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Abstract

Questa tesi ha il duplice obiettivo di testare un processo automatico di ottimizzazione di una
schiera palare di un compressore transonico, giustificando d’apprima i risultati ottenuti e dettando
poi le linee guida per la riduzione delle perdite e quindi per il miglioramento delle prestazioni.
In particolare, la simulazione prevede l’utilizzo di un software di ottimizzazione basato su un
algoritmo DE, di un software per la creazione del campo di moto e della relativa mesh, e di
un software per l’analisi CFD; questa combinazione consente di ottenere un processo comple-
tamente automatico che, partendo da una pala del tipo “precompressione blade” ne migliora le
prestazioni in termini di riduzione delle perdite aerodinamiche. La pala così ottenuta mostra un
configurazione delle onde d’urto all’interno e all’esterno del canale palare tipica di questa famiglia
di profili, ma evidenziando una sostanziale riduzione delle perdite di circa il 20% rispetto alla
configurazione di partenza. Inoltre, variando le condizioni iniziali del flusso e ottimizzando la
pala per tre diversi angoli di ingresso, si possono dedurre l’angolo d’attacco e il numero di Mach
ottimali che definiscono così le condizioni nominali della nuova geometria.



Contents
1 Introduction 5

2 Compressors Performance Analysis 6
2.1 General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Geometry definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Losses evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Entropy coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Total pressure loss coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Stability analysis in compressor stages . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Compressor design 19
3.1 Cascade performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Shock waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Transonic flow in cascades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Precompression blade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Compressor optimization 39
4.1 Optimization algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Zero order methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Upper order methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Choice of optimization parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 CADO software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Method 50
5.1 CADO setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Flow field setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Grid setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 CFD simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.5 Post-processing setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Results 57

7 Conclusions 72

8 Future work 74



1 Introduction
In modern turbomachinery design, the requirements for increased efficiency and low losses led

to use optimization techniques to gain further improvements in compressor and turbine performance.
For this reason several optimization software were developed, matching different algorithms and
configurations in order to reached the feasibility of the obtained designs. Furthermore, CFD and/or
CSM softwares are required, to complete the optimization process with a further and more severe
check of the feasible designs. In addition, flow field setup and meshing must be done carefully since,
for an automated process, they are set only once, at the iteration beginning, and must fit in all the
different designs. Finally, all the optimization scheme must be validated locally and globally, for
ensuring a successful outcome.
As regards the cascade configuration and possible optimization parameter, the blade shape plays
an important role in loss generation and a well-conditioned shock-loss model has to be established
for each blade type. In particular, several supersonic airfoils were developed as such controlled
diffusion airfoils and precompression blades, respectively DCA and ARL-2DPC 1 in figure 1. Modern
compressor cascades use precompression blades since they allow to reach higher inlet Mach number
and compression ratio at nominal condition (i.e. low loss condition); very thin leading edge and
negative cambered pressure side at leading edge make the related shock and loss model different from
the other blade shape flow pattern, reducing the total pressure loss and providing more safe and
stable operations.

Figure 1: Several supersonic cascade blade shapes with their design Mach number [13]

For these reasons, the optimization of a precompression blade becomes an interesting practice to test
several softwares configurations as well as to develop a even more performant blade shape.
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2 Compressors Performance Analysis
The evaluation of the performance of a turbomachinery is required in order to find the best

setup of every part of the machine. For this purpose, we use pressure changes as performance
evaluation and introduce an investigation about causes of this loss. Note that all below refers mainly
to compressor, while, in some cases, extensions to turbines will be made.

2.1 General information
This brief description will report useful formulas in order to understand the aim and the subject

of this work; for more details see [1],[9].
First the stagnation (i.e. total) pressure for perfect gas compressible flow is:

p0 = p
(

1 +
k − 1

2
M2
) γ
k−1

(1)

where k = cp/cv is the heat capacity ratio (considered constant and equal to 1.4) and p is the static
pressure. Note that equation 1 is true only for calorically perfect gas and that p0 value will be
constant only during isentropic transformations, i.e. it will change through shocks or due to friction.
Therefore its change could be used as loss quantifier.
Likewise, from equation 1 is possible to evaluate the isentropic Mach number at wall:

Miso =

√((p0

p

) k−1
k

)
2

k − 1
(2)

where friction and in general boundary layer presence is neglected assuming not valid the no-slip
condition at wall. Another fundamental equation for a fluidodynamics process of a perfect gas is the
change in entropy; from the second law of thermodynamics, for an incremental isentropic process of a
perfect gas, that increase is equal to Tds = dQ = dh+υ dp with dh = cp dT and p υ = RT . Moreover,
integrating between two known states, it is possible to find the following relation:

∆s = s2 − s1 = cp ln

(
T2

T1

)
−R ln

(
p2

p1

)
(3)

where s1 is an entropy reference value, T2, p2, T1 and p1 could be both static or total temperature
and pressure values and the subscript 1 refers to reference values. This latter conclusion comes from
the nature of static to total condition transition, an isentropic process too. Note that entropy can
not be measured directly and its absolute value is always arbitrary.
Consider the performance coefficients for a compressor stage or the entire machine. First thing to
consider in total isentropic efficiency in equation 4 is the total isentropic enthalpy h0

2 is on denomi-
nator: obviously this term does not allow to take into account irreversible phenomena and leads to
overestimate η.

ηiso =
h0

2 is − h0
1

h0
2 − h0

1

=
π
k−1
k

c − 1
T 0

2

T 0
1
− 1

with πc =
p0

2

p0
1

compression ratio (4)

Moreover, the coefficient just above depends on pressure ratio (i.e. total pressure); so, as the final
pressure p2 increases the ηiso decreases. For that reason the polytropic efficiency is preferred. It
is the isentropic efficiency of an adiabatic thermodynamic process in which the pressure does not
change and it can be seen as ratio between reversible and real work between initial and final state.
Hence, considering a thermodynamic process in which the difference between initial and final pressure
approaches zero, its performance can be evaluated as:

ηpol =
dhis

dh
=

υ dp

cp dT
=
k − 1

k

ln
(p0

2

p0
1

)
ln
(T 0

2

T 0
1

) (5)
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At the end, for practical reasons1, it is better to find a correlation between isentropic and polytropic
efficiency:

ηiso =

(
p2

p1

) (k−1)
k − 1(

p2

p1

) (k−1)
ηpolk − 1

(6)

The equation 6 trend depicted in figure 2, shows how, at fixed polytropic value as pressure ratio
increases, isentropic efficiency decreases; in particular, its drop is inversely proportional to ηpol. On
the other hand, when the polytropic efficiency decreases, isentropic performance will be reduced.
Moreover, as suggested in [2], this correlation make more clear the ηiso dependence to total pressure
through the polytropic efficiency, as shown in equation 5, and the ηpol response to pressure change.

Figure 2: Isentropic-politropic efficiency correlation for compressors for k=1.4 [1]

Considering only the total pressure change, another coefficient could be use, called total pressure loss
coefficient2:

ω =
p0

1 − p0
2

p0
1 − p1

(7)

The latter one depicts the total pressure change trend through two known states. A more useful loss
coefficient for compressors design purposes is the energy or enthalpy loss coefficient :

ζ =
h2 − h2s

h0
1 − h1

(8)

where h2s is the isentropic final enthalpy value obtained in an isentropic compression again to state
23. Note that, as reported in [15], this coefficient results independent from Mach number.
Later, in the next chapters, more details about efficiency coefficients and loss evaluation will be given.
Finally, due to high speed flow (i.e. transonic) condition, only compressible case is taken into account.
1 as mentioned above, the isentropic efficiency changes with pressure ratio and that behavior does not help the

compressor design. Therefore, once fixed ηpol, equation 6 plot helps to choose the best compressor features in terms
of losses reduction

2 in literature some authors refers to it as Y , while others use the chosen ω symbol in order to better distinguish it
from the mass-average coefficient in 22

3 see figure 10
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2.2 Geometry definition
First, consider one or more axial compressor stages, each made by a row of stator and a row of

rotor blades (i.e. static and rotating blades), as depicted in picture 3. Then focus only on two stator
blades, e.g. the ones inside the red box in figure. At this point, in order to leave the more complex
3D case and consider mainly 2D-dimensional flow, split the afore mentioned two blades in a plane:
this is a compressor cascade, as shown in figure 4. The missing blades influence will be taken into
account thanks to periodicity4. Note that, if the blades of a stage are experiencing great twist along
their axis, 2D cascade analysis is not sufficient for accurate aerodynamics purposes.

Figure 3: 3D compressor stages. Figure 4: Focus on two blades of a compressor row.

In particular, stator blade cascades become the core of the entire work, simplifying the analysis but
introducing errors, omitting 3D losses and rotation influence. For these reasons in the following

Figure 5: Focus on two blades of a compressor row

lines some hints to generic turbomachinery performance evaluation will be given. In figure 5 some
important cascade components are shown: flow fields inlet and outlet, blade passage, blade pressure
and suction side and inlet flow angle. The first one is affected by undisturbed flow conditions, while
4 e.g. see flow behavior in picture 58
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between the blades most of the fluidodynamics transformations take place. Obviously for periodicity,
the flow exiting the domain in the upper side enters from the upper side.

Figure 6: 3D detail of a cascade blade with the shroud wall

2.3 Losses evaluation
The term “loss” refers to any flow feature that reduces the efficiency of a turbomachinery,

not showing how a single loss component affects the cycle efficiency. For these reasons an accurate
classification of loss sources with the relative partition in single loss coefficient becomes useful and
necessary. Unfortunately, in Aerodynamics the superposition principle is not completely valid, i.e.
the sum of the effects do not coincide with the effect of the sum. So, despite evaluating the effects
of each loss source introduces uncertainties and errors, this method is the only one possible for an
accurate analysis of the performances of a turbomachinery. Therefore, consider the flow that passes
through a compressors row, as shown in figures 5 and 4. However, it is possible to identify six different
loss coefficients bound to six different sources:

a) boundary layer loss: it can be seen as the work lost due to viscous shear within the boundary
layer; its magnitude depends on boundary layer development, on surface pressure distribution
and on laminar-to-turbolent transition position. Moreover the flow acceleration can increase or
decrease that term, making the boundary layer thicker or preventing separation

b) trailing edge mixing loss simply arises from the mixing of the suction surface and pressure
surface boundary layers with the part of the flow just behind the trailing edge

c) flow separation loss: the detached boundary layer losses are included in this coefficient, but,
for well ed blades, the flow should remain attached so its value will be neglected

d) shock waves loss occurs when the blade passage is choked and the inlet Mach number is above
0.95. In general, in the passage between two blades, oblique shocks are preferred to normal
one6; for this reason specific devices are used, as precompression blade or controlled diffusion
airfoils

e) secondary or end wall loss is due to compressor hub and case annulus boundary layers growth7

that increases the axial velocity distribution in a nonuniform way (see figure 7,13 8. Hence, the
5 for a compressor, while in turbine Moutlet ≥ 0.9
6 normal shocks are stronger than the oblique one, losing more energy and leading to boundary layer separation. More

details in chapter 3.2 and in [9]
7 for a turbine, these boundary are thinner because of the less adverse pressure gradient they are exposed to
8 note that, over the central region of the blade, in each stage, the axial velocity is higher than the mean value based

on the through-flow
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vorticity within the annulus boundary layer will be split at blade stagnation point, resulting in
an highly rotational fluid on the suction surface near the hub and the casing endwalls. That
behavior create a complex and extensive 3D flow field, called also endwall flow, which causes
losses through viscous shear, mixing with the mainstream flow in the blade passage and through
interaction with the boundary layers on the blade surface. Figure 8 shows the intricate flow
structure.

Figure 7: Axial velocity profiles in a compressors [1] Figure 8: Secondary flow structure in a blade passage [1]

f) tip leakage loss: the flow through the clearance gap above the tip of a compressor rotor blades
interacts with the end wall flow and the flow in the passage, creating new losses through mixing
and shear9, as depicted in figure 9. Moreover, it can cause a flow blockage, reducing the
compressor stage overall flow capacity and decreasing the stable operating margin. That above
said can be extend to stator blade and any gaps or seals, where in the first case the clearance
gap is found at stator hub.

Figure 9: Tip leakage flow [1]

Note that the last and second last are 3D components, while the remaining are simply bi-dimensional.

2.3.1 Entropy coefficient

Considering the various loss coefficient formulations in equations 3÷8, the entropy change ∆s results
immediately more interesting than the other ones. Indeed, in many cases, the flow is closely adiabatic,
so only entropy creation by irreversibilities contributes significantly to the loss increase. In addition,
any irreversible flow process creates entropy reducing at the same time the isentropic efficiency (see
equation 4); therefore it is more accurate to evaluate the entropy production coefficients of each
9 for these reasons sometimes it could be consider inside the secondary loss coefficient
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blade row and summing them up to find the whole machine entropy increase. Moreover, entropy
formulation does not change if the evaluated point is on a rotating or stationary blade, while total
pressure and the relative total enthalpy could vary as a result of radius change. Finally, if another
thermodynamic property of the flow at the outlet is known, the whole machine efficiency could be
found.

Figure 10: H-S diagram for cascade flow

For the previous reasons the ∆S in equation 3 will be used in this work as an objective in the
optimization of a compressor cascade. In particular, for adiabatic flow through a stationary blade
row, the total temperature remains constant and so entropy changes depend only on stagnation
pressure:

∆S = −R ln

(
p02

p01

)
(9)

For stator blades and cascade, where total pressure losses are directly bound to entropy increase and
p0 changes can be consider small, the equation 9 becomes:

∆S = −R ∆p0

p0
(10)

Note that, sometimes, the total rate of entropy creation become more useful in the turbomachinery
performance evaluation:

Ṡ = mṡ = −
∫

1

T
V · Fv dV (11)

where V is the local flow velocity vector, Fv is the local viscous force per unit of volume and the
integral is made over the volume. Moreover, as shown in figure 10, a relation between entropy change
and isentropic efficiency exists:

ηiso ≈ 1− T2(s2 − s1)

h2 − h1
(12)

where the approximation is possible only assuming the slope of h-s curve proportional to temperature,
i.e. ∆S ∝ ∆h/T for constant values of loss coefficient. In other words, the static pressure is assumed
constant along the line from 2 to 2s in figure 10. Note that, from the equation above, the loss
efficiency is directly proportional to the specific entropy increase through the machine/cascade and
also to its exit temperature. Moreover, since the overall10 isentropic efficiency is proportional to the
total entropy increase, an irreversible flow process at high temperatures creates lower loss of overall
efficiency than does the same process at low temperature; this phenomena, called reheat effect and
shown in the equation above, causes the polytropic efficiency to be different from the isentropic one;
furthermore, in high pressure stages, the irreversibility effect on overall ηiso results less harmful than
10 i.e. not local but referred to the entire machine/cascade
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in low pressure stages. Finally, taking into account the whole machine, is possible to estimate the
overall efficiency by summing stages entropy increases:

1− ηoverall
ηoverall

=
Texit

∆hoverall

∑
all stages

(1− ηstage) ∆hstage
ηstage T2stage

(13)

Now, at the end of this general discussion, more details will be given in order to evaluate the single
loss sources contribution to overall entropy creation.

Boundary layer This loss is due to velocity change near walls, in particular its more severe in the
inner part of the boundary layer where the velocity decrease more rapidly and the flow is not affected
by the streamwise pressure gradient11. Considering a path along the blade in the x direction, the
overall entropy change due to boundary layer from 0 to a specific point will be:

Ṡ =

∫ x

0

ρV 3
δ Cd
Tδ

dx (14)

where Vδ is the velocity at the edge of the boundary layer, Tδ is the static temperature at the
same point and Cd is the dissipation coefficient which trend depend on Reynolds number and flow
turbulent/laminar behavior:

Cd =


0.0056R

−1/6
eθ for turbolent b.l. with 103 < Reθ < 105

0.002 for turbolent b.l. with Reθ < 103

β R−1
eθ

for laminar b.l.
(15)

where Reθ is the Reynolds number based on momentum thickness, β is a constant which value depend
on pressure gradient trend and, as suggested in [3], it could be chosen as 0.2 12. For completeness, it
is possible to consider the stage overall increase in specific entropy due to the blade boundary layer;
hence, evaluating the ∆S relative to the stage isentropic enthalpy change, the previous equation
becomes:

∆S = ∆his 2
C0

Vx

∑
Cs
p

∫ 1

0

Cd
T

(
V0

C0

)3

d(x/Cs) (16)

where ∆his = 0.5C2
0 is the stage isentropic enthalpy variation, C0 defines the isentropic velocity

bound to his, Vx is the speed along the x direction, V0 is the blade surface velocity, the summation
is over all the blade surfaces, Cs is the total length of the surface (i.e. pressure side or suction side),
Tδ is the static temperature while the Cd is the dissipation coefficient in equation 15.
Moreover, as widely reported in [3], the minimum loss value in compressors case occurs when the
boundary layer is separated, and, unlike in turbines, it becomes necessary to introduce a correction in
the previous formulation in order to take into account the boundary layer separation and evaluate the
right entropy increase. Focusing now on Mach number influence, its effects on entropy are generally
considered small. Otherwise, a temperature increase near the blade plays a significant role, making
necessary to use the surface temperature instead of Tδ. Also the blade surface roughness can affect
the entropy creation, especially for high Reynolds number. Finally, considering 3D flow behavior
too, results clear that surface streamline convergence-divergence may thicker the boundary layer; this
does not affect the entropy unless a boundary layer separation occurs.

