
UNIVERSITÀ DEGLI STUDI DI PADOVA

DEPARTMENT OF INFORMATION ENGINEERING

Master’s Degree in Automation Engineering

3D FEATURE EXTRACTION AND OBJECT DETECTION IN
POINT CLOUDS

Student Supervisor Co-supervisors

Alberto Adami Prof. Ruggero Carli Roberto Polesel

Walter Zanette
(from Euclid Labs)

JULY 8, 2019

ACADEMIC YEAR 2018/2019

ii

Contents

0.1 Euclid Labs . vi

1 Introduction 1
1.1 Point clouds . 1
1.2 Machine learning and deep learning 2

2 Machine learning techniques 3
2.1 Feature Extraction . 3

2.1.1 2D Point clouds . 3
2.1.2 3D point clouds . 5

2.2 Classification . 7
2.2.1 Introduction to classification models 7
2.2.2 Point clouds classification . 7
2.2.3 Loss function . 8
2.2.4 Training and Testing . 8

2.3 Objects detection . 9

3 Object detection model: Yolo 11
3.1 History and brief explanation . 11

3.1.1 Classification and Regression 11
3.1.2 Explanation of Yolo . 11

3.2 CNN and Max pooling: theoretical background 12
3.2.1 Neural Network . 12
3.2.2 Fully connected neural network 13
3.2.3 Convolutional Neural Network 18
3.2.4 Training and loss function . 22

3.3 Yolo model . 28
3.3.1 Preprocessing: from point cloud to image 28
3.3.2 Darknet-53 . 33
3.3.3 Yolo . 36

3.4 Yolo loss . 38

iv CONTENTS

4 Training and Validation 43
4.1 Training . 43

4.1.1 Training images generation 43
4.1.2 Dataset preprocessing . 46
4.1.3 Feature maps, predictions and loss 47
4.1.4 Optimization . 48

4.2 Validation . 49
4.2.1 Non-maximum suppression 49

4.3 Info about OS, Tensorflow and GPU 50
4.3.1 Programming language . 51
4.3.2 Tensorflow and GPU . 51

4.4 Results: confidence, loss, accuracy 52
4.4.1 Training process . 52
4.4.2 Confidence . 52
4.4.3 Loss . 53
4.4.4 Accuracy . 57
4.4.5 Computation time . 58

5 Conclusions 63

Abstract

The final goal of this work consists of realizing a model able to recognize groups
of objects, sparsely distributed inside a container. Such model must take as in-
put a 3-dimensional array of x-y-z coordinates, namely a point cloud that faith-
fully represent the targets in the 3D space, acquired through a Scanner.
In order to achieve the goal, a modified version of Yolo is proposed; it consists
of a fast algorithm for detection in RGB images, here adapted to deal with 3D
point clouds. The main difficulty is the identification of some features able to
univocally describe each part of the cloud. Some features could be local point
density, variance, curvature, linearity, space distibution and others. The first
part of the work is going to describe some methods to extract such features; the
last part will describe Yolo model and how to use such features to make Yolo
working for our target.
Yolo model consists of a sequence of Convolutional Neural Networks (CNN).
It takes as input the preprocessed point cloud, subdivided in voxels intervals
along x-y axis, each one including all the cloud points with x-y coordinates
falling in each interval. Then, for each voxel, the maximum height is extracted
in such a way to obtain the point cloud z-image, which will feed the CNNs.
Each voxels represents some local features that identifies a specific area of the
object.
For the training, many randomly rotated and translated version of the target
object were generated. It was also added some background in order to faith-
fully replicate the environment and make the model able to discriminate back-
ground from foreground.

vi

0.1 Euclid Labs

[1] This work is done in collaboration with Euclid Labs, a company situated in
Nervesa della Battaglia (Tv, Italy).
Such company designs and develops hi-tech solutions for robotics and indus-
trial automation. They deal with the common hi-tech problems in the fields
of automation and machine learning, such like 3D vision, random bin picking
and robot programming.

Chapter 1

Introduction

1.1 Point clouds

Let’s start from the definition of Point Cloud: a Point Cloud is a set of data points
in space defined by a given coordinates system; each point is characterized by
xyz coordinates and, eventually, from color intensity (e.g. RGB color spaces).
Point clouds are used in many fields of information engineering, such as com-
puter vision, machine learning, deep learning and object recognition, and many
field of technology like construction, quality evaluation and others.
These data present a valid alternative to images, with many advantages com-
pared to them. One of these is the possibility to deal with 3D coordinates,
adding useful information for the model we want to train. Moreover, point
clouds offer the possibility to manage large amounts of data (order of million
points).

A brief introduction to point clouds has been provided; now, how can we man-
age this interesting dataset in order to perform good object detection? Let’s
explain a brief theoretical background about machine learning and deep learn-
ing.

1

2 CHAPTER 1. INTRODUCTION

1.2 Machine learning and deep learning

Machine learning can be described starting from its basic definition:

"Algorithms that parse data, learn from that data, and then apply what they
have learned to make informed decisions."

Basic machine learning models do become progressively better at whatever
their function is, but they still need some guidance. If an ML algorithm re-
turns an inaccurate prediction, then it’s needed to step in and make adjust-
ments from the outsides.

What about deep learning?
Deep learning is just a subset of machine learning. It technically is machine
learning and functions in a similar way, but its capabilities are different. In-
deed, with a deep learning model, the algorithms can determine on their own
if a prediction is accurate or not.

Chapter 2

Machine learning techniques

2.1 Feature Extraction

2.1.1 2D Point clouds

Point sorting

Before selecting and extracting features, it may be useful to make a point sort-
ing. The point cloud could be provided without a precise order of the points,
which may be randomly shuffled.
The idea is to make a sort based on the point distances. The steps are the fol-
lowing:

1. consider the first point of the cloud, and save it on the first position of a
parallel array;

2. find the point whit minimum distance from the point considered;

3. eliminate the first point from the original point cloud array and save the
point found at step 2 in the second position of the parallel array;

4. now, the point cloud array contains N − 1 points (N = total number of
points in the cloud). Repeat from step 1 and update the parallel array
from the first free position.

5. Stop when the original array is empty.

At the end, the parallel array will contain all the points sorted by distance.
It’s easy to note that this is a recursive function, with N recursive calls.

3

4 CHAPTER 2. MACHINE LEARNING TECHNIQUES

Local Variance and Structure Tensor

In order to get more confidence with point clouds, some trials were initially per-
formed on simple clouds, representing circles, squares and triangles; the goal
was to classify them.
According to some papers, the local feature we decided to use is the local vari-
ance of each point:

1. For each point of the cloud, a k-neighborhood was computed, based on
points distances.

2. For each point, the structure tensor was computed, namely the covari-
ance matrix, who’s eigenvalues and eigenvectors describe the three di-
rection of the distribution of the points in its neighborhood.
This 3x3 matrix is computed from the discrete gradients along x, y, z:

Ii jx = pix − r jx

Ii jy = pi y − r jy

Ii jz = piz − r jz

where p is a point of the cloud and r is a point of its neighborhood. The
gradients are computed for each i ε [0, |point cloud|], j ε [0, |neighborhood
of p|]. At this point, for each point in the cloud, there are k gradients, with
k corresponding to the number of points in the neighborhood.
In order to obtain the pi Structure Tensor Si , we need to compute the
following:

Sixx =Σk
j=0I 2

i jx

Si y y =Σk
j=0I 2

i jy

Sizz =Σk
j=0I 2

i jz

Six y =Σk
j=0Ii jx ∗ Ii jy

Sixz =Σk
j=0Ii jx ∗ Ii jz

Si y z =Σk
j=0Ii jy ∗ Ii jz

The structure tensor is the following:

Si =

Sixx Six y Sixz

Six y Si y y Si y z

Sixz Si y z Sizz

2.1. FEATURE EXTRACTION 5

Feature selection

From matrix Si , eigenvalues λ1, λ2, λ3 and eigenvectors v1, v2, v3 indicate the
three main directions of the distribution of the points inside the neighborhood.
For our purpose, a particular value, named Mi , was selected:

Mi = det (Si)−k∗ tr ace(Si)

It derives from the theory of Harris corner detection; it is able to efficiently dis-
criminate the curvature of the neighborhood, giving information if we are in
proximity of a corner, edge or neither. k is equal to 0.04.

2.1.2 3D point clouds

Once 2D point clouds are analyzed and got more confident with managing this
type of data, we can step to next level: extract feature of 3D point clouds in
order to classify them.
The clouds we consider are:

• Spheres

• Cylinders

• Planes

The initial idea for the feature extraction was the same procedure for the 2D,
namely compute the local structure tensor of each point of the cloud. This
method leaded to poor results. Indeed, the extracted parameter Mi along the
3D surface of the cloud was not distributed following a precise function, as in
the 2D case. Hence, the idea was to project the 3D point cloud along the two
main axis along the points are distributed. This operation takes the name of
Principal Component Analysis and it is applied before the feature extraction.

Projection in 2D with Principal Component Analysis

Principal Component Analysis (PCA) is a statistical procedure that uses an or-
thogonal transformation that transforms the data to a new coordinate system
such that the greatest variance by some projection of the data comes to lie on
the first coordinate (called the first principal component), the second greatest
variance on the second coordinate, and so on.

