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Introduction

In this thesis we are studying a biological application of the Optimal Trans-
port Problem: we would like to investigate on a possible link between Branched
Transport Problem and the theoretical results obtained by a number of bi-
ologists in the last century about the structure of arterial networks. These
biological results were highly appreciated in the 20th century biological liter-
ature and some models based on them are still used in current studies. The
scope of this thesis is to correlate these studies with the modern theory of
Branched Transport, starting from the dynamical Monge-Kantorovich prob-
lem reported in [12], [13] and [14].
In 1926 ([23]) the biologist Murray speculated that the structure of an arte-
rial network could be obtain by the minimization of a cost function formed
by two addends: the first one is related to a Poiseuille flow on a cylinder,
while the other one represents the cost of the network. Later, after having
found a direct relationship between the flow and the cube of the radius of the
cylinder, the so-called ”Murray’s Law”, he managed to compute the measure
of an angle at a bifurcation point. Murray’s results seemed to be confirmed
by empirical data, so a number of authors developed his ideas during the sec-
ond part of the last century. They generalized Murray’s model considering
more general kinds of flow and cost functions.
On the other hand, the first mathematical formulation of the Optimal Trans-
port Problem can be found in a work of 1781 by Monge ([21]). The idea is
to determine how to move with minimal transportation costs some material
from a starting configuration to a final one. Monge’s ideas were developed
during the last century so that more general situations could be considered,
such as those ones in which a concentration of mass is penalized or favored.
This last case is called Branched Transport Problem.
In [12], [13] and [14] a dynamic formulation of OTP and BTP was pro-
posed. In [13] the authors conjecture that this formulation is equivalent to
the Monge-Kantorovich formulation and in [14] they report an efficient, ac-
curate and robust numerical solver. In [1] this formulation has been proposed
for the numerical solution of branched transport problems, and several nu-
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6 INTRODUCTION

merical experiments shows its efficacy and robustness. For these reason, we
use this dynamic formulation to reconstruct an arterial network. Then we
compare our results with the theoretical biological laws based on Murray’s
ideas.
The structure of this thesis is as follows.
In Chapter 1 we are introducing the theory of Optimal Transport, starting
from the first formulation by Monge in [21]. Different formulations of this
problem in both discrete and continuous cases are presented. Lastly, we dis-
cuss about different equivalent formulations of branched problem.
In Chapter 2 we give a historical review about the biological results on arter-
ies networks and their branching angles. The starting point of this discussion
is the work of 1926 by Murray [23]. A number of authors decided to develop
its theory and we are going to report the main results which leaded to the
generalization of Murray’s hypothesis of having a Poiseuille flow of blood.
Lastly, after having reported the theoretical measure for the bifurcation an-
gles, depending only on the geometry of the system and on the properties of
the blood flow, we show an equivalence between these angles and the measure
of the bifurcation angles of the branched transport theory.
In Chapter 3 we introduce a numerical approach that allow the solution of
the Optimal Transport Problem, as described in [12]. There is a proof of
the connection between Dynamic Monge-Kantorovich Model and Optimal
Transport Problem, but the proof of a similar link for the Branched Problem
has not been found yet, even if there are many numerical evidences that seem
to support the existence of this connection. Here we discuss both Dynamic
Monge-Kantorovich Model and its discretization.
Lastly, in Chapter 4 we show some numerical applications of the ideas of
the previous chapters. We would like to use the model described in Chapter
3 in order to obtain the arterial network of a frog tongue [9]. In this last
chapter, after having shown explicitly the relation between the ”biological”
angles found in Chapter 2 and the exponent β of the Extended Dynamic
Monge-Kantorovich Model of Chapter 3, we describe all the intermediate
steps that let us analyze the bifurcation angles of the system, starting from
the solution of the model. Then we proceed to analyze solutions obtained
with different exponents β.



Chapter 1

Optimal Transport Problem

In this chapter we briefly introduce the Optimal Transport Problem (OTP)
from historical and mathematical point of views. We first describe the orig-
inal L1 transport of Monge as extended by Kantorovich. Then we focus
our discussion on the more recent Branched (or Ramified) transport. The
material of this chapter is mostly taken from [3], [4], [12] and [28].

1.1 Monge Problem

The first mathematical formulation of the OTP can be found in a work by
Gaspard Monge in 1781 [21]. It was based on a problem of military fortifi-
cation construction. The problem was to determine how to move optimally
some material from a starting to a final configuration, as we can see in Fig-
ure 1.1.

Figure 1.1: A schematic representation of Monge OTP formulation: find a
map T moving the soil from one excavation f+ to an embankment of equal
volume f− with minimal cost.

The mathematical formulation of the problem is the following: Let Ω ⊂ Rd

and consider two density functions f+, f−: Ω→ [0,∞[, with the additional
condition

∫
Ω
f+ =

∫
Ω
f−. These density functions describes respectively the

initial and the final configuration of the mass we want to optimally transport.
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8 CHAPTER 1. OPTIMAL TRANSPORT PROBLEM

If we introduce a cost function c : Ω×Ω→ R, we would like to find the optimal
solution T ∗ among all measurable maps T : Ω → Ω, that is we are looking
for:

T ∗ ∈ inf
T :Ω→Ω

{∫
Ω

c(x, T (x))df+(x) : T#f
+(A) = f−(A), ∀A ∈ Ω measurable

}
where T#f

+(A) := f+(T−1(A)).
The original problem of Monge is a particular case of the following one, where
the cost function c(x, y) = |x− y|.

Problem 1 (Monge Problem) Consider two complete and separable spaces
X and Y . Given two non-negative measures f+ and f− on X and Y satisfying
f+(X) = f−(Y ), a cost functional c : X × Y → R, find T ∗ ∈ T (f+, f−) :=
{Measurable Maps T : X → Y s.t. T#f

+ = f−}, solving:

min
T∈T (f+,f−)

I(T ) :=

∫
X

c(x, T (x))df+(x) (1.1)

where T# is defined as above.

In general Problem 1 is ill-posed and the optimal map may not even exist. For
example, there are some problems when the measure f+ is a Dirac measure
and f− is not. Moreover, a number of difficulties arise when trying to apply
the direct method of the calculus of variation in order to find a optimal plan.
Because of these mathematical difficulties, Leonid Kantorovich introduced a
relaxed version of Problem 1.

1.2 Kantorovich Problem

This reformulation of Monge Problem was inspired by the following discrete
Monge Problem:

Problem 2 (Discrete Monge Problem) Consider n points (xi)i=1,...,n ∈ Rd

with associated masses (f+
i )i=1,...,n and m points (yj)j=1,...,m ∈ Rd with as-

sociated masses (f−j )j=1,...,m with the requirement that
∑n

i f
+
i =

∑m
j f

−
j .

Given the real numbers (ci,j)
i=1,...,n
j=1,...,m representing the cost of moving one unit

of mass from xi to yj, we look for a solution γ∗i,j of the following minimization
problem:

min
γi,j

{
n∑
i=1

m∑
j=1

ci,jγi,j :
n∑
i=1

γi,j = f+
i ,

m∑
j=1

γi,j = f−i , γi,j ≥ 0

}
(1.2)
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The formulation of Problem 2 suggests us that we should search the solution
of the OTP among the set of Transport Plans, instead of the transport maps.

Definition 1 (Transport Plan):

Π(f+, f−) := {γ ∈M+(X × Y ) s.t. (πx)#γ = f+, (πy)#γ = f−}

where πx and πy are projections maps (x, y) 7→ x and (x, y) 7→ y respectively.

The transport plan γ and the relative constraints are clearly the continuous
version of γi,j and its constraints of Equation (1.2). Its infinite dimensional
version is known nowadays as Kantorovich Primal Problem and reads as
follows:

Problem 3 (Kantorovich Primal Problem). Given two non-negative finite
measures f+ and f− on X and Y satisfying f+(X) = f−(Y ), and a given cost
function c : X × Y → R+, find the optimal transport plan γ∗ ∈ Π(f+, f−)
that solves:

min
γ ∈Π(f+,f−)

Kc(γ) :=

∫
X×Y

c(x, y)dγ(x, y)

This problem admits also a Dual Problem:

Problem 4 (Kantorovich Dual Problem). Given two non-negative finite
measures f+ and f− on X and Y satisfying f+(X) = f−(Y ), and a given
cost function c : X × Y → R+. Let Lc be the set:

Lc := {(u, v) ∈ Cb(X)× Cb(Y ) s.t. : u(x) + v(y) ≤ c(x, y) ∀(x, y) ∈ X × Y }

Find (u∗, v∗) ∈ Lc solving the maximization problem:

sup
(u,v)∈Lc

I(f+,f−)[u, v] :=

∫
X

u(x)df+(x) +

∫
Y

v(y)df−(y) (1.3)

In [12] we can see why Problem 3 is a weaker formulation than Problem
1. Moreover, denoting with Cb(X) the space of continuous and bounded
functions on X, the following results hold:

Theorem 1 For any c : X × Y → R lower semi-continuous, Problem 3
admits a solution γ∗ ∈ Π(f+, f−).

Theorem 2 (Kantorovich Duality):
Given two non-negative finite measures f+ and f− on X and Y satisfying
f+(X) = f−(Y ), and a given cost function c : X × Y → R lower semi-
continuous, the following equality holds:

min
γ ∈Π(f+,f−)

Kc(γ) = max
(u,v)∈Lc

I(f+,f−)[u, v]
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Theorem 3 (Duality Result of Linear Programming):
Let A ∈ Rm,n, x, c ∈ Rn and y, b ∈ Rm, then the following equality holds:

min
x
{c · x s.t. : x ≥ 0 Ax = b} = max

y
{b · y s.t. : ATy ≤ c} (1.4)

Remark 1 Problem 4 can be seen as the extension of the dual of Problem
1, that is:

max
n∑
i=1

uif
+
i +

m∑
j=1

vjf
−
j

where ui + vj ≤ ci,j ∀i = 1, . . . , n; j = 1, . . .m. Moreover, Theorem 2 can be
viewed as the extension of Theorem 3.

1.3 Links between Monge and Kantorovich

formulations

In the previous sections we introduced two different formulations for OTP.
Now we’are looking for some conditions to ensure an equivalence between
Monge and Kantorovich formulations. As in [12] we want to report a result
that ensures uniqueness of an optimal transport plan that is a solution of
Kantorovich Primal Problem (see Problem 3) and also the existence of an
optimal transport map for Monge Problem (see Problem 1).

Proposition 1 Consider a compact domain Ω ⊂ Rd, two balanced measures
f+, f− ∈M+(Ω), such that ∂Ω is f+-negligible and f+ is absolutely contin-
uous with respect to Lebesgue measure. If the transport cost is of the form
c(x, y) = h(|x− y|), where h is a strictly-convex function, then there exist
a unique transport plan γ∗ ∈ Π(f+, f−) of the form γ∗ = (Id, T ∗)#f

+, with
T ∗ ∈ T (f+, f−). Moreover, there exist a Kantorovich potential u and T ∗

satisfies the following relation:

T ∗(x) = x− (∇h)−1(∇(u∗(x)))

For further information about this result, see [24]. We can see immediately
how Proposition 1 is fundamental for the so-called Lp-OTP in which the cost
reads as c(x, y) = |x− y|p, where p > 1.

1.4 L1-OTP

In this section we summarize a number of results on the L1-OTP, due to its
rich mathematical theory. We are using the following restricted hypothesis:
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X = Y = Ω, where Ω ⊂ Rd is an open, bounded, connected and convex
domain with a smooth boundary. In all this section we are omitting all the
proofs of the results shown (see [12] for further information about proofs and
where to find them).

Theorem 4 (Kantorovich-Rubinstein Theorem)
Consider Ω ⊂ Rd as above. Take two non-negative measures f+ and f− on
Ω such that df+(Ω) = df−(Ω). The Kantorovich Dual Problem in Equation
(1.3) with cost function c(x, y) = |x− y| can be rewritten as find u ∈ Lip1(Ω)
that solves:

sup
u∈Lip1(Ω)

∫
Ω

u df (1.5)

where f := f+ − f− and Lip1(Ω) is the set of the Lipschitz continuous func-
tions of Ω such that their Lipschitz constant is 1.

Problem 5 (Beckmann Problem)
Consider Ω ⊂ Rd as above. Take two non-negative measures f+ and f− on
Ω such that df+(Ω) = df−(Ω). Let f = f+ − f−. Find v∗ ∈ [M(Ω)]d solving

inf
v∈[M(Ω)]d

{∫
Ω

|v| dx : div(v) = f

}
(1.6)

The divergence constraint on v is in the sense of distributions:∫
Ω

∇ϕ · dv = −
∫

Ω

ϕdf ∀ϕ ∈ C1(Ω̄)

Now we can enunciate the following Proposition that states an equivalence
between the minimization Problem described in 5 and the Problem described
by Equation (1.5).

Proposition 2 Consider Ω ⊂ Rd an open, bounded, connected and convex
domain with smooth boundary. Take two non-negative measures f+ and f−

on Ω such that df+(Ω) = df−(Ω) and f = f+ − f−, then Problem 5 and
Equation (1.5) are equivalent, which means:

sup
u∈Lip1(Ω)

∫
Ω

u df = inf
v∈[M(Ω)]d

{∫
Ω

|v| dx : div(v) = f

}
Definition 2 (Optimal Transport Density):
Let Ω, f+ and f− as above. Given γ∗ ∈ Π(f+, f−) a minimizer for the
Kantorovich Primal Problem (see Problem 3) with cost function c(x, y) =
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|x− y|, the Optimal Transport Density µ∗ ∈ M+(Ω) associated to f+, f− is
defined as:

〈µ∗, ϕ〉 :=

∫
Ω×Ω

∫ 1

0

∣∣w′x,y(t)∣∣ϕ(wx,y(t)) dt dγ(x, y) ∀ϕ ∈ C(Ω) (1.7)

where wx,y(t) := (1− t)x+ ty

Theorem 5 Let Ω, f , f+ and f− as above. If f+ (or f−) admits L1-density
with respect to the Lebesgue measure, then the OT density µ∗ associated to
f+, f− is uniquely defined and admits L1-density with respect to the Lebesgue
measure and we will indicate it with µ∗(f+, f−) (or with µ∗(f)). Moreover,
if f+ and f− admit Lp-densities for 1 ≤ p ≤ +∞, then the same holds for
µ∗.

Proposition 3 Let Ω, f , f+ and f− as above. If f+ and f− admits Lp-
density with 1 ≤ p ≤ +∞, then a solution v∗ of Problem 5 is in [Lp(Ω)]d and
it can be written as

v∗ = −µ∗∇u∗ (1.8)

where µ∗ := µ∗(f) and u∗ is solution of the Dual Kantorovich Problem (see
Problem 4).

Remark 2 The previous Proposition gives us a way to find a solution of
Beckmann Problem (Problem 5) when M(Ω) = L1(Ω). Moreover, the solu-
tion v∗ is a minimum.

Now we can state the main result of this section about L1 −OTP .

Proposition 4 (Monge-Kantorovich Equations)
Let Ω, f , f+ and f− as above. If f+ (or f−) admits L1-density, then the OT-
density µ∗(f) and the Kantorovich potential u∗ solve the following equations:

− div(µ∗∇u∗) = f in Ω (1.9)

|∇u∗| ≤ 1 in Ω (1.10)

|∇u∗| = 1 a.e. in µ∗ > 0 (1.11)

1.4.1 Monge-Kantorovich Equations applications to other
problems

Here we look quickly at other ways to use MK Equations. The hypothesis
on Ω, f+, f− and f = f+ − f− are still valid.
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Problem 6 (Mass Optimization Problem) (see [7] for further details)
Under the above hypothesis, find v∗ ∈M+(Ω) that solves

min
v∈M+(Ω)

{Ef (v) : v(Ω) = 1}

where:

Ef (v) := sup
ϕ∈C1(Ω)

Γf (v, ϕ) (1.12)

Γf (v, ϕ) :=

∫
Ω

(ϕdf − |∇ϕ
2|

2
dv) (1.13)

Proposition 5 Given the OT density µ∗(f), a solution of Problem 6 is given
by:

v∗ =
µ∗∫

Ω
dµ∗

The MK equations are linked to the ∞-Poisson Equation as the following
Proposition states.

