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Abstract

With the proliferation of edge computing and the increasing demand for low
latency and high throughput applications, the cloud edge continuum has emerged
as a promising paradigm for distributed computing. In this continuum, com-
putational tasks are dynamically allocated across cloud data centers and edge
devices based on factors such as proximity to data sources, network conditions,
and application requirements. However, achieving seamless mobility of applic-
ation components, especially in the form of WebAssembly (Wasm) modules,
presents significant challenges due to differences in hardware architectures, net-
work protocols, and runtime environments between the cloud and edge.

This research explores the concept of live migration of WebAssembly modules
within the cloud-edge continuum to enable dynamic resource provisioning and
workload balancing. By leveraging containerization technologies and runtime
adaptation mechanisms, we propose a proof-of-concept for transparently mi-
grating Wasm modules between cloud data centers and edge nodes without
interrupting ongoing computations. The proof-of-concept employs a combin-
ation of pre-copy and post-copy migration techniques, coupled with runtime
code adaptation, to minimize downtime and ensure data consistency during the
migration process.

An evaluation is performed in terms of migration latency and resource util-
ization. The experimental results demonstrate the feasibility and effectiveness
of live migration of Wasm modules in the cloud-edge continuum, highlighting
its potential to enhance the scalability, reliability, and agility of edge computing
infrastructures. Furthermore, it’s discuss open research challenges and future
directions for optimizing the migration process, enhancing security and privacy
guarantees, and enabling dynamic orchestration of distributed applications in
heterogeneous cloud-edge environments.
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Chapter 1

Challenge

This chapter will present a description of the context in which this thesis has
been developed. Subsequently, the Cloud-Edge Continuum paradigm will be
presented, accompanied by an exposition of its advantages and characteristics.
Ultimately, it will be shown that migration presents a significant challenge for
this specific paradigm.

1.1 Cloud-Edge Continuum

1.1.1 What is the Cloud computing

Cloud computing is a model for enabling ubiquitous, convenient, on-demand net-
work access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction.[9] It
has born from the organizations in charge of running data centers. In fact,
they have been seeking ways opening up their resources to customers, and even-
tually, led to the concept by which a customer could upload tasks to a data
center and be charged on a per-resource basis. Cloud computing is character-
ized by an easily usable and accessible pool of virtualized resources [10]. Which
and how resources are used can be configured dynamically, providing the basis
for scalability: if more work needs to be done, a customer can simply acquire
more resources. The link to utility computing is formed by the fact that cloud
computing is generally based on a pay-per-use model in which guarantees are
offered by customized service-level agreements (SLAs). A section of resources
made available by the cloud computing model is posed in Figure 1.1

Referring to Figure 1.1, clouds are organized into four layers:

• Hardware: The lowest layer is formed by the means to manage the neces-
sary hardware: processors, routers, but also power and cooling systems. It
is generally implemented at data centers and contains the resources that
customers normally never get to see directly.

• Infrastructure: This is an important layer forming the backbone for most
cloud computing platforms. It deploys virtualization techniques to provide
customers an infrastructure consisting of virtual storage and computing

6
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Figure 1.1: Layers of the cloud computing. The left side shows the possible
services that a user can take advantage of, while the right one lists the possible
examples related to the specific layer [1].

resources. Indeed, nothing is what it seems: cloud computing evolves
around allocating and managing virtual storage devices and virtual serv-
ers.

• Platform: One could argue that the platform layer provides to a cloud
computing customer what an operating system provides to application
developers, namely the means to easily develop and deploy applications
that need to run in a cloud. In practice, an application developer is offered
a vendor-specific API, which includes calls to uploading and executing a
program in that vendor’s cloud. In a sense, this is comparable to the Unix
exec family of system calls, which take an executable file as a parameter
and pass it to the operating system to be executed. Furthermore, like
operating systems, the platform layer provides higher level abstractions
for storage and such. For example, the Amazon S3 storage system[11] is
offered to the application developer in the form of an API allowing (locally
created) files to be organized and stored in buckets. By storing a file in a
bucket, that file is automatically uploaded to the Amazon cloud.

• Application: Actual applications run in this layer and are offered to users
for further customization. Well-known examples include those found in
office suites (text processors, spreadsheet applications, presentation ap-
plications, and so on). It is important to realize that these applications
are again executed in the vendor’s cloud. As before, they can be compared
to the traditional suite of applications that are shipped when installing an
operating system.

Cloud-computing providers offer these layers to their customers through vari-
ous interfaces (including command-line tools, programming interfaces, and Web
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interfaces), leading to three different types of services:

• Infrastructure-as-a-Service (IaaS) covering the hardware and infrastruc-
ture layer.

• Platform-as-a-Service (PaaS) covering the platform layer.

• Software-as-a-Service (SaaS) in which their applications are covered

Cloud computing as a means for outsourcing local computing infrastructures
has become a serious option for many enterprises. From the perspective of a
system architecture, which deals with configuring (micro)services across some
infrastructure, one may argue that in the case of cloud computing, we are dealing
with a highly advanced client-server architecture. However, let it be noted that
the actual implementation of a server is generally completely hidden from the
client: it is often unclear where the server actually is, and even whether the
server is actually implemented in a fully distributed manner (which it often is).
To further illustrate this point, the notion of a Function-as-a-Service, or simply
Faas, allows a client to execute code without bothering even with starting a
server to handle the code.[12]

1.1.2 Properties of Cloud Computing

For a complete view, there will be quickly illustrate the principal advantages
and disadvantages about the cloud computing.

It begins by describing its advantages, which are:

• Cost Efficiency: Cloud services are such that one has to pay only for
used resources. No buying and maintaining of any hardware upfront is re-
quired, thereby supporting this pay-as-you-go mode of operation through
economies of scale that result in profit. This is especially true in the case
of small startups and small businesses.

• Scalability: Cloud platforms provide enormous scalability. It would allow
the firm to create or reduce computing resources as per demand, whether
it’s peak load or low volume.

• Flexibility and Accessibility: Cloud services allow access to data and ap-
plications from any geographical location with an Internet connection.
This kind of flexibility enables telecommuting, collaboration, and efficient
usage of resources.

• Automated Updates and Maintenance: Cloud providers manage system
updates, security patches, and maintenance, easing pressure on IT teams
to a great extent. It assures that applications always run on the newest
versions without the need for manual intervention.

• Disaster Recovery and Redundancy: Cloud platforms offer inherent re-
dundancy and disaster recovery alternatives. The data is duplicated at
different data hubs, so hardware failures and natural disasters will not
result in data loss.

Now there will be show its main disadvantages:



CHAPTER 1. CHALLENGE 9

• Security Concerns: Storing sensitive information in the cloud is related
to security and privacy concerns. Any organization must be very care-
ful while selecting a provider and, in turn implement tight measures of
security for their stored data.

• Downtime Risks: Even with very high availability, cloud services could
suffer from downtimes in part due to maintenance, outrages, or even cyber-
attacks. Businesses have to be prepared for such eventualities through
backup arrangements.

• Dependence on Internet Connectivity: Cloud computing requires access
to the internet. In case this connectivity is slow or gets disrupted, that
impacts productivity and access to other important applications.

• Vendor Lock-In: Migration to another cloud environment is cumbersome
and time-consuming. This could lead to relation bondage of an organiza-
tion with the ecosystem of some vendor, reducing its flexibility.

• Data Transfer Costs: Moving large amounts upstream and downstream
of the cloud can be additional expensive. Organizations should consider
such charges for data transfer while strategizing in the cloud.

1.1.3 The Edge Computing

In the advent of increasingly more network-connected devices and the emergence
of the Internet-of-Things (IoT) and Smart Cities many became aware of the fact
that we may need more than just cloud computing. As depicted in Figure 1.2,
the number data volume in IoT connection has growth of a factor of 82% from
the 2019.

As its name suggests, edge computing deals with the placement of services
“at the edge” of the network. This edge is often formed by the boundary
between enterprise networks and the actual Internet, for example, as provided
by an Internet Service Provider (ISP).