6 CHAPTER 2. MACHINE LEARNING TECHNIQUES

The three directions of the variance are given by the eigenvectors of the covari-
ance matrix of the 3D point cloud array:

Σ= 1

N

(X −µx)T (X −µx) (X −µx)T (Y −µy) (X −µx)T (Z −µz)

(Y −µy)T (X −µx) (Y −µy)T (Y −µy) (Y −µy)T (Z −µz)

(Z −µz)T (X −µx) (Z −µz)T (Y −µy) (Z −µz)T (Z −µz)

where:

X = x-coordinates of cloud points
Y = y-coordinates of cloud points
Z = z-coordinates of cloud points
µx , µy , µz = mean value of X , Y , Z

N = point cloud cardinality

The eigenvector corresponding to the largest eigenvalue of the covariance ma-
trix, named First Component, represents the main direction of the point cloud
variance. The other components are named Second Component and Third
Component.
The idea is to project the point cloud along first and second components, re-
jecting the third; in this way, it is possible to obtain a good projected 2D point
cloud, with the lowest loss of information from the 3D one.
Using the principal components, the projection can be obtained in the follow-
ing way:

1. Compute the x and y local projection of the point cloud, compared to the
two main eigenvectors:

Xlocal pr o j = [X ,Y , Z]v1

Ylocal pr o j = [X ,Y , Z]v2

2. Compute the local projected points:

Plocal =
[

Xlocal pr o j Ylocal pr o j 0
]

3. Compute the final projection of the point cloud, compared to the canon-
ical axis:

P f i nal = Mpr o j Plocal

where:
Mpr o j =

[
v1 v2 v3

]

2.2. CLASSIFICATION 7

Feature extraction and selection

Once we obtained the projected point clouds, it is possible to extract the fea-
tures applying the same method exploiting the M parameter of the structure
tensor S.

2.2 Classification

The classification problem is a supervised learning technique that allows to
split some initially sparse data into clusters, according to some discriminating
features.

2.2.1 Introduction to classification models

In machine learning, once the features are extracted, they feed a classification
model, which could be of different types. The best, and the one we will use, is
the fully connected neural network.
The fully connected neural network belongs to the set of the artificial neural
networks (ANN). ANNs are inspired to the brain neural network, which con-
sists, briefly, on a huge number of neurons interconnected between each other;
the ANN exploit the same principle: the neurons are called ’nodes’ and they are
organized in layers, which are splitted into input, hidden and output layer.
Each node is modelized by an activation function, which will be explained in
details in ’YOLO’ chapter.
Let’s see how to exploit such powerful model with our point clouds.

2.2.2 Point clouds classification

The Mi parameter, iε[0, |poi ntcloud |], is used as input for the classification
model. Such model consists of a simple fully connected neural network, com-
posed by an input layer, one hidden layer and 3 outputs, each one representing
the probability score the cloud we are considering is a circle, a triangle or a
square.
The input layer is composed by a number nodes equal to the number of points
of the cloud considered; each node stores an extracted feature Mi . Then, there
are two fully connected hidden layers, which elaborate the features extracted
and finally an output layer. The latter contains many nodes as the number of
classes we want to detect; in this case, the number of classes is 3, so the out-
put nodes number will be 3. Each one of these nodes, stores a value, which
indicates the probability score of each class.

8 CHAPTER 2. MACHINE LEARNING TECHNIQUES

2.2.3 Loss function

The model loss function is a sparse categorical crossentropy loss:

L(w) = −
N∑

i=1
ytr ue,i log(ypr ed ,i)

where: w stores the model parameters, namely the weights;
ytr ue stores the true classification labels;
ypr ed stores the model output predictions. The goal is to find the right w , such
that the loss function is minimum, namely ypr ed equals ytr ue .

2.2.4 Training and Testing

The training operation consists on gradually updating the weights parameters
w in such a way to minimize the loss function. In practice, it consists on finding
the best prediction ypr ed such that ypr ed = ytr ue . To achieve a result, the loss
function must be, of course, differentiable and convex.
During the training, the model (namely, feature extractor + ’neural network’
classifier) is fed by 15K point clouds, arranged as it follows:

• 5K spheres;

• 5K cylinders;

• 5K planes.

All point clouds are feature extracted once and then feed the classifier for 5
training epochs.
After the training, a testing process is performed, in order to verify that features
were well-extracted and prevent an eventual case of overfitting. During the test-
ing, new fresh data feed the model, with the task to verify if they are classified
correctly. Such fresh data are organized as it follows:

• 1500 spheres;

• 1500 cylinders;

• 1500 planes.

If the testing loss is of the same quantity order than the training one, the model
well-learned the features and the classification is good. Otherwise, if the test-
ing loss is too higher, there is a case of overfitting, which can be resolved by
changing the features to extract or augmenting the training data.

2.3. OBJECTS DETECTION 9

2.3 Objects detection

The previous step provides the model weights that allow to best classify the
three groups of point clouds considered. Now, we can use such results to detect
some target objects sparsely distributed on the 3D space.
The idea is to slide over the 3D space, after splitting it into groups of 1000 points,
and give each of these batches as input to the model, using the learned weights
provided during the training; according to what the classifier outputs, the cur-
rent batch is assigned to one of the three target clusters or no-one of them. This
term takes the name of ’sliding window approach’.
Its main disadvantage is the huge computation cost and the consequent huge
computation time.
A different way to perform this approach consists on the usage of the convo-
lutional neural networks, which are going to be explained in details in the next
chapter.

10 CHAPTER 2. MACHINE LEARNING TECHNIQUES

Chapter 3

Object detection model: Yolo

3.1 History and brief explanation

3.1.1 Classification and Regression

[6] It’s possible to classify deep learning in two parts: classification and regres-
sion. Both of them has the task to extract feature and detect some objects, but
the final goal is different.

• The classification problem maps the input function to a label, which con-
sists on an integer number starting from 0 that identifies a category. For
example, we want to discriminate dogs from cats; label 0 denotes dogs
and label 1 denotes cats. The classification is obtained simply by adding
a fully connected neural network at the end of the model, whose outputs
are the labels.

• The regression problem is a bit more complicated; in this case, the goal is
not only the classification, but also the localization of the object inside
an environment (e.g. an image). The detection is performed through
bounding boxes (parametrized with center and size), confidence scores
and class probability scores. In this case, no classifiers are added at the
end; the output of the model is a vector containing the bounding boxes,
each one with its confidence score.

YOLO, the model we are going to describe, is a regression problem. The tech-
nique described in the previous chapter is a classification problem.

3.1.2 Explanation of Yolo

[7] Yolo (You Only Look Once) is a state-of-the-art detection algorithm, able to
classify and localize up to 9000 objects in one image.

11

12 CHAPTER 3. OBJECT DETECTION MODEL: YOLO

Such system is not based on classification, it’s based on regression; this means
that it’s going to predict classes and bounding boxes for the whole image in only
one run of the algorithm. Yolo’s task is to predict a class of an object and localize
it through a bounding box. In practice, it’s going to predict 6 values: box center
(x and y), box width, box height, box confidence and relative class (integer from
0 to n, where n corresponds to the number of classes).
In order to get more confidence with details of Yolo architecture, it’s necessary
to introduce some theoretical backgrounds about Neural Networks, in particu-
lar the CNN.

3.2 CNN and Max pooling: theoretical background

3.2.1 Neural Network

Definition [8] Artificial neural networks are one of the main tools used in ma-
chine learning. As the "neural" part of their name suggests, they are brain-
inspired systems which are intended to replicate the way that humans learn.
Neural networks consist of input and output layers, as well as (in most cases)
a hidden layer consisting of units that transform the input into something that
the output layer can use. They are excellent tools for finding patterns which are
far too complex or numerous for a human programmer to extract and teach the
machine to recognize.

Model [8] An Artificial Neural Network is composed by units called "neurons."
The network consists of connections, each connection transferring the output
of a neuron i to the input of a neuron j. In this sense i is the predecessor of j and
j is the successor of i. Each connection is assigned a weight wi j . Sometimes a
bias term is added to the total weighted sum of inputs to serve as a threshold to
shift the activation function.
Each neuron is modelized as follows.
Suppose to assign a label j to a neuron; it consists of the following components:

• input function p j (t), t corresponds to the (discrete) time;

• activation function a j (t): the neuron’s state;

• output function o j (t) corresponding to the output of the activation func-
tion: fout (a j (t))

3.2. CNN AND MAX POOLING: THEORETICAL BACKGROUND 13

Figure 3.1: Artificial neural network

3.2.2 Fully connected neural network

[9] In a fully connected layer each neuron is connected to every neuron in the
previous layer, and each connection has its own weight. This is a totally general
purpose connection pattern and makes no assumptions about the features in
the data. It’s also very expensive in terms of memory (weights) and computa-
tion (connections).

NN Layers The simplest Neural Network is composed by three layers:

• an input layer: here are stored the (preprocessed) data we want to ana-
lyze (e.g. image pixels, function values, point coordinates etc); each node
(neuron) of the layer stores one of each values.

