2019,
we find evidence in favor of a systematic response of the Federal Reserve to financial conditions.
Modelling such a response, however, has got only a moderate e�ect on the estimated business
cycle response to the identified monetary policy shock.





Sommario

Questa tesi mira a valutare quanto le condizioni finanziarie siano rilevanti nell’identificare uno
shock di politica monetaria nell’economia statunitense quando si considera un VAR strutturale.
Per modellare le condizioni finanziarie utilizziamo proxy popolari - excess bond premium, na-
tional financial conditions index, global financial cycle - e una serie di indicatori macroeco-
nomici standard. Cosı̀ facendo, possiamo apprezzare la risposta di ”Main Street” e ”Wall Street”
a un aumento esogeno del tasso di interesse. Come strategia di identificazione, imponiamo re-
strizioni di segno sia alle funzioni di risposta d’impulso che alle componenti sistematiche della
regola di politica monetaria. Utilizzando dati per il periodo 1973 - 2019, troviamo prove a favore
di una risposta sistematica della Federal Reserve alle condizioni finanziarie. La modellazione di
una tale risposta, tuttavia, ha solo un e�etto moderato sulla risposta stimata del ciclo economico
allo shock di politica monetaria identificato.
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Introduction

A central question in empirical macroeconomics is how changes in monetary policy a�ect the
response of the economy. To address this question, econometricians employ structural vector
autoregressive models and identify the structural shock using a variety of identification schemes.
The conventional results they have, by using di�erent length samples and di�erent datasets, is
that a monetary policy tightening determines a decline in output and price, and an immediate
increase in the policy rate.

In this work, we identify a monetary policy shock in the U.S. economy. Unlike the other
identification schemes reported in the literature, our strategy admits simultaneous macro-finance
interactions in response to a monetary policy shock and works with an alternative identification
scheme made of a combination of sign restriction on the IRFs and sign restriction of the con-
temporaneous coe�cients of the monetary policy rule. To our knowledge, this is the first time
that this strategy is implemented.

The main research objectives are to investigate whether the financial variables matter in the
identification of the monetary policy shock and if the inclusion of the 2007-2008 financial crisis
within the dataset can increase the information set. We have found that the role of the financial
variables is moderate when estimating the business cycle response to a monetary policy shock.
However, interestingly, financial variables should be accounted for in order to have a more ac-
curate estimation of the monetary policy rule. This leads us to conclude that the central bank
deals with financial market swings and, this evidence becomes even stronger after the financial
crisis.

This thesis is structured as follows. Chapter 1 provides the state of the art of structural and
reduced-form VARs methodologies, as discussed in the literature. Chapter 2 describes the SVAR
model we employ, explains our identification strategy, which relies on Uhlig (2005) sign restric-
tions on the IRFs, and on Arias et al. (2019) sign restrictions on the structural parameters of the
monetary policy rule and describes our two datasets, which are referred to as the short datasets
(1973-2007) and the extended dataset (1973-2019). The results obtained by implementing the
VAR model to the short and extended datasets are discussed in Chapter 3 and Chapter 4, respec-
tively. To prove the robustness of our results, we then report, in Chapter 5, the Forecast Error
Variance Decomposition and some robustness checks. Finally, we draw some conclusions and
discuss the main outcomes. The Matlab codes required for replicating our results are available
in the Appendix.

13





Chapter 1

State of the art

This chapter introduces the state of the art of structural and reduced-form VARs tools and meth-
ods, as discussed in the literature. Furthermore, it provides the foundations of the New Keynesian
DSGE model, and it examines how a monetary policy shock impacts the real economy. The last
part of the Chapter is devoted to a literature review on the identification procedures that have
been developed for the identification of a monetary policy shock in structural VARs.

1.1 The Vector Autoregressive Model

Since the seminal work of Sims (1980), structural vector autoregressive (SVARs) models have
become a powerful and reliable tool for data description, forecasting, structural inference and
policy analysis (Stock and Watson, 2001). They are used not only in macroeconometric analysis
and time series econometrics, but also in many other fields of empirical research such as finance,
energy economy and agricultural economics, to name a few (Kilian and Lutkepohl, 2017). The
success of this methodological approach is due to its ability in capturing the dynamics of multiple
time series with simple equations that are easy to use and implement.

The VAR can be seen as a stochastic process that generalizes univariate autoregressive mod-
els by allowing for multivariate time series. Thus, each variable has an equation modelling its
evolution over time (Stock and Watson, 2001). The VAR comes in two varieties: the reduced-
form and the structural VAR. The reduced-form VAR does not require as much knowledge about
the forces influencing a variable as the structural model does. The only prior knowledge required
is a list of variables that may a�ect each other over time. A detailed description of these two
forms is given below.

1.1.1 The Structural VAR

The structural VAR, often referred to as SVAR, uses economic theory to clarify the contempo-
raneous links among the variables (Stock and Watson, 2001). Each variable is expressed by its
own past values and both the contemporaneous and lagged values of the remaining n-1 variables.
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A structural VAR model with p autoregressive lags is represented by:

A0yt = A1yt�1 + . . .+Apyt�p + "t for t 6= s (1.1)

where yt is a n⇥ 1 vector of time series data, Ai is a n⇥ n matrix whose elements are autore-
gressive slope coe�cients, A0 is an n ⇥ n matrix representing the instantaneous relationships
among the endogenous variables, and "t is a n⇥1 vector of structural errors, or shocks. By con-
struction, the shocks are mutually uncorrelated. Furthermore, they are serially uncorrelated, and
the error vector has zero mean and variance-covariance matrix ⌃" of full rank (i.e. the number
of shocks is equal to the number of variables). Mathematically, this means that:

E("t) = 0 ,E("t"0t) = ⌃" = In and E("t"0s) = 0 for t 6= s (1.2)

Notice that the structural shocks have not unit of measurement and the error term is assumed
to be unconditionally homoskedastic. Furthermore, since the errors are not directly observable,
they may be recovered from the corresponding reduced-form VAR (Kilian and Lutkepohl, 2017).

1.1.2 The Reduced-Form VAR

A VAR, o reduced-form VAR, is a linear model composed of n variables in n equations. In a
reduced-form VAR, each variable is a linear function of its past value and the past values (i.e. but
not the current values) of the other variables composing the system (Stock and Watson, 2001).
The reduced-form representation is obtained by multiplying both sides of Eq 1.1 by A�1

0 :

A�1
0 A0yt = A�1

0 A1yt�1 + . . .+A�1
0 Apyt�p +A�1

0 "t (1.3)

If we define Bi ⌘ A�1
0 Ai for i = 1, . . . , p and ut ⌘ A�1

0 "t, we obtain:

yt = B1yt�1 + . . .+Bpyt�p + ut (1.4)

where ut is the reduced-form error terms (or innovations). These errors, which represent the
surprise movement in the variables, are white noises (Foroni, 2015) whose elements are serially
uncorrelated, and thus:

E(ut) = 0 , E(utu
0
t) = ⌃u and E(utu

0
s) = 0 for t 6= s (1.5)

Furthermore, they are but mutually correlated.
The reduced-form VAR can be seen as a data generated process (DGP) from the structural

VAR (Stock and Watson, 2001). Unlike the SVAR, which provides an interpretation of the data,
the reduced-form VAR summarizes the data (Fry and Pagan, 2011). A stable VAR can be also
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represented as a Wold moving average process with p lags, MA(p), resulting in:

yt = µ+�1ut�1 +�2ut�2 + . . . (1.6)

where µ = B(1)�1⌫, and E(yt) = µ. For more details, refer to Kilian and Lutkepohl (2017).

1.2 Identification Problem

As discussed in Section 1.1, the employment of a VAR model is suitable for many types of analy-
sis. In the macroeconomic environment, the main core of the research focuses on understanding
the e�ect of a shock (e.g. monetary policy shock, technology shock, demand shock...) on the
other variables composing the system. Having in mind the structural VAR (see Eq.1.1) and its
reduced form (see Eq.1.4), it is clear that for retrieving the structural form from the reduced one
is necessary to know the structural impact multiplier matrix A�1

0 (Kilian and Lutkepohl, 2017).
However, since it is possible to retrieve the same reduced-form from various structural models
(Gottschalk, 2001), it is necessary to impose some restrictions (i.e. identifying restrictions) in
order to univocally estimate A�1

0 . In the absence of these assumptions on the data generating
process (DGP), no conclusions regarding the structural parameters of the true model can be
drawn from the data (Gottschalk, 2001).

Estimating structural parameters with economically suitable restrictions is the base of the
identification problem. In practice, the identification problem arises because there are more
structural parameters than reduced-form parameters. Let us consider the fundamental innova-
tions appearing in Eq. 1.4. This is, by construction:

ut = A�1
0 "t (1.7)

The variance-covariance matrix of ut, namely ⌃u, is given by:

⌃u = E[utu
0
t] = A�1

0 E["t"0t]A�1
0

0
= A�1

0 ⌃"A
�1
0

0
= A�1

0 A�10
0 (1.8)

where ⌃" = In. The latter holds because the variance-covariance matrix of the structural error
term E["t"0t] is typically normalized (see Eq. 1.2). If we consider a structural VAR model
with (for the sake of simplicity) only 3 endogenous variables, then, Eq. 1.8 becomes, in matrix
notation:

⌃u =

2

664

�u,11 �u,12 �u,13

�u,21 �u,22 �u,23

�u,31 �u,32 �u,33

3

775 =

2

664

a0,11 a0,12 a0,13

a0,21 a0,22 a0,23

a0,31 a0,32 a0,33

3

775

�1 2

664

a0,11 a0,12 a0,13

a0,21 a0,22 a0,23

a0,31 a0,32 a0,33

3

775

�10

(1.9)

Eq. 1.9 is a system of non-linear equations for the unknown parameters of A�1
0 . However, since



Chapter 1. State of the art 18

⌃u is symmetric, the system has n(n+1)/2 independent equations and n2 unknowns parameters
(Kilian and Lutkepohl, 2017).

When the number of unknown parameters exceeds the number of linear independent equa-
tions, additional restrictions are required. Then, to verify that all elements of A�1

0 are uniquely
identified, rank and order conditions are provided. The order condition states that the maximum
number of parameters in A�1

0 that can be identified is n(n + 1)/2. The order condition is nec-
essary for identification, but unfortunately, it is not su�cient. Thus, even if the order condition
holds, the set of equations may fail to have a unique solution (Kilian and Lutkepohl, 2017). To
ensure identification, the system has to satisfy a further condition, namely the rank condition.
The rank condition checks the linear dependency of the equations in the system. Unlike the order
condition, the rank condition is a necessary and su�cient condition. This means that the system
of equations is really identified when the rank condition is valid, while, if the rank condition
does not hold, it is not possible to identify all the structural parameters (Christiano et al., 1999).

Even though in this work we resort to sign restrictions only, for the sick of completeness we
briefly introduce some of the possible restrictions that can be implemented in SVAR analysis.
According to what is reported in the literature, the most important ones are: short-run restrictions
(see Section 1.2.1), long-run restrictions (see Section 1.2.2), sign restrictions (see Section 1.2.3),
and statistical identification procedures (see Section 1.2.4).

1.2.1 Identification by Short Run Restrictions

Imposing short-run restrictions is a common practice for solving the identification problem.
This method consists in retrieving the structural shock "t from the reduced-form errors ut, by
assuming that they are mutually uncorrelated (i.e. orthogonal). One possible solution consists
in defining the matrix A�1

0 as a lower-triangular matrix. The resulting matrix is called the lower-
triangular Cholesky decomposition of ⌃u since it holds ⌃u = A�1

0 A�10
0 . For this reason, this

identification scheme is also called Cholesky identification. According to the Cholesky identi-
fication scheme, Eq.1.9 becomes:

⌃u =

2

664

�u,11 �u,12 �u,13

�u,21 �u,22 �u,23

�u,31 �u,32 �u,33

3

775 =

2

664

a0,11 0 0

a0,21 a0,22 0

a0,31 a0,32 a0,33

3

775

�1 2

664

a0,11 0 0

a0,21 a0,22 0

a0,31 a0,32 a0,33

3

775

�10

(1.10)

When A�1
0 is restricted as shown above, it has n(n � 1)/2 zero parameters and, since n(n +

1)/2 > n(n�1)/2, the order condition is satisfied. At this point, the number of equations is equal
to the number of unknown parameters and hence, it is possible, through recursive substitution,
to solve the system and retrieve a unique solution for A�1

0 . For this reason, this technique is also
called recursive identification.

The Cholesky decomposition allows the reduced-form errors to be orthogonal. The orthog-
onalization makes this identify assumption strong. However, the model has a drawback: the



19 1.2. Identification Problem

recursive structure must be carefully chosen based on the economic theory. If the recursive or-
der is not properly justified, it may be possible to jeopardize the results and retrieve structural
parameters with no economic sense, because imposing zero in some contemporaneous lagged
variables, means imposing a well-defined chain in the causality instead of leaving the data to
speak about the causal relation (Kilian and Lutkepohl, 2017). To demonstrate this, let us con-
sider Eq. 1.7 and Eq. 1.10. We can obtain the following system of equations:

2

664

u1,t

u2,t

u3,t

3

775 =

2

664

a0,11 0 0

a0,21 a0,22 0

a0,31 a0,32 a0,33

3

775

�1 2

664

"x1,t

"x2,t

"x3,t

3

775 (1.11)

and the VAR model, in scalar form, reads:
8
>>><

>>>:

y1,t = . . .+ a0,11ux1,t

y2,t = . . .+ a0,21ux1,t + a0,22ux2,t

y3,t = . . .+ a0,31ux1,t + a0,32ux2,t + a0,33ux3,t

(1.12)

It is clear that the first shock a�ects all the variables considered, the second shock a�ects all the
variables considered except the first one, and so on. Furthermore, it is possible to find di�erent
solutions A�1

0 for di�erent ranks of ordering. For instance, for a VAR model with 6 variables
there are 6! = 720 permutations of ordering (Kilian and Lutkepohl, 2017).

1.2.2 Identification by Long Run Restrictions

An alternative identification approach consists in imposing long-run restrictions on the long-run
response of variables to shocks. For imposing long-run restrictions, there exist two frameworks.

The traditional framework has been firstly proposed by Blanchard and Quah (1989) and con-
sists in restricting the cumulative responses in a stationary VAR model. Let us consider the
structural VAR model in Eq. 1.1 and the corresponding reduced-form VAR in Eq. 1.4. If
the I(1) variables are not cointegrated or the cointegrating relations are known, then all I(1)
variables may be transformed to I(0) variables (Kilian and Lutkepohl, 2017). If we call these
transformed variables as zt, the structural and the reduced-form VARs become, respectively:

A0zt = A1Zt�1 + . . .+ ApZt�p + "t (1.13)

zt = B1Zt�1 + . . .+BpZt�p + ut (1.14)

Imposing long-run restrictions means restricting the elements of the n⇥n cumulative structural
impulse response matrix zt (Kilian and Lutkepohl, 2017):

zt = A(1)�1"t = ⇥(L)"t (1.15)
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of the structural MA process:

⇥(1) =
1X

i=0

⇥i = A(1)�1 = B(1)�1A�1
0 (1.16)

In this model, by construction, A�1
0 is not recursive.

The general framework, instead, involves the vector error correction form (VECM) of the
VAR representation:

4yt = ↵�0yt�1 + �4 yt�1 + . . .+ �p�1 4 yt�p+1 + ut (1.17)

where ↵ and � are matrices with rank r and dimension n ⇥ r. This process has the following
Grander representation:

yt = ⌥
tX

i=1

"i +⌅
⇤(L)A�1

0 "t + y⇤0 (1.18)

where⌥ is the matrix of long-run multipliers of the VECM:

⌥ = ⌅A�1
0 (1.19)

Restricting the long-run e�ects of the shocks means acting directly on⌥. When a shock does not
have any long-run e�ects at all, the corresponding column of ⌥ is zero (Kilian and Lutkepohl,
2017).

Unlike what happens for the short-run restrictions, most economists agree on the long-run
properties of the models. For instance, they agree that, in the long run, demand shocks are neutral
while productivity shocks are not (Challe, 2010). Nevertheless, the use of long-run restrictions
for structural VAR identification presents several theoretical challenges. First of all, unlike short-
run restrictions, long-run restrictions require the presence of exact unit roots. Then, the obtained
results may be sensitive to omitted variables; and there is a lack of robustness when the data are at
low frequency. Last, long-run restrictions should be coupled with sign restrictions otherwise, the
solution is not unique. In addition to these conceptual challenges, there are practical limitations
(refer to Kilian and Lutkepohl (2017) for more details). For all these reasons, in this work, we
do not even employ long-run restrictions.

1.2.3 Identification by Sign Restrictions

The traditional identification methods based on exclusion restrictions are often di�cult to sup-
port from an economic perspective. A di�erent identification approach is represented by the sign
restrictions, that instead relays on implications of economic theory. Since they allow avoiding
the disadvantages of the traditional parametric methods, they have grown in popularity.

Identification by sign restrictions has been developed first by Faust (1998), Canova and
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Nicoló (2002), and successively by Uhlig (2005). The concept on the basis of the sign restric-
tions identification scheme is simple: based on the economic theory, it is possible to recognize
the sign in the response between variables and so, imposing the relative sign restriction upon the
impulse responses in the presence of a shock. Imposing sign restrictions on the impact response
of the variables corresponds to imposing sign restrictions on the structural impact multiplier
matrix, A�1

0 . For this reason, this is also known as static sign restriction.
Consider the structural VAR model in Eq. 1.1 and the (normalized) variance-covariance

matrix E("t"0t) = ⌃" = In. The reduced-form VAR innovations are:

ut = P⌘t (1.20)

where ⌘t are mutually uncorrelated shocks with variance equal to 1, andP is the lower triangular
matrix of the Cholesky decomposition. Since the solution of the Cholesky decomposition is not
unique:

⌃u = A�1
0 A�10

0 = A�1
0 InA

�10
0 = A�1

0 QQ0A�10
0 = PP 0 (1.21)

there are several solutions for the structural shocks. These candidates are given by:

"⇤t = Q0⌘t (1.22)

where Q is an n⇥ n orthogonal matrix such that:

QQ0 = Q0Q = In (1.23)

and where:
ut = PQQ0⌘t = PQ"⇤t (1.24)

The shocks "⇤t are uncorrelated with unit variance. They are discharged whether the structural
impact multiplier matrix, PQ, does not satisfy the imposed restrictions on A�1

0 ; or they are
retained in the opposite case. It is indeed possible to draw several Q and have as much as P but
there is no reason that every P is plausible. Only the matrices P that satisfy sign restrictions on
the impulse response function are accepted. This process is repeated several times, to construct
the set of all structural models that are consistent with the maintained sign restrictions and the
reduced-form parameters (Kilian and Lutkepohl, 2017). Two are the main techniques used to
construct the orthogonal matrices Q: the Given rotation matrices and the Householder transfor-
mation.

Givens rotation matrices

Consider a 3 ⇥ 3 VAR model. Is possible to generate the orthogonal matrix Q by multiplying
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the given rotation matrices as follows:

Q(�1,�2,�3) = Q12(�1)⇥Q13(�2)⇥Q23(�3) (1.25)

where the matrices are:

Q12 =

2

664

cos�1 � sin�1 0

sin�1 cos�1 0

0 0 1

3

775Q13 =

2

664

cos�2 0 � sin�2

0 1 0

sin�2 0 cos�2

3

775Q23 =

2

664

1 0 0

0 cos�3 � sin�3

0 sin�3 cos�3

3

775

(1.26)
and �i lies between 0 and 2⇡ (Kilian and Lutkepohl, 2017). Since cos�i+sin�i = 1, the matrix
Q(�1,�2,�3) is an orthogonal matrix:

Q120Q12 = Q130Q13 = Q230Q23 =

2

664

1 0 0

0 1 0

0 0 1

3

775 (1.27)

Even if it is theoretically possible to apply this approach for n > 3 dimensional VAR, it is almost
never applied in practice because of the high computational e�ort required.

Householder transformation

The second and most employed technique used for constructing the orthogonal matrices Q has
been developed by Rubio-Ramirez et al. (2010) and relies on an algorithm that employs the QR
factorization. Following the example of a hypothetical VAR model with 3 endogenous variables,
a 3⇥ 3 matrix W of random variables with N (0, In) distribution functions can be decomposed
with the QR factorization (W = QrR). The matrix Qr is an orthogonal matrix (QQ0 = In),
while R is an upper-triangular matrix. Clearly (Qr = In) corresponds to the matrix Q used in
recursive orderings (Fry and Pagan, 2011) and it is known in the literature as the rotation matrix.
Thanks to the algorithm provided by Rubio-Ramirez et al. (2010), it is possible to draw several
candidate solutions for A�1

0 . As for the technique of the Givens rotation matrices, also in this
case the solutions that are not consistent with the sign restrictions provided are discharged. Once
the structural impact multiplier matrix A�1

0 is retrieved, the model is identified.
As pointed out by Fry and Pagan (2007), this approach is theoretically equivalent to the

Given Rotation Matrices method, however, from a computational point of view, this is much
more convenient, especially when the number of the variables in the model increases.

1.2.4 Other Identification Strategies

Identification by heteroskedasticity and identification by non-Gaussianity represent two alterna-
tive approaches for achieving identification of structural VAR models. These are purely statisti-
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cal identification procedures that exploit properties of the data, such as the volatility of the VAR
errors, rather than economic theories. To evaluate if the identified shocks correspond to real eco-
nomic shocks, these types of identifications are usually coupled with conventional identifying
restrictions.

We start with explaining identification by heteroskedasticity. Let us consider the general
reduced-form VAR(p) model reported in Eq. 1.4. The reduced-form errors in ut are serially
uncorrelated, mutually correlated, and have zero mean (see Eq. 1.5). Furthermore, they may be
subjected to conditional or unconditional heteroskedasticity. They are generally obtained from
the following linear transformation ut = A�1

0 "t, however, if the conditional variances of the
reduced-form shocks change over time, we have that:

E(utu
0
t) = ⌃1 for t = 1, . . . , T1 and E(utu

0
t) = ⌃2 for t > T1 (1.28)

with ⌃1 6= ⌃2. There must, therefore, be a matrix G and a diagonal matrix ⇤ such that:

⌃1 = GG0and⌃2 = G⇤G0 (1.29)

Given this, the structural shocks become:

"t = G�1ut (1.30)

and have variance:

E("t"0t) =

8
<

:
IK , t = 1, . . . , T1,

⇤, t > T1.
(1.31)

Note that, if all the diagonal elements of⇤ are di�erent, the matrix A�1
0 is univocal (apart from

changes in sign and permutation). We may obtain unique shocks by simply imposing that the
structural shocks are instantaneously uncorrelated. Even if this is a purely statistical approach
with no economical meaning, in the last decades, it has been extended in di�erent directions.
As an example, Bacchiocchi et al. (2014) consider the possibility of time-varying instantaneous
e�ects of the shocks (Kilian and Lutkepohl, 2017).

Identification by non-Gaussianity exploits the non-gaussian distribution of the reduced-form
errors of a VAR model for uniquely and completely identifying a set of structural shocks. If the
shocks are stochastically independent, have variance one and at most one has normal distribu-
tion, then, the matrix A0 is unique (except for rows sign and permutation) and the shocks are
obtained from the following linear transformation (assuming that it exists): "t = A0ut (Kilian
and Lutkepohl, 2017).

Both these identification approaches are useful for assessing the validity of conventional
identifying restrictions (Kilian and Lutkepohl, 2017).
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1.3 The New Keynesian DSGE Framework

As Data Generating Process, we use the New Keynesian Dynamic Stochastic General Equilib-
rium (DSGE) model that employs Bayesian methods for exploring the e�ect of various shocks
(Ramey, 2016).

The New Keynesian paradigm has been employed by di�erent authors all over the world for
understanding fluctuations in economic activity and inflation, and for assessing how these fluc-
tuations relate to monetary policies and fiscal policies. Examples of work employing this model
include Christiano et al. (2005), Smets and Wouters (2007), Castelnuovo (2013) and Arias et al.
(2019). Furthermore, the New Keynesian DSGE model is used by central banks and policy
institutions as a tool to assess macroeconomic phenomena (Galı́, 2018). Unlike the Real Busi-
ness Cycle (RBC) model, the New Keynesian framework allows introducing explicitly nominal
variables, accounting for positive price mark-up and considering nominal rigidities. This leads
to the following two key properties: exogenous changes in monetary policy have a non-trivial
e�ect on real variables, and the shock response depends on the policy rule that is adopted by the
central bank (Galı́, 2018).

The New Keynesian model is composed of three equations. The first equation is referred to
as the Dynamic Investment-Savings (DIS) equation. This equation determines the output gap,
ỹt, given a path for the exogenous natural rate of interest, rnt , the actual real rate, rt, and the
expected value of the output gap one period ahead, namely Et{ỹt+1}. In algebraic terms, the
DIS equation reads (Galı́, 2015, 2018):

ỹt = �
1

�
(it � Et{⇡t+1}� rnt ) + Et{ỹt+1} (1.32)

where � is the curvature of the utility of consumption (Galı́, 2015). In turn, the natural rate of
interest is the real interest rate that would prevail in the flexible price equilibrium:

rtn = ⇢� �(1� ⇢a) yaat + (1� ⇢z)zt (1.33)

while the actual real rate is a function of the nominal rate,it, and the expected inflation, ⇡t+1:

rt = it � Et{⇡t+1} (1.34)

The latter is the well known Fisher Equation (FE).
The second equation of the New Keynesian model is the AS curve for aggregate supply and

says that the inflation depends on the output gap and the expected inflation of one period in the
future:

⇡t = � Et{⇡t+1}+ ỹt (1.35)

where  ⌘ �
�
� + '+↵

1�↵

�
. This equation is often called the New Keynesian Phillips curve

(NKPC) (it di�ers from the conventional one because of the introduction of the expectation
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term) and represents a key feature of the canonical New Keynesian model.
The last equation is a simple interest rate rule and describes how monetary policy systemat-

ically responds to changes in output and prices (Arias et al., 2019):

it = ⇢+ �⇡⇡t + �yŷt + ⌫t (1.36)

In Eq. 1.36, ŷt is the deviation of the output from the steady-state (ŷn = yn�y), the coe�cients
�⇡ and �y are chosen positive by the monetary authority, and ⌫t is an autoregressive AR(1)
process representing an exogenous monetary policy shock:

⌫t = ⇢⌫⌫t�1 + "⌫t (1.37)

When "⌫t is positive, the monetary policy shock is contractionary and the nominal interest rate
rises. On the other hand, when it is negative, the monetary policy shock is expansionary and the
interest rate declines. Note that Eq. 1.36 is consistent with the Taylor rule (Taylor, 1993) that
says that:

iMt = r⇤t + ⇡t + 0.5(⇡t � ⇡⇤) + 0.5(yt � ⌧Yt ) (1.38)

In Eq. 1.38, iMt is the target nominal interest rate, r⇤t is the equilibrium real interest rate, ⇡⇤ is
the inflation target and ⌧Yt is the (log) of the potential output, which is determined by its linear
trend over the sample. This equation well describes the behaviour of the central bank when
it attempts to minimize, in each period, its loss function, L. The canonical central bank loss
function penalizes deviations from the inflation target and long-run output (Challe, 2010):

L(yt⇡t) = �(yt � ȳ)2 + (⇡t � ⇡̄)2 (1.39)

where � is a constant. So the interest rate is set by monetary authorities to stabilize the business
cycle. More precisely, the nominal interest rate is increased in order to enter a crisis and contrast
high inflation and a positive output gap, or nominal interest rate is cut to stimulate investment
and consumptions. Every policy rule in which the short-term nominal interest rate appears as
dependent variable, function of other variables, takes the name of Taylor rule.

1.4 The Monetary Policy Implementation

Monetary economics represents one of the most prosperous macroeconomic research area. The
challenge faced by many researchers is understanding the relationship between monetary policy,
inflation and business cycle (Galı́, 2015). As previously mentioned, the relation among these
variables is well summarized by Eq. 1.36, which describes the systematic response of the central
bank to contemporaneous inflation and output gap. As we know, the spending behaviours of
private agents are, indeed, determined by real interest rate, rt, rather than by short-term nominal
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interest rate (Challe, 2010). However, the central bank does not control directly rt, but it sets
short nominal interest rates, it, that influence longer nominal interest rates and real interest rates,
rt, through the interbank market. Thus, what the central bank tries to do with its monetary policy
is to influence rt that, in turn, depends on an entire path of short-term nominal interest rates. To
sum up, the central bank uses the short nominal interest rate, together with the forward guidance,
as a tool for implementing the monetary policy. In such a way, thanks to the FE (see Eq. 1.34),
the central bank can influence also real interest rates and expected inflation.

Every day, the banks perform a number of operations that determines, at the end of the day,
an excess or a deficit of liquidity. This does not count for the soundness of the single bank, but
it is physiological to the banking operations. To settle these debts, banks can lend and borrow
money to each other overnight at the nominal interest rate, iM , which is the interest on money
exchange between banks, in the very short run. When the interbank market shows no need for
extra liquidity, banks in surplus can deposit extra liquidity to the central bank. On the other
hand, when the interbank market needs extra liquidity, the accounts in deficit borrow from the
central bank. The clearing in the interbank market is also determined by portfolio choices.