Proposition 6 (∞-Poisson)
Under the above hypothesis, if f+ and f− admit Lipschitz continuous den-
sities with respect to the Lebesgue measure, then the solution pair (µ∗, u∗)
of (1.9) is the limit for p → ∞ of (|∇up|p−2 , up) in where up solves the
p-Poisson equations:

− div(|∇up|p−2∇up) = f

The limit for the first term must be understood in the sense of the weak
topology on L∞(Ω)

We can now introduce the first explicit solution of Monge Problem (see Prob-
lem 1) that can be found in [11].

Proposition 7 (Solution of the Monge Problem)
Consider Ω, f+, f− and f as above. Assume that f+ and f− admit Lips-
chitz continuous densities with respect to the Lebesgue measure. Take x ∈
supp(f+) and consider the solution z(t, x) of the following ODE:

z′(t) = Z(t, z(t))

where z(0) = x and

Z(t, z) :=
−µ∗(z)∇u∗(z)

(1− t)f+(z) + tf−(z)

So the map T ∗ : supp(f+)→ supp(f−) such that x 7→ z(1, x) is the solution
of the Monge Problem with cost equal to Euclidean distance.
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In [12] there is a generalized version of the L1-OTP in which a geodetic
distance is used instead of Euclidean distance. Moreover, there is also a
figure (see page 22) that shows the links between all the formulations that
have been written in the previous pages.

1.5 Branched Transport Problems

In the previous sections the total transport cost does not depend on the
intermediate phases between the initial and the final configurations of the
mass, but in many real-life problems we want to study transport mechanisms
in which mass concentration is favored or penalized. Gilbert in [15] was the
first one who gave a formulation of Branched Transport Problem (BTP) as
a problem of finding the minimal cost of a communication network. This
problem was extended in the following years even if it has the big issue of
having a NP hard numerical solution, even in the discrete case. In all this
section, we’re using the same notation as [3].

1.5.1 The Gilbert-Steiner Problem

In most transportation networks, the aggregation of mass on common routes
is often preferable to individual straight paths. The Steiner model consists
in minimizing the total length of a network connecting a given set of points.
This is not realistic because the fact that different paths could have different
costs is not considered. Gilbert was the first one to propose a model which
considers this fact in [15].

Definition 3 (Gilbert Graph)
The network is a graph such that each edge e is associated with a flow ϕ(e).
Let f(ϕ) denote the cost per unit length of an edge with flow ϕ. It is assumed
that f(ϕ) satisfies the following properties:

1. f(ϕ) is subadditive, i.e., f(ϕ1) + f(ϕ2) ≥ f(ϕ1 + ϕ2)

2. f(ϕ) is increasing, i.e, f(ϕ1 + ϕ2) ≥ max{f(ϕ1), f(ϕ2)}

Our task is to find the minimum cost of networks supporting a given set of
flows between terminals.

Remark 3 The subadditivity of f(ϕ) translates the fact that it is more ad-
vantageous to transport flows together and it leads to delay bifurcations.



1.5. BRANCHED TRANSPORT PROBLEMS 15

Fluid mechanics gives us an example of this behavior, which is granted by
Poiseuille’s law, according to which the resistance of a tube increases when
it gets thinner. The simplest model of this kind is to take f(ϕ) = ϕα where
0 < α < 1.
In [15], Gilbert considered atomic sources µ+ =

∑k
i=1 aiδxi and sinks µ− =∑l

j=1 bjδyj , where
∑

i ai =
∑

j bj and ai, bj > 0 ∀i = 1, . . . , k; j = 1, . . . , l.

Definition 4 (Transport Path)
An admissible Transport path G is a weighted directed graph with straight
edges E(G) and a flow function ϕ : E(G) → (0,∞) satisfying Kirchhoff’s
Law. G can be written as a vector measure

G =
∑

e∈E(G)

ϕ(e)H1|ee (1.14)

where e denotes the unit vector in the direction of e and H1 is the Hausdorff
one-dimensional measure. We say that G irrigates (µ+, µ−) if its distribu-
tional derivative satisfies ∂G = µ− − µ+.
The Gilbert energy of G is defined by:

Mα(G) =
∑

e∈E(G)

ϕ(e)αH1(e) (1.15)

Problem 7 (Gilbert Problem)
The Gilbert-Steiner Problem is the problem of minimizing Mα(G) among all
infinite graphs irrigating (µ+, µ−), i.e. we want to find the Transport Path
in (G,ϕ) ∈ P(µ+, µ−) that minimizes the Gilbert Energy.

We can see that this problem generalizes Monge-Kantorovich Problem (α→
1) and Steiner Problem (α = 0). The intermediate case with 0 < α < 1 is
the starting point of the so called Branched Transport Problem (BTP).
There was some extension to the continuous case of Problem 7. We briefly
report here some of them.

Xia’s Transport Paths

Definition 5 (Xia’s Transport path and its energy)
Let µ+ and µ− be two positive Radon measures with equal mass in a compact
convex set X ⊂ RN . A vector measure T on X with values in RN is called
a transport path from µ+ to µ− if there exist two sequences µ−i , µ+

i of finite
atomic measures with equal mass and a sequence of finite graphs Gi irrigating
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(µ+
i , µ

−
i ) such that µ+

i → µ+, µ−i → µ− weakly as measures and Gi → T as
vector measures. The energy of T is defined by:

Mα(T ) := inf
A

lim inf
i→∞

Mα(Gi) (1.16)

where:
A := {(µ+

i , µ
−
i , Gi) : approximating sequences to T}

Later we’re using also the following notation:

Mα(µ+, µ−) := inf{Mα(T ) : T is a transport path from µ+ to µ−}

Xia showed the existence and the finiteness of the above infimum for any pair
(µ+, µ−) when α ∈ (1− 1

N
, 1] in [33].

Traffic Plans

Bernot, Caselles and Morel in [2] extended the previous formalism to the
case where the source is any Radon Measure.

Definition 6 Let K be the set of 1-Lipschitz maps γ : R+ → X. We define
a distance on K by:

d(γ, γ′) := sup
k∈N∗

1

k
||γ − γ′||L∞([0,k])

which corresponds to the metric d of uniform convergence on compact sets.

Lemma 1 The metric space (K,d) is compact.

(See [3] for a proof.)

Definition 7 Let γ ∈ K. We define its stopping time as:

T (γ) := inf{t ≥ 0 : γ constant on [t,∞)}

and the length of γ([0, T (γ)]) by L(γ).

Remark 4 The following properties hold:

1. γ is 1-Lispchitz so L(γ) ≤ T (γ)

2. The stopping time T : K → R+ is lower semi-continuous and therefore
measurable. (see [3] for a proof)
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So we can now introduce the definition of a Traffic Plan.

Definition 8 (Traffic Plan)
A traffic plan P is a positive measure on (K,B) such that

∫
K
T (γ)dP(γ) <

∞. We denote by TP := TP (X) the set of all traffic plans in X and by
TPC := TPC(X) the set of traffic plans P such that

∫
K
T (γ)dP(γ) ≤ C

This model allows one to add who goes where constraints to the optimization
problem (this is the starting point of the so-called ”Mailing Problem”).

Further Considerations

There were also other extensions to the continuous case of Problem 7. We can
cite for example a Lagrangian formulation made by Maddalena and Solimini.
The solutions of this models are called patterns. For further information see
[20] or [3].
We would like to report some comments about these models. Firstly, there
is a consistency problem: when the irrigated measures µ+ and µ− are fi-
nite atomic, do the minimizers for all continuous models coincide with the
Gilbert minimizer? Moreover, if µ+ and µ− are two general positive measures
with equal mass, are the Xia’s minimizers also optimal traffic plans and con-
versely? Finally, when µ+ = δs is a single source, are optimal patterns and
optimal traffic plans equivalent notions? The answer of all these questions
are a consequence of a main structure property of optimal traffic plans.
In the next pages we discuss some further properties about Xia’s formulation
and traffic plans and some conditions for the equivalence of the continuous
extensions of the discrete Gilbert-Steiner Problem by Xia and Maddalena
and Solimini (see Problem 7).

1.5.2 Xia’s Formulation

In this section we’re following the summary on this problem that can be find
in [12]. Xia’s original idea in order to extend Problem 7 to the continuous
case is to consider two sequence of atomic measures µ±n → µ± and define the
optimal Transport Path from µ+ to µ− as the limit of the optimal Transport
Paths (P∗n, q∗n) ∈ P(µ+

n , µ
−
n ).

Now we need to introduce the notion of 1-rectificable set in Rd without speci-
fying too many technical details. A subset K of E is 1-rectificable if there ex-
ist a countable set of smooth (continuous and differentiable) maps f : R→ Rd

such that the H1 measure of E \K is zero. We can think of it as a count-
able union of Lipschitz curves that ”fills” K. Now consider a triple made
of a 1-rectificable set K ⊂ Ω, a vector field τ : K → Sd−1 and a function
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ϕ : K → R+ integrable with respect the 1-dimensional Hausdorff measure
H1. So we can define a vector measure v = [K, τ, ϕ] ∈ [M(Ω)]d through the
following equation:

〈[K, τ, ϕ], ζ〉 :=

∫
K

ϕ(x)τ(x) · ζ(x)dH1(x) ζ ∈ [C(Ω)]d

We associate to a given path (G,ϕ) ∈ P(µ+, µ−) the vector measure vG,ϕ
composed by the triple [E, τE, ϕ], where E is the union of the graph edges,
τE is the vector measure with unit value defined by the edge direction and ϕ is
the weight satisfying Kirchhoff’s Law, which can be rewritten as div(vG,ϕ) =
µ+
n − µ−n ., or, if we write it in the sense of distributions, we obtain:∫

Ω

∇φ · dvG,φ = −
∫

Ω

φ(dµ+
n − dµ−n ) ∀φ ∈ C1(Ω)

then the Gilbert-Steiner energy in equation (1.15) becomes:

Mα(G,ϕ) =
∑

e∈E(G)

(ϕ(e))αH1(e) =

∫
E(G)

|ϕ(x)|α dH1(x)

We can now extend this definition to a general v ∈ [M(Ω)]d as follows:

Mα(v) := inf


v(Gn,ϕn) ⇀ v

and
lim infnM

α(Gn, ϕn) : µ+
n − µ−n ⇀ µ+ − µ−

and
div(v(Gn,ϕn)) = µ+

n − µ−n

 (1.17)

This implies that:

Mα(v) =


∫
E(G)
|v|α dH1(x) if v = [E, τ, ϕ]

+∞ otherwise

So we can finally give the definition of the BTP for general µ± ∈M+(Ω)
as in [33].

Problem 8 Find v∗ ∈ [M(Ω)]d solving:

inf
v∈[M(Ω)]d

{Mα(v) : div(v) = µ+ − µ−}

In general, this problem may have no solution.
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1.5.3 Bernot’s Formulation

With the expression ”Bernot’s Formulation” we are referring to the results
shown in [3]. The following results are based on the notion of Traffic Plan
that we introduced before. We are going to show an application of this
method to the Monge-Kantorovich Problem (see Problem 1 but we have to
give some other definitions at first.

Definition 9 Given a traffic plan P , consider the following maps:

π0 :K → X π∞ :K → X π :K → X

γ 7→ γ(0) γ 7→ γ(T (γ)) γ 7→ (γ(0), γ(T (γ)))

The positive measures on X and on X ×X defined by:

µ+(P) = π0#P µ−(P) = π∞#P π(P) = π#P = πP

will be called respectively the irrigating measure, the irrigated measure and
the transference plan of P, where with the notation f#A we mean the measure
on X obtained by transporting the measure A on K by the map f : X → K.

Definition 10 (Pattern)
A pattern is a traffic plan P such that µ+(P) = δS for some source point S ∈
X. We denote by TP (ν+, ν−) the set of traffic plans P such that µ+(P) = ν+

and µ−(P) = ν−.

It could be useful to introduce also the notion of parameterization of a traffic
plan P.

Proposition 8 We can parameterize any traffic plan P by a measurable
function χ : Ω = [0, |Ω|] → K such that P = χ#λ, where λ is the Lebesgue
measure on Ω.

We shall set χ(ω, t) := χ(ω)(t). The function χ satisfies some regularity
properties. We only state them. For a proof see chapter 3 of [3].

Proposition 9 (Properties of χ)

1. Let χ : Ω→ K. The map χ : Ω× R+ → X is measurable if and only if
the map ω ∈ [0, |Ω|] 7→ χ(ω, ·) ∈ K is measurable.

2. Let f : Ω× R+ a function such that ω 7→ f(ω, t) is measurable for each
t ∈ R+ and that t 7→ f(ω, t) is continuous for every ω (f is called a
Caratheodory function). Then f is measurable with respect to the σ-
algebra generated by the product of Lebesgue measurable sets of Ω and
Borelians of R+.
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After having shown some results about measurability, we can give some ex-
tensions of the previous definitions in the case of a parameterization.

Definition 11 If χ : Ω×R+→ X is measurable, its stopping time is defined
by:

T (ω) := Tχ(ω) := inf{t : χ(ω) is constant on [t,∞)}

We also denote the length of the path t 7→ χ(ω, t) by L(ω).

Definition 12 Let Ω be a measurable subset of R with finite measure. A
parameterized traffic plan is a measurable map χ : Ω × R+ → X such that
t 7→ χ(ω, t) is 1-Lipschitz for all ω ∈ Ω and

∫
Ω
T (ω)dω < ∞. Without

risk of ambiguity we shall call fiber both a path χ(ω, ·) and the range in RN of
χ(ω, ·). Pχ(E) = |χ−1(E)| is a traffic Plan for every Borel set E ⊂ K, where
|χ| := |Ω| is the total mass transported and Pχ is the law of ω → χ(ω) ∈ K.

Definition 13 Let Pn be a sequence of traffic plans. We say that Pn con-
verges to a traffic plan P if Pn ⇀ P or equivalently χn(ω)→ χ(ω) in K for
almost all ω ∈ Ω as n→∞.

Definition 14 We call the cost of a traffic plan a functional

I(P) =

∫
K

c(γ(0), γ(T (γ))dP(γ)

where c(x, y) is a bounded non-negative lower semi-continuous function which
represents ”the cost for transporting a unit of mass from x to y”.

Remark 5 We can rewrite the Monge-Kantorovich Problem (see Problem 1)
as it follows. Given two positive measures ν+ and ν− with equal mass, find
a transference plan π that minimizes

∫
X×X c(x, y)dπ. By definition of πP,

we notice that I(P) =
∫
X×X c(x, y)dπP. Moreover, it could be showed that

any transference plan can be obtain as the transference plan of some traffic
plan, so the problem of minimizing I(P) under prescribed marginal measures
µ+(P) = ν+ and µ−(P) = ν− is equivalent to the Monge-Kantorovich trans-
port Problem.

Proposition 10 The problem of minimizing I(P), with P ∈ TPC(ν+, ν−)
admits a solution for C large enough.