• a hidden layer: each node receives the weighted sum of the input values;
naming the hidden node output as l , weight matrix as W1, biases vector
as b1, input function vector as x and activation function as h(.), such layer
is characterized by the following equation:

l = h(W1x +b1)

• an output layer: each node receives the weighted sum of the outputs of
the hidden layer. In case of a classification problem, this layer stores the
confidence scores of each class; hence, the number of nodes is equal to
the number of class. In case of a regression problem, considering the Yolo
task, it stores the values of the bounding boxes that localize the object we
want to detect; hence, it memorizes center, sizes, confidence and which
class the object belongs to. Naming the weight matrix as W2 and biases
vector as b2, such layer is characterized by the following equation:

y = = h(W2l +b2)

14 CHAPTER 3. OBJECT DETECTION MODEL: YOLO

Figure 3.2: Fully connected neural network

Summarizing, here we have described the simplest scheme of a fully connected
neural network; intuitively, the complexity of the network is directly propor-
tional to the number of hidden layer (depth of the network) and the number of
nodes in each one (width of the network).

Activation function [9] The activation function of a node defines the output
of that node, or "neuron," given an input or set of inputs. It can be of several
types:

• Rectified Linear Units (ReLU): this function maps from Rn to Rn+. It guar-
antees a fast training thanks to its non-saturating nature (prevents gra-
dient vanishing problem); it requires light computation. The equation is
the following:

f (x) = max(0, x)

• Sigmoid function: maps from Rn to [0,1], is characterized by a smooth
output, represents the firing rate of a neuron. Since it has a saturation

3.2. CNN AND MAX POOLING: THEORETICAL BACKGROUND 15

Figure 3.3: Rectified Linear Units (ReLU) activation function

nature, there is the possibility that gradient are killed around the satura-
tion zones (near 0 or near 1) guaranteeing, in this way, a poor learning in
this area. The equation, shown in Z transform (frequency domain), is the
following:

h(z) = 1

1+e−z

Figure 3.4: Sigmoid activation function

• Hyperbolic tangent (tanh): maps from Rn to [−1,1], its saturation is sim-
ilar to sigmoid and provides a zero-centered output. Hyperbolic tangent
corresponds to a scaled sigmoid:

t anh(x) = 2si g m(2x)−1

16 CHAPTER 3. OBJECT DETECTION MODEL: YOLO

Figure 3.5: Hyperbolic tangent activation function

Forward and back propagation

Forward propagation [9] Forward propagation consists on mapping from
input (x) to output (y) of the neural network. The input x provides the initial
information that then propagates to the hidden units at each layer and finally
produce the output y . Let’s consider a deep fully connected neural network:

• Layer 1: a j (1) = x j , j = 1, ...,n1

• Layer 2+: compute the value from the output of the previous layer:

ai (l) = h
(
Σ

nl−1
j=1 wi j (l)a j (l −1)+bi (l)

)
• Network output: is the output of the last layer a j (L)

Back propagation [3] It allows the information to go back from the cost
backward through the network in order to compute the gradient. Let’s con-
sider the cost function E ; in case of classification problem, such function cor-
responds to:

E = 1

2
Σ

nl
j=1

(
r j −a j (L)

)2

where ri is the vector containing the expected outcome, i.e. ri = 1 in case of
correct classification, 0 otherwise.

Consider now the neuron outputs z j , let’s analyze how cost depends on such
value:

δ j (l) = ∂E

∂z j (l)

3.2. CNN AND MAX POOLING: THEORETICAL BACKGROUND 17

Starting from last layer (outcome) we obtain the following:

δ j (L) = ∂E

∂z j (L)
= ∂E

∂a j (L)
h′(z j (L))

Now, backpropagate, namely compute all δ j (L) and get δ j (L −1), δ j (L −2), ...,
δ j (1). This operation is done by exploiting the chain rule:

δ j (l) = h′(z j (l))Σi wi j (l +1)δi (l +1)

The derivatives with respect to weights and biases are:

∂E

∂wi j (l)
= a j (l −1)δi (l)

∂E

∂bi (l)
= δi (l)

Finally, we update the parameters using the Gradient Descent:

wi j (l) = wi j (l) − α
∂E

∂wi j (l)
= wi j (l) − αδi (l)a j (l −1)

bi (l) = bi (l) − α
∂E

∂bi (l)
= bi (l) − αδi (l)

where α denotes the learning rate.

Figure 3.6: Local backpropagation scheme: explanation of what happens inside
a node during the backpropagation process

18 CHAPTER 3. OBJECT DETECTION MODEL: YOLO

3.2.3 Convolutional Neural Network

Definition [10][11] In deep learning, a convolutional neural network (CNN, or
ConvNet) is a class of deep neural networks, most commonly applied to analyz-
ing visual imagery. It can take in an input image, assign importance (learnable
weights and biases) to various aspects/objects in the image and be able to dif-
ferentiate one from the other.

Differences from FCN [10][11] Comparing CNN with fully connected NN, we
state that the main difference between them is the local connectivity. This
means that a node of a convolutional layer is not connected to all nodes of the
previous one but only to a window of nodes of a predefined size (usually k = 3).
This connection is made through a convolutional operation with a kernel of di-
mension kxk, with k denoting the window size. Local connectivity entails a
lower number of weights to train. The kernel shift along the image and with a
predefined stride (usually 1).
Another important feature about CNN is that the weights are "shared". This
means that every node of a layer shares the same weights with each other nodes
of the same layer but operates on a different window.

Convolutional layer [10][11] Let’s see in details what happens in CNN when
the information propagates from a layer to the next one. Let’s consider two
layers: layer l and layer l +1. The input of a node of the l +1 layer corresponds
to the result of an operation of convolution between a kxk kernel (matrix of
weights) and a window of k nodes of layer l . In formulas, given:

• a kernel K of dimension 3x3:

K =

k11 k12 k13

k21 k22 k23

k31 k32 k33

• a window of nodes of the same size of the kernel:

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

The input of next layer node is provided by the convolution:

3.2. CNN AND MAX POOLING: THEORETICAL BACKGROUND 19

Σ3
i=1Σ

3
j=1ai j ki j

namely

A∗K

The convolution allows to extract local features from images. For example, if
we convolve a small image window with Sobel kernel, is obtained the local gra-
dient, which allows to enlighten local image intensity variations like edges or
corners. Such features make the difference in order to classify an object.

Figure 3.7: Convolutional neural network in 1D

Feature maps In CNNs, it is possible to learn multiple feature maps. A feature
map correspond to a layer whose nodes inputs are calculated with a specific
kernel of weights. If the kernel is different, we obtain another convolutional
layer, namely another feature map. Intuitively, in case of images, a feature map
encodes local image features, for example local curvature, linearity, intensity,
edges or any type of variation. The more the network is deep, the more the fea-
tures we extract are precise. Obviously, the choice of NN depth must be a good
compromise between accuracy (deeper is better) and efficiency (less deep is
better).
Yolo algorithm is designed to detect object of variable sizes; such sizes are clus-
tered in three sets, which are going to define the anchors dimensions. For every
sets, Yolo extract the correspondent feature map.

20 CHAPTER 3. OBJECT DETECTION MODEL: YOLO

Figure 3.8: 2D convolutional neural network in 2D (images)

Padding [10] The convolution operation may lead to two type of results:

1. The output as greater or equal dimension than the input; if we input a
5x5 image and we want to output the same size, we should perform a
padding operation. Indeed, if we convolve the 5x5 input with a 3x3 ker-
nel, we obtain a 3x3 output matrix. To avoid this, it’s performed a padding
operation to the input, which consists on adding 0s in such a way to aug-
ment it from 5x5 to 6x6. In this way, once the convolution is applied, the
output will be 5x5. Since it will be of the same size of the input, the whole
operation is named "same padding".

2. On the other hand, if the output has to be a lower dimension, we omit the
padding operation, so obtaining an output of the same kernel size (in this
case 3x3). The whole operation is named "valid" padding.

Pooling [10] When a convolutional layer presents too many nodes, may be
useful to perform a subsampling. This can be done by exploiting the pooling
operation, which takes a small window of nodes and compute the maximum
(max pooling, more used) or the average value of them (average pooling). In
this way, the spatial size is considerably reduced, with a consequent increase of
the efficiency.
The effects it can bring are:

• reduce the resolution, next layer can operate to a larger scale;

3.2. CNN AND MAX POOLING: THEORETICAL BACKGROUND 21

Figure 3.9: Feature maps in 1D

Figure 3.10: Feature maps in images

• reduce computational complexity;

• adding deformation invariance;

• max pooling is more used because it’s faster and efficient.

Pooling is also useful for extracting dominant features which are rotational and
positional invariant, thus maintaining the process of effectively training of the
model. Furthermore, max pooling is often used as noise suppressant: it dis-
cards the noisy activations altogether and also performs denoising along with
dimensionality reduction.

In this part was summarized a theoretical background about Artificial Neural
Networks, in particular the Convolutional Neural Networks (CNNs). The next

22 CHAPTER 3. OBJECT DETECTION MODEL: YOLO

Figure 3.11: Padding

step is understanding how to train such powerful tools in order to best perform
an object detection and classification.

Figure 3.12: Max pooling and average pooling

3.2.4 Training and loss function

In order to achieve good detection and/or classification results, the network
needs to be trained in order to make it learn the necessary features from the
image. This operation, named "training", requires a huge number of training
images. Such images feed the network during all the training process, also more

3.2. CNN AND MAX POOLING: THEORETICAL BACKGROUND 23

than once (n > 1 epochs); their task is to provide to the network, through an
operation named "image labeling", as more information as possible. Let’s see
in details what training consists on. First of all, the training images need to be
preprocessed.