The demand for reserve money is sensitive to both the state of the business cycle and the
opportunity cost of holding reserves. The first comes from the money demand function:

Md = $Y L(i) (1.40)

Since the money demand is a function of real income and interest rate, if the economy is grow-
ing, banks will experience more imbalances to be settled. Analogously to the demand for money,
the demand for reserves is an increasing function of Y . The second one, i.e. the opportunity
cost of holding reserves, is given by the di�erence between what the bank will gain from lend-
ing liquidity to other banks overnight, iM , and the interest rate on deposits to the central bank
overnight, iR. For any iR, it must hold iM � iR. If the inequality does not hold, the interbank
market would cease to exist, until some banks with liquidity needs, will increase iM over iR and
restore the canonical inequality. It is possible to sum up the demand for reserves money with:

Rd = Rd(iM � iR| {z }
�

, y|{z}
+

) (1.41)

Indeed the central bank has the monopoly on the money supply, that exercises through open
market operations. Briefly, the central bank purchases government bonds to inject liquidity into
the system and dampen the interest rate, while selling government bonds to limit the liquidity
in the market. Thus, the monetary authority completely controls the aggregate quantities of
reserves money in the system Rs (Challe, 2010):

Rs = Rd(iM � iR| {z }
�

, y|{z}
+

) (1.42)
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In equilibrium (i.e. Rs = Rd), we obtain:

iM = iM( iR|{z}
+

, y|{z}
+

, R0
|{z}
�

) � iR (1.43)

To conclude, the central bank can use two leverage to move (e.g. upward) the interest rate iM . It
can simply move the interest rate iR that for a given level ofRs adjust iM accordingly (upward); or
it can act on the opportunity cost since changes in the quantity of reserves Rs (reduce) increases
the interbank interest rate iM for a fixed level of iR. Even if, the target is iM , what the central
bank set during the meeting of the Federal Open Market Committee (FOMC) are both iR and
Rs. It is important to notice that, while iM is a market rate, iR is considered to be an exogenous
variable since set by the central bank.

1.5 The Monetary Policy Shock in the Literature

As discussed in Section 1.3, the central bank systematically implements the monetary policy
to respond to variations in the state of the economy (Christiano et al., 1999). The systematic
components of the policy are expressed by the feedback rule that links short-term interest rates
managed by the central bank to the rate of inflation or deviation from its target (Armour and Côté,
2000). However, a part of the policy variation can not be explained by the systematic response to
the economy. This unexplained variation is formalized by the notion of a monetary policy shock
(Christiano et al., 1999). A more compact definition for the monetary policy shock is provided
by Miranda-Agrippino and Ricco (2021) who define the monetary shock as an exogenous shift
in the policy instrument that surprises market participants, that is unforecastable, and that is not
due to the central bank’s systematic response to the information set.

Christiano et al. (1999) proposed three economic interpretations for the exogenous variation
on the basis of the policy shock. The first interpretation assumes that the shock is caused by
a change in the preferences of the central bank and/or a shift in the preferences of the FOMC.
The second interpretation, instead, says that the policymakers want to avoid the social costs
deriving from disappointing private agents’ expectations (Ball, 1995; Chari et al., 1998). The
last possible source of exogenous variation is based on technical factors. For example, there may
be measurement errors in the indicators used by the FOMC for taking decisions (Bernanke and
Mihov, 1998a). Uhlig (2005) agrees with the last hypothesis, indeed he believes that the sources
of unexplained variation in the policy are accidental errors made by the central bank, which are
quickly reversed.

Structural shocks are in general unobservable (Kilian and Lutkepohl, 2017). In order to anal-
yse them and study their e�ects, econometricians resort to structural economic models. Among
the others, the structural VAR has been widely used to assess the impact of a monetary policy
shock on the U.S. economy. The monetary policy shock has been identified by several authors
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by considering di�erent sets of endogenous variables and by applying di�erent identification
strategies.

The approach commonly used to identify monetary policy shock is to impose alternative
sets of recursive zero restrictions on the contemporaneous coe�cients (Ramey, 2016). The
pioneer of this method, which is also called triangularization, is Sims (1980). The recursiveness
assumption considers that the information set at time t does not respond to monetary policy shock
realized at time t, but that it responds with a lag. Consider for instance the work of Christiano
et al. (1996).

Several authors used the sign restriction method which consists in imposing sign restriction
on the response of some variables. This method was pioneered by Faust (1998), who imposes
sign restrictions on impact, Canova and Nicoló (2002), who imposes sign restrictions on the
cross-correlation of variables in response to shocks, and Uhlig (2005). The key di�erence from
the recursive method is that the model is no longer point identified but set identified.

Other authors tried to recover structural shocks through the narrative approach. This ap-
proach considers key historical events when constraining the structural shocks and when per-
forming historical decomposition. Key references for narrative sign restrictions are the works
of Romer and Romer (2004) and Antolı́n-Dı́az and Rubio-Ramı́rez (2018). Romer and Romer
(2004) document and collect various historical events from the narrative records of FOMC meet-
ings and internal memos of the Fed about the expected federal funds rate. When a narrative
source provides information about the direction but not the magnitude, they resort to quantita-
tive evidence. Then, before estimating the e�ect of the shock, they remove from the found rate
the moments that are results of deliberated decisions. Antolı́n-Dı́az and Rubio-Ramı́rez (2018)
instead, combine the narrative sign restrictions with the traditional sign restrictions. The main
novelty of their work is that they use only a single event, or a small number of events instead of an
entire time series when imposing narrative information. Moreover, they use a Bayesian method
instead of the frequentist approach. They show that narrative sign restrictions can sharpen the
inference of structural VARs.

A di�erent identification strategy is proposed by Arias et al. (2019). The main novelty of
their work is that they achieve identification by imposing sign and zero restrictions on the sys-
tematic components of the monetary policy rule instead of restricting the response on output.
In detail, they impose positive sign restrictions on the contemporaneous response of the fed-
eral funds rate to an increase in output and prices, zero restrictions on the contemporaneous
structural parameters of total reserves and nonborrowed reserves, and they keep unrestricted the
response of the federal funds rate to commodity prices. They find that the monetary policy shock
determines a decline in output with a high posterior probability. However, they have to add the
conventional sign restrictions on the impulse response function (IRF) of prices, nonborrowed
reserves and federal funds rate in order to rule out the price and liquidity puzzle.

Even if, there is no consensus about a particular set of assumptions for identifying the e�ects
of monetary policy, there is substantial agreement about the qualitative e�ects of a shock. The
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general consensus says that, after a contractionary monetary policy shock, short term interest
rates rise, aggregate output and various monetary aggregates fall, aggregate price level decreases
slowly, and various measures of wages fall. In addition, there is agreement that monetary policy
shocks account for only a very modest percentage of the volatility of aggregate output and for
even less volatility of the movements in the aggregate price level (Christiano et al., 1999).

Only a few authors argue that a contractionary monetary policy shock has a no-clear e�ect on
output. Uhlig (2005) approaches the identification problem with a new agnostic method that let
the data decide: he imposes sign restrictions on the impulse response function (IRF) of prices,
nonborrowed reserves and federal funds rate while imposing no restrictions on the response of
the real GDP. This agnostic identification procedure wants to criticize the conventional iden-
tification strategies that impose zero restrictions on the contemporaneous response of output.
He finds that a monetary policy tightening produces an unexpected expansion in output. The
latter result is achieved also by Ramey (2016) who retrieved the same conclusion relaxing zero
restriction on the results of Romer and Romer (2004). In its work, Wolf (2020) says that a pos-
sible solution to solve the problem that the output can respond positively to a monetary policy
tightening when only sign restrictions on the input response functions are applied, is to add sign
restrictions on the Taylor rule (i.e. by adopting the approach proposed by Arias et al. (2019)).

In this work, we aim to identify a monetary policy shock in the U.S. economy. As an iden-
tification strategy, we impose sign restrictions on both the IRFs and the systematic components
of the monetary policy rule. However, we do not resort to zero restrictions on the coe�cient
of the monetary policy equation since, as argued by Arias et al. (2019), they have a negligible
weight in shaping the e�ects of a monetary policy shock. In doing so, we consider a VAR that
features macro-finance interactions (as financial indicators we use Excess bond premium (EBP)
and National Financial Condition Index (NFCI)). Indeed, as demonstrated by Gertler and Karadi
(2015), monetary policy shocks exert a significant e�ect on financial conditions, however, this
e�ect is usually underestimated by recursive VARs (Castelnuovo, 2013). Our results are con-
sistent with the economic theory: we have identified the monetary policy shock, ruled out the
liquidity and price puzzle, and demonstrated that the central bank deals with financial market
swings.





Chapter 2

The Model

In this chapter, we provide detailed insight into the structural VAR model and we derive the
systematic components of the monetary policy rule. We then describe our identification strategy
and the endogenous variables chosen for the two datasets employed. The first dataset, which
ranges from 1973 to 2007, does not include the global financial crisis, while the second dataset,
which ranges from 1973 to 2019 does.

2.1 VAR specification

Let us consider n time series. A structural VAR model with ⌫ lags is, in matrix notation, given
by:

[y1,t . . . yn,t]
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at date t = 1, · · · , T . In compact form representation, Eq. 2.1 becomes:

y0
tA0 =

⌫X

l=1

y0
t�lAl + c+ "0t for 1  t  T (2.2)

where yt and "t are n⇥1 vectors of endogenous variables and structural shocks, respectively, A0

(invertible) and Al are n⇥n matrices of structural parameters, c is a 1⇥n vector of parameters,
and T is the sample size. Conditional on past information and initial conditions, the vector "t
is assumed to be Gaussian with zero mean and covariance matrix In. Thus, the structural VAR
model in Eq. 2.2 can be rewritten as:

y0
tA0 = x0

tA+ + "0t for 1  t  T (2.3)



Chapter 2. The Model 32

where A0
+ = [A0

1 . . . A0
⌫ c0] and x0

t = [y0
t�1 . . . y0

t�⌫ 1]. The matrix A+ has dimensions of
(n⌫ + 1)⇥ n. In its reduced-form, Eq. 2.3 becomes:

y0
t = x0

tB + u0
t for 1  t  T (2.4)

where u0
t is the one-step-ahead prediction error with variance-covariance matrix ⌃. The error

u0
t is composed of economically meaningful and fundamental innovations. Since people are

usually interested in evaluating the impulse response functions to the fundamental innovations,
u0

t must be decomposed. How to decompose u0
t is source of disagreement. Following Uhlig

(2005), we assume the fundamental innovations to be mutually independent, and thus the matrix
A�1

0 is such that:
u0
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�1
0 (2.5)

Therefore, a consistent estimation of ⌃ is given by:
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Note that, the matrices B = A+A
�1
0 , which appears in Eq. 2.4, and ⌃ are the reduced-form

parameters.
The structural VAR in Eq. 2.3 can be written in terms of orthogonal reduced-form parametriza-

tion (Arias et al., 2018):

y0
t = x0

tB + "0tQ
0h (⌃) for 1  t  T (2.7)

In Eq. 2.7, B and ⌃ are reduced-form parameters, Q is an orthogonal matrix defined from
the QR decomposition of X (i.e. X = QR with R being a diagonal and positive-defined
matrix), and h (⌃) is a n⇥n matrix that refers to the Cholesky decomposition of the covariance
matrix ⌃. It holds that h (⌃)0 h (⌃) = ⌃. As argued by Arias et al. (2018), the orthogonal
reduced-form parametrization is convenient for drawing. However, we are interested in making
draws from the structural parametrization and thus, we need an invertible function in order to
transform (B,⌃,Q) into (A0,A+). This function is defined as:
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while its inverse is given by:

f�1
h (B,⌃,Q) = (h(⌃�1Q| {z }

A0

,Bh⌃�1Q| {z }
A+

). (2.9)

For anyB,⌃ and h, we can see each value ofQ 2 O(n) as a specific set of structural parameters
(Arias et al., 2018).
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To sum up, there are three di�erent ways to express VARs: the structural VAR that is defined
by (A0,A+), the reduced-form VAR and the orthogonal reduced-form VAR characterized by
(B,⌃,Q).

2.1.1 Conjugate, Priors and Posteriors

Even if the technique developed by Arias et al. (2018) and implemented here theoretically works
for any prior distributions, it is more e�cient when these prior distributions are conjugate. A
family of distribution is conjugate when the posteriors are members of the same probability
distribution family as the priors. A family of conjugate distributions for the reduced-form VAR
reported in Eq. 2.4 is represented by the normal-inverse-Wishart distribution, whose density is
(Arias et al., 2018):

NIW(⌫,�, ,⌦)(B,⌦) / |det(⌃)|�
⌫+n+1

2 e�
1
2 tr(�⌃�1)

| {z }
inverse�Wishart

·
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m
2 e�

1
2 vec(B� )0(⌃⌦⌦)0vec(B� )

| {z }
conditionally normal

(2.10)

where ⌫ � n is a scalar, � and ⌦ are symmetric and positive definite matrices of dimensions
n⇥n and m⇥m respectively, and is an m⇥m matrix. Let us now define the priors over the
reduced form parameter as NIW(⌫̄, �̄,  ̄, ⌦̄), and the posterior of the reduced-form parameter
as NIW(⌫̃, �̃,  ̃, ⌦̃) where the posteriors parameter are:

⌫̃ = T + ⌫̄ (2.11)

�̃ = Y 0Y + �̄+  ̄0⌦̄�1 ̄�  ̃0⌦̃�1 ̃ (2.12)

 ̃ = ⌦̃(X 0Y + ⌦̄�1 ̄) (2.13)

⌦̃ = (X 0X + ⌦̄�1)�1 (2.14)

for Y = [y1, . . . ,yT ]0 and X = [x1, . . . ,xT ]0. If we take ⇡(Q|B,⌃) as uniform conditional
density overO(n), we have the uniform normal-inverse-Wishart UNIW(⌫,�, ,⌦). As done in
Arias et al. (2018), the prior density parametrization is ⌫ = 0,� = 0n⇥n, = 0m⇥n and⌦�1 =

0m⇥m. This parametrization results in prior densities analogues to those obtained by Uhlig
(2005). Once the UNIW posteriors are known, we use the invertible function to transform the
draws to the structural parametrization (A0,A+). This is called a normal-generalized-normal
distribution over the structural parametrization NGN(⌫,�, ,⌦) and has density NGN(⌫,�, ,⌦)

(A0,A+). In terms of algorithms for drawing from the uniform distribution over O(n), there
are several examples in the literature. Here we use the algorithm of Rubio-Ramirez et al. (2010).
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2.2 The Systematic Component of the Monetary Policy

A large fraction of the variation in monetary policy instruments can be attributed to the sys-
tematic reaction of policy authorities to the state of the economy (Leeper et al., 1996; Sims and
Zha, 2006). Thus, as argued by Arias et al. (2019), it is necessary to specify the systematic
components of the monetary policy in order to identify a monetary policy shock. If we consider
the first shock being the monetary policy shock, we obtain from the structural VAR (i.e. from
Eq.2.1) the following monetary policy equation:
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that is, in compact notation form, equivalent to:

y0
ta0,1 =

⌫X

l=1

y0
t�lal,1 + "1,t for 1  t  T (2.16)

where "1,t is the structural shock (i.e. first entry of "t), and al,1 is the first column of Al with al,ij

being the systematic component (i.e. the i, j entry of Al). Note that, imposing sign restrictions
on these latter components means restricting the systematic component of the monetary policy.
The monetary policy rule is then obtained by abstracting Eq. 2.15 from lags:
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The general form for the monetary policy rule reads:

yn,t = �
a0,11
a0,n1

y1,t � · · ·+
"1,t
a0,n1

(2.18)

where the  i ⌘ �a0,i1a
�1
0,n1 are the contemporaneous coe�cients.

2.3 Identification Strategy

According to the Taylor-type monetary policy rule, the monetary policy reacts contemporane-
ously to changes in economic activity and prices (Christiano et al., 1996). Furthermore, unex-
pected monetary policy shocks strongly a�ect financial conditions (Castelnuovo, 2013; Rüth,
2017). Thus, to implement our identifications, our reduced-form VAR specification consists of
six endogenous variables: output, yt; prices, pt; commodity prices, pc,t; excess bond premium,
et; national financial condition index, nt; and interest rate, rt. Notably, the interest rate is either
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the federal fund rate (see section 2.4) or the policy rate (see section 2.5).
To achieve identification, we have imposed sign restrictions on both the IRFs and the sys-

tematic component of the monetary policy equation (i.e. structural parameters). The latter is
done by using the Bayesian approach and the techniques developed in Arias et al. (2018) and
Arias et al. (2019). Our restrictions can be summarized as follow.

Restriction 1

A monetary policy shock implies a negative response of prices and commodity prices (Uhlig,
2005), and a positive response of EBP, NFCI and interest rate (Gilchrist and Zakrajvsek, 2012).
This is achieved by assigning sign restrictions on the IRFs of the above-mentioned variables.
However, we do not impose restrictions on the IRF of the output. This agnostic procedure,
which let the data decide, is analogues to the identification scheme proposed by Uhlig (2005).
For this reason, in this work, we will refer to Restriction 1 also as Uhlig’s sign restriction. These
restrictions have been applied for five periods after the shock (at all horizons t = 0, ..., 5).

Restriction 2

The contemporaneous reaction of the interest rate to output and prices is positive (Arias et al.,
2019). This implies assigning sign restrictions on the systematic component of the monetary
policy equation. This is consistent with the monetary policy rule of the New Keynesian DSGE
model (see Section 1.3). In this case, we assume that the systematic responses of output and
price react instantaneously to a tightening in the monetary policy, and thus, the restriction is
assigned only at t = 0. As explained by Arias et al. (2019), this assumption is reliable since the
central bank does not have access to real-time data on output and price, but it does have access
to a huge amount of real-time indicators. However, we assume that the central bank can retrieve
the data within a month.

Restriction 3.

The monetary shock a�ects term premia and credit spread by increasing credit costs (Gertler
and Karadi, 2015), and exerts a significant e�ect on the overall financial conditions (Casteln-
uovo, 2013). Specifically, the contemporaneous reaction of the interest rate to EBP and NFCI is
negative (Gilchrist and Zakrajvsek, 2012; Brave and Butters, 2012). Analogously to restriction
2, this is done by restricting the systematic components of the monetary policy rule.

For the dataset under consideration, we obtain from Eq. 2.18 the following monetary policy
rule:

rt = �
a0,11
a0,61

yt �
a0,21
a0,61

pt �
a0,31
a0,61

pct �
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a0,61
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a0,61

(2.19)
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that can be rewritten, in terms of contemporaneous structural parameters, as:

rt =  yyt +  ppt +  pcpct +  eet +  nnt + �"1,t (2.20)

Equipped with this representation of the monetary policy rule, we summarize restrictions 2 as
follows:  y,  p > 0. Restriction 3, instead, implies that  e,  n < 0.  pc remains always
unconstrained.

Note that we only identify a single structural shock and thus, our structural parameters are
partially identified. Furthermore, we impose only inequality constraints (i.e. sign restrictions),
and hence, they are set identified (and not point identified).

2.4 Short Dataset (1973 - 2007)

For the benchmark case study, the reduced-form VAR has been applied on monthly based U.S.
data from January 1973 to June 2007. This length of time ensures that we do not capture in
our predictions the e�ects of the global financial crisis and unconventional monetary policies.
The dataset is composed of 1) real GDP for output, 2) GDP deflator for the price level, 3) a
commodity price index, 4) the EBP as a proxy for the credit supply disruption, 5) the NFCI as
a comprehensive measure of financial stress in the system, and 6) the federal found rate. Note
that, the dataset is analogue to the dataset previously used by Uhlig (2005) and Arias et al.
(2019) with two main di�erences: the introduction of EBP and NFCI instead of total reserves
and nonborrowed reserves. The employment of these two variables allows us investigating how
central banks react to stress in the credit market or stress in the financial system as a whole.

2.4.1 Real Output

The Gross Domestic Product, or GDP, is the value of all finished goods and services that have
been produced in a given economy and in a given time. We can measure the GDP in nominal
terms or in real terms. The di�erence between the two is that the real GDP is adjusted for
inflation, while the nominal GDP is not.

The real GDP is usually used as an economic indicator for measuring the output. Here, we
employ the GDPC1 retrieved from FRED, which has quarterly frequency and concerns the U.
S. economy. Since for our structural VAR model we need monthly data, we interpolate the time
series for GDPC1 with a di�erent measure of output that is available monthly: the industrial
production index that is referred to as INDPRO.

The Industrial Production Index (INDPRO) is an economic indicator that measures the real
output for all the manufacturing, mining, electric, and gas utility industries located in the U.S.
(Board of Governors of the Federal Reserve System (US), May 2, 2022b). The index is made
of several individual series based on those industries included in the North American Industry
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Classification System (NAICS). The INDPRO, as well as the other Industrial Production in-
dexes, has two main sources of data: the outputs measured in physical units and the inputs to
the production process, from which the output is inferred (Board of Governors of the Federal
Reserve System (US), May 2, 2022b). The data are taken on a monthly basis from FRED.

The interpolation of the real GDP is done accordingly to the method developed by Chow
and Lin (1971) for temporal disaggregation (i.e. temporal disaggregation process allows high-
frequency data to be retrieved from lower frequency data), and previously employed also by
Bernanke and Mihov (1998b) and Mönch and Uhlig (2005). We have chosen this methodology
because it has been proven to be the best method for the set of series used (Mönch and Uhlig,
2005). In brief, the Chow and Lin (1971) methodology retrieves unobserved monthly values (y)
from quarterly data by taking advantage of a variable (X) available monthly, which, however,
contains information about (y):

y = X� + u (2.21)

Assuming u to be anAR(1)with an unknown serial correlation coe�cient ⇢, the error covariance
matrix V takes the standard form V = E(uu0). Eq. 2.21 can be re-written as:

Cy = CX� + Cu (2.22)

where C is a t⇥ 3t matrix required to convert quarterly data to monthly information. Eq. 2.22
yields:

ẏ = Ẋ� + u̇ (2.23)

Since GDP has a quarterly frequency, Eq 2.23 can be consistently estimated by OLS. We can
retrieve a consistent estimate of the monthly serial correlation coe�cient ⇢ from the first-order
correlation coe�cient of the quarterly residuals. Through ⇢, it is then possible to build up the
covariance matrix of the quarterly residuals, V̂ , and to re-estimate Eq. 2.23 by GLS. According
to Chow-Lin’s formula, the estimated monthly values for the component ŷ of the GDP are:

ŷ = X�̂ + V̂ C 0(CV̂ C 0)�1û (2.24)

By applying this formula, the average of the monthly values in each quarter is equal to the cor-
responding quarterly value (Chow and Lin, 1971).

2.4.2 GDP Deflator

The GDP deflator is an economic indicator that provides a measure of the overall level of prices
in an economy. It is computed as the ratio between the nominal GDP and the real GDP, and it
shows the e�ect of movement in prices rather than changes in the volume of the output. For this
reason, the GDP deflator is a measure of inflation in a given economy.

The data for the GDP deflator (GDPDEF) are retrieved from FRED. These are quarterly
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frequency data that have to be interpolated. The methodology used for the interpolation is the
one proposed by Chow and Lin (1971) and already discussed in section 2.4.1. However, in this
case, interpolation is done thanks to two monthly series related to the deflator: a consumer price
index and a producer price index.

The consumer price index (CPI) is a di�erent method to measure the level of inflation. A
CPI is made by creating a hypothetical basket in which selected goods and services are observed
over time. The basket reflects the average price level and hence, the decline in the purchasing
power of the consumers. Even if both the CPI and the GDP deflator provide the overall level
of prices in the economy (i.e. inflation), they have some di�erences. First, the GDP deflator
measures the prices of all goods and services produced, while the CPI measures the price level
of the goods and services that are bought by consumers. Another di�erence regards the fact that
the GDP deflator accounts only for goods and services that are produced domestically, whereas
the CPI is a�ected also by their import. Last but not least, the CPI is estimated using a fixed
basket of goods and services, instead, the composition of GDP changes over time. In this work,
as consumer price index, the CPIAUCSL retrieved from FRED has been employed.

Analogously to the CPI, the producer price index (PPI) measures the level of prices in a
basket of goods and services. Nevertheless, the buyers considered in the PPI are not consumers
but firms (Mankiv, 2016). In this sense, a PPI provides a measure of inflation based on input cost
to producers and returns a metric for the cost of production (of Labor Statistics, May 2, 2022).
As producer price index, we resort to the PPIFGS, taken from FRED.

The PPI, as well as the CPI, are published on monthly basis by the Bureau of Labor Statistics
(BLS) in the U.S. for the domestic market. For these two indices, data from almost 10,000
products are collected.

2.4.3 Commodity Price Index

The employment of a commodity price index in the dataset is an established practice for the
identification of a monetary policy shock, and it comes to solve what is called the liquidity
puzzle. The liquidity puzzle is a positive relationship between inflation and federal funds rate
(Balke and Emery, 1994). It is defined as a puzzle because it consists of an unexpected increase
in the price level after a monetary policy shock, even if a sudden increase in the interest rate
should lead to a decrease in the price level (Sims, 1992; Bernanke and Blinder, 1992).

The positive correlation between inflation and interest rate in the U.S. economy has been ob-
served by many authors and di�erent explanations have been provided in the literature (Bernanke
and Blinder, 1992; Sims, 1992; Christiano et al., 1994). In their work, Bernanke and Blinder
(1992) found that the federal funds rate is informative in forecasting macroeconomic variables
and a good indicator of monetary policy actions. In order to understand better this relation,
Balke and Emery (1994) broke down the inflation time series into two sub-samples: 1960-79
and 1982-93. As Fig. 2.1 shows, they found evidence of a strong positive relationship between
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Figure 2.1: Percentage value of federal funds rate (FEDFUNDS) and inflation (GDPDEF PC1)
from 1960 until 1995. Source: FRED.

the federal funds rate and inflation in the first sample (i.e. the liquidity puzzle is severe), while
this positive correlation became weaker, until approaching zero, in the second sub-sample (i.e.
but still not negative). The reason why the price puzzle has changed in the early 80s is related to
a change in the reaction of the Federal reserves corresponding to the beginning of Paul Volcker’s
mandate as chairman of the Federal reserves. Regarding the possible explanations for the price
puzzle, these are:

• The Federal Reserve increases the federal funds rate when higher future inflation is ex-
pected, nevertheless this increase is not enough for preventing inflation to rise. This means
that even if the federal reserve is forward-looking, it is not able to prevent upcoming infla-
tion. Moreover, the systematic response to a monetary policy shock is not truly exogenous,
since the Federal Reserve owns information about future inflation (Sims, 1992; Balke and
Emery, 1994).

• The Federal Reserve responds to the supply shock by raising the federal funds rate. This
rise, however, is not enough for extinguishing the inflationary consequences of the supply
shock (Balke and Emery, 1994).

As argued by Christiano et al. (1994), in a VAR framework, the price puzzle may be solved
with the inclusion of a commodity price index. For the short dataset we chose as commodity
price index the Dow Jones Spot Average (Ticker DJSD) that is commercially available from
Global Financial Data. The measure is on monthly basis and is computed as the average of daily
data.
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2.4.4 Excess Bond Premium

The credit spread proposed by Gilchrist and Zakrajvsek (2012) is a financial indicator that can be
split into two di�erent components: the first one reflects the systematic movements in the default
risk of individual firms; the second one provides an e�ective measure of investor sentiment or
risk appetite in the corporate bond market. This second component is the so-called Excess Bond
Premium.

The EBP is simply obtained as the di�erence between the GZ credit spread, SGZ
t , and the

predicted component of the GZ credit spread, ŜGZ
t :

EBPt = SGZ
t � ŜGZ

t (2.25)

In turn, SGZ
t is an arithmetic average of credit spreads on outstanding bonds in any given month:

SGZ
t =

1

Nt

X

i

X

k

Sit[k] (2.26)

whereNt is the number of bond/firm observations in month t, andSit[k] is the di�erence between
the corporate bond yield, yit[k], and the synthetic risk-free security yield, yft [k], for bond k of
firm i. The synthetic risk-free security replicates the cash flow of a corresponding corporate
debt instrument. The cash flow deriving from the coupon payments and the principal has been
discounted with the continuously compounded zero-coupon Treasury yields. In this way, it has
been possible to compare the two yields without incurring in ”duration mismatch” and biases
(Gilchrist and Zakrajvsek, 2012).

The predicted component of the GZ credit spread has been obtained in accordance with
the work of Berndt et al. (2011). They first used the following linear regression to remove the
expected default risk of individual firms from the underlying credit spreads:

lnSit[k] = �DFTit + �̂0Zit[k] + "it[k] (2.27)

This equation states that the log of Sit[k] is linearly related to the firm-specific measure of ex-
pected default, DFTit, and a bond-specific characteristic vector, Zit[k], with a pricing error
"it[k]. Under the assumption of normally distributed disturbances, this yields to:

Ŝit[k] = exp


�̂DFTit + �̂0Zit[k] +

�̂2

2

�
(2.28)

where ·̂ indicates OLS estimated variables. The predicted component of the GZ credit spread is
then averaged across outstanding bonds to the firms at time t analogously to what is done in Eq.
2.26 for Sit[k].

