
University of Padua

Department of Mathematics “Tullio Levi-Civita”

Master’s Degree Course in Computer Science

Discovery of Resource Working

Calendars from Process Event Log

Supervisor Master Candidate
Prof. Massimiliano de Leoni Alessandro Pegoraro
University of Padua

Student ID
1240466

Academic Year
2021-2022

Is the glass half empty or half full?
If you are filling it is half full,
If you are emptying it is half empty.

Acknowledgements

Thanks:
to Professor Massimiliano De Leoni from UNIPD
to Claudia, Francesca, Fabio and Alessandro from ESTECO
to my family from Scorzè
to my grandma, grandpa & grandma
to my friends.

Abstract
Business Process Simulation (BPS) refers to techniques for the simulation of busi-
ness processes behaviours that allow analysts to compare alternative scenarios and
contribute to the analysis and improvement of business processes. A well-known
limitation of process simulation is that the accuracy of the simulation results is
limited by the faithfulness of the process model and simulation parameters given
as inputs to the simulator.
One of those inputs is the availability of roles and resources.
In this respect, it should be considered that staff members are not permanently
available and that they can be involved in multiple processes within the company.
While the default assumption of availability for these resources is either a trivial
specification of availability e.g. from predetermined timetables or a continuous
availability (24/7), various authors have described how both those assumptions
can affect the flow of work and the execution time.

This thesis presents new methods to automatically retrieve the general avail-
ability constraints of both resources and roles from event logs containing process
execution information and compares its results with the available state-of-the-art
methods for calendar discovery.

Alessandro Pegoraro CONTENTS

Contents

1 Introduction 1
1.1 Organization . 2

2 Preliminaries 3
2.1 Process Mining . 3
2.2 Event Log . 3
2.3 BPMN . 4
2.4 Simulation . 4
2.5 BPSim . 4
2.6 Calendar . 5

3 Related Works 7
3.1 "Discovering business process simulation models in the presence of

multitasking and availability constraints" by Estrada-Torre et Al. 7
3.2 "Retrieving Resource Availability Insights from Event Logs" by

Martin et Al. 8
3.3 "Retrieving the resource availability calendars of a process from

an event log" by Martin et Al. 8
3.3.1 Direct Sampling . 9
3.3.2 Cluster-Based Sampling 9

4 Algorithm 11
4.1 Working Calendar Discovery for Roles 11
4.2 Implementation of Calendar Discovery 14
4.3 Work-shift Discovery for Roles . 17
4.4 Implementation of Work-shift Discovery for Role 19
4.5 Work-shift Discovery for Resources 22
4.6 Implementation of Work-shift Discovery for Resource 23

5 Experiments 27
5.1 Synthetic Event Log Over Real-Life Event Log 28
5.2 Experiments with Synthetic Event Log Containing no Noise . . . 29

5.2.1 Experiment for Role’s Work-shifts Discovery in the Case of
Absence of Noise . 29

5.2.2 Results of Experiment for Role’s Work-shifts Discovery in
the Case of Absence of Noise 30

5.2.3 Experiment for Resource’s Work-shifts Discovery in the
Case of Absence of Noise 30

5.2.4 Results of Experiment for Resource’s Work-shifts Discovery
in the Case of Absence of Noise 31

5.3 Experiments with Synthetic Event Log Containing Noise 31
5.3.1 Experiment for Role’s Work-shifts Discovery in the Case of

Presence of Noise . 33
5.3.2 Results of Experiment for Role’s Work-shifts Discovery in

the Case of Presence of Noise 33
5.3.3 Experiment for Resource’s Work-shifts Discovery in the

Case of Presence of Noise 34

I

CONTENTS Alessandro Pegoraro

5.3.4 Results of Experiment for Resource’s Work-shifts Discovery
in the Case of Presence of Noise 35

6 Conclusions 37
6.1 Future Works . 38

II

Alessandro Pegoraro LIST OF FIGURES

List of Figures
1 Example of a BPMN diagram for the creation of a bill 4
2 Example of distribution of activities of a role, for all Tuesdays in

an event log . 11
3 Example of role’s availability calendar on Tuesday: 7:00 a.m. to

10:20 p.m., highlighted in red the intervals considered noise 12
4 The two possible types of intervals merge 19
5 BPMN diagram used to generate event log with no noise 29
6 BPMN diagram used to generate event log with noise 32
7 Case 8, role 2’s work-shifts discovered by our Algorithm 3 33
8 Case 9, role 1’s calendar for Wednesday 34

III

LIST OF TABLES Alessandro Pegoraro

List of Tables
1 Example of event log filtered on Saturday 15
2 Example of event log filtered on Saturday for work-shift discovery 17
3 Resource’s work-shift for each Saturday in the event log of example 17
4 Saturday work-shift for each resource 18
5 Saturday work-shift for the role 18
6 Example of event log filtered on Saturday for resource R4’s work-

shift discovery . 22
7 R4’s work-shift for each Saturday in the event log 22
8 Saturday work-shift for the resource R4 22
9 Results of the application of the methods proposed in the literature

and our algorithm for role’s work-shifts discovery on event logs with
no noise . 30

10 Results of the application of the methods proposed in the literature
and our algorithm for resource’s work-shifts discovery on event logs
with no noise . 31

11 Results of the application of the methods proposed in the literature
and our algorithm for role’s work-shifts discovery on event logs with
noise . 33

12 Results of the application of the methods proposed in the literature
and our algorithm for resource’s work-shifts discovery on event logs
with noise . 35

IV

Alessandro Pegoraro 1 INTRODUCTION

1 Introduction
Business process simulation (BPS) is a widely used technique for analyzing the
quantitative properties of business processes. The basic idea of BPS is to execute
a large number of instances of a process, based on a simulation model enhanced
with pinpoint parameters, to collect performance measures such as waiting times
of tasks, processing times, execution cost, and cycle time [1][4].

The accuracy of a business process simulation, and hence the usefulness of the
conclusions drawn from it, is to a large extent dependent on how faithfully the
simulation model and given parameters can reproduce the observed reality.
When a process model is manually designed by an analyst, it may not be able
to capture all the dependencies and patterns of how the process is performed in
reality.
To solve these limitations the preferred solution is to automatically discover sim-
ulation models from business process execution logs (also known as event logs).
Simulation models with parameters discovered in this way are generally more
faithful since they do not only capture common patterns, but also uncommon
behaviours. Furthermore, in contrast to what an analyst manages to explore and
discover manually, these automated approaches typically explore a larger space of
options when tuning parameters, also allowing one to find and express operations
and processes at a finer granularity.
However, the existing techniques for business process simulation tend to ignore
or make a generic assumption about the availability dependencies.
They either assume that resources are continuously available (24 hours a day, 5
to 7 days a week) or simply base their specifications on the "formal" availabil-
ity provided and defined by the company (work-shifts timetables), disregarding
the possibility of breaks, recurrent meetings and other uncommon behaviours
that an analysis of the event log may instead provide. This thesis proposes new
approaches to solve the problem of roles and resources’ availability constraint dis-
covery from event logs. We will then evaluate and compare our approaches with
the current solutions available in the literature. These comparisons show that
our approaches are a better fit to discover availability calendars in the presence
of rare execution of activity occurring outside the usual work time (that hereafter
we will call noise).

1

1 INTRODUCTION Alessandro Pegoraro

1.1 Organization

The thesis is organized in the following sections.

Section 2: the section presents the main theoretic concepts that can be useful
for the reader;

Section 3: the section presents all the main related works;

Section 4: the section presents the proposed methods and their implementation;

Section 5: the section reports the experiments made to evaluate the proposed
methods;

Section 6: the section describes the conclusion of this work and some possible
future works.

2

Alessandro Pegoraro 2 PRELIMINARIES

2 Preliminaries
In this section are presented the main theoretic concepts that can be useful for
reading this thesis.

2.1 Process Mining

Process Mining is a research field located between Data-Science and machine
learning. The main purpose of process mining is to extract information from data
recorded by information systems and turn them into insights and actions. The
starting point for process mining is the event log. In modern organizations, almost
every activity is performed by employing an information system that records all
the operations. All these recordings are then collected into event logs.