Preprocessing and batch processing The preprocessing operation (also called
"data augmentation") denotes all that process about preparing the images to
feed the network. The goal is adding some variance to such data (noise, rota-
tion, flipping). Indeed, if we want the network to classify dogs, we need to pro-
vide a large number of dog images. If such images are goodly preprocessed, the
network will learn the typical dog features like tail, ears, head and body shape
or legs; in case of bad preprocessing, the network could learn bad features like
color (images were not grayscaled) or position (images were not rotated and
flipped).
The images also need to be organized to avoid too slow computation and ex-

Figure 3.13: Training preprocessing: example of good and bad feature extrac-
tion

pensive memory usage; if we have 500 images, it’s advisable to feed the network
not with all the images a time, but in small groups (batches). The number of im-
ages per batch is called "batch size". Typical batch size values could be 8, 16 or
32; sometimes 64 too. Such batch arranging takes the name of "batch prepro-
cessing".

Overfitting Overfitting occurs when the network does not learn general fea-
tures but only features for a specific subset of target objects. For example, con-

24 CHAPTER 3. OBJECT DETECTION MODEL: YOLO

Figure 3.14: Batch preprocessing

sidering the above case of dogs, overfitting may due to bad feature learning
such as color, positions; if training images contain too many black dogs, the
network will probably learn to recognize dogs by their black color and discard
all the other ones with different colors, with consequent low accuracy. This is
an example of overfitting. It mainly occurs when the training images show too
invariant features or simply when there are few training images.

Regularization In order to better stabilize the network, there are some regu-
larization techniques:

• Dropout: units (nodes) randomly dropped during training (the ones whose
value is under a certain threshold); units with value greater or equal to a

3.2. CNN AND MAX POOLING: THEORETICAL BACKGROUND 25

threshold (probability value) are retained. This method allows to thin the
network by reducing the number of nodes, in such a way to improve com-
putation and memory usage.

• L2 weight decay: big weights are penalized through an adjustable decay
value; big weight decay value means high penalization for big weights.

• Early stopping: according to validation error, we decide when the train-
ing process should be stopped. For example, when the convergence is
reached and the validation loss constantly lies under a certain value.

Optimization: Gradient descent, Adam, Momentum The training task is the
minimization of the loss function. Three ways are going to be explained:

• [3]Gradient Descent Optimizer: divided in basic, stochastic and mini batch.

– Basic: Computes the gradient of the cost function with respect to
the parameters for the entire training dataset. It can be very slow
and is intractable for datasets that don’t fit in memory.
It’s a general approach for minimizing a differentiable convex func-
tion f (w). The gradient ∇ f (w) of f (w) at w = (w1, . . . , wd) is:

∇ f (w) =
(
∂ f (w)

∂w1
, . . . ,

∂ f (w)

∂wd

)
The gradient points in the direction of the greatest rate of increase

of f around w .

Now, let α, α> 0 be a parameter (learning rate). According to Basic
Gradient Descent, during the backpropagation, weights are updated
as it follows:

w (t+1) = w (t) − α∇ f (w (t)), t = 0,1, . . . ,T −1

If f is convex and ρ-Lipschitz continuous, convergence is always
guarantees in a finite number of iterations.

– [3]Stochastic: the idea is, instead of using exactly the gradient, tak-
ing a (random) vector with expected value equal to the gradient di-
rection.
Choose vt at random from a distribution such that:

E [vt |w t] ε ∇ f (w t)

26 CHAPTER 3. OBJECT DETECTION MODEL: YOLO

The weights are updated as it follows:

w t+1 = w t − αvt , t = 0,1, . . . ,T −1

If f is convex and ρ-Lipschitz continuous, convergence is always
guarantees in a finite number of iterations.

– Batch: is a variation of the gradient descent algorithm that calcu-
lates the error for each example in the training dataset, but only up-
dates the model after all training examples have been evaluated (af-
ter a training epoch). It may require a lot of memory usage.
Instead of the whole dataset, the algorithm may update the model
after a small set of the training examples; in this case, we are dealing
with a mini-batch gradient descent optimizer. Less memory usage
and faster computation.

• [4]Adam optimizer: also called "Adaptive Moment Estimation". It works
through the following steps:

1. Computes an exponentially weighted average of past gradients and
stores it on variables VdW and Vdb (without bias correction), V cor r ected

dW
and V cor r ected

db (with bias correction).

2. Same operation, but with exponentially weighted average of the squared
past gradients. The storing variables are SdW , Sdb , Scor r ected

dW , Scor r ected
db .

3. Updates parameters in a direction based on combining information
from 1 and 2.

Adam optimization is implemented through the following steps:

– Initialize VdW , Vdb , SdW , Sdb to zero.

– On iteration t , compute the derivatives d w and db using the current
mini-batch.

– Update VdW and Vdb :

VdW = β1Vd w + (1−β1)dW

Vdb = β1Vdb + (1−β1)db

– Update SdW and Sdb :

SdW = β2Sd w + (1−β2)dW 2

Sdb = β2Sdb + (1−β2)db2

3.2. CNN AND MAX POOLING: THEORETICAL BACKGROUND 27

– Implement bias correction:

V cor r ected
dW = VdW

1−βt
1

V cor r ected
db = Vdb

1−βt
1

Scor r ected
dW = SdW

1−βt
2

Scor r ected
db = Sdb

1−βt
2

– Update W and b:

W = W − α
V cor r ected

dW√
Scor r ected

dW +ε

b = b − α
V cor r ected

db√
Scor r ected

db +ε

where:

– β1 and β2 are hyper parameters that control the two exponentially
weighted averages. In practice we use the default values for β1 = 0.9
and β1 = 0.999.

– ε is a very small number to avoid dividing by zero (ε= 10−8).

– α is the (adaptive) learning rate.

• [5]Momentum optimizer: this technique is used along with GD. Instead
of using only the gradient of the current step to guide the search, mo-
mentum also accumulates the gradient of the past steps to determine the
direction to go. As a reminder, the equation of Gradient Descent is the
following:

w (t+1) = w (t) − α∇ f (w (t)), t = 0,1, . . . ,T −1

Such operation uses only the gradient of the current step to guide the
search.
In momentum optimization, are also accumulated the gradients of the
past steps to determine the direction to go:

v (t+1) = ηv (t) − α∇ f (w (t)), t = 0,1, . . . ,T −1

28 CHAPTER 3. OBJECT DETECTION MODEL: YOLO

with:

w t+1 = v t + w t

η denotes the coefficient of momentum, which consists on the percent-
age of the gradient retained at every iteration.
Notice that the weights increase for each update. As a consequence, de-
composing the gradient into the two image dimensions, the momentum
allow to dampen the zig-zag oscillation that occurs during the (stochas-
tic) gradient descent optimization; in this way, the first dimension tends
to be canceled out and the second one is reinforced with a obvious con-
sequent quickening convergence to minimum.

Figure 3.15: Optimization algorithms description

3.3 Yolo model

At this point, after a theoretical background of the basic deep learning tools,
neural networks, let’s go to describe the deep-learning based algorithm that
will be used for image detection: YOLO.

3.3.1 Preprocessing: from point cloud to image

Before feeding YOLO, it’s needed to perform some data preprocessing. Since
the starting data is not an image, but a point cloud, we are going to describe all
the steps to transform it to a suitable input for the system.

Point cloud adjusting

The original detected point cloud needs to be adjusted before being converted
to image. The detection, indeed, shows many outliers and results not be aligned
with the dimensions of the world reference system.

3.3. YOLO MODEL 29

Figure 3.16: Original acquired point cloud

The outliers removal is simple: it’s enough to scan all the (normalized) cloud
points through a for loop and remove the ones that are out of a predefined
range; such range, in this case, consists on the interval between minimum and
maximum planes of the box
The second step requires an alignment of the box with the world axis, in order
to have the base of the box lying on a plane with z-coordinate be more or less
constant. To solve this problem, we resort to Principal Components Analysis, so
eigenvectors of the point cloud covariance matrix. Such eigenvectors, indicate
the directions of the point cloud along the world space; the goal is to rotated
them in order to be aligned with the world canonical reference system.
Let’s describe in details all the steps:

1. Compute the point cloud covariance matrix:

Σ = 1

N

(X −µx)T (X −µx) (X −µx)T (Y −µy) (X −µx)T (Z −µz)

(Y −µy)T (X −µx) (Y −µy)T (Y −µy) (Y −µy)T (Z −µz)

(Z −µz)T (X −µx) (Z −µz)T (Y −µy) (Z −µz)T (Z −µz)

where:

• X ,Y , Z are the vectors storing, respectively, all the x, y, z coordinates
of the point cloud;

30 CHAPTER 3. OBJECT DETECTION MODEL: YOLO

• µx ,µy ,µz are, respectively, the average values of x, y, z coordinates
of the point cloud;

• N is the number of points.

2. Extract the eigenvectors v0, v1, v2, indicating the directions along, re-
spectively, axis x, y, z of the world reference system. The vectors are then
sorted according to correspondent eigenvalues, from largest to lowest, in
such a way to obtain the directions stored in order of importance.