The EBP is a robust financial indicator for predicting future economic activity (Gilchrist and
Zakrajvsek, 2012). It has been used by the Fed to predict the probability that the U.S. economy
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will enter a recession sometime during the next 12 months. Moreover, the results of Brave and
Butters (2011) show that the EBP provides a consistent indicator of credit supply conditions: a
shortening in the credit supply (an increase in the EBP) causes a contraction in economic activity
through the financial accelerator. This is the main reason why it is chosen for our identification
strategy. The data are retrieved from the Board of Governors of the Federal Reserves System.

2.4.5 National Financial Conditions Index

In order to have a comprehensive measure of the economic and financial system’s health, the
Chicago Fed releases, on weekly basis, the National Financial Conditions Index. The NFCI
is a high-frequency index that widely involves a measure of risk, a measure of liquidity and a
measure of leverage. The former refers to risk premium and volatility of asset prices, the liquidity
concerns the willingness to borrow or lend at the prevailing prices, whereas the leverage provides
a relative measure for financial debt with respect to equity.

The NFCI is calculated as a weighted average of 105 indicators of financial activity (Brave
and Butters, 2011). Each weight is assigned to the indicators through a statistical method called
principal component analysis (PCA) according to which the indicators more correlated with their
peers receive higher weights. Brave and Butters (2011) have divided the indicators into three
categories: 1) money markets, 2) debt and equity markets, and 3) banking system. The money
markets category is composed of interest rate spreads and other financial conditions indexes.
Moreover, it includes measures of implied volatility and trading volumes of numerous money
market financial products. The debt and equity market indicators are mainly composed of stocks
and bond market prices, but also residential and commercial real estate prices, municipal and
corporate bonds, stock, asset-backed security, and credit derivative market volumes. Note that,
the metrics used in this category consider not only the prices but also volatility and risk premi-
ums in their various forms. Then, the banking system category comprises mostly survey-based
measures of credit availability, accounting-based measures for commercial banks and so-called
shadow banks, but also some interest rate spreads. The first scope of this subindex is to measure
liquidity and leverage in the system as well as to catch the risk deriving from the deterioration
of credit quality.

The index is expressed relative to its sample standard deviation, thus, a zero value indicates
that the financial system is working at the historical average levels of risk, liquidity, and leverage.
In the sub-indexes, the risk is accounted for with positive weights, instead, liquidity and leverage
have negative weights. An index with positive values implies tighter conditions than on average,
instead, negative values mean looser conditions than on average.

Since the NFCI provides a comprehensive measure of U.S. financial conditions, it is chosen
as variable for our identification strategy. The data are taken on a monthly basis from FRED.
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2.4.6 Federal Funds Rate

The short-term policy instrument for the Fed is the federal funds rate. It is the overnight interest
rate at which banks lend to each other (Mankiv, 2016). When banks experience an excess of
liquidity, they lend to other depository institutions, which have shortages of cash and need funds
as soon as possible. This comes not for free: the bank borrowing will pay interests to the lender.
When there is no need for extra liquidity in the interbank market, banks with balance surpluses
can deposit at the Fed overnight. The Central Bank will pay interest on the deposit. This interest
corresponds to the federal funds rate. The interest paid by the central bank for the deposit must
be lower than the interest paid in the interbank market. In this way the Fed uses the federal funds
rate, as policy instrument for the implementation of the monetary policy, influencing the other
interest rates. The nominal interest rate is set by the Federal Open Market Committee (FOMC),
which meets every six weeks and votes on the interest rate target. The interest rate target is set
on the market through open market operation, so increasing or decreasing the supply of money
in the market. More specifically, when there is the need for expansionary monetary policy, the
Fed buys government bonds on the market leading to a decrease in the interest rate. However,
for increasing the federal funds rate, the Fed sells bonds and consequently reduces liquidity in
the market.

The e�ective federal funds rate (EFFR) is the most common measure of interest rate for the
U.S. economy and is often used in the VAR analysis (Uhlig, 2005; Leeper et al., 1996; Leeper and
Zha, 2003; Wu and Xia, 2015; Arias et al., 2018, 2019). Since the rate at which banks borrow
and lend money to each other is determined by bilateral negotiations, the e�ective federal funds
rate is computed as the weighted average rate for all of the negotiations (Board of Governors of
the Federal Reserve System (US), May 2, 2022a). As explained above, this rate is slightly higher
compared to the target rate settled by the FOMC. Although the e�ective rate is influenced by
the target, it tracks the interest rate that clears the interbank market. The data are retrieved from
FRED with monthly frequency, and with the ticker FEDFUNDS.

2.5 Extended Dataset (1973 - 2019)

Besides the short dataset, a second case has been studied. In this case, the dataset comprises
longer time series, ranging from January 1973 to December 2019. The choice of the time interval
is not casual indeed, it includes the global financial crisis previously discharged but it does not
account for the Covid-19 pandemic crisis. As discussed in section 2.5.1, indeed, the pandemic
crisis introduces problematic outliers in the time series.

The extended dataset has the same composition as the short dataset, except for the federal
found rate. The dataset is composed of real GDP for output, GDP deflator for the price level, a
commodity price index, the EBP, the NFCI, and the Policy Rate. Nevertheless, due to missing
data in some of the previously employed series, we have searched for di�erent proxies. A detailed
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description of these indexes is reported below (after Section 2.5.1).

2.5.1 The Pandemic Outlier Problem

Beyond the problem for the real economy and population health, the Covid-19 pandemic cri-
sis has introduced troubles also in modelling VARs. This issue arises because of the extreme
observations that the pandemic has generated in the key macroeconomics variables. For some
variables, indeed, this variation has been measured in two orders of magnitude (Lenza and Prim-
iceri, 2020) and represents an unprecedented movement. These outlier observations represent
an issue for the estimation of standard time-series models. Understanding how to manage the
outlier data, if it is necessary to discard or use these observations as conventional observations if
the outlier can or cannot distort the model, are crucial questions that will a�ect future research,
because the outliers deriving from the pandemic will contaminate future works. The solution
proposed by Lenza and Primiceri (2020) is to explicitly model the change in shock volatility, to
account for the exceptionally large macroeconomic innovations recorded during the period of
the pandemic. What makes this volatility shock singular is the perfect knowledge of the moment
for increasing the variance.

In their work, Lenza and Primiceri (2020) have first estimated a standard VAR, considering
pandemic observations, with monthly U.S. economic variables, and simulated a shock in unem-
ployment. The results of their attempt are completely dependent on the finals observations, i.e.
from the pandemic time. The Outcome is significantly di�erent with respect to the IRFs obtained
by employing only pre-pandemic observations. This leads to the conclusion that the few obser-
vations recorded during the pandemic a�ect the entire sample. For this reason, it is necessary to
disaggregate the latest data in the time series before using these types of observations with the
ad-hoc procedure of dripping the extreme observations (Lenza and Primiceri, 2020). To analyse
the outlier data together with the regular observations, Lenza and Primiceri (2020) first re-scaled
the outlier with unknown parameters s̄0, s̄1, . . . , s̄j estimated by Bayesian approach (Giannone
et al., 2015) or likelihood estimation. In doing so, they assumed that the re-scaling is common
to all shocks, as previously done also by Carriero et al. (2016). Considering a standard VAR:

yt = C +B1yt�1 + . . .+Bpyt� + st"t

"t ⇠ N(0,⌃)
(2.29)

To re-scale the residual covariance matrix, st have been used. Observations with s̄0 = s̄1 =

s̄j = 1 are treated as regular observations, while observations during the pandemic are pointed
out with t⇤. Then they have modelled the evolution of the residual variance after the pandemic
began with st⇤ = s̄0, st⇤+1 = s̄1, st⇤+2 = s̄2, . . ., assuming that it decays at a constant rate ⇢,
such as:

st⇤+j = 1 + (s̄2 � 1)⇢j�2 (2.30)
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then the model is estimated as usual.
In order to verify the model, Lenza and Primiceri (2020) estimated a VAR with a sample

containing pandemic observations. They estimate IRFs with a standard VAR and with the VAR
they proposed. The median responses are very similar between the two models but significantly
di�erent from the benchmark model. These findings illustrate the importance of explicitly mod-
elling the change in shock volatility during the COVID-19 era (Lenza and Primiceri, 2020). The
authors’ main finding is the necessity of an ad-hoc procedure for the estimation of outliers obser-
vation. To this aim, they recommend using their approach, or to drop the data from the pandemic
when using standard VAR approaches. Including Outliers in the dataset using standard methods
perform poorly in VAR analysis. This approach is more straightforward and allows for more
flexibility with respect to the time-varying volatility standard methods.

In light of these considerations, we choose to discard observations deriving from the pan-
demic by cutting our dataset to December 2019. This allows us to avoid outlier problems and
work with standard model VARs.

2.5.2 GDP Deflator

As well as in the short dataset, also in the extended dataset, it has been necessary to interpolate
the quarterly data available for the GDPDEF with higher frequency data from proxy, in order to
obtain on a monthly measure of the GDP deflator. However, the series for the Producer Price
Index previously used, the PPIFGS, ends in 2015. For this reason, we found a good substitute in
the Producer Price Index by Commodity (PPIACO). The data are taken on monthly basis from
FRED. In Fig. 2.2 the two series, producer price index by commodity for finished goods PPIFGS
and producer price index by commodity all commodity PPIACO are reported. As expected, the
series show similar co-movements and have a high correlation: ⇢ = 0, 9538. The reason for such
a high correlation is that the two indexes are di�erent only for a switch in the data aggregation
system. In fact, from January 2014, but e�ectively from January 2016, the BLS transitioned PPIs
from a stage of processing aggregation system (SOP) to final demand - intermediate demand
aggregation system (FD ID).

2.5.3 Commodity Price Index

The series we use in the short dataset as commodity price index ceased in 2009. In order to create
a dataset made of open-source data, we substituted the index previously used, the Dow Jones spot
average DJSD, with producer price index by commodity all commodity PPIACO, discussed in
section 2.5.2. Fig. 2.3 reports the two series. In this case, the series show a correlation of
⇢ = 0.6694.
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Figure 2.2: Percentage change year on year of PPIFGS and PPIACO from 1949 to 2015. The
two time series show ⇢ = 0.9538 correlation. Source: FRED.
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Figure 2.3: Percentage change year on year of DJSD and PPIACO from 1950 to 2009. The two
time series show ⇢ = 0.6694 correlation. Source: Global Financial Data and FRED.
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Figure 2.4: The federal funds rate and the shadow rate. Source: FRED and Wu (May 2, 2022).

2.5.4 Policy rate

In response to the global financial crisis that began in 2008, the Fed reacted by lowering the
Federal funds rate, as its primary instrument of monetary policy (Wu and Xia, 2015). However,
since the end of 2008, the federal funds rate was stably closed to zero and it was impossible
for the Fed to further increase the monetary stimulus. Without its first tool, the Fed had to rely
on unconventional monetary policy and forward guidance. The first measure consists of open
market operations in which the central bank purchases long-term securities in order to lower the
yield curve in the long run. The second one, the Forward guidance, concerned the statements
released by the Fed aimed to influence the expectations of the economic agents. Both measures
have the scope of a�ecting interest rates and influencing the economy (Wu and Xia, 2015). A
scenario in which the interest rate is near zero and the central bank cannot further move it down
to stimulate the economy is known as zero lower bound (ZLB). This is the situation the Fed faced
after December 2008.

In this particular scenario, the metric of the federal funds rate doesn’t convey information
anymore, and the VAR model could fail in extracting economically meaningful information from
the data (Wu and Xia, 2015). For this reason, for the extended database, we resorted to the
shadow federal funds rate as designed by Wu and Xia (2015). It has been proved that the shadow
rate is a very powerful tool for summarizing useful information when the ZLB is binding. Fur-
thermore, it provides more information than the e�ective federal funds rate when the latter is
close to zero.

The policy rate we use for the extension of the dataset has only partially replaced the FED-
FUNDS. Therefore our policy rate is a combination of the e�ective federal funds rate and the
shadow federal funds rate. More precisely, we have created a series in which we consider the
e�ective federal funds rate when this is higher or equal to 0.25 basis points, and the shadow rate
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otherwise. In this way we could use the VAR model, without losing precious information about
the period between the end of 2008 and the middle of 2016, that is when the interest rate was
stuck at the ZLB. In Fig 2.4, it is possible to observe the two series. As pointed out by Wu and
Xia (2015), the di�erence between the two series is the measurement error that can be scaled
in a few basis points. The data for the shadow rate are retrieved from the personal website of
Professor Wu and have a monthly frequency.

2.6 Conclusions

In this chapter, we have outlined the main characteristic of the structural VAR model. Then,
we have focused both on the identification strategy and the datasets employed. The datasets
are discerned in short and extended datasets. If the former does not include the global financial
crisis, the second does. In both cases, we have considered both economic and financial indicators
as endogenous variables. This allows us to appreciate the response of ”Main Street” and ”Wall
Street” to a monetary policy shock.





Chapter 3

Results - Short Dataset

In this Chapter, we describe the results of our benchmark model and we estimate the monetary
policy equation associated with our identification scheme. Furthermore, we discuss the role of
the financial variables in identifying a monetary policy shock.

The dataset is composed of real GDP for output, GDP deflator for the price level, a com-
modity price index, the EBP, the NFCI, and the Policy Rate. The first three series are entered
as log-levels (times 100), EBP and the policy rate are in percentage points, whereas NFCI is
expressed in standard deviations from its historical trend. The dataset span the interval from
January 1973 to June 2007, and thus, it does not account for the global financial crisis. For more
information about the composition of the dataset refer to Section 2.5.

3.1 Results

In this Section, we draw the IRFs obtained by imposing several sets of restrictions, for a time
horizon of 60 lags (i.e. 5 years). In the following figures, the solid lines represent the median
posterior variance, whereas the confidence intervals correspond to 68% and 95% of the pos-
terior probability. The reduced-form VAR specification uses 12 lags and does not include any
deterministic term.

Figure 3.1 shows the IRFs to a contractionary monetary policy shock of one standard devi-
ation when imposing restriction 1, namely when implementing Uhlig’s sign restrictions (Uhlig,
2005). Following an exogenous jump in the federal funds rate by around a third of a percent-
age point, the response of output has a high posterior probability to be positive. The response
of prices is negative, with a high posterior probability of persistent decline. Also, commodity
price has a negative response but it will probably increase after 18 months. On the EBP side,
the impact response is almost always positive at 95% confidence for the first 36 months after
the shock. Then, the median response of NFCI is positive for the first 12 months and virtually
zero thereafter. The IRFs of prices and commodity prices are in accordance with the theoretical
insights of the Taylor rule (Taylor, 1993; Arias et al., 2019). On the other hand, EBP and NFCI
feature as described in Castelnuovo (2013) and Gilchrist and Zakrajvsek (2012). The output
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Figure 3.1: IRFs to a one standard deviation contractionary monetary policy shock identified
using negative sign restrictions on the IRFs of price and commodity price, and positive sign
restrictions on the IRFs on EBP, NCFI, and Federal Found rate. These sign restrictions corre-
spond to Uhlig’s identification scheme. No restriction on output. This identification scheme
corresponds to restriction 1.

Variables  y  p  pc  e  n

Median -0.26 1.94 0.10 -1.17 -0.86
68% Prob. [-1.47,0.43] [0.88,3.97] [0.03,0.22] [-3.09,-0.26] [-5.26,0.77]
95% Prob. [-6.09,2.85] [-3.10,17.97] [-0.14,0.80] [-12.31,2.70] [-27.51,7.78]

Table 3.1: Contemporaneous coe�cients in the monetary policy equation identified based on
restrictions 1. The 68 and 95% equal-tailed posterior probability intervals are reported in brack-
ets.

behaves as in Uhlig (2005), however, here, the confidence intervals of prices and commodity
prices are narrower. But even so, this improvement is not enough to identify a monetary policy
shock.

Table 3.1 reports the contemporaneous coe�cients in the monetary policy equation iden-
tified based on restriction 1. It is interesting to see that the posterior medians of  e and  n

are respectively equal to -1.17 and -0.86, meaning that the federal funds rate reacts more than
one-to-one to contemporaneous movements in EBP and almost one-to-one to contemporaneous
movements in NFCI. Thus, these two variables can be taken as representative indicators of U.S.
financial shocks, and their inclusion in our dataset is justified.

Fig.3.2 plots the IRFs to a monetary policy shock of one standard deviation when applying
restriction 1 and restriction 2. We can see that imposing additional sign restrictions on the sys-
tematic components of the monetary policy rule allows recovering a negative response of the
output, with high posterior probability until almost one year. Furthermore, it allows reducing
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Figure 3.2: IRFs to a one standard deviation contractionary monetary policy shock identified
using negative sign restrictions on the IRFs of price and commodity price, and positive sign
restrictions on the IRFs on EBP, NCFI, and Federal Found rate. No restriction on the IRF of the
output. In addition, we imposed the following sign restriction on the structural parameters:  y,
 p > 0. This identification scheme corresponds to restriction 1 plus restriction 2.

Variables  y  p  pc  e  n

Median 0.35 1.71 0.07 -0.74 -0.31
68% Prob. [0.10,0.75] [0.93,2.83] [0.03,0.14] [-1.78,-0.10] [-2.60,0.89]
95% Prob. [0.02,1.26] [0.35,4.92] [0.00,0.32] [-3.90,0.24] [-7.92,1.51]

Table 3.2: Contemporaneous coe�cients in the monetary policy equation identified based on
restrictions 1 plus 2. The 68 and 95% equal-tailed posterior probability intervals are reported in
brackets.

the posterior probability of the output while leaving the IRFs of the other variables almost un-
changed. The corresponding contemporaneous coe�cients are reported in Table 3.2. We can
see that the posterior median of the output coe�cient becomes positive and equal to  y = 0.35.
Interestingly,  e and  n are much lower than before. This is the reason why we resorted to a
further restriction (i.e. restriction 3) in our identification scheme.

In Fig. 3.3, we explore the implication of combining Uhlig’s restrictions on the IRFs with
restriction 2 and restriction 3, which instead restrict the systematic component of the monetary
policy equation. The responses of our variables are qualitatively similar to those reported in
Fig. 3.2. A key implication of our identification scheme can be seen in Table 3.3: the median
impact of NFCI on the federal funds rate, namely  n, is -1.39 against -0.31 obtained in Table
3.2. This is in line with the results of Castelnuovo (2013) according to whom an unexpected
monetary policy tightening determines a significant reaction to financial conditions. The e�ect
of restricting  e is instead more moderate (see Table 3.3): when unrestricted,  e was equal to
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Figure 3.3: IRFs to a one standard deviation contractionary monetary policy shock identified
using negative sign restrictions on the IRFs of price and commodity price, and positive sign
restrictions on the IRFs on EBP, NCFI, and Federal Found rate. No restriction on the IRF of the
output. In addition, we imposed the following sign restriction on the structural parameters:  y,
 p > 0 and  e,  n < 0. This identification scheme corresponds to restrictions 1, 2 and 3.

Variables  y  p  pc  e  n

Median 0.35 2.08 0.08 -0.95 -1.39
68% Prob. [0.10,0.75] [1.30,3.29] [0.03,0.17] [-2.19,-0.28] [-4.04,-0.37]
95% Prob. [0.02,1.35] [0.58,5.90] [0.00,0.34] [-4.08,-0.02] [-9.84,-0.06]

Table 3.3: Contemporaneous coe�cients in the monetary policy equation identified based on
restrictions 1, 2 and 3. The 68 and 95% equal-tailed posterior probability intervals are reported
in brackets.

-0.74, while, with restriction, it became equal to -0.95. Furthermore, the confidence interval for
the unrestricted case was almost always negative.

Restricting  e and  n has determined an increase in the estimated median coe�cients for
inflation, EBP and NFCI but, at the same time, has introduced some uncertainty. For this reason,
it seemed natural to try an identification strategy that employs the same sign restrictions on the
IRFs and on the systematic components as before (i.e. restrictions 1, 2 and 3), but leaving the
two financial variables unrestricted one at a time. In Fig. 3.4, we report the IRFs obtained with
restrictions 1, 2 and 3, but with  n unrestricted. In the short-run, the response of the output is
unchanged, however after 12 months the median posterior output swifts down by a small amount.
Again, there is no evidence of price puzzle, and the median response of NFCI is similar to what is
reported in Fig. 3.2. However, in this case, it does not reach the peak of +0.1 standard deviation,
but it remains stable at +0.05 standard deviation for the first two quarters. In the third quarter
after the shock, the median response becomes negative and then stabilizes close to zero.
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Figure 3.4: IRFs to a one standard deviation contractionary monetary policy shock identified
using negative sign restrictions on the IRFs of price and commodity price, and positive sign
restrictions on the IRFs on EBP, NCFI, and Federal Found rate. No restriction on the IRF of the
output. In addition, we imposed the following sign restriction on the structural parameters:  y,
 p > 0 and  e < 0.

Variables  y  p  pc  e  n

Median 0.34 1.70 0.07 -0.83 -0.35
68% Prob [0.10, 0.731] [0.94, 2.83] [0.02, 0.14] [-1.91,-0.28] [-2.71, 0.88]
95% Prob [0.10, 1.18] [0.38, 5.01] [0.00, 0.31] [-4.51,-0.04] [-8.67, 1.52]

Table 3.4: Contemporaneous coe�cients in the monetary policy equation identified based on re-
strictions 1, 2 and 3 relaxing restriction on n. The 68 and 95% equal-tailed posterior probability
intervals are reported in brackets.

Table 3.4 shows the posterior estimates of the contemporaneous coe�cients for the monetary
policy equations. Interestingly, the systematic responses are almost identical to what is reported
in Table 3.2. However, in Table 3.2 parameters are better estimated but  n has a non-negligible
probability to be positive.

Analogously, Fig. 3.5 and Table 3.5 are obtained under restrictions 1, 2 and 3 and leaving  e

unrestricted. The results are very similar to those obtained in Fig.3.3 and Table 3.3, respectively.
This means that the sign restriction on  e plays a minor role in shaping the e�ect of a monetary
policy shock and it can be left unrestricted. This latter set of restrictions is the most appropriate
choice since it requires fewer restrictions but leads to the same results.

According to our identification strategy (see Fig.3.3), a monetary policy shock of one stan-
dard deviation corresponds to an unexpected increase in the federal funds rate of around 30 basis
points (median), and after the first month, it reaches 40 basis points. The shock leads to a drop
in the output, which reaches the minimum (-0.15%) in the third quarter of the first year, for re-
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Figure 3.5: IRFs to a one standard deviation contractionary monetary policy shock identified
using negative sign restrictions on the IRFs of price and commodity price, and positive sign
restrictions on the IRFs on EBP, NCFI, and Federal Found rate. No restriction on the IRF of the
output. In addition, we imposed the following sign restriction on the structural parameters:  y,
 p > 0 and  n < 0.

Variables  y  p  pc  e  n

Median 0.38 2.04 0.08 -0.82 -1.34
68% Prob. [0.11, 0.76] [1.28, 3.27] [0.03,0.17] [-2.12,-0.12] [-3.91,-0.33]
95% Prob. [0.02, 1.36] [0.70, 5.54] [0.00, 0.32] [-4.37, 0.25] [-9.55, -0.06]

Table 3.5: Contemporaneous coe�cients in the monetary policy equation identified based on re-
strictions 1, 2 and 3 relaxing restriction on e. The 68 and 95% equal-tailed posterior probability
intervals are reported in brackets.

covering quickly to the pre-shock level at the end of the first year, and remaining at around zero
thereafter. The decline in price level is protracted in time and precisely estimated, as well as
the commodity prices, which, however, recovers the pre-shock level after 48 months. The stress
for the credit market is represented by the positive response on EBP that remains stably positive
with high posterior probability for many months after the shock. For what concerns NFCI, it
shows a positive IRF with a maximum median of 0.1 standard deviations for the first year, and
then it goes back to steady-state.

3.2 Conclusions

In this Chapter, we have identified a monetary policy shock in the U.S. economy and we have
shown that financial variables do matter. Specifically, we have demonstrated that, although EBP
and NFCI do not bring a major contribution in estimating the input response function of the
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output, they help achieve a better estimation in the response of the federal funds rate (if compared
with the results obtained by Arias et al. (2019)). Regarding the monetary policy rule, it is clear
that the first factor influencing the federal fund rate is inflation, followed by financial conditions.





Chapter 4

Results - Extended Dataset

In this chapter, we further analyse whether the contribution of the financial variables matters in
the identification of a monetary policy shock. The main di�erence with respect to the previous
chapter is the length of the dataset. We have, indeed, employed data from January 1973 to
December 2019. This time period contains both the Great Moderation (i.e. 1980-2007), which is
characterized by a reduction in volatility, as well as the global financial crisis (2007-2008), which
is characterized by a volatility spillover. However, in building our dataset, we have dropped
the extreme observations of the Covid-19 pandemic crisis. According to Lenza and Primiceri
(2020), disregarding these outliers is acceptable for the purpose of estimation. The reasons why
we have extended the dataset were to find out if the results obtained in the previous chapter lack
of stability or if they are sample independent, to investigate if the role of financial markets in
impacting the implementation of the monetary policy by the central bank has changed after the
crisis and to see if the global financial crisis increases the information set.

The dataset is composed of real GDP for output, GDP deflator for the price level, a com-
modity price index, the EBP, the NFCI, and the Policy Rate. The first three series are entered
as log-levels (times 100), EBP and the policy rate are in percentage points, whereas NFCI is
expressed in standard deviations from its historical trend. For more information about the com-
position of the dataset refer to Section 2.5.

4.1 Results

Following the same path of chapter 3, we draw the IRFs obtained by imposing several sets of
restrictions, for a time horizon of 60 lags (i.e. 5 years). In each figure, the solid line corresponds
to the median posterior variance, whereas the confidence intervals represent 68% and 95% of
the posterior probability.

Fig. 4.1 shows the IRFs to a contractionary monetary policy shock of one standard devi-
ation when applying only restriction 1, namely, sign restriction on IRFs. First, we can see an
immediate median increase in the policy rate of about 25 basis points. However, the median
impact response becomes virtually zero after 12 months. The median response of output is neg-
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Figure 4.1: IRFs to a one standard deviation contractionary monetary policy shock identified
using negative sign restrictions on the IRFs of price and commodity price, and positive sign
restrictions on the IRFs on EBP, NCFI, and Federal Found rate. These sign restrictions corre-
spond to Uhlig’s identification scheme. No restriction on output. This identification scheme
corresponds to restriction 1.

Variables  y  p  pc  e  n

Median 0.17 2.55 0.35 -1.53 -1.64
68% Prob. [-1.48,1.72] [0.24,7.99] [-0.04,1.11] [ -5.18,0.18] [-10.42,1.43]
95% Prob. [-8.91,11.50] [-31.79,34.02] [-4.62,5.32] [-24.81,24.68] [-66.23,69.26]

Table 4.1: Contemporaneous coe�cients in the monetary policy equation identified based on
restrictions 1. The 68 and 95% equal-tailed posterior probability intervals are reported in brack-
ets.

ative, and persistent with time, however, it is not accurately estimated. The probability of having
positive output is, indeed, not negligible. The reduction in price level is moderate and constant
over time; there are only a tiny fraction of posterior draws that imply the price puzzle. For what
concerns the commodity price index, it is negative at 68% of probability. The e�ect of a con-
tractionary monetary policy on the two financial indicators is much better estimated. It leads
to an immediate positive median response and a zero response after 12 months. Interestingly,
the IRFs of output and interest rate behave di�erently to those reported in Fig. 3.1 for the short
dataset, upon the same restrictions. This is the first evidence that the identification procedure
proposed by Uhlig (2005) is sample dependent.

In Table 4.1, there are reported the contemporaneous coe�cients of the monetary policy rule,
which have been obtained by applying restriction 1. The highest contemporaneous median value
coe�cient is the one of the price level (i.e.  p = 2.55) that says the interest rate reacts more
than 2.5 times to contemporaneous price changes. The contemporaneous median coe�cients of
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Figure 4.2: IRFs to a one standard deviation contractionary monetary policy shock identified
using negative sign restrictions on the IRFs of price and commodity price, and positive sign
restrictions on the IRFs on EBP, NCFI, and Federal Found rate. No restriction on the IRF of the
output. In addition, we imposed the following sign restriction on the structural parameters:  y,
 p > 0. This identification scheme corresponds to restriction 1 plus restriction 2.