See Proposition 3.32 of [3] for a proof of this fact.
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Definition 15 Let α ∈ [0, 1]. The (Gilbert) energy of a traffic plan P pa-
rameterized by χ is the functional

Eα(P) =

∫
Ω

∫
R+
|χ(ω, t)|α−1

χ |χ̇(ω, t)| dtdω (1.18)

Remark 6 The energy of a traffic plan can also be written as

Eα(P) =

∫
K

∫
R+
|γ(t)|α−1

P |γ̇(t)| dtdP(γ)

Thus it is independent from the choice of the parameterization.

Proposition 11 Consider two positive measures ν+ and ν− on X with equal
mass. Assume that there exists at least one traffic plan connecting ν+ to ν−

with finite energy. Then the problem of minimizing Eα(P) in TP(ν+, ν−)
admits a solution. In the same way, the problem of minimizing Eα(P) in
TP(π) admits a solution if there is at least one traffic plan P such that
πP = π.

Definition 16 A traffic plan χ is said to be optimal for the irrigation prob-
lem, respectively optimal for the ”who goes where” problem if it is of minimal
cost in TP(µ+(χ), µ−(χ)), respectively in TP(πχ).

Definition 17 (Generalized Gilbert Energy)

Eα(P) :=

∫
RN
|x|αP dH

1(x)

We can see that Definition 17 generalizes the Gilbert Energy of 1.15 according
to Bernot’s notation.

Definition 18 A traffic plan P is said to be loop-free if there is a parame-
terization χ of P so that for almost all ω ∈ [0, 1], the element χ(ω) of K is
injective on [0, T (ω)].

Proposition 12 The minimum of Eα on the set of traffic plans, if it exists,
is attained at a loop-free traffic plan. Moreover inf Eα = inf Eα, where both
infima are taken indifferently over the set of all traffic plans or over the set
of loop-free traffic plans.

For a proof of this, see Proposition 4.9 of [3].
Now we enunciate an important result found by Bernot-Caselles-Morel with-
out its proof (see [3]).
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Proposition 13 Consider two non negative measures µ+ and µ− on a do-
main X with the same mass M and consider α > 1 − 1/N , where N is the
dimension of the ambient space. Set:

Eα(µ+, µ−) := min
χ∈TP (µ+,µ−)

Eα(χ)

the optimal cost to transport µ+ to µ−. Then Eα(µ+, µ−) is finite and can
be bounded by:

Eα(µ+, µ−) ≤ Cα,NM
αdiam(X)

where Cα,N and M are suitable constants and diam(X) is the diameter of the
domain X.

For a proof of this Proposition see Chapter 6 of [3]. Now we enunciate a
structure theorem for optimal traffic plans. (see [3])

Theorem 6 (Bernot-Caselles-Morel, 2009)
Consider a traffic plan χ passing through the points x and y, then all the
following properties hold:

1. All fibers passing by x and y follow the same path.

2. If χ is an optimal traffic plan, then it has no circuits, i.e. χ is a tree.

3. If χ is an optimal traffic plan it can be monotonically approximated by
finite irrigation graphs.

All the proofs of Theorem 6 can be found in Chapter 7 of [3]. This is an
important result because it suggests us to work with graphs in order to get
an approximated solution of this BTP.
Now we are able to show the equivalences between Gilbert-Steiner Problem
and optimal traffic plans formulation when µ+ and µ− are finite atomic.
Moreover we can show also the equivalence between this formulation and
Xia’s one. All these equivalences are strong because not only the minimal
energies are the same, but also the minimizing objects can be identified with
each other even if they have a very different nature.

Proposition 14 Let π be a transference plan between two finite atomic mea-
sures µ+ and µ−. An optimal traffic plan for the irrigating problem (see
Definition 5) between µ+ and µ− is a finite graph made of segments with no
circuits. Conversely, an optimal graph is an optimal traffic plan.

A proof of this result can be found in Section 9.1 of [3]. We recall that we
indicate the energy of Xia’s problem with Mα(µ+, µ−).
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Proposition 15 Let (µ+, µ−) be two Radon measures of equal mass. Then:

Eα(µ+, µ−) = Mα(µ+, µ−)

. Moreover, if these energies are finite, then the optima are the same.

This last proposition implies the equivalence between Xia’s and Bernot’s
Problem and gives a link between the objects that minimize the two different
energies. See Section 9.1 of [3] for a proof of this fact.

1.6 Conclusion

In this chapter we briefly introduced the OTP and enunciated some results
about this mathematical theory at first. Then we analyzed various formula-
tions of the BTP. We considered two of them mainly: Xia’s formulation in
order to link to [12] analysis on this problem and Bernot’s one because we
are using the results on branching angles found by Bernot-Caselles-Morel in
[3] in the next section to compare them with the branching angles found by
mathematical biologist who studied arterial networks in the last century. At
the end of this chapter we showed the equivalence between these two formu-
lations, so we can use all the theoretical results of both of them in order to
study a biological application of the BTP.
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Chapter 2

From Scaling Laws to
Bifurcation Angles

A number of researcher studied the relation between the organismal basal
metabolic rate B and the organismal mass M during the last two centuries.
In this chapter we are going to review some of the relation between this
empirical law, optimality principles and bifurcation angles in arterial system
proposed in the biological literature.

2.1 Scaling Laws

In 1932 Max Kleiber ([19]) published his work in which he showed some
empirical data in support of the existence of a power law between the basal
metabolic rate and the mass of an organism. Early studies date back from the
beginning of the 20th century, when modeling considerations where derived
based on a rather small experimental basis. Later other authors showed the
existence of an empirical scaling laws in accurate respiration trials of dogs
and rabbits. We can find some of these first results in a paper of Harris and
Benedict ([16]) published in 1919. The first fundamental work of our study
was published in 1932 by Kleiber ([19]) and contained what we summarize
as a conjecture.

Conjecture 1 (Kleiber, 1932)
In natural selection warm-blooded animals are the fittest in which the caloric
requirements are in harmony with the hemodynamic possibilities of oxygen
transport. This harmony seems to be established when the logarithm of the
metabolism B is proportional to the logarithm of body weight M. Moreover,
B = cMα, where c is a suitable constant and α ∈ [2

3
, 3

4
].

25
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Kleiber based his conjecture on the empirical data that he collected about
animal and human metabolism. We can find all these results in [19]. In the
last decades some authors cited Kleiber’s paper to find an accurate scaling
law. For instance, West, Brown and Enquist in 1997 ([30]) concluded the
following:

Conjecture 2 (West, Brown and Enquist, 1997)
If the relations of Conjecture 1 reflect geometric constraints, then α should
be a simple multiple of one-third. However, most biological phenomena scale
as quarter rather than third powers of body mass.

They showed this conjecture in the following way: ”For example, metabolic
rates B of entire organisms scale as M3/4; rates of cellular metabolism, heart-
beat, and maximal population growth scale as M−1/4. Sizes of biological
structures scale similarly: for example, the cross-sectional areas of mam-
malian aortas and of tree trunks scale as M3/4”. [30] But no general theory
explains the origin of these relations, so the authors supposed that a common
mechanism underlies these laws.

Lemma 2 (West, Brown and Enquist, 1997)
A quantitative model that explains the origin and ubiquity of quarter-power
scaling and predicts the essential features of transport systems, such as mam-
malian blood vessels and bronchial trees, is based on three unifying principles
or assumptions:

1. A space-filling fractal-like branching pattern is required in order for the
network to supply the entire volume of the organism.

2. The final branch of the network is a size-invariant unit.

3. The energy required to distribute resources is minimized.

The proof of this lemma is long and we do not report it, but it can be found
in [30]. As Doods and others noticed in a paper in 2001 ([10]), this proof is
based on the following four assumptions:

• Homoiotherms have evolved to minimize the rate at which they dissi-
pate energy (a homoiotherm is an organism, such as a mammal or a
bird, having a body temperature that is constant and largely indepen-
dent of the temperature of its surroundings).

• The relevant energy dissipation arises from transport through nutrient-
supplying networks.



2.2. THEORETICAL RULES FOR BIFURCATIONS IN ARTERIAL NETWORKS27

• These networks are space-filling.

• All homoiotherms possess capillaries invariant in size.

Doods found some mathematical errors in the arguments used by West,
Brown and Enquist, so the thesis of their Lemma can not be derived ex-
plicitly from their initial hypothesis. Nevertheless, their work is important
in our context because there is a link between those Scaling Laws and the
theory of arterial networks. Indeed, both these theories share the same hy-
pothesis of the existence of an optimality principle. At first, the optimality
principles provided the minimization of the energy lost during a laminar flow,
but then other kinds of flows were studied, too.

2.2 Theoretical rules for bifurcations in Ar-

terial Networks

One of the most obvious and classical invariant in a network having the
previous characteristics is the distribution of branching angles, which is the
invariant we are interested in this thesis. In this section we look for a his-
torical and critical perspective at past attempts to characterize branching
angles.
During the 19th century and the first two decades of the 20th century, a
number of biologists dissected animals in order to understand the structure
of circulatory system and to estimate the bifurcation angles in this network.
For example, Murray mentioned the work of Hardy and Gardiner in a paper
in 1926 (see [22]).
Now we are introducing the chronological evolution of this theory.

2.2.1 Murray’s Law

We can suppose that Murray is the founder of a mathematical theory of
branching angles in the circulatory system. Indeed, even if there are pre-
vious papers (we can mention for instance Hess’s work of 1917 [17]), most
of them are mathematically incorrect. Moreover, Murray’s article of 1926
([23]) received much attention in the literature, mostly because of his idea of
minimizing the work made by the human body to spread blood through all
its tissues.

Lemma 3 (Murray, 1926)
In a blood vessel of radius r, the flow of blood f is proportional to r3. This
relation is called ”Murray’s Law”.
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Proof1: We have to show that there exist a constant k depending only on
the geometry of the blood vessel such that f = kr3.
We can suppose that, if we consider an artery different from aorta, the blood
satisfies a laminar flow in the vessel. Moreover, we can suppose also that
arterial network has to satisfy a sort of ”economy of circulation” that we
wish. We work under two hypotheses:

1. Poisseuille’s equation for the flow of liquids in cylindrical tubes follows

p =
fl8η

πr4

where p is the difference in pressure between the two ends of the tube,
f is the flow of liquid inside the tube, l is the length of the tube, r is
its radius and η is the viscosity (if we multiply this quantity by f we
obtain the first addend of the functional we would like to minimize).

2. There is a cost associated to the volume of blood involved in the flow
give by blπr2, where b is the unit cost of blood that needs to be esti-
mated during the process.

Under these hypotheses there are two further assumptions. Firstly, we have
supposed that blood vessels can be approximated by a cylindrical tube in
which there is a laminar flow of blood. Moreover, we have also supposed the
existence of a maintenance cost for circulatory system.
If we multiply the first term by f and we sum the two addends, we obtain
the following work E:

E = pf + blπr2 =
f 2l8η

πr4
+ blπr2 (2.1)

We want to minimize E, so, if we take the derivative of E with respect to r
Equation (2.1) and we look for its zeros, we obtain:

dE

dr
= −4f 2l8η

πr5
+ 2blπr = 0 (2.2)

This implies:

b =
2f 28η

n2r6
(2.3)

Now, if we recall the expression for pf , we can obtain an estimate for b, but
we are not interested in this computation. Indeed, we rewrite Equation (2.3)

1We are using Murray’s Proof, see [23]
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in the following way:

f 2 =
r6π2b

16η
(2.4)

If we take the square root of the expression for f given by Equation (2.4),
we obtain the thesis:

f = kr3 (2.5)

where k =
√

π2b
16η

is a constant depending only on the geometry of the system

and on the viscosity of the flow. �

Corollary 1 If we indicate with r0 the radius of the parent vessel and with
r1 and r2 the radii of the children vessels, then the following equality hold:

r3
0 = r3

1 + r3
2

Proof : Since the flow in branches must equal the flow in the main steam,
we have f0 = f1 + f2. Moreover, we get fi = kr3

i ∀i = 0, 1, 2 by Murray’s
Law. So the thesis follows immediately. �

2.2.2 Murray’s Branching Angles

Starting from Lemma 3, Murray [22] tried to estimate the measure of branch-
ing angles in arterial network in another work of 1926. Before proceeding,
we are recalling the principle of virtual work in classic mechanics, without
its proof:

Figure 2.1: A schematic representation of a bifurcation angle from [8]

Proposition 16 (Principle of Virtual Work in Mechanics)
When conditions are such that the total work is a minimum, then a virtual
change in the configuration of the system results in no change in the total
work.
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Now we are able to prove another Lemma by Murray. In the following Lemma
we are using notations by Changizi ([8]), as we did in Figure 2.1.

Lemma 4 (Murray, 1926)
If r0 is the radius of the parent blood vessel, r1 and r2 are the radii of its
children vessels and l0, l1 and l2 are their respective lengths, then the system
satisfies the following relation:

• cos(θ1) =
r40+r41−r42

2r20r
2
1

• cos(θ2) =
r40+r42−r41

2r20r
2
2

• cos(θ) =
r40−r41−r42

2r21r
2
2

Remark 7 Only two of these three relations are independent. Indeed, if we
apply the addition formula:

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y)

we obtain that the third equation depends only on cos(x) and cos(y).

Proof2: Suppose that a minimum work condition is satisfied, as in Lemma
3, and suppose also a infinitesimal increment dl0 to be added to l0. Hence
the ”cost” of the section l0 is now increased by the increment dl0r

2
0, while

the ”costs” of branches are decreased by cos(θ1)dl0r
2
1 and cos(θ2)dl0r

2
2 re-

spectively. Two similar constructions can be made, representing virtual in-
crements added in turn to l1 and l2. By Proposition (16) we obtain one
equation for each of the three configurations, as follows:

• dl0r2
0 = cos(θ1)dl0r

2
1 + cos(θ2)dl0r

2
2

• dl1r2
1 = − cos(θ1 + θ2)dl1r

2
2 + cos(θ1)dl1r

2
0

• dl2r2
2 = − cos(θ1 + θ2)dl2r

2
1 + cos(θ2)dl2r

2
0

If we divide them by dl0, dl1 and dl2, respectively, and combine the three
expressions, we obtain the thesis. �

Remark 8 By Corollary 1 and Lemma 4 we can obtain these following equiv-
alent formulations for the measure of the angles:

• cos(θ1) =
r40+r41−(r30−r31)4/3

2r20r
2
1

2We are using Murray’s Proof, see [22]
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• cos(θ2) =
r40+r42−(r30−r32)4/3

2r20r
2
2

• cos(θ1 + θ2) =
(r31−r32)4/3−r41−r42

2r21r
2
2

The proof is made of simple algebraic computations and we do not report it
here.
Murray’s ideas were highly appreciated by authors of the last century, but
sometimes his results were not supported by empirical data. For this reason,
some researcher started to change some of Murray’s hypotheses in order to
find more precise theoretical predictions on the measure of branching angles.
They tried to do this in two different ways:

• They tried to consider different optimality principles.

• They tried to generalize Murray’s work to the case of turbulent flows.