Trailing edge mixing In general, due to viscous shear, the mixing of two separate flows leads to
entropy increase, i.e. losses generation. The flow processes here showed are extremely complex and
often unsteady and the rate viscous dissipation is not confined in the boundary layer; for this reason
it is seldom possible to evaluate local entropy variation, while the overall one can be found through
11 as reported in [3], the 90% of the entropy growth occurs at Y + < 250 and the streamwise pressure gradient influence

disappears at Y + > 500. More details about Y + will be found in section 5.3
12 for an analytical and more general result, the Pohlhausen family of velocity profiles should be considered, with
β = (0.1746 + 0.0029λ + 0.000076λ2) and λ as the Pohlhausen pressure gradient parameters which ranges from
12 for a highly accelerated boundary layer to −12 at separation. Since laminar boundary layer appears mostly on
blades with favorable pressure gradients, i.e. λ > 0, the β = 0.2 assumption becomes realistic
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the conservation of mass, energy and momentum applying a control volume analysis. The key feature,
in the previous method, is the assumption that mixing will continue until the flow becomes uniform;
this allow to evaluated the entropy increase without knowing where or how the mixing takes place.
Considering two mixing flows, as

Figure 11: Mixing between an injected and mainstream flows

in figure 11, at the same total temperature and when one stream flow rate is small, the total entropy
rate becomes:

Ṡ =


T mm δs = mc

(
V 2
m−VmVc cosα

T

)
for costant area and pressure

−(mm +mc)
∆p0

p = 0.5V 2
mmc

(
2+3 mc

mm
+
(
mc
mm

)2

T

)
area and pressure dependant

(17)

Note that the second expression in equation 17 refers to incompressible flows with the same stagnation
temperature, same pressure and a relative angle of α = 90°. Moreover, equation 17 again shows that
most of the entropy creation takes place when mm/mc = 5 and within the injected flow, while the
remaining mixing losses could be neglected.
What above mentioned could be deepen considering one of the most important turbomachinery
mixing process, i.e. the mixing due to a wake behind the trailing edge. As explained in [3], the
related entropy production coefficient could be split in three different part, respectively influence by:

• base pressure coefficient Cb, that shows the base pressure pb trend on trailing edge and its dif-
ference with respect to the free stream pressure p∞13. Its role in losses generation is ambivalent:
it seems to cause dissipations in the wake but at the same time it could be seen as the results
of wake dissipations

• boundary layer momentum thickness θ: it measures the entropy generated in the boundary layer
upstream to the trailing edge and shows how the mixing losses are not due only to trailing edge
thickness, i.e. to the relative pb value14

• boundary layer displacement thickness δ∗: its influence in entropy generation becomes more
important when boundary layer separates at trailing edge causing flow blockage, an harmful
phenomenon that could lead to huge and fast loss increase.

Equation 18 show the correlation between the above mentioned terms:

ζ =
∆P0

0.5 ρ V 2
te

=
Cb t

w
+

2 θ

w
+

(
δ∗ + t

w

)2

(18)

with Vte the flow speed near trailing edge, w the passage width, ζ used as entropy generation indi-
cator15 and ∆P0 the stagnation pressure difference between a reference value and the local pressure.
This last term is streamwise-dependant:

d∆P0

dx
= ∆P0 (1−H)

1

V

dV

dx
(19)

13 note that usually pb < p∞, hence Cb < 0
14 in a blade with zero trailing edge thickness, the entropy drop become independent from trailing edge pb and its value

depends on the difference between θ and δe
15 this assumption is valid for incompressible flow only. Moreover, ∆S ∝ ∆h/T
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where x is the streamwise direction, H is the wake local shape factor (always greater than one) and V
is the local speed. Hence, the pressure loss (i.e. the mixing loss) will increase with distance from the
trailing edge and with flow deceleration. At the same time. as depicted in figure 12, wakes become
wider with the increase of trailing edge and boundary layer mixing influence on the velocity profile
(i.e. pressure). Therefore, in total pressure loss coefficient evaluation, the distance from trailing edge
plays an important role allowing to consider wholly or partially the mixing losses.

Figure 12: Flow behaviour through a cascade [1]

At this point is possible to note that in compressor blade the boundary layer is thicker and more
often detached than in turbine, causing the δ∗ to increase its importance in entropy generation, while
the base pressure behavior loses its influence. Actually, in case of flow separation, a low pressure area
appears within the separation, increasing the Cp value and obviously playing a much more severe
role than expected in entropy generation (see figure 58). For this reason, despite its importance in
compressors blade design16, the trailing edge boundary layer separation influence is a major unknown
in loss evaluation and base pressure prediction methods remain uncertain.

Shock waves In shock waves, heat conduction and high normal stresses are the main entropy cre-
ation reasons and its importance increases with mach number (so with pressure) and shock strength.
Considering a plane normal or oblique shock, the pressure rise through it leads to entropy increase,
as reported immediately below:

∆S ≈ R k + 1

12 k2

(
∆p

p1

)3

+ O

(
∆p

p1

)4

(20)

where R and k are constant related to perfect gas theory, p1 is the static pressure just before the
shock and ∆p depicts its increase through the front. It is clear that, as the shock becomes weaker17,
the ∆S decrease in a non linear way and, following the approximation suggested in [3], it drops as a
power of three. In order to better evaluate the total losses in a compressor row, the conservation of
mass, energy and momentum between the cascade inlet and outlet flow could be used, in addiction
16 indeed, as suggested in [3], trailing edge losses could be a big part of the total losses, until about 21%
17 as explained in chapter 3.2, a weaker shock results in a less compressed flow, with a less relevant decrease in velocity

with respect to a stronger shock. These purposes can be achieved splitting the process into two or more shocks or
changing from normal to oblique front, maintaining the flow partially supersonic (more details in chapters , )
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to a control volume in the blade passage. This method allows to predict the overall changes with no
needing to consider the detail of the flow inside the control volume. For this reasons, only losses due
to leading edge shock will be taken into account, while the shock wave-boundary layer interaction
effects needs extra notice. Indeed, at the shock foot, a boundary layer separation bubble will occur,
causing more dissipation; if the shock waves is strong, this may lead to a complete separation, as
usually happened when passage inlet Mach number is more than M1 = 1.4. Thus, in transonic
compressors, reducing M1 through blade thinning and suction side reverse camber helps to decrease
the shock wave entropy creation also splitting the pressure rise between two weaker shock.

Endwall loss “Endwall loss” terms all the losses arising on the annulus walls, within and outside
the blade passage. Here, the flow patterns are bound to the thickness of the upstream boundary
layer and to the turning in the blade row. Hence, for compressors, where the turning is less and the
boundary layer is thicker, endwall loss becomes more difficult to discern from boundary layer loss and
tip clearance loss. At the same time, due to boundary layer deceleration and its related vorticity18,
the endwall flow play a much more severe role in ∆S increasing than in turbines. So, in order to have
a rough idea about its magnitude, the entropy production rate could be found with the following:

Ṡ = 0.25

∫ Cx

0

Cd
T

(V 4
s − V 4

p )

(Vs − Vp)
ρw dx (21)

where Cx is the surface length along the axial x direction, Cd is the dissipation coefficient shown
in equation 15, Vs and Vp are the velocity respectively on suction and pressure side and w is the
local suction-to-pressure surface gap. Another topic of compressors endwall loss is the interaction
between the endwall boundary layer and the blade row and the resulting pressure changes: indeed,
that drop takes place in a more limited area and in a faster way than in a conventional boundary
layer, leading to a high diffusion area beside the suction surface endwall with the resulting separation
and flow blockage. This behavior, as depict in figure 14, is called corner separation. This highly
three-dimensional separation causes huge flow mixing in the passage and even far downstream, with
the relative large increase in mixing losses. Finally, an important clarification must be made: entropy
is not increase directly by endwall loss, but by its interaction with other loss sources.

Figure 13: Annulus boundary layer and blade interaction
[1]

Figure 14: Pressure contours downstream of a stage [1]

Tip clearance loss Clearance gaps in turbomachinery allow the so called leakage flow to pass
from the blade pressure surface into the suction surface, driven by the pressure difference, as shown
in picture 9. This flow usually separates from the pressure side corner of the blade tip through a
separation bubble that reduces the passage area. If the blade thickness is small compared to the
tip gap, the flow may not reattach, as it usually happens in compressors. In addition, the passing
flow emerges as a high velocity jet at the suction surface tip, almost perpendicular to the free stream
flow, generating a vortex with its rotation axis aligned to the streamwise direction. Therefore, tip
18 see velocity profile and its effects in figures 13,8
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clearance losses are mainly due to viscous shear in the gap as well as shear and mixing of the leakage
flow with the free stream. Moreover, the induced blockage leads to total mass flow and work transfer
reduction, that means a decrease in performance and, in compressors, a more serious reduction of the
stable operating range.

Finally, some extra clarifications about losses evaluation will be reported:

• Boundary layer and mixing losses are strongly dependent on blade surface pressure distribution;
for this reason pressure should be maintained as constant as possible, avoiding peaks or falls.
Speed diffusion control over blade walls could help in this purpose

• Precompression blade aimed is to reduce shock wave losses through inlet speed decreasing, as
better explained in chapter 3.4

• Shock and boundary layer losses are comparable in magnitude at inlet Mach number about 1.4
while at higher speed value the first one becomes dominant. This behavior is

• Despite what above said, when the diffusion level on the blade surface become too high, stall
or surge could occur, hence flow separation losses must be taken into account. This scenario is
typical at off-design condition

• Reminding to endwall losses, high velocity leakage flow could prevent corner separations reduc-
ing the entropy generated by secondary flow interaction. In addiction, blade skewness helps to
drive the endwall fluid towards the blade pressure surface reducing the negative secondary flow
effects

• Shrouds or reduced gaps help to prevent losses due to tip clearance. Obviously it is not possible
to completely remove leakage flows, but a minimum value could be reached finding the optimum
distance between blades and machine body

• Focusing on bi-dimensional compressor cascade analysis, three-dimensional losses are out of
the scope of this work. Despite that, as reported in [3], 3D flows generate about 50% of the
total losses and their interaction with other loss sources must be considered for a more accurate
performance prediction

The analytical methods for entropy evaluation presented in this chapter are merely indicative but
extremely representative of loss origin and its development in turbomachinery.

2.3.2 Total pressure loss coefficient

Another way to find losses influence in performance evaluation is to compare total pressure at cascade
inlet and outlet. Total pressure decreases in irreversible process giving an idea about performances
trend. Remembering the previous losses classification, blades boundary layers, flow separation and
shock waves effects in a point in the flow could be evaluated using the equation in 7. Calculation
points are usually chosen along a line normal to the flow field exit (as p02), while reference value
of both static and total pressure are collected in a point in the undisturbed flow before flow-blades
interaction. In order to obtain an useful performance parameter, the previous ω will be integrated
along the p02 “collecting line” averaging with density:

Yp =

∫ s
0
ω ρcx dy∫ s

0
ρcx dy

(22)

where cx is the flow speed along the flow direction and s is the length of the line with the evaluation
points. Therefore, after plotting the ω trend and its average value, from figure 15 is possible to
distinguish the different loss sources: the peak near trailing edge position, at y/s = 0.5, is due to
velocity and pressure change inside the wake19 while, in presence of shock waves, other lower peaks
would appears on right and left side of the major one, as in figure 67. Reminding the equation 22
evaluation method and figure 12, the integration should be done near the flow field exit and, when
19 this wake is due to wall viscous effect and eventual flow separations; its width will increase with distance, as shown

in figure 12
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comparing different configuration performance, at the same x position. Note that, averaging along
the whole flow field width with more than one blade lead ω trend to be periodic, as in picture 67.

Figure 15: Typical total presure loss coefficient trend and its average value [1]

Finally, as above mentioned, Yp evaluation needs to take into account rotational effect: in a stage,
where both rotor and stator are carried, the pressure loss coefficient must be calculated apart for
each component and then summed together.
Three-dimensional losses in compressor are not so easy to find using the mere total pressure change;
for that aim ∆S should be used.
Despite all the drawbacks afore reported, the ω trend will become useful to have an immediate idea
about blades shape role in losses generation (see chapter 6).

2.4 Stability analysis in compressor stages
The performance of a compressor blade change with inlet flow conditions. Therefore, a machine

designed for a certain value of total pressure or flow angle could be less performant as inlet conditions
changes. This behavior becomes more severe in multi-stage turbomachinery, where the performance
of the i-th stage is bound to both the previous and following stages. Considering an incoming flow
with a given total pressure and total temperature, the following relation will be found:

p02

p01
, η,

∆T0

T01
= f

(
ṁ
√
T01

p01
,

Ω√
T01

)
(23)

where ∆T = T02 − T01, ṁ is the mass flow rate through the stages, Ω is the rotor speed and the
subscripts 1 and 2 refer respectively to inlet and outlet condition. So, using the equation 23 and
plotting the pressure ratio through the machine as function of ṁ

√
T01

p01
for several fixed value of Ω√

T01
,

is possible to understand at which conditions the machine operation stability is guaranteed. In figure
16, each of the constant velocity curves terminate at the instability or surge line; beyond this curve
the operation is unstable, that means the machine behavior will be not predictable and performances
are extremely affect by even small flow changes. At high velocity and low pressure ratio, the constant
speed line becomes vertical: here the flow is choked, i.e. at least a shock wave occurs. Hence, as
p02

p01
increases, the isentropic efficiency ηc rises quickly and losses decrease (see figure 16). For these

reasons, transonic compressors are preferred to the subsonic one when high performance is required.
In general, the machine will be allowed to operate along the so called operating line, which is set by
the flow area downstream of the machine and is chosen to pass as close as possible to the maximum
efficiency point. Usually, as reported in [1], for a turbojet engine compressor, this line will be placed at
a fixed pressure ratio value in respect to the instability line, i.e. at a surge margin about SM = 20%,
where:

SM =
(pr)s − (pr)o

(pr)o
(24)

with (pr)o as pressure ratio in the operating line at a certain speed value, while (pr)s is the surge
line pressure ratio at the same Ω√

T01
. Considering the instability line, above it two phenomena could

occur:
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• surge: an axial oscillation of the total mass flow will be generated, with relative noise and
mechanical vibration increase. The efficiency will decrease immediately.

• rotating stall : when it happens, the blades of the same row stall in separate patches which
rotate around the annulus. This rotation is simply due to increase of flow incidence in the left
side of the stall and to the relative decrease in the other side20. Therefore, the stall is led to
move to the left, loading and unloading each blade at a frequency that may be close to the
blades natural frequency. Hence, rotating stall could cause blades failure with a resulting severe
increase in losses. About the mass flow, in this case it will be simply redistributed over the
annulus without oscillation.

At this point becomes clear that both previous phenomena can be considered as a disturbance of the
natural oscillatory modes of the compression system. In particular, the disturbance quickly grows into
a large amplitude form wave, leading the machine to instability. For these reasons, the stability of a
compressor can be considered equal to the stability of waves generated by surge and stall; damping
them helps to keep the machine below the surge line. Casing treatments, for example, could help to
damp the small amplitude waves rotating about the annulus prior to stall.
Finally, the non-dimensional mass flow value results fundamental in stability maintenance and, con-
sidering equation 23, it is related to the total pressure ratio, i.e. to Mach number. An inlet condition
change, such as flow incidence angle variation, leads to speed change, and the machine can deviate
from the operative line condition, as shown in figure 16. For these reasons, when varying flow property
at inlet, an accurate stability analysis is strongly recommended, together with an off-design analysis.

Figure 16: Operative range of 10-stage compressor [1]

20 as better explained in the next chapter, an increase in flow incidence could encourage blade stall
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3 Compressor design
Compressors blades must be designed in order to make the flow achieving the required pressure

rise, furthermore tolerating variation to the operative point without over-designing the machine. For
these reasons flow properties, cascades and blades shape must be chosen carefully balancing benefits
and drawbacks.

3.1 Cascade performance
The presence of more blades obliges the designer to consider additional parameter for an

accurate performance evaluation. Therefore, in addition to ∆s coefficient, diffusion factor, fluid
deviation and incidence must be taken into account and their influence on losses requires an accurate
analysis.

Diffusion factor Growth and separation of blade boundary layer can reduce dramatically the
performance of the cascade; in particular, high levels of velocity diffusion on the blade surfaces tent
to generate thick boundary layer with the resulting separation. Moreover, it is proved that the
diffusion in velocity over the suction surface plays a much more severe role than the pressure one in
losses generation; the reason, as better explained in [1], is that the suction side produces the largest
portion of the blade wake. Hence, the difference between leading and trailing edge speed on that
surface can be used as a boundary layer behavior quantifier and can be evaluated with the following
diffusion factor :

DF =

(
1− c2

c1

)
+

(
cθ1 − cθ2

2 c1

)
s

l
(25)

where c1, c2 are the flow speeds at the two opposite corners of suction surface, 1 − c2/c1 represent
the mean deceleration, cθ1, cθ2 are the tangential components, (cθ1 − cθ1)/2 c1 is the flow turning
while s/l is the pitch-chord ratio, as shown in figures 17,18. About the latter term, it proves how well
the fluid is guided between the blades: a low value means lower pressure gradients across the blade
passage required to turn the flow, i.e. a well guided flow, so low speed diffusion. When DF > 0.6 flow
separation occurs, while a well-designed and high performing blade operates with a diffusion factor
around 0.45. Finally, the equation 25 is used with both compressible and incompressible flows but
for preliminary design purpose only. In the latter condition, DF equation can be written showing
its dependance to flow angle, wake momentum thickness and, finally providing a simple relationship
with total pressure loss coefficient21.
Another way to evaluate the speed diffusion can be found in the De Haller number, simply the ratio
between c2 and c1. As reported in [1], in order to reduce boundary layer losses, its value should
remains above 0.72.