2.2 Event Log

They represent a register of past executions of a process. Every operation is
recorded as an event, which represents one specific execution of an activity.
Most event logs store additional information about events. Whenever possible,
process mining techniques use extra information such as the resource (i.e., person
or device) executing or initiating the activity, the starting or completing times-
tamp of the event, or data elements recorded within the event (e.g. the size of an
order).
In this thesis besides the case and activity to which an event is related, the times-
tamp, resource and transaction type also need to be recorded. Two transaction
types that have to be registered are the start and completion of activities.
These event log requirements are formalized using the notation introduced by van
der Aalst [1].
(Event Log Requirements): An event log E contains a set of events e. Each
event e represents the start or completion of the execution of an activity a by
resource r on case c at time τ.
Hence, each event e is represented as a tuple e = (c, a, r, τ, φ) with:

• #c(e) representing the case associated with event e

• #a(e) representing the activity associated with event e

• #r(e) representing the resource associated with event e

• #τ (e) representing the timestamp associated with event e

• #φ(e) representing the transaction type associated with event e

For the remaining of the thesis, the event log is supposed to have been first
converted into an activity log. This is done by mapping start events to their
corresponding completion events, creating entries with both "timestamp:start"
and "timestamp:complete". When multiple start and complete events are present
for a combination of a case, activity and resource, the first occurring start event
will iteratively be mapped to the first occurring unmapped complete event.

3

2 PRELIMINARIES Alessandro Pegoraro

Figure 1: Example of a BPMN diagram for the creation of a bill

2.3 BPMN

Business Process Model and Notation (BPMN) is a graphical representation for
specifying business processes in a business process model. It allows organizations
to represent their processes with an intuitive notation and improves the commu-
nication between organizations.
BPMN consists of four core elements: activity, event, sequence flow and gateway.
Each element can be of several types. For example, the gateway element can be
exclusive, parallel, inclusive etc. Figure 1 shows an example of a BPMN diagram
for the creation of a bill. The latest version of this document is BPMN 2.0.2 [8]
published in January 2014

2.4 Simulation

Business Process Simulation (BPS) is a widely used technique for quantitative
analysis of business processes [4]. The main idea of BPS is to generate a set
of possible execution traces of a process from a BPMN diagram annotated with
parameters such as the arrival rate of new process instances, the processing time
of each activity and, for the scope of this Thesis, the calendar of availability of
the resources simulated.

2.5 BPSim

BPSim (Business Process Simulation Specification) is a standard from WfMC
(Workflow Management Coalition) [2] that defines the rules for the configuration
of the simulation model and it allows the integration with several simulation
software.

4

Alessandro Pegoraro 2 PRELIMINARIES

The BPSim specification describes in detail how to configure and assign resources
to activities/tasks and how to raise events, decision making and other real-world
capabilities.
The BPSim’s simulation model is organized into scenarios, which contain the
initial conditions and also the simulator configurations.
Parameters are provided to configure the scenario by setting the duration of the
entire simulation, the number of replication, the start of the simulation and,
specific to our case, the roles or resources availability calendars.
In turn, a scenario is composed of a collection of Element Parameters. Each
Element Parameter of a scenario represents a specific element of a process such
as time, control or resource perspective. For each BPMN element (task, gateway,
events, etc.) is possible to create an Element Parameter and also define the
related simulation parameters. For the scope of this Thesis, calendars defining the
availability constraints of roles and resources are implemented using the iCalendar
(RFC 5545) [3] format. Notably, we defined the resource’s availability as the
intervals during each day of the week in which the process participants (human
or machine) are available and capable to perform an activity.
While the role’s availability is considered as the intervals during each day of
the week in which any activity belonging to the set constituting the role can be
performed by a resource.
Both constraints are allowed in the simulation model and grant the ability to
perform different simulations and study the development of different business
processes.

2.6 Calendar

Also called "availability calendar" or "working calendar", it defines the availabil-
ity constraint either for the roles or for the resources. It is made up of one (e.g.
standard 8 a.m. to 6 p.m. working calendar for a full time employed "human"
resource) or more availability intervals. Those constraints could change as the
execution of the simulated process evolves e.g. a resource could work the morning
on even months (February, April, etc) and the afternoon on odd months (Jan-
uary, March, etc), another could work all the day only on Monday, but never on
Friday, etc.
So it is necessary to "enrich" its characterization in the simulation model with the
work-Shifts of roles or resources, to obtain a better representation of the processes
that we want to simulate, understand and improve.

5

Alessandro Pegoraro 3 RELATED WORKS

3 Related Works
In this section, we present all the main related works. These studies were used as
starting point for our work. Follows then a brief discussion about the weaknesses
found compared to our proposal.
While it is worth noticing that there exists a rich body of literature to optimally
create resource timetables to, for example, minimize staffing costs while main-
taining service levels, there is strikingly little work on empirically deducing the
resource availability prevailing in reality [7]. They instead either expect 24-hour
availability or express the "formal" availability of a resource for the company as
a whole.

3.1 "Discovering business process simulation models in the
presence of multitasking and availability constraints"
by Estrada-Torre et Al.

The study [5] tries to find a calendar-based pattern (SP) made up of a pair of
calendar expressions and constraints.
A calendar expression is a tuple of time granules where each subsequent time
granule is a subset of the previous, i.e. (year: 2022, week: 1, day_of_week: 3,
hour: 7) is a calendar expression and year, week etc. are time granules. It then
tries to apply an algorithm for discovering calendar expressions from collections
of time points to infer resource timetables from an execution log.
The study supposes that a time point refers to both "timestamp:start" and
"timestamp:complete" because both the start and the end of a work item are
points in time during which a resource is known to have been actively working.
While in the "time periods" between these time points it should be considered
unknown if the resource was actively working, this is true, especially in the case
of multitasking or breaks that may not be registered (lunch, meetings, events
starting and ending on different days, etc.).
The algorithm proposed returns a calendar expression that should cover the ma-
jority of the time point extracted from the event log. Concretely, to infer the
resource timetable it first extracts the first event associated with each case/trace
and it retains the "timestamp:start" of this work item. It then discovers a set of
calendar expressions from the collection of all such "timestamp:start". But this
approach does not consider the end of availability for the resource, nor does it
consider the possibility of work-shifts. Nonetheless, the hypothesis of the uncer-
tainty of work between the start and completion of events allows us to remove the
type of noise generated by blindly considering the resource always active during
periods defined by events with a high (many hours, different days) delta difference
between start and complete timestamp.

7

3 RELATED WORKS Alessandro Pegoraro

3.2 "Retrieving Resource Availability Insights from Event
Logs" by Martin et Al.

The paper [6] is the first to recognize the importance of defining the availability
constraints for roles and resources in the simulation model. Most human resources
tend to be involved in multiple processes and they are not permanently available
unlike what is expected from their timetable. Or the availability of the resource
is known in terms of the number of hours, but it is unknown how these hours are
distributed during the working day.
A naive simulation model, following only the specification obtained from the
timetable, could therefore return scenarios less precise and that resemble less the
equivalent reality that we want to model.
The algorithm proposed is focused on the daily resource availability for all the
dates in the event log. This allows us to define, for each resource, daily active
periods by merging events that follow each other. It also allows one to define
boundary pending cases, and implicitly unavailable periods, by examining the
event log and finding time frames in which new cases are present and the re-
source could perform an activity, but no resource activity is recorded.

The main drawback of this approach is that all insights are relegated to the
days recorded in the event log, so the simulation model has no way to know the
possible availability of the possible availability of the resource outside the afore-
mentioned days.
Another problem of this approach is the lack of generality, it is easy to imagine
that for large simulation models it is unfeasible to define the availability of each
resource by listing all active periods for each day. While a more generic calendar
may result in less accurate scenarios our approach tries to cover this with the
introduction of work-shifts for each resource.

