
Università degli studi di Padova
Anno accademico 2014-2015

Dipartimento di Ingegneria dell’Informazione
Tesi di laurea magistrale in Ingegneria Informatica

Modern branch-and-cut solvers for

Mixed-Integer Linear Programming: a

computational comparison

Relatore: Ch.mo Prof. Matteo Fischetti

Laureando: Alessandro Beltramin

Alla mia famiglia, Leandro e Roberta,
e alle tre mie care Laura, Laura e Laura.

Abstract

This thesis describes the design and the implementation of an in-
terface for a modern Mixed Integer Programming (MIP) solver and the
development of an advanced example for the Uncapacited Facility Lo-
cation (UFL) problem. In the field of Operational Research, UFL is a
well-known NP-complete problem. That means, there is no algorithm
known by now which can solve this problem in polynomial time. In
general, modern solvers have to solve different types of MIP problems,
so the internal cuts and the internal heuristics they use cannot fully
exploit the special structure of such a specific problem. Thus, we used
advanced features, such as callback procedures, to provide some prior
knowledge and improve the performance of the existing branch-and-
cut method for the UFL problem. Also, we developed two additional
algorithms, based on the well-known Hard Fixing and Local Branch-
ing matheuristics. We tested our algorithms on several hard instances
using the commercial solver IBM ILOG CPLEX. Then, to have a com-
parison also with another commercial solver, we developed an interface
for Gurobi which is able to reuse the same software already working for
CPLEX. Our interface, without modifying the original code, captures
every call to CPLEX C library and redirects it to Gurobi C library,
preserving its functionalities. Using both the UFL code and our in-
terface, we finally made a computational comparison between CPLEX
and Gurobi.

Contents

1 Mixed Integer Programming 6
1.1 MIP and Branch-and-Bound 6
1.2 Branch-and-Cut . 8
1.3 Branch-and-cut with callbacks 9

2 A specific MIP problem: UFL 10
2.1 Introduction . 10
2.2 Uncapacitated Facility Location 10

2.2.1 Traditional problem . 10
2.2.2 Advanced resolution strategies 11

2.3 Benders’ Decomposition . 16
2.3.1 Master problem . 17
2.3.2 Benders cuts . 17

2.4 Matheuristics . 20
2.4.1 Variable fixing (diving) 20
2.4.2 Local branching . 22

2.5 Computational results . 23
2.5.1 Instances . 23
2.5.2 Software interface . 24
2.5.3 Solving to proven optimality 26
2.5.4 Heuristic solutions . 28

3 An interface for Gurobi 35
3.1 Some available solutions . 35
3.2 The idea: a direct interface Cplex-to-Gurobi 37

3.2.1 Interface development 38
3.2.2 How to match functions 38
3.2.3 How to implement functions 43

3.3 Functions implemented . 51
3.3.1 Environment and problem creation 52
3.3.2 Problem modification 55
3.3.3 Optimize . 62
3.3.4 Access problem data 64
3.3.5 File Input/Output . 72
3.3.6 Parameters setting . 76
3.3.7 Callbacks . 79
3.3.8 Other functions . 90

3.4 Main differences . 93
3.4.1 Callback functions . 95

1

CONTENTS

4 Test: Cplex vs Gurobi 100
4.1 Test description . 100
4.2 Testbed . 101
4.3 Computational Results . 102

4.3.1 Solve to proven optimality 102
4.3.2 Local Branching . 111

5 Conclusions 115

6 References 117

2

CONTENTS

Introduction

This thesis describes the design and the implementation of an interface for
a modern Mixed Integer Programming (MIP) solver and the development of
an advanced example for the Uncapacited Facility Location (UFL) problem.

In the field of Operational Research, UFL is a well-known NP-complete
problem. That means, there is no algorithm known by now which can
solve this problem in polynomial time. As a consequence, it is necessary
to use combinatorial optimization methods and, among modern MIP solvers,
branch-and-cut algorithm is the most used [FLS10]. In general, modern
solvers have to solve different types of MIP problems, so the internal cuts
and the internal heuristics they use cannot fully exploit the special structure
of such a specific problem. Thus, we use advanced features, such as call-
back procedures, to provide some prior knowledge and improve the perfor-
mance of the existing branch-and-cut method. Also, we developed two addi-
tional algorithms, based on the well-known Hard Fixing and Local Branching
matheuristics [FL03]. To validate their usefulness, we tested both the devel-
oped branch-and-cut algorithm and the two matheuristics on several hard
instances, using the software libraries of the commercial solver IBM ILOG
CPLEX.

Then, we developed an interface for executing the algorithms we coded for
the UFL problem, with another modern MIP solver, Gurobi. Our interface,
without modifying the original code, captures every call to CPLEX C library
and redirects it to Gurobi C library, preserving its functionalities. In general,
our work can be very useful because the software we developed it is not
limited only to our UFL example, but it is ready to be applied to most of the
code already written for CPLEX. Existing software, then, can run directly
Gurobi solver without having to migrate the algorithms.

Finally, using both the UFL code and our interface, we make a compu-
tational comparison between CPLEX and Gurobi. On fair conditions and
with all the callbacks enabled, our UFL code interfaced with Gurobi had
a small loss of speed. At the same time, after switching the callbacks off,
no substantial differences emerged between CPLEX and Gurobi, and rather
Gurobi satisfied the positive expectations on much many occasions.

We believe that such a result is due to a different type of management
for some of the advanced features the two MIP solvers provide, in particular
for the user-cut and the heuristic callbacks. Nevertheless, all the results we
obtained from both the commercial solvers are very satisfactory.

4

CONTENTS

Our thesis is organized as follows:

• In the Chapter 1, we briefly recall some basic concepts, such as the
definition of a MIP problem, how branch-and-bound algorithm works
and in what branch-and-cut differs, presenting also its variant based
on callback procedures.

• Then we introduce, in Chapter 2, an advanced example of code devel-
opment for the UFL problem, based on Benders’ cuts and callbacks.

• Chapter 3 describes the idea of a direct interface for comparing CPLEX
and Gurobi, in particular, all the functions we implemented, as well as
the limits of our interface and the main differences in the solvers’ APIs.

• In Chapter 4, we present several performance comparisons between
CPLEX and Gurobi, using both the UFL code and our Gurobi interface.

• Finally, in Chapter 5 there are some final considerations about the
work.

5

1 MIXED INTEGER PROGRAMMING

1 Mixed Integer Programming

We present here some basic concepts required to understand the rest of our
thesis. We recall the definition of a MIP problem and how to solve it with
the branch-and-bound algorithm. Finally we outline the differences with the
branch-and-cut algorithm and its variant with callbacks.

1.1 MIP and Branch-and-Bound

Description A problem of mixed integer programming (MIP) consists
of the minimization of a linear function, subject to a finite number of linear
constraints and to the additional constraint that some or all the variables
are restricted to integer values. When the integer restriction is applied only
to a subset of the variables, the problem is defined as Mixed Integer Linear
Programming (MILP).

Mathematical formulation A general problem is defined as:
8
><

>:

min cTCxC + cTI xI

subject to: ACxC + AIxI = b

xC , xI � 0, xI integer

where xI is the vector of non-negative integer variables, xC is the vector
of non-negative continuous variables, cI and cC are the respective objective
function coefficients, AI and AC are the respective left-hand-side coefficient
matrices of the constraint set and b is the right-hand-side column vector.

Branch-and-bound algorithm Branch-and-bound (B&B) is a generic
optimization algorithm based on intelligent enumeration to arrive at an op-
timal solution for any problem of combinatorial optimization.

B&B uses the divide-and-conquer strategy to partition the search space of
the original problem into sub-problems. This technique involves construction
of a search tree. Each node is another MIP problem, but restricted: it
consists of the original constraints along with some additional constraints on
the bounds of the integer variables. At each node, the algorithm solves its
linear programming relaxation, i.e. it solves the restricted sub-problem with
all its variables relaxed to be continuous.

B&B begins by solving the root node at the top of the tree, with all its
variables relaxed to assume continuous values.

6

1.1 MIP and Branch-and-Bound

• If the linear programming (LP) relaxation of the root node is infeasible,
then the original problem is also infeasible. The LP relaxation is in
fact more general than the more restricted, original problem, and the
algorithm terminates with no feasible solutions.

• At the same time, if the linear programming (LP) relaxation of the root
node produces an optimal solution where integer restricted variables
have already integer values, then the solution is also optimal for the
original MIP problem.

• Finally, if the optimal solution for the relaxation has at least one of
integer-restricted variables assuming fractional values, then branching
occurs: one of these variables is chosen, e.g. xi = f , and two sub-
problems are created. The first problem has the additional constraint
xi bfc, while the second has xi � dfe. These sub-problems are then
solved recursively, with the new bounds remaining in effect both for
them and for any of their descendants.

Obviously, an explicit enumeration of all the nodes is unacceptable, because
of the exponential growth in the size of the search tree. Then the effectiveness
of the branch-and-bound algorithm relies on its ability to prune nodes, i.e.
skip the unnecessary sub-problems. When the algorithm is able to demon-
strate that a region of the solution space does not contain better solutions
than the already known one, called incumbent, the pruning (by optimality)
occurs. In a minimization problem, for example, non-integral solutions to
LP relaxations serve as lower bounds and integral solutions serve as upper
bounds. Then, a node can be pruned if its lower bound is greater than or
equal to an existing upper bound.