Figure 17: Flow velocity within a turbomachinery [1] Figure 18: Velocity distribution above blade surface [1]

21 incompressible case is reported here only for completeness. More details are found in [1] in chapter 3.5
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Fluid deviation At trailing edge the flow does not follow the blade camber line completely; here
diffusion plays an important role, making the flow not moving in a single direction and causing
streamlines divergence. Moreover, blade pitch and boundary layer viscous effects will increase the
fluid deviation: the first not allows the flow to well follow the passage shape while the latter leads to
fluid blockage and relative blade shape modification. Hence, the flow deviation can be quantified as:

δ∗ = mθ

(
s

l

)n
with m = 0.23

(
2a

l

)2

+
α∗2
500

(26)

where m depends on camber line shape and stagger, θ here stands for the blade camber angle, s/l is
the pitch-cord ratio, n is a constant which value is about 0.5 for compressor cascades and 1 for inlet
guide vanes, a is the distance from the leading edge along the camber line, α2 the exit flow angle
and the superscript ∗ refers to nominal or design conditions. So, the equation 26 demonstrates that
the deviation increases with pitch-cord ratio and blade camber. Furthermore, as explained below, is
possible to relate the above δ∗ to the incidence angle i, showing how its increase will rise the flow
deviation.

Incidence effect The incidence angle is simply the angle between the flow and the camber line
tangent and it can be evaluated such as the difference between the inlet flow angle α and the metal
angle α′ :

i = α1 − α′1 (27)

as shown in figure 5; obviously α′ is the slope of the tangent to the camber line. Furthermore, while i
varies from positive to negative values, over blade surface three different Mach number distributions22
take place. From figure 19:

• if i = 0 the inlet flow angle is almost parallel to the camber line, giving a smooth and continuous
pressure distribution and the deflection of the flow is entirely due to blade camber; for these
reasons in this case (termed design condition), the flow angle α is called optimum angle (clearly
equal to the metal angle) and losses due to boundary layer and separation are minimized.

• when i > 0 the fluid begins to flow against the blade pressure surface, accelerating on suction
side near leading edge and suddenly decelerating to a speed comparable with the mainstream
velocity. At this point high local diffusion, i.e. high DF values, leads to severe flow turning and
blade loading; moreover, Miso increases quickly near the leading edge on suction side, showing
the so-called leading edge spike. As the incidence increases, boundary layer becomes thicker
and near transition, while flow can separate leading to stall. Hence, with a positive i, losses are
always higher than in other configurations.

• if i < 0 Mach behavior changes completely from the previous case, showing the opposite trend:
at leading edge, on pressure side, the flow accelerates, increasing diffusion, while, on the other
side, DF values become lower than at i > 0. Therefore, the whole flow turning is reduced,
as well as the blade loading and obviously the overall losses. At very high values of negative
incidence the diffusion become higher and the flow can separate on the pressure side.

Incidence and isentropic Mach number are related. Furthermore, when the flow becomes transonic,
machine stability is strictly affected by incidence value and inlet speed. Indeed, from figure 20, at
positive incidence the flow compression is limited by velocity diffusion on pressure side while at i < 0
choking and pressure side diffusion do not allow safe operation. In both condition, as the inlet speed
approachesM = 1, the machine tolerance decreases quickly, i.e. flow will choke or starting to separate
even with small deviation from design incidence.
22 i.e. isentropic Mach number distribution, Miso or Ms in figure 19
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Figure 19: Incidence effects on blade isentropic Mach number [1]

Figure 20: Incidence and inlet mach number influence on compressor stability [1]

Unique incidence principle In a supersonic cascade with subsonic axial velocity, the inlet flow
results dependent to the inlet Mach number, or better α1 = f(M1). This correlation simply comes
from chocking condition, since when a normal shock occurs inside the passage, the back pressure can
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be varied without affecting the upstream flow anymore. For this reason, at maximum back pressure
(i.e. the p2 value that caused the passage normal shock), the corresponding inlet flow conditions are
called “unique incidence” condition; increasing that inlet angle means enhancing the detachment of
the bow shock at leading edge. In section 3.4 this principle, together with the dependency depicted in
figure 16, will be important to understand and justify the behavior of a precompression blade cascade
at off-design conditions

3.2 Shock waves
At Mach number equal or aboveM = 1 the flow behaves in a different way than at lower speed.

That difference is more severe when it interacts with a wall or in general in a duct and the results
of this interaction can be useful in order to increase or decrease static pressure for “free” through the
so-called shock waves. Three different types of shock waves exist, normal, oblique or expansion waves,
all caused by the flow passage through M = 1 imposed by boundary conditions such as high outlet
static pressure or section changes. Note that, when dealing with transonic and supersonic speed, the
change in density must be taken into account, i.e. when M > 0.3 the flow is considered compressible
and the density changes according to equation 28:

ρ0

ρ
=

(
1 +

k − 1

2
M2

)1/(k−1)

(28)

where ρ0 is the total fluid density, ρ is the density of the part of the fluid at a certain speed and
k = cp/cv the specific heat ratio. As clear, the density decreases with the Mach number increase and
its change is related to static pressure through the equation 1. In the next lines the different shocks
features will be briefly explained. More details can be found in [9] chapters 7, 8, 9.

Normal shock A normal shock is an adiabatic and nonisentropic phenomenon which implies a
discontinuity in the flow. In particular, this discontinuity propagates through a gas such as an
acoustic wave; the latter moves thanks to limited amplitude pressure waves at a speed a that depends
on the elastic behavior of the fluid:

a =
√
υ Es =

√
k RT with Es = −υ

(
∂p

∂υ

)
s

= k p (29)

where Es is the isentropic bulk modulus of the gas (more details in [16]), υ = 1/ρ is the specific
volume, R is the gas constant and a is also referred as speed of sound. Note that, once the gas type
is chosen (i.e. R and k remains constant), the speed value varies with static temperature. Therefore,
considering a fluid moving into a duct, where the flow reaches the sonic speed value a shock wave can
occur with the resulting pressure perturbation. That nonisentropic perturbation affects the whole
flow, splitting the field into two areas at different speed, one at supersonic (u > a), the other at
subsonic speed (u < a). Not only speed and pressure show a discontinuity: static temperature,
density, total pressure and obviously entropy change across the shock, while total temperature and
total enthalpy remain the same. In particular, the flow properties variation ahead and behind the
shock (respectively subscript 1 and 2 in figure 21), can be
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Figure 21: Normal shock wave with flow conditions ahead and behind it [9]

simply evaluated by using the continuity, energy and momentum equations rearranged as in equations
30÷32, plus the perfect gas law in equation 33 and sonic relation in equation 29. Note that, what
happens inside the shock (where friction must be taken into account) can be neglected, focusing only
on flow

u1 + ρ1 = u2 + ρ2 continuity (30)

h1 +
u2

1

2
= h2 +

u2
2

2
= h0 energy equation (31)

p1 + ρ1 u
2
1 = p2 + ρ2 u

2
2 momentum (32)

p υ = RT perfect gas law (33)

behavior just before and after the source of this perturbation. Therefore becomes useful to replace
the speed expression with the Mach number formula, that allows to immediately distinguish subsonic
from transonic flow:

M =
u

a
(34)

where M < 1 for subsonic speed, while for supersonic velocity M > 1. Finally, when M = 1, the
flow reaches the speed of sound, i.e. u = a and in this case a shock wave occurs. At this point, the
so-called Prandtl-Meyer equation can be reported, giving the basic relation for normal shock waves:

M∗1 ·M∗2 = 1 with M∗ =
u

a∗
=
k + 1

2

M2

1 + k−1
2 M2

(35)

where M∗ is the critical Mach number and a∗ =
√
k RT0 is the critical speed of sound. Note that

the equality just above simply imposes the M2 value to be subsonic if M1 is supersonic and vice-
versa, permitting a shock to emanate from both subsonic or supersonic flow. Otherwise, a normal
shock wave from a subsonic flow would make the entropy to decrease, breaking the second law of
thermodynamics (i.e., from equation 3, if M1 < 1 and M2 > 1, the entropy value must decrease
through the shock); a normal shock wave, with the resulting nonisentropic change in flow condition,
is possible only from flow at speed above the speed of sound. For this reason, in the following lines,
no reference to “subsonic normal shock” will be made anymore. Moreover, the T0 dependence keeps
the a∗ value constant through the shock and allows the equation 35 to become the starting point for
the remaining flow properties evaluation. Hence, from the Prandtl-Meyer equation, the Mach number
behind the normal shock can be found in function of the upstream Mach number M1:

M2
2 =

M2
1 + 2

k−1
2k
k−1M

2
1 − 1

(36)
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Finally, static temperature, static and total pressure and density values change follows from the
replacements of equation 36 into the rearranged energy equation 31:

T2

T1
=

(
1 + k−1

2 M2
1

)(
2k
k−1M

2
1 − 1

)
(k+1)2

2(k−1)M
2
1

(37)

p2

p1
=

2k

k + 1
M2

1 −
k − 1

k + 1
(38)

ρ2

ρ1
=
k + 1

2

M2
1

1 + k−1
2 M2

1

(39)

p02

p01
=

(
k+1

2 M2
1

1 + k−1
2 M2

1

) k
k−1 (

2k

k + 1
M2

1 −
k − 1

k + 1

) 1
1−k

(40)

As clear from figure 22 and equations 36÷40, upstream Mach number increase reduces speed and total
pressure, while static pressure, static temperature and density increase. So, in order to obtain the
higher pressure increase possible across the shock, M1 value should be increase, obviously avoiding
flow separation or severe loss generation.

Figure 22: Flow properties trend across a normal shock wave with k = 1.4 [9]

At the end can be useful to highlight the most important features of normal shock waves, in order to
better understand how to exploit it in transonic compressors:

• The shock wave is a very thin region (thickness comparable to the free path of the molecules)
in which friction and thermal conduction play an important role on the flow structure inside it.
Outside it, no viscous effects will be taken into account

• No deviation is achieved: fluid remains normal to the shock

• Shock waves occur only from supersonic to subsonic speed when high value of back pressure are
required to an initially supersonic flow

• Static temperature increase is not due to heat transfer from or to an external location, but to
kinetic-to-internal energy conversion across the shock
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• The increase in pressure is basically due to energy dissipation through the shock; therefore it
is a “free” and sometimes positive result

• The ratio between the flow properties before and after the shock depends completely on inlet
Mach number M1

• Once the sonic condition is reached, the flow is chocked and any change in downstream flow
condition does not affect the fluid before the shock

• Flow is considered steady and the body forces will be neglected

Oblique shock A normal shock wave is a particular case of the more common oblique wave. This
discontinuity has the same nature of the previous one but is caused by a deviation of a supersonic
flow along a concave surface, as shown in figure 23. Furthermore this deviation turns upward the
streamlines into the main bulk of the flow through the same wall angle θ, while shock wave is also
deflected through another angle β. For these reasons the main speed v must be split into normal
and tangential component, as in figure 23. Hence, substituting V 2 = u2 + w2 into the continuity,
momentum and energy equations 30÷32, the resulting governing equation for oblique shock wave are:

u1ρ1 = u2ρ2 continuity (41)

w1 = w2 momentum - tangential component (42)

p1 + ρ1 u
2
1 = p2 + ρ2 u

2
2 momentum - normal component (43)

h1 +
u2

1

2
= h2 +

u2
2

2
= h0 energy equation (44)

In particular, in oblique shock the tangential component of the flow is constant across that shock
(see momentum equation 42) and, as consequence, the property changes across the wave are governed
only by the velocity component normal to the oblique shock wave, as clear in equation 44. Note that,
despite they are written precisely in the same way, the speed in equations 30÷32, results made only
by the normal component, i.e. V = u in normal shock equations. Similarly, the correlation between
upstream and downstream flow properties must be rearranged introducing the normal Mach number
Mn:

Mn1 = M1 sinβ (45)

Mn2 = M2 sin(β − θ) (46)

where β is the angle between the inlet flow direction and the shock and θ gives the angle between
the downstream flow and the shock, as shown in figure 23; hence, Mn1 and Mn2 are respectively the
component of the pre- and post-shock speed in the direction normal to the wave. At this point, Mn2,
T2, p2, p02 and ρ2 can be evaluated from 36÷40 in terms of Mn1 and through equation 46 the Mach
number value of the outcoming flow is found.
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Figure 23: Oblique shock wave with flow conditions ahead and behind it [9]

No more details can be given about the flow behavior until finding the correlation between the
deflection angle and the shock wave angle. So, from continuity and momentum equations 41, 42
rearranged with speed components23 and trigonometric substitutions, follows the θ−β−M relation:

tan θ = 2 cotβ
M2

1 sin2 β − 1

M2
1 (k + cos 2β) + 2

(47)

Therefore, the flow behavior across an oblique shock can be solved through θ and its maximum value
θmax once plotting this equation as in figure 25:

• when θ > θmax no straight oblique shock can occur and a detached shock is the only solution
possible; indeed, for any given upstream Mach number M1, a maximum deflection θmax exists.
In that case, the so-called curve shock shows a normal wave near the corner plus an oblique
shock away from the wall, as better explained in paragraph 3.3. Hence, increasing the inlet
Mach number, the range of θ raises, avoiding the detachment; moreover, that increase has a
limit at about 45.5° , where M1 approaches infinity

Figure 24: Oblique shocks: (a) attached and (b) detached [9]

(a) (b)

• when θ < θmax, two straight oblique shocks are possible: a strong solution with a certain β
value or a weak solution with a lower β angle24. So, above the θ = θmax curve (red dashed line
in figure 25) the strong shock solution prevails with a steep shock wave, high normal component
of upstream Mach numberMn1 and the relative high compressed and subsonic downstream flow
(i.e. M2 < 1). On the other hand, below that line, the flow remains supersonic (M1 > M2 > 1)
with a lower β value and less pressure increase. Note that, also in the weak case a subsonic
solution is possible, but only very near θmax. Finally, in nature, the more common solution is
the weak one, so it can be state that with a straight, attached oblique shock is always M2 > 1

23 from figure 23 , tanβ = u1
w1

and tan(β − θ) = u2
w2

24 the shock wave with higher β angle will compress the flow more than the lower-angle shock wave (see equation 38
with M1 = Mn1); hence the term “strong” and “weak” solution
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• if θ = 0°, the strong solution is given by a normal shock wave (i.e. β = 90°) while the weak
case occurs when β = arcsin(1/M1). The latter angle is called Mach angle µ and represents the
case of an infinitely weak oblique shock, the weakest shock wave possible, that behaves exactly
as an acoustic wave. In both cases the flow streamlines will show no deflection

• at a fixed value of the deflection angle, an upstream mach number increase leads to a less steep
shock wave and static pressure raise. In the other hand, with constant upstream flow speed, as
the deflection increases the shock wave inclination and p2 value become larger. Obviously only
the weak solution is considered.

At this point is clear that normal shock waves are only a particular shock case that, in general in
compressors, should be avoided while an attached, oblique shock with high p2/p1 value is preferred.

Figure 25: Oblique shock properties for k = 1.4 in the so-called θ − β −M diagram

Expansion wave When a supersonic flow is turned away from itself, as in figure 26, an expansion
wave is formed in a shape of a fan centered in the wall convex corner. This expansion fan is a
continuous expansion region, that can be seen as an infinite number of very weak Mach waves, each
making the Mach angle µ with the flow direction. In particular, the originally horizontal streamlines
ahead of the expansion wave are deflected smoothly and continuously through the expansion fan
such that the streamlines behind the wave are parallel to each other and inclined downward at the
deflection angle θ. This continuous deflection, that is bounded upstream by a Mach wave with the
angle µ1 with respect to the flow and downstream by another Mach wave with the angle µ2, causes
an isentropic expansion.
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Figure 26: Expansion wave with flow conditions ahead and behind it [9]

Hence, unlike normal and oblique shock, across an expansion wave the entropy does not change
(∆s = 0) and T01 = T02 = T0, p01 = p02 = p0. This important feature, bound with the continuous
flow change through the expansion fan, allows to describes the behavior of the flow inside the wave
with the following differential equation:

dθ =
√
M2 − 1

dV

V
(48)

where the infinitesimal change in velocity dV is related to the infinitesimal deflection dθ. Integrating
the first side of the equation 48 between 0 and θ, the second term between M1 and M2, and after
some rearrangements, the so-called Prandtl-Mayer function υ(M) can be written:

υ(M) =

√
γ + 1

γ − 1
tan−1

√
γ − 1

γ + 1
(M2 − 1)− tan−1

√
M2 − 1 (49)

θ = υ(M2)− υ(M1) (50)

where the speed-dependent function υ is the key to the evaluation of the flow properties change across
an expansion wave. In particular, after calculating υ(M1) then υ(M2) thanks to equation 50 and the
known θ angle, is possible to find the downward Mach number M2 again from the Prandtl-Mayer
function. At this point, the remaining properties follows from isentropic relation for a calorically
perfect gas.
Finally, summing up the most relevant features of expansion waves, is possible to note that:

• unlike an oblique or normal shock, an expansion wave is not a “line”, but an ensemble of
infinitesimal shock waves that spread out from the wall corner, imposing a continuous and so
isentropic change in speed and direction to a “slice” of the flow

• across that shock the flow speeds up, the static pressure decrease as static temperature and
density do. For these reasons, while an oblique shock is required to increase the static pressure
“for free”, an expansion wave can be used to re-accelerate the flow after a shock in order to
spoilt all the energy of the fluid

• thanks to its isentropic behavior, an expansion wave does not create losses making this kind of
wave even more different from the previous phenomena

In order to close this brief introduction on shock wave, it can be useful to note that oblique and
expansion waves are two or three dimensional while normal shocks are pretty one dimensional. Fur-
thermore, across each shock the flow streamlines can be deviated but remain at the same distance
from each other.
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3.3 Transonic flow in cascades
When flowing inside a duct, section changes, wall boundary layers and obstacles can modify

the flow behavior and influence existing phenomena such as shock waves; in turn, shock waves can
“change” the geometry seen by the fluid in order to reached the exit flow conditions. Hence, what
happened for example inside a compressor cascade required more attention and deeper analysis. In
the next lines this need will be satisfied.

