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Chapter 1

Introduction

A large fraction of stars in the field are likely members of binary or multiple sys-
tems. These binaries play a notable role in the dynamics of star clusters, such as
globular clusters [15]. The presence of a companion alters the evolutionary path of
a star, leading to phenomena such a stellar mergers, X-ray binaries and gamma-ray
bursts. However the scarcity of direct measurements of the intrinsic distributions of
orbital parameters means that many details of these processes remain uncertain [39].
Moreover, the new era of gravitational wave astronomy initiated by the detection of
gravitational waves from a binary black hole (BBH) by the LIGO interferometers
[1] contributed to a growth in interest towards binary systems.

Star clusters, such as globular clusters, likely host the formation of the vast
majority of massive stars believed to be black hole progenitors [26]. Understanding
the properties of binary systems in star clusters is therefore important, but di�cult
from an observational point of view. Studies on the binary population of globular
clusters, such as [32], focus on determining the fraction of binaries in the cluster,
while extracting the orbital parameters of these systems is hard due to the large
distance and high densities of globular clusters. The extraction of orbital parameters
for binary systems is possible for closer star clusters such as open clusters, like in
Sana et al. 2012 [39]. Analyzing the population of O-stars in six nearby galactic

Figure 1.1: Position of binaries in the period (P) - mass-ratio (q) - eccentricity (e)
plane from the sample of O stars binaries in open clusters from Sana et al. [39].
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Chapter 1. Introduction 2

Figure 1.2: Eccentricity distribution of sources entering the LIGO frequency band
[37].

Figure 1.3: Distribution of BBH orbital eccentricity e at 10�2Hz for BBHs merging
inside a globular cluster or ejected from it [38].

open clusters they were able to extract the orbital parameters of roughly 30 binaries,
as seen in fig. 1.1.

In this thesis work, I focused on one particular orbital parameter, the eccentric-
ity, of a particular class of binaries called hard binaries. In a star cluster environ-
ment, like that of a globular cluster, due to their high density, binary systems are
likely to interact with single stars in scattering processes. The global eccentricity
distribution for binary systems in star clusters has already been extensively studied
([24],[16],[25],[11]); it is called thermal distribution and takes the following form:
f(e) = 2 e. However this applies to a cluster as a whole, under the assumption of
thermal equilibrium. The goal of this thesis is to show that scattering events tend
to increase the eccentricity of hard binaries, and I obtained this result by modelling
individual binary-single encounters with the high precision N-body code ARWV [7].

The eccentricity is also a relevant parameter for what concerns gravitational-
wave signals from BBH mergers. At the frequencies at which ground based detector
operate (10 � 104 Hz), as a consequence of the circularization of the orbits due
to gravitational wave emission [33], 99% of sources enter the LIGO band with
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eccentricities below ⇠ 10�3 [37] (see fig. 1.2). However future space-borne detectors
like LISA [2], operating at much lower frequencies (10�2Hz), will be able to detect
BBHs mergers with measurable eccentricities e > 0.01 [38], as seen in fig. 1.3

In chapter 2 I will provide an overview of what a globular cluster is, and I
will describe a collection of models to describe them. I will also describe some
key processes that play an important role in the star cluster evolution. In chapter
3, I will describe the dynamics of binary systems, focusing in particular on the
description of three-body encounters. I will also discuss the thermal eccentricity
distribution as the global distribution of binary eccentricities. In chapter 4, I will
describe the code ARWV and why it is suitable for the investigation performed
in this work. I will also carefully describe the initial conditions for our scattering
experiments and discuss the outcomes of such experiments. Finally in chapter 5 I
will illustrate a code I developed, based on a Monte Carlo approach, that aims at
modelling the energy and eccentricity evolution of binary systems as a consequence
of scattering events. I used this code to demonstrate a result obtained in the
previous chapter, but with a di↵erent, analytic approach. The result in question is
that a particular type of encounter, called flyby, contributes less to the eccentricity
evolution compared to another class of encounters called exchanges.
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Chapter 2

Globular Clusters

Globular clusters are large, dense, self-gravitating, almost collisionless agglomerates
of stars. They are characterized by a half-light radius with typical values of 3�5 pc,
up to a few tens of pc, central mass density ⇢c � 104 M�pc�3, and ages of around
10Gyr up to ⇠ 12Gyr [15, 26]. They are normally associated with a host galaxy,
and most galaxies, like the Milky Way, host several of these systems [4] (see fig.
2.2).

2.1 Evolution of a globular cluster

Globular clusters (and star clusters in general), are collisional systems. In a colli-
sional system the relaxation timescale tr (the time needed for a star in the cluster
to loose memory of its initial velocity as a consequence of two-body interactions)
is smaller than the lifespan of the cluster. The two-body relaxation timescale is
the time needed for a star in the cluster to loose memory of its initial velocity as a
consequence of two-body encounters. The two-body relaxation timescale is defined
as [26, 42]:

tr = 0.34
�
3

G2hmi⇢ ln(0.4N)
, (2.1)

where � is the velocity dispersion of the stars in the star cluster, hmi is the average
mass of the stars, ⇢ is the local mass density and N is the number of stars in the
cluster. This expression is valid if the only interaction considered is the gravitational
pull between stars, and the gravitational potential of the cluster is assumed to be
spherically symmetric. For globular clusters the two-body relaxation timescale is
smaller than the lifespan of the star cluster, with a value of tr ⇠ 109yr [36]. Fig. 2.3
shows a radius-mass diagram for star clusters in the Milky Way, and relaxation times
are also highlighted. In such a system the interactions between stars are common,
and produce a granularity of the gravitational field [43]. The gravitational field will
be constantly fluctuating, resulting in local changes of the magnitude and directions
of star velocities. This random reshu✏ing of the velocities will reduce deviations
from the equilibrium distribution for the velocities, i.e. a Maxwellian distribution
[10]. This facilitates the evaporation of the cluster, an important process for the

5
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Figure 2.1: Hubble Space Telescope photograph of the dense globular cluster M80
(NGC 6093) [4].

Figure 2.2: Globular clusters positions about the Milky Way superimposed to a
map of the galaxy from the COBE satellite using a Mollweide projection [4].
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Figure 2.3: Radius-mass diagram for open clusters, young massive clusters and old
globular clusters in the Milky Way. Relaxation times in Myr are also highlighted
[36].
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evolution of the cluster. Another process relevant for the evolution of the cluster
is the core collapse, also called gravothermal catastrophe, related as well to the
evaporation process and therefore to the granularity of the gravitational potential.

2.1.1 Zero-order models

Ignoring for a moment the granularity of the gravitational field we can briefly dis-
cuss, following Spitzer 1987 [42], some simple models to describe a globular clus-
ter. These idealized models ignore stellar encounters and other e↵ects to allow for
steady-state solutions and equilibrium configurations. The gravitational potential
will then be a slowly varying function of the position. We can define a velocity
distribution function f(x,v, t), defined so that the quantity f(x,v, t) d3xd3v is the
number of particles in the volume d

3x with velocities in d
3v. This distribution

function satisfies the collisionless Boltzmann equation:

@f

@t
+ v · @f

@x
+ a · @f

@v
= 0, (2.2)

which can be derived from the conservation of particles, and where ai = dvi/dt.
The acceleration is related to the gravitational potential � as:

ai = � @�

@xi
, (2.3)

and coupling eq. (2.2) with the Poisson equation for the gravitational potential:

r2
�(x, t) = 4⇡G⇢, (2.4)

it is possible to describe the dynamical evolution of the system [20].
For the purpose of describing the zero-order models we can introduce two further

assumptions, in order to consider systems with spherical symmetry in steady-state
equilibrium:

• The gravitational potential �, the distribution function f and the other quan-
tities describing the cluster’s properties are independent of time.

• We impose the spherical symmetry: � depends only on the radial coordinate
r, and f depends only on r, vr, vt, where vt is the velocity transverse to the
radial direction.

With these assumptions we can discuss some zero-order models:

1. The simplest model is a sphere where the motion of stars simply balances the
the gravitational pull:

vr = 0, vt =
GM(r)

r
. (2.5)
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2. If we assume an isotropic velocity distribution, with:

(
f = 1(�E)p forE > 0

0 forE < 0,
(2.6)

where E = E = 1
2v

2 + �(r), 1 is a constant and �(r) is equal to zero outside
the cluster surface, we obtain the following function for the density of the
cluster:

⇢(r) = 2[��(r)]n, (2.7)

where n = p + 3/2 and 2 is a constant. Analytic solutions can be found for
n = 0 (uniform sphere with constant density), n = 1, n = 5. This last case
is particularly interesting since it was used by Plummer to fit observations of
globular clusters [34]. It is therefore called Plummer model [4], and describes
a cluster with a compact core, and extended outer envelope. Even though
this cluster does not have external boundaries, it contains a finite number of
stars.

3. The next class of models we mention is that of the isothermal spheres. In
these models the velocity distribution function f approaches a value f

0 in
statistical equilibrium:

f
0 =  exp�3E/hv2i

, (2.8)

where hv2i is the mean square velocity and  is a constant. An isothermal
sphere has infinite mass, and cannot therefore describe a full cluster. It can
be useful to describe the core of the cluster, since the inner regions can be
considered to be nearly isothermal.