When the gap, i.e. the difference between the best upperbound (incum-
bent) and the minimum of the optimal LP objectives (global lower bound),
reaches the zero, then the proof of optimality is completed and the algorithm
returns the optimal solution.

7

1 MIXED INTEGER PROGRAMMING

1.2 Branch-and-Cut

Branch-and-Cut (B&C) is an improved version of the Branch-and-Bound
algorithm. It is an hybrid algorithm which combines the B&B decision tree
with cutting planes : at each node of the decision tree, the formulation of the
related LP relaxation can be dynamically enforced through the generation of
linear inequalities able to separate the optimum from the convex hull of the
true feasible set. The aim is twofold: to obtain an integer-feasible solution
from the linear relaxation and to obtain a better lower bound, for a more
effective pruning.

The branch-and-cut procedure, thus, consists of performing branches and
applying cuts at the nodes of the tree:

• A branch is the creation of two new nodes from a parent node, as in
the B&B. After the branching constraints are added to the model, the
two resulting nodes have then distinct solution domains.

• A cut is a constraint added to the model. The purpose of adding any
cut is to limit the size of the solution domain for the continuous LP
problems represented at the nodes, while not eliminating legal integer
solutions. The addition of such cuts can yield significant performance
improvements, because it reduces the number of branches required to
solve the MIP problem.

When solving the LP relaxations, the additional cutting planes generated
may be either global cuts, i.e., valid for all feasible integer solutions, or local
cuts, meaning that they are satisfied only by the solution from the currently
considered subtree, i.e. the current node and its potential descendents in the
B&B search tree.

Global cuts are preferable because they can be stored in a unique global
pool as they are generated, by a separation procedure, along the search tree.
For each new node having a fractional solution, the global cut pool is scanned
and the violated cuts are added to the current formulation. The new for-
mulation is then solved and the pool is scanned again, until all the cuts in
the pool are satisfied. In case the solution is still fractional, the separator is
activated: new violated cuts are generated and inserted into the global pool.

Modern solvers use branch-and-cut search when solving MIP models [FLS10],
even though most of their strategies differ completely from each other. When
combining the branch-and-cut algorithm with advanced features or propri-
etary algorithms, as commercial MIP solvers do, the whole optimization pro-
cess speeds up, even to orders of magnitude.

8

1.3 Branch-and-cut with callbacks

1.3 Branch-and-cut with callbacks

We present now a variant of the branch-and-cut algorithm based on callbacks.
In general, modern solvers have to solve different types of MIP problems,

so the cuts they use are typically cutting planes which can be generated
independently of the problem. To give an example, a solver can make use of
Chvátal-Gomory cuts, clique cuts, flow cover cuts, flow path cuts and several
other cuts. Unfortunately, these cuts are so general that they often cannot
exploit the special structure of the problem to be solved. To obviate this
limit and exploit all the user prior knowledge, it is necessary to manually find
some additional cuts for the specific problem, in a process called polyhedral
analysis, and apply them to the model in order to improve the performance
of the existing branch-and-cut method. Obviously, as the number of cuts can
be huge and they cannot be included all into the model, we need to build a
separator which is a procedure able to generate, when requested, some of the
problem-specific cuts, strictly necessary to boost the model optimization.

They only way modern solvers allow to dynamically interact with the
optimization process is through callback procedures. In fact, callbacks allow
user code to be executed regularly during an optimization, in order to monitor
the process closely or to guide its behavior. According to the area where
they are applied, there are several kinds of callbacks. The commercial solver
CPLEX, for example, has the user-cut callback, which is the one where to
put the separator we described above, but there are also the lazy-constraint
callback, the heuristic callback, the informational callback, and so on.

The lazy-constraint callback is used to add lazy constraints, that is, con-
straints that are not used unless they are violated. As for the cutting planes
described above, also the regular constraints can be too many in the model
formulation, to be efficiently managed by the solver. For this reason, we do
not add all the constraints to the model, but we provide them to the solver
only when they are violated.

The heuristic callback is used to implement a user custom heuristic that
tries to generate a new incumbent, i.e. a better integer-feasible solution, from
the optimal solution of the LP relaxation at each node of the MIP search tree.

Finally, the informational callback is used to retrieve information about
the current MIP optimization, e.g. the objective value of the current best
integer solution, and can also force the MIP search to terminate.

In general, only few modern MIP solvers support callbacks as they are
advanced features and they often demand a low-level understanding of the
algorithms used by the solver. Nevertheless, to use callbacks it is sufficient
to write the callback function, with the appropriate careful, and then pass it
to the solver.

9

2 A SPECIFIC MIP PROBLEM: UFL

2 A specific MIP problem: UFL

We developed, here, an advanced example for a well-known problem: the
Uncapacited Facility Location (UFL) problem. As one can show, the facil-
ity location problem is NP-complete. That means, by now, no algorithm
known can solve this problem in polynomial time. Therefore, we will present
different methods to approach this problem.

2.1 Introduction

Facility location, or k-center problem, is one of the most studied problems in
the Operations Research literature.

In our work we describe the traditional formulation and try some solution
strategies to proven optimality. Then we use the more efficient Benders
formulation and, finally, we implement two well-known matheuristics, Hard
Fixing and Local Branching. With the help of a state-of-the-art MIP solver,
we perform a computational analysis.

2.2 Uncapacitated Facility Location

The Uncapacitated Facility Location (UFL) problem can be stated as follows.
Given a set I of potential facility locations, and a set J of customers, the goal
is to find a subset of facility locations to open, and to allocate each customer
to a single open facility, so that the resulting fixed cost for the opened facilities
plus the resulting cost for customer allocation are minimized.

2.2.1 Traditional problem

In its classical version, the allocation cost for each customer is assumed to
be a linear function of the demand served by open facilities. The problem
can be formulated as a Mixed-Integer Linear Program (MILP).

Let I be the index set of facility locations (|I| = n), let fi � 0 be opening
costs for each facility i 2 I, and let J be the index set of customers (|J | = m)
with allocation costs cij � 0 defined for each pair (i, j) 2 I ⇥ J . We will
assume without loss of generality that each customer can be linked to every
facility. In this formulation, n+m·n variables are used to model the problem:
for each i 2 I, the binary variable yi is set to one if facility i is open, otherwise
to zero. For each i 2 I and for each j 2 J , the allocation variable xij is set
to one, if customer j is linked to facility i, and to zero otherwise.

10

2.2 Uncapacitated Facility Location

min

P
i2I fiyi +

P
i2I

P
j2J cijxij (1)

s.t.
P

i2I xij = 1 8j 2 J (2)
xij yi 8i 2 I, j 2 J (3)
xij � 0 8i 2 I, j 2 J (4)

yi 2 {0, 1} 8i 2 I

The objective (1) is to minimize the sum of facility opening costs, plus
the customer allocation costs. This function is subject to some conditions:

• the constraint (2) make sure that each customer is assigned to exactly
one facility,

• the capacity constraints (3) make sure that allocation to a facility i is
only possible if this facility is open.

The integrality conditions on variables xij are redundant in this case: for
any integer y⇤, each customer j will set x⇤

ij = 1 for the closest facility i
with y⇤i = 1. For this reason, only non-negative constraints (4) are strictly
necessary.

2.2.2 Advanced resolution strategies

Even with state-of-the-art hardware and software, MIP problems can require
hours, or even days, of run time and are not guaranteed to yield an optimal
solution [KMN13]. Branch-and-bound uses intelligent enumeration to arrive
at an optimal solution for a mixed integer program, which involves a con-
struction of a search tree. At each node of the branch-and-bound tree, the
algorithm solves a linear programming relaxation of the restricted problem,
i.e., the Mixed Integer Problem with all its variables relaxed to be contin-
uous. Due to the exponential growth in the size of such a tree, exhaustive
enumeration would quickly become hopelessly computationally expensive for
MIPs with even few tens of variables.

The advanced strategies we are going to try for the model resolution are:

• Improve the effectiveness of the branch-and-bound algorithm

• Reduce the input dimension (number of variables and constraints)

The effectiveness of the branch-and-bound algorithm depends on its ability to
prune nodes. As the algorithm proceeds, it maintains the incumbent integer
feasible solution with the best objective function, which provides an upper

11

2 A SPECIFIC MIP PROBLEM: UFL

bound on the optimal objective value. In fact, having a better incumbent
increases the number of nodes that can be pruned in the search tree. At
the same time, as the algorithm proceeds the lower bound is also updated,
by using the property that each child node has an objective value no better
than that of its parent. Performance is further improved with the cuts added
at the nodes, i.e. constraints involving linear expressions of one or more
variables, general or specific for some classes of problems.

Another effective strategy is, of course, reducing the model dimension, i.e.
the input for the algorithm. We obtain a performance boost, for example,
by:

• using less variables in the model formulation

• avoiding to add some constraints to the model (and, as we need to
warrant the correctness of the model, we add them as Lazy constraints).

All that enhances the throughput of the linear programming relaxations.

Lazy constraints Lazy constraints are constraints not specified in the
constraint matrix of the MIP problem, but that must be not be violated in a
solution. Using lazy constraints makes sense when there are a large number
of constraints that must be satisfied at a solution, but are unlikely to be
violated if they are left out.

In our case, we notice that the number of capacity constraints (3) written
in the model is huge (s m · n). For example, with instances of 1000 clients
and 1000 facilities, we have a model with more than one million constraints
and as much variables. So the trick is not to write them directly to the
model, but add them only when needed.