For example, many universities reside on a campus consisting of various
buildings, each having their own local network, in turn connected through a
campuswide network. As part of the campus, there may be multiple on-premise
services for storage, computing, security, lectures, and so on. On-premise means
that the local IT department is responsible for hosting those services on servers
directly hooked up to the campus network. Much of the traffic related to those
services will never leave the campus network, and the network together with
its servers and services form a typical edge infrastructure. Concurrently, such
servers could be connected to servers of other universities and possibly utilizing,
again, other servers. This means that, instead of comparing the universities,
there are also configurations where a number of universities share services via
a logically centralized infrastructure. This infrastructure may be located in the
cloud, or it may have been set up through regional infrastructure making use of
locally available data centres. Linked to this move to cloud infrastructures, we
often see the term fog computing mentioned.

These may include infrastructures that are critical to monitoring activities,
multi-layered video-streaming infrastructures, gaming infrastructures, and so
many more. This listing may differ in meaning from one zone to another but
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Figure 1.2: Graph representing the amount of data volume in Internet-of-
Things connections [2]

has one characteristic in common: its relation to the need for smart end devices
to be able to connect either by direct or indirect connection with a service
hosted in the cloud. This seeming necessity of an edge infrastructure can lead
one to start asking questions about why an edge infrastructure is important.
This may appear much simpler at face value—piping directly into the cloud
services through established and more reliable networking facilities. But several
arguments deserve an in-depth look at why an edge infrastructure is important.

Latency and bandwidth

What should have become clear from our examples is that edge infrastructures
are considered to be close to the end devices. Closeness can be measured in
terms of latency and often also bandwidth. Throughout the decades, band-
width, or actually lack of bandwidth, has always been used as an argument for
introducing solutions close to specific devices. However, if anything has become
clear all this time, is that available bandwidth continues to increase, now reach-
ing the point that one should seriously question how problematic it actually is,
and whether installing and maintaining edge infrastructures for having insuffi-
cient bandwidth is a good reason. Nevertheless, there are situations in which
closeness to end devices is actually needed to guarantee quality of service. The
canonical example is formed by video services: the closer the video sources are,
the better bandwidth guarantees can be given, reducing issues such as jitter.
More problematic is when the video source is far away to the end user. This may
easily happen when dealing with latency. It may take 100 ms to reach a cloud,
rendering many interactive applications quite useless. One such important ap-
plication is (semi-)autonomous driving. A car will need to continuously observe
its environment through a myriad of sensors and react accordingly. Having to
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Figure 1.3: Graphical representation of the three types of computation [3]. In
Tier 1,there are the devices that are at the “end” of cloud computing, referred to
as the edge devices. In Tier 2, there are the devices that act as a conduit for the
devices at the edge and the cloud servers. In Tier 3, there are the data-centers
that represent the cloud.

coordinate its movements through the cloud is not acceptable from a real-time
aspect alone. This example also illustrates that cars may need to detect each
other beyond the capabilities of their sensors, for example, when heading to-
ward a junction with clear visibility. In a real-time system, cars may be able
to provide their current position to a local edge infrastructure and reveal them-
selves to each other when approaching the junction. Overcoming latency is one
of the most compelling reasons for developing edge infrastructures.

Reliability

Many argue that cloud connectivity is simply not reliable enough for many ap-
plications, for which reason edge infrastructures should be deployed. To what
extent this is a valid argument remains to be seen. The fact is that for many
networked applications, connectivity is generally good and reliable, if not excel-
lent. Of course, there are situations in which relying on 24/7 reliability is not an
option. This may be the case for hospitals, factories, and other critical settings
in general. Yet, in those cases, measures have been traditionally already taken
and to what extent edge computing brings in anything new is not always clear.

Security and privacy

Finally, many argue that edge solutions enhance security and privacy. It all
depends One could argue that if a cloud solution is not secure, then there is no
reason why an edge solution would be. An implicit assumption that many people
make is that an edge infrastructure is owned by a specific organization and
operates within the (protected) network boundaries of that organization. In that
case, it often does indeed become simpler to protect data and operations, yet
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one should ask whether such protection is sufficient. A same reasoning holds for
privacy: if we cannot protect personal data in the cloud, then why would an edge
infrastructure suffice for privacy? However, there may be another reason related
to security and privacy why edge infrastructures are needed. In many cases,
organizations are simply not allowed, for whatever regulatory reasons, to place
data in the cloud or have data be processed by a cloud service. For example,
medical records may have to be kept on premise on certified servers and with
strict audit procedures in place. In this case, an organization will have to resort
to maintaining an edge infrastructure. Introducing additional layers between
end devices and cloud infrastructures opens a whole can of worms compared
to the relatively simple situation of just having to deal with cloud computing.
For the latter, one can argue that the cloud provider to a considerable extent
decides where and how a service is actually implemented. In practice, we will
be dealing with a data center in which the (micro)services that make up the
entire service are distributed across multiple machines. Matters become more
intricate in the case of edge computing. In this case, the client organization will
now have to make informed decisions on what to do where. Which services need
to be placed on premise on a local edge infrastructure, and which can be moved
to the cloud? To what extent does an edge infrastructure offer facilities for
virtual resources, akin to the facilities offered in cloud computing? Moreover,
where we may be able to assume that computational and storage resources are
in abundance when dealing with a cloud, this is not necessarily the case for an
edge infrastructure. In practice, the latter simply have less hardware resources
available, but often also offer less flexibility in terms of available platforms.

By and large, allocating resources in the case of edge computing appears to
be much more challenging in comparison to clouds. The authors Hong and Var-
ghese [13] claim that there are multiple limitations when it comes to resources,
higher degrees of hardware heterogeneity, and much more dynamic workloads,
which, when taken together, have led to a higher demand of orchestration.
Moreover, where from a client’s perspective the cloud appears to be hiding
many of its internal intricacies, this is necessarily no longer the case, making it
much more difficult to do the orchestration [14]. The process of orchestration
can be defined based on:

• Resource allocation: specific services require specific resources. The ques-
tion is then to guarantee the availability of the resources required to per-
form a service. Typically, resources amount to CPU, storage, memory,
and networking facilities.

• Service placement: regardless the availability of resources, it is important
to decide when and where to place a service. This is notably relevant for
mobile applications, for in that case finding the edge infrastructure that
is closest to that application may be crucial. A typical use case is that of
video conferencing, for which the encoding is often not done on the mobile
device, but at an edge infrastructure. In practice, one needs to decide at
which edges the service should be installed [15].

• Edge selection: related to service placement is deciding which edge infra-
structure should be used when the service needs to be offered. It may
seem logical to use the edge infrastructure closest to the end device, but
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all kinds of circumstances may ask for an alternative solution, for example
the connectivity of that edge to the cloud provider.

1.1.4 What is the Cloud-Edge Continuum

At the end, the Cloud-Edge Continuum is a paradigm of distributed system in
which all the computing models like the cloud, edge, for and mobile are seen as
an unique entity, like a continuum.

Figure 1.4: Taxonomy of the Cloud-Edge Continuum [4]

Some application areas have been idealized by the “The European Cloud,
Edge and IoT Continuum Initiative”[16] for the Cloud-Edge Continuum, some
of them include:

• Smart agriculture: precision farming, data autonomy of vehicle swarms,
CO2-neutral intelligent farming, smart robots.

• Renewable energy production centres: reliability and security of power
grids for smart cities.

• Smart homes: sensors and robots for remote monitoring, enablement of
domestic services.

• Factory robotics: reducing CO2 in production, predictive maintenance.

• Logistics and transport: object recognition, energy and process optim-
isation in movements, predictive maintenance of railway networks, smart
ports, last-mile delivery optimisation.