2.2.3 Zamir’s Branching Angles

During the last quarter of the previous century Zamir proposed a more gen-
eral method to compute bifurcation angles in arterial system (see [34]). He
supposed that the geometry of an arterial junction is so designed as to min-
imize a functional Hh depending on some properties of blood flow and/or
vessels in the junction. Moreover, he assumed that Hh is addictive, so that
we can write Hh = hl, where l is the length of a vessel segment and h is
the amount of value of Hh per unit length of that segment. Zamir analyzed
different kind of bifurcations in his paper, but here we consider only a bifur-
cation similar to Figure 2.1. Let (x0, y0) the end point of the parent vessel
and (x1, y1), (x2, y2) the final points of daughter vessels. Let also (x, y) the
coordinates of the junction point. So, if Hh = hl0 + hl1 + hl2, we can get the
following:

Hh(x, y) =
2∑
i=0

hi
√

(x− xi)2 + (y − yi)2 (2.6)

Lemma 5 (Zamir, 1976)
If the functional Hh of Equation (2.6) is minimized, the optimal values for
branching angles are:

• cos(θ1) =
h20+h21−h22

2h0h1

• cos(θ2) =
h20+h22−h21

2h0h2

• cos(θ1) =
h20−h21−h22

2h1h2
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Proof : If we rotate the system, we can always suppose that y = y0. If we
differentiate it with respect to x and y we obtain the Jacobian matrix J of
Hh:

J =

∂Hh
∂x

∂Hh
∂y

 =


h0 +

∑2
i=1

hi(x−xi)√
(x−xi)2+(y−yi)2∑2

i=1
hi(y−yi)√

(x−xi)2+(y−yi)2

 =

h0 −
∑2

i=1 hi cos(θi)∑2
i=1(−1)ihi sin(θi)


(2.7)

In a similar way, from (2.7) we can calculate the Hessian matrix A of H (we
omit some computations):

A =

∂2Hh
∂x2

∂2Hh
∂x∂y

∂2Hh
∂y∂x

∂2Hh
∂y2

 =

 h0
l0

+
∑2

i=1
hi
li

cos2(θi)
∑2

i=1(−1)i hi
li

cos(θi) sin(θi)∑2
i=1(−1)i hi

li
cos(θi) sin(θi)

∑2
i=1

hi
li

sin2(θi)


(2.8)

The condition for Hh to be a minimum are:

JT = (0, 0) det(A) > 0
∂2Hh

∂x2
> 0

If we impose these conditions, we find the thesis after some other straight-
forward omitted computations. �

Later Zamir investigated on the optimality principles that could be used
in place during the construction of an arterial system. He described four
different principles. We recall that in biology the lumen is the inside space
of a tubular structure, such as an artery.

1. An arterial junction is in an optimum state when the total lumen sur-
face S of the arteries involved is at a minimum.

2. An arterial junction is in an optimum state when the total lumen vol-
ume V of the arteries involved is at a minimum.

3. An arterial junction is in an optimum state when the pumping power
W required for pumping blood through that junction is at a minimum.

4. An arterial junction is in an optimum state when the total drag force
T acting on its lumen walls is at a minimum.

In a fully developed Poiseuille flow through a vessel segment of radius r and
length l, if f denotes the flow and η denotes the viscosity of blood, the four
previous quantities that we would like to minimize can be written as:
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1. S = sl, where s = 2πr.

2. V = vl, where v = πr2.

3. W = wl, where w = 8ηf2

πr4
.

4. T = tl, where t = 8ηf
r2

In fact, the first two represent, respectively, the surface and the volume of a
cylinder of radius r and height l, while the other two are the pumping power
and the drag force that a flow f , having a viscosity η, acts on the walls of a
cylinder with the same dimensions of the previous one.

Optimality Principle cos(θ1) cos(θ2) cos(θ)

Min. Surface
r20+r21−r22

2r0r1

r20+r22−r21
2r0r2

r20−r21−r22
2r1r2

Min. Volume
r40+r41−r42

2r20r
2
1

r40+r42−r41
2r20r

2
2

r40−r41−r42
2r21r

2
2

Min. Pumping Power
(f40 /r

8
0)+(f41 /r

8
1)−(f42 /r

8
2)

2(f20 f
2
1 /r

4
0r

4
1)

(f40 /r
8
0)+(f42 /r

8
2)−(f41 /r

8
1)

2(f20 f
2
2 /r

4
0r

4
2)

(f40 /r
8
0)−(f41 /r

8
1)−(f42 /r

8
2)

2(f21 f
2
2 /r

4
1r

4
2)

Min. Drag Force
(f20 /r

4
0)+(f21 /r

4
1)−(f22 /r

4
2)

2(f2f1/r20r
2
1)

(f20 /r
4
0)+(f22 /r

4
2)−(f21 /r

4
1)

2(f0f2/r20r
2
2)

(f20 /r
4
0)−(f21 /r

4
1)−(f22 /r

4
2)

2(f1f2/r21r
2
2)

Table 2.1: Zamir’s branching angles for various optimality principles for a
bifurcation similar to the one in Figure 2.1.

Corollary 2 (Zamir, 1976)
The angles written in Table 2.1 are the optimal values for branching angles
when H is S, V , W , T , respectively. Moreover, if Murray’s Law holds (see
Lemma 3), then V is equivalent to W and S is equivalent to T .

Proof : If we apply Lemma 5 where H is substituted by the expressions for
optimality principles written above, we find immediately the first thesis.
The second one follows immediately recalling that by Murray’s Law: f = kr3.
If we substitute this expression into the formulas for W and T we conclude.
�

2.2.4 Generalized Murray’s Law and Angles

In the same years of Zamir, some other authors, such as Uylings (see [29]),
Woldenberg and Horsfield (see [31] and [32]) tried to generalize Murray’s Law
removing the hypothesis of laminar fluid.
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We do not report here their explicit computations. They used Murray’s idea
after having generalized the first term in the quantity E of Lemma 3. Their
idea is to introduce an exponent x ∈ [2.33, 3] that has to be estimated in
order to satisfy the so called Generalized Murray’s law:

f = krx (2.9)

where k depends only on the geometry of the system (as in Lemma 3) and x
depends only on the type of flow inside the blood vessel. If the flow is laminar,
then x = 3 and we get Murray’s Law; however, if the flow is turbulent, as
it happens in the aorta for example, then the exponent x tends to 2.33. All
the intermediate cases are described by an appropriate exponent x in that
range.
Suppose now that, using the notation of Figure 2.1, r1 > r2 (this is always
possible due to arbitrariness of daughter vessel names) and set α = r2/r1, so
α ∈ [0, 1].

Optimality Principle cos(θ1) cos(θ2) cos(θ)

Min. Surface (1+αx)2/x+1−α2

2(1+αx)1/x
(1+αx)2/x−1+α2

2α(1+αx)1/x
(1+αx)2/x−1−α2

2α

Min. Volume (1+αx)4/x+1−α4

2(1+αx)2/x
(1+αx)4/x−1+α4

2α(1+αx)2/x
(1+αx)4/x−1−α4

2α2

Min. Pumping Power (1+αx)4−8/x+1−α4x−8

2(1+αx)2−4/x

(1+αx)4−8/x−1+α4x−8

2α2x−4(1+αx)2−4/x

(1+αx)4−8/x−1−α4x−8

2α2x−4

Min. Drag Force (1+αx)2−4/x+1−α2x−4

2(1+αx)1−2/x

(1+αx)2−4/x−1+α2x−4

2αx−2(1+αx)1−2/x

(1+αx)2−4/x−1−α2x−4

2αx−2

Table 2.2: Woldenberg’s branching angles for various optimality principles
for a bifurcation similar to the one in Figure 2.1, depending only on α = r2/r1

and x.

Corollary 3 (Woldenberg and Horsfield, 1986)
The angle written in Table 2.2 are the optimal values for branching angles
when Generalized Murray’s Law Equation (2.9) holds.

Proof : The thesis follows immediately proceeding as in the first step of
Corollary 2 with Equation (2.9) instead of Murray’s Law �

Remark 9 The couples of optimality principles S,T and V ,W are now equiv-
alent if and only if x = 3, that is when Murray’s law holds.
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2.3 Comparison between Theory and Empir-

ical data

A number of authors in the last forty years tried to verify if Generalized
Murray’s Law (Equation (2.9)) holds for animal circulatory systems and to
estimate the best fitting exponent x.
For example, Zamir studied the circulatory system of a rat in 1983 ([35]). He
concluded that branching angles and branch diameters at bifurcation sites
have to be governed by certain physiological rules that aim to increase the
efficiency of arterial bifurcations as flow dividing units, although he didn’t
understand the case of branching angles completely. Zamir’s results were
similar to others of previous experiments on human and monkey cardiovas-
cular systems. Branching diameters at bifurcation sites seem to follow a
pattern that represent a compromise between the requirement for minimum
lumen volume and minimum pumping power. Branching angles seems to
satisfy the requirement for minimum drag force, too, but they follow this
pattern with considerable scatter. Moreover, using the same notation of the
previous sections, it seems that θ1 < θ2. Finally, the bifurcations seem to lie
in a plane, that is the angle between the parent vessel and the children plane
is very often smaller than 10 degrees.
In 2000 Changizi and Cherniak reported some empirical data for the best
fitting exponent x (see [8]). They found that in larger arteries the flow is
turbulent and x tends to 7/3, while in smaller arteries Murray’s Law seems
to hold. Moreover they constructed a series of minimal volume and minimal
surface trees and they compared them with empirical data in order to find
the best fitting exponent x. They noticed that the optimality principle of
minimum volume seems to be more precise. They found that in general, x
should be in a range between 2.60 and 2.70.
Another example of empirical is given by a paper of Taber and others in
2001 (see [25]). Here the authors studied the evolution of the cardiovascular
system of a chicken embryo using a video recorder and a image analysis soft-
ware. They already knew that in adult chickens generalized Murray’s law
holds for x ' 3 by previous papers. They found that this seems to hold also
in the first days of life of a chicken embryo. This suggests that blood vessels
flow the same basic morphogenetic rules throughout life.
Lastly, as Changizi and Cherniak said ([8]), ”It is therefore implausible to
suppose that arterial trees are actually global optimized [...]. Arterial geom-
etry is not driven by a computationally sophisticated floorplan, and even if
it were, the resources required to compute the optimal geometry for large
portions of arterial networks are super-astronomical.”
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So we can conclude that Murray’s generalized Law (Equation (2.9)) holds for
different values of the best fitting exponent x depending on the species and
on the type of blood flow.

2.4 More on bifurcation angles

The problem of bifurcation angles was treated also from a mathematical point
of view within the theory of Gilbert-Steiner problem of optimal transporta-
tion networks. We’re using some proofs of a work by Bernot-Caselles-Morel
(see [3]) using the notation of Figure 2.2.
In all this section we will suppose the following hypothesis: let A1, A2, A3

Figure 2.2: A schematic representation of a bifurcation angle by [3]

be three distinct point in RN , µ− = m1δA1 + m2δA2 and µ+ = m3δA3 , three
Dirac masses, with m3 = m1 +m2 and m1,m2 > 0.
Firstly, we introduce the following Lemma without reporting its proof.

Lemma 6 (Bernot, Caselles, Morel, 2009)
In the case A1, A2, A3 are aligned, an optimal traffic plan from µ+ to µ−

has its support in the minimal segment containing A1, A2, A3. If A1, A2,
A3 are not aligned, an optimal traffic plan has its support in the triangle A1,
A2, A3. In addition, it is a graph with two or three edges.

We can find the proof of Lemma 6 in chapter 12 of [3]. Now we are going to
show the following Lemma about branching angles:

Lemma 7 (Bernot, Caselles, Morel, 2009)
Let P be an optimal traffic plan from µ+ to µ− made of three edges. With
the notation of Figure 2.2, letting θ = θ1 + θ2, the bifurcation point B has to



2.4. MORE ON BIFURCATION ANGLES 37

satisfy the following angle constraints:

cos(θ1) =
k2a

1 + 1− k2a
2

2ka1
(2.10)

cos(θ2) =
k2a

2 + 1− k2a
1

2ka2
(2.11)

cos(θ) =
1− k2a

2 − k2a
1

2ka1k
a
2

(2.12)

where k1 = m1

m1+m2
and k2 = m2

m1+m2
.

Proof : Because of Lemma 6, it is equivalent to consider the two dimensional
situation, indeed this Lemma tells us that P has to be a segment or a triangle.
Let us consider the graph G(B) made of oriented weighed edges (A1B,m1),
(A2B,2 ) and (BA3,m3), with B ∈ R2 \ {A1, A2, A3}. The cost of this graph
is:

Ea(G(B)) = ma
1 |A1B|+ma

2 |A2B|+ma
3 |BA3|

We can note that this function of B is differentiable on R2 \ {A1, A2, A3}.
Thus, if G(B) is an optimal traffic plan with B /∈ {A1, A2, A3}, the first
derivative of Ea(G(B)) has to cancel.
For B /∈ {A1, A2, A3}, let us denote by ni = AiB

||AiB||
the unit vector from Ai

to B for i = 1, 2, 3. Since:

||AiB + v|| = ||AiB||+ v · ni + o(||v||),

the necessary condition given by the cancellation of the derivative of the cost
function yields the balance equation:

ma
1n1 +ma

2n2 +ma
3n3 = 0 (2.13)

Let θi be the angle between ni and −n3 for i = 1, 2 and k1 = m1

m1+m2
,

k2 = m2

m1+m2
. Multiplying the previous balance equation (2.13) by ni for

i = 1, 2, 3, we obtain the following equalities:

ka1 + ka2n1n2 = cos(θ1) (2.14)

ka1n1n2 + ka2 = cos(θ2) (2.15)

ka1 cos(θ1) + ka2 cos(θ2) = 1 (2.16)

so that the angles have to satisfy (2.10), (2.11) and (2.12) respectively, indeed,
if we recall that n1n2 = cos(θ), we can find (2.12) substituting (2.14) and
(2.15) into (2.16). Now, substituting (2.12) into (2.14) and (2.15) we obtain
(2.10) and (2.11) respectively. �
Lemma 7 is important to show the equivalence between this mathematical
measure of branching angles and the ones in Table 2.2.
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Corollary 4 If m1 = r1 and m2 = r2, the bifurcation angles of Lemma 7
are equivalent to:

1. the Minimum Volume angles of Table 2.2 when a = 2
x
.

2. the Minimum Surface angles of Table 2.2 when a = 1
x
.

3. the Minimum Pumping Power angles of Table 2.2 when a = 2x−4
x

.

4. the Minimum Drag Force angles of Table 2.2 when a = x−2
x

.

Proof : The proof follows immediately recalling that α = r2/r1 in Table 2.2
and that k1 = m1

m1+m2
, k2 = m2

m1+m2
in Lemma 7. We are showing only the

equivalence of cos(θ) for the minimum surface angle.

cos(θ) =
1− k2a

2 − k2a
1

2ka1k
a
2

(Lemma 7 angle)

=
1− (

rx2
rx1+rx2

)2/x − (
rx2

rx1+rx2
)2/x

2 (
rx1

rx1+rx2

rx2
rx1+rx2

)1/x
(Hypotesis on a and ki)

=
(rx1 + rx2)2/x − r2

2 − r2
1

2r1r2

(L. C. D. on the numerator)

=
(
rx1+rx2
rx1

)2/x − ( r2
r1

)2 − 1

2 r2
r1

(Divide both members by r2
1)

=
(αx + 1)2/x − 1− α2

2α
(Definition of α→ Table 2.2 angle)

The other proofs are similar, so we omit them. �

Corollary 4 gives us a link between the cost function of a Gilbert-Steiner
problem of optimal transportation networks and the optimality principles
studied by a number of authors in the last century in order to study arterial
networks discussed previously.

2.5 Further Considerations

We have already seen the development of the theory of branching angles
during the 20th century. There are also some more modern applications of
this discipline. For example in 1999 Kitaoka and Others ([18]) managed to
recreate a 3-D model of the human airway tree. Their computational al-
gorithm had to follow nine empirical laws, some of them based directly on
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Murray papers. The final result was a great approximation of the real hu-
man airway tree and has been very useful in order to study the evolution
of pulmonary diseases. Indeed, in the last years a lot of authors applied
some models based on Murray’s idea about the approximation of blood flow.
These models increased a lot the accuracy on detecting pulmonary diseases.
Another application of Murray’s ideas was for example the research for a
cardiac computed tomography (see [26]).
So we can see that this arguments are largely used in modern medicine to-
gether with computer simulations of models.
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Chapter 3

Dynamic Monge-Kantorovich
and the numerical formulation
of the BTP problem

We can divide the numerical problem of this thesis in three different parts.
Firstly, we work as in [12] in order to obtain a numerical solution of BTP
problem for our initial conditions and domain via the Dynamic Monge Kan-
torovich (DMK) formulation proposed in [12]. Then, we use other codes to
transform this solution into a graph structure. Finally, we simplify this graph
and we study the branching angles of the simplified graph.
In this chapter we are going to analyze the analytical and numerical theory
behind the DMK problem.