3.3 "Retrieving the resource availability calendars of a pro-
cess from an event log" by Martin et Al.

The paper [7] takes from the aforementioned article by the same author to re-
solve the problem of lack of generality and it proposes two methods to discover
availability calendars from the daily availability record:

• direct sampling

• cluster-based sampling

Those approaches offer a more generalized result, but still suffer from the problem
described before, that is the limitation of having to create a calendar for every
single day of the event log that we want to reproduce in the simulation model.
Also, these approaches heavily depend on obtaining a good enough sampling, both
introducing randomness in the results. Our methods instead can be considered
"pure" i.e. they do not depend on anything other than their parameters, so when
invoked in a different context or at a different time with the same arguments,
they will produce the same result.

8

Alessandro Pegoraro 3 RELATED WORKS

3.3.1 Direct Sampling

First, this method groups all records of availability of dates of the specific day
of the week (all that are Monday, Tuesday, etc) and then it randomly chooses a
record to create the availability calendar. This approach heavily leans on the fact
that abnormal patterns and noise should be less frequent and so the probability
that records with those noisy intervals are drawn is lower.

3.3.2 Cluster-Based Sampling

This method identifies a limited number of "representative" daily availability
records to sample from when composing a resource availability calendar.
All availability records are grouped for each day of the week, then each group
is subject to separate cluster analysis. First, through hierarchical clustering, the
number of clusters is decided, after which partitioning around medoids (similar
to k-means) is used to obtain a cluster solution.
the medoids of the final cluster solution will be considered "representative" for
their respective cluster in the final sampling for the availability calendar compo-
sition. The size of each cluster will determine the probability of selection.

9

Alessandro Pegoraro 4 ALGORITHM

Figure 2: Example of distribution of activities of a role, for all Tuesdays in an
event log

4 Algorithm
In this section we will introduce the three main algorithms, the first one handles
the discovery of calendar for roles and the second and third ones handle the
discovery of work-shifts for roles and individual resources. All algorithms take a
filtered event log as input and, using a Data-Science approach, are not bound to
any subjective opinion or input from the process stakeholders.
In those sections, we refer to day of the event log as a specific date in the event
log, i.e. Friday 2022-05-06, and day of the week as one of the seven days of the
week or all the days recorded in the event log with that specific day of the week,
i.e. if we refer to Monday as the day of the week we refer to all Mondays in the
event log.

4.1 Working Calendar Discovery for Roles

This algorithm observes the distribution of work of the resources when executing
an activity belonging to the role and tries to extract the calendar that defines
their availability constraints.

In this section, we refer to the event log as one filtered by the selected role
and the selected day of the week. For example Figure 2 shows the distribution
of activities executed by the resources of a role, calculated as the sum of all the
activities registered during all Tuesdays in the event log. From this data, the
algorithm tries to extract a possible calendar using a Data-Science approach, to
obtain both a good enough generalization (with the removal of possible noise)
and a calendar with which we can simulate a new event log as similar as possible
to the original.

11

4 ALGORITHM Alessandro Pegoraro

Figure 3: Example of role’s availability calendar on Tuesday: 7:00 a.m. to 10:20
p.m., highlighted in red the intervals considered noise

The algorithm for role’s calendar discovery depends on two parameters:

• Threshold: the minimum duration of activity that would not be considered
noise, e.g. with a threshold equal to 10% all the intervals smaller than a
tenth of the total length would be eliminated.

• Tolerance: the maximum distance between two consecutive intervals that
would make the algorithm consider them as one, e.g. two consecutive ac-
tivity intervals smaller than the threshold, but that are distant from each
other by less than the tolerance, can be counted as one single interval of
activity, that can be bigger than the threshold and not labelled as noise and
removed.

Even slightly different combinations of values for threshold and tolerance can
lead the algorithm to totally different working calendars. To choose which pair
of values return the calendar that best reflects the working availability of the role
we try to maximize the output of an objective function defined as the harmonic
mean (F1 score) of precision and recall, minus the numerosity, plus the calendar
size.

γ = 2 ∗ precision ∗ recall
precision+ recall

− numerosity + calendar size (1)

The different elements of γ (1) are computed as follows:

• Precision: one minus the sections of intervals in the discovered calendar
that are not present in the distribution of activity of the event, divided by
the sum of all intervals composing the calendar. For example, in Figure 3,
the discovered interval states that there should be an active execution of
work from 9:20 to 9:45, but then as we can see there is no activity recorded
on that segment. That and the other segments, which are covered by the

12

Alessandro Pegoraro 4 ALGORITHM

intervals but have a value of zero in the distribution, are then divided by
the total duration of all intervals in the calendar i.e. from 7:00 a.m. to
10:20 p.m.

1− activities not in event log, but expected in calendar

total duration covered by calendar

• Recall: the number of activities in the event log that are completely covered
by the calendar, divided by the total number of activities in the event log.

activities in event log completely covered by calendar

total number of activities in event log

• Numerosity: the number of intervals in the calendar divided by 24 (we
suppose that during a day the minimum length of an interval is one hour).
This parameter incentivizes calendars with fewer intervals, boosting the
score of calendars discovered using higher tolerance and counterbalancing
the negative effect of precision: discovering calendars with high tolerance
means that we could have large intervals that are the union of two or more
consecutive intervals, those by definition should have a segment between
the two, and this segment is composed of only zero values (otherwise it
would be considered another interval), when calculating the precision this
segment is covered by an interval of the calendar, but those activities are
not in the event log, decreasing the value of precision.

number of intervals in calendar

24 intervals

• Calendar Size: the total length of all intervals in the calendar divided by
the total length of the day (dependent on the specified time unit: 24 hours,
1440 minutes, 864000 seconds etc.). This parameter incentivizes calendars
to cover as much area as possible while still being restricted by the threshold
to disregard segments labelled as noise.

length intervals in calendar

time unit

To find the pair of threshold and tolerance that maximize (1), we apply the
algorithm testing all possible combinations in a customizable range (in our ex-
periments the range was 1%− 30% for the threshold and 0− 30 minutes for the
tolerance).
Figure 3 shows that for our example the availability on Tuesday is from 7:00 to
22:20, while the work recorded around 5:00 should be considered noise.
The calendar in the example in Figure 3 was obtained with a threshold of 0.01%
and a tolerance of 21 minutes, this pair of values gives the maximum value of
1.5542 for γ (1), computed with the following values:

• Precision: 0.9355

• Recall: 0.9867

• Numerosity: 0.0416

• Calendar Size: 0.6354

13

4 ALGORITHM Alessandro Pegoraro

4.2 Implementation of Calendar Discovery

Algorithm 1: Discovery of calendar by optimization of threshold and
tolerance
Data: Event log filtered by role and day of the week
Result: List of intervals in the specified time unit

1 best_γ ← 0 /*Keeps the maximum value found
2 calendar ← [] /*Keeps the best calendar found
3

4 for threshold← 0.01 to 0.3 do
5 for tolerance← 0 to 30 do
6 intervals← find_calendar(event_log, threshold, tolerance)
7 precision← find_precision(event_log, intervals)
8 recall← find_recall(event_log, intervals)
9 numerosity ← intervals.size() / 24

10 calendar_size← find_total_length(intervals) / 1440
11

12 current_γ ← F1(precision, recall)−numerosity+ calendar_size
13

14 if current_γ > best_γ then
15 best_γ ← current_γ
16 calendar ← intervals

17 end
18 end
19 end

Algorithm 1 at line 6 finds the intervals that constitute the calendar that best
respect the threshold and tolerance set for the current cycle using the function
defined in Algorithm 2.
Precision, recall, numerosity and calendar size are calculated on lines 7 − 10 as
described in Section 4.1.
On line 12 we calculate function γ (1) and on line 14 we check if we have found
a better value, i.e. a better pair of threshold and tolerance if so we memorize the
new calendar.