• Healthcare: remote real-time medical diagnostics with machine learning
and artificial intelligence-based analytics.
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1.1.5 How to achieve it

In order to achieve an implementation of the Cloud-Edge Continuum, it must
be possible to “move” from one system to another without manual intervention.
As yet, the situation does not allow this to happen, as the different computing
models are isolated from one another, creating actual silos. The Figure 1.5
shows graphically what is being described.

Figure 1.5: Sandboxes of models of computing [5]

As can be seen, the silos in the image have no way of communicating directly
with one another, thus forcing the need to operate each of them as individual
entities. Therefore, it is necessary to define a mechanism that makes it possible
to move from the cloud to the edge and vice versa, and at the same time to
find a way so that this move can take place “transparently”, i.e. without the
user noticing that there has been a move of the application while it is executing.
This latter approach is called migration and is presented in the next section.

1.2 Migration

1.2.1 What is migration

In order to explain what is the concept of migration, it’s necessary to describe
quickly how a distributed system is achieved. One of its important goals id
to hide where its processes and resources are physically located across multiple
computers, possibly separated by large distances. In other words, it tries to
make the distribution of processes and resources transparent, that is, invisible,
to end users and applications. Achieving distribution transparency is realized
through what is known as middleware[17], which is shown in Figure 1.6.

In essence, what applications get to see is the same interface everywhere,
whereas behind that interface, where and how processes and resources are and
how they are accessed is kept transparent. The concept of transparency can be
applied to several aspects of a distributed system, of which the most important
ones are listed in Table 1.1. It has been used term object to mean either a
process or a resource.

An important group of transparency types concerns the location of a pro-
cess or resource. Location transparency refers to the fact that users cannot tell
where an object is physically located in the system. Naming plays an important
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Figure 1.6: A middleware layer which offers the same interfaces to all the
connect machines

Access Hide differences in data
representation and how an object is
accessed

Location Hide where an object is located
Relocation Hide that an object may be moved

to another location while in use
Migration Hide that an object may move to

another location
Replication Hide that an object is replicated
Concurrency Hide that an object may be shared

by several independent users
Failure Hide the failure and recovery of an

object

Table 1.1: Different forms of transparency in a distributed system.

role in achieving location transparency. In particular, location transparency can
often be achieved by assigning only logical names to resources, that is, names
in which the location of a resource is not secretly encoded. An example of
a such a name is the uniform resource locator (URL) https://www.unipd.it/,
which gives no clue about the actual location of the Web server where this book
is offered. The URL also gives no clue whether files at that site have always
been at their current location or were recently moved there. For example, the
entire site may have been moved from one data center to another, yet users
should not notice. The latter is an example of relocation transparency, which
is becoming increasingly important in the context of cloud computing: the phe-
nomenon by which services are provided by huge collections of remote servers.
Where relocation transparency refers to being moved by the distributed system,
migration transparency is offered by a distributed system when it supports the
mobility of processes and resources initiated by users, without affecting ongoing
communication and operations. A typical example is communication between
mobile phones: regardless whether two people re actually moving, mobile phones
will allow them to continue their conversation. Other examples that come to
mind include online tracking and tracing of goods as they are being transported
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from one place to another, and teleconferencing (partly) using devices that are
equipped with mobile Internet

An actual implementation of the technique of migration is used by the hyper-
visor for creating virtual machines. Figure 1.7 shows a graphical representation
of ones.

Figure 1.7: Depiction of a Virtual Machine inside a host [6]

A virtual machine is a fully feature computer which is digitalized inside an-
other computer, i.e is a process in which is simulated all the hardware competent
to run an entire operating system [18] [19]. This kind of VM1, which are called
“guests”, are totally isolated from the machine that hosts them, which is called
“host”. For this reason, it’s possible to have multiple virtual machines that
are executing at the same time with different OS from each other. To support
this technology, there must by an hypervisor which is the bridge between the
guest and the host machine. It’s task is to provide all the necessary virtualized
resource to the guest machine, by requesting to host to provide them. Since the
entire OS is virtualized by the host, it’s possible to execute a migration from
one host to another. To do so, in the next section it will be described different
approaches for achieve a migration mechanism.

1.2.2 Type of migrations

Now there will be presented different typologies of migration techniques. There
will used the virtual machines as resources to migrate, but the mechanism can
be abstracted and use to any kind of resource, like for example an program
execution. The Figure 1.8 shows a scheme for the characterises of each method.
One approach is the so called clod migration (figure a of Figure 1.8), in which
the virtual machine is shut down and all its resources are copied to the new host
to be instantiated. Its the easiest way to implement an mechanism of migration,
although it generates a desecrate downtime, i.e. a time of disservice in which
the user can’t use the virtual machine.

A more interesting one is the hot migration, also called as the live migration.
This technique is transparent for the user, in other words latter one continues

1Abbreviation for Virtual Machine
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Figure 1.8: Depiction of possible methodologies for migrate a virtual machine
[7]

to utilize the VM without noticing anything. Behind the scenes, the hypervisor
generates a snapshot, a data representation of the state of the virtual machine
in a specific moment. Then, it sends it to the new host for be instantiated and
continues its execution. Even with this approach, there are different techniques
that can be adopted, which will be discussed in the next section. The problem
related to the live migration consists in how to handle the modification of the
VM during the migration. This issue is not present in the cold migration since
the user can’t use the VM, and so when the latter is shut down is state is
constant. Instead, in this case users are still able to interact with the virtual
machine, and so modify its state. There exist different types of hot migration
based on how they handle this issue. The following categorization is based on
the work of Alhammadi [20], which defines the differences in a detail way. There
are three different approaches for implementing the live migration:

• Post Copy: here the virtual machine is first quickly paused; then, a basic
processor state is copied, and then the virtual machine is rebooted at the
destination. Later, each memory page needed by running applications is
fetched from the source (figure b of Figure 1.8).

• Pre-copy: in this case, the memory state is migrated and next the CPU
state is migrated. There are two stages in this pre-copy method, which are
the Warm-up stage and the Stop-and-Copy stage. In the Warm-up stage,
the hypervisor just copies all the pages of main memory of the VM from
the source to destination and allows the VM to continuously keep running
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on the source without any kind of interruption. This dirties memory pages;
if any memory pages get modified during the memory copy, dirty pages
are created, having to be copied again. During the Stop-and-Copy phase,
the source VM will be paused, the remaining dirty pages will be copied to
the destination, then it will restart at the destination (figure c of Figure
1.8).

• Hybrid: The hybrid algorithm was a good option to recover the limitation
between the pre-copy algorithm, towards the post-copy algorithm, and
vice versa. The main goal was to reduce the amount of page fault as few
as possible, while ensuring the time of migration was kept constant.

1.2.3 How to achieve it in the Cloud-Edge Continuum

As outlined in the section 1.1, to create a unique layer composed by the cloud
and edge computing its necessary to be able to make recourse pooling even
at the edge of the network. For this reason, a migration mechanism is essen-
tial to obtain a first step in the implementation of the Cloud-Edge Continuum.
Due to the heterogeneity of devices which composed the edge, a possible solu-
tion would be to create a common layer which both cloud server and edge
device can support. The authors Ménétrey et al.[5] have proposed the techno-
logy WebAssembly as a common layer for the execution of application in the
cloud-edge computing. Moreover, they depicted how studying the migration an
execution of WebAssembly module outside of the web would be an interesting
research. In the next section, will be presenting this new kind of technology,
showing that its characteristics make it a valid candidate for being execution
platform of the Cloud-Edge Continuum.

1.3 WebAssembly

1.3.1 What is WebAssembly

WebAssembly is an Instruction Set Architecture for a stack-based virtual ma-
chine. [21] The first motivation behind WebAssembly is to exploit the hetero-
geneity of programming languages defining a common compilation target. In
fact, before WASM2, the only way of creating a web application was to use
JavaScript. The reason is that the rendering engine present in the browser
can interpret only JavaScript code, leveraging it as the only programming lan-
guage for the Web. So, instead of creating a new programming language that
eventually will be become like JavaScript, the authors idealize a technology com-
plementary to JavaScript. In fact, once the logic of the application is moved
inside WebAssembly, JavaScript would be used only to fetch and load the mod-
ule in order to be executed. This type of interaction is called “glue called”, since
JavaScript is the glue that wire the virtual machine inside the render engine and
the WebAssembly module.