Section change A concave or convex surface imposes a deviation to the flow causing non-isentropic
phenomena such as oblique shock. Moreover, when dealing with variable-area-duct, its section in-
crease or decrease can isentropically influence the flow behavior even with no shock wave or entropy-
losing phenomena. In such case, starting from the differential form of the continuity and the energy
equation for an inviscid, adiabatic flow, respectively d(ρ V A) = 0 and dh + V dV = 0, a relation
between density ρ, speed V and area A change can be found:

dρ

ρ
+
dV

V
+
dA

A
= 0 (51)

After some other passage and thanks to the pressure-density dependence in isentropic flow25, the
so-called area-velocity relation in equation 52 allows to relate directly area and velocity change:

dA

A
= (M2 − 1)

dV

V
(52)

Hence, when a flow enters a variable-area duct as in figure 27, its response to section change depends
on its inlet velocity:

• if the incoming flow is subsonic, i.e. 0 ≤ M < 1, the term between parentheses in equation
52 is negative. Hence, through converging ducts (dA < 0) the flow will speed up (dV > 0)
in order to maintain the equality in the area-velocity relation; in the other hand, in diverging
ducts (dA > 0), the speed will decrease (dV < 0)

• if the incoming flow is supersonic, i.e. M > 1, the term between parentheses in equation 52 is
positive. Hence, through converging ducts (dA < 0) the flow will speed down (dV < 0) in order
to maintain the equality in the area-velocity relation; in the other hand, in diverging ducts
(dA > 0), the speed will increase (dV > 0)

• when M = 1, the equation 52 reaches its minimum value, or better the sonic condition is
achieved in a section of the duct with the smallest area.

Figure 27: Compressible flow in converging and diverging ducts [9]

This latter point requires more clarification since dA/A = 0 mathematically can correspond even
to a local maximum in area distribution. Contrariwise, this condition will be soon discarded when
25 for the moment, no shock waves or non-isentropic phenomena will be taken into account. Hence, for isentropic,

compressible flow dp = −ρ V dV
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considering a nozzle/diffuser, i.e. a combination of a converging and a diverging duct which aims is
to isentropically speed up/down a fluid, as depicted in figure 28a: indeed, from equation 52, the only
way to make subsonic an initially supersonic flow is to reach the sonic condition in the section of the
duct where A is minimum, i.e. in the so-called throat. Likewise, a subsonic flow becomes supersonic
only accelerating and passing through the duct throat at M = 1. Hence, in an isentropic nozzle or
diffuser the throat area At coincide with the “sonic section”, or better At = A∗. This known area can
be used to evaluate the Mach number at any location in the duct thanks to the following area-Mach
number relation: (

A

A∗

)2

=
1

M2

[
2

k + 1

(
1 +

k − 1

2
M2

)] k+1
k−1

(53)

in which A is the area of the section in the chosen location and A/A∗ < 1 since At = Amin = A∗.
Therefore, the area-Mach number relation gives two possible solutions for M at a given A/A∗, one
subsonic and another supersonic; the choice between these cases depends on pressure at inlet and
outlet of the duct. Moreover, equation 53 confirms again that, after chocking, the sonic conditions
throat are the only connection between the supersonic and the transonic area (more details in chapter
3.2). So, since equation 53 states that M = f(A/A∗), the distribution of M and hence the resulting
distribution of p and T are univocally given once the nozzle area distribution is known.
At the end, consider the nozzle in figure 28b: there, the flow is not isentropic any more, hence total
pressure and entropy do not remain constant. Section changes speed up/down the flow again but
even thanks to oblique shocks (where the flow is turned against itself), expansion shocks (where the
flow is turned away from itself) and normal shocks. Moreover, due to entropy increase across the
shock waves and in boundary layer, the real throat area becomes At > A∗. This is a clear example
of how a compressor cascade can be designed in order to compress a flow in the best way possible.

Figure 28: Supersonic diffusers: (a) ideal (isentropic) and (b) real case [9]

(a) (b)

Detached shock When the deflection imposed to a supersonic flow is too severe, i.e. θ > θmax,
a detached and curved shock occurs. In particular, with the blunt body in figure 29, the shock is at
distance δ from the nose and is a combination of normal and oblique shock waves. Therefore, the
so-called curved bow shock shows in point a a normal shock, with the relative subsonic and rectilinear
flow after the wave. In point b, the shock becomes oblique and the flow follows the strong shock-wave
solution, as showed in figure 29. Here, the deflection increases and reaches its maximum at point
c. Above it, all the points correspond to the weak solution and from c′ the downward flow remains
supersonic. In particular, in this position, the so-called sonic line divides the supersonic from the
subsonic flow. Moreover, the shape of the detached shock, its distance δ and flow behavior between
the wave and body nose depend on M1 and the shape of the body.
Obviously, this flow condition with normal and strong oblique shock wave should be avoided in order
to decrease losses and flow detachments (more details in paragraphs 2.3 and 3.2). Finally, the above
analysis can be applied either to the detached shock case in figure 24b. Note that, bow shocks and
in general shock wave over a cone extend in three-dimensional space: therefore the two-dimensional
oblique shock theory in section 3.2 is no longer sufficient and a more sophisticated analysis is required,
as better reported in chapter 4 of [17] and in chapter 9 of [9].
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Figure 29: Curved bow shock over a supersonic blunt body and its θ − β −M diagram [9]

Shock interaction and reflection The oblique shock in figure 23 seems to extend unchanged
to infinity. However, in real inviscid transonic flow, the incident shock wave can impinge against a
solid boundary like the wall of a duct or a blade side, generating another wave, called reflected shock
wave; both waves can be left running or right running, depending on starting point position and flow
conditions. Considering the case depicted in figure 30a, the incident left-running shock, generated at
A, diverts the flow by the concave surface angle θ making the streamlines no longer parallel to the
upper straight wall; so, in order to satisfy the no-slip condition along that surface, another shock wave
branches from the impingement point B turning the flow tangent to the wall again. In particular,
three different region can be distinguish: in region 1 the flow is supersonic with no deflection (θ1 = 0);
in region 2 the streamlines are turned upward by an angle θ2 = θ and the speed decreases through
the oblique straight shock (M2 < M1); in the third part of the flow, streamlines must be turned
downward and become tangent to the upper wall, so θ2 = −θ with the related M3 < M2 and Φ 6= β1.
At this point, two different solution can occur:

• if θ < θmax 3, i.e. M1 is quite enough above the minimum speed for a straight oblique shock,
so either M2. Therefore, both the shocks are straight, as showed in picture 30a. The flow
properties can be simply evaluated applying the oblique shock formulation, first for the shock
between region 1 and region 2, suddenly to the flow passing through the reflected wave. Note
that, considering the more common weak shock solution only (see figure 25), the flow remains
supersonic in the whole pattern

• if θ > θmax 3, i.e. the flow after the incident shock is too slow. Therefore, the incident shock
must be curved near the upper wall, terminating with a normal shock, named Mach stem and
the reflected wave becomes curved too, as depicted in picture 30b; consequently, the streamlines
at the upper wall are allowed to continue parallel to the wall behind the shock intersection; for
these reasons this wave pattern is called Mach reflection and can be numerically solved only by
the Von Neumann’s three-shock theory. To conclude, in this case the flow becomes subsonic, but
only after the normal shock and strictly above the slip line or slipstream (a discontinuity over
which the pressure remains the same, Mach number has identical direction, entropy changes
discontinuously and viscous effects influence the flow). More details can be found in [18]
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Figure 30: Oblique shock reflection from a wall: (a) regular (straight shock) and (b) Mach reflection (curved shock)
[9]

(a) (b)

Another type of shock interaction is depicted in figure 31a, in which a left- and a right-running
straight shocks impinge in point E generating the two refracted waves called respectively C and D.
Considering a duct with walls at different slope (e.g. θ1 > θ2), the fluid deviation in region 2 is higher
than in region 3, as consequence, M2 < M3. The following shocks turn the streamlines in region
4 parallel to streamlines in region 4′, in order to maintain velocity across the slip line at the same
direction (but not with equal magnitude). Moreover, if θ1 = θ2, the intersecting shocks will have the
same strength, flow pattern become symmetrical and s4 = s4′ , so there is no slip line. In addition,
note that, depending on upstream conditions, the two incident shocks A and B can become curved
and meet at E with normal shocks.
Finally, two left-running shocks generated at corners with different slope will impinge and two straight
oblique shock will branch from the intersection point, as suggested in [17] and in figure 31b. Actually,
the shock named CD is the natural propagation of the two incident waves, while the shock CE is a
reflected wave that can be a weak oblique shock or a expansion wave. The purpose of this ambivalence
is to change flow conditions in region 4 in order to satisfy slip line requirements, i.e. p4 = p5 and
θ4 = θ5; moreover, this choice depends on the upstream conditions θ1 and θ2.

Figure 31: Intersection of: (a) a right-runnig and left-running shocks and (b) two left-running shocks [9]

(a) (b)

Shock-boundary layer interaction Taking into account the afore neglected viscosity, boundary
layer presence influences shock waves behavior and vice versa, however not mixing and imposing a
severe change in flow properties. For these reasons becomes necessary to focus on the flow configu-
ration depicted in figure 32: a incident shock wave emanating from point A impinges the boundary
layer at point D, not directly the wall. The infinitely large adverse pressure gradient, experienced
in the impingement point, will make the boundary layer to separate from the surface. In the sepa-
ration region the flow becomes subsonic, while in the opposite side of the boundary layer it is still
supersonic; this huge pressure difference moves the separation point ahead of the theoretical inviscid
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flow impingement point, i.e. in C. In turn, from this point, the separated boundary layer deflects
the supersonic flow into itself generating a second shock wave, called induced separation shock wave;
moving downward, the boundary layer will reattach at point E, turning the flow upward and so
causing a third shock wave (reattachment shock wave); between the second and the third waves, as
obvious, expansion waves occurs speeding up the flow; finally, further away from the plate, at point
F , the separation and reattachment shock merge in the conventional reflected wave already experi-
enced in inviscid flow. Note that, a laminar boundary layer will separate more readily than turbulent
boundary layer, with the related more severe attendant consequences. Consequently, as suggested
in [9], this shock-boundary layer interaction will increase total pressure loss, enhance the peaks of
heat-transfer rate and encourage flow separation. However, at second glance, this interaction seems
to improve flow performance and directly control fluid direction. To better explain the last sentence,
take the case of the over expanded nozzle in figure 33a as reported in [19]. Here, the nozzle expansion
ratio (exit-to-throat area ratio) is too large for a given nozzle pressure ratio (exit-to-inlet pressure
ratio), i.e. the pf/p0 value from equation 53 with Af/At is lower than the real nozzle pressure ratio
(where pf = pa); therefore, the flow is driven to expand below exit back pressure. At this point, only
flow separation from the nozzle flaps and the two related lambda-shape shocks allow the fluid pressure
to enhance, reaching the required exit value. The named lambda-shape shock is a evolution of the
shock system ABCD in figure 32: the incident shock AB is replaced with a curved oblique shock
that affects the middle of the duct, while the remaining waves are straight oblique shocks; hence, the
lambda structure is the combination of two identical and specular Mach reflection phenomena (see
figure 30b). With this configuration, the flow is subsonic beneath the separations bubble and after
the shock center, however it remains supersonic in other flow regions. Moreover, after the shock, the
actual section is reduced to A0 by the separation bubbles, remaining constant until the exit (Af = A0)
and obtaining the desire Af/At value (see figure 33a).

Figure 32: Schematic illustration of shock wave-boundary layer interaction [9]

This “pressure adjustment mechanism” becomes important at off-design conditions, where the shock
system moves upward and downward inside the nozzle in order to adapt the pressure to the exit
value, changing the effective flow section. Therefore, the nozzle centerline pressure trend in figure
33b shows a different behavior as the inlet pressure p0 decreases (or better, as the NPR = 1/(pa/p0)
reduces). Near design condition. i.e. NPR ≤ 5.423, the pressure trend has no shock induced peaks
since the exit pressure value is reached (hence, from picture 33a, pf = pa). At NPR just below 5,
the flow becomes over expanded (pf < pa): a lambda-shape shock occurs within the nozzle outlet
causing the p to increase to the exit value. As the inlet pressure decreases, the shock moves upstream
and the “pressure step” becomes larger; as soon as NPR reaches 1.4, the huge pressure rise starts
at throat (x/xt = 1), where a normal weak shock develops. In order to better understand that
pressure adjustment trend, the Schlieren photographs in figure 34 are necessary. At design condition

33



(figure 34a), the sonic velocity is reached before the nozzle throat (dark band ahead of x/xt = 1),
then flow pressure is decreased by expansion waves and suddenly a left- and right-running straight
shock system enhances pf to the exit value pa; so no lambda-shape shocks are required and the
flow is completely attached inside the duct while expansion fan emanates from the nozzle side at
exit. Decreasing the NPR, the flow inside the duct becomes dependent of pressure ratio and at
NPR = 3.4 the lambda-shape shock appear at exit, the flow separates between the lambda feet and
nozzle walls causing the decrease in actual exit area. In figure 33c, the expansion and compression
waves inside the nozzle disappear, the lambda shock system approaches the nozzle throat and the
flow shows fully detached boundary layers; this separation imposes stronger turning requirements
than a closed separation bubble and so it requires a bigger oblique shock system. For these reasons
the size and extent of a lambda foot is more a result of separation effects than the development of
basic shock-boundary layer interaction conditions. Furthermore, the separation point behaves like
the nozzle exit, decreasing the expansion ratio and reducing the flow area to the area along the shock
steam. Finally, at very low pressure ratio (see figure 33d), only a normal weak shock occurs at nozzle
throat and no flow separation develops since the boundary layer is too thin.
In conclusion, the flow separation is not the mere result of a strong shock-boundary layer interaction
but the natural trend of an over expanded nozzle flow to adjust the expansion ratio through separation.
In other words, the flow detachment depicted in figures 33 is the result of the shock-boundary layer
mutual dependence. Therefore, when a inlet flow state change (e.g. the inlet Mach number) does
not allow the fluid to adapt to nozzle exit conditions, a shock induced boundary layer separation can
“vary” the nozzle geometry adjusting the outlet pressure and meanwhile “choosing” the more efficient
and lower expansion ratio. For these reasons, off-design nozzle thrust efficiency can be improved
encouraging stable separation and controlling its location and extent through passive porous cavity
or thanks to specific geometrical devices.

Figure 33: Overexpanded nozzle flow (a) sketch with lambda-shape shocks and (b) centerline pressure trend at
different NPR = p0/pf values [19]

(a) (b)
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Figure 34: Schlieren photographs of a overexpanded nozzle at several NPR values: (a) 8.95, (b) 3.4, (c) 2.0 and (d)
1.4 [19]

(a) (b)

(c) (d)

3.4 Precompression blade
In order to achieve a low-loss cascade, pressure gradient on the the airfoil should be minimized

reducing shocks strength and avoiding normal or strong oblique shocks; moreover, the inlet flow
velocity should be reduced as well as the flow separation. Finally, the cascade should be able to
operate at off-design conditions remaining in safe-operation range (see 16). Accordingly with this
consideration, in a supersonic compressor cascade, low losses and so high performances can be achieved
using precompression blade, also called s-shape blade. As showed in figures 5 and 35a, this blades
class reveals a very thin leading edge, a characteristic concave shape of the suction side at inlet, a
thickness concentrated towards the trailing edge and a s-shape camberline. Such features lead to a
flow behavior inside the cascade that can differ from the situation depicted in the previous sections.
Before going on, becomes necessary to distinguish the cascade dependent flow parameters from the
independent flow variables: the latter are obviously the inlet Mach number M1, inlet flow angle, the
static pressure ratio p2/p1 and the axial-velocity-density ratio AVDR, as reported in equation 54;
however, exit flow angle, exit mach number M2 and total pressure loss coefficient Yp are strongly
influenced by the previous variables. Note that, in chocking condition, the flow incidence at inlet
becomes dependent to M1 too (following the unique incidence principle, as reported in section 3.1).