The function find_calendar described in Algorithm 2 takes as input the chosen
threshold and tolerance and an event log filtered by role and day of the week in
which all entries contain both the "start" and "complete" timestamp as shown
in Table 1.
The function starts by populating an array of length relatives to the time unit
chosen (in our case it’s 1440 minutes) to obtain the distribution of work shown
in Figure 2.
Note that in line 5 both event[”start”] and event[”complete”] are the represen-
tation in time unit (minute in our case), respectively, of "timestamp:start" and
"timestamp:complete" of the activity described in the event.

14

Alessandro Pegoraro 4 ALGORITHM

Case Id Activity start complete Resource ...
...

105 C 2022-01-01 14:30 2022-01-01 15:30 R1 ...
81 A 2022-01-08 9:43 2022-01-08 13:15 R4 ...
111 C 2022-02-19 8:17 2022-02-19 9:55 R2 ...
36 B 2022-01-08 9:33 2022-01-08 11:22 R1 ...
...

Table 1: Example of event log filtered on Saturday

For example, an event with "timestamp:start" 2022-01-01 14:30 is represented in
the range 0− 1440 as 870, and "timestamp:complete" 2022-01-01 15:30 is repre-
sented as 930, reading this event will increase by one unit all the elements in the
array in the range: 870− 930.
We then begin searching for the set of intervals that compose the calendar, start-
ing at line 12 when we first find the mark of activity, we begin searching for the
end of the interval under research using the variable j. When we no longer found
any event of activity we start to check if, in the range defined by the tolerance, we
can find the beginning of another interval, to merge the two. We use the variable
patience that assumes the values in the range 0 − tolerance.
At line 25 we check two possible cases:

• tolerance_check == False if we found a second interval to merge in the
range allowed by the input tolerance

• patience + j < 1440 this checks that we do not exceed the range of the
array i.e. the current interval ends at 12 p.m.

If both cases are true, then we continue with the search for the ending point of
the interval under observation. Otherwise, we have found the end of the current
interval (or we have reached the end of the array) and we can check if it satisfies
the given threshold. On lines 29 - 31 we calculate the ratio between the length
of the discovered interval and the sum of the total lengths of all intervals.
This is done by adding all the values within the start and end of the interval
and dividing the result by the sum of all values in the array i.e. the sum of all
the intervals. If this ratio is smaller than the threshold given as input then the
interval is discarded following the definition in Section 4.1

15

4 ALGORITHM Alessandro Pegoraro

Algorithm 2: Discovery of calendar for the given threshold and toler-
ance
Data: Event log filtered by role and day of the week

Threshold
Tolerance

Result: List of intervals in the specified time unit
1 Function find_calendar(event_log, threshold, tolerance):
2 activities← [0] ∗ 1440 /*Starting array with all 0
3 for case in event_log do
4 for event in case do
5 activities[event[”start”], event[”complete”]]← +1
6 end
7 end
8 intervals← []
9 start← 0

10 end← 0
11 for i← 0, i <= 1440 do
12 if activities[i] ̸= 0 then
13 start← i /*Found start of interval
14 search_interval← True
15 for j ← i, j <= 1440 & search_interval do
16 if activities[j] == 0 then
17 tolerance_check ← True
18 patience← 1
19 for tolerance_check & patience <= tolerance &
20 patience+ j <= 1440 do
21 if activities[j + patience] ̸= 0 then
22 tolerance_check ← False
23 end
24 end
25 if tolerance_check == False & patience+ j < 1440

then
26 j ← +patience /*End of interval not found
27 else

/*Found end of interval
28 end← j − 1
29 num← SUM(activities[start, end])
30 den← SUM(activities)
31 ratio← num /den
32 if ratio >= threshold then
33 intervals.append(start, end)
34 end
35 search_interval← False
36 i← j + 1

37 end
38 end
39 end
40 end
41 end
42 return intervals 16

Alessandro Pegoraro 4 ALGORITHM

Resource Case Id Activity start complete ...
R1
R1 105 C 2022-01-01 8:30 2022-01-01 12:03 ...
R1 81 A 2022-01-08 13:15 2022-01-08 18:04 ...
R1
R2
R2 111 C 2022-02-19 13:12 2022-02-19 18:09 ...
R2 36 B 2022-01-08 13:20 2022-01-08 18:00 ..
R2
R3
R3 105 D 2022-01-01 15:33 2022-01-01 17:45 ...
R3 36 D 2022-01-08 9:48 2022-01-08 12:01 ..
R3

Table 2: Example of event log filtered on Saturday for work-shift discovery

Resource date interval
R1
R1 2022-01-01 8:30 - 12:03
R1 2022-01-01 13:11 - 17:57
R1 2022-01-08 13:15 - 18:04
R1
R2
R2 2022-01-08 13:20 - 18:00
R2 2022-02-19 13:12 - 18:09
R2

Table 3: Resource’s work-shift for each Saturday in the event log of example

4.3 Work-shift Discovery for Roles

In this section, we refer to the event log as one filtered by the selected role and
the selected day of the week. From this data, the algorithm tries to extract all
possible work-shifts of the resources in the role and then it merges all similar
work-shifts to avoid all duplicates and obtain the optimal set of intervals for the
simulation.
First, the algorithm tries to eliminate any possible noise, filtering out all events
in the event log with timestamps outside the bounding defined by the calendar
discovered using Algorithm 1.
Then for each resource, we merge consecutive active periods [6] having the same
date in the event log.
At the end of these steps, we should have the specific intervals for each day in
the event log in which the resources are registered as active, as shown in Table 3.
For the next step, we want to obtain all possible work-shift that each resource
can cover on the selected day of the week. To manage this, first, we merge all
intervals (of the same resource) that overlap by more than a certain percentage
(in our experiment we used a degree of similarity of 70%).

17

4 ALGORITHM Alessandro Pegoraro

Resource Work-shift
R1 8:30 - 12:03
R1 13:11 - 18:04
R2 13:12 - 18:09

Table 4: Saturday work-shift for
each resource

Role Work-shift
{A, B, C, D} 8:30 - 12:03

13:11 - 18:09

Table 5: Saturday work-shift for
the role

The overlapping of intervals is calculated as a degree of similarity using the follow-
ing formula dependent on the chosen time unit (in our experiment 1440 minutes):

SIM(interval1, interval2) =

∑1440
t=0 interval1(t) ∗ interval2(t)∑1440

t=0 SIGN(interval1(t) + interval2(t))

=
interval1 ∩ interval2
interval1 ∪ interval2

(2)

with

intervaln(t) =

{
1, if t ∈ intervaln
0, otherwise

and

SIGN(x) =

{
1, if x > 0

0, otherwise

We can observe the result of this second-last step in Table 4. The last step of
the algorithm is to merge the work-shift of each resource into a unique set of
work-shifts for the role. To do this we repeatedly apply the similarity function
until we reach a set of disjunctive work-shifts as shown in Table 5.

18

Alessandro Pegoraro 4 ALGORITHM

Figure 4: The two possible types of intervals merge

4.4 Implementation of Work-shift Discovery for Role

Algorithm 3 takes as input an event log filtered by any day of the week and a
specific role. Starting at line 1 it uses the function defined on Algorithm 4 to
both filter the event log by role and to remove all events considered noise. On
line 2 the function extract_resources() return the list of all the resources that
appear in the event log, then for each resource it cycles all dates in the event log
in chronological order, starting from the first date (line 5) and ending with the
last (line 6).
On lines 11 and 12, it checks if the current resource belongs to the event under
examination and if the date of the "timestamp:start" is the one that it is cur-
rently checking. If this is true it saves the event in a temporary list. When all
cases and events for the current date and resource have been checked, it tries to
merge all events in the temporary list on line 18.
The function merge_events() takes as input a list of events and for each pair of
events if they are registered as consecutive active periods [6] it merges them into
a single event. It then tries to repeat this process until no further pair can be
merged. The output is a set of events that we convert into a list of intervals that
we add to the global list of intervals: work_shifts.