Variables  y  p  pc  e  n

Median 0.72 2.62 0.37 -1.25 -1.66
68% Prob. [0.21 ,1.73] [ 0.96, 6.61 ] [0.07, 1.00 ] [-3.83 ,-0.09 ] [-8.88, 0.64]
95% Prob. [0.03, 5.04] [ 0.22, 25.29 ] [-0.15, 4.04] [ -13.91 , 1.04] [ -47.19, 1.69]

Table 4.2: Contemporaneous coe�cients in the monetary policy equation identified based on
restrictions 1 plus 2. The 68 and 95% equal-tailed posterior probability intervals are reported in
brackets.

output and commodity price are respectively equal to 0.17 and 0.35, meaning that they have a
much lower median e�ect on the policy rule. For all three cases, however, there is uncertainty
about the signs in the probability interval. The median coe�cients for ECB and NFCI are around
-1.5 and -1.6. This indicates that they have a significant e�ect on the monetary policy rule, and
thus, accordingly to Gilchrist and Zakrajvsek (2012), the central banks take into account the
financial markets in developing decisions. Interestingly, these coe�cients are higher than the
ones obtained by discharging the global financial crisis (see Table 3.1).

We proceed with our investigation by applying both Restriction 1 and Restriction 2 to the
model. The corresponding IRFs are plotted in Fig. 4.2 where, it is clear that adding positive
sign restrictions on the structural parameters of output and GDP deflator (i.e.  y , p > 0)
leads to a shrinkage of the IRF of the output, and thus to more accurate predictions. With 68%
confidence, a contractionary monetary policy shock determines a continuous drop in the output
for the first 12 months after the shock, whit permanent e�ect thereafter. Apart from that, the
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Figure 4.3: IRFs to a one standard deviation contractionary monetary policy shock identified
using negative sign restrictions on the IRFs of price and commodity price, and positive sign
restrictions on the IRFs on EBP, NCFI, and Federal Found rate. No restriction on the IRF of the
output. In addition, we imposed the following sign restriction on the structural parameters:  y,
 p > 0 and  e,  n < 0. This identification scheme corresponds to restrictions 1, 2 and 3.

Variables  y  p  pc  e  n

Median 0.77 3.20 0.43 -1.73 -3.06
68% Prob. [0.23 1.97] [ 1.32 7.88 ] [0.07 1.19 ] [-4.82 -0.52] [ -11.58 -0.71]
95% Prob. [0.04 6.48] [ 0.35 31.67 ] [-0.22 4.73] [ -21.97 -0.07 ] [-64.03 -0.09]

Table 4.3: Contemporaneous coe�cients in the monetary policy equation identified based on
restrictions 1, 2 and 3. The 68 and 95% equal-tailed posterior probability intervals are reported
in brackets.

addition of Restriction 2 does not impact the IRFs of the other endogenous variables (see 4.1).
Table 4.2 reports the contemporaneous coe�cients of the monetary rule restricted according

to Restriction 1 and Restriction 2. The main improvement with respect to Table 4.1 regards
the posterior median and the posterior intervals of  y. The posterior median of  y increases
from 0.17 to 0.72, while, by construction, the equal-tailed posterior probability intervals become
entirely positive. This means that, consistently with what is reported in the literature, central
banks follow monetary policy rules that increase interest rates in response to increases in real
GDP. For what concerns the other variables, even if there are no significant di�erences in the
estimation of the posterior medians, there is a contraction in the posterior distributions that allows
inferring more accurate conclusions.

We continue our analysis by adding restrictions on the financial indexes and seeing whether
this influence or not the result. Fig. 4.3 shows the IRFs under Restriction 1, Restriction 2 and
Restriction 3. Overall, restricting the systematic responses of the two financial variables, ECB
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Figure 4.4: IRFs to a one standard deviation contractionary monetary policy shock identified
using negative sign restrictions on the IRFs of price and commodity price, and positive sign
restrictions on the IRFs on EBP, NCFI, and Federal Found rate. No restriction on the IRF of the
output. In addition, we imposed the following sign restriction on the structural parameters:  y,
 p > 0 and  e < 0.

Variables  y  p  pc  e  n

Median 0.71 2.65 0.35 -1.53 -1.42
68% Prob. [0.22 1.76] [1.01, 6.56] [0.06, 0.94] [-4.10,-0.49] [-8.25, 0.70]
95% Prob. [0.03, 5.24] [0.24, 23.14] [-0.19, 3.60] [-15.06,-0.09] [-42.81, 1.67]

Table 4.4: Contemporaneous coe�cients in the monetary policy equation identified based on re-
strictions 1, 2 and 3 relaxing restriction on n. The 68 and 95% equal-tailed posterior probability
intervals are reported in brackets.

and NFCI, does not bring any improvements. The IRFs keep displaying weak tracks of the
liquidity puzzle, and the response of output is the conventional one. Note that, under the same
restrictions, the features of the IRF of the output are di�erent if the global financial crisis is not
included in the dataset (see Fig. 3.3)

The contemporaneous coe�cients corresponding to the latter identification scheme are re-
ported in Table 4.3. The estimated response of policy rate to real GDP, GDP deflator, and com-
modity price is quite similar to the one depicted in Table 4.2, without imposing Restriction 3.
By contrast, there are huge di�erences in the estimation of NFCI and EBP: the policy rate re-
acts three to one to exacerbate financial conditions, and almost two to one to variation in EBP.
Nonetheless, the 95% posterior probability intervals present significant uncertainty.

Since restricting the systematic components of the two financial variables leads to very di�er-
ent estimations of the median response of  e  n, and very large probability intervals (especially
for the case of  n at 95% confidence), we want to investigate which financial indicator brings a
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Figure 4.5: IRFs to a one standard deviation contractionary monetary policy shock identified
using negative sign restrictions on the IRFs of price and commodity price, and positive sign
restrictions on the IRFs on EBP, NCFI, and Federal Found rate. No restriction on the IRF of the
output. In addition, we imposed the following sign restriction on the structural parameters:  y,
 p > 0 and  n < 0.

Variables  y  p  pc  e  n

Median 0.83 3.32 0.46 -1.29 -3.30
68% Prob. [0.25 ,2.00] [ 1.40, 8.01 ] [0.09, 1.28 ] [-4.21, 0.04 ] [-11.99, -0.80]
95% Prob. [0.04, 7.08] [ 0.33, 32.43 ] [-0.18, 5.52] [ -17.26, 1.42] [ -67.54 ,-0.11]

Table 4.5: Contemporaneous coe�cients in the monetary policy equation identified based on re-
strictions 1, 2 and 3 relaxing restriction on e. The 68 and 95% equal-tailed posterior probability
intervals are reported in brackets.

major contribution to the identification of the monetary policy shock and to the estimation of the
contemporaneous coe�cients. To this aim, we proceed analogously to what is done in Chapter
3 for Figures 3.4 and 3.5, and Tables 3.4 and 3.5.

Fig. 4.4 depicts the IRFs for the extended dataset according to restrictions 1 and 2, however,
restriction 3 has been partially relaxed, with only n being restricted. We cannot see any relevant
di�erence with respect to Fig. 4.3. Nevertheless, as shown in Table 4.4, this identification
scheme leads to more accurate estimates of the response of policy rate to EPB and NFCI.

Finally, Fig. 4.5 reports the result obtained with the last set of restrictions, namely by impos-
ing Restriction 1, Restriction 2 and part of Restriction 3 (i.e. no restriction on  e, but  n > 0).
Again, the IRFs seem to be una�ected by any restriction on the financial indicators. On the other
hand, these restrictions have a huge influence on the estimation of the monetary policy rule. As
Table 4.5 shows, the estimation of the median response of policy rate is higher with respect to
the previous sets of restrictions, except for  e which decreases by about 0.5. Furthermore, the
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uncertainty in the estimation of  n is recovered.
In general, for all the 5 identification schemes, we have, with the inclusion of the financial

crisis within the dataset, a higher uncertainty in the estimation of the monetary policy rule.

4.2 Conclusions

Depending on the length of the time series, and on the historical events covered, the outcomes
of VARs models may be di�erent over the same restrictions. In this Chapter, we address this
concern by applying the same identification strategies employed in Chapter 3 but considering a
longer dataset spanning the global financial crisis. We have found that, in this case, whatever
the restrictions applied, a contractionary monetary policy shock always determines a persistent
decline in output. Unlike what happens in the short dataset, the impact of the shock on the
median response of the interest rate becomes zero after 12 months. Furthermore, the liquidity
puzzle is, with high probability, ruled out. Even if changing the restriction does not impact the
IRFs, it has a strong e�ect on estimating the coe�cients of the policy rule. Interestingly, the
contemporaneous coe�cients for the financial indicators are not negligible.





Chapter 5

Instruments for Structural VAR checks

The main results obtained by implementing our VAR model have been presented in Chapters
3 and 4. In this chapter, we first re-estimate the structural VAR model without including the
financial indicators (i.e. VAR model with 4 endogenous variables) to understand better to which
extent the contribution brought by Wall Street is important. We then provide the forecast error
variance decomposition (FEVD) for both the short and the extended datasets, and we perform
some robustness checks to assess how the model works with alternative variables. Finally, we
evaluate the e�ect of the sample length on the accuracy of the estimations.

5.1 Four Variables Structural VAR

To see the influence of the two financial variables on the results, we re-estimate the same VAR
model with the exclusion of EBP and NFCI. The reduced-form VAR has been applied on monthly
based U.S. data from January 1973 to December 2019. The dataset is composed of real GDP
for output yt, GDP deflator for the price level pt, a commodity price index, pct and the policy
rate rt, which is computed as described in Section 2.5.4. The VAR is fitted with 12 lags in logs-
levels series except for using the policy rate directly. As usual, we plot the IRFs for 60 lags. The
monetary policy equation (see Eq. 2.20) in this case reduces to:

rt =  yyt +  ppt +  pcpct + �"1,t (5.1)

In Fig. 5.1, we draw the IRFs to a contractionary monetary policy surprise of one standard
deviation resulting from the 4 variables VAR model when applying negative sign restrictions
on the IRFs of price and commodity prices, and positive sign restriction on the IRF of policy
rate (i.e. Uhlig’s sign restrictions). The outcome is qualitatively similar to what was obtained
by Uhlig (2005). The median response of the output is positive. After the third quarter, the
probability of having positive response of output becomes stronger. Furthermore, we can see
that, since most of the mass of GDP deflator is on the negative side, the price puzzle is unlikely.
Last, the level of the policy rate remains sustained after the shock with a high probability for the
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Figure 5.1: IRFs to a one standard deviation contractionary monetary policy shock identified
using restriction 1 and the extended dataset, without including the financial variables.

Variables  y  p  pc

Median 0.08 2.68 0.47
68% Prob. [-1.65, 1.05] [0.64, 7.54] [0.11, 1.42]
95% Prob. [-11.61, 9.57] [-9.26, 26.96] [-3.17, 6.23]

Table 5.1: Contemporaneous coe�cients in the monetary policy equation identified based on
restriction 1, considering the extended dataset and no financial indicators. The 68 and 95%
equal-tailed posterior probability intervals are reported in brackets.

whole period of analysis. We can conclude that the inclusion of financial indicators allows to
recover a contractionary output also when only restriction 1 is applied.

In Table 5.1, the contemporaneous coe�cients for the latter case are reported. As well as
the IRFs for the output in Figure 5.1, also the contemporaneous coe�cient for the real GDP is
not well estimated. The median response at t = 0 is virtually zero and there is no clear evidence
about the sign. On the other hand, the  p is sustained and consistent with the extended dataset.
The sign is positive at least at 68 % probability interval.

Following the approach of this work, in addition to imposing sign restrictions on the IRFs,
we restrict the systematic components of the monetary policy rule. This set of restrictions is
similar to what is imposed in Fig. 3.2 and Fig. 4.2 (notice that, since there are no financial
variables in the dataset, we cannot apply restriction 3). To sum up, we impose sign restriction on
the IRF of price and commodity price, and positive sign restriction on the IRFs of the Federal
found rate, while leaving the output unrestricted. We also impose negative sign restrictions on
the systematic response of output and GDP deflator. Fig. 5.2 shows the IRFs of the model
according to the last set of restrictions. The main improvement with respect to 5.1 concerns the
response of the output: the median response is negative. However, since a great mass is on the
positive side, the results are not strong enough to conclude that, four variables are su�cient to
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Figure 5.2: IRFs to a one standard deviation contractionary monetary policy shock identified
using restriction 1 and restriction 2 to the extended dataset, without including the financial vari-
ables.

Variables  y  p  pc

Median 0.51 2.51 0.31
68% Prob. [0.15, 1.18] [0.76, 6.57] [0.03,0.92]
95% Prob. [0.02, 2.17] [0.13, 18.08] [-0.19, 2.29]

Table 5.2: Contemporaneous coe�cients in the monetary policy equation identified based on
restrictions 1 and 2, considering the extended dataset and no financial indicators. The 68 and
95% equal-tailed posterior probability intervals are reported in brackets.

identify a monetary policy shock. This proves that including the financial variables improves
the estimation of the output, even though this does not have a significant role in the estimation
of the other variables.

Table 5.2 shows the posterior estimates of the contemporaneous coe�cients according to the
previous Figure. Not surprising the coe�cient for the output recovers a positive sign. Interest-
ingly, the  p holds the value and becomes better estimated.

5.2 Forecast Error Variance Decomposition

This section collects the outcome of the forecast error variance decomposition analysis (FEVD)
that allows evaluating the percentage of the error variance made in forecasting a variable due
to a specific shock at a given horizon (Stock and Watson, 2001). The FEDV is also known as
prediction mean squared error (MSPE). Mathematically, it is possible to compute the MSPE
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12 months

Variables Output GDP def. CP Index EBP NFCI FFR
Median 0.11 0.05 0.10 0.13 0.13 0.15
68% Prob. [0.03,0.33] [0.01,0.20] [0.02,0.33] [0.04,0.34] [0.06,0.25] [0.09,0.22]

24 months

Variables Output GDP def. CP Index EBP NFCI FFR
Median 0.09 0.07 0.10 0.12 0.13 0.13
68% Prob. [0.03,0.21] [0.01,0.25] [0.02,0.32] [0.05,0.25] [0.06,0.22] [0.07,0.23]

Table 5.3: Forecast error variance decomposition computed by considering a 1-year and 2-year
horizon for the short dataset. The terms in brackets refer to 68% equal-tailed probability inter-
vals.

Figure 5.3: Forecast error variance decomposition for the short dataset. The confidence intervals
correspond to 68% of probability.
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12 months

Variables Output GDP def. CP Index EBP NFCI FFR
Median 0.20 0.06 0.09 0.13 0.13 0.13
68% Prob. [0.06,0.45] [0.01,0.19] [0.02,0.28] [0.04,0.34] [0.05,0.31] [0.08,0.23]

24 months

Median 0.16 0.06 0.08 0.12 0.13 0.12
68% Prob. [0.05,0.37] [0.01,0.20] [0.02,0.26] [0.05,0.28] [0.06,0.23] [0.07,0.21]

Table 5.4: Forecast error variance decomposition computed by considering a 1-year and 2-year
horizon for the extended dataset. The terms in brackets refer to 68% equal-tailed probability
intervals.

Figure 5.4: Forecast error variance decomposition for the extended dataset. The confidence
intervals correspond to 68% of probability.

If we denote with ✓kj,h the elements of ⇥h, we have that the contribution of the shock j to the
MSPE of ykt for all horizons is:

MPSEk
j (h) = ✓2

kj,0 + . . .+ ✓2
kj,h�1 (5.4)

To perform the FEVD computations, we use a modified version of the code developed by Caggiano
et al. (2021), and reported in Appendix.

The first FEVD has been calculated on the short dataset under the three restrictions (see
Section 2.3) by considering both 1-year and 2-years ahead horizons (see Table 5.3). After one
year, the monetary policy shock is responsible for the 11% of the variation of the output, the
5% of the GDP deflator, the 10% of the consumer price index, and the 13% of EBP and NFCI.
The strongest impact of the shock is on the federal funds rate, and the fraction explained is
equal to 15%. After two years, the contribution of the shock on the output is found to be more
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moderate (only 9% of its volatility is explained by the shock), whereas the impact on other
variables remains almost unchanged. Same considerations can be drawn by looking at Fig. 5.3.
Overall, except for the GDP deflator, all variables are impacted, in median, for the same amount.

We calculate the FEVD under the same conditions (i.e. restrictions 1, 2 and 3 at 1-year and
2-years ahead horizon) also for the extended dataset. If we look at Table 5.4, we can see that the
main novelty regards the output: the shock determines 20% of the volatility of the output after
12 months and 16% after 2 years. The levels of the error variances for the other variables are,
instead, not significantly di�erent from the one obtained for the short database, and their median
values are stable in time (see also Fig. 5.4). The impact on the policy rate is non-negligible,
with monetary surprise accounting for 13% of the volatility of the federal funds rate.

Observing EBP and NFCI together, they account for 26% of the volatility due to the shock.
This result suggests that monetary policy a�ects financial indicators and, in some measure, they
have to be considered in the policy decisions.

5.3 Robustness Checks

There are several ways to check the robustness of a VAR model. Here, we employ the two most
common approaches that are: assessing how the model performs with alternative variables and
analysing how the model works in di�erent sub-samples. In the former case, we employ as
alternative variables a measure of term-spread, the index Standard and Poor’s 500, and the VIX
index. For the latter case, we consider a sample starting from 1985, and thus, we discharge the
breaks found by Stock and Watson (2012) in some factor loadings.

5.3.1 Industrial Production and Term Spread

As already discussed in Section 1.4, the central bank set the short-term interest rate with the aim
to influence the real interest rate, for the whole length of the yield curve. Since investments in the
real economy have usually a medium-long maturity, it is important that the central bank reaches
the long-term interest rate when using the monetary policy to stabilize the business cycle. The
central bank implements the monetary policy through open market operations, by buying or
selling government bonds (i.e. treasury in the U.S.). The di�erence between the yield on a long-
term government bonds and the yield on shorter term public securities, is commonly known as
term-spread. Since in normal times longer maturities provide higher yields, the term-spread is
positive and the yield curve is upward. However, in the presence of markets on edge, it could
happen that a higher yield is required for the shorter maturities with respect to the longer ones.
In this case, the di�erence is negative and the yield curve is downward. For this reason, the
term-spread may be used as a predictor of financial instability (i.e. crisis predictor) (Parker and
Schularick, 2021).

Here, the term spread is used as an alternative variable for substituting EBP (discussed in
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Figure 5.5: IRFs to a one standard deviation contractionary monetary policy shock identified
using restrictions 1, 2 and 3. With respect to the original dataset, the EBP is substituted with the
term spread while the real GDP is substituted with the industrial production index.

Variables  y  p  pc  ts  n

Median 0.20 0.85 0.19 -1.54 -0.93
68% Prob. [0.06, 0.39] [0.32, 1.63] [0.08, 0.36] [-1.90 -1,27] .[-2.31 -0,26]
95% Prob. [0.01, 0.65] [0.07, 2.91] [0.01, 0.58] [-2.39, -1,05] [-4.74 -0,04]

Table 5.5: Contemporaneous coe�cients from the first robustness check in the monetary policy
equation identified based on restrictions 1, 2 and 3, and considering term spread and industrial
production index as alternative variables for EBP and real GDP, respectively. The 68 and 95%
equal-tailed posterior probability intervals are reported in brackets.

2.4.4). We compute the term spread as the di�erence between the market yield on U.S. Treasury
at 10-years and the market yield on U.S. Treasury at 1-year. The data are retrieved from FRED
with monthly frequency. Since the term-spread moves in the same direction as the EBP in re-
sponse to an increase in the policy rate, we apply the same set of restrictions as before. To stress
the test, we also switch the real GDP with the industrial production index (see Section 2.4.1),
since it is often used as a proxy for the real GDP (Christiano et al., 1994; Ramey, 2016). The
obtained IRFs are reported in Figure 5.5.

The results are consistent with our model: the response of the output is negative at least for
18 months after the shock. The median response remains at around -0.4% for 12 months after
the second quarter of the first year and returns to be zero after 60 months. The price puzzle is
completely ruled out for the first 12 months and then keeps a large part of its mass with a negative
sign. The median response for the GDP deflator is declining for the entire space. Even though the
shock in the policy rate is modest, indeed it is estimated to be at around 20 basis points, it is well
transmitted to the term spread, whose median response reaches the peak after 18 months. For the
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sick of completeness, we report in Table 5.5 the corresponding contemporaneous coe�cients.

5.3.2 CPI and S&P500

For the second robustness check, we replace the NFCI (see Section 2.4.5) with the S&P500
index. While the first is a comprehensive measure of the financial stress in the system (Brave
and Butters, 2012), the second works as a proxy for the stock market which is indeed sensitive
to financial tension (Sum, 2012).

The Standard and Poor’s 500 is one of the most popular equity indexes for the U.S. mar-
ket. It tracks the performance of the 500 largest-cap listed in one of the following: New York
stock exchange, American Stock Exchange (AMEX), or Nasdaq. The index is weighted by float-
adjusted market capitalization and, according to the provider, it covers approximately 80% of
the available market capitalization (Standard & Poor o�cial website, May 2, 2022).

In re-estimating the VAR, we impose restrictions 1, 2 and 3. Furthermore, we impose nega-
tive sign restriction on the IRF of the S&P500 index, and positive sign restriction on its system-
atic component. According to Rigobon and Sack (2004), indeed, an increase in the short-term
interest rate have a negative impact on stock prices. Bjørnland and Leitemo (2009) confirm the
results and find great interdependence between the interest rate setting and real stock prices, and
real stock prices immediately fall after a monetary policy surprise. They also solve the endogene-
ity problem, due to simultaneity between monetary policy and financial markets, by applying a
combination of short-run and long-run restrictions that maintains the qualitative properties of a
monetary policy shock (Bjørnland and Leitemo, 2009). For this reason for this check, we do not
investigate heteroskedasticity and simultaneity, but we simply assume the results by Rigobon
and Sack (2004) and Bjørnland and Leitemo (2009) hold. The S&P500 index is entered in log
level in the VAR model (Bjørnland and Leitemo, 2009). To stress the test, we also switch the
GDP deflator with the CPI (see Section 2.4.2), since it is often used as a proxy for the deflator
(Christiano et al., 1994; Gertler and Karadi, 2015).

Fig. 5.6 reports the IRFs for the second robustness check. Even if the response for the
output is not well estimated, the responses are qualitatively similar to our model. We observe a
contraction in the output for the first year after the shock, with 68% posterior probability. The
liquidity puzzle is absent for the first 12 months, after which there is a small probability to incur
in the puzzle. The equity index reacts well to the shock. Its median value registers a decrease up
to -2% after 6 months, and a huge part of the mass of its posterior probability remains below the
steady-state level for the whole period. Then, exactly as in our model, the median response of the
policy rate increases by 25 basis points. The second check confirms even further the robustness
of our VAR model.

The systematic responses for the second robustness check are reported in Table 5.6. Inter-
estingly, the estimated coe�cient for the S&P500 is virtually zero at 68% posterior probability.
The latter result suggests that the central bank does not take into consideration the stock market,
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Figure 5.6: IRFs to a one standard deviation contractionary monetary policy shock identified
using restrictions 1, 2 and 3. With respect to the original dataset, the EBP is substituted with
S&P500 while the GDF deflator is substituted with CPI.

Variables  y  p  pc  e  sp

Median 0.82 2.82 0.02 -1.33 0.07
68% Prob. [0.27, 1.65] [0.97, 6.93] [[-0.50, 0.54] [-3.64, -0.36] [0.02, 0.20]
95% Prob. [0.04, 3.14] [0.16, 19.13] [-1.67, 1.67] [-11.55, -0.06] [0.00, 0.61]

Table 5.6: Contemporaneous coe�cients from the first robustness check in the monetary policy
equation identified based on restrictions 1, 2 and 3, and considering S&P500 and CPI as alter-
native variables for EBP and GDP deflator, respectively. The 68 and 95% equal-tailed posterior
probability intervals are reported in brackets.

at least directly.

5.3.3 VIX

In this section, we re-estimate the VAR model by substituting the NFCI, a comprehensive mea-
sure of financial stress (Brave and Butters, 2012) (see Section 2.4.5), with an index of expected
volatility, the VIX.

The Chicago Board Options Exchange’s (CBOE) Volatility Index, or VIX, is a real-time
index that represents the market’s expectations. It is calculated as mid-quote prices of call and
put options with very short maturity on the S&P500 index. For this reason, it generates a 30-days
forward projection of volatility. The VIX is also called fear index because it reports the level
of stress in the stock market. On a global basis, it is one of the most recognized measures of
volatility (CBOE o�cial website). Unfortunately, the VIX has been created only in 1993 by the
CBOE, based on the Brenner and Galai’s work. For this reason, we reduce the sample interval
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Figure 5.7: IRFs to a one standard deviation contractionary monetary policy shock identified
using restrictions 1, 2 and 3. With respect to the original dataset, the NFCI is substituted with
VIX.

Variables  y  p  pc  e  v

Median 0.17 0.93 0.08 -0.48 -0.01
68% Prob. [0.05, 0.40] [0.29, 2.27] [-0.00, 0.23] [-1.11, -0.16] [-0.02 -0.00]
95% Prob. [0.01, 0.86] [0.06, 5.65] [-0.06, 0.56] [-2.26 -0.03] [-0.03, -0.00]

Table 5.7: Contemporaneous coe�cients from the first robustness check in the monetary policy
equation identified based on restrictions 1, 2 and 3, and considering VIX as alternative variable
for NFCI. The 68 and 95% equal-tailed posterior probability intervals are reported in brackets.

to 1990-2019.
The choice to substitute the NFCI with the VIX can be justified by looking at the literature.

Bekaert et al. (2013) show that a cut in interest rate reduces the volatility risk premium in stocks,
and that risk aversion is closely connected to monetary policy actions. According to Bruno
and Shin (2015), the VIX can therefore be seen as the empirical link between monetary policy
and bank leverage decisions, which in turn have macroeconomic implications. They find that
a tightening in the monetary policy increases the VIX index, and leads to a decline in banking
capital flows and leverage. Furthermore, Passari and Rey (2015) find a relevant degree of co-
movements in leverage and credit across countries and a negative correlation with the VIX. For
this reason, they consider the VIX as a proxy for the global financial cycle (GFC) in their VAR
model and they show that the central bank, with its behaviours, can impact the VIX and that a
monetary shock increases the VIX. According to the findings above, we do not need to modify
the set of restrictions for this check, however following Passari and Rey (2015) the VIX is entered
in log level.

In Fig. 5.7, the obtained IRFs are plotted. Overall, the results are coherent with the main
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model. In particular, we can see that there is uncertainty in the posterior of the output, however,
it contracts for the first three quarters with over 68% probability. There is no trace of the price
puzzle for the first 30 months. The VIX reposts almost a 5% increase after the shock, but the
increase in the policy rate is lacking, less than 10%, but persistent. Except for the response of the
output after the third quarter, all the responses are well estimated. Overall, the model is robust.

Table 5.7 lists the contemporaneous coe�cients of this third robustness check. As well as
the coe�cient for S&P500, the coe�cient for the VIX,  v, is zero. The central bank does not
react to volatility in the stock market. The huge di�erence between the estimation of  n and  v,
suggests that the VIX is not a good indicator for the leverage of the banking system, at least in
this framework.

5.4 Further Analysis

In their work, Stock and Watson (2012) found evidence that macroeconomic uncertainty is coun-
tercyclical. Indeed, the unprecedented events of the 2007-2009 crisis lead to macroeconomic
shocks that were the larger version of previous shocks. This means that the economy reacts in a
predictable way. Furthermore, they found evidence for a break in the factor loadings in the first
quarter of 1984. A break in these coe�cients corresponds to a break in the factor dynamics.

To have an idea of how the length of the sample influences our results, and to assess whether
the 1984 break found by Stock and Watson (2012) a�ects the stability of the coe�cients, in this
section, we re-estimate our VAR model but on a di�erent sub-sample, ranging from January
1985 to December 2019.

The IRFs to a one standard deviation contractionary monetary policy shock under restrictions
1, 2 and 3 obtained from this model are reported in Fig. 5.8. The empirical outcomes are in
agreement with our previous results, except that the decline in output is mild, and the monetary
policy stance is less tight but more persistent. Furthermore, the responses of output and policy
rate are less accurately estimated.

Table 5.8 shows the posterior estimates of the contemporaneous coe�cient. The sign and
the relative importance of each variable are almost the same as before. This confirms that price,
NFCI, EBP are, in this order, the endogenous variables that most influence the monetary policy
rule. What change, however, is the magnitude and the accuracy of the estimation. Specifically,
the median response of the policy rate to price is estimated to be 1.63, while the posterior me-
dian of the NFCI and EBP is -1.53 and -0.47, respectively. Even though these values are in
accordance with the contemporaneous coe�cient estimated for the short dataset (see Table 3.3),
they are roughly half the ones obtained for the extended dataset (see Table 4.3), under the same
conditions. Furthermore, starting the sample in January 1985 increases the accuracy of the esti-
mations: the 68% and 95% posterior distributions become narrower by a factor of 8. A similar
result has been obtained by Arias et al. (2019).

Overall, the main results remain robust when we consider, in the estimation of the VAR
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Figure 5.8: IRFs to a one standard deviation contractionary monetary policy shock identified
using restrictions 1, 2 and 3. The sample ranges from January 1985 to December 2019.