Since WebAssembly is a low-level target, one of its peculiarity is the linear
memory, which is a contiguous untyped slice of bytes similar to an array [22].
Inside the linear memory there are all the necessary information to execute a
WASM module. A simple representation is depicted in Figure 1.9.

2Abbreviation for WebAssembly
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Figure 1.9: Simple graphical representation of the linear memory of a WASM
module [8]

This feature is so important in WebAssembly since it’s the only way the
external JavaScript code and WebAssembly can communicate together. An
example of usage is represent in Listing 1.1.

1 WebAssembly . i n s t an t i a t eS t r eaming ( f e t ch (”memory .wasm”) , {
2 j s : { mem: memory } ,
3 } ) . then ( ( r e s u l t s ) => {
4 const summands = new DataView (memory . bu f f e r ) ;
5 f o r ( l e t i = 0 ; i < 10 ; i++) {
6 summands . setUint32 ( i ∗ 4 , i , t rue ) ;
7 }
8 const sum = r e s u l t s .
9 i n s t ance .
10 export s .
11 accumulate (0 , 1 0 ) ;
12 conso l e . l og (sum ) ;
13 } ) ;

Listing 1.1: Snippet of JavaScript code for accessing the Linear Memory of a
WASM module

The first three lines are the glue code for loading the WebAssembly module
and then executed. In line 2, there is a JSON object that represents the names
with JavaScript will access the WebAssembly’s resources. So in this case, the
variable “memory” of JavaScript will be associated with the variable “mem” of
WebAssembly, which it’s the linear memory. After the “then” keyword, there is
the resolution of the promise of loading the module. The variable “summands”
represents the actual content of the linear memory, which at the begging is
empty. Line 5 and 6 fill the memory with the function “setUnit32” which sets
an integer value (represented in 32 bits) in the “i” position. The last parameter
if for explicit use the little endian format. Lastly, at line 9 there is a call to a
function which is not defined in the block of code in Listing 1.1. In fact, that
function “accumulate” is defined inside WebAssembly and it’s called outside of
it. That function sums all the value that is stored in a specific range of indexes
of the linear memory.

Now that has been shown the functionally of WebAssembly, it will be discuss
its two main advantages.
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1.3.2 Characteristics of WebAssembly

Portability

The concepts of portability is concept is antithetical to the notion of polyglot
architectures and applications, which afford developers the flexibility to utilise
the language of their choosing. In fact, it’s possible to target WebAssembly
from different programming languages like Rust, Go, C and so on. This results
in a reduction in the amount of work required, an increase in the reuse of code,
an improvement in security, and a significant enhancement of the developer ex-
perience. Given that the concept of WASM was founded upon the principles
of flexibility and polyglot capabilities, it is evident that portability is inextric-
ably linked to the expectations inherent to the WASM ethos. The portability
that was a significant selling point of containers in the context of cloud comput-
ing. Although, it has bee demonstrated that WebAssembly has reaches better
performance respect to container technologies [23] [24] [25].

Security

Another characteristic of WebAssembly is the security. WebAssembly code runs
closed into a sandbox managed by the vm of the browser’s engine or the runtime,
in any case for sure not by the operating system. This gives it no visibility of the
host computer, or ways to interact directly with it. Access to system resources,
be they files, hardware or internet connections, can only happen by explicating
which resources can assess that module. This philosophy is called Principle
of least privilege [26], which is used in the UNIX based operating systems.
Moreover, compared to normal compiled programs, WebAssembly applications
have very restricted access to memory, and to themselves too. WebAssembly
code cannot directly access functions or variables that are not yet called, jump
to arbitrary addresses or execute data in memory as bytecode instructions.
Inside browsers, a WASM module only gets the linear memory which has been
described previously. WebAssembly’s module can directly read and write any
location in that area, or request an increase in its size, but that’s all. The linear
memory is also separated from the areas that contain its actual code, execution
stack, and of course the virtual machine that runs WebAssembly. For browsers,
all these data structures are ordinary JavaScript objects, insulated from all the
others using standard procedures.

1.3.3 Why using it outside of web

Due to its versatility, many people have seen that it can be an advantage to use
WebAssembly outside of the browser, particularly in the context of Serverless
computing. The Serverless computing, called also as Funtion-as-a-Service, is an
execution model of the cloud computing, and its main benefits realise on not
worrying about the configuration and management of the resources to execute
an application [27]. It has been seen how the main technology used (which is
the Docker container) for dispose the execution of multiple applications, can
have bad performers in constrained environment like IoT device [28]. For this
reason, it has been proposed WebAssembly as new layer of execution for FaaS3,

3Abbrevation for Function-as-a-Service
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obtaining better cold-starts and resource usage [29] [30]. In order to achieve this
technology, it’s necessary to dispose of a runtime which simulates a VM browser
engine. Along with the runtime, the creator of WebAssembly has defined a
standard for the system call that can be used inside a WASM module. This
set is called WASI, which stands for WebAssembly System Interface[31]. Its
nature is similar to POSIX, which is used in all the UNIX based operating
systems. This kind of specifications allows to use any WebAssembly runtime
which supports WASI, no matter what is the real implementation of the system
call.

The context in which this elaborate takes place has been presented. The
initial stage of the presentation delineated the concept of cloud computing,
subsequently introducing the supplementary notion of edge computing. Sub-
sequently, the Cloud-Edge Continuum was introduced, accompanied by an ex-
position of its defining characteristics and applications. The necessity of the
migration property for the attainment of this paradigm has been elucidated,
as well as the means of achieving it. In conclusion, WebAssembly has been
proposed as a potential candidate for use as a common layer through which to
migrate the execution of applications within the Cloud-Edge Continuum.



Chapter 2

Vision

The following chapter will present the project’s vision and the desired outcome.
The chapter will present an overview of the state-of-the-art technologies related
to WebAssembly runtimes, and will finally set out the targets for this elaborate.

2.1 Ideal architecture

The vision of this project is a focus on a doctoral research topic, which is a wider
and more complex work. For this reason, an overview of that theme can better
frame the nature of this work. In the doctorate investigation, the aim is to create
functional runtime for the cloud-edge continuum in which the computation, and
its data, move forwardly from the cloud to the edge of the network, and vice
versa. The motivations for why a computation must be moved can be various,
an example would be that the execution must be as near as possible to the
source of the request. The main characteristic of this runtime would be that
this “movement” of the computation can be predicted by the devices that from
the Cloud-Edge Continuum. As shown in Section 1.2.1, and more precisely
on Table 1.1, to obtain a system like this one there must be some degree of
transparency. This property is composed of different aspects, from how the user
accesses the data to how hides the failure of executions. One of these is the
migration, the ability to “move” the resources or process without showing to
the user. So the vision for this work is to implement a mechanism to migrate
an executive from a host to another without stopping it.

To achieve this aim, it will be describe the possible architecture for this
system. The final result would be a system consisting of several members,
defined “nodes”. Since the context is the cloud-edge continuum, these nodes
can be a mainframe or an Internet-of-Things webcam for surveillance, as an
example. So, the fact to take in mind is that these nodes are heterogeneous and
support portability, i.e. they can change places. As discussed in Section 1.3,
WebAssembly is an optimal candidate to be used as common layer of execution
for these devices. Therefore, these nodes must be able both to instantiate and
run WebAssembly modules. Thus, a WebAssembly runtime must be installed
on all these devices.

Next, there is the requirement to implement a live migration mechanism for
WASM modules. In Section 1.2.2, different types of live migration approaches
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have been presented. All of them require a generation of a “snapshots” that
represent the state of an execution in a specific moment. Also, there must
be a mechanism to restore an execution (of a WASM module) starting from a
snapshot. Thereby, the runtime must be able to do both the tasks. In addition,
the node must be able to send a snapshot to other nodes, and be able to receive
snapshot copies from other nodes.