4. As the last model we mention the lowered isothermal sphere. This model
adopts a velocity distribution function that allows to describe a finite cluster.
Globular clusters have a finite radius since there is a maximum radius beyond
which the tidal field of the Galaxy precludes bound orbits [10]. This radius is
called tidal-cuto↵ radius. The velocity distribution function has the following
shape:

f =

(
K

⇣
e
�3E/hv2i � e

�3Ee/hv2i
⌘

if E < Ee

0 if E > Ee

. (2.9)

where Ee is the escape energy for a star in the cluster.

2.1.2 Evaporation

As we already mentioned globular clusters are finite systems, and the granularity of
their gravitational field allows for a reshu✏ing of the magnitude and direction of the
velocities of the stars in the cluster. This will drive the velocity distribution towards
a Maxwellian distribution, and due to the high velocity tail of the Maxwellian and
the constant reshu✏ing there will always be stars with enough energy to escape the
cluster.
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The mean energy per unit mass to remove a star from the cluster is defined as:

hv2ei
2

⌘
R
⇢(r)v2e(r)dV

2
R
⇢(r)dV

. (2.10)

We now state that a star cluster can be considered as a virialized system, so the
usual statement of the virial theorem applies:

2T = |W |, (2.11)

where T =
PN

i=1
1
2miv

2
i and W = �G

PN
i=1

P
j>i

mimj

|ri�rj | are the kinetic and potential

energy. Combining this with equation (2.10) we get that the velocity needed for a
star to escape the cluster is: ⌦

v
2
e

↵
= 4

⌦
v
2
↵
. (2.12)

A very rough estimate of the evaporation probability ⇠e can be obtained by assuming
that the time to reshu✏e the velocity of the stars to re-establish a Maxwellian is
tr (the relaxation timescale), and by considering the probability of evaporation
proportional to the fraction of stars that have v > 2ve in a Maxwellian distribution:

⇠e / 4⇡

Z 1

2vm

f
(0)(v)v2dv, (2.13)

and Spitzer [43] estimates that for a spherical uniform cluster ⇠e = 7.4⇥ 10�3. We
can roughly estimate the evaporation time as:

tevap ⇡ tr

⇠e
= 136 tr, (2.14)

which is longer than a Hubble time. Few globular clusters are therefore directly
a↵ected by evaporation, but the process can be accelerated by the presence of a
tidal field, which can strip stars from the cluster. It is likely that the final fate of
most globular cluster is the destruction due to tidal e↵ects [4].

2.1.3 Gravothermal instability

Gravothermal instability is a process possible in an isothermal sphere such as the
one described by eq. (2.8), confined within an outer, non isothermal envelope.
These self-gravitating systems are characterized by a negative heat capacity, as a
consequence of the virial theorem [43, 4]. As stars evaporate from the core into the
outer envelope, the envelope increases its energy, acting as a heat sink for the core.
On the other hand the core loses energy and will therefore contract, increasing the
velocity dispersion of the stars in the core. If the core is large enough the increase in
temperature is more significant in the envelope, and energy can flow back into the
core, allowing for a state of stable equilibrium to exist [10]. Otherwise, if the core is
small enough, the temperature gradient between the core and the envelope steepens
indefinitely, as the contraction of the core accelerates. This runaway mechanism
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causes the core to collapse. We can discuss this process with two approaches:

1. Virial theorem approach: as we mentioned the granularity of the gravitational
field leads to the evaporation of the fastest stars from the core. This will cause
a decrease in bothK and |W |, but the evaporation will tend to break the virial
equilibrium. In particular, since the fastest stars are lost, the decrease in K

is bigger than that in |W |:

Etot,i = Ki +Wi > Etot,f = Kf +Wf , (2.15)

leading to a contraction of the core. The contraction of the core increases its
temperature and its density, leading to more stars being expelled from it. In
a real star cluster, this collapse can be halted, at least temporarily, thanks to
the presence of binary systems that act as an energy reservoir for the cluster.
We will explain this in more detail in the next chapter.

2. Ideal gas approach: we can show how self-gravitating systems have a negative
heat capacity with an analogy with ideal gases. The kinetic energy of the
system can be related to a dynamical temperature as [4]:

1

2
mhv2i = 3

2
kBT (2.16)

Combining this with the virial theorem (Etot = �K) we can define the total
energy of the systems as:

Etot = �3

2
NkBhT i, (2.17)

Where N is the number of bodies in the system. The heat capacity is then:

C =
dE

dhT i = �3

2
NkB. (2.18)

C is therefore always negative since N and kB are positive constants.
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Chapter 3

Binary system dynamics

Dense star clusters, as we mentioned in the previous chapter, are collisional systems.
In a collisional system close encounters between stars are possible and relevant with
respect to the lifetime of the system. As we mentioned in the previous chapter, the
two-body relaxation timescale is defined as [26, 42]:

tr = 0.34
�
3

G2hmi⇢ ln(0.4N)
, (3.1)

where � is the velocity dispersion of the stars in the star cluster, hmi is the average
mass of the stars, ⇢ is the local mass density and N is the number of stars in the
cluster. Since for globular clusters tr amounts to roughly 109yr [36], they can be
considered collisional systems.

Since a vast portion of the stars in the field, if not the majority, lives in a multiple
system [15], we can expect the interaction between binaries and single stars in the
cluster to be a relevant process.

A binary has internal energy given by:

Eint =
1

2
µV

2 � Gm1m2

r
, (3.2)

where µ = (m1m2) / (m1 +m2) is the reduced mass and V is the relative velocity
between the two bodies and r is their distance. We can also define the binding
energy of the binary as:

Ebin =
Gm1m2

2a
= �Eint, (3.3)

where a is the semi-major axis.
We can classify binaries comparing their binding energy to the average kinetic

energy of the stars in the cluster.

• Hard binaries : we call hard binaries those that have a higher binding energy
compared to the average kinetic energy of the stars in the cluster:

Ebin >
1

2
hmi�2; (3.4)

13
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Figure 3.1: Exchange probability as a function of the mass ratio m3/m1 [21].

• Soft binaries : we call soft binaries those that have a lower binding energy
compared to the average kinetic energy of the stars in the cluster:

Ebin <
1

2
hmi�2

, (3.5)

where hmi is the average mass of a star in the cluster and � is their velocity dis-
persion.

3.1 Three-body encounters

A three-body encounter is a close encounter between a binary and a field star in a
star cluster, that allows for some energy to be exchanged between the binary and
the single star. Following [23, 41] we can classify a three-body encounter in the
following way, based on its outcome. In this classification we do not consider the
possibility of two stars merging since it is not relevant in the context of this work.

• The first possibility is the so called flyby interaction. In this type of process
the field star interacts with the binary and escapes, leaving the binary bound
at the end of the interaction. The binary after the interaction will have of
course di↵erent properties, but it will still be made of the same two bodies.
This can happen for any amount of the total energy of the system.

• The second possibility is the so called exchange. This interaction is similar
to the flyby, i.e. the outcome of the interaction is still a bound binary and
a star that escapes. In this case though, the field star forms a new binary
with one of the components of the original binary, while the other component
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escapes. This too can happen for any amount of the total energy of the
system. The probability of an exchange is strongly dependent on the mass
ratio between the incoming star and the binary components [21]. Fig. 3.1
shows the probability of an exchange as a function of the mass ratio m3/m1,2.
The probability is very close to zero for m3/m1,2 < 0.2, and approximates
unity for m3/m1,2 > 1.6.

• The third possibility is the so called ionization. In this case all the stars
become unbound after the interaction, and escape to infinity in di↵erent di-
rections. This can happen only if the total energy is positive. In particular we
can compute a critical velocity for the intruder, below which it doesn’t have
enough energy to ionize the system. To compute this threshold velocity we
need to impose the condition µVc/2 = Ebin, getting:

V
2
c =

2 (m1 +m2 +m3)Ebin

m3 (m1 +m2)
. (3.6)

We can also consider a second classification, not based on the outcome of the
process but on what happens during the encounter. In fact during a three body
interaction the stars can temporarily form a bound three body system, which will
eventually decay in a flyby interaction or an exchange. If this occurs the interac-
tion is called a resonant scattering (either a resonant flyby or a resonant exchange).
Otherwise we refer to a prompt interaction (prompt flyby, prompt exchange, ion-
ization). An operative way to determine which of these two types of interaction
occurs is explained in [23]. They define a resonant interaction one in which the
mean square distance, defined as:

s(t) =

"
1

3

X

i<j

|ri(t)� rj(t)|2
#1/2

, (3.7)

has more than one minimum during the interaction. If instead the minimum is only
one, than the interaction is prompt. The rates of these processes are described by
di↵erential cross sections, and we discuss them in chapter 5. In fig. 3.2 the cross
sections for exchange, ionization and resonant processes as a function of the velocity
of the intruder are shown, for binaries with eccentricity e = 0.7.