3. Consider now the third eigenvector, namely the one denoting the minor
direction. The goal is using such vector to transform the point cloud in
such a way to make the box base on a horizontal plane (i.e. with con-
stant z); v2 indeed denotes the normal of target plane. To achieve this,
we proceeded in the following way:

• align the eigenvector with canonical axes e1 = [0,1,0]T and apply
such transformation to all the points of the cloud; the steps are the
following:

(a) Obtain the rotation axes k = [k0,k1,k2]T , namely the cross prod-
uct between e2 and eigenvector v2:

k = e2 × v2

(b) Get the angle of rotation (in the form of its sine s and cosine c):

c = e2 • v2

s =
√

1 − c2

Compute the point cloud transformation by multiplying it with
the following rotation matrix:

R =

c +k2

0(1− c) k0k1(1− c)−k2s k0k2(1− c)+k1s

k1k0(1− c)+k2s c +k2
1(1− c) k1k2(1− c)−k0s

k2k0(1− c)−k1s k2k1(1− c)+k0s c +k2
2(1− c)

(3.1)

At this point, the box base normal results to be aligned with canoni-
cal axes e2.

• rotate the resulting point cloud of −90 degrees around x-axes. Fur-
thermore, after such rotation the box shows a light rotation of about
−8 degrees around z-axes. It’s enough to compensate by performing

3.3. YOLO MODEL 31

a counterclockwise rotation of 8 degrees around z.
In formulas, denoting with θx ,θy ,θz the rotation angles around, re-
spectively, x, y, z and denoting cx = cos(θx), cy = cos(θy), cz = cos(θz),
sx = sin(θx), sy = sin(θy), sz = sin(θz), the following rotation matri-
ces are computed:

Rx =

1 0 0

0 cx −sx

0 sx cx

 Ry =

cy 0 sy

0 1 0

−sy 0 cy

 Rz =

cz −sz 0

sz cz 0

0 0 1

The final rotation matrix corresponds to:

R = RzRy Rx

The angles used are θx =−90, θy = 0, θz = 8

Figure 3.17: Adjusted point cloud

Conversion to image

Once the point cloud is adjusted, the next step consists on its conversion to a
2D image, in order to feed YOLO algorithm. The procedure is composed by two
steps:

• point cloud voxelization

• image obtaining

32 CHAPTER 3. OBJECT DETECTION MODEL: YOLO

Figure 3.18: Top view of the acquired (and adjusted) point cloud

Point cloud voxelization This operation is crucial in order to obtain the
image. It consists on organizing the sparse points of the cloud into a grid of 2D
cells. The cells dimensions is equal to the box width and height (i.e. about 725
cm and 615 cm).
In details, each point of the cloud is splitted into its space coordinates x, y and
z; the goal is to assign each of these points to the correspondent index of the
voxel grid. Each x and y values is so used as a hash key of a hash function,
which is now going to be explained. Let’s denote xs , ys and zs as the arrays
storing all the x, y , z coordinates of the point cloud, xmi n , ymi n and zmi n the x,
y , z minimum values, xvox and yvox the number of cell along x direction and y
direction; the hash function is the following:

xg r i d
s = (xs −xmi n)

xvox −1

x y zmax

y g r i d
s = (ys − ymi n)

yvox −1

x y zmax

where:

• xg r i d
s and y g r i d

s are the arrays storing all the grid indexes assigned to each
cloud point;

• x y zmax corresponds to the (translated) point cloud maximum value:

x y zmax = max
(
max(xs −xmi n), max(ys − ymi n), max(zs − zmi n)

)

3.3. YOLO MODEL 33

The hash function is not bijective: for each grid cell (indexed by a value from

xg r i d
s and one from y g r i d

s) could correspond more than one point of the cloud.
For the final goal, we need one point per cell; to solve this issue, for every point
of each grid cell, it is considered only the one with maximum z value, namely
the highest point for such cell. The final grid is so obtained; it corresponds to
an 3D array with dimension xvox × yvox × 1. Thanks to hash table method to
assign the indexes, each assignment is a O(1) operation, that means that all the
voxelization is O(N), where N is the number of points of the cloud.

Figure 3.19: Point cloud voxelization

Image obtaining At this point, it’s enough to convert the obtained voxels
grid to an image format. Since the origin of image reference system (top left) is
different from the point cloud one (bottom left), before conversion it’s required
to rotate the grid of +90 degrees (of course around z axes).
Finally, exploiting the suitable function provided by Pillow python library, it’s
possible to obtain the image and feed YOLO.

Let’s explain now the architecture of YOLO. The model architecture is based
on Darknet-53.

3.3.2 Darknet-53

[2] Darknet-53 is the name of the deep learning model which allows YOLO to
extract features from the input image in order to best perform the detection. Its
architecture is based on the Darknet-53 block.

34 CHAPTER 3. OBJECT DETECTION MODEL: YOLO

Figure 3.20: Obtaining of the point cloud image which is going to feed the deep
learning model

Darknet-53 block

[2] It consists on two 2D convolutional neural networks; depending on ker-
nel strides, the input image could previously padded ("same" padding) or not
("valid" padding). Both CNNs have 3×3 kernel size striding of 1.

Figure 3.21: Darknet53 block feature extraction

Forward layer

[2] Such layer is the core of Darknet-53. It’s composed by a sequence of con-
volutional neural networks with different strides, kernel sizes and output fil-
ters. The sequence consists on 2 CNNs followed by a darknet-53 block; then
the model contains an alternation of a CNN with padding and sequenced of
darknet-53 blocks. The total number of CNNs exploited corresponds to, as the
name of the model suggests, 53. Such model provides three outputs:

3.3. YOLO MODEL 35

• route1: the output layer after the first sequence of darknet-53 blocks;

• route2: the output layer after the second sequence of darknet-53 blocks;

• output: the final output layer after all the sequences of darknet-53 blocks.

Such outputs will be used for the three feature maps computation in forward
layer of YOLO.

Figure 3.22: Three blocks of features extracted from Darknet53: route1, route2,
outputs

36 CHAPTER 3. OBJECT DETECTION MODEL: YOLO

3.3.3 Yolo

Darknet model is going to be used by YOLO algorithm for the image feature
extraction and, finally, the bounding box detection. Let’s go to see in details all
the parts of this powerful tool.

Yolo block

[2] Yolo-block consists of a sequence of 6 convolutional neural networks, with
alternated kernel size equal to 1×1 or 3×3, always striding of 1 unit along the
image grid. It provides 2 outputs:

• route: the output layer of the first 5 convolutional neural networks;

• outputs: the final output layer of sequence of all 6 neural networks.

Figure 3.23: Yolo-block feature extraction

Forward layer

[2] To start, such layer takes the output of the darknet-53 forward: route1, route2

and outputs. It uses the latter as input to the yolo-block to compute the two val-
ues: route and outputs. ’Outputs’ tensor is given as input to the detection layer
in order to compute the first feature map (the one relative to 3 of the 9 anchors
provided).
At this point, the r oute tensor is given as input to another CNN, whose output
(upsampled to r oute2 size) is concatenated to r oute2 variable. The concate-
nation result is given as input to yolo-block in order to compute the second
feature map (relative to other 3 of the 9 anchors provided).
The same operations are performed to obtained the last feature map.

3.3. YOLO MODEL 37

Anchors

The boxes parameters are not predicted as distance from the origin of the image
(top-left). They are predicted with respect to prior predefined boxes named
"anchors". The anchors are predefined only in terms of sizes, because their
centers simply correspond to the center of each grid cell.

Re-organization layer

[2] This layer takes as input the feature map computed by the forward and de-
tection layers. Its task consists on splitting the feature map tensor in order to
get the detected bounding box coordinates, sizes, confidence and class scores.
The feature map tensor stores [tx , ty , tw , th ,c, p1, . . . , pn], where:

• tx , ty are the box centers;

• tw , th are the box sizes;

• c denotes the confidence score, namely the probability there is a detected
object;

• p1, . . . , pn denotes the class scores, n is the number of classes.

The bounding boxes center coordinates are provided as distances from the top-
left of the correspondent cell; so, it’s needed to add them an offset.

cx = Si g moi d(tx) + o f f setx

cy = Si g moi d(ty) + o f f sety

where o f f set = [o f f setx ,o f f sety] denotes the distance between top-left of
the cell and top-left of the image. The sizes are provided w.r.t anchor sizes, for
stability reasons. The final ones are computed as it follows:

w f i nal = e tw wanchor

h f i nal = e th hanchor

Confidence and class scores are computed as it follows:

c f i nal = Si g moi d(c)

pi f i nal = Si g moi d(pi) i = 1, . . . ,n

Detection layer

[2] Detection layer is the final convolutional layer, which provides the bounding
boxes coordinates tensor [tx , ty , tw , th ,c, p1, . . . , pn].

38 CHAPTER 3. OBJECT DETECTION MODEL: YOLO

Figure 3.24: Three feature maps extracted from the YOLO forward + re-org +
detection layer

Prediction layer

[2] Prediction layer takes the bounding boxes coordinates, confidences and class
scores and arranges them in such a way to obtain: boxes tensor, confidence
tensor and class probability tensor. Boxes centers coordinates are modified to
obtain boxes vertexes coordinates. Hence, the function outputs such three ten-
sors.