There are two main choices:

• Add, once, all the capacity constraints as lazy constraints and let the
solver manage them.

• Write a lazy callback procedure which generates dynamically the vio-
lated constraints, but only when needed, i.e. when an integer solution
candidate is available and needs to be tested for complete feasibility.

In our implementation, we set a threshold of one million constraints as upper
limit for using the first method, i.e. the static one. For instances of higher
dimensions, the dynamic method is preferred. It is important to keep in
mind that lazy constraints represent a portion of the constraint set: if they
are absent for some reasons, the model is incomplete and delivers incorrect
answers.

12

2.2 Uncapacitated Facility Location

Below, we provide the pseudo-code for the lazy procedure responsible for
the recognition and generation of violated constraints, which are then passed
to the solver and added to the model.

Algorithm 1 Lazy callback procedure
Input: integer-feasible candidate solution (x⇤,y⇤)

Output: set of at most 1000 violated constraints

1: count 0

2: for all i 2 I do
3: for all j 2 J do
4: if (x⇤

ij > yj + ✏) then
5: /* violated constraint */
6: “add x⇤

ij yj to the model”
7: count count + 1
8: end if
9: if (count = 1000) then

10: return
11: end if
12: end for
13: end for

Note the presence of the epsilon term, which is necessary whenever we
compare values of type double due to precision issues. In this procedure the
tolerance threshold must be very small (✏ ⇡ 10

�5) because we are expecting
integer solutions from input.

Unfortunately, using a custom lazy procedure has some side effects. The
inner mechanisms of the solver, such as the heuristics responsible for provid-
ing a good initial gap, are in a certain sense misled because they cannot see
the lazy constraints and whenever they think of having found a good solu-
tion, the lazy callback is called and, most likely, rejects it. To compensate
the lack of an incumbent solution, we provided a custom primal heuristic
procedure, derived from a specific knowledge of the model.

Heuristics Many state-of-the-art optimizers have built-in heuristics to de-
termine initial and improved integer solutions. However, it is always recom-
mended to supply the algorithm with initial solutions, no matter how obvious
they may appear to a human. Such a solution may provide a better starting
point than what the algorithm can derive on its own, and algorithmic heuris-
tics may perform better in the presence of an initial solution, regardless of

13

2 A SPECIFIC MIP PROBLEM: UFL

the quality of its objective function value. In addition, the faster progress in
the cutoff value associated with the best integer solution may enable the op-
timizer features such as probing to fix additional variables, further improving
performance.

Then, we intend to provide the solver obvious solutions based on specific
knowledge of the model. We implemented the following primal heuristic
callback procedure: at each branching node a custom rounding heuristic
is applied. Given the current LP solution y⇤, we order the variables by
decreasing values and we start with the opening of the first facility in the
ordered list. Then, following that order, we open one more facility at each
iteration and evaluate the cost of the integer solution found. This approach
requires at most O(n · log n+ n ·m) time, where n is the number of facilities
and m the number of clients in the model. We provide also a flag which can
be enabled in case the number of non-zero values is very high. As we skip all
the facilities with a zero value, we can reach a computational complexity of
O(h · log h+ h ·m), where h is the number of facilities with a non-zero value
in the corresponding solution variable of the current LP relaxation.

The pseudocode for the heuristic callback we implemented is written be-
low. The behavior of the algorithm can be changed with the following flags:

NONZERO_FLAG
(
1 if the number of zero values in the solution is likely to be high
0 otherwise

ONESOL_FLAG
(
1 to interrupt at the first new comer solution available
0 otherwise

14

2.2 Uncapacitated Facility Location

Algorithm 2 Heuristic callback procedure
Input zopt cost of the incumbent solution zOPT

ystar solution array of the current LP relaxation y

⇤

Algorithm

1: h 0

2: for k 0 to n� 1 do
3: if (NONZERO_FLAG = 1) and (List[h].lpValue < ✏) then
4: /* skipping zero values */
5: else
6: List[h].index = k
7: List[h].lpValue = ystar[k]
8: h h + 1
9: end if

10: end for
11: y_ord list of facilities with lpValue> 0

12: sort the list by decreasing values of LP relaxation, to obtain:
List[0].lpValue � List[1].lpValue � · · · � List[h-1].lpValue

13: min zopt
14: fsum 0
15: for k 0 to h� 1 do
16: /* open the facility in position k of the list */
17: fsum fsum + fixedCosts[List[k].index]
18: csum compute the resulting best costs for the clients
19: valObj fsum + csum
20: if (valObj + ✏ < min) then
21: min valObj
22: if (ONESOL_FLAG = 1) then
23: /* we want only the first better solution */
24: break
25: end if
26: end if
27: end for
28: if (min + ✏ < zopt) then
29: “new comer solution found!”
30: end if

During our experiments, the time spent in the heuristic callback by the
solver results negligible (under 1%), compared with the execution of the other
procedures. Also, due to this fact, we noticed that it pays more to let the

15

2 A SPECIFIC MIP PROBLEM: UFL

algorithm look for better solutions and not to interrupt the callback as soon
as the first new comer is available. This provides a good upper bound, which
is more useful for the node pruning, instead to be satisfied with a quick but
minimal improvement.

User cuts While lazy constraints are constraints that the user knows are
unlikely to be violated and are applied only when necessary, user cuts may not
be strictly necessary to the problem, but they tighten the model. User cuts
may be more liberally added to a model because the solver is not obligated
to use any of them and can apply its own rules to govern their efficient use.
In any case, the formulation of the model remains correct whether or not the
cuts are included to the model.

In our case, as the hypothesis of infrequent violation is not actually true,
we decided to add the violated constraints also during the resolution of the
linear relaxation, with a user cut callback procedure. In this way, we act be-
fore the integer constraints are inserted into the model and we can strengthen
the linear formulation.

For the classical model, the separation procedure we provided is the same
we used for the lazy callback, with the difference that the input solution is
fractional. For this reason, the value for the tolerance threshold must be set
higher (✏ ⇡ 10

�3) in order to avoid the risk of numerical instability, which
can cause an infinite loop between the LP solver and the callback procedure.

User cuts are useful, for improving the lower bound, only when we are in
the higher part of the search tree, but the more we go in depth in the search
tree, the more useless they become, or worse, the more they risk to overload
the nodes. For this reason, we used a depth criterion to decide whether to
generate more cuts or not.

2.3 Benders’ Decomposition

Because of the huge number of allocation variables, UFL imposes a challenge
also for modern general-purpose MILP solvers. Fortunately, thanks to Ben-
ders it is possible to have a very significant performance boost, by removing
unnecessary variables and constraints. In Benders formulation, the model
is thinned-out and the huge number of allocation variables is replaced by
a linear number of continuous variables that model the customer allocation
cost directly. For UFL with linear costs, the resulting model involves only |I|
+ |J| variables and |J| · (|I| + 1) constraints.

16

2.3 Benders’ Decomposition

2.3.1 Master problem

As xij variables are a bottleneck for MIP solvers, we just remove them from
the model, and introduce in the objective function a new set of continuous
variables wi representing the allocation-cost for all i 2 I. The resulting
master problem is then given by

min

P
j2J fjyj +

P
i2I wi (5)

s.t.
P

j2J yj � 1 (6)
wi � �i(y) 8i 2 I (7)
yj 2 {0, 1} 8j 2 J

where the convex function �i(y) appearing in (7) gives the minimum
allocation cost for customer i for any given (possibly non-integer) point y 2
[0, 1]J where there is at least one facility opened.

2.3.2 Benders cuts

For the linear case, the literature for Benders decomposition (see ref. [FLS15])
shows that the family of Benders cuts is of polynomial size. There are only
n distinct cuts, for a given customer i, of the form:

wi � cik �
k�1X

j=1

(cik � cij)yj, 8k 2 {1, . . . , n}

where the locations have been permuted so as to have increasing costs
c1 · · · cn.

Below, we provide the related pseudo-code for the separator, which can
be used in a user cut callback.

We used quicksort for the initial list ordering, which requires O(|List| ·
log(|List|)) time. Then, the overall separation procedure takes at most O(m ·
|List| · log(|List|)) and it is very efficient, in particular when the number of
opened facilities is low.

This separator can be used in the MILP branch-and-cut framework, not
only by primal heuristics, but also when a candidate integer solution is avail-
able. As the solution found always needs to be checked for validity, before
updating the incumbent, a lazy cut callback is required in order to certificate
its validity or to return one or more violated cuts.

Although we could obtain these cuts by applying the same separation
procedure, we prefer to write a more efficient procedure for the so-called lazy
callback. In this case the candidate solution is integer and every facility is

17

Algorithm 3 Benders separation procedure
Input node relaxation continuous solution (x⇤,y⇤)

1: List list of non-zero y variables { j : y⇤j > ✏ }
2: for all i 2 I do
3: “sort List by increasing link costs, so that ci,1 ci,2 · · · ci,|List|”
4: j 1

5: ysum 0.0
6: for h 1 to |List| do
7: ysum ysum + ystar[List[h]]
8: if ysum � 1.0� ✏ then
9: break

10: end if
11: end for
12: k List[h] /* facility where the most violated constraint is */
13: viol cik � w⇤

i

14: for all j 2 List do
15: if cij < cik then
16: viol viol - (cik � cij)y

⇤
j

17: end if
18: end for
19: if viol > ✏ then
20: /* violated constraint */
21: “add wi +

P
j:cij<cik

(cik � cij)yj � cik to the model”
22: end if
23: end for

18

2.3 Benders’ Decomposition

either open or closed, so there is no need for the initial list sorting. In fact,
it is easy to find the facility where the most violated constraint is, for each
client, by simply looking for the minimum link cost between the selected
facilities. Then, for each client i, if the value of wi is lower than the actual
minimum cost, a violated constraint is generated and added to the model.