3.1 Dynamic Monge-Kantorovich

In this section we are going to show the main results found in [12] that
link dynamic Monge-Kantorovich Problem (see Problem 1) to a system of
PDE’s. There is no complete proof of this link, but there are some theoret-
ical and numerical indications that support their thesis. They started their
work analyzing the behavior of Physarum Polycephalum (PP), a mold that
is able to find the most efficient network path between food sources in a
maze. The PP in the channels of the maze is schematized as an undirected
planar graph G = (V,E), with positive edge length {Le}e∈E and two nodes
indices (v = 1, n) where two unitary food sources are located. We associate
a ”conductivity” function De and a ”potential” (or ”pressure”) function pv
to each edge and node respectively.

41
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Problem 9 Consider e = (u, v) the edge of G connecting vertices u and v,
σ(v) the set of edges having the vertex v in common (this set is called also the
”star” of v) and a non-decreasing function g : R+ → R+ such that g(0) = 0.
The problem is to find the optimal distribution (De, pv) that satisfies:

∑
e∈σ(v)

Qe(t) = fv =


+1 v = 1

−1 v = n

+0 v 6= 1, n

∀v ∈ V (”Kirchhoff-Law”) (3.1)

Qe(t) = De(t)
(pu(t)− pv(t))

Le
∀e ∈ E (”Fick-Poiseuille”) (3.2)

D′e(t) = g(|Qe(t)|)−De(t) ∀e ∈ E (De dynamics) (3.3)

De(0) = D̂e(0) > 0 ∀e ∈ E (initial data) (3.4)

In [6] and in [27] the case g(x) = x was studied. The authors showed that the
conductivity De tends to have a local support on the edges of the shortest
path between the two external sources. Later it has been showed that De

converges to the shortest path for a general planar graph G. Moreover, this
model is equivalent to an optimal transport problem on the graph G if we
consider a balanced forcing term f such that:∑

v∈V

fv = 0

This problem can be rewritten as finding Q = {Qe}e∈E such that:

min
Q∈{Qe}e∈E

∑
e∈E

QeLe s.t.:
∑
e∈σ(v)

Qe = fe ∀v ∈ V

3.1.1 Dynamic Monge-Kantorovich Model

Now we are generalizing the previous model by removing the graph struc-
ture and defining a new problem on an open bounded domain Ω ⊂ Rn and
restricting only to the case in which g(x) = x. The following Problem is
related to Proposition 4.

Problem 10 (Dynamic Monge-Kantorovich (DMK) Problem)
Given a forcing function f : Ω→ R, a continuous analogue of the function f
of Problem 9, DMK Problem is to find a pair of functions (µ, u) : [0,∞]×Ω→
R+×Rd that satisfies the following equations, complemented by zero Neumann
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boundary conditions:

− div (µ(t, x)∇u(t, x)) = f(x) (3.5)

∂tµ(t, x) = µ(t, x) |∇u(t, x)| − µ(t, x) (3.6)

µ(0, x) = µ0(x) > 0 (3.7)

where ∂tµ and ∇ = ∇x indicates partial differentiation with respect to time
and spacial gradient, respectively.

Remark 10 The previous generalization is justified by comparing the equa-
tions of Problem 9 with the ones of Problem 10. In fact, Equation (3.5)
gives the spatial balance of a continuous Fick-Poiseuille flux q = −µ∇u with
potential u (it generalizes the first two equations of Problem 9). Moreover,
Equation (3.6) and (3.7) are the analogue in the continuous setting of the
discrete dynamics described by the last two equations of Problem 9.

In [14] the authors conjecture that the system of equations described in
Problem 10 converges to an equilibrium state as t→ +∞.

Remark 11 Formally, if the system reaches an equilibrium state, then ∂tµ
has to vanish, so Equation (3.6) becomes the constraint stating that the norm
of the gradient of u must be unitary, where µ is strictly greater than zero.

The previous remark is crucial for the following

Conjecture 3 The solution pair (µ(t, x), u(t, x)) of Problem 10 with f =
f+−f− converges to the pair (µ∗, u∗), where µ∗ = µ∗(f+, f−) is the OT den-
sity and u∗ is a Kantorovich potential solution of the L1-OTP (see Proposition
4).

The same authors proved the following theorem in [13] in which they investi-
gate about the kind of solution we expect to find for the system of equations
of Problem 10. The boundlessness of ∇u does not let us to obtain a solution
defined globally in time, but only on a neighborhood of the initial time.

Theorem 7 Given Ω an open, bounded, convex and connected domain in
Rd with smooth boundary, f ∈ L∞(Ω) with zero mean and µ0 ∈ Cδ(Ω) with
µ0 > 0 and 0 < δ < 1, there exists τ0 > 0, depending on f and µ0 such that
the system (S) admits a unique solution pair

(µ, u) ∈ C1([0, τ0[, Cδ(Ω))× C1([0, τ0[, C1,δ(Ω))
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where:

(S) =



∫
Ω
µ(t, x)∇u(t, x)∇ϕ(x)dx =

∫
Ω
f(x)ϕ(x)dx ∀ϕ ∈ H1(Ω)

∂tµ(t, x) = µ(t, x) |∇u(t, x)| − µ(t, x)

µ(0, x) = µ0(x) > 0

∫
Ω
u(t, x)dx = 0

3.1.2 Lyapunov-Candidate functional

The previous result is only local in time, so it does not allow us to pass
to the limit with t → ∞ in (S), but we can identify a Lyapunov-candidate
functional, i.e. a function that decreases along the µ(t)-trajectories, as in
[14]. It is defined for general µ ∈ L1(Ω) and it’s given by:

L(µ) := Ef (µ) +M(µ) (3.8)

where

Ef (µ) := sup
ϕ∈C1(Ω̄)

∫
Ω

(fϕ− µ |∇ϕ|
2

2
)dx M(µ) :=

1

2

∫
Ω

µdx (3.9)

Remark 12 Ef (µ) has already been defined in the Mass Optimization Prob-
lem (see Problem 6) for a general µ ∈M+(Ω).

Now we are going to enunciate some properties about this Lyapunov-candidate
functional. See [12] for their proof.
If we restrict f ∈ F and µ ∈ D, then the functional can be rewritten as:

L(µ) :=
1

2

∫
Ω

µ |∇u(µ)|2 dx+
1

2

∫
Ω

µdx (3.10)

Proposition 17 The functional L : D → R+ defined in Equation (3.10) is
strictly decreasing in time along the solution µ(t) of the equations of Theorem
7 for t ∈ [0, τ(µ0)[ and its time derivative is given by:

dL(µ(t))

dt
= −1

2

∫
Ω

µ(t)(|∇u(t)| − 1)2(|∇u(t)|+ 1)dx
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We can see immediately that the time derivative of L along µ(t)-trajectories
is equal to zero only if |∇u(t)| = 1 on the support of µ(t). This gives us only
one of the constraints of MK equations in this case too, without imposing
the bound on the norm of the gradient in the whole domain.
The previous Proposition suggests us to investigate about a minimum of L,
since it’s time decreasing. This fact let us to show the equivalence between
the minimization of L(µ) and the Beckmann Problem (see Problem 5), which
is equivalent to solving the MK equations.

Proposition 18 Given Ω an open, bounded, convex and connected domain
in Rd with smoothing boundary and f ∈ L1(Ω) with zero mean, then Beck-
mann Problem and the minimization of L are equivalent, which means:

min
v∈[L1(Ω)]d

{∫
Ω

|v| dx : div(v) = f

}
= min

µ∈L1
+(Ω)
L(µ) (3.11)

where L1
+(Ω) is the space of non-negative function in L1(Ω). Moreover, the

OT density µ∗(f) is a point of minimum for L.

The proof of this Proposition can be found in [12], where a duality result is
used. We can see that Equation (3.11) provides further support to Conjec-
ture 3.
This particular Lyapunov-candidate functional can be derived both from
Mass Optimization Problem (see Problem 6) and Kantorovich Dual Prob-
lem (see Problem 4) as the author of [12] showed.

3.2 Numerical solution of MK equations us-

ing DMK

In this section we’re describing the methods used in [12] to get a numerical
solution of MK equations. See this work for further details.

3.2.1 Numerical discretization

Projection Spaces

The approach used to find a solution of the system of equation of Theorem
7 is based on the method of lines.
Spatial discretization is achieved by projecting the weak formulation of the
system of equations onto a pair of finite dimensional spaces (Vh,Wh). Con-
sider a regular triangulation Th of the polygonal domain Ω, characterized
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by n nodes and m triangles and by the characteristic length of elements h.
We also denote with P0(Th(Ω)) = span{ψ1(x), . . . , ψM(x)} and P1(Th(Ω)) =
span{ϕ1(x), . . . , ϕN(x)} the spaces of element-wise constant functions and
continuous and linear Lagrangian basis function, respectively, both defined
on Th(Ω). We define Th/2(Ω) as the triangulation obtained refining each tri-
angle Tk ∈ Th(Ω) (i.e. each triangle Tk is divided in 2d sub-triangles having
the gravity centers of the 2d−1-faces contained in Tk as nodes). The choice
for the space Vh is Vh = P1,h = P1(Th(Ω)). Two different choices of spaces
are made for the projection of the dynamic equation of Theorem 7 by using
Wh = P0,h/2 or Wh = P0,h = P0(Th(Ω)).

Spatial Discretization

If we indicate with N and M the dimensions of Vh and Wh, respectively,
the discrete potential uh(t, x) and the diffusion coefficient µh(t, x) can be
rewritten as:

uh(t, x) =
N∑
i=1

ui(t)ϕi(x) ϕi ∈ Vh µh(t, x) =
M∑
k=1

µk(t)ψk(x) ψk ∈ Wh

The previous finite elements discretization yields the following:

Problem 11 Find the pair (uh(t, ·), µh(t, ·)) ∈ Vh × Wh such that solves
the following system of equations for t ≥ 0 with the zero-mean constraint∫

Ω
uh(x)dx = 0:

aµh(uh, ϕj) =

∫
Ω

µh∇uh · ∇ϕjdx = (f, ϕj) =

∫
Ω

fϕjdx j = 1, . . . , N

(3.12)∫
Ω

∂tµhψldx =

∫
Ω

(|µh∇uh| − µh)ψldx l = 1, . . . ,M

(3.13)∫
Ω

µh(0, ·)ψldx =

∫
Ω

µ0ψldx l = 1, . . . ,M

(3.14)

We can rewrite Problem 11 in matrix form, indicating with u(t) = {ui(t)}
and µ(t) = {µj(t)}, where i = 1, . . . , N and j = 1, . . . ,M , the vectors that
describe the time evolution of the projected system. So we can write the
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following index-1 nonlinear system of differential algebraic equations (DAE):

A[µ(t)]u(t) =b (3.15)

M
d

dt
µ(t) =B(u(t))µ(t) (3.16)

Mµ(0) =µ0 (3.17)

where the N ×N stiffness matrix A is given by:

Ai,j[µ(t)] =
M∑
k=1

µk(t)

∫
Ω

ψk∇ϕi · ∇ϕjdx

and the N components of the source vector b are:

bi =

∫
Ω

fϕdx

We can remove the singularity caused by the homogeneous Neumann bound-
ary conditions by forcing the solution u to remain orthogonal to the vector:

ai =

∫
Ω

ϕidx

The M ×M mass matrix M and the M ×M matrix B are defined as:

Mk,l =

∫
Ω

ψkψldx Bk,l[u(t)] =

∫
Ω

(∣∣∣∣∣
N∑
i=1

ui(t)∇ϕi

∣∣∣∣∣− 1

)
ψkψldx

Then the M -dimensional vector µ0 contains the projected initial condition:

µ0,l =

∫
Ω

µ0ψldx

We can observe that, if we consider Wh = P0,h, then matrices B and M are
diagonal, so the previous system of equations simplifies to:

A[µ(t)] = b (3.18)

d

dt
µ(t) = D[u(t)]µ(t) (3.19)

a · u(t) = 0 (3.20)

µ(0) = µ̃0 (3.21)
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where the M ×M -dimensional diagonal matrix D and the M -dimensional
vector µ̃0 are given by:

Dk,k[u(t)] =
1

|Tk|

∫
Tk

(∣∣∣∣∣
N∑
i=1

ui(t)∇ϕi

∣∣∣∣∣− 1

)
dx

µ̃0k =
1

|Tk|

∫
Tk

µ0dx

where |Tk| is the measure of the element Tk and µ̃0 represents the L2-
projection of µ0 on the triangles of Th.

Time discretization

In order to solve the DAE system (Equations (3.15)-(3.17)) or the system
made of Equation (3.18)-(3.21) we have to define a discretization in time
using either forward or backward Euler scheme. We denote with ∆tk the
time-step size, so that tk+1 = tk + ∆t and (uk,µk) = (u(tk),µ(tk)). Then
the approximate solutions at time tk can be written as:

ukh(x) =
N∑
i=1

ukiϕi(x) µkh(x) =
M∑
l=1

µkl ψl(x)

Now we are going to analyze two different cases: µh(t, ·) ∈ P1,h and µh(t, ·) ∈
P0,h.

Case 1: µh(t, ·) ∈ P1,h

The forward Euler Scheme yields:

A[µk]uk = b

a · uk = 0

µk+1 = (I + ∆tkM
−1B[uk])µk

µ0 = M−1µ0

When backward Euler is employed, we have to solve:

A[µk+1]uk+1 = b

a · uk+1 = 0

Mµk+1 = Mµk + ∆tkB[uk+1]µk+1

µ0 = M−1µ0
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Case 2: µh(t, ·) ∈ P0,h

The forward Euler Scheme yields:

A[µk]uk = b

a · uk = 0

µk+1 = (I + ∆tkD[uk])µk

µ0 = µ̃0

while the backward Euler scheme gives us the following system to solve:

A[µk+1]uk+1 = b

a · uk+1 = 0

µk+1 = µk + ∆tk(D[uk+1]µk+1)

µ0 = µ̃0

where the non linearity is solved by a Newton scheme. We can note im-
mediately that the matrix (I − ∆tkD) is diagonal, so we can compute its
inverse. The stopping criteria is given again by ρ(µm+1,k+1

h , µm,k+1
h ) ≤ τNL or

m > mMAX .