3.1.1 Dynamical Hardening

Heggie’s law states that, as a consequence of three-body interactions, hard binaries
tend to become harder (i.e. increase their binding energy), while soft binaries tend
to become softer (i.e. decrease their binding energy) [16]. The dynamical hardening
process is particularly relevant for binary black holes (BBHs), since black holes are
among the most massive objects in star clusters [4] and therefore BBHs are usually
hard binaries [26, 40]. Dynamical hardening is responsible for the shrinking of
BBHs semi-major axis to the point where they enter the regime of gravitational
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Figure 3.2: Cross sections for exchange, resonance and ionization as a function of
the velocity of the intruder for binaries with e = 0.7 [23].

wave emission. Without dynamical hardening the predicted merger rate of BBHs
would be too low to be detected [35]. We will treat this process in more detail in
section 5.1.

The process of dynamical hardening is relevant also for the evolution of the star
cluster itself. As we saw in chapter 2, globular clusters can undergo a process of
core collapse, called gravothermal catastrophe. The collapse can though be halted,
at least temporarily, by an energy source in the core. The energy needed is provided
by hardening of tight binaries. Single stars in the core scatter o↵ these binaries,
gaining kinetic energy by extracting it from the orbital energy of the binary, allowing
the core of the star cluster to return in equilibrium or even start to expand again.
In analogy to nuclear burning in stars, that allows them to be in equilibrium, this
process is called binary burning [4].

3.1.2 Gravitational focusing

A relevant process that has to be discussed when considering three-body encounters
is that of gravitational focusing. This process is responsible for the deflection of the
trajectory of the field star as it approaches the binary, due to the gravitational pull
between the binary and the single star. The result of this is that the distance of
closest approach between the binary and the field star will be less than the impact
parameter at infinity. Let’s compute the cross-section for a field star to pass within
a distance rmin from the center of gravity of the binary [43]. We approximate
the binary as a sphere of mass M , m3 is the mass of the intruder and b is the
impact parameter of the intruder with respect ti the binary at infinity, such that
the pericenter of the orbit of m3 is rmin. V (r) is the relative velocity between the
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binary and intruder at a given separation. We can write the conservation laws for
the angular momentum and the energy:

bV (r ! 1) =rminV (rmin) , (3.8)

1

2
µV (r ! 1)2 =

1

2
µV (rmin)

2 � Gm3M

rmin
, (3.9)

where µ = m3(m1+m2)/(m1+m2+m3) is the reduced mass for the relative motion
of the single star with respect to the binary. Solving for b and inserting it in the
expression for the cross section we get:

� = ⇡b
2 = ⇡r

2
min


1 +

2G (M +m3)

rminV (r ! 1)2

�
. (3.10)

3.2 Thermal eccentricity distribution

In 1919 Jeans discovered that if a population of binaries is thermalised the ec-
centricity distribution for the binaries can be described by the following equation
[24, 16]:

f(e) de = 2e de, (3.11)

and therefore all values of e2 are equally likely. The thermalization condition is
satisfied when the population of binaries reaches a state of statistical equilibrium,
which approximates energy equipartition. The distribution of energies for such
a system will follow a Boltzmann distribution. Such a state of equilibrium can
be reached if the binaries have all interacted with each other through dynamical
encounters, and have therefore exchanged energy many times. This distribution for
the eccentricities has been widely used when determining the initial conditions in
theoretical investigations of binary systems [11].

Since deriving eq. (3.11) considering a Boltzmann distribution for the binding
energies of the binaries is quite involved, here we show how to obtain the same
result considering a uniform distribution for the binding energies, following [25].
We start consindering the Keplerian orbital angular momentum for a bound two
body system:

L = µ

p
GMa (1� e2), (3.12)

where µ = (m1m2)/(m1 +m2) is the reduced mass, M = m1 +m2 is the total mass
and a the semi-major axis of the binary. We consider also the binding energy of
the binary:

Eb =
Gm1m2

2a
. (3.13)

Combining eq. (3.12) and eq. (3.13) we can write:

L
2 =

G

msys

Gm1m2

2Ebin

�
1� e

2
�
(m1m2)

2
. (3.14)
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Figure 3.3: The thermal eccentricity distribution.

We can therefore write an expression for the eccentricity e as a function of the
binding energy Eb:

e =

✓
1� 2EbinL

2 msys

G2 (m1m2)
2

◆ 1
2

. (3.15)

Di↵erentiating with respect to Ebin we get:

de

dEbin
=


�L

2 msys

G2 (m1m2)
2

�
e
�1
. (3.16)

Now, since the fraction of binaries in the range e, e + de is equal to the fraction of
binaries in the range Ebin, Ebin + dEbin:

f(e)de = f (Ebin) dEbin = f (Ebin)


�L

2 msys

G2 (m1m2)
2

��1

e de ⌘ K ede. (3.17)

Since we want: Z 1

0

f(e)de = 1, (3.18)

we have can compute the value of K and the shape of f(e):

1 = K

Z 1

0

e de =) K = 2 =) f(e) de = 2e de. (3.19)

The distribution is shown in fig. 3.3

3.3 BBH mergers in globular clusters

Estimates suggest that from 10�4 to less than 10�6 stars will end up as black holes.
The same can be expected to happen in globular clusters. Since they contain about
106 stars we can expect between zero and 100 black holes to live in a globular
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cluster [40]. These heavy objects tend to sink towards the core of the cluster as a
consequence of a process called dynamical friction [5]. It is a consequence of gravity
force that produces a drag force on a heavy body moving in a sea of lighter particles.
Qualitatively this happens because, as the heavy body moves, it attracts lighter
bodies, leaving a slight overdensity of matter behind. This overdensity attracts the
heavy body and is responsible for its deceleration. The deceleration happens on the
dynamical friction timescale tDF [26]:

tDF(M) =
3

4(2⇡)1/2G2 ln⇤

�
3

M⇢(r)
, (3.20)

which is typically a small fraction of the relaxation timescale. As a dense popu-
lation of stars, globular clusters host many dynamical interactions between stars,
particularly in their core, where heavy objects sink. These dynamical interactions
enhance the production of relativistic binaries, driving binaries towards tighter or-
bits, favouring the exchange of the binary components towards heavier objects [4].
Globular clusters have an enhanced e�ciency for the production of binary black
holes (BBHs) due to their dynamics, allowing for many-body interactions [3]. As
we saw, dynamical interactions between BBHs and stars in the cluster tend to de-
crease the semi-major axis of the binary, allowing them to enter the gravitational
wave regime faster and therefore merge. Even though the majority of the BBHs
are ejected from the cluster before merging, a fraction can merge inside the cluster.
Askar et al. [3] estimated the local merger rate density for BBHs considering both
escaping binaries and binaries that merge in the cluster to be R = 5.4Gpc�3yr�1

.
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Chapter 4

RESULTS: Modelling
binary-single encounters with the
direct N-body code ARWV

In the second part of my thesis, my goal is to show that the eccentricity of a single
hard binary tends to increase after a set of three-body encounters. I obtained this
result by means of three-body encounters with the direct N-body code ARWV. I
chose this code since it allows to integrate the orbits of the bodies involved in the
encounters with high precision, thanks to features such as the algorithmic regular-
ization and a chain structure.

4.1 ARWV

ARWV is a high-precision direct N-body code intended to integrate a few-body
problem (N  500) via the use of chained variables for the coordinates and velocities
of stellar bodies [7, 6]. It is an updated and modified version of the algorithmic
regularization chain code by Seppo Mikkola [29]. ARWV is able to model systems
with arbitrary mass ratios even for long periods of time.

4.1.1 Chain structure

ARWV uses a chain structure to minimize round o↵ errors. These errors can be
a major problem when a close encounter takes place and the coordinates of the
bodies involved are measured from a distant origin. The chain structure consists
in a rule to assign an index to each body in the simulated system, a↵ecting the
way in which positions and velocities of the bodies are stored by the code. Using
a standard approach the position and velocities of N bodies could be stored in an
array of size 6N . These positions and velocities could be computed with respect to
the center of mass of the system, and stored considering an arbitrary indexing of
the bodies. ARWV instead, to assign an index to each body, begins by choosing
randomly a first body. This body will be used as a reference becoming the origin
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of the chain. The other bodies are numbered as to minimize the distance between
any given member of the chain and the next one. So for any ith element of the
chain, the element (i+1)th will be chosen as the closest to ith the element. This is
repeated until a chain including all the bodies in the system is obtained. Positions
and velocities of the bodies in the system are then stored in an array with size
6(N � 1), since the first body represents the origin of the coordinates. In practice
this is achieved by sorting all the distances between particles, and searching among
the still unused distances to find to next closest body, until the chain is completed.
The chain is upgraded after every integration step.