AVDR =
ρ2 cx2

ρ1 cx1
(54)

Shock model A typical shock pattern of a supersonic cascade can be reduced to the so called two-
shock model, in which a detached bow shock, two oblique strong shock (at inlet and in the middle
of the passage) and a completely separate boundary layer on suction side generate large pressure
gradient and so high value of losses. Thereby, as suggested in [13], the reduction of the inlet Mach
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number through a precompression blade makes neglectable the bow shock detachment, turns the
first normal shock into oblique shock, reduces the strength of the second passage shock and tends
to avoid downstream boundary layer separation on suction side. In particular, taking as example
modified two-shock model reported in [13] and depicted in figure 35b, the negative camber surface
near leading edge turns the flow into itself generating left-running compression weak shocks that
isentropically reduces the fluid velocity and intersect the bow shock of the adjacent blade (point B).
The left-running bow shock (AF ), that turns into subsonic velocity the flow just ahead the blade
leading edge, attenuates rapidly its strength with distance; nevertheless, it enters in the blade passage
impinging the adjacent blade boundary layer. This interaction, generates a delta-shape shock (EF )
and cause large boundary layer separation (point D). The second passage shock (G) is normal and,
depending on inlet flow condition, does not interest the whole blade-to-blade section. Note that, all
the possible shock patterns of a supersonic compressor cascade are simply the combination of the
flow and shock interaction reported in chapter 3.3.

Figure 35: Precompression blades in ARL-SL19 supersonic compressor cascade: (a) section and geometrical param-
eters and (b) shock wave pattern at design condition

(a) (b)

Off-design condition At this point, changing the independent flow variables, the above depicted
flow pattern can vary completely. Remembering the unique incidence principle (i.e. the inlet flow
angle is imposed by the shock ahead of the blade and back pressure change does not affect the
upstream flow), AVDR, inlet mach number and static pressure ratio influence on cascade shocks
behavior will be analyzed. At first, as the inlet Mach number enhances, the maximum static pressure
achievable increases, as well as the total pressure loss. On the other hand, the variation of cascade
static pressure ratio (fixing the remaining inlet conditions) causes a large alteration in blade passage
and exit flow fields, besides affecting the cascade performances. In other words, pressure ratio and
so back pressure rise strengthens shock-boundary layer interactions with the relative increase in
boundary layer separations and Mach reflections; moreover, as p2 become larger, an already formed
lambda-shape shock system (e.g. DEF in figure 35b) moves upward reducing its strength until it
almost disappears; at the same time, an oblique shock inside the passage will form a lambda-shape
shock with the related boundary layer complete separation; hence, back pressure increase cause an
increment in viscous losses while losses due to shocks are reduced. Last but not least, AVDR increase
will shift upstream the second passage shock, steepening the wave at inlet and so reducing the effective
section between the blades (as happens when large boundary layer separation and so lambda-shape
shocks occur, as explained in section and figures 34). In addition, the exit flow angle (i.e. β2 in
figure 35a) reduces while the flow turning increase (β1 − β2 with fixed inlet condition β1) in order to
maintain a constant static pressure ratio and so a constant exit flow area; in other words, as the AVDR
increase, the related section contraction will be avoided simply maintaining the flow more parallel to
the passage walls. In conclusion, reduction in losses can be achieved enhancing AVDR value and this
decrease will be more severe at higher static pressure ratios. Note that, this performances increase
occurs only with sonic-to-subsonic exit conditions, as suggested in [20]. Moreover, the AVDR value
can varied keeping constant p2/p1 thanks to the unique incidence condition.
As an example, the graphs in pictures 36 show how, as AVDR and p2/p1 increase with fixed inlet
Mach number, the curved shock at the end of the passage moves upward becoming even more thin
and normal, while the oblique shock at entrance turns into a delta-shape shock. Considering theMiso

trend along the blade pressure side, the progressive reduction of leading edge peak (the so-called sonic
pocket) from 1.4 to 1.1 is simply due to rear shock shifting and weakening; on the other hand, the
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lambda-shape shock generation and the related increase in boundary layer separation on suction side,
cause the Miso trend to becomes steeper within the passage inlet; in particular, the isentropic Mach
number shows a steep decrease near suction side separation point, i.e. where the delta-shape shock
occurs. Similarly, the total pressure loss coefficient Yp (named ωη in pictures 36) shows a decrease in
shock induced losses (i.e. a reduction in ωη peak at half blade pitch) and an increase in boundary
layer losses (i.e. ωη values at passage sides become higher).

Figure 36: Influence of static pressure ratio on isentropic mach number, shock pattern and pressure loss coefficient
at M1 = 1.58 and different AVDR [20]

Strong interaction region The lambda-shape shock at passage inlet requires a further analysis,
since its interaction with boundary layer and the flow can change the whole cascade performance. The
detached bow shock in front of the blade branches into two oblique shocks, the weaker extends into
the upstream region, the stronger runs into the blade passage impinging the boundary layer on blade
suction surface; the adverse pressure gradient in the impingement point generates the lambda-shock
system and cause the complete separation of the boundary layer, as depicted in figure 37 and largely
discussed in section 3.4. Moreover, the high difference in velocity and density achieved between the
Mach stem and the lambda legs develops vortex sheets downstream of this bifurcation points. Note
that, the particular lambda configuration occurs when the intensity of the oblique passage shock is
too high and no regular reflection is possible. Hence, across the two lambda-leg oblique shocks, the
corresponding deflection and deceleration become strong: indeed, after the second oblique shock,
the flow becomes subsonic (dashed area in figure 38). This huge deceleration, that affects all the
passage width, will be soon recovered thanks to the so called supersonic tongue; this phenomenon is
related to the lambda shock system and develops a region of locally supersonic flow near the edge
of the boundary layer; here, as reported in [10], the maximum level of shock losses can be found.
Furthermore, the growth of the separate region with the relative re-acceleration area is function of
the pre-shock Mach number. Once again, becomes clear that the precompression of the flow at the
cascade entrance and so the precompression blades plays an extremely important role in loss reduction
of a compressor cascade.
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Figure 37: Flow structure at strong interaction region [10]

Finally, considering the off-design condition effects on lambda-shape shock systems, a decrease in
AVDR values results in a stronger boundary layer separation, a higher shock bifurcation point and
so higher losses; on the contrary, increasing that variable allows to shift the shock system upstream
into the blade passage with the related losses reduction, as shown in figure 38

Figure 38: Influence of AVDR on shock-waveposition [10]
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4 Compressor optimization
This chapter presents first general information about optimization analysis and then an VKI

in-house optimization software, called CADO, will be briefly discussed (more details will be found in
[4],[5]).

4.1 Optimization algorithms
The purpose of optimization analysis is to minimize one or more features of an object26 in

order to improve its performance satisfying design requirements. In particular, starting from one
individual (or design vector) x and changing some chosen characteristic (called design parameter
xi), new individuals are obtained. These new individuals should have more “performant” features,
i.e. their function objectives f(x) must have “better” value than the previous one and respect the
same constraint of their parents. Therefore, going through generation, f(x) should decrease/increase,
according to optimization aims and objective nature. Note that, every optimization algorithm requires
a parametrization of the real object in order to handle it as a design vector; moreover its fitness
evaluation needs a time-consuming CAE analysis, as CFD one, at least for each new individual.
In the next part the above keyword in italic will be explained to better understand the following
optimization techniques:

• Individual t: is the subject of optimization and is represented by design variable vector xt =
(xt1 , xt2 , ..., xtn), where xti are the design parameters that can be modified (e.g. thickness of a
rod, chord length, flow inlet angle, ... ). In the next lines “individual”, “design” and “candidates”
will be used as synonyms even if the first one should be reserved to Evolutionary methods.

• Function objective f(x): quantity to minimized or maximize such as relative speed of the
flow, speed or pressure ratio, efficiency, stall margin, etc etc27. If an optimization problem has
one objective, it is called single objective optimization, otherwise it is named multiple objective
optimization.

• Generation: set of new individuals generated from existing individuals called parents during
one single generation step. Therefore new designs are based on previous one, following the next
rule:

xt+1 = xt + αi · Si (55)

where Si is the search direction and αi defines its change amplitude

• Population: group of N individuals made through several generation steps.

• Constraint: feature to respect in order to be a valid new individual, usually present as an
inequality (e.g. xt+1 would be a new design if its value of tensile strength is lower than 1200
MPa)

• Pareto front: set or rank of individuals that do not dominate each others in term of two or
more objective values, e.g. f(x) and g(x) in figure 39. This scheme is useful in multi-objective
optimizations to evaluate and compare new designs and to reduce population number

• Evolutionary Algorithm: zero order method where individuals with higher fitness have
more chance to survive and/or get reproduced28. In contrast with other methods (for more
information see Ref. [4]) EA is population based, requires at each iteration the evaluation
of an entire population of designs and it is not deterministic. Genetic Algorithm (GA) and
Differential Evolution (DE) are two of the most popular evolutionary strategy.

26 e.g. a beam, a blade, an airfoil, ...
27 note that, in every optimization methods, “fitness” and “objective function” could be used as synonyms, except in

EAs where only the latter one makes sense
28 in agreement with Darwinian evolution theory
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Figure 39: Pareto front for a two-objective optimization and relative population ranking.

• Computational Fluid Dynamics (CFD): accurate tool used to check the performance and
the feasibility of the new set of individuals. The analysis result can be stored in Metamodel
databases in order to perform a better generation loop.

• Metamodel: model not based on physical one, but on interpolation of individuals chosen by
an higher fidelity method (as a CFD software). Using metamodel in generation loop helps
to speed up the optimization process. Featuring higher fidelity evaluation, the method can
be self-learning. Artificial Neuronal Network (ANN) and Kriging model are two wide-used
metamodel. To reduce even more the time-consumption and address the optimum search in the
right direction, an initial “knowledge” is required: Design Of Experiment method will fit these
requirements.

• Design of the Experiment (DOE): first choice of design parameters based on statistical
method. It plays a relevant rule in goal reaching.

With the previous definitions in mind, let’s now deepen the optimization methods, dividing them
into zero, first and second order methods.

4.1.1 Zero order methods

Also known as derivative-free methods, these techniques use only the function values to find the
minimum/maximum, not the derivative. There are many types of zero order methods, in the following
some of them will be briefly discussed.

Random search A large number of candidates x are randomly chosen and their objective function
evaluated: obviously the design with the smallest f(x) value will become the optimum. This simple
and intuitive method has a big drawback, the large number of individual to be evaluated that increase
the optimization time.

Random walk Unlike the previous one, in this method the new design is found from equation 55
with a random perturbation29 of the previous individual. Moreover, the xt+1 replaces the xt only
when it has no constraint violation and better objective (if the old design constraints are satisfied)
or simply less constraint violation (if the old design does no respect the constraints).

Simulated annealing This algorithm, based on the analogy with annealing solid simulation30, al-
lows to create a new design by randomly changing the previous one. Unlike the Random walk method,
29 i.e. random choice of Si and αi
30 an annealing process is a physical process where, after reaching a specific temperature, all the particle of a solid

randomly move in the liquid phase arranging themselves in the low energy ground state; this phenomena required
slow cooling. For more detail see [4]
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the old individual replacement probability depends on virtual energy and virtual temperature: the
latter one decreases with iteration step and prevent to accept worse x, while the remaining is the
difference between new and old design performances. Worse individual could be accepted, but only
in order to the “escape” from a local minima of the objective function. The big drawback, as before,
is the high number of designs required to obtain the optimum individual.

Evolutionary algorithms This set of algorithms is population based and, at each iteration, re-
quires the evaluation of an entire population. Note that EA are not deterministic and the random
choice is already used to address the optimization towards the optimum point. Different generation
techniques lead to different EA based methods.

Genetic algorithms GA are global search algorithms that use the fittest survivals in order to
find the optimum. Here, an individual is represented by a binary string where every design parameter
is translated into bits, which number depends on the required accuracy (as shown in figure 40).

Figure 40: Design representation with binary strings.

For the reproduction, two individuals, called parents31, are selected through tournament selection or
roulette wheel selection. In the latter one, the probability of an individual to be chosen is proportional
to its fitness32 and, for this reason, the resulting population is less diversified. On the other hand, in
a tournament selection, the best individual from a randomly chosen s-individuals group becomes a
parent. As the tournament size s increase, the two selected parents are more similar, while with low
value the individuals could be less fit and more diverse33. Once found the parents, with crossover
new individual binary string is made from a piece of the two previously chosen givers bits, as done
in figure 42; this, through generation, could lead to individual too similar to each other. At this
point mutation method will be used in order to randomly change bits. If constrains are considered,
to evaluate the performance of an individual the afore used function objective must be replaced by a
pseudo objective function:

f̃(x) = f(x) + R ·
m∑
j=1

δj ·
(
gj(xt)

)2

(56)

where

δj = 0 if gj(x) ≤ 0

δj = 1 if gj(x) > 0

and R, the penalty multiplier, gives the weight to satisfy the constraint gj(x)34. Another approach,
31 note that every pair of parents could have two children
32 or better, taking into account the roulette, higher the individual fitness, the more area on the roulette wheel is given

to this design and the higher its chance to be selected
33 usually a tournament size value about 2 is used; therefore every parent is chosen between only 2 individuals, as in

figure 41. In this way, the tournament selection become a very simple and highly effective method
34 as R value increase, the optimum of f̃(x) becomes closer to the constrained optimum. Thus R value is a trade off

between optimization numerical stability and the degree of constraints satisfaction
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called death penality, consists in rejecting unfeasible individuals. This method, unfortunately, could
lead to informations loss.
Once found the right parents, generated and evaluated new individuals, a comparison results necessary
to choose the best design. Considering a single objective analysis, for each individual you can simply
compare their f(xt) values. With two or more objective functions, you will handle simultaneously
with two or more fitness values per individual. Therefore is possible to treat them as a single-objective
function using the weighted sum of objective:

F (xt) =

l∑
j=1

ωj · fj(xt) (57)

where ωj are the weights given to the j-th objective function. Another technique uses the Pareto
front method; the goal is to obtain a population distributed evenly on the front at different rank,
where the rank is inversely proportional to the fitness of an individual35. The aim is to have, through
the generation process, individuals with rank lower as possible.
Finally, note that in GA a new generation is build replacing the previous generation individuals (two
parents) by the new ones (two children) maintaining the population size.

Figure 41: Example of tournament selection method. Figure 42: New designs generation through crossover.

Differential evolution Unlike the previous method, DE does not required the transforma-
tion into binary strings and reproduction is made through replacement. In particular, starting from
an individual xt, new “trial” candidate is generate in the mutation process:

yi = ai + F · (bi − ci) i = 1..n (58)

where ai, bi, ci are parameters of the relative randomly chosen parameter vectors at, bt , ct 36 and F
is a user defined constant37. At this point, a recombination will perform, obtaining the real candidate:

zi =

yi if ri ≤ C

xi if ri > 0
i = 1..n (59)

where ri and C help the crossover procedure to prevent similarity between individuals38. Note that,
as suggested in [6], C values of 0.9 or 1 can be the first choice while, if convergence do not come
quickly, C = 0.1 is a good start. Finally, after new candidates generation, a fitness evaluation and
the eventual replacement of the original vector will perform:

xt+1 =

z if f(z) ≤ f(xt)

xt if f(z) > f(xt)
(60)

35 i.e. the design points along rank 1 have the highest fitness and have more chance to be reproduced. See picture 39
too

36 or better, at 6= bt 6= ct 6= xt
37 usually F ε ]0, 2[ ; its role is to control the amplification of the differential variation between bi and ci. As explained

in [6], first choice should be F = 0.5, while value less than 0.4 and more than 1 works rarely
38 in particular, ri is a uniformly distributed random variable (0 ≤ ri < 1) while C ε ]0, 1[
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Obviously, the latter evaluation and comparison is possible directly only in unconstrained single-
objective optimization. Considering the constraints too, the replacement becomes more intricate:

• xt satisfies all the constraints: z will replace the previous individual only if the new one matches
every constraints too and has a better objective39

• xt does not satisfy all the constraints: z replaces the original design only if the constraint
violations are reduced40.

In this way, two goals are achieved simultaneously: obtaining a feasible design and improving the
individual performance maintaining the feasibility.
Going back to the mutation step (in equation 58), with unconstrained multiple-objectives three
different methods are proposed:

• in accordance with Abbas et al. (see [5]), a non-domination requirements will be introduced,
i.e. at 6= bt 6= ct must belong to the same rank in the Pareto front. Moreover, new individual
z replaces its “parent” xt only if it dominates at. At this point, a new population are made
with individuals that do not dominate each other. Once this set of new design reaches the user
defined threshold value, a distance metric selection will be made in order to remove too closer
individual41

• another techniques imposed to rank together new and old designs in the Pareto front; each
rank is made with non-dominating individual and the rank 1 is given to the first set42. The
second step consist in reducing the population by an half, restoring the original size43; as before,
starting from rank 1, a distance metric selection will apply, decreasing the number of individuals
and ensuring diversity

• considering again the differential variation in equation 58, Rai et al. ([5]) suggest to choose
the vector parameters, bt and ct, close to the original design xt. Therefore, going on with
optimization, the afore mentioned difference becomes smaller and smaller, leading to individuals
located near the optimum44. This wanted behavior, obviously, is similar to the single-objective
one, reducing optimization time and complexity.