19

2 A SPECIFIC MIP PROBLEM: UFL

2.4 Matheuristics

In case we are not interested in a proven optimality solution, but we are look-
ing only for a good solution, it is sufficient to run some heuristics. Unlike
the other search methods, such as Tabu Search or Greedy, Matheuristics are
model-based meta-heuristics which exploit the existing mathematical pro-
gramming model. In general, the solution (math-)heuristics provide could
be optimal or not, but in all cases this fact is not certified by any mathemat-
ical proof. Also, this kind of algorithms are usually faster in finding good
feasible solutions but, in the long term, they perform worse than the MIP
solver and, possibly, they could never reach the optimality.

2.4.1 Variable fixing (diving)

Hard variable fixing, or diving, is a matheuristic which performs local search
around a given integer-feasible solution. Assuming to have an exact black-
box solver for our problem, we fix some variables to their values and apply
it iteratively on the resulting restricted problem. Fixing the binary variables
strongly simplifies the problem, thus each iteration is very fast. Anyway, we
imposed to each sub-problem a time-limit, e.g. 30 seconds, and a node-limit,
e.g. 10 nodes, in order not to lose too much time on a wrong inference.

As the algorithm requires a starting solution for the diving, before calling
our matheuristic, we decided to run the solver and interrupt it as soon as an
integer-feasible solution is found. Another possibility is to keep the solver
running, until some target gap from upper and lower bound is reached (e.g.
less than 20%).

The pseudo-code for the procedure we implemented is written below. The
behaviour of the algorithm depends on the following parameters:

N_ITER the number of hard-fixing iterations

HARDFIX_THRESHOLD the probability used to fix each variable

USE_BEST_SOL

(
1 to keep updated the reference with the best solution found
0 to use always the same solution, found at the root node

FIX_ONLY_ZEROS

(
1 to avoid the fixing of one-valued variables
0 otherwise

Note that as we unfix the variables from the model at each iteration, the
solver will not use the same search tree. Also, when passing to the solver a
solution previously found, pay attention that it can result infeasible, as the

20

Algorithm 4 Hard fixing procedure
1: y

⇤ “get reference solution”
2: zopt “get reference obj” /* best current obj */
3: yopt y

⇤ /* best current solution */
4: for k 1 to N_ITER do
5: for all yj 2 J do
6: if (FIX_ONLY_ZEROS = 1 ^ y⇤j > ✏) then
7: /* skip variables with value equal to one */
8: else
9: if (random([0, 1]) < HARDFIX_THRESHOLD) then

10: “fix yj to y⇤j , in the model”
11: end if
12: end if
13: end for
14: (z0,y0

) “optimize the model”
15: if (z0 < zopt) then
16: zopt z0

17: yopt y

0

18: if (USE_BEST_SOL = 1) then
19: /* start from the best solution found */
20: y

⇤ y

0

21: end if
22: end if
23: “unfix all variables, from the model”
24: end for

21

2 A SPECIFIC MIP PROBLEM: UFL

solution space can be different for every restricted sub-problem. Anyway, it
is always possible to set the best incumbent as a cutoff parameter, to let the
solver know the results reached in previous runs.

2.4.2 Local branching

Local branching is another type of matheuristic, described in [FL03], which
is based on local search starting from a given integer-feasible solution. Dif-
ferently from Hard Fixing, Local branching has a definition of neighborhood
based on the so-called Hamming distance. In fact, the problem is simplified
by restricting the maximum number of binary variables flipping, k, from a
starting reference solution, ex, around which the local search is performed. In
case the search is not successful, the neighborhood is widened by increment-
ing the parameter k, and process is re-iterated until a better integer-feasible
solution is found, or a range-limit for k is reached.

The local branching constraint has the following form:

�(x, ˜x) ,
X

j:x̃j=0

xj

| {z }
exj=0!1

+

X

j:x̃j=1

(1� xj)

| {z }
exj=1!0

 k

Note that we are adding to the model a dense constraint, i.e. every
variable has a nonzero coefficient. The procedure we implemented is written
below, while the available parameters are:

kMIN minimum value for k

kMAX maximum value for k, before aborting the search

kDELTA increment for k, in case no better solution is found

Note that this method highly depends on the reference solution and,
also, from the choice of k. In fact, the value for k must be sufficiently
small to be optimized within short computing time, but still large enough to
likely contain a better solution than the reference one. Experimental results
shows that it is better to stay within a range of [5,20], to better exploit the
effectiveness of this method.

22

2.5 Computational results

Algorithm 5 Local branching procedure
Input xopt best incumbent solution

zopt objective value of best incumbent solution

1: k kMIN
2: ˜

x xopt

3: while (k kMAX) do
4: “add local branching constraint, using (x̃, k)”
5: “optimize the model” /* black-box solver */
6: z⇤ get optimal obj value
7: if (z⇤ < zopt) then
8: zopt z⇤

9: ˜

x get optimal solution
10: /* reset the parameter k */
11: k kMIN
12: else
13: k k+ kDELTA
14: end if
15: “remove local branching constraint”
16: end while

2.5 Computational results

All codes were executed on a 2.8 GHz Intel Core 2 Duo CPU equipped with
IBM ILOG Cplex 12.6.1 as a MIP solver. All codes use callback functions,
thus deactivating IBM ILOG Cplex ’s proprietary dynamic search. Experi-
ments were performed in multi-thread mode, with 4 concurrent threads run-
ning on the same PC, and with deterministic mode enabled. Computing
times can be expressed in CPU clocks (seconds), memory accesses (ticks) or
wall-clock real-time (seconds).

The execution has been inspected by a time profiler tool. Most of the
resources are used by Cplex routines, instead only a small amount of CPU
time slices are occupied by the callback routines we provided. In particular,
for the Benders model formulation, the heuristic callback function took about
less than 1% of the total execution time, while the separator procedure (user
cut callback) and the lazy callback took less than 5%.

2.5.1 Instances

Our algorithms has been computationally tested on a large set of MIP in-
stances from the UflLib library by Max-Planck-Institut Informatik.

23

2 A SPECIFIC MIP PROBLEM: UFL

For the benchmark, we randomly selected 18 instances, 6 for each package
(K-median, Koerkel-Ghosh, M). In particular,

• from K-median: 1000-10, 1500-10, 2000-10, 2500-10, 3000-10, 500-10;

• from M: MO5, MP4, MQ3, MR2, MS1, MT1;

• from Koerkel-Ghosh asymmetric: ga250b-2, ga500a-2, ga750c-4;

• from Koerkel-Ghosh symmetric: gs250a-1, gs500b-1, gs750c-3.

2.5.2 Software interface

When building an optimization model in a modeling language, it is typical
to separate the optimization model itself from the input data. This allows
to run different instances of the same model, without having to re-compile
all the software again and again. As the benchmark libraries are provided
within data files, we wrote a simple parser. According to the format, the
input file is parsed in order to populate the structure we defined.

Data file format The instances are stored in two basic formats: ORLIB-
cap and Simple format.

For ORLIB-cap, the first line of a file consists n and m: [n] [m], assuming
that n is the number of facilities and m the number of clients. Then the next
n lines consist of the capacity and the opening cost of the corresponding
facility. Finally, there are the demand for each client and the cost of the
connections to all facilities.
[n] [m]
// f o r each f a c i l i t y j : (j = 1 , . . . , n)
[capac i ty] [opening co s t]
// f o r each c l i e n t i (i = 1 , . . . ,m)
[demand o f i] [c o s t o f connet ing c l i e n t i to f a c i l i t y j] (j =

1 , . . . , n)

Simple format, instead, is only suitable for instances of the uncapacitated
facility location problem. The first line consists of the text ’FILE: ’ and the
name of the file. In the second line n, m and 0 are denoted. The next n lines
consist of the number of the facility, the opening cost and the connection
cost to the clients.
[n] [m] 0
// f o r each f a c i l i t y j (j = 1 , . . . , n)
[j] [opening co s t] [c o s t o f connet ing c l i e n t i to f a c i l i t y j] (i

= 1 , . . . ,m)

24

2.5 Computational results

Data structure We defined a struct in C-language as:
struct In s tance {

long n _ f a c i l i t i e s ;
long n_c l i ent s ;
double ∗ f i x ed_cos t s ;
double ∗ c o s t s ; // c [i , j] = ins t�>co s t s [i ∗ i n s t�>

n_ f a c i l i t i e s+j]

} ;

25

2 A SPECIFIC MIP PROBLEM: UFL

2.5.3 Solving to proven optimality

On Table 1, we provide the results of our computations using the Benders
formulation. We set a maximum execution time limit of 30 minutes and run
the solver to our randomly selected instances.

For each instance we report in Table 1 the name of the instance (name),
the size in terms of facilities (n) and of clients (m), the best solution found
(opt), the total wall-clock time (in seconds), the final gap between upper- and
lower bound (g), the time spent to solve the root node (troot), the gap after
solving root node (gr), the lower bound after solving root node (rootbound),
the total number of Branch&Bound nodes solved (nodes), the total number
of memory accesses in ticks (total det time) and, finally, the optimization
status at the end of the computation (status).