4.1.2 Algorithmic regularization

The relative acceleration induced by point-like bodies in the case of close encounters
can grow enormously, due to the 1/r dependence of the Newtonian gravitational po-
tential. Close encounters can therefore lead to the UV divergence of the Newtonian
potential, which would cause a ’classic’ integration algorithm to fail. ARWV can
regularize the close encounters by a proper computation of coordinates and veloc-
ities, which is performed by the leapfrog algorithm. Although ARVW implements
di↵erent regularization methods, which can also be used in combination [7], for this
work I used the logarithmic-Hamiltonian (logH) method [29, 30]. This method is
based on the definition of a time transformation for the leapfrog integrator. The
logarithmic Hamiltonian is defined as:

⇤ = ln(T +B)� ln(U), (4.1)

where T =
PN

k=1 p
2
k/2mk is the kinetic energy, U =

P
0<i<jN mimj/ |ri � rj| is

the potential energy and B is the momentum associated to the time coordinate
(or binding energy), since we are considering an extended phase space. The index
k = 1, ..., N refers to the bodies present in the simulation. The functions T and U

are such that H = T � U is the usual Hamiltonian. The logarithmic Hamiltonian
gives the following equations of motion [29, 31]:

t
0 =

@⇤

@B
= 1/(T +B), (4.2)

r0k =
@T

@pk
/(T +B), (4.3)

B
0 =

@U

@t
/U, (4.4)

p0
k =

@U

@rk
/U, (4.5)

where eq. (4.4) is needed only if a time-dependent potential is added. Since the
right hand sides of these equations do not depend on the left hand side variables, it
is possible to build a leapfrog algorithm. Here we consider the leapfrog scheme in
the drift-kick-drift (DKD) declination, where we first advance the position by half
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Figure 4.1: Distribution of total masses of BBHs simulated with MOBSE, for dif-
ferent initial conditions for the MOBSE simulations [12]. We refer to the top-left
panel, where all the BBHs formed in the simulation are shown, and we selected
Z = 0.002.

a time step, then the velocity to the end of the time step and finally the position
to the end of the time step. Considering a time step of size h we have:

�t =
h/2

T +B
, t ! t+ �t, rk(h/2) = rk(0) + �t

@T

@pk
(0), (4.6)

then:

�t =
h

T +B
, B(h) = B(0) + �t

@U

@t
(0), pk(h) = pk(0) + �t

@U

@rk
(0), (4.7)

and finally:

�t =
h/2

T +B
, t ! t+ �t, rk(h) = rk(h/2) + �t

@T

@pk
(h). (4.8)

4.2 Initial conditions

Each of our synthetic three-body systems is composed of an initial binary (m1,m2)
and of an intruder (m3). For the equal mass case I set m1 = m2 = m3 = m =
10M�. For the unequal mass case the masses of each component (m1,m2,m3)
are sampled individually from a distribution of BBH masses obtained with the
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population synthesis code MOBSE (fig. 4.1, [12, 13]). This distribution is the
result of the simulation of 107 binary systems with metallicity Z = 0.002 ' 0.1Z�,
and includes both interacting and non interacting BBHs. If the BHs in the binary
interact, both surviving and merging BBHs are included. In this way it is possible
to account for the lack of stellar and binary evolution in ARWV.

The initial eccentricity e of each initial binary is sampled randomly from a
thermal distribution, which is uniform in e

2 in the interval [0,1) [16].

In the equal mass case the initial semi-major axis is computed as:

a =
Gm

2�2
, (4.9)

where � is the three-dimensional velocity dispersion of stars in the star clusters.
The initial binaries will thus be at the hard-soft boundary (will be better explained
in the previous chapter).

For the unequal mass case, the initial semi-major axis a of each initial binary is
randomly sampled from a log-normal distribution with µlog ' 1.22AU and �log '
0.92AU. This choice comes from the typical properties of black hole binaries formed
in simulations in [9]. The sample is then accepted if a 2 [max(aej, agw), ahard],
otherwise it is rejected and sampled again. aej is the semi-major axis below which
the binary can be ejected from the star cluster by a single-binary scattering event
and it is defined as [8]:

aej =
⇠m

2
3

(m1 +m2)
3

Gm1m2

v2esc

, (4.10)

where vesc is the escape velocity from the star cluster and ⇠ = 3 is a numerically
calibrated dimensionless parameter. agw is the semi-major axis below which the
main gravitational wave emission becomes the main driver of the orbital decay,
instead of dynamical hardening, and it is given by [28]

aGW =

"
32G2

5⇡⇠c5
�m1m2 (m1 +m2)

⇢c (1� e2)7/2

✓
1 +

73

24
e
2 +

37

96
e
4

◆#1/5

, (4.11)

where � is the 3D velocity dispersion for stars in the cluster and ⇢c is the core mass
density. ahard is the maximum a for the binary to be hard:

ahard =
Gm1m2

hmi�2
. (4.12)

This method allows us to generate hard initial binaries that will not merge nor get
expelled from the star cluster.

The asymptotic incoming velocity of the intruder with respect to the initial
binary is randomly drawn form a Maxwellian distribution, given by

p(v)dv =

r
2

⇡

v
2

�3
exp

✓
� v

2

2�2

◆
dv, (4.13)
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Figure 4.2: Parametrization of initial values for the scattering of an intruder o↵ a
binary. [23]

with dispersion � = 10
p

3/2 kms�1. This distribution can be randomly sampled as

v =
p
x2 + y2 + z2, where x, y and z are three Gaussian random numbers, with a

probability distribution function centered in zero and with the same �.

The initial distance between the intruder and the initial binary is given by
D = 103a for each system, so that the initial binary is initially unperturbed.

The remaining initial quantities (orbital phase f , the three orientation angles
✓,�, and the impact parameter b) are defined and sampled following [23], and can
be seen in fig 4.2. Since there is no explicit expression for f(t) we need to solve
Kepler’s equation:

2⇡

T
t = E � e sinE, (4.14)

where t is the time since periastron passage, T is the orbital period and E is the
eccentric anomaly. E is related to the phase f by

tan

✓
f

2

◆
=

✓
1 + e

1� e

◆1/2

tan

✓
E

2

◆
. (4.15)

To determine the phase f we first draw a uniform random number in the interval
[0, 2⇡) as the value of E � e sinE. E is then approximated using the bisection
method, and the value of f is obtained from eq. (4.15). This allows to give every
angular element a weight equal to the fraction of the time which the system spends
in that part of the orbit.
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✓ is the angle between the versor perpendicular to the orbital plane of the binary
and the velocity vector of the intruder at infinity, and it is sampled uniformly from
cos ✓ in [�1, 1]; � is the angle between the pericentre direction on the orbital plane
and the intersection of the orbital plane with the plane in which the initial velocity
vector of the intruder lies, and it is sampled uniformly in [0, 2⇡);  is the angle,
defined on a plane perpendicular to the velocity vector, between the orientation of
the impact parameter and the orbital plane direction, and it is sampled uniformly
in [0, 2⇡).

Finally, the impact parameter b is sampled according to an equal probability
distribution in b

2, hence proportional to the area of a surface element perpendicular
to the direction of the velocity of the intruder. The values of b are generated in
the interval [0, bmax], where the upper limit for a hard encounter is derived from the
gravitational focusing expression [8]:

bmax =

p
2G (m1 +m2 +m3) a

v1
. (4.16)

We also ensure that b < 102a per each encounter, in order to exclude soft encounters
from our simulations. Soft encounters are characterized by a negligible energy
exchange between the intruder and the binary, thus leaving the configuration of the
system unchanged.

4.3 The scattering experiments

I simulated the evolution of 103 initial equal mass binaries and 103 initial unequal
mass binaries undergoing at most 8 scattering events with an intruder. The possible
outcome of one of these three-body encounters is either a flyby, an exchange or an
ionization (these possibilities will be explained in detail in another chapter). Each
three body encounter is integrated for 105yr. If the encounter does not lead to
the disruption of the binary (ionization), a new encounter is performed, where the
binary at the last time step of the previous simulation is used as the initial binary
of the new simulation. New intruder properties are sampled as in section 4.2, and
the system is integrated. This is repeated for a maximum of 8 encounters per initial
binary. I call nth generation the group of systems that has undergone n scattering
events. At the end of each encounter I check if the three-body interaction is still
ongoing by looking at the binding energy associated to each possible couple. If two
or more couples are still gravitationally bound, the system is integrated for another
105yr, until the interaction is completed (with a BBH and a single unbound BH left
or three single unbound BHs left).