Newton scheme

We would like to solve the following sequence of non-linear algebraic equa-
tions for (uk+1,µk+1):

A(µk+1)uk+1 = b

µk+1 = µk + ∆tk(G(uk+1)[µk+1]α − µk+1)

where the positive definite matrix A(µ) and the diagonal matrix G(u) are
given by:

Ai,j(µ) =
∑
E

µE
∑
e∈E

Γe
i,j Γe

i,j =

∫
ce

∇ϕi · ∇ϕjdx

G(u) =

∑
ce∈CE

∫
ce
|∇uh| dx

|CE|−1

We restate the nonlinear system to be solved at each time step k as the
problem of finding the zero z of the function:
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f(z) =

(
fu(u,µ)
fµ(u,µ)

)
=

(
A(µ)u− b

µ−∆tk(diag[G(uk+1)][µα]− [µ])− µk
)

= 0

Denoting with m the nonlinear iteration index, Newton method for finding
the zero of the above function can be written as:

J(f(zm))s = −f(zm)

zm+1 = zm + s

The Jacobian matrix J is given by:

J(u,µ) =

(
A(µ) BT (u)

−∆tkD1(µ)C(u) D2(u,µ)

)
where the diagonal matrices D1 and D2 and the matrices B and C are given
by:

(D1)E,E = µαE/ |CE| (D2)E,E = 1−∆tk(αµ
α−1
E GE(u)− µα−1

E )

BE,i =

∫
CE

∇uh · ∇ϕidx

CE,i =
∑
ce∈CE

∫
ce

|∇uh|−1∇uh · ϕidx

Each iteration requires the solution of the linear system:

A(µ)su + BT (u)sµ =− cu =− (A(µ)− b)
−∆tkD1(µ)B(u)su +D2(u,µ)sµ =− cµ =− ((µ−∆tk(G(u)(µ)α − µ))− µk)

Now since D2 is diagonal, we can apply its inverse in second equation ob-
taining:

M (u,µ)su = BTD−1
2 cµ − cu

sµ = D−1
2 (−cµ + ∆tkD1Bsu)

where the symmetric matrix M can be written as:

M = A+ ∆tkB
TD−1

2 D1B

Moreover, for ∆tk small enough it is also positive definite.
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Solution of the linear system

We need to solve a large sparse symmetric linear system positive semi-definite
at each Newton iteration. It has this property because there are homoge-
neous Neumann boundary conditions. The system is solved by a precondi-
tioned conjugate gradient method (PCG) because we are solving a sequence
of slightly varying linear systems, so at each system solution we are able to
obtain additional data to solve the next linear system in a more efficient way.
Moreover, using PCG let us to cope more easily with the near singularity of
the stiffness matrix than using a direct solver.
The convergence of the PCG iteration is achieved when the Euclidean norm
of the residual relative to the initial residual norm is smaller than the tol-
erance τCG. The starting point of our iterations is ukh, i.e. the solution at
the previous time step, and the preconditioner is an incomplete Cholesky
factorization with no fill-in.
In [12] we can find also some numerical experiments about the convergence
of the system to closed-form and literature solutions, together with a short
analysis on the computational cost.

3.3 Extension of DMK equations to the BTP

We have already seen that the numerical solution of the system of equations
written in Problem 10 is a good approximation of the solution of OTP. Now
we would like to investigate on a modified system of equations that allows
us to obtain a good approximation of the solution of BTP. In this whole
section we’re going to use the same arguments of [12] and [24]. The authors
of [12] have not succeeded into finding an analytical proof of the equivalence
between BTP and a suitable system of equations, but their numerical results
seem to support this thesis.

Problem 12 (Extended DMK Problem)
Given two forcing functions f± : Ω→ R, continuous analogues of the function
f of Problem 9, Extended DMK Problem is to find a pair of functions (µ, u) :
[0,∞]×Ω→ R+×Rd that satisfies the following equations, complemented by
zero Neumann boundary conditions:

− div (µ(t, x)∇u(t, x)) = f+(x)− f−(x) (3.22)

∂tµ(t, x) = [µ(t, x) |∇u(t, x)|]β − µ(t, x) (3.23)

µ(0, x) = µ0(x) > 0 (3.24)

where ∂tµ and ∇ = ∇x indicates partial differentiation with respect to time
and spacial gradient, respectively.
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Remark 13 If we consider β = 1 in Equation (3.23), we obtain exactly
Problem 10 where f(x) = f+(x)− f−(x), ∀x ∈ Ω.

Conjecture 4 Assuming existence and uniqueness of a solution of the equa-
tions of Problem 12, the solution pair (µ(t, x), u(t, x)) converges toward a
steady state configuration (µ∗(x), u∗(x)), as it happens in the case β = 1.

The solutions of the system of equations in Problem 12 have a very different
behavior depending on the exponent β of Equation (3.23).

Conjecture 5 When 0 < β < 1, the solution pair (µ(t, x), u(t, x) tends to
the state (|∇up|p−2 , up), depending on the exponent:

p =
2− β
1− β

where up is the solution of the p-Poisson equation, with forcing term f =
f+ − f−. (See Proposition 6 for further details on p-Poisson equation).

Remark 14 If β → 1 or β → 0, we obtain the cases described in the previous
sections in good agreement with Proposition 6 and 3 respectively.

A proof of this conjecture can be found in Chapter 3 of [12]. We are not
going to report all the details, because we are more interested about the case
of β > 1. In this case we are not able to identify a formal connection between
Problem 12 and BTP but we are going to show some intuitions about this
relation.
We are only interested on the asymptotic behavior of (µ(t, x), u(t, x)), solu-
tion of the system presented in Problem 12, so we can assume existence and
uniqueness of this solution pair for every t ≥ 0. Now we are able to define the
following Lyapunov-candidate function Lβ(µ) similarly to the case β = 1:

Lβ(µ) := Ef (µ) +Mβ(µ) (3.25)

where:

Ef (µ) :=
1

2

∫
Ω

µ |∇u(µ)|2 dx Mβ(µ) :=


1
2

∫
Ω

ln(µ) if β = 2

1
2

∫
Ω

β
2−βµ

(2−β)
β otherwise

Proposition 19 Assume that a solution pair (µ(t, x), u(t, x)) of the sys-
tem of equations in Problem 12 exists and is C1-regular in time. Then the
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derivative along the µ(t)-trajectory of the candidate-Lyapunov functional Lβ
is given by:

d

dt
(Lβ(µ(t))) =

−1

2

∫
Ω

µ(t)β
(
|∇u(µ(t))|β − (µ

1−β
β (t))β

)(
|∇u(µ(t))|2 − (µ

1−β
β (t))2

)
dx

Proof : We’re using the same proof of [12].

d

dt
L(µ(t)) = −1

2

∫
Ω

∂tµ(t)
(
|∇u(t)|2 − µ

2−2β
β

)
dx

= −1

2

∫
Ω

(
[µ(t) |∇u(t)|]β − µ(t)

) (
|∇u(t)|2 − µ2 1−β

β

)
dx

= −1

2

∫
Ω

µ(t)β
(
|∇u(µ(t))|β − (µ

1−β
β (t))β

)(
|∇u(µ(t))|2 − (µ

1−β
β (t))2

)
dx

where in the second equality we used Equation (3.23). �

Corollary 5 d
dt
L(µ(t)) is decreasing.

Proof : If we set g1(t, x) := |∇u(t, x)| and g2(t, x) := µ
1−β
β (t, x), we obtain:

d

dt
L(µ(t)) = −1

2

∫
Ω

µ(t)β(g1(t, x)β − g2(t, x)β)(g1(t, x)2 − g2(t, x)2)dx ≤ 0

This holds because the integrand is always non-negative. �

Remark 15 Formally, the time derivative of Lβ(µ(t)) is equal to zero if the
following equations are satisfied:

− div(µ∗∇u∗) = f+ − f−

µ∗ = |∇u∗|
β

1−β

(3.26)

The first equation is Equation (3.22), while the second one is equivalent to
set ∂tµ(t) = 0 in Equation (3.23).

Remark 16 We can see immediately how Equation (3.26) can be linked to
the following p-Poisson equation:

− div(|∇up|p−2∇up) = f+ − f−

where p− 2 = β
1−β .
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Now we are enunciating some properties without their proofs (See [12] to
find them). We need them to prove the following Proposition.

Proposition 20 Consider Ω ⊂ Rd an open, bounded, connected and convex
domain with smooth boundary. Take two non-negative measures f+ and f−

on Ω such that df+(Ω) = df−(Ω). Assume that the forcing terms f+ and f−

admit Lq-densities with 1 < q < +∞. Then the following equivalence holds:

min
u∈W 1,p(Ω)

∫
Ω

(
1

p
|∇u|p − fu

)
dx = max

v∈[Lq(Ω)]d

{
−
∫

Ω

|v|q

q
dx : div(v) = f

}
where f = f+−f− and p is the Hölder-conjugate exponent of q. The solution
up of the left-hand side problem and the solution v̄ of the right-hand side
problem satisfy the following relation:

v̄ = − |∇up|p−2∇up

Lemma 8 Consider Ω an open, bounded, convex and connected domain in
Rd with smooth boundary and µ ∈ M+(Ω), f ∈ M(Ω) with zero mean, then
the following equality holds:

Ef (µ) = − sup
ξ∈[L2

µ(Ω)]d

{
−
∫

Ω

|ξ|2 µdx : div(ξµ) = f

}
(3.27)

Remark 17 Since Mβ(µ) does not depend on the variable u in Equation
(3.26), if we add it to both sides of Equation (3.27), we obtain Lβ(µ) on the
left side.

Proposition 21 Let q = 2 − β and P (β) = 2−β
β

. Then the following in-
equality holds:

inf
v∈[Lq(Ω)]d

{∫
Ω

|v|q

q
dx : div(v) = f

}
≤ inf

µ∈LP (β)
+ (Ω)

Lβ(µ) (3.28)

Proof : We can rewrite Lβ(µ) as it follows:

Lβ(µ) = inf
ξ∈[L2

µ(Ω)]d
{Θ(µ, ξ) : div(ξµ) = f} ∀µ ∈ LP (β)

+ (Ω) (3.29)

where:

Θ(µ, ξ) :=
1

2

[∫
Ω

|ξ|2 µdx+

∫
Ω

β

2− β
µ

2−β
β dx

]
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For any pair (µ, ξ) ∈
(
L
P (β)
+ (Ω), [L2

µ(Ω)]d
)

the following inequalities holds by

using Hölder inequality, where 2
q

and 2
2−q are the conjugated exponents:∫

Ω

|ξµ|q dx =

∫
Ω

|ξ|q µ
q
2µ

q
2dx ≤ q

2

∫
Ω

|ξ|2 µdx+
2− q

2

∫
Ω

(µ
q
2 )

2
2−q dx

If we set q
2−q = 2−β

β
(and so q = 2 − β) and we divide by q the previous

inequality, we get:∫
Ω

|ξµ|(2−β)

(2− β)
dx ≤ 1

2

∫
Ω

|ξ|2 µdx+
1

2

∫
Ω

β

2− β
µ

2−β
β dx = Θβ(µ, χ)

which holds for all µ ∈ LP (β)
+ (Ω) and for all ξ ∈ [L2

µ(Ω)]d.
Now, if we take two infima on both sides, the first one over ξ ∈ [L2

µ(Ω)]d and

the second one over µ ∈ LP (β)
+ (Ω), using the previous Lemma, we get:

inf
µ∈LP (β)

+ (Ω)

{
inf

ξ∈[L2
µ(Ω)]d

{∫
Ω

|ξµ|(2−β)

(2− β)
dx : div(ξµ) = f

}}
≤ inf

µ∈LP (β)
+ (Ω)

Lβ(µ)

Moreover, the following inequality holds:

inf
v∈[Lq+(Ω)]d

{∫
Ω

|v|q

q
dx : div(v) = f

}
≤

inf
µ∈LP (β)

+ (Ω)

{
inf

ξ∈[L2
µ(Ω)]d

{∫
Ω

|ξµ|(2−β)

(2− β)
dx : div(ξµ) = f

}}
so we have obtained the thesis. �

Remark 18 In the case 0 < β < 1 we can show the uniqueness of the
minimum µ∗β, due to the strictly convexity of Lβ, but this argument does not
hold for the case 1 < β < 2.

We are going to analyze the case 1 < β < 2 now. As we already said, in
this case it’s not possible to find an unique minimizer for Lβ(µ), but we can
observe how this formulation seems similar to the BTP formulated by Xia
(see Section 1.5.2), where the exponent q plays the role of the branching
exponent α. There is an important difference between Xia’s formulation and
the left-hand side of Equation (3.28): in the first one we are integrating with
respect to the 1-dimensional Hausdorff measure, while in the second one we
are using Lebesgue measure. Nevertheless, the numerical experiments made
in [12] seem to support the equivalence of these two formulations, so we can
enunciate the following:
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Conjecture 6 If β > 1, the solution (µ(t), u(t)) of Equations (3.22)-(3.24)
admits an equilibrium point (µ∗β, u

∗
β) depending on the initial condition µ0.

Moreover, this solution is a minimum of the Lyapunov-candidate functional
Lβ.

We can also observe that, since p = (2 − β)/(1 − β) < 0, the steady state
should be solution of a p-Poisson equation with a negative exponent p and the
only reference about a solution of this kind of equation in the literature can
be found in Xia’s work on BTP, but they are working on a graph structure.
Lastly, we want to highlight that exponents p and q = 2 − β are Hölder-
conjugate.

Remark 19 One possible way to reconcile the two different integration mea-
sures could be an approach inspired by Modica-Mortola idea. In [24] there is
a proof of the convergence for the BTP, but only in the 2-Dimensional case.

3.4 Numerical approach for Extended DMK

equations

We’re using a combination of the P1,h/2-P0,h spatial discretization with the
forward Euler scheme. We can approximate the solution pair (µ(t, x), u(t, x))
of Equation (3.22) with the pair (µh(t, x), uh(t, x)) such that:

uh(t, x) =
N∑
i=1

ui(t)ϕi(x) ϕ ∈ P1(Th/2)

µh(t, x) =
M∑
k=1

µk(t)ψk(x) ψ ∈ P0(Th)

After having applied the same arguments of Section 3.2, we obtain the fol-
lowing sequence of linear systems when using forward Euler time stepping:

A[µk]uk = b (3.30)

µk+1 = µk + ∆tk
[
Bβ[uk](µk)β − µk

]
(3.31)

where A[µk] and Bβ[uk] are the stiffness matrix associate to µk and the
matrix defining the norm of the gradient of uh(t

k, x) raised to the power β,
respectively.
As we did in the case β = 1, we started from the projected initial data µ0

h

and we iterate until:

var(µkh) :=

∣∣∣∣µk+1
h − µkh

∣∣∣∣
L2(Ω)

∆tkk
∣∣∣∣µkh∣∣∣∣L2(Ω)

< τT
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where τT is a fixed threshold. Moreover, in order to avoid singularities, we
impose also a lower bound of 10−10 for µh(t, x). The system is solved again
via Preconditioned Conjugate Gradient (PCG). For further details about the
preconditioner, see Chapter 4 of [12], where some strategies are studied in
order to solve this system of equations efficiently.
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Chapter 4

Numerical Simulations

As we have already seen in the previous chapters, the notion of branching
angles is very important in the biological systems, such as blood vessels, and
are considered as one of the fundamental invariants of a spatially distributed
network structure. In this chapter we study the branching angles that arises
from the numerical solution of the DMK. First, we have to show a relation
between the exponent β of Extended DMK model (see Problem 12 in Chapter
3) and the branching angles found by Woldenberg (see Table 2.2 in Chapter
2). To help the reader, we report here the formulation seen in the previous
chapters that are going to be used for our purpose.

Problem 12 (Extended DMK Model) (repeated)
Given two forcing functions f± : Ω → R, continuous analogues of the func-
tion f of Problem 9, Extended DMK Problem is to find a pair of functions
(µ, u) : [0,∞] × Ω → R+ × Rd that satisfies the following equations, comple-
mented by zero Neumann boundary conditions:

− div (µ(t, x)∇u(t, x)) = f+(x)− f−(x) (3.22)

∂tµ(t, x) = [µ(t, x) |∇u(t, x)|]β − µ(t, x) (3.23)

µ(0, x) = µ0(x) > 0 (3.24)

where ∂tµ and ∇ = ∇x indicates partial differentiation with respect to time
and spacial gradient, respectively.