We highlighted in boldface the instances for which we had found an opti-
mal solution, or a better upper bound, not yet available in the UflLib library’s
website. Actually, literature showed that most of these instances had been
solved to optimality afterwards.

26

na
m

e
n,

m
op

t
to

ta
lt

im
e

g[
%
]

t r
o
o
t[
s]

g r
[%

]
ro

ot
bo

un
d

no
de

s
to

ta
ld

et
ti

m
e

st
at

us
10

00
-1

0
10

00
14

34
15

4.
00

00
65

s
<

0.
01

19
.7

3
0.

85
14

29
27

1.
52

66
63

2
13

52
1.

99
50

O
P

T
IM

A
L

15
00

-1
0

15
00

20
00

80
1.

00
00

29
6

s
<

0.
01

24
.3

5
2.

32
19

82
19

5.
91

43
11

57
63

77
7.

79
77

O
P

T
IM

A
L

20
00

-1
0

20
00

25
58

12
5.

00
00

11
74

s
<

0.
01

35
.4

8
4.

09
25

16
53

3.
85

69
29

73
21

22
63

.5
30

8
O

P
T

IM
A

L
25

00
-1

0
25

00
31

01
56

7.
00

00
>

18
00

s
0.

15
33

6.
38

0.
72

30
96

37
2.

77
36

37
28

36
87

59
.4

98
2

T
IM

E
_

LI
M

IT
30

00
-1

0
30

00
35

84
47

7.
00

00
>

18
00

s
3.

88
53

.7
7

8.
37

33
95

70
5.

37
74

19
19

34
00

50
.5

02
6

T
IM

E
_

LI
M

IT
50

0-
10

50
0

79
85

77
.0

00
0

6.
19

s
<

0.
01

2.
93

2.
22

79
04

62
.5

97
2

15
1

21
10

.3
82

7
O

P
T

IM
A

L
M

O
5

10
0

14
08

.7
66

4
0.

56
s

<
0.

01
0.

21
3.

71
13

56
.4

68
5

72
85

.6
38

8
O

P
T

IM
A

L
M

P
4

20
0

29
38

.7
50

0
2.

76
s

<
0.

01
0.

87
4.

92
27

94
.2

86
0

32
0

11
62

.7
88

1
O

P
T

IM
A

L
M

Q
3

30
0

42
75

.4
31

7
3.

40
s

0.
00

1.
79

3.
71

41
16

.7
05

2
13

7
17

02
.5

02
4

O
P

T
IM

A
L

M
R

2
50

0
26

54
.7

34
7

20
.5

8
s

0.
00

6.
68

5.
59

25
06

.3
65

9
29

8
79

28
.9

24
0

O
P

T
IM

A
L

M
S1

10
00

52
83

.7
57

4
27

4.
29

s
0.

00
32

.8
7

6.
83

49
22

.8
18

1
14

48
73

48
7.

33
58

O
P

T
IM

A
L

M
T

1
20

00
10

06
9.

80
28

>
18

00
s

7.
17

93
.1

7
9.

50
91

30
.7

22
8

42
02

36
46

31
.3

48
6

T
IM

E
_

LI
M

IT
ga

25
0b

-2
25

0
27

51
41

.0
00

0
43

4.
08

s
<

0.
01

2.
75

1.
32

27
23

51
.3

23
6

45
63

5
12

97
50

.9
04

8
O

P
T

IM
A

L
ga

50
0a

-2
50

0
51

16
71

.0
00

0
>

18
00

s
0.

24
3.

29
27

.7
0

37
30

67
.8

21
9

43
37

6
42

43
87

.8
59

2
T

IM
E

_
LI

M
IT

ga
75

0c
-4

75
0

90
16

34
.0

00
0

>
18

00
s

2.
49

49
.8

4
2.

90
87

54
48

.7
75

9
12

31
3

36
23

80
.4

75
8

T
IM

E
_

LI
M

IT
gs

25
0a

-1
25

0
25

79
64

.0
00

0
>

18
00

s
0.

02
0.

62
28

.3
2

18
69

91
.8

39
8

24
63

48
51

39
37

.3
71

3
T

IM
E

_
LI

M
IT

gs
50

0b
-1

50
0

53
84

39
.0

00
0

>
18

00
s

0.
82

26
.2

0
1.

20
53

28
61

.4
67

7
34

18
5

43
16

69
.6

46
2

T
IM

E
_

LI
M

IT
gs

75
0c

-3
75

0
90

22
40

.0
00

0
>

18
00

s
2.

65
43

.2
1

3.
06

87
46

07
.0

40
1

11
67

0
36

03
20

.1
30

8
T

IM
E

_
LI

M
IT

Ta
bl

e
1:

So
lv

in
g

se
le

ct
ed

in
st

an
ce

s
to

pr
ov

en
op

tim
al

ity
w

ith
B

en
de

rs

27

2 A SPECIFIC MIP PROBLEM: UFL

2.5.4 Heuristic solutions

We present, in Figure 1, some runs of Hard Fixing matheuristic using 3
different random seeds. The execution is limited to 10 iterations, where the
first iteration starts when the MIP solver finds a integer-feasible solution
with a gap of about 20% (from the lower bound) or the root node is solved.
The random fixings are made only for zero-values with a probability of 85%,
using the best incumbent solution. The gap in the plots is related to the
best known solution, while on x-axis there is the number of hardfix iteration.
We note an high-sensitivity to initial conditions, in particular at the first
iterations, while in the last iterations the diverse runs tend to converge to a
common result.

28

Fi
gu

re
1:

H
ar

d
Fi

xi
ng

ru
ns

w
ith

3
di

ffe
re

nt
ra

nd
om

se
ed

s

29

2 A SPECIFIC MIP PROBLEM: UFL

Here, instead, we present the performance of Local Branching matheuris-
tic at each iteration. The total time limit is set to 15 minutes and the first
iteration starts when the MIP solver finds a integer-feasible solution with a
gap of about 20% from the lower bound or the root node is solved. In the
plots of Figure 2, we note a less chaotic behaviour than diving and a very
good performance since the early iterations. As the gap plotted on y-axis is
related to the best known upper bound, a negative value means that a better
solution has been found by our matheuristic.

30

Fi
gu

re
2:

Lo
ca

lB
ra

nc
hi

ng
ru

ns

31

2 A SPECIFIC MIP PROBLEM: UFL

For completeness, we provide in Figure 3 a comparison between Hard
Fixing and Local Branching in terms of resources used. They both start
from the first solution found at the root node, having a gap (from the lower
bound) lower than 20%. The plots show how much CPU time has been
used in order to find better solutions. In the first phases, it seems that
Local Branching is more efficient, while Hard Fixing seems wasting a lot
of resources, maybe because of a bad inference taken. Instead, in the long
term, the probability for the diving of finding a better solution is higher and
grows more and more, thanks to randomization. Anyway, due to the erratic
behavior of MIP solvers (see ref. [FM14]) we remark the fact that we cannot
draw further conclusions from these plots.

32

Fi
gu

re
3:

M
at

he
ur

ist
ic

s
co

m
pa

ris
on

:
Lo

ca
lB

ra
nc

h
(g

re
en

)
an

d
H

ar
d

Fi
xi

ng
(b

lu
e)

33

2 A SPECIFIC MIP PROBLEM: UFL

Figure 4: Proven optimality vs matheuristics for instance “ga250b-2”

Finally in Figure 4, in we compare our black-box MIP solver with the two
matheuristics, Local Branch and Hard Fixing. We chose only one instance
to show the common behaviour of matheuristics compared to the proven
optimality runs of the previous Section. To have a fair comparison, they all
start from the same solution, after the root node has been solved.

34

3 An interface for Gurobi

In the previous section, we developed an advanced example of a MIP prob-
lem and tested it on an modern MIP solver. Unfortunately, not all available
solvers can be used to implement our example, because we used some ad-
vanced features that only some commercial solvers supports (e.g. callbacks).
Our initial purpose was to make also a comparison with another commercial
solver, for example Gurobi, which has almost equivalent performance.

In general, we did not want to rewrite the whole software we had already
developed once, every time we intended to migrate into another product.
Specifically, we wanted to test our example also with Gurobi solver, without
having to maintain two different versions of the UFL, for example reusing
the same code working with the CPLEX APIs.

To reach our goal, we first present some existing solutions dealing with
questions of portability, and we outline their limits, too. Then, we present a
completely different solution we considered the most suitable for our necessi-
ties, describing accurately how we designed and implemented it. Finally, we
sum up in few points the main differences between CPLEX and Gurobi API
interfaces we encountered.

3.1 Some available solutions

The state of the art of numerical computing is characterized by two main
classes of languages: the highly efficient low-level languages (e.g. C, C++,
Fortran) and the highly expressive high-level languages (such as Python, R,
Matlab, etc.). While the interpreted languages are usually platform and
solver independent, C and C++ are still preferable for many reasons:

• they are compiled offline, producing extremely efficient machine code;

• they have strict variable typing, which allows advanced optimization of
the code.

Between these two different classes, some researchers developed some hybrid
frameworks, in order to capture the main advantages from both of them.
Their aim is to have the expressiveness, the ease of use and the solver in-
dependence of modern scripting languages together with the performance of
lower-level languages.