Subsequently, a solution for receiving and sending snapshots inside the nodes
of the system is needed. It cannot be the runtime to do since it has already to
manage the lifetime of the WASM module, so there must be a web server (which
is even a client) install on the nodes. It will be the bridge of communication
between the runtime and the outside world of the node. Since there is the
presence of portable devices, resources used by a WASM module can be lost
during the phase of migration. It would be necessary to consider a mechanism
of re-connection for the WebAssembly module after being migrated to another
host. In addition, a node cannot know where precisely sends a snapshot because
it doesn’t have a uniform vision of all the system. Hence, there must be a handle
to coordinate the interchanges of nodes inside the system.

Considering all the requirements, the image 2.1 shows a possible a repres-
entation of the system.

Figure 2.1: Graphical representation of the ideal system

The components for the realization of the system are the following:

• Runtime: formally speaking, it is not a runtime but an execution envir-
onment. This component, in addition to the classic tasks of instantiation
and execution of WASM modules, must be able to generate snapshots and
resume execution from them. Since there are nodes within the system
with limited resources, i.e. edge devices, the component must have a size
optimized for such scenarios;

• Proxy : the proxy component handles incoming and outgoing internet con-
nections from the node. Think of a web server API, which exposes routes
to get a snapshot of a WASM module or request a run restore. This
component will interact directly with the “runtime” to meet requests. In
addition, being the mobile end user you need to use a connection recovery
mechanism between the user and the new host;
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Figure 2.2: Graphic representation of process migration

• Orchestrator : this component has the task of initializing the migration
process within the system. Based on external events, such as the physical
move of the client, the orchestrator will find the last snapshot of the run-
ning module requested by the client, determine the new node to move the
execution to, and then request the re-installation of the module.

To better show the interactions and roles of the individual components, we
describe the migration process idealized for this system. The Image 2.2 shows
this process graphically.

The migration process is divided into the following steps:

a) At the beginning, there are two (or more) different nodes in which there
are installed, the runtime and the proxy for execute WASM module. In
this example, Node #1 is executing the actual WASM module;

b) At some point, the orchestrator decides to start the migration. To do so, it
requests the hosting node, in this case Node #1, to generate the snapshot
of the actual execution;

c) Node #1 sends the snapshot to the orchestrator, the latter one will decide
which will be the new hosting node;

d) One the orchestrator finds a valid candidate, it request for this one to
restore the execution from the snapshot. In this example, the candidate
is Node #2;

e) At the end, Node #2 starts executing from the given snapshot and Node
#1 stops its execution.

2.2 State of the art

Some solutions have been proposed for the migration of WebAssembly mod-
ules, but no one satisfied the vision of the project. The researches [32] [33]
showed how to leverage trusted execution environment, also called TEE, to run
WebAssembly modules and build a migration mechanism on them imitating the
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resources which the module can assess. These solutions require specific hard-
ware and software to use this technology, which in the context of heterogeneity
it’s hard to satisfy. Moving inside the web, in the work [34] have idealized a
solution to migrate WebAssembly modules present on the web through a sys-
tem of asynchronous messages supported by JavaScript worker threads. A novel
runtime for WebAssembly called Lunatic[35] integrates the primitive for com-
municating with other instance via messages, like the actor model in the Erlang
VM[36]. However, there is no support for migrating the execution of a WASM
module. Finally, there is a migration tool called CRIU [37] that allows you
to migrate UNIX processes using the checkpoint/restore technique. The latter
requires that both machines on which the checkpoint/restart is run have the
same architecture.

2.3 Objectives

Will be now presented the objective set for this work. The actual state of the
art doesn’t propose any kind of solution for obtaining an WASM runtime with
support to migrate the computation modules. However, the principal steps to
obtain a solution like that are the following:

1. access and handle the state of the module during runtime;

2. replicate it outside of the execution;

3. restore the execution of the same module but starting from a saved state:

These steps represent the distance obtain an initial solution for the system
presented in 2.1. So, the main objective of this work is to complete the steps and
obtain a proof of concept for a WebAssembly runtime that can migrate module’s
execution. Then, as secondary goals, it has set to investigate and integrate a
solution for handle re-connections inside the system. More specifically, defining
a solution for:

1. support client re-connection;

2. support server re-connection, that is, open connections from the WASM
module.

The system’s vision is primarily constituted by three key components: a
novel WebAssembly runtime, a web server, and an orchestrator. Subsequently,
it has been demonstrated that no solution has been proposed for the implement-
ation of these components in order to obtain the desired system. In light of the
aforementioned considerations, a series of objectives have been established with
the aim of substantiating the viability of this system.
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Solution

This chapter presents a feasible solution, accompanied by a detailed description.
The following section presents a number of key features of the implementation,
together with their respective meanings. Finally, in order to ascertain the qual-
ity of the work, a series of experiments have been designed and their outcomes
presented and discussed.

3.1 General idea

3.1.1 First attempt

During the phase of idealization for a proof of concept, an initial attempt was to
reinitialize the execution of the WASM module and restoring its linear memory.
This idea came from [34] in which the authors do the same approach but inside
the web browser. The problem of this solution consisted in the lack of inform-
ation related to which operation was executed before the migration. Indeed,
even if the linear memory of the module was restored, the execution was not
maintained during the migration. This caused an initialization from zero, i.e.
without any record of the previous execution.

Since one of the objects of this work was to obtain a migration mechanism
without the need of initialization, this solution was rejected. Despite this con-
clusion, the hours employed in this first attempt allowed a better knowledge of
how WebAssembly module is executed.

3.1.2 Proposed solution

The solution presented is based on the concept of checkpoint/restore. This
technique is already used in containers through the use of CRIU [37], but also
in real-time systems where you are not sure that the execution always arrives
at the end. The checkpoint consists of an intermediate saving of the execution
state, and this saving is generated with a certain frequency. While the restore
consists in recovering the execution from a state within the checkpoint, thus
avoiding the need to have to re-enter from scratch. In order for this technique
to be used, idiomatic programming must be introduced. It means a set of
rules that, if respected allow the program to have certain properties, in this
case it means the possibility of migrating the execution. What is required by
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the WASM module is the use of the two checkpoint/restore functions to save
the execution state. At this point, the problem arises that WebAssembly does
not have any instructions either to save the state or to determine the state of
execution. To solve these problems we can consider that:

• you can import functions external to the WebAssembly module and use
them within the module. Therefore, by modifying the execution envir-
onment to implement the checkpoint/restore functionality, it would be
enough to import the signatures of the functions;

• WebAssembly uses a contiguous memory called linear memory, in which
all the information and data of the module are saved. If you represent
the state of execution in the form of a vector, and of this you know the
location (in memory), you could access that address and read the content,
or even change it.

Therefore, the required idiomatic programming consists in:

1. represent the logic of the program in the form of a vector in which each
position corresponds to a variable;

2. import the two signatures of the checkpoint/restore functions, using once
the restore (since it only takes once to recover the previous state) and the
checkpoint as many times as the state, that is the vector, is changed.

You thus get a WASMmodule that can be run without the need to start from
scratch. When editing the execution environment, you should also consider the
possible migration request and how the migration affects the snapshot creation.
Consider the time t at which the checkpoint and s at which the migration request
occurs, there are three possible cases:

• The request is made before the checkpoint, ie s < t, therefore the status
is retrieved at time t− 1 and re-match the instructions before s;

• The request takes place during the checkpoint, that is t = s, in this case if
the migration happened it would create an inconsistent state. Therefore,
the migration phase is suspended until the checkpoint is completed;

• The request occurs after the checkpoint, ie s > t, and then you can use
the time t state.