Lines 19 to 26 and 31 to 38 describe the same subroutine, the first is bounded by
the intervals of a single resource, while the second operates on the intervals of all
resources. The subroutine takes a pair of intervals and if their degree of similar-
ity, calculated using (2), is higher than the selected percentage it creates a new
interval made from their union and it removes the two old intervals. Since the
new interval is re-added to the cycled list, we are assured that both subroutines
will repeatedly apply the similarity function until they reach a set of disjunctive
work-shifts.

19

4 ALGORITHM Alessandro Pegoraro

Algorithm 3: Discovery of role’s work-shifts
Data: Event log filtered by day of the week

Role
Result: List of work-shifts in the specified time unit

1 event_log ← filter_event_log_role(event_log, role)
2 resource_list← extract_resources(event_log)
3 work_shifts← []
4 for RES in resource_list do
5 curr_date← extract_first_date(event_log)
6 end_date← extract_last_date(event_log)
7 while curr_date <= end_date do
8 events_to_merge← []
9 for case in event_log do

10 for event in case do
11 if event[”org : resource”] == RES then
12 if event[”start”].date() == curr_date then
13 events_to_merge.append(event)
14 end
15 end
16 end
17 end
18 interval_list← merge_events(events_to_merge)
19 for (INTER1, INTER2) in interval_list do
20 similarity ← SIM(INTER1, INTER2)
21 if similarity >= 0.7 then
22 INTER3 ← merge_intervals([INTER1, INTER2])
23 interval_list.delete([INTER1, INTER2])
24 interval_list.append(INTER3)

25 end
26 end
27 work_shifts.append(interval_list)
28 curr_date← +7 days

29 end
30 end
31 for (INTER1, INTER2) in work_shifts do
32 similarity ← SIM(INTER1, INTER2)
33 if similarity >= 0.7 then
34 INTER3 ← merge_intervals([INTER1, INTER2])
35 work_shifts.delete([INTER1, INTER2])
36 work_shifts.append(INTER3)

37 end
38 end

20

Alessandro Pegoraro 4 ALGORITHM

Algorithm 4: Filter an event log by role and discard all events that do
not match it’s calendar
Data: Event log

Role
Result: Filtered event log

1 Function filter_event_log_role(event_log, role):
2 event_log ← filter(event_log, role)
3 calendar ← calendar_discovery(event_log)
4 new_event_log ← [] /*Filtered event log starts empty
5 for case in event_log do
6 new_case← []
7 for event in case do
8 if event[”start”] & event[”complete”] ∈ calendar then
9 new_case.append(event)

10 end
11 end
12 if new_case.size() > 0 then
13 new_event_log.append(new_case)
14 end
15 end
16 return new_event_log

The function filter_event_log_role described in Algorithm 4 takes as input an
event log and a specific role (set of activities).
First, the function filters the event log by role, removing all events that do not
have one of the activities from the role, then at line 3, using the calendar discovery
defined in Section 4.1, discover the set of intervals that it will use to filter the
event log.
The function cycle each case composing the event log and from those cases extract
the corresponding events, then on line 8, it checks that both "timestamp:start"
and "timestamp:complete" of the event are covered by an interval of the calendar
Lastly, it uses all events that passed the test to create a new_case to add to the
resulting filtered event log.

21

4 ALGORITHM Alessandro Pegoraro

Case Id Activity start complete Resource ...
...

105 C 2022-01-01 8:30 2022-01-01 12:03 R4 ...
81 A 2022-01-08 9:43 2022-01-08 13:15 R4 ...
111 H 2022-02-19 13:12 2022-02-19 13:16 R4 ...
36 B 2022-02-19 10:06 2022-01-08 13:10 R4 ..
93 E 2022-02-26 8:29 2022-02-26 11:47 R4 ...
12 A 2022-02-26 11:52 2022-02-26 12:59 R4 ..
...

Table 6: Example of event log filtered on Saturday for resource R4’s work-shift
discovery

Resource date interval
R4
R4 2022-01-01 8:30 - 12:03
R4 2022-01-08 9:43 - 13:15
R4 2022-02-19 10:06 - 13:16
R4 2022-02-26 8:29 - 12:59
R4

Table 7: R4’s work-shift for each
Saturday in the event log

Resource Work-shift
R4 8:29 - 13:16

Table 8: Saturday work-shift for
the resource R4

4.5 Work-shift Discovery for Resources

In this section, we refer to the event log as one filtered by the selected resource
and the selected day of the week. From this data, the algorithm tries to extract all
the possible work-shifts of the resource and then it merges all similar work-shifts
to avoid all duplicates and obtain the optimal set of intervals for the simulation.

First, the algorithm tries to eliminate any possible noise, filtering out all events
in the event log that are not covered by the calendar discovered using Algorithm
1.
Given that a resource can belong to multiple roles, but an activity belongs to only
one role, the algorithm must filter out the events that it considers noisy according
to the appropriate calendar for the role containing the activity in the event.
The algorithm then merges consecutive active periods [6] having the same date
in the event log.

At the end of these steps, we should have the specific working intervals for the
days in which the resource’s activity is registered in the event log as shown in
Table 7.

The final step of the algorithm is to apply the similarity function (2) and re-
peatedly merge each interval into a unique set of work-shifts for the resource,
obtaining the work-shift shown in Table 8.

22

Alessandro Pegoraro 4 ALGORITHM

4.6 Implementation of Work-shift Discovery for Resource

Algorithm 5 takes as input an event log filtered by any day of the week and a
specific resource. Starting at line 1 it uses the function defined in Algorithm 6 to
both filter the event log by resource and to remove all events considered noise.
Then it cycles all dates in the event log starting from the chronological first date
(line 3) and ending with the last (line 4).
Lines 9 checks if the date of the "timestamp:start" is the one that it is currently
checking. If this is true it saves the event in a temporary list, then when all cases
and events for the current date have been checked, it tries, on line 14, to merge
all events saved in the temporary list.
The function merge_events() takes as input a list of events and for each pair of
events if they are registered as consecutive active periods [6] it merges them into
a single event. It then tries to repeat this process until no further pair can be
merged. The output is a set of events that we convert into a list of intervals that
we add to the global list of intervals: work_shifts. Lines 18 to 25 describe a
subroutine that takes a pair of intervals from work_shifts and if their degree of
similarity, calculated using (2), is higher than the selected percentage it creates
a new interval made from their union and it removes the two old intervals. Since
the new interval is re-added to the cycled list, we are assured that the subroutine
will repeatedly apply the similarity function until it reaches a set of disjunctive
work-shifts. The function filter_event_log_resource described in Algorithm 6
takes as input an event log and a specific resource.
First, the function filters the event log by resource, removing all events that
are not performed by the specific resource, then at line 3, it extracts all roles
belonging to this filtered event log. Then on lines 5 to 8, with each role found it
builds a dictionary (map) with their specific calendar obtained from the original
event log filtered by the role.
The function surveys each case composing the event log filtered by resource and
from those cases extracts the corresponding events. On line 13 it cycles all roles
searching for the one containing the activity in the current event, then when
it founds a match it begins to check, on line 15, that both "timestamp:start"
and "timestamp:complete" are covered by an interval of the calendar. Line 19
contains a break because we know that activities can not belong to more than one
role, therefore continuing the search into role_list is useless and time-consuming
Lastly, it uses all events that passed the test to create a new_case to add to the
resulting filtered event log.