Open Solver Interface (OSI) Open Solver Interface (Osi) provides an
abstract base class to a generic linear programming (LP) solver, along with
derived classes for specific solvers. Osi is written in C++ and is released

35

3 AN INTERFACE FOR GUROBI

as open source code as part of the COIN-OR initiative [COIN]. Thanks to
the derived classes, Osi interacts with different solvers (Cbc, Clp, CPLEX,
DyLP, GLPK, Gurobi, MOSEK, SoPlex, SYMPHONY, Vol, XPRESS). At
the current version (0.107.5), the OSI supports linear programming solvers,
but unfortunately it has rudimentary support for integer programming. In
particular, OSI does not support callback procedures, neither other advanced
features.

Julia language (JuMP) JuMP (Julia for Mathematical Programming)
combines the speed of commercial products with the benefits of remaining
within a fully-functional high-level modern language [JUL]. Extensive cross-
language benchmarks suggest that Julia is capable of obtaining state-of-the-
art performance [LD15]. The language uses a just-in-time (JIT) compiler
which generates efficient code. Thanks to its macros, evaluated only at com-
pile time, there is no runtime overhead.

• JuMP supports advanced features such as efficient LP hotstarts and
branch & bound callbacks.

• The language provides wrappers around high-performance low-level C
libraries of different solvers.

Anyway, we understood that the aim of JuliaMP is a little different, which is
to build the final model as fast as possible. Instead, our main purpose is to
neglect the performance in the model building phase and to obtain the best
solver performance for the optimization.

For these reasons, our choice remains constrained to a low-level language
we already know and which allows advanced solver features, such as callback
procedures.

36

3.2 The idea: a direct interface Cplex-to-Gurobi

3.2 The idea: a direct interface Cplex-to-Gurobi

We chose, then, to combine our UFL code, written for IBM ILOG Cplex
12.6.1, with the solver and the functionalities of Gurobi 6.0.3. Our intention
was not to modify any line of the original code, but to write an interface able
to capture each function call to CPLEX and redirect it to Gurobi.

We have re-implemented all the most popular Cplex functions from the
C API, including the advanced ones used by our UFL example, using the
C functions available from Gurobi low-level library. For some functions the
work was pretty easy (because Gurobi has a style very similar to CPLEX),
but in many occasions the lack of an appropriate mapping between the func-
tions required an accurate study of solver-specific behaviours and a complex
combination of its functionalities.

Anyway, we obtained a great simulation of CPLEX and we characterized
all the limits of our interface. The result is very good because all the UFL
code works and the performance respects the powerful of the solver. We
can say that our interface is “transparent”, because each function does the
mapping with a small overhead.

Our interface is made by two files: cpx2grb.h , where the status codes,
the function prototypes of CPLEX and the types of object are redefined;
cpx2grb.cpp where all the CPLEX functions are implemented. The language
used is C++, the same as the UFL code, but we call Gurobi solver only
through its C API library, because it is the lowest layer available. In our
UFL code, we substituted only the inclusion of CPLEX interface “cplex.h”
with “cpx2grb.h” and the CMakeLists.txt file, for Cmake, to compile also our
files. In general, the changes required to the code are minimal and, in this
case, we did not need to change any other thing.

37

3 AN INTERFACE FOR GUROBI

3.2.1 Interface development

The development of our interface required a working environment, equipped
with CPLEX 12.6.1 and Gurobi 6.0.3. We chose Mac OS 10.10 as operating
system because we used Xcode, a freeware integrated development environ-
ment (IDE) provided by Apple Inc., which includes a lot of tools for debug-
ging and profiling the code. For managing the build process of our software
we used a compiler-independent method, thanks to CMake 3.2.0-rc2 [CMK].

We analyzed, then, all the documentation, manuals and guides provided
by each solver [CPX, GRB], for a short feasibility study. We were aware
that Gurobi and CPLEX used different algorithms and strategies, so we did
not expect to find a perfect and complete matching between the two solvers.
Nevertheless, we realized that Gurobi and CPLEX shared a lot of features
and an interface development was possible.

The implementation started only after a quick design of the common fea-
tures we were able to map. We opted for a “step-by-step agile development”:
for each function, we first wrote all the possible tests coding significant exam-
ples and a lot of asserts, that is a test for an expected result of an expression.
During this phase, it is important to disable all the internal heuristics, cuts
and presolver of Gurobi. Then, we implemented the code and executed it,
step-by-step. In this way, the whole coding required less time, because the
purpose of each routine was immediately clear when writing the tests and
only the strictly necessary code was inserted. Also, no additional tests were
required as we had, obviously, already written them.

In the following chapters, we will accurately describe the method of pre-
liminary design we adopted and, also, the main choices we took, before and
during our interface implementation.

3.2.2 How to match functions

In order to find the most appropriate matching between CPLEX and Gurobi
routines, we first compared the prototypes and the description of each func-
tion, from the provided documentation of each solver. Then we listed all
the features of each routine and we tried to find the most promising cor-
respondences. For each couple of functions found, we rated their degree of
equivalence in a scale of “Good”, “Limited” and “Not Available”. The Table
below shows the above-mentioned results of our search. For some CPLEX
features, the Gurobi equivalent is an “Attribute”, which means it is an in-
ternal property of a Gurobi model and can be accessed only through the
appropriate attribute-management routines.

38

3.2 The idea: a direct interface Cplex-to-Gurobi

CPLEX Function Gurobi equivalent Mapping
CPXaddlazyconstraints Attribute: Lazy Good
CPXaddrows GRBaddvars Good
CPXbranchcallbackbranchbds N/A N/A
CPXchgbds Attribute: LB, UB Good
CPXchgcoef GRBchgcoeffs Good (*)
CPXchgobj Attribute: Obj Good
CPXchgqpcoef GRBaddqconstr, GR-

Baddqpterms
N/A

CPXchgrhs Attribute: RHS Good
CPXcloseCPLEX GRBfreeenv Good
CPXcopymipstart Attribute: Start Limited
CPXcopyorder Attribute: BranchPri-

ority
Limited

CPXcreateprob GRBnewmodel Good
CPXcutcallbackadd GRBcbcut, GR-

Bcblazy
Good

CPXdelmipstarts Attribute: Start Limited
CPXdelrows GRBdelconstrs Good
CPXfreeprob GRBfreemodel Good
CPXgetcallbackinfo GRBcbget Limited
CPXgetcallbacknodex GRBcbget Good
CPXgetctype Attribute: VType Good
CPXgetdblparam GRBgetdblparam Good (*)
CPXgetintparam GRBgetintparam Good (*)
CPXgetlb Attribute: LB Good
CPXgetnumcols Attribute: NumVars Good
CPXgetnumcores (not exists) Good (*)
CPXgetnummipstarts Attribute: Start Limited
CPXgetnumrows Attribute: NumCon-

strs
Good

CPXgetobj Attribute: OBJ Good
CPXgetobjval Attribute: ObjVal Good
CPXgetstat Attribute: Status Limited

39

3 AN INTERFACE FOR GUROBI

CPLEX Function Gurobi equivalent Mapping
CPXgetub Attribute: UB Good
CPXgetx Attribute: X, Xn Good
CPXmipopt GRBoptimize Good
CPXnewcols GRBaddvars Good
CPXnewrows (see Table matrix) Good
CPXopenCPLEX GRBloadenv Good
CPXordwrite GRBwrite Good
CPXreadcopyorder GRBread Good
CPXsetbranchcallbackfunc N/A N/A
CPXsetdblparam GRBsetdblparam Good (*)
CPXsetintparam GRBsetintparam Good (*)
CPXsetlazyconstraintcallbackfunc GRBsetcallbackfunc Good (*)
CPXsetusercutcallbackfunc GRBsetcallbackfunc Good (*)
CPXsolwrite GRBwrite Good
CPXwritemipstarts GRBwrite Limited
CPXwriteparam GRBwrite Limited
CPXwriteprob GRBwrite Good
CPXdelcols GRBdelvars Good
CPXlpopt GRBoptimize Good
CPXgetbestobjval Attribute: ObjBound Good
CPXgettime Attribute: Runtime Good (*)
CPXgetnodecnt Attribute: NodeCount Good
CPXaddmipstarts Attribute: Start Limited
CPXgetheuristiccallbackfunc GRBgetcallbackfunc Good (*)
CPXgetinfocallbackfunc GRBgetcallbackfunc Good (*)
CPXgetusercutcallbackfunc GRBgetcallbackfunc Good (*)
CPXsetheuristiccallback GRBsetcallbackfunc Good (*)
CPXsetinfocallbackfunc GRBsetcallbackfunc Good (*)
CPXsetlazyconstraintcallback GRBsetcallbackfunc Good (*)

(*) using a workaround.

40

3.2 The idea: a direct interface Cplex-to-Gurobi

In case of multiple candidates for the matching, we selected the Gurobi
functions able to cover all the features of the Cplex routine to implement. As
an example, we reported on a table the different operations each function is
able to perform. The functions for Gurobi (GRB) and Cplex (CPX) solvers
are along rows, while the associated operations are along columns. The Batch
column indicates whether the routine can perform multiple insertions (1)
or only a single insertion (1), with the same user call.

In this case, the implementation of CPXnewrows will require more than
a Gurobi routine: GRBaddconstrs and GRBaddrangeconstrs. But also GR-
Baddconstr and GRBaddrangeconstr are good, because they differ only for
the number of insertions, single or multiple, the user can do, with one call,
to the routine.