3.4 Yolo loss

[2] A loss function or cost function is a function that maps an event or values of
one or more variables onto a real number intuitively representing some "cost"

3.4. YOLO LOSS 39

Figure 3.25: Feature maps to final bounding boxes

associated with the event. The goal of the optimization problem is the mini-
mization of such value. For YOLO problem, the loss formulation is the follow-
ing:

λcoor d

S2∑
i=0

B∑
j=0

1ob j
i j

[
(cxi − ĉxi)2 + (cyi − ĉyi)2] +

+ λcoor d

S2∑
i=0

B∑
j=0

1ob j
i j

[
(wi − ŵi)2 + (hi − ĥi)2] +

+
S2∑

i=0

B∑
j=0

1ob j
i j

[
(ci − ĉi)2]+ S2∑

i=0

B∑
j=0

1noob j
i j

[
(ci − ĉi)2] +

+
S2∑

i=0
1ob j

i

∑
cεcl asses

(
pi (c)− p̂i (c)

)2

Let’s go to explain each term.

First term The first term encodes the squared error of the boxes centers coor-
dinates; ĉx , ĉy indicate the values of the feature map predicted by re-organization
layer, cx , cy denote the value of the label boxes (ground truth boxes).
λcoor d is a scalar value used to give more or less weight to the loss term com-
paring it to the other ones. Such value depends on box and image sizes and it’s

40 CHAPTER 3. OBJECT DETECTION MODEL: YOLO

equal to:

λcoor d = 2− w

wi m

h

hi m

1ob j
i j is a boolean mask which denotes that the sum is going to consider only the

coordinates of the predicted boxes which have an intersection over union (iou)
with a ground truth box (obviously of the same class) greater than a predefined
threshold (usually 0.5). In practice, if the iou is greater than threshold, inside
that cell there is an object to detect; if not, there isn’t an object, so the error
simply goes to zero.
S2 denotes the number of cells in the image grid, B denotes the number of pre-
dicted boxes inside each cell.

Figure 3.26: Intersection over Union

Second term It’s exactly the same term as the first one. The only difference
consists on the fact that in this case, instead of boxes centers, there are boxes
sizes (predictions and ground truths).

Third term Such term is splitted into two parts and computes the squared
error of the confidence scores.
The first part computes the confidence error in case the cell contains a target
object. The ground truth value for confidence score is obviously equal to 1. The
second part does the same in case there isn’t any object to detect. In the latter
case, ground truth confidence is equal to 0.

1noob j
i j is the negative boolean mask of 1ob j

i j .

Fourth term The last term computes the class probability error. 1ob j
i is a

boolean mask that denotes if the cell contains an object (= 1) or not (= 0).
The metric is yet the intersection over union between predictions and ground
truths.

3.4. YOLO LOSS 41

The probability scores (both predictions and ground truths) are booleans one-
hot encoded, namely only one of the n classes corresponds to 1, 0 the other
ones. Such term simply denotes the classification loss.

Figure 3.27: Loss function terms explanation

42 CHAPTER 3. OBJECT DETECTION MODEL: YOLO

Chapter 4

Training and Validation

This chapter is going to explain in details all the steps of training and validation
processes. In particular, we’ll focus on two macro-steps:

1. Dataset preprocessing: consists on the generation and preparation of the
training data; this step occurs before the actual training process.

2. Training process: consists on periodically feeding the YOLO network with
the preprocessed training data; such process may last hours and it serves
to find the right combination of parameters (weights) that minimize the
loss function.

After the training process, a validation process is performed. Such operation
consists on feeding YOLO with new fresh data, different from the training ones,
in order to verify if the model learned well or enough to detect the target objects.
The validation data must be of the same type of the training ones but with target
objects distributed in a different way into the images (to avoid overfitting). Also
the preprocessing must be the same.

4.1 Training

Let’s go now to explain the first, very important process for training: the pre-
processing.

4.1.1 Training images generation

The training data we want to generate contains a variable number of target ob-
jects randomly distributed and rotated along the image. To start, we have only
a computer-made point cloud model of the target object. It’s so necessary a
function which generate the images starting from such model.

43

44 CHAPTER 4. TRAINING AND VALIDATION

Point cloud data generation There are two steps to do in order to generate a
good training point cloud:

• background generation;

• target objects generation.

The generation of the background is quite simple. It consists on a bi-dimensional
grid of uniformly distributed points, its size is the same of the objects box one
(about 725×615). The z coordinates of such points are constant along the grid
and vary in a predefined interval.
The objects generation is a bit more difficult. The steps to do are:

1. object point cloud point-sampling;

2. object rotation and translation;

3. obtaining the final point cloud in top view.

The starting point cloud of the object contains about 3 millions points, too
much if we want to make the process fast. It’s needed to make a random sam-
pling to obtain less points; the final number of points must not be neither too
low nor too high. It needs to be large enough to obtain a uniform distribution
of points when joining to the background. The chosen number is 140×80×10;
those three numbers represent more or less width, length and height of the tar-
get object.
At this point, the object needs to be rotated and moved, obviously staying inside
the background grid size intervals. The rotation is performed by exploiting the
same rotation matrices (Rx , Ry , Rz) explained in the previous sections; the an-
gle θx and θy are null, while θz is a random number inside interval [0,360]. The
rotation is performed around the center point of the object. The translation
consists on adding to the object cloud a 3D vector [tx , tz , tz]T ; tx is a random
float number that lies in the interval [0,650], ty in [0,550] and tz in [0,25].
The object generation, rotation and translation are performed a random num-
ber of times, in the interval [0,20].
At this point, we have a point cloud that shows:

• A set of 725×615 points composing the background;

• A set of points composing the objects (the number of object is random,
up to 20); the x and y object coordinates lies inside the background grid
interval; the zs (height), lies lightly over the background.

4.1. TRAINING 45

In order to get a faithful simulation of the reality (objects in a box seen in top
view), the point cloud needs to be modified again in such a way to eliminate all
the points that we cannot see from the top. We perform such top view genera-
tion through the following steps:

1. create a 2D grid of the same size of the point cloud one;

2. through an opportune hash function, assign each point of the cloud to
the correspondent cell of the grid, according to its x and y coordinates;
the hash function used is:

xg r i d
i = i nt (xi), i = 1, . . . , N

y g r i d
i = i nt (yi), i = 1, . . . , N

where: N is the point cloud cardinality,

xg r i d
i and y g r i d

i are the grid cell coordinates assigned to the i -th point,
xi and yi are the coordinates of the i -th point;

3. for each grid cell, save only the point with maximum z (height).

Thanks to the hash function, each assignment speed is O(1), which makes the
all function be O(N).
The final point cloud in top view is obtained by reshaping the grid (which con-
tains one point per cell) from size 725×615×3 to 725•615×3.

Figure 4.1: Point cloud data generation

46 CHAPTER 4. TRAINING AND VALIDATION

Conversion to image At this point, we get a top view point cloud with a ran-
dom number of target objects lying over a background. The next step consists
on obtaining the final training image. The procedure is exactly the same ex-
plained previously for the image preprocessing: it consists on a point cloud
voxelization (exactly the same function) and the exploiting of python ’Pillow’
library to obtain the RGB image.

The whole operation is repeated for each training and testing image generates;
the training images generated are 512, the testing images are 20.

Figure 4.2: Conversion to image

4.1.2 Dataset preprocessing

The preprocessing operation is performed on the training images, namely the
ones whose target objects are already been labeled (provided bounding boxes
coordinates) from the outside. Each label is provided as:

• vertexes coordinates, in pixels. Each coordinate denote the distance (i.e.
the number of pixels) from the top-left of the image;

• confidence score of the bounded object; in true boxes is obviously always
equal to 1;

• Class probabilities scores, encoded in one-hot, denoting which class the
bounded object belongs to (in case of only 1 class, such value is always 0).

In addition the true boxes, stored in tensors, are memorized according to three
categories. Each of this groups is relative to each group of anchors utilized for
the prediction; there are three groups of anchors, according to their size: small
anchors, medium anchors and big anchors. The variable size is correlated to
the size of the object we want to detect to. The true boxes categories are:

• ytr ue 13: the 13 means that the image grid in which we are going to make
the prediction is composed of 13×13 cells; the target objects here have a
big size.

4.1. TRAINING 47

• ytr ue 26: image grid 26×26 cells, for medium object sizes;

• ytr ue 52: image grid 52×52 cells, for small object sizes;

Figure 4.3: From labels boxes (ground truths) to coordinates usable by the
model

4.1.3 Feature maps, predictions and loss

The YOLO forward layer provides three feature maps:

• feature map 1: image grid size equal to 13×13, it means that the image is
divided into 13×13 cells, each one encoding the local features;

• feature map 2: image grid size equal to 26×26;

• feature map 3: image grid size equal to 52×52.

The loss function is computed for each feature map extracted:

• Loss 1: use feature map 1 as prediction and ytr ue 13 as ground truth;

• Loss 2: use feature map 2 as prediction and ytr ue 26 as ground truth;

• Loss 3: use feature map 3 as prediction and ytr ue 52 as ground truth;

Before computing each loss, each feature map is input to the re-organization
layer in order to split the bounding boxes parts. The ground truth are provided
already in such form.

48 CHAPTER 4. TRAINING AND VALIDATION

The final loss is Loss = Loss1+Loss2+Loss3; such value quantifies how far are
the prediction from the ground truth, the goal is to minimize it.
Finally, the feature maps feed the prediction layer in order to obtain the final
predicted bounding boxes.