In fig. 4.3 and in fig. 4.4 I show the evolution of the eccentricity distribution
for the 8 generations for the equal and unequal mass cases. Figure 4.3 highlights
a tendency of the eccentricity distribution to drift towards a super-thermal distri-
bution, in particular for the equal mass case. The top-left panels of fig. 4.4 show
the starting eccentricity distributions, which are thermal, and as more scattering
events happen more systems move to high eccentricity bins, as is showed by the
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(a) Equal mass case

(b) Unequal mass case

Figure 4.3: Violin plots showing the eccentricity distributions for di↵erent genera-
tions. In the top panel we show the evolution of the eccentricity distribution for the
equal mass case, while in the bottom panel we show the evolution of the eccentricity
distribution for the unequal mass case. The median values of each distribution are
highlighted.
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(a) Equal mass case

(b) Unequal mass case

Figure 4.4: Histograms showing the eccentricity distribution per generation for the
equal mass and unequal mass cases. Also the total number of binaries present per
generation is showed.
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gen 1 gen 2 gen 3 gen 4 gen 5 gen 6 gen 7 gen 8 average
equal
mass 5.4% 29.2% 24.6% 27.3% 19.3% 9.1% 12.2% 7.2% 32.2%

unequal
mass 14.4% 10.7% 8.5% 6.7% 4.9% 6.3% 5.5% 3.8% 7.6%

Table 4.1: Fraction of ionized systems after each generation and averaged over all
generations for equal and unequal mass cases.

gen 0 gen 1 gen 2 gen 3 gen 4 gen 5 gen 6 gen 7 gen 8
median e 0.70 0.75 0.80 0.83 0.87 0.90 0.91 0.93 0.93

e > 0.9/etot 0.19 0.25 0.34 0.36 0.46 0.48 0.52 0.55 0.57

Table 4.2: Values of the median e and the fraction of systems with e > 0.9 per each
generation in the equal mass case.

other panels.

In fig. 4.4 the number of systems present in each generation is also shown.
This number decreases as the generation increases because a fraction of binaries is
ionized by the interaction with the intruders. The fraction of ionized systems per
generation and averaged over all generations are showed in tab. 4.1, for both the
equal and unequal mass cases.

The thermal distribution has a median eccentricity of 0.7 and the probability
of having an e > 0.9 associated to this distribution is 0.19. The median values of
the eccentricity distributions at each generation and the fraction of systems with
e > 0.9 at each generation for the equal mass case are shown in tab. 4.2, and for
the unequal mass case in tab. 4.3.

For the equal mass case, after each initial binary has undergone the first scatter-
ing event the median value of the eccentricity distribution increases by ⇠ 7%. The
average increase in the median of the eccentricity distribution considering all the 8
generations is ⇠ 3.5%. Again for the equal mass case, after each initial binary has
undergone the first scattering event, the fraction of systems with e > 0.9 increases
by ⇠ 32%. The average increase in the fraction of systems with e > 0.9 considering
all the 8 generations is ⇠ 15%. For the unequal mass case the increase in the me-
dian value of the eccentricity distribution for the first generation is ⇠ 10%, while
the average increase in the median of the eccentricity distribution over all the 8
generations is ⇠ 1%. Again for the unequal mass case, the increase in the fraction
of systems with e > 0.9 for the first generation is ⇠ 45%, while the average increase

gen 0 gen 1 gen 2 gen 3 gen 4 gen 5 gen 6 gen 7 gen 8
median e 0.70 0.77 0.78 0.78 0.79 0.79 0.78 0.81 0.78

e > 0.9/etot 0.20 0.29 0.27 0.26 0.30 0.28 0.29 0.32 0.34

Table 4.3: Values of the median e and the fraction of systems with e > 0.9 per each
generation in the unequal mass case.
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gen 1 average over all generations
increase in median e wrt gen 0 ⇠ 7% ⇠ 3.5%

increase in the fraction of systems
with e > 0.9 wrt gen 0 ⇠ 32% ⇠ 15%

Table 4.4: Increase of the median e and of the fraction of systems with e > 0.9
with respect to the 0-th generation for the 1-st generation and averaged over all
generations. Case of equal masses.

gen 1 average over all generations
increase in median e wrt gen 0 ⇠ 10% ⇠ 1%

increase in the fraction of systems
with e > 0.9 wrt gen 0 ⇠ 45% ⇠ 7.7%

Table 4.5: Increase of the median e and of the fraction of systems with e > 0.9
with respect to the 0-th generation for the 1-st generation and averaged over all
generations. Case of unequal masses.

in the fraction of systems with e > 0.9 over all the 8 generations is ⇠ 7.7%. These
numbers are summarized in tab. 4.4 and tab. 4.5. Ginat and Perets in [14] found
a super-thermal eccentricity distribution with a probability for e > 0.9 of 0.22, an
increase of ⇠ 15% with respect to a thermal distribution.

Fig. 4.4 shows how not only the ratio, but also the number of systems with
e > 0.9 increases after the first scattering event, despite having less systems overall
because of ionization. The number of systems with e > 0.9 for the equal mass case
before any scattering event is 186, which increases to 236 for the first generation.
In the unequal mass case, the initial number of systems with e > 0.9 is 200, which
increases to 252 for the first generation. The plots in fig. 4.5 show in more detail how
systems change their eccentricity going from the zeroth generation to the first. The
top panel shows the equal mass systems while the bottom panel shows the unequal
mass systems. In both panels the black histogram shows the total eccentricity
distribution at the first generation; the blue histogram shows the final e of systems
that had e < 0.9 at the zeroth generation and that after the first scattering drifted
to a higher e > 0.9; the green histogram shows the e of the systems that started
with e > 0.9 and drifted to a lower e < 0.9; the yellow histogram shows the starting
eccentricity (at the zeroth generation) of the systems that ended up with e > 0.9
at the first generation (blue histogram); the red histogram shows the eccentricity
of systems that after the scattering retained a e > 0.9.

As a test I also ran two smaller scale equal mass simulations with 102 systems
considering two di↵erent starting distributions for the eccentricity: an initial uni-
form distribution in the interval [0,1] and an initial distribution for low eccentricity,
uniform in the interval [0,0.1]. The results are shown in fig. 4.6. In both cases the
eccentricity distribution drifts towards higher values of e. Bigger fluctuations are
due to the smaller size of the samples.

Figure 4.8 shows the evolution of the eccentricity distributions for the unequal
mass case as a function of the semi-major axis of the binary in the top panel and
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(a) Equal mass case

(b) Unequal mass case

Figure 4.5: Histograms showing the detail of how systems change their eccentricity
going from the zeroth generation to the first generation. The equal mass case is on
the top panel, the unequal mass case on the bottom panel.
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Figure 4.6: Violin plots showing the eccentricity distribution evolution for di↵erent
initial distributions. In the top panel the initial distribution for e is uniform in the
interval [0,1], while in the bottom panel the initial distribution is uniform in the
interval [0,0.1].
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Figure 4.7: Number of ionized systems as a function of the eccentricity throughout
the 8 generation for the unequal mass case.

of the mass of the binary in the bottom panel. The top panel shows how binaries
with large semi-major axis form and survive if the associated eccentricity is also
large. The bottom panel shows a tendency for heavier binaries to from. This can
be explained since ionization is more likely for lighter systems and also exchanges
favour the formation of heavier binaries [26].

I investigated whether ionization could be held responsible for the drift in ec-
centricity or not. This would be the case if systems with low eccentricity have a
higher chance of being ionized, or if high eccentricity systems do not get ionized.
In our simulations this did not seem to be the case. Fig. 4.7 shows the number of
ionized binary systems as a function of the eccentricity per generation prior to the
disruption for the unequal mass case. Systems with high eccentricity do indeed get
ionized. The ionization process does seem to be independent on the eccentricity,
and the same result is found also in [23, 16].

I investigated the relation between the change in eccentricity and the minimum
distance between the intruder and the binary during the encounter in fig. 4.9. The
minimum distance is computed as the smaller distance between the intruder and
the component of the binary the intruder gets closest to. For both the equal and
unequal mass cases I considered the variation in eccentricity due to the first set of
scattering events. In the equal mass case it seems that very close encounters are
associated with a �e > 0, while in the unequal mass case the trend is not as clear.

Fig. 4.10 shows the distribution of the eccentricity variation per encounter,
distinguishing the encounters where an exchange takes place from those were the
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Figure 4.8: Two dimensional histograms showing the eccentricity distribution as a
function of the semi-major axis distribution of the binary for di↵erent generations
(top panel), and the eccentricity distribution as a function of the mass distribution
for di↵erent generations (bottom panel).
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(a) Equal mass case

(b) Unequal mass case

Figure 4.9: Contour plots showing the relation between the minimum distance
between the intruder and the components of the binary during the scattering process
and the variation in eccentricity.
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Figure 4.10: Distributions for the eccentricity variation per encounter in the unequal
mass case distinguishing encounters that lead to exchanges and encounters that
don’t (flybys). A vertical line at x = 0 and a Gaussian centred in x = 0 are
superimposed to highlight the asymmetry of the distributions.
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binary components are preserved (flyby interactions), for the unequal mass case.
I superimposed a Gaussian which, being symmetric by definition, highlights any
asymmetries of the distributions. I was able to show that exchanges give a stronger
contribution to the eccentricity change with respect to flybys, both for negative
and positive changes. The strong central peak in the distribution related to flyby
interactions shows how this type of interaction often does not a↵ect the eccentricity
of the binary dramatically. The Gaussian curve highlights the asymmetry of the
distribution towards positive eccentricity changes, and this feature is particularly
relevant for exchanges.
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Chapter 5

RESULTS: Modelling equal mass
binary-single encounters and the
subsequent energy and
eccentricity evolution of the BBHs
with a Monte Carlo code

The goal of this part of my thesis is to understand the relative importance of flyby
and resonant interactions with respect to the change in eccentricity that results from
scattering events between a binary and an intruder. In particular I want to show
how flybys play a minor role in the eccentricity change, as was also highlighted from
the scattering experiments of the previous chapter. I achieved this result by means
of a code that uses a Monte Carlo approach to model the energy and eccentricity
evolution of a set of binaries that undergo several three-body encounter events. I
chose this approach to provide a theoretical justification to this result, and also to
provide an insight on the hypothesis that lead to it.