Finally, in the constrained multi-objective case, the individual respecting better the constraint is
considered to dominate the other one45. At this point one of the techniques afore mentioned could
be used.
Summing up in few lines what above said, DE:

• is a stochastic divert search method, that can handle with non-differentiable, non linear and
multimodal cost functions46

• allow to run parallel computation, so stochastic perturbation of the population vectors can be
done separately

• is a self organizing, cost less and powerful techniques that alter the search space by itself using
two (or three) individuals near the old one to generate a new design

For these reasons, DE can be considered reasonably one of the best method for optimization process.
39 i.e. only if gj(z) ≤ 0 , j = 1..m ∧ f(z) ≤ f(xt)
40 that is, ∀j : gj(xt) > 0 , gj(z) ≤ gj(xt) ∧ ∀j : gj(xt) ≤ 0 , gj(z) ≤ 0 .Obviously f(z) ≤ f(xt)
41 as crossover, this procedure allows to improve diversity
42 this procedure will be repeated with the entire population, as shown in figure 39
43 unlike the previous, in this method, collecting together original and new design, the population doubles
44 as clear, if the first selected individual objective is too far from the optimum value, the best design search could be

trapped in a local minimum of the objective function without chance to escape.
45 this means that one individual dominates another if all unsatisfied constraint are less or equal in number to the

other individual and at least one constraint is better satisfied
46 i.e. simply, the objective function to minimized/maximized. Note that usually the objective function is the cost

function negative
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Metamodel assisted DE Metamodels allow to reduce the total computation cost, using an
interpolation of already analyzed individuals with an high fidelity tools (e.g. CFD softwares)47. For
better understand the difference between this two methods, without considering the time consump-
tion, see figure 43: here the continuos line shows the objective function f(x) real trend, trend that
should be found through optimization. Furthermore, a “database sample” can be known design or
simply new optimized individual, both tested with a CFD tool. On the other hand, dashed curve
is made by individuals that are created through an interpolation and which objective function value
is the result of a weighted sum48. As shown, metamodel predicted design-fitness trend suggests also
unfeasible individual and could lead to a relative minimum point (called predicted optimum in figure
43), but, thanks to its amount of data and low time-consumption, less and more “fit” individual can
be tested further with high fidelity tools addressing the optimization closer to the real optimum with
less computations.

Figure 43: Real vs. metamodel predicted function objective - design vector relationship.

Considering the above mentioned metamodel-CFD relationship, three different ways to link low and
high fidelity tool could be found:

• metamodel and CFD are used together during each generation

• CFD simulations are made only at the end of a population generation process on the most
promising individuals found by metamodel (called on-line trained metamodel). During DE
process metamodel training is required

• metamodel is used for several population generation; at a certain point the best individual will
be checked with CFD tools and added to the metamodel database. Therefore the self-learning
capability is added to the method, that will be referred to as off-line trained metamodel).

Considering the mathematical side, in general a metamodel could be represented as a lower compu-
tation cost function f̃(x) :

‖ f̃(x) − f(x) ‖ < ε (61)

where f̃(x) : Rn 7→ Rm , f(x) is the already known and high cost performance vector, ε is a
sufficient small constant and ‖‖ is a p-norm. Changing the mathematical form of f̃ , different type of
metamodel could be found49; in particular Artificial Neuronal Networks and Kriging methods will be
47 Note that, using interpolation instead of FEM or FVM, metamodels accuracy is very low, as well as its time

consumption
48 obviously the metamodel needs some known designs and their f(x) in order to perform the interpolation; the database

samples (i.e. DOE) satisfied this requirement. More detail will be given in the next lines and in [4],[5]
49 or better, each metamodel has different coefficients in f̃(x)
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discussed50. The first one is simply a simulation of a human brain behavior, where neuron (in your
case, the xn parameters of the design vector) are arrange in layers and contains information that pass
from one to another one thanks to parallels connections, as explained in figure 44. Each “passage” is
not cost-less and its efficiency is given by a weight, whiddeni,j or wouti,j where hidden/out refers to the
j− th neuron that stands on a hidden/output layer and it is linked to the i− th neuron51.

Figure 44: ANN network layout example.

In addiction bias coefficient has to be considered while computing hidden or output layer response,
bhiddenj or boutj respectively. At the end, the output information yj is given by:

yj = TF

(
h∑
i=1

wouti,j · outhiddeni + boutj

)
(62)

with

TF = outhiddenj / inhiddenj = 1

1+e
−inhidden

j

inhiddenj =
∑n
i=1 w

hidden
i,j · xi + bhiddenj

(63)

where TF is a sigmoid transfer function, outhiddeni is the output of the connection between the i− th
hidden neuron and the j− th output52. As above said, connection weight and bias has to be chosen53

and their value affect severely the objective function search, where y = f(x) or better y = f̃(x).
Even the parameter number affects the goal reaching: in particular if n are the input neuron number
and m the output one, the hidden layer parameter should be h = 2n+1 in order to have a metamodel
noise-free and capable to recognize the noise in the data. Thanks to its nature, ANN needs only three
layer to better describe the f̃(x), that is one input layer, one hidden layer and an output one54.
Considering the second method, i.e. Kriging, it belong to the linear least square algorithms while
it reproduces exactly the observe data55. Therefore is possible to find immediately the objective
function trend:

f̃(x) =

k∑
j=1

βj gj(x) + Z(x) (64)

50 more methods and accurate details could be found in [5]
51 as in figure, the connection are strictly between neurons in different layers
52 note that, as better explained in figure 44, the expression in 63 is valid for each output/input; that is, for example
inout

j =
∑h

i=1 w
out
i,j · outhiddeni + boutj . The latter one is nothing but the expression in brackets in equation 62.

Moreover, outoutj = yj and TF used in equation 62 is simply gives by outoutj / inout
j , as obvious

53 iterative error back-propagation method with know inputs and outputs is used for this aim
54 better known as Kolmogorovs Theorem, valid for any continuos function from Rn to Rm

55 that means, the right member in equation 61 becomes equal to 0, or better f̃(x) = f(x).
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where gj is a regression function, βj could be a constant and Z(x) is a model of a Gaussian and
stationary random process with zero meaning. The previous parameter and function, can be found
considering f̃(x) as the best linear unbiased predictor, that means a linear combination of the obser-
vation sample:

f̃(x) =

N∑
i=1

wi(x) · f(x) with


E

[
f̃(x) − f(x)

]
= 0

MSE = E

[(
f̃(x) − f(x)

)2
] (65)

where E, the mean error, must be equal to zero to satisfy the unbiasedness constraint and MSE,
mean square error, could be minimized and used as the best linear unbiased predictor. Hence, with
the Kriging method, the predicted objective function value and an estimation on the prediction error
are given. This feature is obviously an advantage, but, sometimes, an high uncertainty can hide an
individual not as bad as predicted. For this reason, a parallel evaluation process can be used, in
order to check the uncertain designs with an high fidelity tool and increase the database knowledge.
Another way consists in minimizing the following:

m(x) = f̃(x)− ρ · p (x) (66)

where m is called the merit function, p (x) is the uncertainty of the prediction, ρ is a weight and
its value is positive. Note that with kriging model the uncertainty is known. The advantage of
using the merit function is shown in figure 43: m can help to avoid objective function local minima
and guide the optimization towards the absolute minimum (i.e. optimum point). Considering ρ, it
should decrease through the iteration: high value means giving more knowledge of the objective (first
iterations) while low value leads the search to the optimum point.
Finally, the ANN metamodel can be used to accelerate the optimization but, when more accuracy is
required (e.g. in constraints prediction), kriging method is preferred.
More metamodel examples, such as RSM or RBF, can be find in [5].

4.1.2 Upper order methods

When a derivative is required, zero order methods can not be used in f(x) minimum pursuit. Here,
first and second order techniques are briefly reported; for more details see [4].

First order In first order method the new design search is moved where the objective function
decrease becomes more intense. Hence, the search direction Si in equation 55 can be found as follow:

Si = −∆f(xi) (67)

while the amplitude αi is chosen small enough to avoid function objective overshooting and can be
evaluated minimizing the 1D function f(xi + αi · Si). Considering again Si, another method, called
conjugate directions method is based on the principle of the steepest descend method, where the last
iteration helps to guide the search towards the minimum:

Si = −∆f(xi) + βi · Si−1 with βi =

∣∣∆f(xi)
∣∣2∣∣∆f(xi−1)
∣∣2 (68)

The previous iteration number in equation 68 can be increased, leading to a more accurate search
with second-order methods features56. At this point the gradient ∆f(xi) must be evaluated; various
method can be used, as the finite difference method, complex variable method, algorithmic differenta-
tion or adjoint methods. More details about the just mentioned gradient evaluation techniques can
be found in [4], while the given informations are sufficient for the aim of this work.
56 for this reason, Davidson-Fletcher-Powell and Broydon-Fletcher-Goldfrab-Shanno methods are called quasi-Newton

methods
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Second order Second order methods are simply derived from Newton’s method and can be consider
quasi-Newton schemes. Only one iteration is needed to minimized a quadratic function while Si
and αi are determined directly, leading immediately to the optimum point. Otherwise, with non-
quadratic functions more passages are needed, but the convergence are faster than any other methods.
Obviously, due to Newton’s method nature, second order techniques are computational expensive and
numerically unstable. For these reasons, their are not used in optimization problems that involved a
Naiver-Stokes and/or stress computation.

4.2 Choice of optimization parameters
Once chosen the generation model, the object to optimized must be parametrized, or better

reduced to a sequence of xt = (xt1 , xt2 , ..., xtn). Moreover, constraints are imposed on the design
parameters xti and an initial database should be built using the Design of Experiments (DOE)
method. A brief example on optimization of a compressor stage willl be reported in order to .

Parametrization Any optimization method requires the parametrization of the subject that should
be improved. For this reason, its charachteristics (thickness of a rod, lenght of the blade chord, etc...)
are depicted by several parameters which together makes the design vector xt. Moreover, for each
subject feature, a numerical distribution is given through Bézier curve or B-spline curve. The control
points of these distributions are simply the related parameters which variation allows the optimizer
to find a more fit design vector. As an example, the parametrization of a 3D radial compressor is
reported from [21]. First at all, the meriodional shape of the impeller is divided in seven patches,
as in figure 46; for each patch a curve is defined at hub (lower surface) and shroud (upper surface)
by a Bézier curve which control points (red points in figure 45b) are the coordinates of these curves.
Considering the blade (showed in patch number 4), four metal angle β are used as Bèzier points to
define the camberlines at hub and shroud. In particular, the β distribution between the meridional
plane m and the streamline S are defined by the thrid order polynomials:

β(s) = β0 s
3 + 3β1 s

2(1− s) + 3β2 s (1− s)2 + β3 (1− s)3 (69)

where s is the non dimensional length starting from leading edge (s = 0) and ending at trailing edge
(s = 1). Note that, equation 69 depicted the carbeline in a β − s plane; hence, the trasformation
into x − y − z coordinates are given through the camberline circumferential position θ (see figure
45b). The blade camberline shape, as showed in figure 46b, are now controlled by four β so the
camberline of the entire blade is parametrized with eight Bézier point (four at hub and four at
shroud). In addition, is possible to define the trailing edge (rake) or leading edge (lean) position
with respect to the hub camberline without affecting the shroud camberline distribution; using the
rake as a parameter allow to define a larger radius resulting in a smaller sensitivity. At this point,
becomes necessary to define the blade thickness at hub and shroud; usually it is given by a parabolic
distribution in which a Bézier point can be used to specify the radius of curvature at leading edge;
furthermore all the thickness distribution coordinates can be considered as optimization parameters
or can be kept constant. Finally, even the number of blades could be parametrized and changed
during the optimization process.
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Figure 45: Definition of (a) the meridional contour at hub and shroud and (b) the camberline by beta distribution
[21]

(a) (b)

Figure 46: Parametrization of (a) the suction side and (b) the camberline by beta distribution [21]

(a) (b)

Constraint Constraints help to choose the feasible designs through the replacement teqniques (see
equation 60). Therefore, in single-objective optimization, the rule reported in section 4.1.1 and in [5],
replaces a design which had constraints violation by a design which reduces the amount of constraint
violations. In this way, the highest priority is given to achieve a feasible and improved design. For
multi-objective, if the two analyzed individuals do not satisfied the constraint, the dominance is
checked for the constraints, i.e. one individual dominates another if all unsatisfied constraint are
less or equal to the other individual and at least one constraint is better satisfied. Moreover, the
individual that respects the constraint is consider to dominate the other which does not satisfied that
constraint. As an example, on a blade parametrization, the designs with a average thickness less then
a specified value will be discard.

DOE The DOE method is developed to create the initial database which will be used to address
the metamodel in the optimum search. This technique considers that each of the k design variables
can take two values, fixed at 25% and 75% of the maximum design range; the maximum amount
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of experiments needed is given by 2k, i.e. the number of any possible combination of the design
variables. To reduce the number of the required evaluation, the so-called fractional design approach
can be used; this method allow to consider 2k−p experiments with p taken such k− p = a. Note that,
in this work the a value is chosen as 5.
Other methods can be used to generate the first database, such as a creation of random samples.
Obviously the DOE should be preferred when dealing with multi-objective and multi-constraint op-
timization or when the number of optimization parameters is high.

4.3 CADO software
The Computer Aided Design and Optimization toll (CADO) was developed at the Von Karman

Institute for Fluid Dynamics with the purpose to have a complete and adjustable turbo machinery
optimizer. The main components are a Computer Aided Graphical Design (CAGD) library for the
automated generation of blades, an automatic mesh generation toll for both the fluid and solid do-
main, a Computational Solid Mechanics (CSM) and Computational Fluid Dynamics (CFD) codes and
a metamodel assisted evolutionary algorithm. The correlation between these component, depicted in
figure 47, is very important for a positive outcome, so further clarification are needed. As concern
the inner loop (the generation loop), a metamodel assisted DE algorithm guarantees the generation
of new feasible designs which feasibility are check through the metamodel knowhow; this knowhow,
fundamental for addressing the search in the right direction, simply comes from the database. This
database, that “stand” inside the iteration loop, is created usign a DOE method or with random
samples while it is kept updated by the high fidelity tools. The latter, the CFD software, checks
the designs which come from the generation loop validating or not the metamodel ability. In the
negative case, the CFD response is stored into the database in order to adjust the metamodel search.
As reported in section 4.1.1, the number of design checked by the high fidelity tools can be varied,
choosing between lower computational cost but lower precision and higher accuracy but higher com-
putational time. Considering the metamodel, CADO allows to use several methods, as ANN and
Kriging model. Obviously, before starting any loop, the parametrization must be done, choosing the
geometrical parameters and constants as done in section 4.2. Finally, one of the major benefits of this
software is the possibility to use different CFD, CSM and pre-processing softwares in combination
with the CADO optimization tool, as done in this work.

Figure 47: Optimization process flowchart.
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5 Method
The target of this work, i.e. the most performant blade attainment, is achieved not with one

single process, but thanks to the combination of several process performed by different softwares.
Five softwares are matched together, anyone with a different task: starting from the optimizer, the
VKI’s in-house software CADO generates several new blades that fulfill the chosen requirements; its
outputs, data-file containing geometrical coordinates, will be loaded in IGGTM , a Numeca’s software
capable to create cascade flow field using the input blade geometry. Then, the mesh is built thanks
to an hexahedral grid generator called Autogrid5TM , another Numeca’s software. The mesh files,
the geometry files and configuration files containing the simulation setup, will be loaded in a VKI’s
in-house CFD software. All the previous passages, once compiled the setup files for each software
(this should be made only one time for the entire optimization process), are completely automatic
and self-sustaining, with no need to human aid. Finally, only the simulation result files of the best
design, the baseline design and few other individuals are analyzed with the post-processing software
called Techplot 360TM . This last operation is partially automatic: macro-files can be loaded in order
to make the software to plot the chosen flow variables and cascade features, otherwise the user had
to understand and interpret the outputs. Therefore, for a successful result, the setup of each software
must be done carefully. For this reason, in the following lines, each component will be introduced
briefly and its configuration will be reported.

5.1 CADO setup
First at all, the optimization software requires a blade parametrization, or better the parametriza-

tion of meridional contour, camberline, suction and pressure surfaces and thickness. For the latter,
the x − y coordinates of eleven points are given, which in turn define the distance between between
suction and pressure side normal to the camberline. Suction and pressure side do not require further
parametrization, since their distribution follows from the thickness. For the meridional contour, only
the blade patch is taken into account, without considering the whole flow path; hence, the four couple
of x − y coordinates are given, specifying the limits of the hub and shroud meridional contour. All
the previous parameters will not change during the optimization, therefore all the optimized blade
have the same thickness and surface distribution of the baseline, as well as identical hub and shroud
meridional shape. Furthermore, the camberline is defined as the metal angle β distribution along line
in five points (x − β coordinates), which are the Bezier control point. The first five points will be
chosen using the baseline β distribution; suddenly, for each point, a β range will be given, allowing
the optimizer to vary the metal angle distribution but maintaining the same x-coordinate, as shown
in table 1. In figure 48, the β value change are depicted in function of the position along the chord, or
better the x/c ratio. Note that the best design β5 point is equal to the lower limit value: this could
prevent the optimizer to generate a more performant individual with a lower β5 since the camberline
are the only design parameter that can be modify by CADO.