3.2 Proposed Architecture

3.2.1 Runtime

The Wasmtime library [38] was used to implement the runtime execution en-
vironment. The latter is a standalone implementation of WebAssembly written
in Rust, designed to be embedded in applications and environments that re-
quire WebAssembly code execution. It is primarily developed by the Bytecode
Alliance team, which includes members such as Mozilla, Fastly, Red Hat and
others. Wasmtime provides an API that allows developers to easily integrate
WebAssembly code execution into their applications. It can be used in a wide
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range of scenarios, including servers, embedded devices, programming language
runtime environments, and more. One of the key features of Wasmtime is its
flexibility and modularity. It is designed to be highly configurable and can be
extended with additional functionality through the use of external plugins and
libraries. As Wasmtime implements the WebAssembly specification, a simple
configuration to run a WASM module requires the use of several modules and
data structures. Therefore, to simplify the process of creating and running a
WASM module, it was decided to create two data structures: the Environment
and the Snapshot. The first represents the life cycle of a WASM module, start-
ing from its compilation until its termination, acting as an abstraction for the
underlying components. The last represents the state of execution of a WASM
module at a certain moment. An Environment is associated with a Snapshot,
which is overwritten whenever the checkpoint function is invoked in the WASM
module. Next, we defined the implementation of the checkpoint and restore
functions, which will then be linked to the WASM module at compile time. To
achieve this, one of the elements of Wasmtime technology was used, namely the
Linker. As you can see from the name, the Linker has the task of connect-
ing implementations of external functions to the WASM module to the same
module.

The two implementations of the functions are now shown:

1 l i n k e r . func wrap (
2 ”migrat ion ” ,
3 ” checkpo int ” ,
4 |mut c a l l e r : Ca l l e r <’ , Arc<Mutex<Snapshot>>>,
5 ptr : i32 , l en : i 32 | {
6 //Access to l i n e a r memory o f module
7 l e t memory = match c a l l e r . g e t expo r t (”memory”) {
8 Some( Extern : : Memory(mem) ) => mem,
9 => anyhow : :
10 b a i l ! ( ” f a i l e d to f i nd host memory”) ,
11 } ;
12
13 // Block the mutex in order to prevent migrat ion
14 // during the read ing o f l i n e a r memory
15 l e t mut s t a t e = c a l l e r . data ( ) . l o ck ( ) . unwrap ( ) ;
16 // Def ine an empty s l i c e o f bytes
17 l e t mut data = vec ! [ 0 u8 ;
18 l en as u32 as u s i z e ∗
19 s i z e o f : :< i32 > ( ) ] ;
20 // Read the content o f the l i n e a r memory at
21 // po in t e r ptr and saved the content i n s i d e data
22 memory . read(& c a l l e r ,
23 ptr as u32 as us i ze ,
24 &mut data ) ? ;
25
26 // Save the content i n s i d e
27 // the s t a t e o f the runtime
28 s t a t e . s e c t i o n = data ;
29 // Set the con t r o l v a r i ab l e to r e s t o r e
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30 // a s t a t e in case o f migrat ion
31 s t a t e . r e s t o r e = true ;
32
33 Ok( ( ) )
34 } ,
35 ) ? ;

Listing 3.1: Implementation of checkpoint function

The function 3.2.1 represents the implementation of the checkpoint func-
tion. The logic behind this code is to access a specific portion of memory,
in which there is the vector containing the state of the WASM module, copy
it’s content and saved inside a snapshot. What’s challenging to understand
is in line 4, the caller variable. It represents the module that has called the
function, but to that module is attached a type Arc〈Mutex〈Snapshot〉〉. The
Arc〈Mutex〈〉〉constructor is used in Rust for enable safe concurrency for shared
state variables. The Arc means an atomically reference counted type, basically
it’s possible to use the type inside the Arc in different context, like for example
threads. The Mutex is the classical mutex, i.e. a section that only one thread
at time can access and interact with it. At the end, the Snapshot is the data
structure described before. Using this pattern, when the function checkpoint
it’s called from the module then none can access to the content of the Snapshot
until it had done. This satisfies the property to not create inconsistent snapshot
during migration.

1 l i n k e r . func wrap (
2 ”migrat ion ” ,
3 ” r e s t o r e ” ,
4 |mut c a l l e r : Ca l l e r <’ , Arc<Mutex<Snapshot>>>,
5 ptr : i32 , l e n : i 32 | {
6 //Access to l i n e a r memory o f module
7 l e t memory = match c a l l e r . g e t expo r t (”memory”) {
8 Some( Extern : : Memory(mem) ) => mem,
9 => anyhow : :
10 b a i l ! ( ” f a i l e d to f i nd host memory”) ,
11 } ;
12
13 // Access ing to data o f snapshot f o r r e s t o r i n g
14 // the execut ion
15 l e t s t a t e = c a l l e r . data ( ) . l o ck ( ) . unwrap ( ) ;
16 l e t r e s t o r e = s t a t e . r e s t o r e . c l one ( ) ;
17 l e t s e c t i o n = s t a t e . s e c t i o n . c l one ( ) ;
18 // Exi t ing the shared s t a t e content
19 drop ( s t a t e ) ;
20
21 // Check i f the re i s the need to r e s t o r e
22 i f r e s t o r e {
23 // Write the p r ev i ou r s content
24 // in the l i n e a r memory
25 memory . wr i t e ( c a l l e r ,
26 ptr as u32 as us i ze ,
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27 &s e c t i o n ) ? ;
28 p r i n t l n ! ( ”RESTORED! ” ) ;
29 }
30
31 Ok( ( ) )
32 } ,
33 ) ? ;

Listing 3.2: Implementation of restore function

The same reasons is applied to the function 3.2.1. The only differences is that
here there is a check for restoring or not, since when a new module is instantiate
it doesn’t need to be restore since it’s never been executed. As opposite of the
checkpoint, the content of the snapshot is written where is stored the vector in
the linear memory, so the state has been recovered.

3.2.2 Idiomatic Programming

Transitioning to the utilization of checkpoint/restore functions, a potential ap-
plication is described through a subsequent useful example. An example of
idiomatic programming is provided as described in the section. To illustrate,
let’s consider the implementation of a function, fib, which, given a number n,
returns the Fibonacci sequence value at position n. As WebAssembly serves as
a compilation target, any language supporting such compilation directives can
be utilized. In this example, Rust is employed as the source code. Below is the
implementation resolving the problem:

#[ l i n k ( wasm import module = ”migrat ion ” ) ]
extern ”C” {

fn checkpoint ( ptr : ∗mut i32 , l en : u s i z e ) ;
fn r e s t o r e ( ptr : ∗mut i32 , l en : u s i z e ) ;

}

#[no mangle ]
pub fn f i b (n : i 32 ) −> i 32 {

l e t mut s t a t e = vec ! [ 0 , 1 , 1 ] ;
unsa fe { r e s t o r e ( s t a t e . as mut ptr ( ) , s t a t e . l en ( ) ) } ;

i f n == 0 {
0

} e l s e i f n == 1 {
1

} e l s e {
whi le s t a t e [ 2 ] < n {

l e t r e s u l t = s t a t e [ 0 ] + s t a t e [ 1 ] ;
s t a t e [ 0 ] = s t a t e [ 1 ] ;
s t a t e [ 1 ] = r e s u l t ;
s t a t e [ 2 ] += 1 ;
unsa fe {

l e t mut new state = s t a t e . c l one ( ) ;
checkpo int ( new state . as mut ptr ( ) ,
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new state . l en ( ) )
} ;

}
s t a t e [ 1 ]

}
}

The first step involves importing the signatures of the two functions, check-
point and restore. Note how the “no mangle” attribute instructs the compiler
not to modify the original names of the functions; otherwise, there would be
a function call issue. Subsequently, the implementation of the fib function is
provided. Instead of using local variables, a vector containing the Fibonacci
function value at position minus one, at position minus two, and the current
index is utilized. This vector represents the execution state of the module. Fol-
lowing this, the restore function is called, which initializes the function to a
previously saved state in case of migration. If it’s a zero instantiation, default
values are used. The function takes the pointer to the vector and its length
as arguments so that the execution environment can read the contents of the
vector within the linear memory. At each iteration, the vector is modified with
new values necessary to compute the result. Every modification of the vector
represents a change of state within the application; hence it’s advisable to save
this state. The checkpoint function, using the same arguments as the restore
function, is employed for this purpose. The computation result is returned once
the value of n is reached.