Corollary 3 (Woldenberg Angles [31] - [32]) (repeated)
The measure of a bifurcation angle of an arterial network is given by Ta-
ble 2.2 (reported below) where x is the exponent of the generalized Murray’s
Law f = krx (see Equation (2.9)), where f and r are, respectively, the flow
and the radius of a blood vessel and k is a constant depending only on the
geometry of the vessel, and α = r2/r1 ∈]0, 1[ is the radii ratio.

59



60 CHAPTER 4. NUMERICAL SIMULATIONS

Optimality Principle cos(θ1) cos(θ2) cos(θ)

Min. Surface (1+αx)2/x+1−α2

2(1+αx)1/x
(1+αx)2/x−1+α2

2α(1+αx)1/x
(1+αx)2/x−1−α2

2α

Min. Volume (1+αx)4/x+1−α4

2(1+αx)2/x
(1+αx)4/x−1+α4

2α(1+αx)2/x
(1+αx)4/x−1−α4

2α2

Min. Pumping Power (1+αx)4−8/x+1−α4x−8

2(1+αx)2−4/x

(1+αx)4−8/x−1+α4x−8

2α2x−4(1+αx)2−4/x

(1+αx)4−8/x−1−α4x−8

2α2x−4

Min. Drag Force (1+αx)2−4/x+1−α2x−4

2(1+αx)1−2/x

(1+αx)2−4/x−1+α2x−4

2αx−2(1+αx)1−2/x

(1+αx)2−4/x−1−α2x−4

2αx−2

Definition 5 (Xia’s Transport path and its energy) (repeated)
Let µ+ and µ− be two positive Radon measures with equal mass in a compact
convex set X ⊂ RN . A vector measure T on X with values in RN is called
a transport path from µ+ to µ− if there exist two sequences µ−i , µ+

i of finite
atomic measures with equal mass and a sequence of finite graphs Gi irrigating
(µ+

i , µ
−
i ) such that µ+

i → µ+, µ−i → µ− weakly as measures and Gi → T as
vector measures. The energy of T is defined by:

Mα(T ) := inf
A

lim inf
i→∞

Mα(Gi) (4.1)

where:
A := {(µ+

i , µ
−
i , Gi) : approximating sequences to T}

We used also the following notation to indicate the cost function:

Mα(µ+, µ−) := inf{Mα(T ) : T is a transport path from µ+ to µ−}

At last, we recall also that there are also some numerical experiments that
seem to link Xia’s minimization problem to the following minimization prob-
lem:

inf
v∈[Lq(Ω)]d

{∫
Ω

|v|q

q
dx : div(v) = f

}
(4.2)



61

Proposition 22 (Angles relations)
If the left hand-side of Equation (4.2) and Xia’s formulation (see Equation
(1.16)) are equivalent, then the following relations between Woldenberg angles
in Table 2.2 and the exponent β in Problem 12 hold:

1. if the optimality principle is the minimum volume, then:

2− β =
2

x
=⇒ x =

2

2− β

2. if the optimality principle is the minimum surface, then:

2− β =
1

x
=⇒ x =

1

2− β

3. if the optimality principle is the minimum pumping power, then:

2− β =
2x− 4

x
=⇒ x =

4

β

4. if the optimality principle is the minimum drag force, then:

2− β =
x− 2

x
=⇒ x =

2

β − 1

Proof : Formally, the thesis follows by substituting a in Corollary 7 with
2− β. �

Remark 20 The previous proof is not rigorous but contains only formal
results, because it is based on the Conjecture 6 in which we stated that the
exponent β of Problem 12 is equivalent to 2−q, where q is the exponent of the
cost function in Definition 4.1, but we want to highlight once more that there
are no proofs of this equivalence, even if there are numerical results which
seem to support it. The critical aspect is the difference in the integration
measures: in Problem 12 the Lebesgue measure is used, while in Section
1.5.2 Hausdorff measure has been used. Moreover, in Proposition 15 we saw
the equivalence of cost functions for the two formulations used and, if these
costs are finite, the solutions of the minimization problems coincide. Lastly,
in Corollary 4 we saw the relation between the angles in Table 2.2 found by
Woldenberg and the angles found by Morel in Lemma 7.

Corollary 6 If Murray’s Law holds (see Equation (2.5)), i.e. if x = 3 in
the previous Proposition, then the exponent β that describes the minimum
Volume and minimum Pumping Power cases is β = 4/3, while for the other
two cases β = 5/3.
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We want to recall that Murray’s Law arises from the hypothesis of having a
Pouiseulle flow. The proof of this Corollary is immediate, but it is interesting
to see that in all these cases 1 < β < 2, corroborating the hypothesis that the
BTP exponent β for the branched part of Problem 12 lies in that interval.
Moreover, if the flow is turbulent (i.e. x = 7/3), then 1 < β < 2 in that case
too, so even in all the intermediate cases in which Generalized Murray’s Law
hold (see Equation (2.9)) we have a link with the branched cases of Extended
DMK model.
Before starting to show some numerical results obtained by applying Ex-
tended DMK model to arteries, we want to highlight that DMK acts at a
”meso-scale” where laminar flow is fully developed and cannot represent the
structure of ”middle-size” or large arteries, in which the flow of blood can be
a turbulent flow or capillaries where diffusion dominates. Before starting to
analyze the numerical results, we would like to highlight the following fact.

Lemma 9 The measure of the bifurcation angles increases as β increases for
every fixed α = r2/r1 ∈]0, 1[.

We do not report here the proof of this Lemma, as it is a direct consequence
of the explicit relation between β and the angles in Table 2.2, we have only to
substitute the expressions for x depending on β that can be found in Propo-
sition 22 into Table 2.2 and then we have only to compute the sign of the
derivative of a function.

4.1 Numerical Methods

In this section we describe the numerical methods used to measure of the
bifurcation angles starting from the DMK model. We need first to build the
graph structure from the solution of DMK and then we have to simplify it
in order to compute the bifurcation angles more precisely.

DMK solution

In the first phase of our method we have to get the solution of the Extended
DMK model described in the previous chapter. After having set the appropri-
ate initial condition, we can proceed as described in Chapter 3. The solution
of the problem is a density µ∗ in the continuous case, while it is a piecewise
constant function in the discrete case. The output is not a network, so it is
not useful in order to compute the measure of bifurcation angles. Moreover,
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our conjecture is that the distribution of µ is fractal. There is no proof of
this fact, but our numerical results seem to support this thesis.
We chose to build a graph from our solution in order to obtain the network
structure we are looking for.

Construction and Analysis of Graphs

We describe the method used to recover the graph starting from the solution
of the DMK model that we obtained previously. Firstly, we select the trian-
gles in which the value of µ is greater than a certain value µmin that has to
be chosen experimentally. Later, we link two of these triangles with a graph
edge if they have a common vertex or edge. Clearly, the resulting graph is
going to have a high number of redundant nodes and edges that will need
to be reduced. This method leads to slightly different configurations when
working on a sequence of refined meshes. To minimize these discrepancies
we consider also the mid points of the selected triangles edges when we are
creating the links, so the number of nodes and edges is even greater than
in the previous case. This behavior is caused by the structure of the trian-
gulation of the FEM. This resulting structure is too complex to be useful
in the identification of the branching points because the adjacency matrix
of this graph has too many non zero entries. Nevertheless, we are able to
identify the set of termination nodes of this graph easily. This set is formed
by the sources and the leaves of the graph. We tried three different methods
in order to simplify the initial graph:

• Firstly, we tried to use the algorithm for the construction of a Steiner
tree, which can be found in the documentation of the Networkx package
of Python (https://networkx.github.io/documentation/latest/
reference/algorithms/generated/networkx.algorithms.

approximation.steinertree.steiner_tree.html). It needs only a
graph and a list of termination nodes as inputs. This information can
be obtained easily from the previous graph, so this method seems use-
ful, but the final result was a bit inaccurate in a neighborhood of the
bifurcation points. This behavior is caused by the definition of a Steiner
tree. The Steiner Tree of a set of termination nodes L of a graph G is
a subgraph S of G formed by a minimal spanning tree for every node
n ∈ L. We recall that a spanning tree of a graph is a subgraph that
is a tree which includes all the vertices of the initial graph and has the
minimum possible number of edges.

• Next, we tried to exploit the dynamics of the system to achieve graph
simplification: we wanted to analyze the result obtained by solving
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the Extended DMK model on the connected components of the graph,
in which we would like to transport a mass density from the sources
to the leaves. Thus we run again the DMK dynamics on the graph
obtained from the FEM mesh. The result of this method was more
accurate than the previous one, but its accuracy was not enough for
our purposes because there were some errors in the larger branches of
the tree, i.e. the branches in which the value of µ is higher.

• Finally, we tried another method to obtain the simplified graph struc-
ture. We decided to use Dijkstra’s algorithm that finds the short-
est path on a graph. We use the graph structure and the algorithm
written by [5] that can be found in https://www.bogotobogo.com/

python/python_graph_data_structures.php and in https://www.

bogotobogo.com/python/python_ Dijkstras_Shortest_Path_Algorithm.

php. Dijkstra’s algorithm computes the graph distance from a fixed
node n0 to every other nodes in a connected component of a graph G,
so we only needed information about the sources of the graph (they will
be the starting points n0) and the edges of the graph. Then we created
the simplified graph as a union of the shortest paths between the initial
node n0 and every leaf belonging to the same connected component of
n0. The final result of this method was similar to the second one, but
there was a smaller number of errors in large branches, so we decided
to use this shortest path method.

Finally, we obtained a tree structure from the initial solution, but this result
is not enough to compute the measure of the branching angles, because this
tree strongly depends on the mesh, so we have to find a simpler tree which
approximates our solution. Firstly, we decided to ignore the branches with
a length smaller than a fixed tolerance tol (usually 2), because this branches
are caused by the initial choice of µmin. We tried four different methods to do
this simplification. Before starting the description of the algorithms used, we
would like to highlight that we can easily extract some important information
from the tree structure. We already knew the sources and the leaves of the
tree from the previous steps, but now we can find the bifurcation points easily
from the adjacency matrix of the tree; in fact, the bifurcation nodes are the
ones with at least three adjacent nodes. The following definition will be used
later.

Definition 19 (Passing Points)
Consider a graph G = (V,E). We indicate with BG and TG the subsets of V
containing the bifurcation points of G and its termination points, respectively.
We call the set of passing points of G: V ⊃ PG := BG ∪ TG.
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We say also that two points in the set of passing points are consecutive if
they belong to the same path between the source and a leaf and there is no
other passing point in this path between them.

Now we are going to describe the methods used to approximate the ”Shortest
Path” graph:

1. Minimum Graph Method
We consider only a minimal tree, made of the sources, the leaves and
the set of bifurcation points

2. Graph Distance Method
We add the additional points if the graph distance between two con-
secutive nodes is greater than a fixed tolerance dG

3. Euclidean Distance Method
We select the nodes that have to be added considering the Euclidean
distances between two consecutive points in the set of passing points.
If this distance is greater than a fixed value d0, usually between 1 and
3.5, we add some intermediate points between them.

4. Security Region Method
We fix a radius r, small enough. Then we compute the distance dpj from
the segment joining two consecutive passing points a and b for every
point pj in a path between these passing points, where j = 0, . . . ,m
and p0 = a, pm = b. If dpj > r, and dpj−1

, dpj+1
< r, and consider

also the point pj in our tree. Indeed, if there are at least two adjacent
points that are situated outside the cylinder of radius r and axis the
segment ab, we decided to consider only the middle point.

The results obtained by minimum graph method are too inaccurate because
it does not consider all the intermediate directions taken by the branch, but
it only links the starting and the final points of it, so there could be some
huge errors during the computations of the angles. That is the reason why we
decided to consider also some intermediate points that are not bifurcations.
In the graph distance method we tried different values for the tolerance dG,
but in all the cases the final result was not too accurate, because a small
tolerance presented the same kind of errors of the shortest path tree, while
a larger one gave us a result similar to the minimal tree described above.
The Euclidean distance method is a bit more accurate than the previous
one, but we have to pay attention to the right choice for d0: if this value is
too small, the resulting tree is not too different from the shortest path tree,
while, if d0 is too large, we are obtaining the same problems of the minimal
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tree.
The last method was usually the more accurate, so we decided to use this
one.
At last we did a final approximation of our tree. We decided to not consider
a pair of bifurcation points if their Euclidean distance is smaller than the
tolerance tol used previously. In this cases we consider only one bifurcation
point situated in the mid point of the segment between the two original
points.

Angles analysis

Finally, from the resulting tree structure we are able to compute the bifur-
cation angles. We know the coordinates of each node of our reduced graph
and we are able to identify the bifurcation points. So we have only to use
the following formula to compute the angle α between two segments:

α = arctan

(∣∣∣∣ m1 −m2

1 +m1m2

∣∣∣∣)
where m1 and m2 are the angular coefficient of the segments between the
bifurcation points and the first node. For every simulation, because of all
the approximations errors in this sequential procedure, starting from numer-
ical errors in DMK finite element solution to arrive at errors in the graph
identification, bifurcation angles are evaluated statistically. Thus we collect
our results in histograms (with bins of 5◦) and evaluate their mean, median,
standard deviation and skewness.

4.2 Example of the method

In this section we are going to analyze an application of our method. We
chose to work with the arterial network of a frog tongue [9]. We can find an
illustration of the cardiovascular network of a frog tongue in Figure 4.1. We
can also extract easily the arterial network, as shown in Figure 4.2 (we have
only to consider the red vessels in Figure 4.1).

Remark 21 In Figure 4.1 we can observe that there are some loops. Our
algorithm is not able to describe behaviors similar to that one, but in [12]
there is a conjecture which states that similar loops are created when the
forcing is non-stationary. In our simulations we are considering only the
case of a forcing function independent from time, even if this hypothesis is
not compatible with the irregular heartbeat.
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Figure 4.1: Circulatory system of
a frog tongue: arteries are drawn
in red, while veins are represented
in blue. Image taken by [9]

Figure 4.2: Arteries in a frog
tongue

Figure 4.1 helps us to identify also the sources and the domain D of the
problem. We can see them in Figure 4.3 and in Figure 4.4, respectively. It is

Figure 4.3: Domain D of the prob-
lem

Figure 4.4: Injection points of the
problem

reasonable to consider the whole domainD as the sink of our problem. Lastly,
we set the initial condition for the density µ as the uniform distribution
µ0(x) = 10−10 ∀x.
After having chosen the resolution method and its stopping conditions, we
can start the simulations. In Figure 4.9 we can observe the dependence of
our solutions from the lower threshold µmin of µ. We can see easily that
there is a difference of some order of magnitude between the minimum and
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the maximum values of µ, so we have to use a logarithmic scale in order to
represent µ. If µmin is quite small, as for example in Figure 4.8 and Figure 4.7,

Figure 4.5: µ ∈ [10−4, 0.5] Figure 4.6: µ ∈ [10−6, 0.5]

Figure 4.7: µ ∈ [10−8, 0.5] Figure 4.8: µ ∈ [10−12, 0.5]

Figure 4.9: Examples of graphical representations of the solutions µ of our
problem for β = 1.20 and various lower bounds for µ for the non-refined
mesh. The region inside the black contour is the domain D of our problem.

the resulting graphs cover all the domain D, so we have too much information
and it is not easy to recover the graph structure and compute the bifurcation
angles. Moreover, we can see also that these two figures have a very similar
profile, so we can suppose that µmin = 10−12 is a condition too strong. If we
raise up the threshold value µmin to 10−6, we obtain a simpler figure than the
previous one, but there are too many branches also in this case, as we can
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observe in Figure 4.6. Our conjecture on the fractal behavior of the variable
µ seems to be satisfied in these three figures. At last, if we raise up µmin again
to 10−4, we obtain Figure 4.5. In this last case we can observe how there is a
smaller number of branches with respect to the previous cases. Here we could
extract easily the graph structure and then we can compute the measure of
the branching angles, but the number of branches is too low, so we usually
look for a compromise between Figure 4.5 and Figure 4.7. After having set

Figure 4.10: Example of solution µ
when β = 1.20 and µmin = 5·10−5.