I developed a code to model the dynamical evolution of binary systems in equal
mass three-body encounters, in particular focusing on the energy and eccentricity
evolution of the binaries. I modeled the evolution of 104 equal mass binaries for
a total time such that the number of scattering events per binary is ⇠ 100. This
code adopts a Monte Carlo approach inspired by [19] and evolves the systems using
analytic cross sections for the energy and eccentricity change. In my model, I
considered two types of interaction: flybys and resonant interactions. I also allow
for the systems to be ionized. For each type of interaction (flyby or resonant) I
adopted a di↵erent prescription for the evolution of the energy and the eccentricity.
I treat the energy and the eccentricity evolution as two independent processes.

Here I give an overview of how the code works, more details are provided in
section 5.3. First an array of initial binaries is generated. These share some prop-
erties, i.e. the same component masses (m1 = m2 = m) and the same semi-major
axis a, while each initial eccentricity is sampled from a thermal distribution. The
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semi-major axis a is chosen such that the binaries are at the hard-soft boundary:

a =
Gm

2�2
, (5.1)

where � is the three-dimensional velocity dispersion of stars in the star cluster. Each
binary is evolved by simulating a series of scattering events with an intruder of mass
m3 = m. For each encounter I sample a time between two subsequent interactions,
a velocity v3 for the intruder, I determine whether the interaction is a resonant
interaction or a flyby, I sample accordingly an energy change and an eccentricity
change, I determine whether the binary is ionized or not. In the following sections,
I provide more details about how I implemented these processes.

5.1 Treatment of the energy evolution

The rate of a given process is described by a di↵erential cross section. In general
we define the binding energy of the binary as:

x =
Gm1m2

2a
. (5.2)

We also define y as the amount of energy the intruder gains after the encounter,
evaluated at infinity, and � = y/x is the fractional energy change for the binary.

We define the reaction rate function Q(x,�) which describes the rate of pro-
cesses responsible for a fractional energy change of the binding energy of the binary
by an amount between � and �+ d� as [43]:

Q(x,�) ⌘
Z 1

0

V F (V )
d�

d�
(x,�, V )d3V, (5.3)

where d�/d� is the di↵erential cross section for a fractional energy change between
� and � + d� and F (V ) is the distribution of relative velocities. We chose a
Maxwellian distribution given by:

f(V ) =
�
3⇡�2

V

��3/2
exp


�V

2

3�2
V

�
, (5.4)

where �V is the velocity dispersion of single stars in the cluster, such that � =
�V

p
3/2. The average change in binding energy with time (heating rate), is com-

puted as:

hẋi =
⌧
dx

dt

�
= n

Z 1

�x

yQ(x,�)d�, (5.5)

where n is the number density of single stars in the cluster. We will neglect the
interval [�x, 0], performing the previous integral in the range [0,1], to compute
the heating rate shown in eq. (5.5). This is possible since in our model binaries
harden at a constant rate (on average), and for hard binaries the contribution for
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Figure 5.1: PDFs for the fractional energy change in the binding energy of the
binary as a consequence of a scattering event. Pr(�) refers to resonant interactions
(eq.(5.10)), Pf (�) refers to flyby interactions (eq. (5.12)), while P (�) refers to the
combined processes (eq. (5.9)).

negative values of � is negligible [43].

5.1.1 Probability distribution functions (PDFs) for the en-

ergy exchange

Since we want to treat di↵erently flybys and resonant interactions we need two
di↵erent prescriptions for the fractional energy change for the two processes. Spitzer
[43] provides a di↵erential cross section for the combined processes:

d�

d�
= ⇡a

2 2AV 2
cp

3⇡V 2

1

�1/2(1 +�)4
, (5.6)

where Vc = 3x/m for the equal mass case is the critical velocity of the intruder
below which it could not disrupt the binary and A is a coe�cient determined from
numerical experiments. Plugging eq. (5.6) in eq. (5.5) and setting A = 21 [43] we
get the following heating rate:

ẋ =
⇡A

16
n
G

2
m

3

�V
' 4.12n

G
2
m

3

�V
. (5.7)

A slightly di↵erent numerical coe�cient of 3.8 instead of 4.12 is reported in [17].
The heating rate in eq. (5.7) is what we ultimately want to reproduce with our
code.

Combining equation 5.2 with equation 5.7 we obtain an equation that describes
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the evolution of the semi-major axis (hardening) of the binaries:

d

dt

✓
1

a

◆
=

2⇡A

16

⇢G

�V
, (5.8)

where ⇢ is the local mass density of stars.

From eq. (5.6) we can get a normalized PDF for the fractional energy change
for the combined processes of flyby and resonance:

P (�) =
16

5⇡
��1/2(1 +�)�4

. (5.9)

Spitzer [43] provides also the normalized PDF for the fractional energy change for
resonant processes:

Pr(�) = (7/2)(1 +�)�9/2
. (5.10)

Defining f as the fraction of flyby interactions and demanding that (1� f)Pr con-
verges to eq. (5.9) for large � we find that:

f = 1� 32

35⇡
' 0.7, (5.11)

and this fraction allows us to compute the functional form of the PDF for the
fractional energy change for a flyby interaction by satisfying the following condition:

Pf (�) = f
�1
P (�) +

f � 1

f
Pr(�) =

=
112

35⇡ � 32

�
��1/2 � (1 +�)�1/2

�
(1 +�)�4

. (5.12)

The three analytic PDFs are shown in fig. 5.1.

The average fractional change in binding energy for the combined processes can
be computed from eq. (5.9) as:

h�i =
Z 1

0

�P (�)d� = 0.2, (5.13)

while the average fractional changes in binding energy for flybys and resonant pro-
cesses can be computed from eq. (5.10) and eq. (5.12) as:

h�fi =
Z 1

0

�Pf (�)d� ' 0.12, h�ri =
Z 1

0

�Pr(�)d� = 0.4. (5.14)

Combining eq. (5.5) with eq. (5.9) we computed the average rate of encounters
for the combined flyby and resonant processes:

R =
ẋ

h�ix ' 41.2an
Gm

�V
, (5.15)
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Figure 5.2: Timescales for energy and eccentricity change for di↵erent values of the
eccentricity of the binary.

and the average time between interactions can therefore be computed as:

⌧ = R�1
. (5.16)

It depends on cluster properties and the semi-major axis a (energy) of the binary.

5.2 Treatment of the eccentricity evolution

Our code evolves the eccentricity of each binary in two di↵erent ways depending on
whether the interaction is resonant or a flyby. For the flyby case we considered the
following cross section from [18]:
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(5.17)
valid in this shape for the equal mass case. This cross section describes changes
in eccentricity that satisfy �e > �e0. In order to obtain the rate of processes
that change the eccentricity according to this formula we computed the following
di↵erential cross section by taking the derivative with respect to �e0 of (5.17):
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disregarding the minus sign. We than computed the interaction time scale as:
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Figure 5.3: The number of systems as a function of the number of scattering events
they undergo. The peak is due to the fact that binaries tend to get ionized in the
first encounters, when the have not hardened enough and intruders carry enough
energy to disrupt them.

In fig. 5.19 we compared the timescales for energy change (eq. (5.16)) and ec-
centricity change (eq. (5.19)) for di↵erent values of the eccentricity of the binary
considering the properties of a globular cluster. This showed us that we can ex-
pect, in our model, that a flyby interaction contributes to the eccentricity change
by roughly 1%. Therefore as the PDF for eccentricity change we considered the
following power law from eq. (5.18):

Pf (e) / �e
�5/3
0 , (5.20)

normalized in the range [10�6
, 10]. Small variations of the eccentricity are far more

likely, but we allow for �e > 1 in consideration of hyperbolic orbits.
The prescription we chose for the eccentricity evolution due to resonant en-

counters arises from the consideration that such encounters are chaotic processes.
Resonant encounters quickly loose memory of their initial conditions [41]. The out-
come of a chaotic process will depend on an underlying probability distribution
which for the purpose of this code we chose as thermal.

5.3 The code

As we mentioned the code starts by generating an array of binary systems with
mass m and semi-major axis a at the hard-soft boundary. The initial eccentricity
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Figure 5.4: Here we show the binding energy evolution with time, for all the binaries
in the simulation, as a consequence of the hardening process induced by three-body
interactions. The heating rate matches the analytic prediction of eq. (5.7).