Variables  y  p  pc  e  n

Median 0.30 1.63 0.10 -0.47 -1.53
68% Prob. [0.09, 0.67] [0.81,3.25] [0.01, 0.27] [-1.11, -0.14] [-3.84, -0.46]
95% Prob. [0.01, 1.19] [0.36, 6.74] [-0.04, 0.64] [-2.49, -0.02] [-8.89, -0.08]

Table 5.8: Contemporaneous coe�cients from the last robustness check (sub-sample ranging
from January 1985 to December 2019) in the monetary policy equation identified based on
restrictions 1, 2 and 3. The 68 and 95% equal-tailed posterior probability intervals are reported
in brackets.

model, a di�erent sub-sample. This indicates that the economy is predictable. However, dis-
charging the 1984 break in the factor dynamics, allows more accurate estimations to be retrieved.

5.5 Conclusions

In this Chapter, we have provided the results of a 4 variables VAR model without financial
indicators, the forecast error variance decomposition analyses, and robustness checks to better
interpret the consistency of the results obtained with our VAR model. We have reached three
main findings. First, the inclusion of the two financial indicators improves the estimation of the
output. Furthermore, if accounted together, the EPB and the NFCI are responsible for 26% of the
variability of the monetary policy shock. Second, our identification scheme is appealing because
we can retrieve similar results when using alternative variables. Nevertheless, as pointed out by
Arias et al. (2019), the set of admissible structural parameters might be very large and include
structural parameters with questionable implications. Finally, the results are robust also if we
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re-estimate our VAR model with a di�erent sub-sample. In this case, the contemporaneous
coe�cients may be less or more precisely estimated, accordingly to the amount of volatility
included in the sample.





Conclusions

In this work, we have identified a monetary policy shock in the U.S. economy by using set
and partially identified structural VAR models. Our reduced-form VAR specification consists
of six endogenous variables. Four of them are standard macroeconomic indicators that allow
appreciating the e�ect of the real economy. The other two are proxies for financial conditions. To
identify the shock, we have imposed sign restrictions on the impulse response functions and sign
restrictions on the contemporaneous coe�cient of the monetary policy rule. We have combined
these two restrictions because, as demonstrated by Kilian and Murphy (2012), sign restrictions
on the IRFs alone are not su�cient to infer the responses of real GDP to the monetary policy
shock. Furthermore, according to Wolf (2020), adding sign restriction on the Taylor rule is a
possible solution to solve this problem. The model is estimated for two di�erent samples. The
first one employs data from January 1973 to December 2019. It spans the Great Moderation and
is characterized by a mild volatility. The second dataset ranges from January 1973 to December
2019 and thus, it accounts for both the Great Moderation and the Global Financial Crisis, which
is instead characterized by a higher volatility.

With our analysis, we have reached three main conclusions. First, Uhlig’s results are sam-
ple dependent. Indeed, the response estimated considering the agnostic procedure proposed by
Uhlig has an ambiguous e�ect on the real GDP. When considering the short sample, a contrac-
tionary monetary policy shock determines, with a high probability, an expansion of the output
(see Fig. 3.1) and this is consistent with Uhlig’s findings. However, when considering the ex-
tended dataset, the same monetary policy shock induces, with high probability, an output con-
traction (see Fig. 4.1). The reason why this happens is because in the original sample considered
by Uhlig (i.e. January 1965 - December 1996), as well as in our short dataset, there are no events
having the high volatility introduced by the global financial crisis. From an econometric per-
spective, including the 2007-2009 financial crisis within the sample increases the information
set.

Another interesting outcome regards the role of financial conditions in the identification of
a monetary policy shock and in estimating the policy coe�cient. The response of the output
estimated by considering EBP and NFCI (see Fig. 4.3) is more accurate than the one retrieved
with the 4-variables VAR that does not embed financial indices (see Fig. 5.2). However, the real
improvement concerns the estimation of the monetary policy rule: according to our results, the
monetary policy rule is mostly influenced by price level, followed by financial conditions. Thus,
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financial conditions matter.
Last but not least, the response of output and interest rate estimated considering the short

and the extended datasets are qualitatively di�erent. Specifically, when considering the short
sample (Fig. 3.3), a monetary policy tightening determines a decline in the median response
of output that lasts only 12 months, and a sharp increase followed by a persistent decline in the
interest rate. On the other hand, with the full sample (Fig. 4.3), the median decline of output
is higher and persistent, while the interest rate becomes negligible after one year. The length of
the sample influence also the estimation of the monetary policy coe�cients. Not surprisingly,
as we increase the length of the sample, the estimated posterior distributions become wider, and
the accuracy of the estimation weaker.
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Appendix A

Replication codes

In this Chapter, we provide the Matlab codes necessary to replicate our main results. The Matlab
code is divided into four main files that concern, in order, the creation of the dataset from .csv
files, the resolution of the VAR model with the desired restrictions, the plot of the IRFs, and the
display of tables reporting the estimated contemporaneous coe�cient of the monetary policy
rule. These replications files are updated from the ones provided by Arias et al. (2019) thus,
refer to Arias et al. (2019) to retrieve all the help functions required to run the code. For what
concern the Error Variance Decomposition, instead, our replication files are an updated version
of the one given by Caggiano et al. (2021).

Replication code for setting up the short dataset

1 %%**********************************************************************

2 % This is a modified version of the code developed by

3 % Arias et al. (2019) to create the short dataset (1973 -2007)

4 %%**********************************************************************

5

6 clear all;

7 clc;

8 close all;

9

10 %-----------------------------------------------------------------------

11 % % Load useful libraries

12 %-----------------------------------------------------------------------

13

14 addpath(’td’); %load Enrique M. Quilis Temporal Disaggregation Library

15 addpath(’csvfiles/’);

16

17 %-----------------------------------------------------------------------

18 % % Interpolate real GDP

19 %-----------------------------------------------------------------------

20

21 % read real GDP
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22 raw_data_GDPC1 = readtable(’csvfiles/GDPC1.csv’);

23 GDPC1 = table2array(raw_data_GDPC1(find(raw_data_GDPC1.DATE==’

01-Jan -1973’):find(raw_data_GDPC1.DATE==’01-Oct -2007’) ,2));

24

25 % read industrial production

26 raw_data_IP = readtable(’csvfiles/INDPRO.csv’);

27 IP = table2array(raw_data_IP(find(raw_data_IP.DATE==’01-Jan

-1973 ’):find(raw_data_IP.DATE==’01-Dec -2007 ’) ,2));

28

29 Y = GDPC1; % Y: Nx1 ---> vector of low frequency data

30 x = IP; % x: nxp ---> matrix of high frequency indicators (without

intercept)

31 ta = 2; % type of disaggregation ---> average (index)

32 sc = 3; % quarterly to monthly

33 type = 0; % estimation method: (0) weighted least squares (1)

maximum likelihood

34 opC = 1; % no intercept in hf model

35

36 res = chowlin(Y,x,ta ,sc ,type ,opC ,[]);

37

38 monthly_GDP = res.y;

39

40 %-----------------------------------------------------------------------

41 % % Interpolate real GDP deflator

42 %-----------------------------------------------------------------------

43

44 % read GDP Deflator

45 raw_data_GDPDEF= readtable(’csvfiles/GDPDEF.csv’);

46 GDPDEF = table2array(raw_data_GDPDEF(find(raw_data_GDPDEF.DATE==

’01-Jan -1973 ’):find(raw_data_GDPDEF.DATE==’01-Oct -2007’) ,2));

47

48 % read CPIAUCSL

49 raw_data_CPIAUCSL= readtable(’csvfiles/CPIAUCSL.csv’);

50 CPIAUCSL = table2array(raw_data_CPIAUCSL(find(raw_data_CPIAUCSL.

DATE==’01-Jan -1973’):find(raw_data_CPIAUCSL.DATE==’01-Dec -2007’) ,2));

51

52 % read PPIFGS

53 raw_data_PPIFGS= readtable(’csvfiles/PPIFGS.csv’);

54 PPIFGS = table2array(raw_data_PPIFGS(find(raw_data_PPIFGS.DATE==

’01-Jan -1973 ’):find(raw_data_PPIFGS.DATE==’01-Dec -2007’) ,2));

55

56 Y = GDPDEF; % Y: Nx1 ---> vector of low frequency data

57 x = [CPIAUCSL ,PPIFGS ]; % x: nxp ---> matrix of high frequency

indicators (without intercept)

58 ta = 2; % type of disaggregation ---> average (index)

59 sc = 3; % quarterly to monthly

60 type = 0; % estimation method: (0) weighted least



91

squares (1) maximum likelihood

61 opC = 1; % no intercept in hf model

62

63 res = chowlin(Y,x,ta ,sc ,type ,opC ,[]);

64

65 monthly_GDPDEF = res.y;

66

67 %-----------------------------------------------------------------------

68 % % Commodity Price Index: Obtained from Global Financial Data through

69 % % the Board of Governors of the Federal Reserve System

70 %-----------------------------------------------------------------------

71

72 raw_data_CPRINDEX= readtable(’csvfiles/DJSD_20170720.csv’);

73 CPRINDEX = table2array(raw_data_CPRINDEX(find(raw_data_CPRINDEX.

Date==’31-Jan -1973 ’):find(raw_data_CPRINDEX.Date==’31-Dec -2007’) ,9));

74

75 %-----------------------------------------------------------------------

76 % % Excess Bond Premium

77 %-----------------------------------------------------------------------

78

79 raw_data_EBP = readtable(’csvfiles/EBP.csv’);

80 EBP = table2array(raw_data_EBP(find(raw_data_EBP.date==’01-

Jan -1973’):find(raw_data_EBP.date==’01-Dec -2007’) ,3));

81

82 %-----------------------------------------------------------------------

83 % % National Financial Conditions Index

84 %-----------------------------------------------------------------------

85

86 raw_data_NFCI = readtable(’csvfiles/NFCI.csv’);

87 NFCI = table2array(raw_data_NFCI(find(raw_data_NFCI.DATE==’01-

Jan -1973’):find(raw_data_NFCI.DATE==’01-Dec -2007’) ,2));

88

89 %-----------------------------------------------------------------------

90 % % Federal Funds Rate

91 %-----------------------------------------------------------------------

92

93 raw_data_FEDFUNDS= readtable(’csvfiles/FEDFUNDS.csv’);

94 FEDFUNDS = table2array(raw_data_FEDFUNDS(find(raw_data_FEDFUNDS.

DATE==’01-Jan -1973 ’):find(raw_data_FEDFUNDS.DATE==’01-Dec -2007’) ,2));

95

96 %-----------------------------------------------------------------------

97 % % Export data

98 %-----------------------------------------------------------------------

99

100 dates = table2array(raw_data_FEDFUNDS(find(raw_data_FEDFUNDS.DATE==’01-

Jan -1973’):find(raw_data_FEDFUNDS.DATE==’01-Dec -2007’) ,1));

101
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102 dataset = table(dates ,monthly_GDP ,monthly_GDPDEF ,CPRINDEX ,EBP ,NFCI ,

FEDFUNDS ,IP ,CPIAUCSL);

103

104 writetable(dataset ,’csvfiles/dataset.csv’)

105

106 % Dates

107 dates1 = [dataset.dates ];

108 dates = datenum(dates1);

109

110 % Names of variables

111 varNames1 ={’m_Y’; ’m_P’; ’m_CP’; ’m_EBP ’; ’m_NFCI ’; ’m_FFR ’};

112 varNames=varNames1 ’;

113

114 % Data

115 data = [100* log(dataset.monthly_GDP) 100* log(dataset.monthly_GDPDEF)

100* log(dataset.CPRINDEX) dataset.EBP dataset.NFCI dataset.FEDFUNDS ];

116

117 % Save results

118 save(’data_mat.mat’,’data’,’dates’,’varNames ’);

119 cd ..
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Replication code for setting up the extended dataset

1 %%**********************************************************************

2 % This is a modified version of the code developed by

3 % Arias et al. (2019) to create the extended dataset (1973 -2019)

4 %%**********************************************************************

5

6 clear all;

7 clc;

8 close all;

9

10 %-----------------------------------------------------------------------

11 % % Load useful libraries

12 %-----------------------------------------------------------------------

13

14 addpath(’td’); % load Enrique M. Quilis Temporal Disaggregation Library

15 addpath(’csvfiles/’);

16

17 %-----------------------------------------------------------------------

18 % % Interpolate real GDP

19 %-----------------------------------------------------------------------

20

21 % read real GDP

22 raw_data_GDPC1= readtable(’csvfiles/GDPC1.csv’);

23 GDPC1 = table2array(raw_data_GDPC1(find(raw_data_GDPC1.DATE==’

01-Jan -1973’):find(raw_data_GDPC1.DATE==’01-Oct -2019’) ,2));

24

25 % read industrial production

26 raw_data_IP= readtable(’csvfiles/INDPRO.csv’);

27 IP = table2array(raw_data_IP(find(raw_data_IP.DATE==’01-Jan -1973

’):find(raw_data_IP.DATE==’01-Dec -2019’) ,2));

28

29 Y = GDPC1; % Y: Nx1 ---> vector of low frequency data

30 x = IP; % x: nxp ---> matrix of high frequency indicators (without

intercept)

31 ta = 2; % type of disaggregation ---> average (index)

32 sc = 3; % quarterly to monthly

33 type = 0; % estimation method: (0) weighted least squares (1)

maximum likelihood

34 opC = 1; % no intercept in hf model

35

36 res = chowlin(Y,x,ta ,sc ,type ,opC ,[]);

37

38 monthly_GDP = res.y;

39

40 %-----------------------------------------------------------------------

41 % % Interpolate real GDP deflator
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42 %-----------------------------------------------------------------------

43

44 % read GDP Deflator

45 raw_data_GDPDEF= readtable(’csvfiles/GDPDEF.csv’);

46 GDPDEF = table2array(raw_data_GDPDEF(find(raw_data_GDPDEF.DATE==

’01-Jan -1973 ’):find(raw_data_GDPDEF.DATE==’01-Oct -2019’) ,2));

47

48 % read CPIAUCSL

49 raw_data_CPIAUCSL= readtable(’csvfiles/CPIAUCSL.csv’);

50 CPIAUCSL = table2array(raw_data_CPIAUCSL(find(raw_data_CPIAUCSL.

DATE==’01-Jan -1973’):find(raw_data_CPIAUCSL.DATE==’01-Dec -2019’) ,2));

51

52 % read PPIFGS

53 raw_data_CONSPI= readtable(’csvfiles/PPIACO.csv’);

54 CONSPI = table2array(raw_data_CONSPI(find(raw_data_CONSPI.DATE==

’01-Jan -1973 ’):find(raw_data_CONSPI.DATE==’01-Dec -2019’) ,2));

55

56 Y = GDPDEF; % Y: Nx1 ---> vector of low frequency data

57 x = [CPIAUCSL ,CONSPI ]; % x: nxp ---> matrix of high frequency

indicators (without intercept)

58 ta = 2; % type of disaggregation ---> average (index)

59 sc = 3; % quarterly to monthly

60 type = 0; % estimation method: (0) weighted least

squares (1) maximum likelihood

61 opC = 1; % no intercept in hf model

62

63 res = chowlin(Y,x,ta ,sc ,type ,opC ,[]);

64

65 monthly_GDPDEF = res.y;

66

67 %-----------------------------------------------------------------------

68 % % Commodity Price Index: Obtained from Global Financial Data through

69 % % the Board of Governors of the Federal Reserve System

70 %-----------------------------------------------------------------------

71

72 raw_data_CPRINDEX= readtable(’csvfiles/PPIACO.csv’);

73 CPRINDEX = table2array(raw_data_CPRINDEX(find(raw_data_CPRINDEX.

DATE==’01-Jan -1973’):find(raw_data_CPRINDEX.DATE==’01-Dec -2019’) ,2));

74

75 %-----------------------------------------------------------------------

76 % % Excess Bond Premium

77 %-----------------------------------------------------------------------

78

79 raw_data_EBP = readtable(’csvfiles/EBP.csv’);

80 EBP = table2array(raw_data_EBP(find(raw_data_EBP.date==’01-

Jan -1973’):find(raw_data_EBP.date==’01-Dec -2019’) ,3));

81
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82 %-----------------------------------------------------------------------

83 % % National Financial Conditions Index

84 %-----------------------------------------------------------------------

85

86 raw_data_NFCI = readtable(’csvfiles/NFCI.csv’);

87 NFCI = table2array(raw_data_NFCI(find(raw_data_NFCI.DATE==’01-

Jan -1973’):find(raw_data_NFCI.DATE==’01-Dec -2019’) ,2));

88

89 %-----------------------------------------------------------------------

90 % % Policy rate (Federal funds rate and shadow rate)

91 %-----------------------------------------------------------------------

92

93 raw_data_FEDFUNDS = readtable(’csvfiles/FEDFUNDS.csv’);

94 raw_data_WuXiaShadowRate = readtable(’csvfiles/WuXiaShadowRate.xlsx’,’

Sheet ’,’Data’);

95 FEDFUNDS = table2array(raw_data_FEDFUNDS(find(

raw_data_FEDFUNDS.DATE==’01-Jan -1973 ’):find(raw_data_FEDFUNDS.DATE==’

01-Dec -2019’) ,2)) ;

96 SHADOWR = table2array(raw_data_WuXiaShadowRate(find(

raw_data_WuXiaShadowRate.Var1==’01-Jan -1973’):find(

raw_data_WuXiaShadowRate.Var1==’01-Dec -2019’) ,3));

97 POLICYR = FEDFUNDS;

98 POLICYR(POLICYR <0.25) = SHADOWR(POLICYR <0.25);

99

100 %-----------------------------------------------------------------------

101 % % Export data

102 %-----------------------------------------------------------------------

103 dates = table2array(raw_data_FEDFUNDS(find(raw_data_FEDFUNDS.DATE==’01-

Jan -1973’):find(raw_data_FEDFUNDS.DATE==’01-Dec -2019’) ,1));

104

105 dataset = table(dates ,monthly_GDP ,monthly_GDPDEF ,CPRINDEX ,EBP ,NFCI ,

POLICYR ,IP ,CPIAUCSL);

106

107 writetable(dataset ,’csvfiles/dataset.csv’)

108

109 % Dates

110 dates1 = [dataset.dates];

111 dates = datenum(dates1);

112

113 % Names of variables

114 varNames1 ={’m_Y’; ’m_P’; ’m_CP’; ’m_EBP ’; ’m_NFCI ’; ’m_PR’};

115 varNames=varNames1 ’;

116

117 % Data

118 data = [100* log(dataset.monthly_GDP) 100* log(dataset.monthly_GDPDEF)

100* log(dataset.CPRINDEX) dataset.EBP dataset.NFCI dataset.POLICYR ];

119
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120 % Save results

121 save(’data_mat.mat’,’data’,’dates’,’varNames ’);

122 cd ..



97

Replication code for estimating the IRFs according to restriction 1

1 %%**********************************************************************

2 % This is a modified version of the code developed by

3 % Arias et al. (2019) to compute the draws when only restriction 1 is

4 % imposed.

5 %%**********************************************************************

6

7 clear variables;

8 close all;

9 userpath(’clear ’);

10 clc;

11

12 rng(’default ’); % reinitialize the random number generator to its

startup configuration

13 rng (0); % set seed

14

15 currdir=pwd;

16 cd ..

17 get_help_dir_currdir=pwd;

18 addpath ([ get_help_dir_currdir ,’/helpfunctions ’]); % set path to helper

functions

19 cd(currdir)

20

21 %=======================================================================

22 % load the data and priors

23 %=======================================================================

24

25 data = readtable ([ get_help_dir_currdir ,’/data/csvfiles/dataset.csv’]);

26 data = data(find(data.dates==’01-Jan -1973’):find(data.dates==’01-Jun

-2007 ’) ,:);

27

28 % data

29 % all variables are in log times 100 except for the federal funds rate

that enters the SVAR in annualized percentages

30 num = [100* log(data.monthly_GDP) 100* log(data.monthly_GDPDEF) 100* log(

data.CPRINDEX) data.EBP data.NFCI data.FEDFUNDS ];

31

32 %=======================================================================

33 % model setup

34 %=======================================================================

35

36 nlag = 12; % number of lags

37 nvar = 6; % number of endogenous variables

38 nex = 0; % set equal to 1 if a constant is included; 0 otherwise

39 m = nvar*nlag + nex; % number of exogenous variables

40 nd = 4e5; % number of orthogonal -reduced -form (B,Sigma ,Q) draws
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41 iter_show = 1e4; % display iteration every iter_show draws

42 horizon = 60; % maximum horizon for IRFs

43 index = 40; % define horizons for the FEVD

44 horizons = 0:5; % horizons to restrict

45 NS = 1 + numel(horizons); % number of objects in F(A_{0},A_{+})

to which we impose sign and zero restrictios: F(THETA)=[A_{0};L_

{0},...,L_{horizons }]

46 e = eye(nvar); % create identity matrix

47 maxdraws = 1e4; % max number of importance sampling draws

48 conjugate = ’’; % structural or irfs or empty

49

50 %=======================================================================

51 % identification: declare Ss and Zs matrices

52 %=======================================================================

53 % restrictions on A0 and/or IRFs

54

55 % sign restrictions

56 S = cell(nvar ,1);

57 for ii=1: nvar

58 S{ii}= zeros(0,nvar*NS);

59 end

60

61 % negative restrictions on the IRF of price and commodity price.

62 % positive restrictions on the IRF of EBP and NFCI and r.

63 S{1}(1 , nvar +2)= -1; S{1}(6 ,2* nvar +2) = -1; S{1}(11 ,3* nvar +2) = -1; S

{1}(16 ,4* nvar +2)= -1; S{1}(21 ,5* nvar +2)= -1; S{1}(26 ,6* nvar +2)= -1;

64 S{1}(2 , nvar +3)= -1; S{1}(7 ,2* nvar +3) = -1; S{1}(12 ,3* nvar +3) = -1; S

{1}(17 ,4* nvar +3)= -1; S{1}(22 ,5* nvar +3)= -1; S{1}(27 ,6* nvar +3)= -1;

65 S{1}(3 , nvar +4)= 1; S{1}(8 ,2* nvar +4) = 1; S{1}(13 ,3* nvar +4) = 1; S

{1}(18 ,4* nvar +4)= 1; S{1}(23 ,5* nvar +4)= 1; S{1}(28 ,6* nvar +4)= 1;

66 S{1}(4 , nvar +5)= 1; S{1}(9 ,2* nvar +5) = 1; S{1}(14 ,3* nvar +5) = 1; S

{1}(19 ,4* nvar +5)= 1; S{1}(24 ,5* nvar +5)= 1; S{1}(29 ,6* nvar +5)= 1;

67 S{1}(5 , nvar +6)= 1; S{1}(10 ,2* nvar +6)= 1; S{1}(15 ,3* nvar +6) = 1; S

{1}(20 ,4* nvar +6)= 1; S{1}(25 ,5* nvar +6)= 1; S{1}(30 ,6* nvar +6)= 1;

68

69 % zero restrictions

70 Z=cell(nvar ,1);

71 for i=1: nvar

72 Z{i}= zeros(0,nvar*NS);

73 end

74

75 %=======================================================================

76 % Setup info

77 %=======================================================================

78 info=SetupInfo(nvar ,m,Z,@(x)chol(x));

79

80 % ZF(A_{0},A_{+})
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81 info.nlag = nlag;

82 info.horizons = horizons;

83 info.ZF = @(x,y)ZF(x,y);

84

85 % functions useful to compute the importance sampler weights

86 iw_info = info;

87 fs = @(x)ff_h(x,iw_info);

88 r = @(x)ZeroRestrictions(x,iw_info);

89

90 if strcmp(conjugate ,’irfs’)==1

91 fo = @(x)f_h(x,iw_info);

92 fo_str2irfs = @(x)StructuralToIRF(x,iw_info);

93 fo_str2irfs_inv = @(x)IRFToStructural(x,iw_info);

94 r_irfs = @(x)IRFRestrictions_more_general(x,iw_info);

95 end

96

97 % function useful to check the sign restrictions

98 fh_S_restrictions = @(x)SF(x,iw_info ,S);

99

100 %=======================================================================

101 % write data in Rubio , Waggoner , and Zha (RES 2010) ’s notation

102 %=======================================================================

103

104 % yt(t) A0 = xt(t) Aplus + constant + et(t) for t=1... ,T;

105 % yt(t) = xt(t) B + ut(t) for t=1... ,T;

106 % x(t) = [yt(t-1), ... , yt(t-nlag), constant ];

107 % matrix notation yt = xt*B + ut;

108 % xt=[yt_{-1} ones(T,1)];

109

110 yt = num(nlag +1:end ,:);

111 T = size(yt ,1);

112 xt = zeros(T,nvar*nlag+nex);

113

114 for i=1: nlag

115 xt(:,nvar*(i-1) +1: nvar*i) = num((nlag -(i-1)):end -i,:);

116 end

117

118 if nex >=1

119 xt(:,nvar*nlag+nex)=ones(T,1);

120 end

121

122 % write data in Zellner (1971 , pp 224 -227) notation

123 Y = yt; % T by nvar matrix of observations

124 X = xt; % T by (nvar*nlag +1) matrix of regressors

125

126 % prior for reduced -form parameters

127 nnuBar = 0;
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128 OomegaBarInverse = zeros(m);

129 PpsiBar = zeros(m,nvar);%forchettone

130 PphiBar = zeros(nvar);

131

132 % posterior for reduced -form parameters

133 nnuTilde = T +nnuBar; % tempi - 12

134 OomegaTilde = (X’*X + OomegaBarInverse)\eye(m);

135 OomegaTildeInverse = X’*X + OomegaBarInverse;

136 PpsiTilde = OomegaTilde *(X’*Y + OomegaBarInverse*PpsiBar);

137 PphiTilde = Y’*Y + PphiBar + PpsiBar ’* OomegaBarInverse*PpsiBar

- PpsiTilde ’* OomegaTildeInverse*PpsiTilde;

138 PphiTilde = (PphiTilde ’+ PphiTilde)*0.5;

139

140

141 % useful definitions

142 % definitios used to store orthogonal -reduced -form draws , volume

elements , and unnormalized weights

143 Bdraws = cell([nd ,1]); % reduced -form lag parameters

144 Sigmadraws = cell([nd ,1]); % reduced -form covariance matrices

145 Qdraws = cell([nd ,1]); % orthogonal matrices

146 storevefh = zeros(nd ,1); % volume element f_{h}

147 storevegfhZ = zeros(nd ,1); % volume element g o f_{h}|Z

148 uw = zeros(nd ,1); % unnormalized importance sampler weights

149

150 if strcmp(conjugate ,’irfs’)==1

151 storevephi = zeros(nd ,1); % volume element f_{h}

152 storevegphiZ = zeros(nd ,1); % volume element g o f_{h}|Z

153 end

154

155 % definitions related to IRFs; based on page 12 of Rubio , Waggoner , and

Zha (RES 2010)

156 J = [e;repmat(zeros(nvar),nlag -1,1)];

157 A = cell(nlag ,1);

158 extraF = repmat(zeros(nvar),1,nlag -1);

159 F = zeros(nlag*nvar ,nlag*nvar);

160

161 for l=1:nlag -1

162 F((l-1)*nvar +1:l*nvar ,nvar +1: nlag*nvar)=[ repmat(zeros(nvar) ,1,l-1) e

repmat(zeros(nvar),1,nlag -(l+1))];

163 end

164

165 % definition to facilitate the draws from B|Sigma

166 hh = info.h;

167 cholOomegaTilde = hh(OomegaTilde) ’; %this matrix is used to draw B|Sigma

168

169 % initialize counters to track the state of the computations

170 counter = 1;
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171 record = 1;

172 count = 0;

173 tStart = tic;

174

175 while record <=nd

176

177 % step 1 in Algorithm 2

178 Sigmadraw = iwishrnd(PphiTilde ,nnuTilde);

179 cholSigmadraw = hh(Sigmadraw) ’;

180 Bdraw = kron(cholSigmadraw ,cholOomegaTilde)*randn(m*nvar ,1)

+ reshape(PpsiTilde ,nvar*m,1);

181 Bdraw = reshape(Bdraw ,nvar*nlag+nex ,nvar);

182

183 % store reduced -form draws

184 Bdraws{record ,1} = Bdraw;

185 Sigmadraws{record ,1} = Sigmadraw;

186

187 % steps 2:4 of Algorithm 2

188 w = DrawW(iw_info);

189 x = [vec(Bdraw); vec(Sigmadraw); w];

190 structpara = ff_h_inv(x,iw_info);

191

192 % store the matrix Q associated with step 3

193 Qdraw = SpheresToQ(w,iw_info ,Bdraw ,Sigmadraw);

194 Qdraws{record ,1} = reshape(Qdraw ,nvar ,nvar);

195

196 % check if sign restrictions hold

197 signs = fh_S_restrictions(structpara);

198

199 if (sum(signs {1}*e(:,1) >0))==size(signs {1}*e(:,1) ,1)

200 count=count +1;

201 % compute importance sampling weights

202

203 switch conjugate

204

205 case ’structural ’

206 storevefh(record ,1) = (nvar*(nvar +1)/2)*log(2) -(2*nvar+m+1)*

LogAbsDet(reshape(structpara (1: nvar*nvar),nvar ,nvar));

207 storevegfhZ(record ,1) = LogVolumeElement(fs,structpara ,r);

208 uw(record ,1) = exp(storevefh(record ,1) - storevegfhZ(record ,1));

209

210 case ’irfs’

211 irfpara = fo_str2irfs(structpara);

212 storevephi(record ,1) = LogVolumeElement(fo,structpara) +

LogVolumeElement(fo_str2irfs_inv ,irfpara);

213 storevegphiZ(record ,1) = LogVolumeElement(fs ,structpara ,r) +

LogVolumeElement(fo_str2irfs_inv ,irfpara ,r_irfs);
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214 uw(record ,1) = exp(storevephi(record ,1)-storevegphiZ(record ,1));

215

216 otherwise

217 uw(record ,1) = 1;

218 end

219

220 else

221 uw(record ,1) = 0;

222 end

223

224 if counter == iter_show

225 display ([’Number of draws = ’,num2str(record)])

226 display ([’Remaining draws = ’,num2str(nd -( record))])

227 counter =0;

228 end

229

230 counter = counter + 1;

231 record=record +1;

232 end

233

234 tElapsed = toc(tStart);

235 imp_w = uw/sum(uw);

236 ne = floor (1/ sum(imp_w .^2));

237

238 % store draws

239 Ltilde = zeros(horizon+1,nvar ,nvar ,ne); % define array to store IRF

240 A0tilde = zeros(nvar ,nvar ,ne); % define array to store A0

241 Aplustilde = zeros(m,nvar ,ne); % define array to store Aplus

242 hist_is_draws = zeros(ne ,1); % define array to store draws from

importance sampler

243

244 for s=1:min(ne ,maxdraws)

245

246 % draw: B,Sigma ,Q

247 is_draw = randsample (1: size(imp_w ,1) ,1,true ,imp_w);

248 hist_is_draws(s,1)=is_draw;

249

250 Bdraw = Bdraws{is_draw ,1};

251 Sigmadraw = Sigmadraws{is_draw ,1};

252 Qdraw = Qdraws{is_draw ,1};

253

254 x=[ reshape(Bdraw ,m*nvar ,1);reshape(Sigmadraw ,nvar*nvar ,1);Qdraw (:)];

255 structpara = f_h_inv(x,info);

256

257 LIRF =IRF_horizons(structpara , nvar , nlag , m, 0: horizon);

258

259 for h=0: horizon
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260 Ltilde(h+1,:,:,s) = LIRF (1+h*nvar:(h+1)*nvar ,:);

261 end

262

263 A0tilde (:,:,s) = reshape(structpara (1: nvar*nvar),nvar ,nvar);

264 Aplustilde (:,:,s) = reshape(structpara(nvar*nvar +1:end),m,nvar);

265 end

266

267 A0tilde = A0tilde (:,:,1:s);

268 Aplustilde = Aplustilde (:,:,1:s);

269 Ltilde = Ltilde (:,:,:,1:s);

270

271 save(’results/figure_1_results_d.mat’,’Ltilde ’,’A0tilde ’,’Aplustilde ’,’

imp_w ’,’ne’);

272 cd ..
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Replication code for estimating the IRFs according to restrictions 1 and 2

1 %%**********************************************************************

2 % This is a modified version of the code developed by

3 % Arias et al. (2019) to compute the draws when restrictions 1 and 2

4 % are imposed.