23

4 ALGORITHM Alessandro Pegoraro

Algorithm 5: Discovery of resource’s work-shifts
Data: Event log filtered by day of the week

Resource
Result: List of work-shifts in the specified time unit

1 event_log ← filter_event_log_resource(event_log, resource)
2 work_shifts← []
3 curr_date← extract_first_date(event_log)
4 end_date← extract_last_date(event_log)
5 while curr_date <= end_date do
6 events_to_merge← []
7 for case in event_log do
8 for event in case do
9 if event[”start”].date() == curr_date then

10 events_to_merge.append(event)
11 end
12 end
13 end
14 interval_list← merge_events(events_to_merge)
15 work_shifts.append(interval_list)
16 curr_date← +7 days

17 end
18 for (INTER1, INTER2) in work_shifts do
19 similarity ← SIM(INTER1, INTER2)
20 if similarity >= 0.7 then
21 INTER3 ← merge_intervals([INTER1, INTER2])
22 work_shifts.delete([INTER1, INTER2])
23 work_shifts.append(INTER3)

24 end
25 end

24

Alessandro Pegoraro 4 ALGORITHM

Algorithm 6: Filter an event log by resource and discard all events that
do not match their calendar
Data: Event log

Resource
Result: Filtered event log

1 Function filter_event_log_resource(event_log, resource):
2 resource_eventlog ← filter(event_log, resource)
3 role_list← extract_role(resource_eventlog)
4 dict_calendar ← dictionary()
5 for ROLE in role_list do
6 role_eventlog ← filter(event_log, ROLE)
7 dict_calendar[ROLE]← calendar_discovery(role_eventlog)

8 end
9 new_event_log ← [] /*Filtered event log starts empty

10 for case in resource_eventlog do
11 new_case← []
12 for event in case do
13 for ROLE in role_list do
14 if event[”activity”] ∈ ROLE then
15 if event[”start”] & event[”complete”]
16 ∈ dict_calendar[ROLE] then
17 new_case.append(event)
18 end
19 break

20 end
21 end
22 end
23 if new_case.size() > 0 then
24 new_event_log.append(new_case)
25 end
26 end
27 return new_event_log

25

Alessandro Pegoraro 5 EXPERIMENTS

5 Experiments
In this section are reported all the experiments that we performed to analyze the
goodness of our approaches for the discovery of role’s working calendars and the
discovery of work-shifts for roles and resources.
All algorithms are fully implemented in Python1 and the key packages used are
BPSimpy2 for the generation of simulation models compliant with the Business
Process Simulation Specification (BPSim) defined in Section 2.5 and PM4Py3 for
data manipulation and feature extraction.

The synthetic event logs were generated using the Lanner simulator (L-sim)4

which allows us to define scenarios with calendars for roles or calendars for every
single resource. Synthetic event logs with either role or resource’s work-shifts are
obtained by tweaking the "rrule" field in the definition of iCalendar [3] for each
shift.

To test our approach for role’s work-shifts discovery against the methods avail-
able in the literature (Section 3) that are instead based on the resource’s calendar
discovery, we limited our simulation models to have only resources that coincide
with the roles i.e. the activities that a resource can perform belong to a single
role.
While in the case of resource’s work-shifts discovery we were able to define more
complex simulation models, even with resources performing activities of every
role.

All experiments, in the case of absence or presence of noise, were carried out
against the three main methods proposed by the literature: Calendar Expression
discovery 3.1 by Estrada-Torre et Al. Direct Sampling 3.3.1 and Cluster-Based
Sampling 3.3.2 by Martin et Al.
For all results gathered a brief analysis and explanation were provided in Sections
5.2.2, 5.2.4, 5.3.2 and 5.3.4.
In the case of Direct Sampling 3.3.1 and Cluster-Based Sampling 3.3.2 to avoid
the possibility of returning a single skewed result (especially in the case of event
logs heavily influenced by noise) we computed the average accuracy by repeating
the experiments 100 times and returned the average score of all tests.

All algorithms defined in Section 4 take event logs filtered by a specific day of the
week as input. Since we observed, in the case of human resources and no night
shifts, that each filtered event log is mutually independent of the other, i.e. does
not share any event, it is possible to apply the methods in parallel for each day
of the week and obtain a complete set of calendars or work-shifts.
In our experiments, this was viable using environment-specific containers such
as dictionaries and paying attention not to overlap the accesses to the segments
holding each separate filtered event log.

1www.python.org
2github.com/claudiafracca/BPSimpyLibrary.git
3pm4py.fit.fraunhofer.de
4io.witness.cloud

27

https://www.python.org/
https://github.com/claudiafracca/BPSimpyLibrary.git
https://pm4py.fit.fraunhofer.de/
https://io.witness.cloud/

5 EXPERIMENTS Alessandro Pegoraro

5.1 Synthetic Event Log Over Real-Life Event Log

Apart from the first experiments used to gain domain knowledge and experience
with Python libraries and evaluate the implementation of the algorithms in the
literature, all subsequent tests were carried out using synthetic event logs that
we generated. This is due to three major problems with the real-life event logs
currently available:

• The absence of both "timestamp:start" and "timestamp:complete" in the
events, as those are necessary to determine intervals of availability and
active periods, for this reason, all event logs missing the start and end of
activities were discarded.

• In the case of event logs with both start and complete timestamp, we instead
found that it was the field specifying the resource that was missing. Given
that the record of resources’ activities was necessary to compare our Algo-
rithm 5 for resource’s work-shifts discovery with the methods proposed in
the literature, all event logs missing the information regarding the resource
performing the activity were discarded.

• The absence of a "Ground Truth", even using the remaining event logs (most
of which were found through the literature described in Section 3) carries
a fundamental problem, that is, we had no way to check that any result
we obtain could mirror the true calendars of the event log. A qualitative
analysis could be made, but, for example, it does not allow to check the
accuracy of calendars or work-shifts, or even the existence of work-shifts in
the event log.

For these reasons, most of the experiments done, and all of the ones analyzed in
this section are made using synthetic event logs and the accuracy of the calendars
was evaluated by comparing the intervals discovered against the "Ground Truth"
using the similarity function (2).

28

Alessandro Pegoraro 5 EXPERIMENTS

Figure 5: BPMN diagram used to generate event log with no noise

5.2 Experiments with Synthetic Event Log Containing no
Noise

The initial simulation models were based on the BPNM in Figure 5. It generates
scenarios with no noise and the following roles:

• Role 0: "Activity_00", "Activity_01"

• Role 1: "Activity_10", "Activity_11"

• Role 2: "Activity_20"

• Role 3: "Activity_30"

• Role 4: "Activity_40"

• Role 5: "Activity_50"

5.2.1 Experiment for Role’s Work-shifts Discovery in the Case of Ab-
sence of Noise

For this type of experiment, it was necessary to have the resources’ activities
coinciding with a single role. Each role was simulated using 5 resources for a
total of 30 resources.
Here follows the analysis of three cases:

• Case 1: availability of role 0, all working days (Mon to Fry) from 8:30 to
12:30 and from 14:00 to 18:00

• Case 2: availability of role 1, all weekend (Sat to Sun) from 5:00 to 12:00
and from 14:30 to 22:30

• Case 3: availability of role 2,3,4 and 5, all days (Mon to Sun) with 4 re-
sources working 8:00 to 12:30 and one resource working 12:30 to 13:30

29

5 EXPERIMENTS Alessandro Pegoraro

Calendar
Expression

Direct
Sampling

Cluster-Based
Sampling

Role’s Work-shifts
Discovery

Case 1 0.9813 0.9813 0.9813 0.9813
Case 2 0.9889 0.9889 0.9889 0.9889
Case 3 0.8187 0.9969 0.9969 0.9969

Table 9: Results of the application of the methods proposed in the literature
and our algorithm for role’s work-shifts discovery on event logs with no noise

5.2.2 Results of Experiment for Role’s Work-shifts Discovery in the
Case of Absence of Noise

As we can see from Table 9, in the simplistic cases 1 and 2 with no noise and an
equal allocation of resources, all algorithms perform similarly (the difference from
the "Ground Truth" is given from the fact that in the simulation the resources
may not start working exactly when available) returning the same calendars.
While in case 3 the algorithm for Calendar Expression discovery 3.1 does not
consider the confidence in the calendar expression of the resource working from
12:30 to 13:30, discarding it from the calendar expression used to calculate the
intervals of the calendar. In particular, the time-points around 12:30 account for
5 resources (ending of availability for 4 e starting of availability of one), while the
time-points at 13:30 are supported only by one resource.