Figure 5.5: Eccentricity evolution of a binary after ⇠ 120 three-body scattering
events
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of the binaries is sampled from a thermal distribution. Then an array of intruders
is generated, again with mass m and incoming velocity sampled from a Maxwellian
(eq. (5.4)). In order to sample from this distribution we take advantage of the
fact that it cam be randomly sampled as v =

p
x2 + y2 + z2, where x, y and z are

three Gaussian random numbers, with a probability distribution function centered
in zero and with the same � as the Maxwellian. At this point the encounters are
performed.

For each binary and each encounter the code samples an interaction time from
eq. (5.16) with the exponential law:

P (tint) = 1� exp�tint/⌧ , (5.21)

and therefore:
tint = �⌧ log(1�R), (5.22)

where R is a uniform random number in the range [0,1].

The code then determines, for each encounter, the nature of the process, i.e.
whether it is a flyby or a resonant encounter. This is randomly determined using
the fraction computed in eq. (5.11).

For each encounter the energy end eccentricity are evolved according to the type
of interaction. For the eccentricity change due to flybys the code also randomly
samples a sign to determine whether the eccentricity change from eq. (5.20) will
be positive or negative. Equal probability is assigned to the two options, following
[18].

We also determine if a given encounter ionizes a systems with the following
prescription: the system is ionized with a probability of 50% if the velocity of the
intruder is in the interval [1.2Vc, 10Vc] [22]. Vc = 3x/m is the critical velocity to
disrupt the binary. The upper limit can be understood also intuitively since very
fast encounters do not have time to exchange enough energy. We also assume
that the ionization process is independent of the eccentricity of the binary [23,
16]. The number of systems as a function of the number of scattering events they
undergo is shown in fig. 5.3. The figure shows how ionization takes place during
the first scattering events (as shown by the peak of systems that undergo only few
encounters), when ⇠ 28% of the binaries are ionized. After the first encounters
binaries start to get too hard for the single stars to have enough energy to allow for
ionizations to take place. The number of scattering events for binaries that are not
ionized during the first encounters is spread around ⇠ 130 since we simulate each
binary for the same total time.

With these prescriptions the code is able to reproduce the heating rate ẋ of eq.
(5.7). This can be seen from fig. 5.4, which shows the evolution of the binding
energy of each binary system caused by scattering events with single stars, together
with the analytic heating rate of eq. (5.7). Fig. 5.5 instead shows the eccentricity
evolution for a random system simulated with this code. We can see how flyby
interactions, contribute very little to eccentricity evolution of the system. This can
also be seen from figure 5.6, where we compare the distributions of the variation
of eccentricity per encounter for the two processes. Flyby contributions are all
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Figure 5.6: Distributions of the eccentricity variation for flyby and resonant inter-
actions. All flyby contributions are concentrated in a central bin, with more than
90% of |�e| below 10�4.

concentrated in the central bin, with over 90% of |�e| below 10�4. This result
agrees with what we found in the previous chapter, namely that flyby interactions
play a marginal role in the eccentricity evolution of hard binaries as a consequence of
scattering events. Fig. 5.6 and fig. 4.10 do share some features, such as the peaked
distribution for flyby interactions and the gaussian-like distribution for resonant
encounters. However, the prescription we chose is not able to describe the full
shape of the eccentricity variation distribution for flyby interactions we found with
the N-body simulations.
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Chapter 6

Conclusions and further
developments

In this thesis I presented the theoretical background needed for the description of
three body encounters between a hard binary and an intruder, in order to perform
numerical experiments to determine the eccentricity evolution induced by the scat-
tering events on such binaries. I simulated two sets of 103 individual binary-single
encounters with the high precision N-body code ARWV [7], for equal and unequal
mass binaries. I demonstrated that the encounters increase the average eccentricity
of the binaries, initially distributed following a thermal eccentricity distribution. In
particular I found that the fraction of systems with eccentricity e > 0.9 increases
on average by ⇠ 15% after each encounter for the equal mass case and by ⇠ 7.7%
in the unequal mass case. I also ran smaller scale simulations with di↵erent ini-
tial distributions for the eccentricities, finding that this e↵ect is present also when
starting with a uniform eccentricity distribution and with a low-eccentricity distri-
bution. I demonstrated that this e↵ect is not due to the disruption via ionization
of low-eccentricity binaries, confirming that the ionization probability is essentially
independent of eccentricity. I showed that the mass of the binaries tends to increase
as a consequence of exchanges. I investigated the relation between the increase in
eccentricity and the minimum distance of the encounter, finding a mild tendency
for very close encounters to increase the eccentricity, stronger in the equal mass
case. I demonstrated that exchanges have a stronger e↵ect on eccentricity changes
compared to flybys both via the N-body scattering experiments and via the develop-
ment of a Monte Carlo code able to simulate the energy and eccentricity evolution
of equal mass binaries undergoing binary single encounters. This code is much
faster compared to the N-body experiments, but is limited by some simplifying
assumptions.

For what concerns further developments, an interesting one is that the results I
obtained can be used to determine fitting formulae to be used by semi-analytic codes
to model the eccentricity evolution of hard binaries. One example of these codes is
FASTCLUSTER [27], which is able to simulate hierarchical BBH mergers at a low
computational cost. Computational cost is one of the main challenges in modelling
hierarchical mergers, and semi-analytic codes allow to probe a large parameter

49
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otherwise impossible with N-body codes. Moreover, di↵erent prescriptions for the
eccentricity evolution could have an impact on the merger rate of BBHs.



Bibliography

[1] B. P. Abbott et al. Observation of Gravitational Waves from a Binary Black
Hole Merger. , 116(6):061102, Feb. 2016. doi:10.1103/PhysRevLett.116.061102.

[2] P. Amaro-Seoane et al. Laser Interferometer Space Antenna. arXiv e-prints,
art. arXiv:1702.00786, Feb. 2017.

[3] A. Askar, M. Szkudlarek, D. Gondek-Rosińska, M. Giersz, and T. Bulik.
MOCCA-SURVEY Database - I. Coalescing binary black holes originating from
globular clusters. , 464(1):L36–L40, Jan. 2017. doi:10.1093/mnrasl/slw177.

[4] M. J. Benacquista and J. M. B. Downing. Relativistic Binaries in Globular
Clusters. Living Reviews in Relativity, 16(1):4, Mar. 2013. doi:10.12942/lrr-
2013-4.

[5] S. Chandrasekhar. Dynamical Friction. I. General Considerations: the Coe�-
cient of Dynamical Friction. , 97:255, Mar. 1943. doi:10.1086/144517.

[6] P. Chassonnery and R. Capuzzo-Dolcetta. Dynamics of a superdense cluster
of black holes and the formation of the Galactic supermassive black hole. , 504
(3):3909–3921, June 2021. doi:10.1093/mnras/stab1016.

[7] P. Chassonnery, R. Capuzzo-Dolcetta, and S. Mikkola. ARWV Code User
Manual. arXiv e-prints, art. arXiv:1910.05202, Oct. 2019.

[8] M. Dall’Amico, M. Mapelli, U. N. Di Carlo, Y. Bou↵anais, S. Rastello, F. San-
toliquido, A. Ballone, and M. Arca Sedda. GW190521 formation via three-
body encounters in young massive star clusters. , 508(2):3045–3054, Dec. 2021.
doi:10.1093/mnras/stab2783.

[9] U. N. Di Carlo, M. Mapelli, Y. Bou↵anais, N. Giacobbo, F. Santoliquido,
A. Bressan, M. Spera, and F. Haardt. Binary black holes in the pair instability
mass gap. , 497(1):1043–1049, Sept. 2020. doi:10.1093/mnras/staa1997.

[10] R. Elson, P. Hut, and S. Inagaki. Dynamical evolution of globular clusters. ,
25:565–601, Jan. 1987. doi:10.1146/annurev.aa.25.090187.003025.

[11] A. M. Geller, N. W. C. Leigh, M. Giersz, K. Kremer, and F. A. Rasio. In
Search of the Thermal Eccentricity Distribution. , 872(2):165, Feb. 2019.
doi:10.3847/1538-4357/ab0214.

51

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1093/mnrasl/slw177
https://doi.org/10.12942/lrr-2013-4
https://doi.org/10.12942/lrr-2013-4
https://doi.org/10.1086/144517
https://doi.org/10.1093/mnras/stab1016
https://doi.org/10.1093/mnras/stab2783
https://doi.org/10.1093/mnras/staa1997
https://doi.org/10.1146/annurev.aa.25.090187.003025
https://doi.org/10.3847/1538-4357/ab0214


Bibliography 52

[12] N. Giacobbo and M. Mapelli. The progenitors of compact-object binaries:
impact of metallicity, common envelope and natal kicks. , 480(2):2011–2030,
Oct. 2018. doi:10.1093/mnras/sty1999.

[13] N. Giacobbo, M. Mapelli, and M. Spera. Merging black hole binaries: the
e↵ects of progenitor’s metallicity, mass-loss rate and Eddington factor. , 474
(3):2959–2974, Mar. 2018. doi:10.1093/mnras/stx2933.

[14] Y. B. Ginat and H. Perets. Analytic Modelling of Binary-Single Encounters:
Non-Thermal Eccentricity Distribution and Gravitational-Wave Source Forma-
tion. arXiv e-prints, art. arXiv:2205.15957, May 2022.