5 %%**********************************************************************

6

7 clear variables;

8 close all;

9 userpath(’clear ’);

10 clc;

11

12 rng(’default ’); % reinitialize the random number generator to its

startup configuration

13 rng(0); % set seed

14

15 currdir=pwd;

16 cd ..

17 get_help_dir_currdir=pwd;

18 addpath ([ get_help_dir_currdir ,’/helpfunctions ’]); % set path to helper

functions

19 cd(currdir)

20

21 %=======================================================================

22 % load the data and priors

23 %=======================================================================

24

25 data = readtable ([ get_help_dir_currdir ,’/data/csvfiles/dataset.csv’]);

26 data = data(find(data.dates==’01-Jan -1973’):find(data.dates==’01-Jun

-2007 ’) ,:);

27

28 % data

29 % all variables are in log times 100 except for the federal funds rate

that enters the SVAR in annualized percentages

30 num = [100* log(data.monthly_GDP) 100* log(data.monthly_GDPDEF) 100* log(

data.CPRINDEX) data.EBP data.NFCI data.FEDFUNDS ];

31

32 %=======================================================================

33 % model setup

34 %=======================================================================

35

36 nlag = 12; % number of lags

37 nvar = 6; % number of endogenous variables

38 nex = 0; % set equal to 1 if a constant is included; 0 otherwise

39 m = nvar*nlag + nex; % number of exogenous variables

40 nd = 2e6; % number of orthogonal -reduced -form (B,Sigma ,Q) draws
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41 iter_show = 1e5; % display iteration every iter_show draws

42 horizon = 60; % maximum horizon for IRFs

43 index = 40; % define horizons for the FEVD

44 horizons = 0:5; % horizons to restrict

45 NS = 1 + numel(horizons); % number of objects in F(A_{0},A_{+})

to which we impose sign and zero restrictios: F(THETA)=[A_{0};L_

{0},...,L_{horizons }]

46 e = eye(nvar); % create identity matrix

47 maxdraws = 1e4; % max number of importance sampling draws

48 conjugate = ’structural ’; % structural or irfs or empty

49

50 %=======================================================================

51 % identification: declare Ss and Zs matrices

52 %=======================================================================

53 % restrictions on A0 and/or IRFs

54

55 % sign restrictions

56 S = cell(nvar ,1);

57 for ii=1: nvar

58 S{ii}=zeros(0,nvar*NS);

59 end

60

61 % negative restrictions on the IRF of price and commodity price.

62 % positive restrictions on the IRF of EBP and NFCI and r.

63 S{1}(1 , nvar +2)= -1; S{1}(6 ,2* nvar +2) = -1; S{1}(11 ,3* nvar +2) = -1; S

{1}(16 ,4* nvar +2)= -1; S{1}(21 ,5* nvar +2)= -1; S{1}(26 ,6* nvar +2)= -1;

64 S{1}(2 , nvar +3)= -1; S{1}(7 ,2* nvar +3) = -1; S{1}(12 ,3* nvar +3) = -1; S

{1}(17 ,4* nvar +3)= -1; S{1}(22 ,5* nvar +3)= -1; S{1}(27 ,6* nvar +3)= -1;

65 S{1}(3 , nvar +4)= 1; S{1}(8 ,2* nvar +4) = 1; S{1}(13 ,3* nvar +4) = 1; S

{1}(18 ,4* nvar +4)= 1; S{1}(23 ,5* nvar +4)= 1; S{1}(28 ,6* nvar +4)= 1;

66 S{1}(4 , nvar +5)= 1; S{1}(9 ,2* nvar +5) = 1; S{1}(14 ,3* nvar +5) = 1; S

{1}(19 ,4* nvar +5)= 1; S{1}(24 ,5* nvar +5)= 1; S{1}(29 ,6* nvar +5)= 1;

67 S{1}(5 , nvar +6)= 1; S{1}(10 ,2* nvar +6)= 1; S{1}(15 ,3* nvar +6) = 1; S

{1}(20 ,4* nvar +6)= 1; S{1}(25 ,5* nvar +6)= 1; S{1}(30 ,6* nvar +6)= 1;

68

69 % sign restriction on the contemporaneous coefficients.

70 % Negative sign restrictions on y and p,

71 S{1}(31 ,1) = -1;

72 S{1}(32 ,2) = -1;

73 S{1}(33 ,6) = 1;

74

75 % zero restrictions

76 Z=cell(nvar ,1);

77 for i=1: nvar

78 Z{i}=zeros(0,nvar*NS);

79 end

80
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81 %=======================================================================

82 % Setup info

83 %=======================================================================

84 info=SetupInfo(nvar ,m,Z,@(x)chol(x));

85

86 % ZF(A_{0},A_{+})

87 info.nlag = nlag;

88 info.horizons = horizons;

89 info.ZF = @(x,y)ZF(x,y);

90

91 % functions useful to compute the importance sampler weights

92 iw_info = info;

93 fs = @(x)ff_h(x,iw_info);

94 r = @(x)ZeroRestrictions(x,iw_info);

95

96 if strcmp(conjugate ,’irfs’)==1

97 fo = @(x)f_h(x,iw_info);

98 fo_str2irfs = @(x)StructuralToIRF(x,iw_info);

99 fo_str2irfs_inv = @(x)IRFToStructural(x,iw_info);

100 r_irfs = @(x)IRFRestrictions_more_general(x,iw_info);

101 end

102

103 % function useful to check the sign restrictions

104 fh_S_restrictions = @(x)SF(x,iw_info ,S);

105

106 %=======================================================================

107 % write data in Rubio , Waggoner , and Zha (RES 2010) ’s notation

108 %=======================================================================

109 % yt(t) A0 = xt(t) Aplus + constant + et(t) for t=1... ,T;

110 % yt(t) = xt(t) B + ut(t) for t=1... ,T;

111 % x(t) = [yt(t-1), ... , yt(t-nlag), constant ];

112 % matrix notation yt = xt*B + ut;

113 % xt=[yt_{-1} ones(T,1)];

114

115 yt = num(nlag +1:end ,:);

116 T = size(yt ,1);

117 xt = zeros(T,nvar*nlag+nex);

118 for i=1: nlag

119 xt(:,nvar*(i-1) +1: nvar*i) = num((nlag -(i-1)):end -i,:) ;

120 end

121

122 if nex >=1

123 xt(:,nvar*nlag+nex)=ones(T,1);

124 end

125

126 % write data in Zellner (1971 , pp 224 -227) notation

127 Y = yt; % T by nvar matrix of observations
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128 X = xt; % T by (nvar*nlag +1) matrix of regressors

129

130 % prior for reduced -form parameters

131 nnuBar = 0;

132 OomegaBarInverse = zeros(m);

133 PpsiBar = zeros(m,nvar);

134 PphiBar = zeros(nvar);

135

136 % posterior for reduced -form parameters

137 nnuTilde = T +nnuBar;

138 OomegaTilde = (X’*X + OomegaBarInverse)\eye(m);

139 OomegaTildeInverse = X’*X + OomegaBarInverse;

140 PpsiTilde = OomegaTilde *(X’*Y + OomegaBarInverse*PpsiBar);

141 PphiTilde = Y’*Y + PphiBar + PpsiBar ’* OomegaBarInverse*PpsiBar

- PpsiTilde ’* OomegaTildeInverse*PpsiTilde;

142 PphiTilde = (PphiTilde ’+ PphiTilde)*0.5;

143

144 % useful definitions

145 % definitios used to store orthogonal -reduced -form draws , volume

elements , and unnormalized weights

146 Bdraws = cell([nd ,1]); % reduced -form lag parameters

147 Sigmadraws = cell([nd ,1]); % reduced -form covariance matrices

148 Qdraws = cell([nd ,1]); % orthogonal matrices

149 storevefh = zeros(nd ,1); % volume element f_{h}

150 storevegfhZ = zeros(nd ,1); % volume element g o f_{h}|Z

151 uw = zeros(nd ,1); % unnormalized importance sampler weights

152

153 if strcmp(conjugate ,’irfs’)==1

154 storevephi = zeros(nd ,1); % volume element f_{h}

155 storevegphiZ = zeros(nd ,1); % volume element g o f_{h}|Z

156 end

157

158 % definitions related to IRFs; based on page 12 of Rubio , Waggoner , and

Zha (RES 2010)

159 J = [e;repmat(zeros(nvar),nlag -1,1)];

160 A = cell(nlag ,1);

161 extraF = repmat(zeros(nvar),1,nlag -1);

162 F = zeros(nlag*nvar ,nlag*nvar);

163 for l=1:nlag -1

164 F((l-1)*nvar +1:l*nvar ,nvar +1: nlag*nvar)=[ repmat(zeros(nvar) ,1,l-1) e

repmat(zeros(nvar),1,nlag -(l+1))];

165 end

166

167 % definition to facilitate the draws from B|Sigma

168 hh = info.h;

169 cholOomegaTilde = hh(OomegaTilde) ’; % this matrix is used to draw B|

Sigma below
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170

171 % initialize counters to track the state of the computations

172 counter = 1;

173 record = 1;

174 count = 0;

175 tStart = tic;

176 while record <=nd

177

178 % step 1 in Algorithm 2

179 Sigmadraw = iwishrnd(PphiTilde ,nnuTilde);

180 cholSigmadraw = hh(Sigmadraw) ’;

181 Bdraw = kron(cholSigmadraw ,cholOomegaTilde)*randn(m*nvar ,1)

+ reshape(PpsiTilde ,nvar*m,1);

182 Bdraw = reshape(Bdraw ,nvar*nlag+nex ,nvar);

183 % store reduced -form draws

184 Bdraws{record ,1} = Bdraw;

185 Sigmadraws{record ,1} = Sigmadraw;

186

187 % steps 2:4 of Algorithm 2

188 w = DrawW(iw_info);

189 x = [vec(Bdraw); vec(Sigmadraw); w];

190 structpara = ff_h_inv(x,iw_info);

191

192 % store the matrix Q associated with step 3

193 Qdraw = SpheresToQ(w,iw_info ,Bdraw ,Sigmadraw);

194 Qdraws{record ,1} = reshape(Qdraw ,nvar ,nvar);

195

196 % check if sign restrictions hold

197 signs = fh_S_restrictions(structpara);

198

199 if (sum(signs {1}*e(:,1) >0))==size(signs {1}*e(:,1) ,1)

200

201 count=count +1;

202

203 % compute importance sampling weights

204

205 switch conjugate

206

207 case ’structural ’

208

209 storevefh(record ,1) = (nvar*(nvar +1)/2)*log(2) -(2*nvar+m+1)*

LogAbsDet(reshape(structpara (1: nvar*nvar),nvar ,nvar));

210 storevegfhZ(record ,1) = LogVolumeElement(fs,structpara ,r);

211 uw(record ,1) = exp(storevefh(record ,1) - storevegfhZ(

record ,1));

212

213 case ’irfs’
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214

215 irfpara = fo_str2irfs(structpara);

216 storevephi(record ,1) = LogVolumeElement(fo,structpara) +

LogVolumeElement(fo_str2irfs_inv ,irfpara);

217 storevegphiZ(record ,1) = LogVolumeElement(fs ,structpara ,r) +

LogVolumeElement(fo_str2irfs_inv ,irfpara ,r_irfs);

218 uw(record ,1) = exp(storevephi(record ,1) - storevegphiZ

(record ,1));

219

220 otherwise

221

222 uw(record ,1) = 1;

223 end

224

225 else

226

227 uw(record ,1) = 0;

228 end

229

230 if counter == iter_show

231

232 display ([’Number of draws = ’,num2str(record)])

233 display ([’Remaining draws = ’,num2str(nd -( record))])

234 counter =0;

235 end

236

237 counter = counter + 1;

238 record=record +1;

239 end

240

241 tElapsed = toc(tStart);

242 imp_w = uw/sum(uw);

243 ne = floor (1/ sum(imp_w .^2));

244

245 % store draws

246 Ltilde = zeros(horizon+1,nvar ,nvar ,ne); % define array to store IRF

247 A0tilde = zeros(nvar ,nvar ,ne); % define array to store A0

248 Aplustilde = zeros(m,nvar ,ne); % define array to store Aplus

249 hist_is_draws = zeros(ne ,1); % define array to store draws from

importance sampler

250

251 for s=1:min(ne ,maxdraws)

252

253 % draw: B,Sigma ,Q

254 is_draw = randsample (1: size(imp_w ,1) ,1,true ,imp_w);

255 hist_is_draws(s,1)=is_draw;

256
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257 Bdraw = Bdraws{is_draw ,1};

258 Sigmadraw = Sigmadraws{is_draw ,1};

259 Qdraw = Qdraws{is_draw ,1};

260

261 x=[ reshape(Bdraw ,m*nvar ,1);reshape(Sigmadraw ,nvar*nvar ,1);Qdraw (:)];

262 structpara = f_h_inv(x,info);

263

264 LIRF =IRF_horizons(structpara , nvar , nlag , m, 0: horizon);

265

266 for h=0: horizon

267 Ltilde(h+1,:,:,s) = LIRF (1+h*nvar:(h+1)*nvar ,:);

268 end

269

270 A0tilde (:,:,s) = reshape(structpara (1: nvar*nvar),nvar ,nvar);

271 Aplustilde (:,:,s) = reshape(structpara(nvar*nvar +1:end),m,nvar);

272 end

273

274 A0tilde = A0tilde (:,:,1:s);

275 Aplustilde = Aplustilde (:,:,1:s);

276 Ltilde = Ltilde (:,:,:,1:s);

277

278 % cd results

279 save(’results/figure.mat’,’Ltilde ’,’A0tilde ’,’Aplustilde ’,’imp_w’,’ne’,

’m’,’Bdraw ’,’Bdraws ’);

280 cd ..
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Replication code for estimating the IRFs according to restrictions 1, 2 and 3

1 %%**********************************************************************

2 % This is a modified version of the code developed by

3 % Arias et al. (2019) to compute the draws when restrictions 1, 2 and 3

4 % are imposed.

5 %%**********************************************************************

6

7 clear variables;

8 close all;

9 userpath(’clear ’);

10 clc;

11

12 rng(’default ’); % reinitialize the random number generator to its

startup configuration

13 rng (0); % set seed

14

15 currdir=pwd;

16 cd ..

17 get_help_dir_currdir=pwd;

18 addpath ([ get_help_dir_currdir ,’/helpfunctions ’]); % set path to helper

functions

19 cd(currdir)

20

21 %=======================================================================

22 % load the data and priors

23 %=======================================================================

24

25 data = readtable ([ get_help_dir_currdir ,’/data/csvfiles/dataset.csv’]);

26 data = data(find(data.dates==’01-Jan -1973’):find(data.dates==’01-Jun

-2007 ’) ,:);

27

28 % data

29 % all variables are in log times 100 except for the federal funds rate

that enters the SVAR in annualized percentages

30 num = [100* log(data.monthly_GDP) 100* log(data.monthly_GDPDEF) 100* log(

data.CPRINDEX) data.EBP data.NFCI data.FEDFUNDS ];

31

32 %=======================================================================

33 % model setup

34 %=======================================================================

35

36 nlag = 12; % number of lags

37 nvar = 6; % number of endogenous variables

38 nex = 0; % set equal to 1 if a constant is included; 0 otherwise

39 m = nvar*nlag + nex; % number of exogenous variables

40 nd = 4e5; % number of orthogonal -reduced -form (B,Sigma ,Q) draws
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41 iter_show = 1e4; % display iteration every iter_show draws

42 horizon = 60; % maximum horizon for IRFs

43 index = 40; % define horizons for the FEVD

44 horizons = 0:5; % horizons to restrict

45 NS = 1 + numel(horizons); % number of objects in F(A_{0},A_{+})

to which we impose sign and zero restrictios: F(THETA)=[A_{0};L_

{0},...,L_{horizons }]

46 e = eye(nvar); % create identity matrix

47 maxdraws = 1e4; % max number of importance sampling draws

48 conjugate = ’’; % structural or irfs or empty

49

50 %=======================================================================

51 % identification: declare Ss and Zs matrices

52 %=======================================================================

53 % restrictions on A0 and/or IRFs

54

55 % sign restrictions

56 S = cell(nvar ,1);

57 for ii=1: nvar

58 S{ii}= zeros(0,nvar*NS);

59 end

60

61 % negative restrictions on the IRF of price and commodity price.

62 % positive restrictions on the IRF of EBP and NFCI and r.

63 S{1}(1 , nvar +2)= -1; S{1}(6 ,2* nvar +2) = -1; S{1}(11 ,3* nvar +2) = -1; S

{1}(16 ,4* nvar +2)= -1; S{1}(21 ,5* nvar +2)= -1; S{1}(26 ,6* nvar +2)= -1;

64 S{1}(2 , nvar +3)= -1; S{1}(7 ,2* nvar +3) = -1; S{1}(12 ,3* nvar +3) = -1; S

{1}(17 ,4* nvar +3)= -1; S{1}(22 ,5* nvar +3)= -1; S{1}(27 ,6* nvar +3)= -1;

65 S{1}(3 , nvar +4)= 1; S{1}(8 ,2* nvar +4) = 1; S{1}(13 ,3* nvar +4) = 1; S

{1}(18 ,4* nvar +4)= 1; S{1}(23 ,5* nvar +4)= 1; S{1}(28 ,6* nvar +4)= 1;

66 S{1}(4 , nvar +5)= 1; S{1}(9 ,2* nvar +5) = 1; S{1}(14 ,3* nvar +5) = 1; S

{1}(19 ,4* nvar +5)= 1; S{1}(24 ,5* nvar +5)= 1; S{1}(29 ,6* nvar +5)= 1;

67 S{1}(5 , nvar +6)= 1; S{1}(10 ,2* nvar +6)= 1; S{1}(15 ,3* nvar +6) = 1; S

{1}(20 ,4* nvar +6)= 1; S{1}(25 ,5* nvar +6)= 1; S{1}(30 ,6* nvar +6)= 1;

68

69 % sign restriction on the contemporaneous coefficients.

70 % Negative sign restrictions on y and p,

71 % Positive sign restrictions on ECB and NFCI.

72 S{1}(31 ,1) = -1;

73 S{1}(32 ,2) = -1;

74 S{1}(33 ,4) = 1;

75 S{1}(34 ,5) = 1;

76 S{1}(35 ,6) = 1;

77

78 % zero restrictions

79 Z=cell(nvar ,1);

80 for i=1: nvar
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81 Z{i}=zeros(0,nvar*NS);

82 end

83

84 %=======================================================================

85 % Setup info

86 %=======================================================================

87 info=SetupInfo(nvar ,m,Z,@(x)chol(x));

88

89 % ZF(A_{0},A_{+})

90 info.nlag = nlag;

91 info.horizons = horizons;

92 info.ZF = @(x,y)ZF(x,y);

93

94 % functions useful to compute the importance sampler weights

95 iw_info = info;

96 fs = @(x)ff_h(x,iw_info);

97 r = @(x)ZeroRestrictions(x,iw_info);

98

99 if strcmp(conjugate ,’irfs’)==1

100 fo = @(x)f_h(x,iw_info);

101 fo_str2irfs = @(x)StructuralToIRF(x,iw_info);

102 fo_str2irfs_inv = @(x)IRFToStructural(x,iw_info);

103 r_irfs = @(x)IRFRestrictions_more_general(x,iw_info);

104 end

105

106 % function useful to check the sign restrictions

107 fh_S_restrictions = @(x)SF(x,iw_info ,S);

108

109 %=======================================================================

110 % write data in Rubio , Waggoner , and Zha (RES 2010) ’s notation

111 %=======================================================================

112

113 % yt(t) A0 = xt(t) Aplus + constant + et(t) for t=1... ,T;

114 % yt(t) = xt(t) B + ut(t) for t=1... ,T;

115 % x(t) = [yt(t-1), ... , yt(t-nlag), constant ];

116 % matrix notation yt = xt*B + ut;

117 % xt=[yt_{-1} ones(T,1)];

118

119 yt = num(nlag +1:end ,:);

120 T = size(yt ,1);

121 xt = zeros(T,nvar*nlag+nex);

122

123 for i=1: nlag

124 xt(:,nvar*(i-1) +1: nvar*i) = num((nlag -(i-1)):end -i,:);

125 end

126

127 if nex >=1
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128 xt(:,nvar*nlag+nex)=ones(T,1);

129 end

130

131 % write data in Zellner (1971 , pp 224 -227) notation

132 Y = yt; % T by nvar matrix of observations

133 X = xt; % T by (nvar*nlag +1) matrix of regressors

134

135 % prior for reduced -form parameters

136 nnuBar = 0;

137 OomegaBarInverse = zeros(m);

138 PpsiBar = zeros(m,nvar);%forchettone

139 PphiBar = zeros(nvar);

140

141 % posterior for reduced -form parameters

142 nnuTilde = T +nnuBar; % tempi - 12

143 OomegaTilde = (X’*X + OomegaBarInverse)\eye(m);

144 OomegaTildeInverse = X’*X + OomegaBarInverse;

145 PpsiTilde = OomegaTilde *(X’*Y + OomegaBarInverse*PpsiBar);

146 PphiTilde = Y’*Y + PphiBar + PpsiBar ’* OomegaBarInverse*PpsiBar

- PpsiTilde ’* OomegaTildeInverse*PpsiTilde;

147 PphiTilde = (PphiTilde ’+ PphiTilde)*0.5;

148

149

150 % useful definitions

151 % definitios used to store orthogonal -reduced -form draws , volume

elements , and unnormalized weights

152 Bdraws = cell([nd ,1]); % reduced -form lag parameters

153 Sigmadraws = cell([nd ,1]); % reduced -form covariance matrices

154 Qdraws = cell([nd ,1]); % orthogonal matrices

155 storevefh = zeros(nd ,1); % volume element f_{h}

156 storevegfhZ = zeros(nd ,1); % volume element g o f_{h}|Z

157 uw = zeros(nd ,1); % unnormalized importance sampler weights

158

159 if strcmp(conjugate ,’irfs’)==1

160 storevephi = zeros(nd ,1); % volume element f_{h}

161 storevegphiZ = zeros(nd ,1); % volume element g o f_{h}|Z

162 end

163

164 % definitions related to IRFs; based on page 12 of Rubio , Waggoner , and

Zha (RES 2010)

165 J = [e;repmat(zeros(nvar),nlag -1,1)];

166 A = cell(nlag ,1);

167 extraF = repmat(zeros(nvar),1,nlag -1);

168 F = zeros(nlag*nvar ,nlag*nvar);

169

170 for l=1:nlag -1

171 F((l-1)*nvar +1:l*nvar ,nvar +1: nlag*nvar)=[ repmat(zeros(nvar) ,1,l-1) e
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repmat(zeros(nvar),1,nlag -(l+1))];

172 end

173

174 % definition to facilitate the draws from B|Sigma

175 hh = info.h;

176 cholOomegaTilde = hh(OomegaTilde) ’; %this matrix is used to draw B|Sigma

177

178 % initialize counters to track the state of the computations

179 counter = 1;

180 record = 1;

181 count = 0;

182 tStart = tic;

183

184 while record <=nd

185

186 % step 1 in Algorithm 2

187 Sigmadraw = iwishrnd(PphiTilde ,nnuTilde);

188 cholSigmadraw = hh(Sigmadraw) ’;

189 Bdraw = kron(cholSigmadraw ,cholOomegaTilde)*randn(m*nvar ,1)

+ reshape(PpsiTilde ,nvar*m,1);

190 Bdraw = reshape(Bdraw ,nvar*nlag+nex ,nvar);

191

192 % store reduced -form draws

193 Bdraws{record ,1} = Bdraw;

194 Sigmadraws{record ,1} = Sigmadraw;

195

196 % steps 2:4 of Algorithm 2

197 w = DrawW(iw_info);

198 x = [vec(Bdraw); vec(Sigmadraw); w];

199 structpara = ff_h_inv(x,iw_info);

200

201 % store the matrix Q associated with step 3

202 Qdraw = SpheresToQ(w,iw_info ,Bdraw ,Sigmadraw);

203 Qdraws{record ,1} = reshape(Qdraw ,nvar ,nvar);

204

205 % check if sign restrictions hold

206 signs = fh_S_restrictions(structpara);

207

208 if (sum(signs {1}*e(:,1) >0))==size(signs {1}*e(:,1) ,1)

209 count=count +1;

210 % compute importance sampling weights

211

212 switch conjugate

213

214 case ’structural ’

215 storevefh(record ,1) = (nvar*(nvar +1)/2)*log(2) -(2*nvar+m+1)*

LogAbsDet(reshape(structpara (1: nvar*nvar),nvar ,nvar));
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216 storevegfhZ(record ,1) = LogVolumeElement(fs,structpara ,r);

217 uw(record ,1) = exp(storevefh(record ,1) - storevegfhZ(record ,1));

218

219 case ’irfs’

220 irfpara = fo_str2irfs(structpara);

221 storevephi(record ,1) = LogVolumeElement(fo,structpara) +

LogVolumeElement(fo_str2irfs_inv ,irfpara);

222 storevegphiZ(record ,1) = LogVolumeElement(fs ,structpara ,r) +

LogVolumeElement(fo_str2irfs_inv ,irfpara ,r_irfs);

223 uw(record ,1) = exp(storevephi(record ,1)-storevegphiZ(record ,1));

224

225 otherwise

226 uw(record ,1) = 1;

227 end

228

229 else

230 uw(record ,1) = 0;

231 end

232

233 if counter == iter_show

234 display ([’Number of draws = ’,num2str(record)])

235 display ([’Remaining draws = ’,num2str(nd -( record))])

236 counter =0;

237 end

238

239 counter = counter + 1;

240 record=record +1;

241 end

242

243 tElapsed = toc(tStart);

244 imp_w = uw/sum(uw);

245 ne = floor (1/ sum(imp_w .^2));

246

247 % store draws

248 Ltilde = zeros(horizon+1,nvar ,nvar ,ne); % define array to store IRF

249 A0tilde = zeros(nvar ,nvar ,ne); % define array to store A0

250 Aplustilde = zeros(m,nvar ,ne); % define array to store Aplus

251 hist_is_draws = zeros(ne ,1); % define array to store draws from

importance sampler

252

253 for s=1:min(ne ,maxdraws)

254

255 % draw: B,Sigma ,Q

256 is_draw = randsample (1: size(imp_w ,1) ,1,true ,imp_w);

257 hist_is_draws(s,1)=is_draw;

258

259 Bdraw = Bdraws{is_draw ,1};
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260 Sigmadraw = Sigmadraws{is_draw ,1};

261 Qdraw = Qdraws{is_draw ,1};

262

263 x=[ reshape(Bdraw ,m*nvar ,1);reshape(Sigmadraw ,nvar*nvar ,1);Qdraw (:)];

264 structpara = f_h_inv(x,info);

265

266 LIRF =IRF_horizons(structpara , nvar , nlag , m, 0: horizon);

267

268 for h=0: horizon

269 Ltilde(h+1,:,:,s) = LIRF (1+h*nvar:(h+1)*nvar ,:);

270 end

271

272 A0tilde (:,:,s) = reshape(structpara (1: nvar*nvar),nvar ,nvar);

273 Aplustilde (:,:,s) = reshape(structpara(nvar*nvar +1:end),m,nvar)

274 end

275

276 A0tilde = A0tilde (:,:,1:s);

277 Aplustilde = Aplustilde (:,:,1:s);

278 Ltilde = Ltilde (:,:,:,1:s);

279

280 save(’results/figure_1_results_d.mat’,’Ltilde ’,’A0tilde ’,’Aplustilde ’,’

imp_w ’,’ne’);

281 cd ..
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Replication code for estimating the IRFs according to restrictions 1, 2 and  e < 0

1 %%**********************************************************************

2 % This is a modified version of the code developed by

3 % Arias et al. (2019) to compute the draws when restrictions 1, 2 and 3

4 % are imposed but no restriction is applied on NFCI.