5.2.3 Experiment for Resource’s Work-shifts Discovery in the Case
of Absence of Noise

In this type of experiment, we analyze three different resources belonging to three
separate scenarios that we simulated:

• Case 4: resource_4 belongs to role 0 and is available all working day (Mon
to Fry) from 8:30 to 12:30

• Case 5: resource_5 belongs to role 3, role 4 and role 5. It is available all
months from 6:30 to 12:30 all working day (Mon to Fry), but on March,
April and May its availability on Tuesday becomes from 14:30 to 20:00.

• Case 6: resource_6 belongs to role 0 and role 2. It is available all working
days (Mon to Fry), from 8:30 to 14:30 on every month except on June and
July when it is available from 11:15 to 17:00.

30

Alessandro Pegoraro 5 EXPERIMENTS

Calendar
Expression

Direct
Sampling

Cluster-Based
Sampling

Resource’s
Work-shifts Discovery

Case 4 0.9790 0.9789 0.9791 0.9791
Case 5 0.9127 0.9260 0.9508 0.9508
Case 6 0.9407 0.9168 0.9251 0.9655

Table 10: Results of the application of the methods proposed in the literature
and our algorithm for resource’s work-shifts discovery on event logs with no noise

5.2.4 Results of Experiment for Resource’s Work-shifts Discovery in
the Case of Absence of Noise

Table 10 shows again that in the more simplistic case 4 all algorithms have similar
performances.
In case 5 both the Calendar Expression discovery 3.1 and Direct Sampling 3.3.1
have a slightly smaller average accuracy given from the edge case of availability
on Tuesday of resource_5.
In case 6 we can observe a drop in accuracy even for the Cluster-Based Sam-
pling 3.3.2, this is because the availability intervals for different months overlap
and tricks the algorithm to create medoids of active periods from 8:30 to 17:00,
while the algorithm for Calendar Expression discovery 3.1 has enough dates with
different intervals to sample for time-points and can create calendar expressions
that cover both intervals.

5.3 Experiments with Synthetic Event Log Containing Noise

We then tested how our algorithm could perform against the currently available
algorithms in the case of event logs with noise, to create this type of event log we
developed a new BPNM, shown in Figure 6, capable of generating new scenarios
with noise.
We were also able to regulate the quantity of noise simulated by adjusting the
probability for each path in the exclusive gateways.
The simulation model had the following roles:

• Role 0: "Activity_00", "Activity_01", "Noise_00", "Noise_01"

• Role 1: "Activity_10", "Activity_11", "Noise_10", "Noise_11"

• Role 2: "Activity_20", "Noise_20"

• Role 3: "Activity_30", "Noise_30"

• Role 4: "Activity_40", "Noise_40"

• Role 5: "Activity_50", "Noise_50"

31

5 EXPERIMENTS Alessandro Pegoraro

Figure 6: BPMN diagram used to generate event log with noise
32

Alessandro Pegoraro 5 EXPERIMENTS

Calendar
Expression

Direct
Sampling

Cluster-Based
Sampling

Role’s Work-shifts
Discovery

Case 7 0.9449 0.8407 0.9538 0.9507
Case 8 0.9102 0.8620 0.9351 0.9858
Case 9 0.9002 0.7089 0.9561 0.9031

Table 11: Results of the application of the methods proposed in the literature
and our algorithm for role’s work-shifts discovery on event logs with noise

Figure 7: Case 8, role 2’s work-shifts discovered by our Algorithm 3

5.3.1 Experiment for Role’s Work-shifts Discovery in the Case of
Presence of Noise

For this type of experiment, it was necessary to have the resources’ activities
coinciding with a single role. Each role was simulated using 5 resources for a
total of 30 resources.
Here follows the analysis of three cases:

• Case 7: availability of role 0, all working days (Mon to Fry) from 8:30 to
12:30, with noise from 7:15 to 7:30 and from 15:00 to 15:30

• Case 8: availability of role 2, all working days (Mon to Fry)
with 3 resources working 8:00 to 12:30 all months,
one resource working 12:30 to 14:30 on June
and one resource working from 14:00 to 16:00 on July.
Noise present from 6:00 to 7:00 and from 18:00 to 19:00

• Case 9: availability of role 1, all working days (Mon to Fry) from 13:45 to
23:15, with noise from 0:00 to 14:00 and from 23:00 to 24:00

5.3.2 Results of Experiment for Role’s Work-shifts Discovery in the
Case of Presence of Noise

From Table 11 in case 7 we can observe how almost all algorithms are consistent
with their noise detection, only Direct Sampling 3.3.1 suffers from the edge cases
e.g. dates with only noisy activity registered that, when sampled by the algo-
rithm, greatly impact the overall average accuracy.
In case 8 we purposely limit the dates on which two of the five resources are avail-
able and as we expect on all algorithms except ours those resources are considered
noise.

33

5 EXPERIMENTS Alessandro Pegoraro

Figure 8: Case 9, role 1’s calendar for Wednesday

In particular: the Calendar Expression discovery 3.1 has not enough support for
the calendar expression of those two resources as opposed to the other three;
Direct Sampling 3.3.1 has only 1

12
of the possibilities to choose an active period

that covers 4 resources, but no chances to choose one that covers all five resources;
Cluster-Based Sampling 3.3.2 can not create medoids large enough to cover all
three cases and also exclude the boundary pending cases that represent noise i.e.
the intervals from 6:00 to 7:00.
In case 9 our algorithm performs worse than Cluster-Based Sampling 3.3.2 and
is similar to the Calendar Expression discovery 3.1, this is because the intervals
of simulated noise intersect with intervals of real work in the segments located
at 13:45 to 14:00 and from 23:00 to 23:15, so as shown on Figure 8 the noise is
not removed and influences the resulting work-shifts. While the other algorithms
perform similarly to case 7.

5.3.3 Experiment for Resource’s Work-shifts Discovery in the Case
of Presence of Noise

In this case, we analyze two different resources belonging to two separate scenarios
that we simulated:

• Case 10: resource_10 belongs to role 1 and is available all working day
(Mon to Fry) from 8:30 to 12:30
with noise from 4:00 to 6:00, from 14:00 to 14:30, form 15:00 to 15:30, from
17:00 to 18:00 and from 22:00 to 23:30.

• Case 11: resource_11 is available available all working day (Mon to Fry)
from 6:30 to 12:30 on odd months for the roles 3, 4 and 5, while on even
months it is available from 14:30 to 20:00 for role 0.
We simulated noise on odd months from 15:00 to 17:00 and on even months
from 8:30 to 10:30.

34

Alessandro Pegoraro 5 EXPERIMENTS

Calendar
Expression

Direct
Sampling

Cluster-Based
Sampling

Resource’s
Work-shifts Discovery

Case 10 0.9648 0.8709 0.9747 0.9760
Case 11 0.7591 0.7323 0.7489 0.9726

Table 12: Results of the application of the methods proposed in the literature
and our algorithm for resource’s work-shifts discovery on event logs with noise

5.3.4 Results of Experiment for Resource’s Work-shifts Discovery in
the Case of Presence of Noise

Table 12 shows in case 10 that almost all algorithms have similar performances
and can remove all instances of noise. the algorithm for Direct Sampling 3.3.1
again suffers from the randomness of its implementation and in cases in which it
chooses dates with only noise the average score decreases.
In case 11 our method greatly outperforms the other implementations. This is
due to its ability to filter out cases based on the calendar associated with its
activity’s role. While the other algorithms are not able to differentiate between
real activity and noise if they are registered on the same date.

35

Alessandro Pegoraro 6 CONCLUSIONS

6 Conclusions
This thesis aimed to develop and evaluate a method to automatically discover
role’s working calendars for simulation models from an event log.
These availability calendars express timeframes during which a resource execut-
ing an activity belonging to that specific role can be allocated as available in the
model.