Table 1: Range of five β points defining the camberline metal angle distribution

β1 β2 β3 β4 β5

%c 0.0 1.95 2.69 5.05 1

Lower limit [°] −48.0 −57.0 −59.0 −56.0 −57.0

Upper limit [°] −52.0 −61.0 −62.0 −61.0 −60.0

Baseline [°] −50.0 −58.0 −61.0 −60.0 −58.0

Best design [°] −51.0 −60.0 −61.0 −60.0 −57.0
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Figure 48: Metal angle distribution as function of chord percentage %c
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Once the blade is parametrized, the optimizer requires the optimization parameters, i.e. the objective
functions, the performance parameters and the constraints, necessary to address the optimum search
in the desired direction (more details in chapter 4). The chosen optimization parameter is the entropy
change coefficient ∆s, evaluated as the difference between the inlet and outlet cascade entropy values;
obviously, between all the generated individuals, CADO will maintain the ones with the lower δs value,
i.e. the more performant blades in terms of loss reduction. Moreover, three different performance
parameters are used, since each blade is optimized for three different inlet flow angle. Thereby,
the optimizer evaluates three objective function per individual, one for each performance parameter
(i.e. the optimization becomes multi-objective). Finally, the individuals with a exit flow angle β2

bigger than −61° will not be consider as reliable candidates; this means that for the i-th performance
parameter of each individual (i.e. the i-th inlet flow angle) the following inequality must be respected:

∆βi = −β2i − 61° > 0 with i = 1 or 2 or 3 (70)

As shown in equations 70, the constraint is imposed only to one inlet flow angle, i.e. α2 = −64.2557°
per each blade, otherwise the performances comparison would be not reliable. Moreover, the choice of
the limit value (i.e. −61°) follows from the low flow turning requirements. Finally, note that using the
metal angle as parametrization method helps to directly check and control the flow turning (locally
and globally) simply reducing or increasing the β range in table 1.
In order to speed up the optimum search, an initial sampling of the database should be perform
through the DOE. Contrariwise, in this case, the initial database was generated using 80 random
individuals. Obviously this method can affect negatively the entire optimization process but, thanks
to the simple optimization setup that choice do not compromise the positive outcome of this work.
As regard the DE setup, the number of evaluation in the iteration loop is 1000 while for the generation
loop are required 100 calculations (see figure 47), the size of the population is 40 and the cross-over
and mutation parameters are respectively C = 0.8 and F = 0.6 (see the DE section in chapter 4).
These means that 1000 generations will be created with a constant population size of 40 individual
(except for the first, in which 80 random designs are generated). Moreover, for sake of simplicity
and due to the “trial” nature of this work, the high fidelity tool (CFD software) is used to check the
performances for each individual at the end of any population generation and the optimum search
was stopped once reached the 8-th generation.

5.2 Flow field setup
The blade shape in figure 49 is taken as baseline and further improvements in term of losses

and camberline curvature are based on this blade; in particular, the chord length is 0.4271m, the
camber at inlet is about β = 50°, the design inlet Mach number is M1 = 1.3 while the design inlet
flow angle is α = −64.2557°. Unfortunately, no more information can be disclosed, since the baseline
is the rotor blade of a supersonic compressor in one of the VKI facilities used for commercial purpose.
Hence, starting with the baseline shape in figure 49, the IGGTM software allows to built the 3D flow
field in figure 50, splitting
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Figure 49: Blade shape used as baseline

the entire field in five parts: (1) inlet, (2) upper half side of the cascade passage, (3) boundary layer,
(4) blade, (5) lower half side of the cascade passage and (6) outlet. This partition allow to put the
desire boundary conditions and take into account the periodicity of the flow; indeed, considering the
upper side of section (1) as “mirror ”, the flow just above this side is supposed to behave as the flow
just below; for the same reason, the “mirror” boundary condition will be assigned to the remaining
outer surfaces in figure 50. Obviously, the blade sides are treated as “wall ” boundaries. Furthermore,
in this stage, the cascade size is set for all the further CFD analysis while the blade shape and
the remaining flow field geometrical parameters are updated at each iteration; as example of fixed
parameters, the blade chord length is 0.4271m while the distance between each blade (called pitch)
is 0.31072m.

Figure 50: 3D-cascade flow field with one blade Figure 51: 2D-cascade flow field with two blades

Note that, the two blades-configuration (built juxtaposing two slices cut from the 3D flow field in
figure 50) is used only in the post-processing step; the CFD software simulated the flow behavior only
around one blade, reducing the computational time and cost (see figure 51).

5.3 Grid setup
Once the flow field is mapped, the discretization of the 2D cascade is required in order to

evaluate the flow property. For this reason, at first, an hexahedral structured grid is generated using
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the automatic setup of Autogrid5TM (named “mesh 1” in table 2); then, the mesh quality is improved
increasing manually the number of grid points and reducing the cell skewness near trailing edge and
outlet (as shown in table 2). Furthermore, a CFD simulation is running, testing the seven meshes
and evaluating the trend of pressure loss coefficient Yp (chosen as an example) during the simulation;
as depicted in figure 52, the converge of the Yp occurs around mesh 6 and 7, i.e. since the second
last setup, the flow parameters becomes independent from the mesh features. Otherwise, due to the
high computational time and cost related to the last two meshes, the third grid setup seems to be
the best compromise between computational cost and flow accuracy; therefore it will be used in the
following CFD simulation. Figure 53 reports more details about the chosen mesh. As regards the
quality parameters in table 2, some more details should be given: starting from the skewness angle,
its maximum and desired value is 90° (square cells); the aspect ratio is evaluated as the ratio between
the longest and the shortest side of a cell, therefore its minimum is 1; finally, the expansion ratio
measures size variations between two adjacent cells and the unity means no differential deformation
between the two elements.
Another important grid feature is the ability to depict the flow behavior inside the blade boundary
layer. For this reason, the first line of cells along the blade surface should lie inside the boundary
layer. That distance y, in CFD analysis, is referred to the non-dimensional wall distance Y + and can
be evaluated using the flat-plate boundary layer theory in equation 71 (more details in chapter 18 of
[9]):

y =
ν Y +

uτ
(71)

where ν is the kinematic viscosity, uτ is the friction velocity and Y + get unitary value inside the
boundary layer (i.e. the desired position). Hence, with the flow condition related to this work, the
height of the first element near the blade surface should be y = 0.2127567 · 10−5m; this requirements
is entirely satisfied by all the meshes reported in table 2.

Table 2: Mesh skewness angle, aspect ratio and expansion ratio at different grid points

Mesh Grid points Skewness (minimum) [°] Aspect ratio (maximum) Expansion ratio (maximum)

1 40209 25.178 12495.0 4.3178

2 72681 27.591 24426.0 3.2348

3 89421 29.741 24497.0 3.1628

4 117141 25.586 24799.0 2.9263

5 169281 21.051 24813.0 2.8292

6 181749 21.876 24929.0 2.7917

7 194193 21.373 24616.0 2.7431
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Figure 52: Mesh convergence

Figure 53: Main features of the mesh used in the CFD analysis (mesh 3)

5.4 CFD simulation setup
The CFD software setup is the more error sensitive configuration, since a wrong parameter

would affect not only the flow simulation but also the following new population. For this reason,
several tests were made to validate the final setup, even with another CFD software. At the end,
the chosen inlet flow model was the turbolent type, with a reference lenght of 0.43m, a reference
pressure of 100000Pa and a reference temperature of 300°C. The Spalart-Allmaras model is used
to pattern the turbulence, with the related boundary condition at inlet, i.e. χ = ν̃/ν = 0.1. The
remaining boundary condition on velocity and pressure are reported in tables 3 and 4; in particular,
the first depends on the inlet flow angle, hence three different speed value must be specified since the
optimizer works with three inlet angle α1 = −63.2557°, α2 = −64.2557° and α3 = −65.2557° (i.e.
the performance parameters); the angle negative value is necessary to achieve low losses, increasing
off-design stability and flow velocity on suction side (more details in section 3.1). Note that all the
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CFD simulations are done with the same inlet Mach number and outlet static pressure as well as
the inlet static pressure. The initial solution is constant, with the variable values showed in table 5;
here, the blade is kept fixed (RPM = 0.0), since it is considered as a stator blade. Considering the
spatial discretization, the second order Roe discretization scheme is implemented, while the GMRES
linear solver is used to perform the implicit spatial discretization. Moreover, for the latter scheme,
the maximum iteration number is 50 while the CFL vary following a ramp model between 1 and 10
with 200 iterations. Finally, the fluid is treated as a perfect gas with the usual constants (k = 1.4,
R = 287J/(kgK)). Furthermore the simulation starts with 600 robust iterations and stops at 5000
iterations or when one between the density and mass flow convergence criteria is satisfied (2.0 · 10−6

for both). In addition, the 3D cascade in figure 50 is used as flow field, hence the flow can move even
in the z-direction.
The software outputs at the end of every blade simulation, i.e. a file for each inlet flow angle,
contains the flow properties at inlet and outlet of the cascade which the optimizer used to understand
the reliability and performance ranking of that blade evaluating the entropy change, the metal angle,
...

Table 3: Boundary condition at cascade inlet and outlet

Static pressure [Pa] Total pressure [Pa] Total temperature [°C] Mach number [ ]

p p0 T0 M

Inlet \ 10000 300 1.3

Outlet 60404.601 \ \ \

Table 4: Inlet flow velocity at different inlet flow angle

Inlet flow angle Inlet flow velocity ratio [ ]

α [°] vx/v vy/v vz/v

−63.2557 −0.4500096 −0.8930237 0

−64.2557 −0.4343556 −0.9007414 0

−65.2557 −0.4185694 −0.9079655 0

Table 5: Initial constant flow solution

Static pressure [Pa] Static temperature [°C] Flow velocity [m/s] Spalart-Allmaras costant [ ]

p T vx vy vz χ

30000 220 150 −250 0 0.1

In conclusion, the major benefit with the chosen softwares is the complete adaptability of each setup
file to the different geometry. The optimization loop is therefore automatic and will stop only if an
error occurs or when the maximum computational time is reached (in this case it was set to 90 hours).
Obviously the entire process was performed in a cluster, using 8 cores for any of the required 5 nodes
(in this way, the 40 individual of each population are computed at the same time in different “part”
of the cluster). Note that, the computational time to generate and test 460 designs (seven population
with 40 individuals and one with 80 designs) is high, about one week, due to generation-iteration
loop ratio, grid features and the chosen discretization parameters.
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5.5 Post-processing setup
The analysis of results is done on a thin slice along the x − y plane of the original 3D flow

field. This is possible since the z-component of the inlet velocity is zero and the flow field is takes as
homogeneous. In general, the inlet and outlet value of each variable are evaluated respectively along
the line 1 and 2 in figure 54. The total pressure gradient ω is calculated in 80 point along the vertical
line 2 in figure 54, while the loss coefficient ∆S is the average of ∆s values in equation 3:

∆S =
∆s

sref
=
s2 − s1

sref
(72)

where sref = 120540Pa/(kg/m3) is the entropy taken as reference value. Moreover, the isentropic
Mach number trend is depicted evaluating the Miso in equation 2 along the blade pressure side and
suction side, not considering the boundary layer and so the no-slip condition at wall. Finally, the
3D Pareto front in figure 69 is plotted interpolating the ∆S values and meshing the related planes
through two Matlab® function (called respectively TriScatteredInterp and surfc). The remaining
variables and contour types are simply the TechplotTM defaults variables.

Figure 54: 2D-cascade flow field used for post-processing analysis
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6 Results
This section reports the analysis of multi-objective optimization, proposing the main difference

between baseline and best blade, focusing on shape improvements and on flow behavior changes.
Moreover, about the latter, the fluid-blade interactions are first analyzed at one inlet angle while
suddenly all the three angles are taken into account maintaining constant the remaining flow variables.
In both cases, only the best individuals per each generation are considered.

Best blade shape Considering the blade shape, through the optimization process the blade cam-
berline increases its curvature at leading edge and trailing edge, assuming a more s-shaped profile, as
shown in figure 55; in particular, considering the metal angles (i.e. the camberline slopes) in 1, the
increase in the first two point results in a increment in downward flow deviation while the decrease
of β5 makes larger the outlet passage. Similarly, suction and pressure side curvature changes make
the blade tip more concave at suction side while the tail goes upward; that difference will affect the
leading edge Mach number enhancing flow pre-compression and reducing the trailing edge wakes, i.e.
the flow turns less and remains more attached to walls. Figure 56 shows how the profile changes
from baseline to last individual; the difference seems very small, but the changes in flow properties
are significant. Moreover, the thickness distribution does not change, as imposed in the optimizer
setup. Note that, for obvious reasons, the blade shape does not change from single to multi-objective
optimization.

Figure 55: Camberline
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Figure 56: Suction and pressure side
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Best blade flow behavior at α = −64.2557° Starting from the performance coefficient ∆S at
α = −64.2557°, its trend in figure 57 shows the expected loss decrease from baseline to the last
best design (40% improvement). Indeed, as reported in chapter 3.4, an increase in inlet flow pre-
compression allows to grow the inlet flow pressure, decreasing the Mach number at leading edge and
inducing a shock pattern with less losses. This trend does not decrease monotonically, but some
peaks develop, also in the last generated design (i.e. the best individual). Obviously, that loss
increase is bound to the multi-objective optimum search where the best individual must shows the
best compromise between the three function objectives, i.e. between ∆S1, ∆S2 and ∆S3. For this
reason, considering the complete entropy behavior even in table 7 or figure 69, a worsening in one
design objective could lead to better both the other ones, making that individual eligible as best
design. Note, as written before, that little changes in blade shape generate a considerable variation
of ∆S.
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Figure 57: Static entrophy generation change on baseline and last individual profile at α = −64.2557°

Generation

d
e

lt
a

S

0 2 4 6 8

0.01

0.012

0.014

0.016

0.018

0.02

0.022

Due to the imposed initial condition (fixed inlet Mach number M1 and back pressure p2 reported in
tables 3 and 4) and flow field characteristics, the inlet flow independent variables do not change, as
shown in table 6. In other words, the inlet static pressure remains constant since it is function of M1.
Moreover, the AVDR value remains constant and equal to one; in first instance this behavior allow to
avoid stream tube convergence variation since the mass flow per unit of area should remind the same
from inlet to outlet; in second instance, the AVDR ≈ 1) follows the flow turning requirements in the
optimizer setup. For this reason, its very slight increase is probably due to numerical approximation.

Table 6: Inlet flow independent variables at α = −64.2557° for baseline and best individual

α = −64.2557° Baseline Best individual

M1 [ ] 1.3 1.3

AVDR [ ] 1.02075 1.06203

p2/p1 [ ] 0.59759 0.59759

The constant values of the independent inlet variables from baseline to best blade, obviously, do not
mean the flow pattern and losses will remain the same. Indeed, as depicted in figure 58, the variation
of blade shape forces Mach number variation inside the blade passage as well as pressure and shocks
distribution. Firstly, the bow shock (A in figure 59) becomes more attached to the blade leading
edge and the subsonic area between the shock and the tip reduces to a small bubble inside a wider
supersonic flow. Indeed, the oblique shock (C) becomes larger and the Mach stem (i.e. the passage
normal shock named D) reduces its size. In second instance, as the inlet velocity decreases, the
interaction between the “legs” of the lambda-shape shock system (E) and the boundary layer is more
severe as well as the flow separation on suction side (F ). To complete the flow pattern, near the best
blade passage exit, a normal shock occurs (G), turning the flow within the pressure side into subsonic
velocity; this shock does not interest the entire width of the blade passage, since the Mach number
of the fluid near the suction side become subsonic thanks to the first normal shock (D). Finally, the
compression shock (B) developing from the concave suction side, becomes more stronger, decreasing
the passage inlet velocity and, in turn, generating the above depicted shock pattern.
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Figure 58: Mach number on baseline and best individual.
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Figure 59: Particular of the shock pattern on (a) baseline and (b) best individual.

(a) (b)

Another result, the most expected one, is the substantial loss reduction: ∆S drops from about
1.8 · 10−2 to 0.9 · 10−2. Indeed, as reported in section 3.4, suction side mach number decrease and
pressure drop decrease helps to reduce losses leading to the shock pattern described above. Therefore,
as better shown in figures 60 and 59b, the best blade supersonic area is wider and affects the first half
part of the passage with a subsonic region in the upper part, while on baseline the whole pressure
side is subsonic. Clearly, the oblique shock features plays an important role, maintaining the flow
supersonic while decreasing the acceleration/deceleration, reducing the energy losses and so keeping
the entropy mostly unchanged (unlike what happened within a normal shock, as reported in section
3.2). Note that, in the boundary layer M < 1 almost everywhere; nevertheless, a small supersonic
area occurs just below the upstream lambda-leg. In addition, the re-acceleration of the flow just
upstream of the delta-shape shock, generates a small supersonic bubble inside the subsonic area,
barely below the separated boundary layer. These last two remarks confirm again the expected shock
pattern depicted in figure 37.
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Figure 60: Supersonic and subsonic areas on baseline and best individual.
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The flow pre-compression, due to the blade shape, reduces the p0 losses, especially along the suction
side boundary layer and streamwise after the trailing edge. Another remarkable effect is the lower
value reached at inlet, drop also due to flow adaptation through the oblique shock. Indeed, the
flow conditions before and after a normal shock are independent from each other (i.e. without sonic
passage, the flow behaves in a “unique way”).

Figure 61: Total pressure on baseline and best individual.
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Suction side Mach distribution and shock pattern influence either the vorticity of the flow: from
figure 62 is clear that the vorticity growth on suction side due to the delta-shape shock compression
ramp (i.e. the increase in boundary layer growth at the shock interaction point) is delayed and the
detached flow amount is reduced, as happened with sonic transition and flow speed. This confirms
again that the wakes growth is bound with speed, or better with Reynolds number, and its magnitude
increases with energy losses.
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Figure 62: Vorticity on baseline and best individual.
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Figure 63 shows how at optimized leading edge the transition from detached to partially attached
oblique shock allows the flow to follow the blade shape with less turning, moving the stagnation
point backward along the pressure side. In the passage, on baseline suction side, the isospeed lines
show several wakes and a severe flow detachment; on the other hand, with optimized blade, the flow
remained more attached, the wakes rise is delayed and their size is reduced (see figure 64). At trailing
edge, from suction side, streamlines turn into the pressure side area and, only in optimized blade,
there are no vortices (as shown in picture 65). Obviously, if the flow is less turned, detachments
and wakes are avoid or delayed and losses become less intense. Therefore the blade shape plays
an important role in vorticity formation, increasing the flow acceleration and decreasing the flow
blockage.