5 %%**********************************************************************

6

7 clear variables;

8 close all;

9 userpath(’clear ’);

10 clc;

11

12 rng(’default ’); % reinitialize the random number generator to its

startup configuration

13 rng(0); % set seed

14

15 currdir=pwd;

16 cd ..

17 get_help_dir_currdir=pwd;

18 addpath ([ get_help_dir_currdir ,’/helpfunctions ’]); % set path to helper

functions

19 cd(currdir)

20

21 %=======================================================================

22 % load the data and priors

23 %=======================================================================

24

25 data = readtable ([ get_help_dir_currdir ,’/data/csvfiles/dataset.csv’]);

26 data = data(find(data.dates==’01-Jan -1973’):find(data.dates==’01-Jun

-2007 ’) ,:);

27

28 % data

29 % all variables are in log times 100 except for the federal funds rate

that enters the SVAR in annualized percentages

30 num = [100* log(data.monthly_GDP) 100* log(data.monthly_GDPDEF) 100* log(

data.CPRINDEX) data.EBP data.NFCI data.FEDFUNDS ];

31

32 %=======================================================================

33 % model setup

34 %=======================================================================

35

36 nlag = 12; % number of lags

37 nvar = 6; % number of endogenous variables

38 nex = 0; % set equal to 1 if a constant is included; 0 otherwise

39 m = nvar*nlag + nex; % number of exogenous variables

40 nd = 4e5; % number of orthogonal -reduced -form (B,Sigma ,Q) draws
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41 iter_show = 1e4; % display iteration every iter_show draws

42 horizon = 60; % maximum horizon for IRFs

43 index = 40; % define horizons for the FEVD

44 horizons = 0:5; % horizons to restrict

45 NS = 1 + numel(horizons); % number of objects in F(A_{0},A_{+})

to which we impose sign and zero restrictios: F(THETA)=[A_{0};L_

{0},...,L_{horizons }]

46 e = eye(nvar); % create identity matrix

47 maxdraws = 1e4; % max number of importance sampling draws

48 conjugate = ’’; % structural or irfs or empty

49

50 %=======================================================================

51 % identification: declare Ss and Zs matrices

52 %=======================================================================

53 % restrictions on A0 and/or IRFs

54

55 % sign restrictions

56 S = cell(nvar ,1);

57 for ii=1: nvar

58 S{ii}=zeros(0,nvar*NS);

59 end

60

61 % negative restrictions on the IRF of price and commodity price.

62 % positive restrictions on the IRF of EBP and NFCI and r.

63 S{1}(1 , nvar +2)= -1; S{1}(6 ,2* nvar +2) = -1; S{1}(11 ,3* nvar +2) = -1; S

{1}(16 ,4* nvar +2)= -1; S{1}(21 ,5* nvar +2)= -1; S{1}(26 ,6* nvar +2)= -1;

64 S{1}(2 , nvar +3)= -1; S{1}(7 ,2* nvar +3) = -1; S{1}(12 ,3* nvar +3) = -1; S

{1}(17 ,4* nvar +3)= -1; S{1}(22 ,5* nvar +3)= -1; S{1}(27 ,6* nvar +3)= -1;

65 S{1}(3 , nvar +4)= 1; S{1}(8 ,2* nvar +4) = 1; S{1}(13 ,3* nvar +4) = 1; S

{1}(18 ,4* nvar +4)= 1; S{1}(23 ,5* nvar +4)= 1; S{1}(28 ,6* nvar +4)= 1;

66 S{1}(4 , nvar +5)= 1; S{1}(9 ,2* nvar +5) = 1; S{1}(14 ,3* nvar +5) = 1; S

{1}(19 ,4* nvar +5)= 1; S{1}(24 ,5* nvar +5)= 1; S{1}(29 ,6* nvar +5)= 1;

67 S{1}(5 , nvar +6)= 1; S{1}(10 ,2* nvar +6)= 1; S{1}(15 ,3* nvar +6) = 1; S

{1}(20 ,4* nvar +6)= 1; S{1}(25 ,5* nvar +6)= 1; S{1}(30 ,6* nvar +6)= 1;

68

69 % sign restriction on the contemporaneous coefficients.

70 % Negative sign restrictions on y and p,

71 % Positive sign restrictions on ECB.

72 S{1}(31 ,1) = -1;

73 S{1}(32 ,2) = -1;

74 S{1}(33 ,4) = 1;

75 S{1}(34 ,6) = 1;

76

77 % zero restrictions

78 Z=cell(nvar ,1);

79 for i=1: nvar

80 Z{i}=zeros(0,nvar*NS);
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81 end

82

83 %=======================================================================

84 % Setup info

85 %=======================================================================

86 info=SetupInfo(nvar ,m,Z,@(x)chol(x));

87

88 % ZF(A_{0},A_{+})

89 info.nlag = nlag;

90 info.horizons = horizons;

91 info.ZF = @(x,y)ZF(x,y);

92

93 % functions useful to compute the importance sampler weights

94 iw_info = info;

95 fs = @(x)ff_h(x,iw_info);

96 r = @(x)ZeroRestrictions(x,iw_info);

97

98 if strcmp(conjugate ,’irfs’)==1

99 fo = @(x)f_h(x,iw_info);

100 fo_str2irfs = @(x)StructuralToIRF(x,iw_info);

101 fo_str2irfs_inv = @(x)IRFToStructural(x,iw_info);

102 r_irfs = @(x)IRFRestrictions_more_general(x,iw_info);

103 end

104

105 % function useful to check the sign restrictions

106 fh_S_restrictions = @(x)SF(x,iw_info ,S);

107

108 %=======================================================================

109 % write data in Rubio , Waggoner , and Zha (RES 2010) ’s notation

110 %=======================================================================

111

112 % yt(t) A0 = xt(t) Aplus + constant + et(t) for t=1... ,T;

113 % yt(t) = xt(t) B + ut(t) for t=1... ,T;

114 % x(t) = [yt(t-1), ... , yt(t-nlag), constant ];

115 % matrix notation yt = xt*B + ut;

116 % xt=[yt_{-1} ones(T,1)];

117

118 yt = num(nlag +1:end ,:);

119 T = size(yt ,1);

120 xt = zeros(T,nvar*nlag+nex);

121

122 for i=1: nlag

123 xt(:,nvar*(i-1) +1: nvar*i) = num((nlag -(i-1)):end -i,:);

124 end

125

126 if nex >=1

127 xt(:,nvar*nlag+nex)=ones(T,1);
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128 end

129

130 % write data in Zellner (1971 , pp 224 -227) notation

131 Y = yt; % T by nvar matrix of observations

132 X = xt; % T by (nvar*nlag +1) matrix of regressors

133

134 % prior for reduced -form parameters

135 nnuBar = 0;

136 OomegaBarInverse = zeros(m);

137 PpsiBar = zeros(m,nvar);%forchettone

138 PphiBar = zeros(nvar);

139

140 % posterior for reduced -form parameters

141 nnuTilde = T +nnuBar; % tempi - 12

142 OomegaTilde = (X’*X + OomegaBarInverse)\eye(m);

143 OomegaTildeInverse = X’*X + OomegaBarInverse;

144 PpsiTilde = OomegaTilde *(X’*Y + OomegaBarInverse*PpsiBar);

145 PphiTilde = Y’*Y + PphiBar + PpsiBar ’* OomegaBarInverse*PpsiBar

- PpsiTilde ’* OomegaTildeInverse*PpsiTilde;

146 PphiTilde = (PphiTilde ’+ PphiTilde)*0.5;

147

148

149 % useful definitions

150 % definitios used to store orthogonal -reduced -form draws , volume

elements , and unnormalized weights

151 Bdraws = cell([nd ,1]); % reduced -form lag parameters

152 Sigmadraws = cell([nd ,1]); % reduced -form covariance matrices

153 Qdraws = cell([nd ,1]); % orthogonal matrices

154 storevefh = zeros(nd ,1); % volume element f_{h}

155 storevegfhZ = zeros(nd ,1); % volume element g o f_{h}|Z

156 uw = zeros(nd ,1); % unnormalized importance sampler weights

157

158 if strcmp(conjugate ,’irfs’)==1

159 storevephi = zeros(nd ,1); % volume element f_{h}

160 storevegphiZ = zeros(nd ,1); % volume element g o f_{h}|Z

161 end

162

163 % definitions related to IRFs; based on page 12 of Rubio , Waggoner , and

Zha (RES 2010)

164 J = [e;repmat(zeros(nvar),nlag -1,1)];

165 A = cell(nlag ,1);

166 extraF = repmat(zeros(nvar),1,nlag -1);

167 F = zeros(nlag*nvar ,nlag*nvar);

168

169 for l=1:nlag -1

170 F((l-1)*nvar +1:l*nvar ,nvar +1: nlag*nvar)=[ repmat(zeros(nvar) ,1,l-1) e

repmat(zeros(nvar),1,nlag -(l+1))];
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171 end

172

173 % definition to facilitate the draws from B|Sigma

174 hh = info.h;

175 cholOomegaTilde = hh(OomegaTilde) ’; %this matrix is used to draw B|Sigma

176

177 % initialize counters to track the state of the computations

178 counter = 1;

179 record = 1;

180 count = 0;

181 tStart = tic;

182

183 while record <=nd

184

185 % step 1 in Algorithm 2

186 Sigmadraw = iwishrnd(PphiTilde ,nnuTilde);

187 cholSigmadraw = hh(Sigmadraw) ’;

188 Bdraw = kron(cholSigmadraw ,cholOomegaTilde)*randn(m*nvar ,1)

+ reshape(PpsiTilde ,nvar*m,1);

189 Bdraw = reshape(Bdraw ,nvar*nlag+nex ,nvar);

190

191 % store reduced -form draws

192 Bdraws{record ,1} = Bdraw;

193 Sigmadraws{record ,1} = Sigmadraw;

194

195 % steps 2:4 of Algorithm 2

196 w = DrawW(iw_info);

197 x = [vec(Bdraw); vec(Sigmadraw); w];

198 structpara = ff_h_inv(x,iw_info);

199

200 % store the matrix Q associated with step 3

201 Qdraw = SpheresToQ(w,iw_info ,Bdraw ,Sigmadraw);

202 Qdraws{record ,1} = reshape(Qdraw ,nvar ,nvar);

203

204 % check if sign restrictions hold

205 signs = fh_S_restrictions(structpara);

206

207 if (sum(signs {1}*e(:,1) >0))==size(signs {1}*e(:,1) ,1)

208 count=count +1;

209 % compute importance sampling weights

210

211 switch conjugate

212

213 case ’structural ’

214 storevefh(record ,1) = (nvar*(nvar +1)/2)*log(2) -(2*nvar+m+1)*

LogAbsDet(reshape(structpara (1: nvar*nvar),nvar ,nvar));

215 storevegfhZ(record ,1) = LogVolumeElement(fs,structpara ,r);
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216 uw(record ,1) = exp(storevefh(record ,1) - storevegfhZ(record ,1));

217

218 case ’irfs’

219 irfpara = fo_str2irfs(structpara);

220 storevephi(record ,1) = LogVolumeElement(fo,structpara) +

LogVolumeElement(fo_str2irfs_inv ,irfpara);

221 storevegphiZ(record ,1) = LogVolumeElement(fs ,structpara ,r) +

LogVolumeElement(fo_str2irfs_inv ,irfpara ,r_irfs);

222 uw(record ,1) = exp(storevephi(record ,1)-storevegphiZ(record ,1));

223

224 otherwise

225 uw(record ,1) = 1;

226 end

227

228 else

229 uw(record ,1) = 0;

230 end

231

232 if counter == iter_show

233 display ([’Number of draws = ’,num2str(record)])

234 display ([’Remaining draws = ’,num2str(nd -( record))])

235 counter =0;

236 end

237

238 counter = counter + 1;

239 record=record +1;

240 end

241

242 tElapsed = toc(tStart);

243 imp_w = uw/sum(uw);

244 ne = floor (1/ sum(imp_w .^2));

245

246 % store draws

247 Ltilde = zeros(horizon+1,nvar ,nvar ,ne); % define array to store IRF

248 A0tilde = zeros(nvar ,nvar ,ne); % define array to store A0

249 Aplustilde = zeros(m,nvar ,ne); % define array to store Aplus

250 hist_is_draws = zeros(ne ,1); % define array to store draws from

importance sampler

251

252 for s=1:min(ne ,maxdraws)

253

254 % draw: B,Sigma ,Q

255 is_draw = randsample (1: size(imp_w ,1) ,1,true ,imp_w);

256 hist_is_draws(s,1)=is_draw;

257

258 Bdraw = Bdraws{is_draw ,1};

259 Sigmadraw = Sigmadraws{is_draw ,1};
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260 Qdraw = Qdraws{is_draw ,1};

261

262 x=[ reshape(Bdraw ,m*nvar ,1);reshape(Sigmadraw ,nvar*nvar ,1);Qdraw (:)];

263 structpara = f_h_inv(x,info);

264

265 LIRF =IRF_horizons(structpara , nvar , nlag , m, 0: horizon);

266

267 for h=0: horizon

268 Ltilde(h+1,:,:,s) = LIRF (1+h*nvar:(h+1)*nvar ,:);

269 end

270

271 A0tilde (:,:,s) = reshape(structpara (1: nvar*nvar),nvar ,nvar);

272 Aplustilde (:,:,s) = reshape(structpara(nvar*nvar +1:end),m,nvar);

273 end

274

275 A0tilde = A0tilde (:,:,1:s);

276 Aplustilde = Aplustilde (:,:,1:s);

277 Ltilde = Ltilde (:,:,:,1:s);

278

279 save(’results/figure_1_results_d.mat’,’Ltilde ’,’A0tilde ’,’Aplustilde ’,’

imp_w ’,’ne’);

280 cd ..
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Replication code for estimating the IRFs according to restrictions 1, 2 and  n < 0

1 %%**********************************************************************

2 % This is a modified version of the code developed by

3 % Arias et al. (2019) to compute the draws when restrictions 1, 2 and 3

4 % are imposed but no restriction is applied on EBP.

5 %%**********************************************************************

6

7 clear variables;

8 close all;

9 userpath(’clear ’);

10 clc;

11

12 rng(’default ’); % reinitialize the random number generator to its

startup configuration

13 rng (0); % set seed

14

15 currdir=pwd;

16 cd ..

17 get_help_dir_currdir=pwd;

18 addpath ([ get_help_dir_currdir ,’/helpfunctions ’]); % set path to helper

functions

19 cd(currdir)

20

21 %=======================================================================

22 % load the data and priors

23 %=======================================================================

24

25 data = readtable ([ get_help_dir_currdir ,’/data/csvfiles/dataset.csv’]);

26 data = data(find(data.dates==’01-Jan -1973’):find(data.dates==’01-Jun

-2007 ’) ,:);

27

28 % data

29 % all variables are in log times 100 except for the federal funds rate

that enters the SVAR in annualized percentages

30 num = [100* log(data.monthly_GDP) 100* log(data.monthly_GDPDEF) 100* log(

data.CPRINDEX) data.EBP data.NFCI data.FEDFUNDS ];

31

32 %=======================================================================

33 % model setup

34 %=======================================================================

35

36 nlag = 12; % number of lags

37 nvar = 6; % number of endogenous variables

38 nex = 0; % set equal to 1 if a constant is included; 0 otherwise

39 m = nvar*nlag + nex; % number of exogenous variables

40 nd = 4e5; % number of orthogonal -reduced -form (B,Sigma ,Q) draws
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41 iter_show = 1e4; % display iteration every iter_show draws

42 horizon = 60; % maximum horizon for IRFs

43 index = 40; % define horizons for the FEVD

44 horizons = 0:5; % horizons to restrict

45 NS = 1 + numel(horizons); % number of objects in F(A_{0},A_{+})

to which we impose sign and zero restrictios: F(THETA)=[A_{0};L_

{0},...,L_{horizons }]

46 e = eye(nvar); % create identity matrix

47 maxdraws = 1e4; % max number of importance sampling draws

48 conjugate = ’’; % structural or irfs or empty

49

50 %=======================================================================

51 % identification: declare Ss and Zs matrices

52 %=======================================================================

53 % restrictions on A0 and/or IRFs

54

55 % sign restrictions

56 S = cell(nvar ,1);

57 for ii=1: nvar

58 S{ii}= zeros(0,nvar*NS);

59 end

60

61 % negative restrictions on the IRF of price and commodity price.

62 % positive restrictions on the IRF of EBP and NFCI and r.

63 S{1}(1 , nvar +2)= -1; S{1}(6 ,2* nvar +2) = -1; S{1}(11 ,3* nvar +2) = -1; S

{1}(16 ,4* nvar +2)= -1; S{1}(21 ,5* nvar +2)= -1; S{1}(26 ,6* nvar +2)= -1;

64 S{1}(2 , nvar +3)= -1; S{1}(7 ,2* nvar +3) = -1; S{1}(12 ,3* nvar +3) = -1; S

{1}(17 ,4* nvar +3)= -1; S{1}(22 ,5* nvar +3)= -1; S{1}(27 ,6* nvar +3)= -1;

65 S{1}(3 , nvar +4)= 1; S{1}(8 ,2* nvar +4) = 1; S{1}(13 ,3* nvar +4) = 1; S

{1}(18 ,4* nvar +4)= 1; S{1}(23 ,5* nvar +4)= 1; S{1}(28 ,6* nvar +4)= 1;

66 S{1}(4 , nvar +5)= 1; S{1}(9 ,2* nvar +5) = 1; S{1}(14 ,3* nvar +5) = 1; S

{1}(19 ,4* nvar +5)= 1; S{1}(24 ,5* nvar +5)= 1; S{1}(29 ,6* nvar +5)= 1;

67 S{1}(5 , nvar +6)= 1; S{1}(10 ,2* nvar +6)= 1; S{1}(15 ,3* nvar +6) = 1; S

{1}(20 ,4* nvar +6)= 1; S{1}(25 ,5* nvar +6)= 1; S{1}(30 ,6* nvar +6)= 1;

68

69 % sign restriction on the contemporaneous coefficients.

70 % Negative sign restrictions on y and p,

71 % Positive sign restrictions on NFCI.

72 S{1}(31 ,1) = -1;

73 S{1}(32 ,2) = -1;

74 S{1}(33 ,5) = 1;

75 S{1}(34 ,6) = 1;

76

77 % zero restrictions

78 Z=cell(nvar ,1);

79 for i=1: nvar

80 Z{i}= zeros(0,nvar*NS);
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81 end

82

83 %=======================================================================

84 % Setup info

85 %=======================================================================

86 info=SetupInfo(nvar ,m,Z,@(x)chol(x));

87

88 % ZF(A_{0},A_{+})

89 info.nlag = nlag;

90 info.horizons = horizons;

91 info.ZF = @(x,y)ZF(x,y);

92

93 % functions useful to compute the importance sampler weights

94 iw_info = info;

95 fs = @(x)ff_h(x,iw_info);

96 r = @(x)ZeroRestrictions(x,iw_info);

97

98 if strcmp(conjugate ,’irfs’)==1

99 fo = @(x)f_h(x,iw_info);

100 fo_str2irfs = @(x)StructuralToIRF(x,iw_info);

101 fo_str2irfs_inv = @(x)IRFToStructural(x,iw_info);

102 r_irfs = @(x)IRFRestrictions_more_general(x,iw_info);

103 end

104

105 % function useful to check the sign restrictions

106 fh_S_restrictions = @(x)SF(x,iw_info ,S);

107

108 %=======================================================================

109 % write data in Rubio , Waggoner , and Zha (RES 2010) ’s notation

110 %=======================================================================

111

112 % yt(t) A0 = xt(t) Aplus + constant + et(t) for t=1... ,T;

113 % yt(t) = xt(t) B + ut(t) for t=1... ,T;

114 % x(t) = [yt(t-1), ... , yt(t-nlag), constant ];

115 % matrix notation yt = xt*B + ut;

116 % xt=[yt_{-1} ones(T,1)];

117

118 yt = num(nlag +1:end ,:);

119 T = size(yt ,1);

120 xt = zeros(T,nvar*nlag+nex);

121

122 for i=1: nlag

123 xt(:,nvar*(i-1) +1: nvar*i) = num((nlag -(i-1)):end -i,:);

124 end

125

126 if nex >=1

127 xt(:,nvar*nlag+nex)=ones(T,1);
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128 end

129

130 % write data in Zellner (1971 , pp 224 -227) notation

131 Y = yt; % T by nvar matrix of observations

132 X = xt; % T by (nvar*nlag +1) matrix of regressors

133

134 % prior for reduced -form parameters

135 nnuBar = 0;

136 OomegaBarInverse = zeros(m);

137 PpsiBar = zeros(m,nvar);%forchettone

138 PphiBar = zeros(nvar);

139

140 % posterior for reduced -form parameters

141 nnuTilde = T +nnuBar; % tempi - 12

142 OomegaTilde = (X’*X + OomegaBarInverse)\eye(m);

143 OomegaTildeInverse = X’*X + OomegaBarInverse;

144 PpsiTilde = OomegaTilde *(X’*Y + OomegaBarInverse*PpsiBar);

145 PphiTilde = Y’*Y + PphiBar + PpsiBar ’* OomegaBarInverse*PpsiBar

- PpsiTilde ’* OomegaTildeInverse*PpsiTilde;

146 PphiTilde = (PphiTilde ’+ PphiTilde)*0.5;

147

148

149 % useful definitions

150 % definitios used to store orthogonal -reduced -form draws , volume

elements , and unnormalized weights

151 Bdraws = cell([nd ,1]); % reduced -form lag parameters

152 Sigmadraws = cell([nd ,1]); % reduced -form covariance matrices

153 Qdraws = cell([nd ,1]); % orthogonal matrices

154 storevefh = zeros(nd ,1); % volume element f_{h}

155 storevegfhZ = zeros(nd ,1); % volume element g o f_{h}|Z

156 uw = zeros(nd ,1); % unnormalized importance sampler weights

157

158 if strcmp(conjugate ,’irfs’)==1

159 storevephi = zeros(nd ,1); % volume element f_{h}

160 storevegphiZ = zeros(nd ,1); % volume element g o f_{h}|Z

161 end

162

163 % definitions related to IRFs; based on page 12 of Rubio , Waggoner , and

Zha (RES 2010)

164 J = [e;repmat(zeros(nvar),nlag -1,1)];

165 A = cell(nlag ,1);

166 extraF = repmat(zeros(nvar),1,nlag -1);

167 F = zeros(nlag*nvar ,nlag*nvar);

168

169 for l=1:nlag -1

170 F((l-1)*nvar +1:l*nvar ,nvar +1: nlag*nvar)=[ repmat(zeros(nvar) ,1,l-1) e

repmat(zeros(nvar),1,nlag -(l+1))];
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171 end

172

173 % definition to facilitate the draws from B|Sigma

174 hh = info.h;

175 cholOomegaTilde = hh(OomegaTilde) ’; %this matrix is used to draw B|Sigma

176

177 % initialize counters to track the state of the computations

178 counter = 1;

179 record = 1;

180 count = 0;

181 tStart = tic;

182

183 while record <=nd

184

185 % step 1 in Algorithm 2

186 Sigmadraw = iwishrnd(PphiTilde ,nnuTilde);

187 cholSigmadraw = hh(Sigmadraw) ’;

188 Bdraw = kron(cholSigmadraw ,cholOomegaTilde)*randn(m*nvar ,1)

+ reshape(PpsiTilde ,nvar*m,1);

189 Bdraw = reshape(Bdraw ,nvar*nlag+nex ,nvar);

190

191 % store reduced -form draws

192 Bdraws{record ,1} = Bdraw;

193 Sigmadraws{record ,1} = Sigmadraw;

194

195 % steps 2:4 of Algorithm 2

196 w = DrawW(iw_info);

197 x = [vec(Bdraw); vec(Sigmadraw); w];

198 structpara = ff_h_inv(x,iw_info);

199

200 % store the matrix Q associated with step 3

201 Qdraw = SpheresToQ(w,iw_info ,Bdraw ,Sigmadraw);

202 Qdraws{record ,1} = reshape(Qdraw ,nvar ,nvar);

203

204 % check if sign restrictions hold

205 signs = fh_S_restrictions(structpara);

206

207 if (sum(signs {1}*e(:,1) >0))==size(signs {1}*e(:,1) ,1)

208 count=count +1;

209 % compute importance sampling weights

210

211 switch conjugate

212

213 case ’structural ’

214 storevefh(record ,1) = (nvar*(nvar +1)/2)*log(2) -(2*nvar+m+1)*

LogAbsDet(reshape(structpara (1: nvar*nvar),nvar ,nvar));

215 storevegfhZ(record ,1) = LogVolumeElement(fs,structpara ,r);
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216 uw(record ,1) = exp(storevefh(record ,1) - storevegfhZ(record ,1));

217

218 case ’irfs’

219 irfpara = fo_str2irfs(structpara);

220 storevephi(record ,1) = LogVolumeElement(fo,structpara) +

LogVolumeElement(fo_str2irfs_inv ,irfpara);

221 storevegphiZ(record ,1) = LogVolumeElement(fs ,structpara ,r) +

LogVolumeElement(fo_str2irfs_inv ,irfpara ,r_irfs);

222 uw(record ,1) = exp(storevephi(record ,1)-storevegphiZ(record ,1));

223

224 otherwise

225 uw(record ,1) = 1;

226 end

227

228 else

229 uw(record ,1) = 0;

230 end

231

232 if counter == iter_show

233 display ([’Number of draws = ’,num2str(record)])

234 display ([’Remaining draws = ’,num2str(nd -( record))])

235 counter =0;

236 end

237

238 counter = counter + 1;

239 record=record +1;

240 end

241

242 tElapsed = toc(tStart);

243 imp_w = uw/sum(uw);

244 ne = floor (1/ sum(imp_w .^2));

245

246 % store draws

247 Ltilde = zeros(horizon+1,nvar ,nvar ,ne); % define array to store IRF

248 A0tilde = zeros(nvar ,nvar ,ne); % define array to store A0

249 Aplustilde = zeros(m,nvar ,ne); % define array to store Aplus

250 hist_is_draws = zeros(ne ,1); % define array to store draws from

importance sampler

251

252 for s=1:min(ne ,maxdraws)

253

254 % draw: B,Sigma ,Q

255 is_draw = randsample (1: size(imp_w ,1) ,1,true ,imp_w);

256 hist_is_draws(s,1)=is_draw;

257

258 Bdraw = Bdraws{is_draw ,1};

259 Sigmadraw = Sigmadraws{is_draw ,1};
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260 Qdraw = Qdraws{is_draw ,1};

261

262 x=[ reshape(Bdraw ,m*nvar ,1);reshape(Sigmadraw ,nvar*nvar ,1);Qdraw (:)];

263 structpara = f_h_inv(x,info);

264

265 LIRF =IRF_horizons(structpara , nvar , nlag , m, 0: horizon);

266

267 for h=0: horizon

268 Ltilde(h+1,:,:,s) = LIRF (1+h*nvar:(h+1)*nvar ,:);

269 end

270

271 A0tilde (:,:,s) = reshape(structpara (1: nvar*nvar),nvar ,nvar);

272 Aplustilde (:,:,s) = reshape(structpara(nvar*nvar +1:end),m,nvar);

273 end

274

275 A0tilde = A0tilde (:,:,1:s);

276 Aplustilde = Aplustilde (:,:,1:s);

277 Ltilde = Ltilde (:,:,:,1:s);

278

279 save(’results/figure_1_results_d.mat’,’Ltilde ’,’A0tilde ’,’Aplustilde ’,’

imp_w ’,’ne’);

280 cd ..
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Replication code for plotting the IRFs

1 %%**********************************************************************

2 % This is a modified version of the code developed by

3 % Arias et al. (2019) to plot the draws.