At first, we tried to mirror the methods proposed in the literature, and we devel-
oped our Algorithms 1 and 2 for the discovery of resource’s working calendars,
like the methods proposed by Estrada-Torre et Al. in Section 3.1 and by Martin
et Al. in Sections 3.3.1 and 3.3.2.
But in our first experiments we noted that when we apply our methods to the
distribution of work of a single resource, they usually produce skewed distribu-
tions (multiple small intervals of less than 1 hour) that result in calendars that
do not represent or offer a good enough generalization of the real availability of
the resource. We also observed, as stated in Section 5.1, that it is not unusual
to have a real-life event log that only contains the activity and the timestamps
while the information regarding the resource is missing.

For those reasons we decided to develop our Algorithms 1 and 2 for the dis-
covery of role’s working calendars in the case of event log with noise, and then
use the resulting availability constraints in our approaches for the retrieval of
work-shifts calendars for roles and resources.

The methods that we have defined provide data-driven support to gather insights
into resource and role availability for a particular process. These availability
constraints can then be used in the construction of simulation models for the
discovery of issues related to the availability of resources playing different roles.
To outline constraints in staff scheduling problems, our methods for work-shifts
discovery enable the detection of different rules affecting a resource’s availability
patterns, e.g. a resource working part-time on call may have different availability
timeframes from week to week. The current solutions proposed in the literature
for this particular problem either are a simple listing of availability for all days
in the event log [7] offering no generalization, or similar to our methods trying
to find general patterns by aggregating similar timeframes [6], but they rely too
heavily upon a random choice, both when choosing which timeframes to aggregate
and also when sampling the intervals to define the resulting work-shift.

37

6 CONCLUSIONS Alessandro Pegoraro

A simple example that outlines the shortcoming of those methods is the task of
discovering the availability of a part-time resource for two weeks, in the first week
they work only in the morning, while in the second week they are available only
in the afternoon.
Both approaches: Direct Sampling 3.3.1 and Cluster-Based Sampling 3.3.2, can
randomly produce the following combination of availability:

• resource available two weeks in the morning;

• resource available two weeks in the afternoon;

• resource available in the afternoon during the first week and in the morning
the second week;

• resource available in the morning for the first week and in the afternoon for
the second week.

As we can see, this leads to a chance of 1
4

to define the exact work-shifts and 3
4

of
defining the wrong work-shifts. While as we have shown our approach can define
at once the correct availability.

6.1 Future Works

We observed that in certain cases our method of calendar discovery could suffer
from noisy intervals that intersect real work’s intervals. In a real case scenario, in
which we do not know the real distribution and allocation of work for resources
and roles, we should not be heavily penalized if we confuse those intervals of noise
for real work.
Nonetheless, if we observe the case of Figure 8 in which the noisy interval (from
3:00 to 14:00) intersects with the real work interval (from 14:00 to 23:00) we can
understand how this heavily affects the resulting calendar (interval from 3:00 to
24:00).
The first naive approach that we could think of may be to subtract one or more
units from all the distribution until we reduce to zero the intervals of noise. This
approach could also lead to changes in the boundaries of the real work intervals
that we want to instead maintain, so it is necessary to further study and develop
this or other possible approaches that can tackle this particular edge case that
our method can not solve at the moment.

38

Alessandro Pegoraro REFERENCES

References
[1] Wil van der Aalst. “Data Science in Action”. In: Process Mining: Data Science

in Action. Springer Berlin Heidelberg, 2016. isbn: 978-3-662-49851-4. doi:
10.1007/978-3-662-49851-4_1. url: https://doi.org/10.1007/978-
3-662-49851-4_1.

[2] Workflow Management Coalition. BPSim Business Process Simulation Spec-
ification. url: https://www.bpsim.org/specifications/2.0/WFMC-
BPSWG-2016-01.pdf.

[3] Bernard Desruisseaux. Internet Calendaring and Scheduling Core Object Spec-
ification (iCalendar). 2009. doi: 10.17487/RFC5545. url: https://www.
rfc-editor.org/info/rfc5545.

[4] Marlon Dumas et al. Fundamentals of Business Process Management. Springer.
isbn: 9783662565094.

[5] Bedilia Estrada-Torres et al. “Discovering business process simulation mod-
els in the presence of multitasking and availability constraints”. In: (2021).
issn: 0169-023X. doi: https : / / doi . org / 10 . 1016 / j . datak . 2021 .
101897. url: https://www.sciencedirect.com/science/article/pii/
S0169023X21000240.

[6] Niels Martin et al. “Retrieving Resource Availability Insights from Event
Logs”. In: (2016). doi: https://ieeexplore.ieee.org/document/7579385.

[7] Niels Martin et al. “Retrieving the resource availability calendars of a process
from an event log”. In: (2020). issn: 0306-4379. doi: https://doi.org/
10.1016/j.is.2019.101463. url: https://www.sciencedirect.com/
science/article/pii/S0306437919305150.

[8] OMG organization. ABOUT THE BUSINESS PROCESS MODEL AND
NOTATION SPECIFICATION VERSION 2.0.2. url: https://www.omg.
org/spec/BPMN/2.0.2/.

39

https://doi.org/10.1007/978-3-662-49851-4_1
https://doi.org/10.1007/978-3-662-49851-4_1
https://doi.org/10.1007/978-3-662-49851-4_1
https://www.bpsim.org/specifications/2.0/WFMC-BPSWG-2016-01.pdf
https://www.bpsim.org/specifications/2.0/WFMC-BPSWG-2016-01.pdf
https://doi.org/10.17487/RFC5545
https://www.rfc-editor.org/info/rfc5545
https://www.rfc-editor.org/info/rfc5545
https://doi.org/https://doi.org/10.1016/j.datak.2021.101897
https://doi.org/https://doi.org/10.1016/j.datak.2021.101897
https://www.sciencedirect.com/science/article/pii/S0169023X21000240
https://www.sciencedirect.com/science/article/pii/S0169023X21000240
https://doi.org/https://ieeexplore.ieee.org/document/7579385
https://doi.org/https://doi.org/10.1016/j.is.2019.101463
https://doi.org/https://doi.org/10.1016/j.is.2019.101463
https://www.sciencedirect.com/science/article/pii/S0306437919305150
https://www.sciencedirect.com/science/article/pii/S0306437919305150
https://www.omg.org/spec/BPMN/2.0.2/
https://www.omg.org/spec/BPMN/2.0.2/

	Introduction
	Organization

	Preliminaries
	Process Mining
	Event Log
	BPMN
	Simulation
	BPSim
	Calendar

	Related Works
	"Discovering business process simulation models in the presence of multitasking and availability constraints" by Estrada-Torre et Al.
	"Retrieving Resource Availability Insights from Event Logs" by Martin et Al.
	"Retrieving the resource availability calendars of a process from an event log" by Martin et Al.
	Direct Sampling
	Cluster-Based Sampling

	Algorithm
	Working Calendar Discovery for Roles
	Implementation of Calendar Discovery
	Work-shift Discovery for Roles
	Implementation of Work-shift Discovery for Role
	Work-shift Discovery for Resources
	Implementation of Work-shift Discovery for Resource

	Experiments
	Synthetic Event Log Over Real-Life Event Log
	Experiments with Synthetic Event Log Containing no Noise
	Experiment for Role's Work-shifts Discovery in the Case of Absence of Noise
	Results of Experiment for Role's Work-shifts Discovery in the Case of Absence of Noise
	Experiment for Resource's Work-shifts Discovery in the Case of Absence of Noise
	Results of Experiment for Resource's Work-shifts Discovery in the Case of Absence of Noise

	Experiments with Synthetic Event Log Containing Noise
	Experiment for Role's Work-shifts Discovery in the Case of Presence of Noise
	Results of Experiment for Role's Work-shifts Discovery in the Case of Presence of Noise
	Experiment for Resource's Work-shifts Discovery in the Case of Presence of Noise
	Results of Experiment for Resource's Work-shifts Discovery in the Case of Presence of Noise

	Conclusions
	Future Works