[15] R. Gratton, A. Bragaglia, E. Carretta, V. D’Orazi, S. Lucatello, and A. Sollima.
What is a globular cluster? An observational perspective. , 27(1):8, Nov. 2019.
doi:10.1007/s00159-019-0119-3.

[16] D. C. Heggie. Binary evolution in stellar dynamics. , 173:729–787, Dec. 1975.
doi:10.1093/mnras/173.3.729.

[17] D. C. Heggie and P. Hut. Binary–Single-Star Scattering. IV. Analytic Approx-
imations and Fitting Formulae for Cross Sections and Reaction Rates. , 85:
347, Apr. 1993. doi:10.1086/191768.

[18] D. C. Heggie and F. A. Rasio. The E↵ect of Encounters on the
Eccentricity of Binaries in Clusters. , 282(3):1064–1084, Oct. 1996.
doi:10.1093/mnras/282.3.1064.

[19] D. C. Heggie, S. Portegies Zwart, and J. R. Hurley. McScatter: A simple
three-body scattering package with stellar evolution. , 12(1):20–28, Oct. 2006.
doi:10.1016/j.newast.2006.04.005.

[20] M. Henon. Vlasov equation. , 114(1):211, Oct. 1982.

[21] J. G. Hills and L. W. Fullerton. Computer simulations of close encoun-
ters between single stars and hard binaries. , 85:1281–1291, Sept. 1980.
doi:10.1086/112798.

[22] P. Hut. Binaries as a heat source in stellar dynamics - Release of binding
energy. , 272:L29–L33, Sept. 1983. doi:10.1086/184111.

[23] P. Hut and J. N. Bahcall. Binary-single star scattering. I - Numerical experi-
ments for equal masses. , 268:319–341, May 1983. doi:10.1086/160956.

[24] J. H. Jeans. The origin of binary systems. , 79:408, Apr. 1919.
doi:10.1093/mnras/79.6.408.

[25] P. Kroupa. Initial Conditions for Star Clusters. In S. J. Aarseth, C. A. Tout,
and R. A. Mardling, editors, The Cambridge N-Body Lectures, volume 760,
page 181. 2008. doi:10.1007/978-1-4020-8431-7 8.

https://doi.org/10.1093/mnras/sty1999
https://doi.org/10.1093/mnras/stx2933
https://doi.org/10.1007/s00159-019-0119-3
https://doi.org/10.1093/mnras/173.3.729
https://doi.org/10.1086/191768
https://doi.org/10.1093/mnras/282.3.1064
https://doi.org/10.1016/j.newast.2006.04.005
https://doi.org/10.1086/112798
https://doi.org/10.1086/184111
https://doi.org/10.1086/160956
https://doi.org/10.1093/mnras/79.6.408
https://doi.org/10.1007/978-1-4020-8431-7_8


53 Bibliography

[26] M. Mapelli. Formation Channels of Single and Binary Stellar-Mass Black
Holes. In Handbook of Gravitational Wave Astronomy, page 16. 2021.
doi:10.1007/978-981-15-4702-7 16-1.

[27] M. Mapelli, M. Dall’Amico, Y. Bou↵anais, N. Giacobbo, M. Arca Sedda, M. C.
Artale, A. Ballone, U. N. Di Carlo, G. Iorio, F. Santoliquido, and S. Torni-
amenti. Hierarchical black hole mergers in young, globular and nuclear star
clusters: the e↵ect of metallicity, spin and cluster properties. , 505(1):339–358,
July 2021. doi:10.1093/mnras/stab1334.

[28] M. Mapelli, M. Dall’Amico, Y. Bou↵anais, N. Giacobbo, M. Arca Sedda, M. C.
Artale, A. Ballone, U. N. Di Carlo, G. Iorio, F. Santoliquido, and S. Torni-
amenti. Hierarchical black hole mergers in young, globular and nuclear star
clusters: the e↵ect of metallicity, spin and cluster properties. , 505(1):339–358,
July 2021. doi:10.1093/mnras/stab1334.

[29] S. Mikkola and D. Merritt. Implementing Few-Body Algorithmic Reg-
ularization with Post-Newtonian Terms. , 135(6):2398–2405, June 2008.
doi:10.1088/0004-6256/135/6/2398.

[30] S. Mikkola and K. Tanikawa. Algorithmic regularization of the few-body prob-
lem. , 310(3):745–749, Dec. 1999. doi:10.1046/j.1365-8711.1999.02982.x.

[31] S. Mikkola and K. Tanikawa. Explicit Symplectic Algorithms For Time-
Transformed Hamiltonians. Celestial Mechanics and Dynamical Astronomy,
74(4):287–295, Aug. 1999. doi:10.1023/A:1008368322547.

[32] A. P. Milone, A. F. Marino, L. R. Bedin, A. Dotter, H. Jerjen, D. Kim,
D. Nardiello, G. Piotto, and J. Cong. The binary populations of eight globular
clusters in the outer halo of the Milky Way. , 455(3):3009–3019, Jan. 2016.
doi:10.1093/mnras/stv2415.

[33] P. C. Peters. Gravitational Radiation and the Motion of Two
Point Masses. Physical Review, 136(4B):1224–1232, Nov. 1964.
doi:10.1103/PhysRev.136.B1224.

[34] H. C. Plummer. The distribution of stars in globular clusters. , 76:107–121,
Dec. 1915. doi:10.1093/mnras/76.2.107.

[35] S. F. Portegies Zwart and S. L. W. McMillan. Black Hole Mergers in the
Universe. , 528(1):L17–L20, Jan. 2000. doi:10.1086/312422.

[36] S. F. Portegies Zwart, S. L. W. McMillan, and M. Gieles. Young Massive Star
Clusters. , 48:431–493, Sept. 2010. doi:10.1146/annurev-astro-081309-130834.

[37] C. L. Rodriguez, S. Chatterjee, and F. A. Rasio. Binary black hole mergers from
globular clusters: Masses, merger rates, and the impact of stellar evolution. ,
93(8):084029, Apr. 2016. doi:10.1103/PhysRevD.93.084029.

https://doi.org/10.1007/978-981-15-4702-7_16-1
https://doi.org/10.1093/mnras/stab1334
https://doi.org/10.1093/mnras/stab1334
https://doi.org/10.1088/0004-6256/135/6/2398
https://doi.org/10.1046/j.1365-8711.1999.02982.x
https://doi.org/10.1023/A:1008368322547
https://doi.org/10.1093/mnras/stv2415
https://doi.org/10.1103/PhysRev.136.B1224
https://doi.org/10.1093/mnras/76.2.107
https://doi.org/10.1086/312422
https://doi.org/10.1146/annurev-astro-081309-130834
https://doi.org/10.1103/PhysRevD.93.084029


Bibliography 54

[38] J. Samsing and D. J. D’Orazio. Black Hole Mergers From Globular Clusters
Observable by LISA I: Eccentric Sources Originating From Relativistic N-body
Dynamics. , 481(4):5445–5450, Dec. 2018. doi:10.1093/mnras/sty2334.

[39] H. Sana, S. E. de Mink, A. de Koter, N. Langer, C. J. Evans, M. Gieles,
E. Gosset, R. G. Izzard, J. B. Le Bouquin, and F. R. N. Schneider. Binary
Interaction Dominates the Evolution of Massive Stars. Science, 337(6093):444,
July 2012. doi:10.1126/science.1223344.

[40] S. Sigurdsson and L. Hernquist. Primordial black holes in globular clusters. ,
364(6436):423–425, July 1993. doi:10.1038/364423a0.

[41] S. Sigurdsson and E. S. Phinney. Binary–Single Star Interactions in Globular
Clusters. , 415:631, Oct. 1993. doi:10.1086/173190.

[42] J. Spitzer, Lyman and M. H. Hart. Random Gravitational Encounters
and the Evolution of Spherical Systems. I. Method. , 164:399, Mar. 1971.
doi:10.1086/150855.

[43] L. Spitzer. Dynamical evolution of globular clusters. 1987.

https://doi.org/10.1093/mnras/sty2334
https://doi.org/10.1126/science.1223344
https://doi.org/10.1038/364423a0
https://doi.org/10.1086/173190
https://doi.org/10.1086/150855

	Introduction
	Globular Clusters
	Evolution of a globular cluster
	Zero-order models
	Evaporation
	Gravothermal instability


	Binary system dynamics
	Three-body encounters
	Dynamical Hardening
	Gravitational focusing

	Thermal eccentricity distribution
	BBH mergers in globular clusters

	RESULTS: Modelling binary-single encounters with the direct N-body code ARWV
	ARWV
	Chain structure
	Algorithmic regularization

	Initial conditions
	The scattering experiments

	RESULTS: Modelling equal mass binary-single encounters and the subsequent energy and eccentricity evolution of the BBHs with a Monte Carlo code
	Treatment of the energy evolution
	Probability distribution functions (PDFs) for the energy exchange

	Treatment of the eccentricity evolution
	The code

	Conclusions and further developments

