

Università degli Studi di Padova – Dipartimento di Ingegneria Industriale

Corso di Laurea in Ingegneria Dell'Energia

Relazione per la prova finale «Negative Ion Beam profile estimation on STRIKE calorimeter by means of Newton's Method »

Tutor universitario: Prof. Martino Margoni

Laureanda: Eleonora Degan

Tutor Consorzio RFX: R.S. Delogu

Padova, 28/09/2023

Corso di Laurea in Ingegneria ...

• What is Spider?

Spider is a negative ion source prototype to heat plasma on ITER, a fusion reactor located in Cadarache, France.

It products negative ions beams of Deuterium and Hydrogen with a current density of respectively: 258 A/m²e 355 A/m²

STRIKE is a calorimeter and the main diagnostic system on Spider, designed to characterize the negative ion beam in terms of uniformity and divergence. 16 one way graphite tiles.

DATABASE AND PARTS OF THE CODE

- Two database types: Synthetic and Experimental Images 573 images for both;
 - Method Steps:

DIPARTIMENTO DI INGEGNERIA

$$= P^*$$

Otherwise: $T(k + 1) = T(k) + \alpha^* \delta(H(J), \nabla(J))$

- esc if mse(T,T*)<1e-2;
- *α*=0,005
- except for image n°546

- Mean Error Reconstruction:
 - →Amplitude=0.91%
 - $\rightarrow x_0 = 9.5 \text{e} 04\%$
 - $\rightarrow y_0 = 0.0011\%$
 - $\rightarrow \sigma_{\chi} = 0.0103\%$

$$\rightarrow \sigma_y = 3.82\%$$

Worst Image: n°546

www.dii.unipd.it

$$MSE = \frac{1}{N} \sum_{N} (RealImage - Smooth)^2$$

MAX Mean Squared Error between real image and smoothing: < 0.002%

ii.unipd.it Tfit-B °C 1 0.5 0 -0.5

- Esc with $mse(T,T^*) \le 1e-3$; ٠
- Found optimal α =1,5 for the ٠ majority of experimental images;
- Solution didn't converge (NaN): ٠ $\alpha = 0,01;$

[mm]

- Negative Amplitude or sigmas: ٠ $\alpha = 0,01;$
- for images n°107 and 293: α =1; ٠
- 3 single images: $\alpha = 0,009$ for ٠ n°89 and 265; *α*=0,011 for n°435;

Worst Image: n°565

Original#40 °C 1.2 160 140 1 120 0.8 100 [mm] 0.6 80 0.4 60 0.2 40 0 20 -0.2 20 0 40 60 [mm]

Corso di Laurea in Ingegneria ...

 $MSE = \frac{1}{N} \sum_{N} (RealImage' - Fit)^2$

RealImage'= Smooth(Realimage)

Corso di Laurea in Ingegneria ...

PRONS AND CONS OF NEWOTON'S METHOD:

- \checkmark The regularization of the solution is more precise with this method
 - The progress of the intermediate solution should be optimized depending on the context (depending on the type of image)
- It's probable that the advancement variable method is not the most suitable one that fits to our case
- x The convergence of the method is very sensitive to the goodness of the initial solution;

FUTURE PERSPECTIVES:

- Tested an even more customizable method, such as the Machine Learning optimization method
- Development and testing of regularization methods of the solution
- Tile test with 80 beamlets (from 25 to 400 parameters)

Corso di Laurea in Ingegneria ...

-