In general, when two Gurobi routines can be reduced one to the other,
we should prefer the most general one (the multiple-insertion version, in the
previous example). This is not only to decrease the number of calls to the
solver, but to limit the inconsistent states in case the solver raises an error
while executing our routine. In fact, we do not want our interface to be
interrupted in the middle of a loop of single calls to the solver, because of
an error. This situation would be unrecoverable and has to be managed
accordingly, for example with transactions.

41

A
P

I
Function

B
atch

Set
R

H
S

Set
row

coeff
N

ot
ranged

R
anged

Set
rngval

Set
var

coeff
A

dd
vars

C
P

X
new

row
s

1
X

X
X

X
C

P
X

addrow
s

1
X

X
X

X
X

G
R

B
addconstr

1
X

X
X

G
R

B
addconstrs

1
X

X
X

G
R

B
addrangeconstr

1
X

X
X

G
R

B
addrangeconstrs

1
X

X
X

G
R

B
addvar

1
X

X
G

R
B

addvars
1

X
X

Table
2:

C
om

parison
m

atrix
for

variables
and

constraints
insertion

42

3.2 The idea: a direct interface Cplex-to-Gurobi

3.2.3 How to implement functions

After having grouped all the necessary elements to build each CPLEX func-
tion, the implementation of our mapping functions is ready to begin.

The overarching goal of our interface is to map from Cplex to Gurobi all
the input the user provides, and to map from Gurobi to Cplex all the output
the solver produces. Writing an appropriate mapping is sometimes not hard
work, especially when involved objects, or data structures passed through
function arguments, are isolated enough across the functions. Yet, in many
occasions, the context in which these data elements operate may be more
complex and requires an accurate design of the interface scope.

Parameter functions As an example, we consider both the following
get/set parameter functions:

int CPXsetintparam (CPXENVptr env, int whichparam, CPX-
INT newvalue)
int CPXgetintparam (CPXCENVptr env, int whichparam, CPX-
INT *value_p)

In this case, all the elements in input are the environments, the names of
the parameters and the values to store. At the same time, all the elements
in output are the values retrieved and the return status of the routines. We
note that the values of CPLEX parameters are considered both in input and
in output, which means that a one-to-one mapping for them is required to
preserve the full compatibility.

Data elements Input Output Mapping sense
Environment X CPX!GRB

Parameter names X CPX!GRB
Parameter values X X CPX$GRB

Return status X CPX GRB

Table 3: Type of mapping required for data objects

43

3 AN INTERFACE FOR GUROBI

The design of our example of solution continues below and it is organized
as follows:

• As the way CPLEX manages the environment objects is different from
how Gurobi does, we will outline in the paragraph Environment con-
sistency how to handle this circumstance.

• Even the strategies and algorithms Gurobi uses often differ from the
ones of CPLEX. We do not expect to obtain a complete mapping of
the parameters, but there are some common parameters the two solvers
share and that we can try to match, in the paragraph Parameter map-
ping.

• Obviously, a formal bijection of all the values is not always possible,
for example because of the int-double type conversions. Thus, we will
delineate these kind of limits in paragraph Parameter value mapping.

• Finally, in the last paragraph we will manage the reverse mapping of
the return status from the procedures.

44

3.2 The idea: a direct interface Cplex-to-Gurobi

Environment consistency The environment is a data structure where to
create model objects and in which are stored parameter settings and other
solver variables. An instance of the environment is always passed as an
argument in almost all CPLEX routines.

In CPLEX, all models use the same parameter values of their parent
environment. Gurobi, instead, gives each model its own copy of a Gurobi
environment and allows each model to have its own parameter settings. It
means that when the user, for example, changes a parameter in the par-
ent environment through the setter function CPXsetintparam, the new value
must be seen from all the problems associated with that environment, and
not stored only on a single copy of it.

Figure 5: CPLEX and Gurobi environments

To maintain the compatibility with Cplex, our interface must warrant the
consistency between the different models belonging to the same environment.
To achieve this goal, our interface needs to preserve the following invariant
for the user:

“In every moment, all the models created from the same parent
environment have the same parameter values and the same call-
back functions.”.

We also defined an internal data structure where storing, for each CPLEX
environment, an entry containing: a pointer to the Gurobi parent environ-
ment, a list of pointers of the Gurobi models associated to the environment,

45

3 AN INTERFACE FOR GUROBI

the function pointers to the callbacks and the pointers to the callback user-
data. A new entry will be created together with the opening of a new parent
environment.

To preserve the invariant stated above, our interface must perform some
steps before returning the control to the caller routine. In particular, when
the creation of a new model is requested, it is necessary to:

1. Retrieve the entry associated with the specified parent environment
from our global list.

2. Initialize a new model environment with the same parameters of the
parent environment.

3. Store the pointer of the new model in the selected entry.

To maintain the invariant also when setting any parameter value on a model,
the steps to be performed are:

1. Retrieve the entry associated with the specified parent environment
from our global list.

2. Do an appropriate parameter mapping and conversion of the value.

3. Get the list of the models, associated with the parent environment,
from the selected entry.

4. For each model, get its own environment and set the new parameter
value.

5. Finally, set the new parameter value also in the parent environment.

When running the optimizer on a model, it is necessary to:

1. Retrieve the entry associated with the specified parent environment
from our global list.

2. Set the callback wrapper function for this model, if there is at least a
callback pointer associated with the parent environment.

3. Optimize this model.

4. Disable the callback wrapper function for this model, i.e. set a NULL
pointer as callback.

The following consideration is optional and has only debug purposes. To
check even more that the invariant has not been compromised, before any
retrieval of a parameter value our interface performs the following steps:

46

3.2 The idea: a direct interface Cplex-to-Gurobi

1. Retrieve the entry associated with the specified parent environment
from our global list.

2. Get the parameter value from the parent environment.

3. Get the list of the models, associated with the parent environment,
from the selected entry.

4. For each model, get its own environment and check that it has the same
parameter value of the parent environment.

5. Do the appropriate parameter mapping and value conversion.

Obviously, when releasing a model it is necessary to remove its pointer also
from the entry associated with their parent environment. Only when there
are no models left, the parent environment can be closed and the entry is
removed from the global list.

Parameter mapping As Gurobi and CPLEX use different strategies and
algorithms, we do not expect to find a matching Gurobi parameter for every
CPLEX parameter. A tuning strategy that works very well with CPLEX,
often it may not be necessary at all with Gurobi. Rather, Gurobi recommend
to start with default settings and only change parameters when we observe
a specific behavior that we would like to modify [GRB].

Despite the differences, our purpose is to produce a code which achieves
a similar result and we list, in the table below, the Gurobi equivalent for the
most common CPLEX parameters. Most of the correspondences we wrote
are given also from the CPLEX migration guide of Gurobi, except for the
last six matchings we added for the UFL problem.

47

3 AN INTERFACE FOR GUROBI

CPLEX Parameter Gurobi equivalent
CPX_PARAM_BARALG BarHomogeneous
CPX_PARAM_BARCROSSALG Crossover
CPX_PARAM_BAREPCOMP BarConvTol
CPX_PARAM_BARQCPEPCOMP BarQCPConvTol
CPX_PARAM_BRDIR BranchDir
CPX_PARAM_CLIQUES CliqueCuts
CPX_PARAM_COVERS CoverCuts
CPX_PARAM_CUTPASS CutPasses
CPX_PARAM_EPGAP MIPGap
CPX_PARAM_EPAGAP MIPGapAbs
CPX_PARAM_EPINT IntFeasTol
CPX_PARAM_EPOPT OptimalityTol
CPX_PARAM_FLOWCOVERS FlowCoverCuts
CPX_PARAM_FPHEUR PumpPasses
CPX_PARAM_FRACPASS GomoryPasses
CPX_PARAM_GUBCOVERS GUBCoverCuts
CPX_PARAM_HEURFREQ Heuristics
CPX_PARAM_INTSOLLIM SolutionLimit
CPX_PARAM_LPMETHOD Method
CPX_PARAM_MIPEMPHASIS MIPFocus
CPX_PARAM_MIRCUTS MIRCuts
CPX_PARAM_NODEFILEIND NodeFileStart
CPX_PARAM_POLISHAFTEREPGAP ImproveStartGap
CPX_PARAM_POLISHAFTERTIME ImproveStartTime
CPX_PARAM_PREDUAL PreDual
CPX_PARAM_PREIND Presolve
CPX_PARAM_RINSHEUR RINS
CPX_PARAM_STARTALG Method
CPX_PARAM_SUBALG NodeMethod
CPX_PARAM_THREADS Threads
CPX_PARAM_TIMELIMIT TimeLimit
CPX_PARAM_VARSEL VarBranch
CPX_PARAM_ZEROHALFCUTS ZeroHalfCuts
Other parameters:
CPX_PARAM_MIPCBREDLP PreCrush
CPX_PARAM_PRELINEAR LazyConstraints
CPX_PARAM_SCRIND OutputFlag
CPX_PARAM_NODELIM NodeLimit
CPX_PARAM_CUTLO Cutoff
CPX_PARAM_CUTUP Cutoff

48

3.2 The idea: a direct interface Cplex-to-Gurobi

Parameter value mapping The routines for access parameters are both
getters and setters, i.e. they can either read or write the parameter values.
To maintain the full compatibility with Cplex, the mapping of parameter
values should be bi-directional, that is representable by a bijective function.