Figure 4.11: Example of graph ob-
tained by the solution µ when β =
1.20 and µmin = 5 · 10−5.

µmin = 5 · 10−5, in Figure 4.10 we can observe that the number of branches
is not too small or too large, so we decided to keep on working with this
threshold. The next step is to get a graph structure from the solution shown
in the last figure. This graph can be seen in Figure 4.11. We can observe
immediately the presence of a number of microscale loops in the graph, as
we can see in Figure 4.13. That is the reason why we have to simplify it in
order to individuate the bifurcation points. We show here only the ”Shortest
Path” graph which can be found in Figure 4.12. We can observe how the
number of loops is greatly reduced, so we can identify the bifurcation points
easily, but the branching angles depend on the initial mesh too much, so
we have to simplify the graph again in order to obtain a better accuracy
in the measures of the angles. We are going to show all the four methods
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Figure 4.12: Example of ”Shortest Path” Graph obtained by the solution µ
when β = 1.20 and µmin = 5 · 10−5.

described in the previous section. In Figure 4.18 we can see the results of the
applications of every method. In these figures we have already deleted the
smallest branches and joined two near bifurcations points, as we described in
the previous section. Figure 4.14 seems a good approximation of Figure 4.12
for our choices of β and µmin, but there are some evident errors, such as on
the lower corners of the domain. These errors drive us to look for other ways
to approximate the ”Shortest Path” graph of Figure 4.12. The tree obtained
in Figure 4.16 seems not to be independent enough from the original mesh,
so the measures of the angles are quite different from what we can observe in
the other cases. Lastly, the results obtained in Figure 4.15 and in Figure 4.17
are very similar and they seem a good compromise between Figure 4.14 and
Figure 4.12, so we are using usually one of these methods.
Now we are able to compute the measure of the branching angles. We can
see an histogram for every method in Figure 4.23 and a statistical analysis
in Table 4.1.
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Figure 4.13: Zoom of Figure 4.11 in a region near one of the two injection
points: we can easily notice the presence of loops in this graph structure.

We can observe how the Euclidean Distance method and the Security Region
method give us very similar results, but the second one seems to have a higher
accuracy because the difference between Mean and Median is lesser than in
the other case. We can also observe how the method that uses the Graph
Distance to add further points give us results very different respect to the
other three methods.

The case of the Refined Mesh

Now we are going to show the results obtained when we use the refined mesh
for the same exponent β = 1.20. Figure 4.26 shows us that µmin = 10−6 is
not a good choice, because the structure is too complex, as it can be seen
in Figure 4.25. µmin = 10−5 seems a good choice (see Figure 4.24), but we
decided to use a higher value for µmin due to the high complexity of the graph
structure, as we are going to see later. We set µmin = 10−4 and we obtained
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Figure 4.14: Reduced Graph with
only sources, leaves and bifurca-
tion points

Figure 4.15: Reduced graph with
Euclidean distance used for addi-
tional points.

Figure 4.16: Reduced graph with
graph distance used for additional
points.

Figure 4.17: Reduced graph with
security region used for additional
points.

Figure 4.18: Application of the four different reduction methods for the
”Shortest Path” Graph in Figure 4.12
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Figure 4.19: Histogram of the
measure of the bifurcation an-
gles for reduced Graph with only
sources, leaves and bifurcation
points (Figure 4.14).

Figure 4.20: Histogram of the
measure of the bifurcation angles
for reduced graph with Euclidean
distance used for additional points
(Figure 4.15).

Figure 4.21: Histogram of the
measure of the bifurcation angles
for reduced graph with graph dis-
tance used for additional points
(Figure 4.16).

Figure 4.22: Histogram of the
measure of the bifurcation angles
for reduced graph with security
region used for additional points
(Figure 4.17).

Figure 4.23: Histograms of the measure of the bifurcation angles for the four
different reduction methods for the ”Shortest Path” Graph in Figure 4.12
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Reduction Type Mean Median Variance Skewness
Minimal Graph 56 ◦ 36’ 57 ◦ 42’ 336.07 1.67

Euclidean Distance 56 ◦ 12’ 54 ◦ 00’ 441.89 0.70
Graph Distance 49 ◦ 06’ 47 ◦ 30’ 718.45 0.42
Security Region 55 ◦ 48’ 54 ◦ 36’ 355.68 0.82

Table 4.1: Statistical data on the angles of the various reduced graphs for
β = 1.20

the result shown in Figure 4.27. Now we can work as in the previous case
and we can extract the graph from Figure 4.27, obtaining Figure 4.28 We
can observe immediately how the number of edges and nodes in Figure 4.28
is greater than in Figure 4.11, so it will even be more important than in the
previous case to simplify this graph. We used Dijkstra’s shortest path algo-
rithm in this case and we obtain what we can see in Figure 4.29. Now we are
able to find the reduced trees, using the four methods described previously.
Now we can analyze the histograms and the statistical information about the
angles in Figure 4.39 and in Table 4.2, respectively.

Reduction Type Mean Median Variance Skewness
Minimal Graph 55 ◦ 51’ 54 ◦ 54’ 576.16 1.82

Euclidean Distance 56 ◦ 06’ 56 ◦ 18’ 584.88 0.81
Graph Distance 54 ◦ 21’ 60 ◦ 27’ 1117.97 0.01
Security Region 54 ◦ 39’ 51 ◦ 21’ 638.63 1.21

Table 4.2: Statistical data on the angles of the various reduced graphs for
β = 1.20 when the refined mesh has been used.

We can observe easily how the reduction method which uses the graph dis-
tance is very inaccurate. The ”minimal graph method” seems to have a good
accuracy, but, as it happened previously, there are some evident problems
in the lower part of the figure, so we decided to not use this method, so
we always chose one of the other two methods during the last step of the
approximation of the solution µ via graphs.
Before proceeding with the analysis of the results obtained with different
exponents β, we want to discuss about the smallest and the largest angles
that can be observed in Figure 4.23 and in Figure 4.39. A number of them
arises from our approximation methods. When we get the ”Shortest Path”
graph, it may happen that the computed bifurcation points do not coincide
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Figure 4.24: µ ∈ [10−5, 0.5] Figure 4.25: µ ∈ [10−6, 0.5]

Figure 4.26: Example of the solution µ for a fixed β = 1.20 for the refined
mesh and different values of µmin.

with the real bifurcation points, hence in these situations some small angles
may arise. On the contrary, the largest angles arise when we join two near
bifurcation points in the final step of our approximation method.

4.3 Analysis of numerical experiments

In the previous section we showed the results obtained for a fixed exponent
β = 1.20. These results seem to have branching angles similar to Figure 4.1,
so we decided to study mainly some cases in which β ≈ 1.20, but firstly we
would like to show a comparison of our results for β = 1.20 and β = 1.40
in order to show that the thesis of Lemma 9 holds. We are reporting only
the solution µ (Figure 4.40) and the angles analysis for the non-refined mesh
when β = 1.40. We can see the histogram for the angles in Figure 4.41.

Now we are going to compare the statistical data obtained for β = 1.40
with the data we shown in the previous section for β = 1.20. In 4.3 we can
see how mean and median increased as β increased, so our experiments do
not contradict Lemma 9.
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Figure 4.27: Solution µ when β = 1.20 and µmin = 10−4 using a refined
mesh.

β Mean Median Variance Skewness
1.20 55 ◦ 48’ 54 ◦ 36’ 355.68 0.82
1.40 68 ◦ 51’ 74 ◦ 27’ 598.36 0.21

Table 4.3: Comparison of the Statistical data on the angles for β = 1.20 and
β = 1.40 when the non refined mesh has been used.

In Table 4.4 we show the statistical data for the angles for various exponent
β ∈ [1.15, 1.25]. We can observe how basically the measures of the branching
angles seem to increase as β increases, but there are some values, such as
β = 1.19 that seem to contradict Lemma 9. But the errors we obtained are
not too significant, so they may be caused by our approximation methods.
This is the reason why we are going to show graphs and histograms obtained
by the solution of DMK for the values of β analyzed in Table 4.4. We chose
to report here the graphs because branching angles are more evident than in
the solution µ of our problem. Moreover, we are considering the initial graphs
in order to not consider the approximation errors of the reduced graphs.
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Figure 4.28: Graph for µ when β = 1.20 and µmin = 10−4 using a refined
mesh.

As we can observe in Figure 4.51 and in Figure 4.54, there is a number of
obtuse angles, caused by our approximation methods, which distorts mean
and median of Table 4.4 for β = 1.19. In general we can see how there are
some numerical approximation angles (they can be easily observed from the
histograms in Figure 4.44,Figure 4.47, Figure 4.50, Figure 4.53,Figure 4.50,
Figure 4.59,Figure 4.62, Figure 4.65,Figure 4.68 and Figure 4.71), but they
do not distort too much the statistical data in Table 4.4, as we can guess from
the graphs in Figure 4.43, Figure 4.46, Figure 4.49, Figure 4.52, Figure 4.55,
Figure 4.58, Figure 4.61, Figure 4.64, Figure 4.67 and Figure 4.70 so we are
confident about our methods.

4.4 Final Considerations

As we observed in the previous sections, our numerical approach seem to
approximate quite well Figure 4.2, if we ignore the loops that are visible
in this figure. Moreover, our results seem to satisfy the theoretical relation
between the exponent β and the measure of branching angles described by
Lemma 9, so we are confident that, after some modifications, our method
will be able to approximate Figure 4.2 even better.
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Figure 4.29: Shortest Path Graph for µ when β = 1.20 and µmin = 10−4

using a refined mesh.

Finally, we think that we could be able also to find out which of the four
optimality principles described in the biological literature in Chapter 2 rules
our model. Indeed, we can easily obtain information about the measure and
the position of a branching angle in our domain and Proposition 22 gives
us a link between the known exponent β of Extended DMK model and the
exponent x of the generalized Murray’s Law (Equation (2.9)). So, if we were
able to determine the radii ratio α = r2/r1 ∈]0, 1[, we could compare our
numerical results with Woldenberg’s theoretical biological results, described
in Table 2.2. We conjecture that (r2/r1)4 = µ2/µ1, where ri indicates the
radio of the i-th child vessel near a bifurcation and µi indicates its density.
We have not done a sufficient number of numerical experiments, so we are
not able to confirm our conjecture, but we are confident about it.
In conclusion, we think that, if we knew a periodic forcing function which
can approximate well the heartbeat, we are confident that the results of our
experiments will be even more similar to Figure 4.2.
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Figure 4.30: Reduced Graph with
only sources, leaves and bifurca-
tion points

Figure 4.31: Reduced graph with
Euclidean distance used for addi-
tional points.

Figure 4.32: Reduced graph with
graph distance used for additional
points.

Figure 4.33: Reduced graph with
security region used for additional
points.

Figure 4.34: Application of the four different reduction methods for the
”Shortest Path” Graph in Figure 4.29
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Figure 4.35: Histogram of the
measure of the bifurcation an-
gles for reduced Graph with only
sources, leaves and bifurcation
points (Figure 4.30).

Figure 4.36: Histogram of the
measure of the bifurcation angles
for reduced graph with Euclidean
distance used for additional points
(Figure 4.31).

Figure 4.37: Histogram of the
measure of the bifurcation angles
for reduced graph with graph dis-
tance used for additional points
(Figure 4.32).

Figure 4.38: Histogram of the
measure of the bifurcation angles
for reduced graph with security
region used for additional points
(Figure 4.33).

Figure 4.39: Histograms of the measure of the bifurcation angles for the four
different reduction methods for the ”Shortest Path” Graph in Figure 4.29
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Figure 4.40: Solution for the
non-refined mesh when
µ ∈ [5 · 10−5, 0.5] and β = 1.40

Figure 4.41: Histogram of the an-
gles for β = 1.40

Figure 4.42: Solution and angles for the non-refined mesh when β = 1.40

Figure 4.43: Solution for the
non-refined mesh when
µ ∈ [5 · 10−5, 0.5] and β = 1.15

Figure 4.44: Histogram of the an-
gles for β = 1.15

Figure 4.45: Solution and angles for the non-refined mesh when β = 1.15
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Figure 4.46: Solution for the
refined mesh when
µ ∈ [10−4, 0.5] and β = 1.15

Figure 4.47: Histogram of the an-
gles for β = 1.15

Figure 4.48: Solution and angles for the refined mesh when β = 1.15

Figure 4.49: Solution for the
non-refined mesh when
µ ∈ [5 · 10−5, 0.5] and β = 1.19

Figure 4.50: Histogram of the an-
gles for β = 1.19

Figure 4.51: Solution and angles for the non-refined mesh when β = 1.19
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Figure 4.52: Solution for the
refined mesh when
µ ∈ [10−4, 0.5] and β = 1.19

Figure 4.53: Histogram of the an-
gles for β = 1.19

Figure 4.54: Solution and angles for the refined mesh when β = 1.19

Figure 4.55: Solution for the
non-refined mesh when
µ ∈ [5 · 10−5, 0.5] and β = 1.21

Figure 4.56: Histogram of the an-
gles for β = 1.21

Figure 4.57: Solution and angles for the non-refined mesh when β = 1.21
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Figure 4.58: Solution for the
refined mesh when
µ ∈ [10−4, 0.5] and β = 1.21

Figure 4.59: Histogram of the an-
gles for β = 1.21

Figure 4.60: Solution and angles for the refined mesh when β = 1.21

Figure 4.61: Solution for the
non-refined mesh when
µ ∈ [5 · 10−5, 0.5] and β = 1.23

Figure 4.62: Histogram of the an-
gles for β = 1.23

Figure 4.63: Solution and angles for the non-refined mesh when β = 1.23
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Figure 4.64: Solution for the
refined mesh when
µ ∈ [10−4, 0.5] and β = 1.23

Figure 4.65: Histogram of the an-
gles for β = 1.23

Figure 4.66: Solution and angles for the refined mesh when β = 1.23

Figure 4.67: Solution for the
non-refined mesh when
µ ∈ [5 · 10−5, 0.5] and β = 1.25

Figure 4.68: Histogram of the an-
gles for β = 1.25

Figure 4.69: Solution and angles for the non-refined mesh when β = 1.25
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Figure 4.70: Solution for the
refined mesh when
µ ∈ [10−4, 0.5] and β = 1.25

Figure 4.71: Histogram of the an-
gles for β = 1.25

Figure 4.72: Solution and angles for the refined mesh when β = 1.25
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β Mean Median Variance Skewness
Ref 0 1 0 1 0 1 0 1
1.15 53 ◦ 30’ 49 ◦ 00’ 49 ◦ 39’ 46 ◦ 57’ 517.17 528.50 1.43 1.08
1.19 55 ◦ 57’ 55 ◦ 36’ 54 ◦ 39’ 54 ◦ 51’ 415.41 641.86 0.24 0.80
1.20 55 ◦ 48’ 54 ◦ 39’ 54 ◦ 36’ 51 ◦ 21’ 355.68 638.63 0.82 1.21
1.21 60 ◦ 54’ 58 ◦ 21’ 58 ◦ 39’ 57 ◦ 06’ 566.28 648.83 0.99 0.70
1.23 61 ◦ 09’ 58 ◦ 00’ 57 ◦ 06’ 52 ◦ 09’ 488.84 650.85 0.80 0.94
1.25 62 ◦ 51’ 59 ◦ 06’ 61 ◦ 30’ 58 ◦ 09’ 628.11 842.54 0.46 0.72

Table 4.4: Comparison of the Statistical data on the angles for different
values of β.
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