Figure 63: Flow behavior near leading edge on baseline and best individual.
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Furthermore, the isentropic Mach number trend over blade surface allows to omit the boundary
layer influence and focus only on shocks result in order to make more clear how a precompression
blade works and its importance in losses reduction. The optimized blade shape allows to decrease the
passage inlet flow Mach number changing completely the shock type, reducing the normal shock width.
What happen next in the passage, as shown in figure 66, is simply due to the upward translation
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Figure 64: Wake and detached flow along pressure side on baseline and best individual.
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Figure 65: Flow behavior near trailing edge on baseline and best individual.
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of the shock system, to the “generation” of a second wave at the end of the blade passage and to
the normal “nature” of this last wave. For these reasons, the entire Miso trend moves towards the
trailing edge delaying the flow deceleration and, on suction side, the value at leading edge decrease.
On the other hand, on best blade pressure side, the velocity increase due to the supersonic “pocket”
at pressure side inlet; in particular, this speed increase, is due to the normal shock near the exit that
alters the pressure pattern (see figure 59). This behavior is extremely important for the purpose of
this work, i.e. decrease the compressor cascade losses and find a method for performance evaluation.
Note that, both graphs show a steep reduction of Miso on suction side, respectively at passage inlet
and outlet; this means that, in both cases, a lambda-shape shock occurs.

Figure 66: Isentropic Mach number along baseline and best individual profile at α = −64.2557.
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Finally, figure 67 shows the total pressure loss coefficient trend along a vertical line near the flow
field outlet. First, note how the various sources of losses influence the ω trend: the slight decrease of
the peak in the middle span of the passage (point 2 in figure 67) is due to the reduction of the shock
system strength; on the other hand, the detached flow and in general the boundary layer make the
ω rising along the blade surfaces (1). With this and ∆S trend in mind (see table 7), the sources of
losses and the new blade shape role are more clear and tangible. It is important to remark that ω
trend is the quicker and easier method to make clear how shock waves and boundary layer play a role
in losses generation. Despite that, entropy increase is preferred as performance indicator.
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Figure 67: Total pressure loss on baseline and best individual at α = −64.2557.

At the end of this section, it is important to remark that the previous analysis simply deals with a
piece of a multi-objective optimization, not with a simple single-objective optimization; the difference
between the two analysis will be clarified in the section just below.

Best blade flow behavior at different flow angles As discussed in chapter 5, imposing three
different inlet flow angles leads to consider three function objectives for each individual. This means,
unlike the previous case, the last optimized blade could be more performant for one angle, but worst
for the remaining ones (see table 7).

Table 7: Static entropy coefficient change with angle

α [°]
∆S [10−2]

Baseline Individual 1 Individual 2 Individual 3 Individual 4 Individual 5 Individual 6 Individual 7 Best individual

−63.2557 1.8970138 1.1127119 0.9373609 1.1104554 1.0326719 0.8902489 0.9766302 0.8697339 1.0101595

−64.2557 2.2428894 1.0975683 1.0103003 1.0907609 0.9992441 0.9879125 0.9943970 0.9786988 1.0084554

−65.2557 2.5314404 1.2747733 1.3993788 1.1913380 1.0786320 1.3883786 1.2364448 1.3684132 1.1568834

The optimum inlet flow angle is not a function of downstream condition but is set by the upstream
shock; on the other hand, pressure (and obviously Mach number) distribution on profile, transition
location and separation size are bound to inlet angle. That means, changing the flow incidence, the
performance of the best individual at could become lower than the worse blade one57. In figure 68
the aforesaid loss bucket trend is shown: for each optimization, the ∆S minimum should be inside
the chosen flow angle range (operative range). This minimum is the cascade optimum point, where
the mass flow and the incidence allow safe and “performance” operation. Hence, for baseline and
other individuals (the latter depicted by black symbols), the optimum conditions are not reached.
For example, for individual 5, the optimum condition will be at less negative inlet angle, as shown
comparing entropy trend in table 7 and in figure 68 (left triangle). Otherwise, the optimized design
has its minimum between α = −63.2557° and α = −65.2557° allowing the flow to reach the metal
angle around α = −64.2557°; therefore the fluid follows the blade shape with low turning, separation
and therefore low losses (nominal or design condition). Note that, having the flow turning constrain
only on α = −64.2557°, does not means that angle should be the metal angle58 for every design.
Therefore, in next optimizations, the incidence range could be extend to higher angles (i.e. less
negative).
57 e.g. compare last and second-last optimized blade ∆S at α = −64.2557
58 as afore said, the metal angle is the slope between the flow and the tangent to camberline. It could be different from

the inlet flow angle
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Figure 68: Loss variation with flow incidence
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Moreover, as reports in chapter 4, with multiple objective the optimum design search for one objective
is not “free” but bound to the remaining objectives, i.e. the best blade at α2 could become the worst
one when changing the angle. For these reasons, a 3D Pareto front becomes necessary to better
understand the optimization process and objectives trend. As shown in figure 69, the Pareto front
surface is made through interpolation of spare ∆S coordinates; moreover the points in that surface
“belong” to the more fit individuals of the entire optimization while the best individual per each
population lies in a local minimum. Finally, in the Pareto absolute minimum point lies the best
design, i.e. here the best three ∆S compromise takes place. The remaining generated designs would
stay above the Pareto front, that is why they are not plotted. Considering the different colors, the
absolute minimum is located in the dark blue area, laying along the corresponding line in the ∆S1,∆S2

plane. The best individual is the best compromise between the three ∆S values, i.e. decreasing one
objective the others would increase and probably reach the ones that stand in a Pareto peak. For
example, as you can see from isolines in figure 69, entropy coefficient values lower than 0.01 are
reached for α = −63.2557° and α = −64.2557°, while the ∆S3 get its higher value59. Therefore, the
best individual does not show the lowest performance coefficient for each inlet angle, but the lowest
average ∆S, as is possible to see comparing the best individual and individual 3 in table 7.
59 or better, its higher value for that area, i.e. the blue one
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Figure 69: Pareto front
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As the inlet flow angle changes, the remaining independent flow variables follow the trend shown in
table 8; almost all the values remain constants, obviously due to inlet and outlet boundary conditions.
The AVDR behavior is the most unclear, since its increase should reduce losses (as reported in section
3.4). Probably, the slight increment must not be consider as a variation but as an numerical oscillation
around a constant value. Therefore, the quasi-2D flow field and the flow turning requirement in
optimizer setup helps to maintain the AVDR equal to unity. However, the incidence increase, changes
the flow behavior specially in front of the blade passage and inside it affecting losses value and shock
pattern.

Table 8: Inlet flow independent variables on best individual at different flow angles

Best blade

α [°] −63.2557 −64.2557 −65.2557

M1 [ ] 1.3 1.3 1.3

AVDR [ ] 1.04344 1.06203 1.08122

p2/p1 [ ] 0.59759 0.59759 0.59759

In figure 70a, raising the inlet flow angle (i.e. from −63.2557° to −65.2557°), the flow expands to
higher pre-shock Mach numbers, i.e. in front of the leading edge along the suction side the velocity
increase and the compression waves (B) becomes more distant from each other reducing their com-
pression strength. In the meanwhile, the inlet shock becomes stronger, increasing the Mach stem
width (named D in figure 70b) and the strength of the oblique shock (C) while downstream normal
shock (G) moves upward reducing its size; moreover, the Mach number reduction between the two
lambda leg is more severe. Hence, the supersonic region inside the passage will be limited to a small
area within the second normal shock while the subsonic area expands until the first passage shock
(ACDE), as depicted in figure 71a. The flow re-acceleration after the lambda-shape shock (E) be-
comes even more weak, reducing to a very small supersonic area just below the boundary layer. In
conclusion, as the inlet angle increases, the flow behavior in the optimized blade passage becomes
more similar to the baseline (in figure 59a), with high passage inlet Mach number, a quasi-normal
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shock system and large pressure increase across the wave; obviously, the best individual losses is lower
than baseline, even at α = −65.2557°.
The total pressure distribution obviously follows the Mach number trend and shock wave pattern.
Indeed, since at α = −63.2557° in the centre of the passage there are only oblique shocks, the p0 in
that area obviously remains the same. Otherwise, as the angle increases, the total pressure inside the
passage decrease until a lower p0 stream appears (see figure 71b). This trend is simply due to the
increase in strength of the shocks.
Focusing on leading edge, figure 72a shows how, as incidence angle rises, the stagnation point moves
slightly downward and suddenly upward, finally coming back to the first position. Furthermore, in
the suction side, the flow turning (and so flow separation) decreases from −63.2557° to −64.2557°,
while it increases again at α = −65.2557°. This behavior, due to metal angle achievement around
α = −64.2557° (as shown in figure 68), do not prevents the flow to increase separation on suction
side at α = −65.2557°. In the opposite side, in the pressure side, at −63.2557°, the boundary layer
separation is severe, due to the adverse pressure gradient near the normal shock; indeed, as it become
smaller, that detachments almost disappears (see figure 70b).
The vorticity distribution shown in picture 72b, with angle raise, moves upward along the pressure
side increasing its higher value streamwise after the trailing edge; as afore said, this behavior is due
to the inlet Mach number trend and shock pattern. Likewise, the flow detachments is anticipated
and becomes wider.
The isentropic Mach number follows the previous flow behavior: as α increases, on suction side,
the flow decelerates earlier while on pressure side the supersonic “pocket” size decreases from 1.4
to 1.1. This behavior can be explained considering again the shock pattern in figure 70b: as the
second passage shock becomes smaller and moves upward, the induced pressure gradient on pressure
side is reduced as well as the peak in Miso trend. On the suction side, the isentropic Mach number
simply moves upstream, maintaining the typical shape due to the lambda-shape shock. Moreover, at
α = −63.2557°, the adverse pressure gradient influence even the suction side, causing a slight increase
in Miso values near the passage exit; as the normal shock (G in figure 70b) moves away from the
suction side, this alteration disappears. Finally, despite the huge difference in pressure side Miso

values, the entropy coefficient does not change so much with angle increase; this is due to the suction
side more severe role in loss generation, where the speed values remain almost the same.
Finally, the ω trend in figure 73b shows an increase in the minimum and maximum values; the latter
is due to the increase of subsonic area after shocks, while detachments and flow deviation influence
the higher difference between inlet and outlet total pressure. This increase in boundary layer loss can
be seen even in the vorticity distribution in figure 72b and play an important role in reducing the
blade performances at α = −65.2557°.

Concluding, note that the analysis above is nothing more than an off-design analysis: the flow pattern
at α = −64.2557° depicts the behavior of the best blade at almost nominal condition while for the
remaining inlet angle the loss coefficient increases (see table 7 and figure 68). In addition, the whole
flow behavior (i.e. the shock pattern and variables value) is well predicted by the situation reported
in figure 36, where a β decrease corresponds to an increase of |α|.
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Figure 70: Mach number contour and shock pattern on best individual at different inlet flow angles
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Figure 71: Mach areas and total pressure on best individual at different inlet flow angles
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Figure 72: Streamlines and vorticity on best individual at different inlet flow angles
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Figure 73: Isentropic Mach number and pressure loss coefficient on best individual at different inlet flow angles
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7 Conclusions
The whole work can be split in two parts, the first dealing with softwares and their setups, the

second focused on numerical results and precompression blade.
Starting from the first feature, several conclusions can be made about the optimizer. First at all, the
optimum search seems to follow the desired direction, reducing immediately the function objective
(as can be seen in figure 57) and following the desired boundary condition. In the other hand, the
optimizer, dealing with multi-objective optimization, proves to be able to avoid severals local minima
(as shown in figure 69), select individuals with the best compromise between their function objec-
tives and modify properly the blade geometry. This simply means that CADO was set accurately,
choosing the right parameters (i.e. mutation and crossover constant as well as the population size
and iterations/generations number) and starting from feasible initial individuals. Moreover, the blade
parametrization with constant thickness and variable camberline distribution seems to be sufficient
to describe properly the blade airfoil without strange or unfeasible shapes. However, the given β
range should be re-arranged since the best blade β5 value reaches the imposed lower limit; this could
prevent the camberline to assume a “more performant” shape. Finally, the flow turning constraint
on only one performance parameters do not prevent the optimizer to improve performances for all
inlet flow angles; indeed, the not-constrained flow turning are bound to the constrained one. Con-
sidering the flow field depicted in figure 51, the 2D model, with its 6 “subregions” and the related
boundary conditions, well fits the flow behavior inside the cascade. As regards the mesh, the chosen
setup follows the blade shape properly with low distortion of the field and a good discretization of
the blade boundary layer. Probably, the grid points number can be reduced, manually decreasing
size and number of cells near cascade inlet and outlet and maintaining unchanged the remaining
elements; this can help to reduce the computational time and the size of the CFD outputs. About
the latter, the chosen numerical model seems to follow the prediction based on experimental and
theoretical data; in particular the CFD results match perfectly with the shock pattern experienced
by the authors in [20],[10] and [8] as well as the loss parameter trend follows the theoretical models
(see chapters 2.3 and 3). This achievement is due to the chosen CFD flow model (turbulent with
the reference values reported in 5.4), the Spalart-Allmaras turbulence model, boundary conditions,
discretization type and parameters and to the robust iterations. In particular, without the latter, the
solution blew up after 1000 iteration causing the solver to stop. Hence, after 600 robust iteration, the
further 5000 outer iterations always allows the solver to reach or approach the convergence criteria.
In conclusion, the chosen softwares and their setup guarantee an automatic, self-sustaining loop and
loop. The big drawbacks of this configuration is the high computational time (about one week for
460 individuals) and output size (more than 10Gb for a 8 population optimization); reducing the
grid points, using adjoint solver, choosing DOE method for the initial database generation and not
validating each design with the high fidelity tools can help to solve that problem.
In compressors design the main requirement is to reach the highest back pressure p2 possible with
a minimum increase in losses. For this reason, following the theoretical and experimental prediction
reported in chapters 2.3 and 3, the following guidelines can help to develop a compressor cascade
with low losses and high performance:

• flow detachments and the related streamtube contraction should be avoided;

• at the same time, turbulent transition inside the boundary layer can be promoting to avoid its
separation;

• weak and multiple shock waves growth can be encourage to increase pressure gradient without
flow blockage, undue velocity diffusion and high flow turning;

• velocity diffusion and boundary layer thickness should be reduced firstly on suction side, while
on pressure side they can be tolerate;

• flow incidence should be negative in order to decrease flow speed along the blade suction side;

• far from nominal flow condition, safe operations are guaranteed maintaining constant the mass
flow, i.e. avoiding flow blockage;

• when the flow is chocked, the back pressure can be increase without affecting the upstream
flow. Moreover, in this condition, the inlet flow angle and inlet Mach number are not even more
independent parameters.
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All the above listed requirements can be satisfied simply reducing the pre-shock Mach number while
delaying the supersonic-to-subsonic transition of the flow. A precompression blade, with its concave
suction side near leading edge, develops a compression fan able to decrease the velocity at the cascade
inlet; furthermore, sharp leading edge reduces the bow shock detachment (typical in over-expanded
flow) decreasing its strength and causing a second shock inside the passage near trailing edge. In
addition, at suction side, the interaction between the boundary layer and the left running branch of
the bow shock generates the peculiar lambda-shape shock; that wave further reduces the flow velocity
thanks to two close oblique shocks, as depicted in figure 59. This shock pattern allows to decrease
shock and boundary layer losses, hence achieving a large loss reduction. In off-design condition, with
a raising but always negative inlet flow angle, the shock pattern changes, maintaining its typical
shape (two shocks with a lambda-shape wave on suction side) and avoiding the higher loss increase
achieved with an ordinary blade. Note that, as depicted in figure 55, this positive influence increases
as the blade camberline assumed a more curved shape at leading and trailing edge (i.e. respectively
increasing and decreasing the camberline slope with respect to the baseline).
In summary, becomes important to emphasize that the numerical results completely follows the
predicted and required flow behavior. This validates the softwares “chain” and setup, while, in second
instance, suggests that precompression blades play an important role in loss reduction; indeed, its s-
shaped camberline and thin leading edge allows to avoid or soften the principal loss sources maximizing
the pressure ratio even in off-design conditions.
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8 Future work
At the end of this work, several improvements can be suggested for further optimization cam-

paigns. First at all, the |β5| range in blade parametrization should be decrease (see table 1) in order
to allow the optimizer to generate a feasible more performant individual with a lower |β5|. Remaining
in the optimizer setup, in order to speed up the optimum search, an initial sampling of the database
should be perform through the DOE method; furthermore, not validating each design with the high
fidelity tools can help to reduce the computational time. In the other hand, the grid points number
can be further reduced, manually increasing size and so decreasing the number of cells near cascade
inlet and outlet and maintaining unchanged the remaining elements; thereby, computational cost
and size of the CFD outputs will be reduced, ensuring a fair flow description near boundary layer
detachments and shocks. Moreover, in CFD setup, an adjoint solution type can help to increase the
reliability of results. At the end, since the best blade optimum angle was found (from figure 68,
β = −64.2557), a CFD simulation at unique incidence condition could be done testing the best blade
performances at different inlet Mach number.
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