Figure 4.4: Training process

4.1.4 Optimization

The loss, once computed, undergoes a process of optimization, namely, at ev-
ery loop of training, the model parameters are updated in order to decrease the
loss value. Crucial for this operation are the optimizer and the learning rate
used. In this case, Adam optimizer was used exploiting an exponential decayed
learning rate:

α(i) = α0λ
i

nsteps

where:

• α(i) denotes the learning rate at step i ;

• α0 denotes the stating learning rate;

• λ denotes the decay rate;

4.2. VALIDATION 49

• nsteps denotes the number of decay steps.

The learning rate is not constant, but gradually (exponentially) decreases; the
more is the approach to the loss minimum, the less is the learning rate decreas-
ing; the learning rate (which indicates how much the gradient has to decrease
along the loss function) is correlated to the distance from the minimum value
loss.

4.2 Validation

The following process is the validation; the training provides the model param-
eters (weights) that allow the model error to be minimum. But the training is
not enough, because the parameters learned could be relative to too specific
features due to the fact the training files could not generalize enough the target
data. In practice, the model could undergo the ’overfitting’ phenomena.
The validation process consists on feeding the model with new fresh data, ob-
viously of the same type of the training ones, without decreasing the loss, using
the weights learned during the training. For such data, the loss is computed:
if the loss is of the same quantity order than the final training one, the model
best learned the object features; otherwise, if the validation loss is too high, the
training should be repeated with new data (if the training files are bad) or con-
tinued with more data (if the training files are good but not enough).
Such operation is performed after each training epoch; in this way it is possible
to monitor, at each step, the training loss and the validation loss in such a way
to easily figure out the loss decreasing and an eventual overfitting.

4.2.1 Non-maximum suppression

When the model predict the bounding boxes, it usually happens that, around
the object to detect, more than one box is predicted. This is due to the fact that,
in the loss function, the confidence score tends to be equal to the intersection
over union of the prediction with the ground truth, if it is greater than a prede-
fined threshold (0.5). In proximity of the object, there are more than one cell
in which is predicted more than one box with great IoU. As a result, there are
duplicates.
To remove such duplicates, an operation called "non-maximum suppression is
performed". It works in the following way:

1. make a descending sort of the boxes based on its confidence score;

2. consider the first box (i.e. the one with highest confidence score);

50 CHAPTER 4. TRAINING AND VALIDATION

Figure 4.5: Validation process

3. compute the IoU with all other boxes;

4. discard all the boxes with IoU greater than a predefined threshold (named
IoU threshold);

5. update the boxes array eliminating the discarded box (and the one con-
sidered);

6. repeat the operation with new boxes list. Stop when the update list is
empty.

4.3 Info about OS, Tensorflow and GPU

Let’s provide some informations about the software environment exploited to
train and test the model. All the steps are written in python, through the editor
Pycharm; Tensorflow library is exploited to train the neural networks, Numpy,
Pillow and others are used for the preprocessing. The operative system used
are both Linux Ubuntu and Windows 10.

4.3. INFO ABOUT OS, TENSORFLOW AND GPU 51

Figure 4.6: Non-maximum suppression, threshold (thr) set to 0.4

4.3.1 Programming language

All the algorithm was written in Python 3.5, in Pycharm editor. Several libraries
were exploited, the most important are:

• Numpy for variables, arrays and matrix definitions with relative opera-
tions;

• Tensorflow for all that concerns with neural networks model;

• Pillow for image processing;

• Open3d for point clouds processing.

4.3.2 Tensorflow and GPU

All the deep learning model is written exploiting Tensorflow-GPU 1.11.0 with
CUDA 9.0 and Cudnn 7. Due to faster computations reasons, all training and
testing were performed exploiting the graphic board (GPU) instead of the CPU.
Tensorflow is an open source powerful software library developed by Google,
which allows to easily code and train a deep learning model, thanks to its func-
tions like tf.slim or tf.nn; the base working consists on saving some variables
(in this case, the training images) in apposite structures named Tensors. Each
tensor follows a precise configuration: [batch size, image width, image height,
image depth], where:

• batch size: denotes the number of images; indeed, Tensorflow allows to
process groups (batches) of images at the same time;

• image width and image height: denote what the variable names say;

52 CHAPTER 4. TRAINING AND VALIDATION

• image depth: stores the image channels (RGB).

Tensorflow provides several operations similar to numpy ones, that allow to op-
erate with tensor variables.
All the Tensorflow operations are performed by the Graphic Processing Unit,
thanks to Cudnn and Cuda library (developed by Nvidia), which allow to trans-
late the high level code onto GPU language.
Two GPUs were exploited during the training and testing of the model: Nvidia
GeForce 720M and Nvidia Titan V, with non-irrelevant differences on the com-
putation speed.

4.4 Results: confidence, loss, accuracy

A detailed description of the model was provided so far; at this point, we are
going to explain the concrete results, in terms of confidence, loss, accuracy,
computation time, obtained by exploiting it.
First of all, it’s needed to identify which are the training files, the testing files
and the real files, and the not negligible differences between each other:

• training files: the images used to train the model; their creation is ex-
plained in the previous sections;

• testing files: the images used to test the model once the weights gener-
ated by the training process are available;

• real files: the images obtained from the original detection; the training
files must represent as faithful as possible such data.

4.4.1 Training process

4.4.2 Confidence

Training

The confidence score indicates how much is the probability that the predicted
bounding box contains a target object. During the training process, i.e. the loss
minimization, the predicted confidence score tends to be equal to the intersec-
tion over union of the prediction with the ground truth. The confidence loss
minimization follows a parabolic decreasing trend, with some peaks during the
first steps.

4.4. RESULTS: CONFIDENCE, LOSS, ACCURACY 53

Testing

During the testing, there’s not loss minimization, the testing examples feed
the model parametrized with the weights learned until that moment. Its trend
faithfully follows the training descending parabolic trend, except in the initial
steps, of course due to enough information missing. We can notice this from
the initial overfitting occuring during the first 80 steps.
The loss trend does not present overfitting after the convergence; we can realize
it from the plot and from the testing images.

Real

The real images are the images obtained from the detected point cloud; the goal
of the training images is to simulate, as faithful as possible, the object we want
YOLO to detect. The results obtained are pretty good: the target objects are
all detected, some of them also with very good precision and confidence score.
The results of the detection is shown in the images. In order to isolate only
the right boxes, it has be set a confidence threshold and an IoU threshold; such
values need to be goodly chosen since the objects could be overlapped. Indeed,
the bounding box of the overlapped objects could be recognized as duplicated
during the non-maximum suppression; the images show three cases:

• 0.05 confidence score threshold and 0.7 IoU threshold;

• 0.3 confidence score threshold and 0.3 IoU threshold;

• all boxes.

Figure 4.7: Detections

4.4.3 Loss

The loss function trend is shown splitted in its four terms: confidence, class,
coordinates and sizes loss. Looking at the plots, we can make some comments;
let’s go to consider each term.

54 CHAPTER 4. TRAINING AND VALIDATION

Confidence loss Such trend is already explained in previous paragraph; how-
ever, it’s possible to explain it more in detail.

• Steps 0−100: the initial part of the training denotes, obviously, very large
values, which indicate that the predicted confidence score is still too far
from the real one.

• Steps 100−500: in this part of the training, the distance between ground
truth and prediction gradually decreases, but the values are again too
high. It is also possible to denote an isolated local peak of the loss func-
tion. The decreasing speed depends on the learning rate.

• Steps 500−: the last steps of the training denote a further decreasing of
the loss function. The predicted confidence becomes ever closer to the
real one and the model learning becomes more and more precise. In the
end, the loss function reaches the final convergence; here the loss value
is small enough to conclude that the function is minimized. However, we
still cannot decide if the model has well learned the image features; we
need to have a look to the testing loss.

The testing loss trend is almost similar to the training one. Let’s analyze each
part.

• Steps 0− 100: in the first part the testing loss is very different than the
training one. This is obvious: while the training immediately starts to
minimize the loss, the testing undergoes an initial divergence, due to the
fact that the learned parameters do not contain enough information to
perform good detection. In technical terms, there occurs an initial over-
fitting phenomena.

• Steps 100−500: the learning proceeds and the model starts to accumu-
late more and more information. This is notable by looking at the plot,
which shows the testing loss stopping overfitting and starting to gradu-
ally approach the training one.

• Steps 500−: The last part shows the convergence of the testing loss. It
becomes more and more closer to the training loss; finally, it reaches the
convergence to a small enough value. The final convergence deviation
from the training one can be considered negligible (no overfitting). In
this way, it is possible to conclude that the model has rightly learned the
images features to perform good detection.

4.4. RESULTS: CONFIDENCE, LOSS, ACCURACY 55

Figure 4.8: Confidence loss

Class loss Since there is only one class to predict, the class loss trend is quite
simple. As in confidence case, the loss starts with high values and then gradu-
ally decreases until it reaches the convergence approximately to zero (order of
10−3. The descend is parabolic without local peaks or particular deviations.
The class testing loss presents an initial overfitting in the first 100 steps; it the
following steps it returns to retrace the training loss, until the convergence to
zero. Also in this case, no overfitting occurs at the convergence.

Coordinates loss The coordinates loss denotes the trend of the bounding boxes
centers coordinates x and y . Let’s analyze it.

• Steps 0 − 100: the loss values are high and start to gradually decrease,
namely the predicted boxes become ever closer to the ground truths. The
boxes that are modified are only the ones inside which there is an object
to detect (IoU > threshold).