3.2.3 Proxy

Now will be describe the last component needed for having a functional mi-
gration mechanism, that is the proxy. As anticipated in Section 3.2, it is a
wrapper for the underlying modified runtime and it’s duty is to handle HTTP
communication for serving snapshot of the actual WASM module and restoring
an execution starting from a snapshot. To achieve this, it has used the library
Axum [39] which simplifies the creation of HTTP web server. Since concurrent
access to the same resource would generate data races, it has been decide to
wrap the state of the application around an Arc〈Mutex〈〉〉construct. In this
way, only one request at the time would be served.

There have been implemented two handlers, one for the snapshot and one for
the resume. These handlers are functions that will be called when a specific rout
would be request buy some client. Starting with the former, its implementation
is presented in Listing 3.2.3.

1 /// Handler f o r g e t t i n g the Snapshot
2 /// o f the WASM module , i f the r e i s one
3 pub async fn snapshot ( State ( s t a t e ) : State<AppState>)
4 −> Result<Json<Snapshot>, StatusCode> {
5 l e t data = s t a t e .
6 data .
7 l ock ( ) .
8 expect (”mutex was poisoned ” ) ;
9 match data . c l one ( ) {
10 Some( env ) => Ok( Json ( env . snapshot ( ) ) ) ,
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11 None => {
12 ep r i n t l n ! ( ” Trying to get snapshot \\
13 o f non−e x i s t i n g por c e s s ” ) ;
14 Err ( StatusCode : :NOTFOUND)
15 }
16 }
17 }

Listing 3.3: Implementation of the handler for serving snapshot

In the first line there is the access to the mutex, and to do so is request the
acquisition of the lock. Then, the code is pretty straight since there is a check if
a module is actually executed. If so, it will return its snapshot otherwise there
will be an error since there is no module in execution. The snapshot is in a
JSON format, so it is much easier to work around.

Moving to the second handler, the Listing 3.2.3 represents its implementa-
tion.

1 /// Handler f o r s t a r t i n g the execut ion
2 /// o f a g iven Snapshot in form o f j son ob j e c t
3 pub async fn s t a r t ( State ( s t a t e ) : State<AppState>,
4 Json ( payload ) : ex t r a c t : : Json<Snapshot>) {
5 l e t env = Environment : : f rom snapshot ( payload ,
6 St r ing : : from (” f i b ” ) ) . unwrap ( ) ;
7 l e t mut data = s t a t e .
8 data .
9 l ock ( ) .
10 expect (”mutex was poisoned ” ) ;
11 ∗ data = Some( env . c l one ( ) ) ;
12 drop ( data ) ;
13 l e t = env . execute ( ) ;
14 }

Listing 3.4: Implementation of the handler for resuming an execution from
snapshot

In this case, a snapshot is given as argument and it’s request to resume
an execution starting from it. In the first line it’s invoke the function that
create a new environment, in which it would be copied the content of the array
in the linear memory. Then a reference of the new environment is saved in
the application state, so from now on it’s known that there is an execution
of a module. Lastly, the new module would execute starting from the restore
function and continuing its execution.

3.3 Experiments

To make an object evaluation of this project, it has been idealized some experi-
ments. As anticipated in Section 2.2, the actual state of the art no WebAssembly
runtime that can migrate the module’s execution. Therefore, it is not possible
to objectively compare the solution with others, since they do not exist. So
this there is no possibility to compare with other solutions, what have been
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done. Perhaps, since the project has been created building upon an exist-
ing WebAssembly runtime, a way could be to compare the new WebAssembly
runtime with a “naive” version of it, which represents the state of the art. At
this point, finding the differences of the “naive” and “new” runtime in term
of time and memory can determine if the implemented mechanism worsens the
actual runtime performance. In the end, to give an objective evaluation to this
solution, the following three questions have been idealized:

1. Does the idiomatic programming required to create migratable WASM
module take up more memory than a native solution, or does it have
overhead? If so how much?

2. How do the checkpoint/restore functions affect the instantiation and exe-
cution of a WASM module?

3. How long does it take to checkpoint and restore? Is this cost fixed or
variable?

The expectations about the resolution of this experiment are that there will
be an overhead introduce by importing the functions of the checkpoint and
restore, but it will be small. About the cost of calling the functions, during
instantiation will be absent since at least there will be one call to restore the
array of values (the state of execution), while during execution, the checkpoint
will influence the overall time since there will be multiple calls to save the state.
Finally, to show that the cost of the functions is fixed, it has to show for all
the possible programs that can be implemented with the idiomatic solution.
Moreover, more information is stored in the array in the linear memory more
time will be taken to restore the state. So at the end the assumption is that the
cost of the functions changes based of the implemented application.

Now follows the configuration and analysis of the results of these experi-
ments.

3.4 Results and evaluations

These experiments represented the answer introduced in Section 3.3. Since there
are request metrics about the life cycle of a WASM module (like instantion and
execution), there must be provided a WASM module. Out of convenience it
has been using the example module described in Section 3.2.2, which is the
implementation of the Fibonacci algorithm. The approach was to set a fixed
argument that would generate a huge output, taking more time respect a lower
one, with the goal to have time measurements in the order of milliseconds. The
ideal technique would be to idealize a suite of specific modules for the proposed
solution, since inferring from one only can be too strict, but it was not the core
of this project so it has been put aside for a future work.

Lastly, the experiments have been run on a server with an Intel i5-6400
quad-core, four threads at 2.7 GHz; 16 GB of RAM and a Ubuntu 22.04 LTS
(Jammy Jellyfish).
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Native Idiomatic
1442133 1504129
Overhead 4.12%

Table 3.1: Comparison the size of the WASM module in native code and in
idiomatic code.

3.4.1 First experiment

To determine the presence of a possible overhead, it’s necessary to find the
effective measurements, i.e. what to measure. In this case, the key is the
amount of memory used to store the WebAssembly module, with and without
using the idiomatic programming style. So, using the example module explained
in Section 3.2.2, there are created two different files respectively called “fib-
before.wasm” and “fib-after.wasm”. The former will be written using the classic
style, while the latter using the idiomatic style proposed in section 3.1. At the
end, the command “stat” displays some file’s status, even the actual bits used
by a file. In Figure 3.1 is depicted the result of that command applied to the
two files.

(a) Status of “fib-before” module (b) Status of “fib-after” module

Figure 3.1: Status of the two version of Fibonacci’s module

The interested filed is the “size”, which for the file “fib-before.wasm” is about
1442133 bits and for “fib-after.wasm” is about 1504129. At first glance, there is
some overhead that has been introduced using the idiomatic style. To quantify
it, it must be used the following formula overhad = difference÷final value×
100 which difference is the difference between the second file and the first file.
In Table 3.1 are reported the data and the final overhead rate.

At the end, the overhead introduced by the idiomatic style is about the 4
percent which does not represent as huge problem.

3.4.2 Second experiment

As anticipated in Section 3.4, it will be considered two runtimes: the first one,
called “Old Env” is the naive implementation without any extension/addiction,
while the second one, called “New Env”, is the new type of runtime in which
it’s implemented the migration mechanism. For the two phase, the instantiation
and execution, it has been measured the time taken to complete those. To
achieve this, it has been used the Instant structure of the standard library of
Rust, which represents a monotonically non decreasing clock, for wrapping the
instantiation and the execution section of the project. Finally, this procedure
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has been repeated for thousand times. The Figures 3.2 and 3.3 depicts the
obtain results.