4 %%**********************************************************************

5

6 clear variables;

7 close all;

8 clc;

9

10 % Enter the figure

11 load ’figure1.mat’;

12

13 Horizon =60;

14

15 % store IRF quantile 50th

16 Ltildeq50=zeros(size(Ltilde ,1),size(Ltilde ,2),size(Ltilde ,3));

17 % store IRF quantile 16th

18 Ltildeq16=zeros(size(Ltilde ,1),size(Ltilde ,2),size(Ltilde ,3));

19 % store IRF quantile 84th

20 Ltildeq84=zeros(size(Ltilde ,1),size(Ltilde ,2),size(Ltilde ,3));

21 % store IRF quantile 025th

22 Ltildeq025=zeros(size(Ltilde ,1),size(Ltilde ,2),size(Ltilde ,3));

23 % store IRF quantile 975th

24 Ltildeq975=zeros(size(Ltilde ,1),size(Ltilde ,2),size(Ltilde ,3));

25

26

27 for ii=1: size(Ltilde ,1)

28 for jj=1: size(Ltilde ,2)

29 for kk=1: size(Ltilde ,3)

30 Ltildeq50(ii,jj,kk) = quantile(Ltilde(ii,jj,kk ,:) ,0.5);

31 Ltildeq16(ii,jj,kk) = quantile(Ltilde(ii,jj,kk ,:) ,0.16);

32 Ltildeq84(ii,jj,kk) = quantile(Ltilde(ii,jj,kk ,:) ,0.84);

33 Ltildeq025(ii,jj,kk) = quantile(Ltilde(ii,jj,kk ,:) ,0.025);

34 Ltildeq975(ii,jj,kk) = quantile(Ltilde(ii,jj,kk ,:) ,0.975);

35 end

36 end

37 end

38

39 ftsizeaxis =11;

40 ftsizexlabel =11;

41 ftsizetitle =11;

42 ftlinewidth = 1.0;

43 medianwidth =1.0;

44

45 H=Horizon;
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46

47 close all

48 hFig = figure (1);

49 set(hFig , ’Position ’, [20 20 700 350])

50

51 subplot (2,3,1)

52 plot (0:1:H,squeeze(Ltildeq50 (:,1,1)),’-k’,’LineWidth ’,medianwidth)

53 hline(0,’-r’)

54 hold on

55 a=( squeeze(Ltildeq16 (:,1,1))) ’;

56 b=( squeeze(Ltildeq84 (:,1,1))) ’;

57 a95=( squeeze(Ltildeq025 (:,1,1)))’;

58 b95=( squeeze(Ltildeq975 (:,1,1)))’;

59

60 x = 0:1:H;

61 [~,~]= jbfill(x,a,b,rgb(’mediumblue ’),rgb(’mediumblue ’) ,0,0.5);

62 hold on

63 [~,~]= jbfill(x,a95 ,b95 ,rgb(’royalblue ’),rgb(’royalblue ’) ,0,0.5);

64 set(gca ,’XTick’ ,[0;12;24;36;48;60])

65 set(gca ,’XTickLabel ’,[’0 ’;’ 1’;’ 2’;’ 3’;’ 4’;’ 5’])

66 set(gca ,’LineWidth ’,ftlinewidth )

67 set(gca ,’YTick’,[-1 -0.5 0 0.5 1])

68 axis ([0 60 -1 1])

69 xlabel(’Years’,’FontSize ’,ftsizexlabel)

70 ylabel(’Percent ’,’FontSize ’,ftsizexlabel)

71 set(gca ,’FontSize ’,ftsizeaxis)

72 set(gca ,’LineWidth ’,ftlinewidth)

73 title(’ Output ’,’FontSize ’,ftsizetitle)

74 box on

75

76 subplot (2,3,2)

77 plot (0:1:H,squeeze(Ltildeq50 (:,2,1)),’-k’,’LineWidth ’,medianwidth)

78 hline(0,’-r’)

79 hold on

80 a=( squeeze(Ltildeq16 (:,2,1))) ’;

81 b=( squeeze(Ltildeq84 (:,2,1))) ’;

82 a95=( squeeze(Ltildeq025 (:,2,1)))’;

83 b95=( squeeze(Ltildeq975 (:,2,1)))’;

84

85 x = 0:1:H;

86 [~,~]= jbfill(x,a,b,rgb(’mediumblue ’),rgb(’mediumblue ’) ,0,0.5);

87 hold on

88 [~,~]= jbfill(x,a95 ,b95 ,rgb(’royalblue ’),rgb(’royalblue ’) ,0,0.5);

89 set(gca ,’XTick’ ,[0;12;24;36;48;60])

90 set(gca ,’XTickLabel ’,[’0 ’;’ 1’;’ 2’;’ 3’;’ 4’;’ 5’])

91 set(gca ,’LineWidth ’,ftlinewidth)

92 set(gca ,’YTick’ ,[-0.5 -0.25 0 0.25 0.5])
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93 axis ([0 60 -0.5 0.5])

94 xlabel(’Years ’,’FontSize ’,ftsizexlabel)

95 ylabel(’Percent ’,’FontSize ’,ftsizexlabel)

96 set(gca ,’FontSize ’,ftsizeaxis)

97 set(gca ,’LineWidth ’,ftlinewidth)

98 title(’ GDP Deflator ’,’FontSize ’,ftsizetitle)

99 box on

100

101 subplot (2,3,3)

102 plot (0:1:H,squeeze(Ltildeq50 (:,3,1)),’-k’,’LineWidth ’,medianwidth)

103 hline(0,’-r’)

104 hold on

105 a=( squeeze(Ltildeq16 (:,3,1))) ’;

106 b=( squeeze(Ltildeq84 (:,3,1))) ’;

107 a95=( squeeze(Ltildeq025 (:,3,1)))’;

108 b95=( squeeze(Ltildeq975 (:,3,1)))’;

109

110 x = 0:1:H;

111 [~,~]= jbfill(x,a,b,rgb(’mediumblue ’),rgb(’mediumblue ’) ,0,0.5);

112 hold on

113 [~,~]= jbfill(x,a95 ,b95 ,rgb(’royalblue ’),rgb(’royalblue ’) ,0,0.5);

114 set(gca ,’XTick’ ,[0;12;24;36;48;60])

115 set(gca ,’XTickLabel ’,[’0 ’;’ 1’;’ 2’;’ 3’;’ 4’;’ 5’])

116 set(gca ,’LineWidth ’,ftlinewidth)

117 set(gca ,’YTick’ ,[-1.5 -0.75 0 0.75 1.5])

118 axis ([0 60 -1.5 1.5])

119 xlabel(’Years ’,’FontSize ’,ftsizexlabel)

120 ylabel(’Percent ’,’FontSize ’,ftsizexlabel)

121 set(gca ,’FontSize ’,ftsizeaxis)

122 set(gca ,’LineWidth ’,ftlinewidth)

123 title(’ Commodity Price Index ’,’FontSize ’,ftsizetitle)

124 box on

125

126

127 subplot (2,3,4)

128 plot (0:1:H,squeeze(Ltildeq50 (:,4,1)),’-k’,’LineWidth ’,medianwidth)

129 hline(0,’-r’)

130 hold on

131 a=( squeeze(Ltildeq16 (:,4,1))) ’;

132 b=( squeeze(Ltildeq84 (:,4,1))) ’;

133 a95=( squeeze(Ltildeq025 (:,4,1)))’;

134 b95=( squeeze(Ltildeq975 (:,4,1)))’;

135

136 x = 0:1:H;

137 [~,~]= jbfill(x,a,b,rgb(’mediumblue ’),rgb(’mediumblue ’) ,0,0.5);

138 hold on

139 [~,~]= jbfill(x,a95 ,b95 ,rgb(’royalblue ’),rgb(’royalblue ’) ,0,0.5);
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140 set(gca ,’XTick’ ,[0;12;24;36;48;60])

141 set(gca ,’XTickLabel ’,[’0 ’;’ 1’;’ 2’;’ 3’;’ 4’;’ 5’])

142 set(gca ,’LineWidth ’,ftlinewidth)

143 set(gca ,’YTick’ ,[-0.2 -0.1 0 0.1 0.2])

144 axis ([0 60 -0.2 0.2])

145 xlabel(’Years’,’FontSize ’,ftsizexlabel)

146 ylabel(’Percentage points ’,’FontSize ’,ftsizexlabel)

147 set(gca ,’FontSize ’,ftsizeaxis)

148 set(gca ,’LineWidth ’,ftlinewidth)

149 title(’EBP’,’FontSize ’,ftsizetitle)

150 box on

151

152

153 subplot (2,3,5)

154 plot (0:1:H,squeeze(Ltildeq50 (:,5,1)),’-k’,’LineWidth ’,medianwidth)

155 hline(0,’-r’)

156 hold on

157 a=( squeeze(Ltildeq16 (:,5,1))) ’;

158 b=( squeeze(Ltildeq84 (:,5,1))) ’;

159 a95=( squeeze(Ltildeq025 (:,5,1)))’;

160 b95=( squeeze(Ltildeq975 (:,5,1)))’;

161

162 x = 0:1:H;

163 [~,~]= jbfill(x,a,b,rgb(’mediumblue ’),rgb(’mediumblue ’) ,0,0.5);

164 hold on

165 [~,~]= jbfill(x,a95 ,b95 ,rgb(’royalblue ’),rgb(’royalblue ’) ,0,0.5);

166 set(gca ,’XTick’ ,[0;12;24;36;48;60])

167 set(gca ,’XTickLabel ’,[’0 ’;’ 1’;’ 2’;’ 3’;’ 4’;’ 5’])

168 set(gca ,’LineWidth ’,ftlinewidth )

169 set(gca ,’YTick’ ,[-0.3 -0.15 0 0.15 0.3])

170 axis ([0 60 -0.3 0.3])

171 xlabel(’Years’,’FontSize ’,ftsizexlabel)

172 ylabel(’Standard deviations ’,’FontSize ’,ftsizexlabel)

173 set(gca ,’FontSize ’,ftsizeaxis)

174 set(gca ,’LineWidth ’,ftlinewidth)

175 title(’NFCI’,’FontSize ’,ftsizetitle)

176 box on

177

178 subplot (2,3,6)

179 plot (0:1:H,squeeze(Ltildeq50 (:,6,1)),’-k’,’LineWidth ’,medianwidth)

180 hline(0,’-r’)

181 hold on

182 a=( squeeze(Ltildeq16 (:,6,1))) ’;

183 b=( squeeze(Ltildeq84 (:,6,1))) ’;

184 a95=( squeeze(Ltildeq025 (:,6,1)))’;

185 b95=( squeeze(Ltildeq975 (:,6,1)))’;

186
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187 x = 0:1:H;

188 [~,~]= jbfill(x,a,b,rgb(’mediumblue ’),rgb(’mediumblue ’) ,0,0.5);

189 hold on

190 [~,~]= jbfill(x,a95 ,b95 ,rgb(’royalblue ’),rgb(’royalblue ’) ,0,0.5);

191 set(gca ,’XTick’ ,[0;12;24;36;48;60])

192 set(gca ,’XTickLabel ’,[’0 ’;’ 1’;’ 2’;’ 3’;’ 4’;’ 5’])

193 set(gca ,’LineWidth ’,ftlinewidth )

194 set(gca ,’YTick’ ,[-0.6 -0.3 0 0.3 0.6])

195 axis ([0 60 -0.6 0.6])

196 xlabel(’Years ’,’FontSize ’,ftsizexlabel)

197 ylabel(’Percentage points ’,’FontSize ’,ftsizexlabel)

198 set(gca ,’FontSize ’,ftsizeaxis)

199 set(gca ,’LineWidth ’,ftlinewidth)

200 title(’Policy Rate’,’FontSize ’,ftsizetitle)

201 box on

202

203 set(gcf , ’PaperPositionMode ’, ’auto’);

204

205 saveas(hFig ,’../../ plots/Figure1 ’,’epsc’)

206 savefig(hFig ,’../../ plots/Figure1.fig’)
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Replication code for estimating the contemporaneous coe�cients

1 %%**********************************************************************

2 % This is a modified version of the code developed by

3 % Arias et al. (2019) to display the contemporaneous coefficents of the

4 % monetary policy rule.

5 %%**********************************************************************

6

7 clear variables;

8 clc

9 close all

10

11 disp(’----------------------------------------------------------’)

12 disp(’********************************************************** ’)

13 disp(’************************* TABLE ************************** ’)

14 disp(’********************************************************** ’)

15 disp(’----------------------------------------------------------’)

16 cd ..

17 gcd = pwd;

18

19 % Enter the number of the table to display

20 number = 3;

21 eval([’load ’,gcd ,’/figure ’,num2str(number),’_TesiMattia/results/figure ’

,num2str(number),’.mat’]);

22 cd table

23

24 A0tilde_11 = squeeze(A0tilde (1,1,:));

25 A0tilde_21 = squeeze(A0tilde (2,1,:));

26 A0tilde_31 = squeeze(A0tilde (3,1,:));

27 A0tilde_41 = squeeze(A0tilde (4,1,:));

28 A0tilde_51 = squeeze(A0tilde (5,1,:));

29 A0tilde_61 = squeeze(A0tilde (6,1,:));

30

31 %response to output

32 ppsiy = -A0tilde_11 ./ A0tilde_61;

33 %response to prices

34 ppsip = -A0tilde_21 ./ A0tilde_61;

35 %response to commodity prices

36 ppsipc = -A0tilde_31 ./ A0tilde_61;

37 %response total reserves

38 ppsiebp = -A0tilde_41 ./ A0tilde_61;

39 %response non -borrowed reserves

40 ppsinfci = -A0tilde_51 ./ A0tilde_61;

41

42 disp([’*** Relative to Fig ’, num2str(number),’ ***’])

43

44 mediany = quantile(ppsiy ,0.5);
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45 quarty68 = [quantile(ppsiy ,0.16) ,quantile(ppsiy ,0.84) ];

46 quarty96 = [quantile(ppsiy ,0.025) ,quantile(ppsiy ,0.975) ];

47 psiy = {mediany; quarty68; quarty96 };

48

49 medianp = quantile(ppsip ,0.5) ;

50 quartp68 = [quantile(ppsip ,0.16) ,quantile(ppsip ,0.84) ];

51 quartp96 = [quantile(ppsip ,0.025) ,quantile(ppsip ,0.975) ];

52 psip = {medianp; quartp68; quartp96 };

53

54 medianpc = quantile(ppsipc ,0.5) ;

55 quartpc68 = [quantile(ppsipc ,0.16) ,quantile(ppsipc ,0.84) ];

56 quartpc96 = [quantile(ppsipc ,0.025) ,quantile(ppsipc ,0.975) ];

57 psipc = {medianpc; quartpc68; quartpc96 };

58

59 mediane = quantile(ppsiebp ,0.5) ;

60 quarte68 = [quantile(ppsiebp ,0.16) ,quantile(ppsiebp ,0.84) ];

61 quarte96 = [quantile(ppsiebp ,0.025) ,quantile(ppsiebp ,0.975) ];

62 psie = {mediane; quarte68; quarte96 };

63

64 mediann = quantile(ppsinfci ,0.5) ;

65 quartn68 = [quantile(ppsinfci ,0.16) ,quantile(ppsinfci ,0.84) ];

66 quartn96 = [quantile(ppsinfci ,0.025) ,quantile(ppsinfci ,0.975) ];

67 psin = {mediann; quartn68; quartn96 };

68

69 Tab=table({’Median ’;’68\% Prob. Interval ’;’95\% Prob. Interval ’}, ...

70 psiy ,psip ,psipc ,psie ,psin , ...

71 ’VariableNames ’,{’Coefficient ’ ’\psi_y’ ’\psi_p’ ’\psi_p_c ’ ’\psi_e’

’\psi_n’});

72 Tab
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Replication code for estimating the FEVD

1 %%***************************************************************

2 % This is a modified version of the code developed by

3 % Caggiano et al. (2021) to compute the forecast error variance

4 % decomposition.

5 %%***************************************************************

6

7 clear

8 close all

9 clc

10

11 load results_MAIN.mat

12

13 addpath(’functions ’)

14

15 n = 6 ; % number of variables

16 numSavedNarrative = length(A0_save) ;

17

18 hmaxtoplot2 = 24 % 2 yrs ahead

19 bands = [16 ,50 ,84]; % Percentiles for credible sets

20 p = 12; % Maximum lag order of VAR

21 hmax = 120; % Set maximum horizon to 10 years

22

23 A0_narrative = A0_save;

24 Beta_narrative = Beta_save;

25

26 Draws_FEVDs_narrative = nan(n,n,hmaxtoplot2 +1, numSavedNarrative); %

Initialisation: variable ,...,horizon ,draw

27

28 for draw = 1: numSavedNarrative

29 IRFs = getIRFs(Beta_narrative (:,:,draw),A0_narrative (:,:,draw),exog ,

n,p,hmax);

30 Draws_FEVDs_narrative (:,:,:,draw) = varianceDecompositionOfVAR(IRFs ,

hmaxtoplot2);

31 end

32

33 % Compute FEVDs of all 7 endogenous variables to FU and EBP shocks over

a 2-year horizon:

34 FEVD_percentiles_narrative = zeros(n,2, hmaxtoplot2 +1,3); %

Initialisation: variable ,shock ,horizon ,bands

35 for jj = 1:2 % Shock

36 for ii = 1:n % Variable

37 FEVD_percentiles_narrative(ii,jj ,:,:) = prctile(squeeze(

Draws_FEVDs_narrative(ii,jj ,1:end ,:)),bands ,2);

38 end

39 end
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40

41 % Table Construction for all n endogenous variables to shocks over a 2-

year horizon

42

43 % 1. Data Arrangements before constructing table:

44

45 % FEVDs for each of the n variables to monetary policy shock over

selected horizons

46 FEVD_y = squeeze(FEVD_percentiles_narrative (1 ,: ,1:12:end ,:));

47 FEVD_p = squeeze(FEVD_percentiles_narrative (2 ,: ,1:12:end ,:));

48 FEVD_pc = squeeze(FEVD_percentiles_narrative (3 ,: ,1:12:end ,:));

49 FEVD_E = squeeze(FEVD_percentiles_narrative (4 ,: ,1:12:end ,:));

50 FEVD_N= squeeze(FEVD_percentiles_narrative (5 ,: ,1:12:end ,:));

51 FEVD_r = squeeze(FEVD_percentiles_narrative (6 ,: ,1:12:end ,:));

52

53 var = 1;

54 FEVD_y1 = squeeze(FEVD_y(var ,:,:));

55 FEVD_p1 = squeeze(FEVD_p(var ,:,:));

56 FEVD_pc1 = squeeze(FEVD_pc(var ,:,:));

57 FEVD_E1 = squeeze(FEVD_E(var ,:,:));

58 FEVD_N1 = squeeze(FEVD_N(var ,:,:));

59 FEVD_r1 = squeeze(FEVD_r(var ,:,:));

60

61 save(’FEVD.mat’,’FEVD_y1 ’,’FEVD_p1 ’,’FEVD_pc1 ’,’FEVD_E1 ’,’FEVD_N1 ’,’

FEVD_r1 ’);

62

63 % Selected horizons labels:

64 Horizon = [0; 12; 24];

65

66 % 2. Table construction:

67

68 Tab1 = table(Horizon ,FEVD_y1 , ’VariableNames ’, {’Horizons ’,’16th -50th -84

th Prctles FEVDs of y to Monetary policy Shock’})

69 Tab2 = table(Horizon ,FEVD_p1 , ’VariableNames ’, {’Horizons ’,’16th -50th -84

th Prctles FEVDs of p to Monetary policy Shock’})

70 Tab3 = table(Horizon ,FEVD_pc1 ,’VariableNames ’, {’Horizons ’,’16th -50th -84

th Prctles FEVDs of pc to Monetary policy Shock’})

71 Tab4 = table(Horizon ,FEVD_E1 , ’VariableNames ’, {’Horizons ’,’16th -50th -84

th Prctles FEVDs of EBP to Monetary policy Shock’})

72 Tab5 = table(Horizon ,FEVD_N1 , ’VariableNames ’, {’Horizons ’,’16th -50th -84

th Prctles FEVDs of NFCI to Monetary policy Shock’})

73 Tab6 = table(Horizon ,FEVD_r1 , ’VariableNames ’, {’Horizons ’,’16th -50th -84

th Prctles FEVDs of FFR to Monetary policy Shock’})
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Replication code for plotting the estimation of FEVD

1 %%***************************************************************

2 % This is a modified version of the code developed by

3 % Caggiano et al. (2021) to plot the forecast error variance

4 % decomposition.

5 %%***************************************************************

6

7 clear variables;

8 close all;

9 clc;

10

11 load ’FEVD.mat’;

12

13 Horizon =24;

14

15 ftsizeaxis =11;

16 ftsizexlabel =11;

17 ftsizetitle =11;

18 ftlinewidth = 1.0;

19 medianwidth =1.0;

20

21 H=Horizon;

22

23 close all

24 hFig = figure (1);

25 set(hFig , ’Position ’, [20 20 700 350])

26

27 subplot (2,3,1)

28 plot (0:1:H,FEVD_y1 (:,2),’-k’,’LineWidth ’,medianwidth)

29 hold on

30 a=( FEVD_y1 (:,1)) ’;

31 b=( FEVD_y1 (:,3)) ’;

32

33 x = 0:1:H;

34 [~,~]= jbfill(x,a,b,rgb(’red’),rgb(’red’) ,0,0.5);

35 set(gca ,’XTick’ ,[0;12;24])

36 set(gca ,’XTickLabel ’,[’0 ’;’ 1’;’ 2’;’ 3’;’ 4’;’ 5’])

37 set(gca ,’LineWidth ’,ftlinewidth )

38 set(gca ,’YTick’ ,[-0.5 -0.25 0 0.25 0.5])

39 axis ([0 Horizon 0 0.5])

40 xlabel(’Years’,’FontSize ’,ftsizexlabel)

41 ylabel(’Percent ’,’FontSize ’,ftsizexlabel)

42 set(gca ,’FontSize ’,ftsizeaxis)

43 set(gca ,’LineWidth ’,ftlinewidth)

44 title(’ Output ’,’FontSize ’,ftsizetitle)

45 box on
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46

47

48 subplot (2,3,2)

49 plot (0:1:H,FEVD_p1 (:,2),’-k’,’LineWidth ’,medianwidth)

50 hold on

51 a=FEVD_p1 (:,1) ’;

52 b=FEVD_p1 (:,3) ’;

53

54 x = 0:1:H;

55 [~,~]= jbfill(x,a,b,rgb(’red’),rgb(’red’) ,0,0.5);

56 set(gca ,’XTick’ ,[0;12;24])

57 set(gca ,’XTickLabel ’,[’0 ’;’ 1’;’ 2’;’ 3’;’ 4’;’ 5’])

58 set(gca ,’LineWidth ’,ftlinewidth)

59 set(gca ,’YTick’ ,[-0.5 -0.25 0 0.25 0.5])

60 axis ([0 Horizon 0 0.5])

61 xlabel(’Years ’,’FontSize ’,ftsizexlabel)

62 ylabel(’Percent ’,’FontSize ’,ftsizexlabel)

63 set(gca ,’FontSize ’,ftsizeaxis)

64 set(gca ,’LineWidth ’,ftlinewidth)

65 title(’ GDP Deflator ’,’FontSize ’,ftsizetitle)

66 box on

67

68 subplot (2,3,3)

69 plot (0:1:H,FEVD_pc1 (:,2),’-k’,’LineWidth ’,medianwidth)

70 hold on

71 a=FEVD_pc1 (:,1) ’;

72 b=FEVD_pc1 (:,3) ’;

73

74 x = 0:1:H;

75 [~,~]= jbfill(x,a,b,rgb(’red’),rgb(’red’) ,0,0.5);

76 set(gca ,’XTick’ ,[0;12;24])

77 set(gca ,’XTickLabel ’,[’0 ’;’ 1’;’ 2’;’ 3’;’ 4’;’ 5’])

78 set(gca ,’LineWidth ’,ftlinewidth)

79 set(gca ,’YTick’ ,[-0.5 -0.25 0 0.25 0.5])

80 axis ([0 Horizon 0 0.5])

81 xlabel(’Years ’,’FontSize ’,ftsizexlabel)

82 ylabel(’Percent ’,’FontSize ’,ftsizexlabel)

83 set(gca ,’FontSize ’,ftsizeaxis)

84 set(gca ,’LineWidth ’,ftlinewidth)

85 title(’ Commodity Price Index ’,’FontSize ’,ftsizetitle)

86 box on

87

88 subplot (2,3,4)

89 plot (0:1:H,FEVD_E1 (:,2),’-k’,’LineWidth ’,medianwidth)

90 hold on

91 a=FEVD_E1 (:,1) ’;

92 b=FEVD_E1 (:,3) ’;
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93

94 x = 0:1:H;

95 [~,~]= jbfill(x,a,b,rgb(’red’),rgb(’red’) ,0,0.5);

96 set(gca ,’XTick’ ,[0;12;24])

97 set(gca ,’XTickLabel ’,[’0 ’;’ 1’;’ 2’;’ 3’;’ 4’;’ 5’])

98 set(gca ,’LineWidth ’,ftlinewidth)

99 set(gca ,’YTick’,[ -0.25 0 0.25 0.5])

100 axis ([0 Horizon 0 0.5])

101 xlabel(’Years’,’FontSize ’,ftsizexlabel)

102 ylabel(’Percentage points ’,’FontSize ’,ftsizexlabel)

103 set(gca ,’FontSize ’,ftsizeaxis)

104 set(gca ,’LineWidth ’,ftlinewidth)

105 title(’EBP’,’FontSize ’,ftsizetitle)

106 box on

107

108 subplot (2,3,5)

109 plot (0:1:H,FEVD_N1 (:,2),’-k’,’LineWidth ’,medianwidth)

110 hold on

111 a=FEVD_N1 (:,1) ’;

112 b=FEVD_N1 (:,3) ’;

113

114 x = 0:1:H;

115 [~,~]= jbfill(x,a,b,rgb(’red’),rgb(’red’) ,0,0.5);

116 set(gca ,’XTick’ ,[0;12;24])

117 set(gca ,’XTickLabel ’,[’0 ’;’ 1’;’ 2’;’ 3’;’ 4’;’ 5’])

118 set(gca ,’LineWidth ’,ftlinewidth )

119 set(gca ,’YTick’,[ -0.25 0 0.25 0.5])

120 axis ([0 Horizon 0 0.5])

121 xlabel(’Years’,’FontSize ’,ftsizexlabel)

122 ylabel(’Standard deviations ’,’FontSize ’,ftsizexlabel)

123 set(gca ,’FontSize ’,ftsizeaxis)

124 set(gca ,’LineWidth ’,ftlinewidth)

125 title(’NFCI’,’FontSize ’,ftsizetitle)

126 box on

127

128 subplot (2,3,6)

129 plot (0:1:H,FEVD_r1 (:,2),’-k’,’LineWidth ’,medianwidth)

130 hold on

131 a=FEVD_r1 (:,1) ’;

132 b=FEVD_r1 (:,3) ’;

133

134 x = 0:1:H;

135 [~,~]= jbfill(x,a,b,rgb(’red’),rgb(’red’) ,0,0.5);

136 set(gca ,’XTick’ ,[0;12;24])

137 set(gca ,’XTickLabel ’,[’0 ’;’ 1’;’ 2’;’ 3’;’ 4’;’ 5’])

138 set(gca ,’LineWidth ’,ftlinewidth )

139 set(gca ,’YTick’ ,[-0.6 -0.25 0 0.25 0.5])
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140 axis ([0 Horizon 0 0.5])

141 xlabel(’Years ’,’FontSize ’,ftsizexlabel)

142 ylabel(’Percentage points ’,’FontSize ’,ftsizexlabel)

143 set(gca ,’FontSize ’,ftsizeaxis)

144 set(gca ,’LineWidth ’,ftlinewidth)

145 title(’ Federal Funds Rate’,’FontSize ’,ftsizetitle)

146 box on

147

148 set(gcf , ’PaperPositionMode ’, ’auto’);

149

150 saveas(hFig ,’../ plots/FigureFEVD ’,’epsc’)

151 savefig(hFig ,’../ plots/FigureFEVD.fig’)