• Steps 100−500: the loss decreases without particular peaks or deviations.
Compared to other trends, here the descent is more linear.

• Steps 500− the losses converges and reaches small values.

Let’s now analyze the testing loss.

56 CHAPTER 4. TRAINING AND VALIDATION

Figure 4.9: Class loss

• Steps 0−100: there is an initial overfitting due to not enough information
for the learning.

• Steps 100−500: the loss stops overfitting and retraces the training trend.

• Steps 500−: the loss converges and minimizes. However, in this case,
there occurs a light overfitting, even though not so relevant; indeed, the
deviation from the training is greater compared to other loss trends, but
it’s still small and not great enough to consider a modification of the train-
ing data.

Figure 4.10: Coordinates loss

4.4. RESULTS: CONFIDENCE, LOSS, ACCURACY 57

Sizes loss The sizes loss denotes the trend of the bounding boxes width and
height w and h. Let’s give a look in detail.

• Steps 0− 100: also in this case, there is an initial overfitting due to not
enough information for the learning.

• Steps 100−500: the overfitting stops, but occurs a huge local peak in both
training and testing losses.

• Steps 500−: loss function comes back from the local peak, minimizes and
converges; no convergence overfitting occurs.

Figure 4.11: Sizes loss

4.4.4 Accuracy

Testing

Let’s give a look to the detection on the testing files. The target objects are pre-
dicted very carefully, all the bounding boxes have a prediction confidence equal
to 1.00 and a almost perfect overlapping with the ground truths. We can con-
clude that the detection on the testing image is very satisfactory.
Small clarification: some overlapping objects in the images could be unde-
tected; this occurs because the bounding boxes are recognized as duplicates
according to the non-maximum suppression threshold. So, the model is able

58 CHAPTER 4. TRAINING AND VALIDATION

to recognize the overlapping objects, but it’s necessary to find a compromise to
set the thresholds in order to do not have too many detection in the image.

Figure 4.12: Detection on testing images

Real

The real images show a bit worse prediction, if we compare them to the testing
one. Since such images are a bit noisier, the features are less precise compared
to the testing. However, the objects are all well detected, the precision is a bit
worse and the confidences are lower. It’s possible to conclude that also in the
real images the detection is satisfactory.

Figure 4.13: Detection on real images

4.4.5 Computation time

Let’s give a look to the computation time. The model was trained and tested
with tensorflow-gpu 1.12.0. To exploit the GPU, it is needed CUDA software;
the one utilized is version 9.0. The learning was performed in two different
GPUs: Nvidia Geforce 720M and Nvidia Titan V.

4.4. RESULTS: CONFIDENCE, LOSS, ACCURACY 59

Nvidia Geforce 720M

The first exploited GPU is the Nvidia Geforce 720M. It has a memory capacity
of 2048 MB (2 GB), 192 CUDA cores, 64-bit memory interface. This is a Graphic
Unit without very powerful technical specifics; it’s possible to find it in a com-
mon laptop.
With such GPU, all the training process (about 1300 steps) lasts about 10 hours.
One step (feed the model with a tensor containing batch_si ze = 8 images) lasts
about 20 seconds.

Nvidia Titan V

The second exploited GPU is the Nvidia Titan V. It has a memory capacity of
12288 MB (12 GB), 5120 CUDA cores, 3072-bit memory interface. This is a very
powerful Graphic Unit, it’s possible to find it only in expensive professional ma-
chines.
With such GPU, the training process lasts abut 1 hour and 15 minutes, with 3.5
seconds per step.

60 CHAPTER 4. TRAINING AND VALIDATION

Figure 4.14: Nvidia Geforce 720M

4.4. RESULTS: CONFIDENCE, LOSS, ACCURACY 61

Figure 4.15: Nvidia Titan V

62 CHAPTER 4. TRAINING AND VALIDATION

Chapter 5

Conclusions

Summarizing, the goal of the paper was to find a model which is able to localize
some target objects inside an environment (e.g. a box). To achieve such result,
two different techniques were tried: the first based on machine learning and
the second based on deep learning.

Machine learning technique This method consists on the following macro-
steps:

1. Feature extraction: the idea is to extract some characteristic quantity from
each point (or local region) of the point cloud. In practice, for each point
is calculated the covariance matrix of its k−neighborhood (with k = 4 or
k = 8). From such matrix, the particular value M = determinant - trace is
extracted. Such value allows to discriminate when a local region is a cor-
ner, an edge or a flat area, exploiting the local point variance in a smart
way.

2. Classification: at this point, there is a value M for each point, hence a
vector of Ms with the same cardinality of the point cloud. Such vector
feeds a classifier which outputs the one probability score for each class
considered; if there are 3 classes, the classifier will output 3 scores. The
classifier consists on a simple fully connected neural network with one
or two hidden layers (the number of layers depends on the complexity of
the cloud).

3. Localization: at this point, it’s possible to localize some sparse objects
inside a box. The idea is to slide a box along the point cloud and compute
the feature-extraction + classification for each region analyzed. The box,
of course, has a predefined size, which is of the same order of the target
objects size.

63

64 CHAPTER 5. CONCLUSIONS

This technique works, but it’s not advisable to perform such model if the point
cloud has a large number of points, as it mainly occurs. In our case, the point
cloud we have to analyze is of the order of million points. The computation
time would be too high, need to find another system; let’s exploit deep learning.

Deep learning technique Deep learning provides very powerful tools for ob-
ject detection; such tools consists on the convolutional neural networks. Fur-
thermore, if we join to this tools an opportune library (Tensorflow) and a good
Graphic Unit, the problem becomes more manageable. So, the steps are the
following.

1. Point cloud preprocessing; for deep learning it’s advisable to manage im-
ages instead of an array of sparse points. Hence, it’s needed to perform a
cloud-to-image conversion, through a voxelization and max heights ex-
traction. The result is the corresponding z-image of the point cloud.

2. YOLO-model; consists on a cascade of convolutional neural networks,
which have the task to extract local features; the more the cascade is deep
the better is the features precision. The output is a tensor containing the
parameters and the confidence scores of all the boxes predicted for each
cell of the image. Basing on the confidence values, only the boxes bound-
ing a target object are selected.

3. Post-processing: to remove boxes duplicates, a non-maximum suppres-
sion is performed.

This deep learning technique is still complex, but the tools it provides (Ten-
sorflow library) and the exploiting of a good GPU allow to well-manage the
problem with good accuracy, confidence scores and, in particular, computa-
tion time.

In conclusion, the best approach to solve a common detection problem con-
sists on deep learning techniques. Surely, this work is not perfect and could not
be the most efficient way. Some useful modifications to this paper could be

• the improvement of the computation time, for example writing the model
in C instead of python;

• modification of the detection and re-organization layers in order to make
the model able to detect the objects orientation (e.g. exploiting the sine
and the cosine of the angle).

Bibliography

[1] Euclid Labs, https://www.euclidlabs.it/

[2] Main Yolo structure, https://github.com/YunYang1994/tensorflow-yolov3

[3] Backpropagation, GD and SGD optimization: Computer Vision slides
(Ghidoni-Carraro, 2018), Machine learning slides (Vandin, 2017)

[4] Adam optimization, https://engmrk.com/adam-optimization-algorithm/

[5] Momentum optimization, https://blog.paperspace.com/intro-to-
optimization-momentum-rmsprop-adam/

[6] Classification and regression https://machinelearningmastery.com/classification-
versus-regression-in-machine-learning/

[7] Yolo background, https://pjreddie.com/darknet/yolo/

[8] Artificial Neural Networks, https://en.wikipedia.org/wiki/Artificial_neural_network
Artificial Neural Networks, http://neuralnetworksanddeeplearning.com/chap1.html
Artificial Neural Networks, https://www.digitaltrends.com/cool-tech/what-
is-an-artificial-neural-network/

[9] Fully Connected Neural Network and activation functions: Computer Vi-
sion slides (Ghidoni-Carraro, 2018)

[10] Convolutional Neural Network, feature maps, padding, pooling: Com-
puter Vision slides (Ghidoni-Carraro, 2018)

[11] Convolutional Neural Network, https://towardsdatascience.com/a-
comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-
3bd2b1164a53

[12] Machine learning and deep learning image,
https://www.sumologic.com/blog/machine-learning-deep-learning/

65

	Euclid Labs
	Introduction
	Point clouds
	Machine learning and deep learning

	Machine learning techniques
	Feature Extraction
	2D Point clouds
	3D point clouds

	Classification
	Introduction to classification models
	Point clouds classification
	Loss function
	Training and Testing

	Objects detection

	Object detection model: Yolo
	History and brief explanation
	Classification and Regression
	Explanation of Yolo

	CNN and Max pooling: theoretical background
	Neural Network
	Fully connected neural network
	Convolutional Neural Network
	Training and loss function

	Yolo model
	Preprocessing: from point cloud to image
	Darknet-53
	Yolo

	Yolo loss

	Training and Validation
	Training
	Training images generation
	Dataset preprocessing
	Feature maps, predictions and loss
	Optimization

	Validation
	Non-maximum suppression

	Info about OS, Tensorflow and GPU
	Programming language
	Tensorflow and GPU

	Results: confidence, loss, accuracy
	Training process
	Confidence
	Loss
	Accuracy
	Computation time

	Conclusions