Figure 3.2: Instantiation time of WASM module in two different environment

Figure 3.3: Restore time of WASM module in two different environment

The initial thing to observe is in the instantiation time, in Figure 3.2. The
lines basically overlap each other meaning that the instantiation time hasn’t
been affected by the modification applied to obtain the new runtime. This is
reasonable since the checkpoint and restore phases take place at runtime level,
meanwhile the instantiation occurs before them. Therefore, the instantiation
remains unchanged. The same thing cannot be said for the execution time time
showed in Figure 3.3. There is a huge gap in the graph of the two runtime
measurement, in order of two hundred millisecond. The main reason for this
impact as been anticipated before, in the new runtime the checkpoint and restore
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function take place at runtime, that is during the execution, thereby increasing
the overall execution’s time. At the end, as expected, only the execution phase
is conditioned by the checkpoint/restore functions in the new runtime.

3.4.3 Third Experiment

Lastly, it will determine how the cost of checkpoint and restore phase changed
during time. As in Section 3.4.2, the idea is the same but in this case it has
been isolated the time taken for do the checkpoint and restore. A graphical
visualization is presented in Figure 3.4 and 3.5. It is important to outline that a
restore function is called at least one time in the lifetime of the WASM module,
while the checkpoint function is called at least once. So, in the checkpoint graph,
the single repetition represents the mean of all checkpoint’s times that had been
take place during the execution.

Figure 3.4: Checkpoint time of WASM module

What can be said is that in the restore graph, the time taken is basically
constant expect for some outliers. Those values derives by the swapping of
the memory during the execution, causing an delay in the copy of the content
inside the linear memory. Meanwhile, in the checkpoint is present a sort of
pattern which is repeated. This alternation creates two main groups and to
better see this division, it has been applied the k-means algorithm. Basically,
it’s a algorithm that creates cluster of data which share common property. Also,
it finds the values which represent the center of the cluster, i.e the value that
has more similarities with all the members of the cluster. A detail and well
explained description is presented by Steinley [40]. The algorithm has been run
on the dataset of the times, asking to find three different cluster. It would be
sufficient to use two, but to better visitation it has decided to use three since
some outliers where affecting the subdivision. In the Figure 3.6, there are shown
the two main of values.

The red dots represent one type of cluster, which is centred has value 0.977,
while the blue ones represent the second cluster with center that has value 3.839.
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Figure 3.5: Restore time of WASM module

Figure 3.6: Result graph of k-means algorithm applied to checkpoint times

The green ones are the outliers which are not relevant. The nature of this data
can be related by the locking phase inside the checkpoint function. In fact,
every time there is mutex which it’s created and then there is an acquired lock
by the thread executing the checkpoint function. To demonstrate this, it has
been measured the time implied to acquiring the lock in the mutex during the
execution. However, the resulting data had a order too small to be compered, so
instead it has been measure the checkpoint’s time without the implementation
of the lock. The Figure 3.7 shows the obtain results.

The times are around the value 1 in the graph, and in fact the average
of all the measured time is 1 which is very similar to center of Cluster-1. So
as supposed, removing the lock has decreased the time taken to perform the
checkpoint. Thus, the overhead time is introduced by the locking system of
Rust programming language. At the end, considering this example module the
cost seems to be constant or, more specifically, not too variable. Although, as
already pre-announced, more examples would lead to a better evaluation of this
experiment.

A solution to the problem outlined in Section 2.1 has been presented. The
technique of utilising checkpoints to save the state of the module and resuming
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Figure 3.7: Graph of checkpoint times without the lock phase

it with restore has been illustrated and analysed in conjunction with its imple-
mentation. Subsequently, experiments pertaining to the ”cost“ of this solution
are presented, and the results demonstrate that these “costs” do not detract
from the solution’s overall efficacy.
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Proceeds

This concluding chapter will demonstrate the outcomes of this work in relation
to the objectives set out in Section 2.3. Subsequently, a discussion is presented
regarding potential future work that could be conducted in relation to this
project.

4.1 Key findings

Looking to the objectives described in section 2.3, it has been demonstrated that
it’s possible to implement a mechanism of migration based on a WebAssembly
runtime. Moreover, since the heterogeneity of the devices it was still feasible to
relay on a Just-in-Time compilation to obtain a proof of concept. As already
announced in section 3.3, since there was no other solution to compare the
result, this can be considered a little step further in the state of the art. Nev-
ertheless, some crucial point can be taken out: first, the size of the generated
artifact from the idiomatic programming style present a overhead which, due
to is rate (about 4%), can be considered not relevant. Thus, from this point
of view, the proposed solution doesn’t worsen the state of art WebAssembly
runtime. Second, the checkpoint operations were the more expensive in term
of time consuming since every time there was a change in the state it must be
committed, by creating and acquiring a mutex lock. Lastly, this kind of solution
is not dependant on the underlying runtime, in fact it’s possible to implement
the functions checkpoint/restore in any runtime that can accept implementation
on foreign functions. So it’s possible to have different working runtime in the
same distributed system.

Together with the advantages, some limitations are present to this project.
First, force the developer to “rethink” is application in term of “array” and
checkpoint/restore functions it can be not a good idea since the modality of
how the runtime manages the states of the application has to be transparent to
the developer. Second, the checkpoint/restore solution limits the range in which
a module can be migrated, involving that if the request of migration happens
before saving the new state, it must re-execute some operations to come back to
that state. Ideally, the snapshot represents the state in which the module was at
a precise operation, so that it’s possible to resume the execution from the next
one. Lastly, there is no kind of support for the re-connection of the modules
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which use socket for expose and use web services. Since it was an object of this
work, it’s important to outline it.

4.2 What’s next

This work represents an initial stage where continue to build up and lay the
foundation for further works.

First of all, as already reported, the embedded environment compiles the
WASM module. A possible alternative would be to use a technology that “in-
terprets” the machine code from WebAssembly, in order to avoid other step
of compilation. However, this solution will be request more execution time for
module, since every instruction must be translate in native code, but it will
be easier to determine whether the execution is stopped and restart form that
point lately. Therefore, an investigation with benchmarks in the same filed of
this work would be interesting.

Secondly, the web server uses the TCP/IP protocol to communicate over
the network. This choice was made for sake of simplicity, in order to obtain an
functional API web server. Recalling from section 2.3, one of the object was
to investigate a solution to handle re-connection between hosts. The intuition
was to integrate the QUIC protocol, which incorporate the ability to handle
client re-connection, and use it on top of that an API web server. Moreover,
this protocol utilize by default the TLS protocol at version 1.3 for encrypt the
communications. So, exploring on this topic will improve not only the reliability
of the system, but the degree of security of the entire system.

Thirdly, the previous point concerns only the client, but it’s possible that
in this system even an server host must be migrate. The QUIC protocol was
not designed for this purpose, anyway Conforti[41] have proposed an exten-
sion of this protocol to handle re-connection of server host. Implementing this
technology inside the system would achieve all the objective of this work.

Lastly, a WebAssembly component can have different resources in use in
addition to connection. A simple example can be a file present in the host, or
another WASM module which is a necessary library for the first one. In this
scenarios, migrating an execution of a module would cause the its failure since
there will be missing the necessary resources in the new host. Even this kind of
situations must be handle in a system like this, so examine a possible solution
would get close to a complete implementation of the system.

In conclusion, this paper has presented the Cloud-Edge Continuum paradigm,
defining it and discussing its most significant applications. Nevertheless, the
current state of cloud and edge computing does not permit its immediate util-
isation, as its primary characteristic – the ability to migrate data between the
cloud and the edge – is not yet fully realised. A potential candidate for uni-
fying these two domains has been identified: WebAssembly, a novel low-level
bytecode representation. It was therefore proposed that a possible migration
mechanism for WebAssembly components over the Cloud-Edge Continuum be
studied. Subsequently, the potential configuration of this prospective system
was conceptualised, taking into account all the pertinent characteristics. The
existing literature has not identified a solution to this problem, and thus the
objectives of this study have been defined. Subsequently, a solution was devised
and evaluated based on the findings of a series of experiments. In conclusion,
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the results have been presented, along with suggestions for future work.
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