Unfortunately, there are some limitations on this approach that we had
to take into consideration. In general, a one-to-one correspondence is not
always possible because:

• when performing type conversions, a lose of precision happens. For
example, with the parameter CPX_PARAM_NODELIM, we had to
force a cast from double to int value type.

• two different values can be mapped into the same value. This is
again the case of the parameter CPX_PARAM_NODELIM, where we
mapped 0 to 1 and 1 to 1, too. In fact, while CPLEX let the optimiza-
tion terminate after the processing at the root (setting the value zero)
or after the branching from the root (setting the value one), Gurobi
does not make any distinction and counts the root as a simple node
(value one).

In most cases, parameter values are kept as they are, except for two param-
eters, CPX_PARAM_MIPCBREDLP and CPX_PARAM_PRELINEAR,
we had both to map from 0 (zero) to 1 (one) and from 1 (one) to 0 (zero).

Return value mapping Because the return value is an output to the user,
a reverse map from Gurobi to CPLEX is expected.

Gurobi C functions always return a status that represents an error code
in case of a nonzero value, or a success when zero. In the same way, CPLEX
routines have a return status and the user waits for a value to realize whether
the requested operation succeeded or not. Have a complete map also for
the error codes is not so significant, because such an error usually implies
a termination of the whole execution. As the programmer needs to know
exactly where is the problem located, a forced mapping of the error code
would hide where the real problem was.

Also, in case our interface has been called to perform multiple model
modifications and, suddenly, the solver returns an error, only the last mod-
ification is aborted. The other modifications, on the contrary, persist and
we may enter into an inconsistent state, because we are unable to restore
the previous status of the objects. To solve this problem it is necessary to
use some kind of transactions, but this would slow down the whole interface
execution and can result very complex.

49

3 AN INTERFACE FOR GUROBI

For these reasons, we prefer to raise immediately an exception in case
something goes wrong and to return a zero value only when the requested
operation succeeded. The exception can be caught only to release the allo-
cated variables, before the whole program aborts.

50

3.3 Functions implemented

3.3 Functions implemented

We list, here, all the CPLEX functions we implemented in our interface for
Gurobi. We grouped the routines by topic, to present the related design
choices in a compact way. Then, for each routine, we give a brief description
and we also explain the limits of our implementation.

• Environment and problem creation

– CPXopenCPLEX, CPXcloseCPLEX, CPXcreateprob, CPXfreeprob

• Problem modification

– CPXaddrows, CPXnewcols, CPXnewrows, CPXdelrows, CPXdelcols,
CPXaddlazyconstraints, CPXchgbds, CPXchgobj, CPXchgrhs, CPXgetc-
type, CPXchgcoef

• Optimize

– CPXmipopt, CPXlpopt

• Access problem data

– CPXgetlb, CPXgetnumcols, CPXgetnummipstarts, CPXgetnumrows,
CPXgetobj, CPXgetobjval, CPXgetstat, CPXgetub, CPXgetx, CPXgetbesto-
bjval, CPXgetnodecnt

• File Input/Output

– CPXordwrite, CPXreadcopyorder, CPXsolwrite, CPXwritemipstarts,
CPXwriteparam, CPXwriteprob

• Parameters setting

– CPXgetdblparam, CPXgetintparam, CPXsetdblparam, CPXsetintparam

• Callbacks

– CPXcutcallbackadd, CPXgetcallbackinfo, CPXgetcallbacknodex, CPXset-
lazyconstraintcallbackfunc, CPXsetusercutcallbackfunc, CPXgetheuris-
ticcallbackfunc, CPXgetinfocallbackfunc, CPXgetusercutcallbackfunc,
CPXsetheuristiccallback, CPXsetinfocallbackfunc, CPXgetlazyconstraint-
callbackfunc

• Others

– CPXcopymipstart, CPXcopyorder, CPXdelmipstarts, CPXgetnumcores,
CPXgettime, CPXaddmipstarts

51

3 AN INTERFACE FOR GUROBI

3.3.1 Environment and problem creation

CPXopenCPLEX

Initializes the environment.

Prototype CPXENVptr CPXopenCPLEX (int *statusp)

Description The routine creates and initializes a new environment.
The pointer returned will be required by every non-advanced CPLEX routine.
This must be the first CPLEX routine called. In this case, the return status is
stored into an int type variable, whose pointer is passed through the status_p
argument. Its value is set to 0 (zero) only if the environment initialization is
successful.

Gurobi reduction: The mapping uses the following Gurobi function:

• GRBloadenv

In addition, as already mentioned, our interface keeps track of each environ-
ment it has opened. This is required to maintain the compatibility with the
global parameters of Cplex.

CPXcloseCPLEX

Frees the environment.

Prototype int CPXcloseCPLEX (CPXENVptr *envp)

Description This routine closes the environment and releases all of
the associated data structures. It should only be called once all models built
using the specified environment have been freed.

52

3.3 Functions implemented

Gurobi reduction: The mapping uses the following Gurobi function:

• GRBfreeenv

To maintain the compatibility with the global environment of Cplex, we
check that each child model has been correctly closed. The pointer in input
has to be referred to the parent environment and not a derived copy of it.
Then, before closing the Gurobi environment, we perform these additional
steps:
1: Retrieve the entry associated with the environment, from our global

list
2: Check all derived (child) models have been correctly closed
3: Remove the environment entry from our global list

CPXcreateprob

Creates a problem object.

Prototype CPXLPptr CPXcreateprob (CPXCENVptr env, int *sta-
tusp, char const *probnamestr)

Description This routine creates an empty problem object in the spec-
ified environment.

53

3 AN INTERFACE FOR GUROBI

Gurobi reduction: The mapping uses the following Gurobi functions:

• GRBnewmodel

• GRBsetcallbackfunc

To maintain the compatibility with Cplex, after the model creation, our inter-
face performs the following steps:
1: Retrieve the parent environment from our global list
2: Create a new model entry associated with the parent environment
3: Store the model entry in our global list
4: {Set up our callback wrapper function for the new model}

The last step is necessary as Gurobi callbacks are always associated with the
single model, not with the environment. Cplex instead associates the call-
backs with the environment. To maintain the compatibility, a new callback
set up is required for each new model. Also, the callback wrapper can be set
just before the optimize call.

CPXfreeprob

Frees a problem object.

Prototype int CPXfreeprob (CPXCENVptr env, CPXLPptr *lp_p)

Description This routine removes the specified problem object from
the environment and releases the associated memory.

Gurobi reduction: The mapping uses the following Gurobi function:

• GRBfreemodel

To maintain the compatibility with Cplex, our interface requires in input
only the parent environment, not a copy of it, and the model to close. Only
models regularly opened are allowed to be released, because our interface has
to find and remove the associated entry from our global list of models.

54

3.3 Functions implemented

3.3.2 Problem modification

CPXaddrows

Add constraints.

Prototype int CPXaddrows (CPXCENVptr env, CPXLPptr lp, int
ccnt, int rcnt, int nzcnt, double const *rhs, char const *sense, int const
*rmatbeg, int const *rmatind, double const *rmatval, char **colname, char
**rowname)

Description This routine add constraints to a problem object.

Gurobi reduction: The Gurobi functions used for the mapping are:

• GRBaddvar

• GRBaddrangeconstr

• GRBaddconstr

• GRBupdatemodel

The mapping is not very hard, although some prudence is required when
working with ranged constraints. In fact, when Gurobi adds a range con-
straint to the model, it adds both a new constraint and a new variable.
This is because, unlike Cplex, Gurobi stores range constraints internally as
equality constraints and an extra variable is needed to capture the range
information. If one is keeping a count of the variables in the model, he must
remember to add one for each range constraint. A possible pseudocode can
be:
1: for all i 2 [0, ccnt] do
2: Add empty variable xi to the model
3: end for
4: Update model
5: for all j 2 [0, rcnt] do
6: if sense[j] = R then
7: Add ranged constraint with an additional variable
8: else
9: Add constraint ci to the model

55

3 AN INTERFACE FOR GUROBI

10: end if
11: end for
12: Update model

CPXnewcols

Adds empty variables.

Prototype int CPXnewcols (CPXCENVptr env, CPXLPptr lp, int ccnt,
double const *obj, double const *lb, double const *ub, char const *xctype,
char **colname)

Description This routine adds empty columns to the specified problem
object.

Gurobi reduction: The map is direct and the equivalence between
the different types of variables (i.e. continuous, binary, general integer, semi-
continuous, semi-integer) is granted. The Gurobi functions used are:

• GRBaddvars

• GRBupdatemodel

CPXnewrows

Adds empty constraints.

Prototype int CPXnewrows (CPXCENVptr env, CPXLPptr lp, int
rcnt, double const *rhs, char const *sense, double const *rngval, char **row-
name)

Description This routine adds empty constraints to the specified prob-
lem object.

56

3.3 Functions implemented

Gurobi reduction: The mapping is simpler than CPXaddrows, but
the same prudence is required when working with ranged constraints (see
the notes for CPXaddrows). The Gurobi functions used are:

• GRBaddrangeconstr

• GRBaddconstr

• GRBupdatemodel

CPXdelrows

Removes a range of constraints.

Prototype int CPXdelrows (CPXCENVptr env, CPXLPptr lp, int be-
gin, int end)

Description This routine deletes a range of constraints from the spec-
ified model object.

Gurobi reduction: The map is easy to implement and requires the
use of an additional array for the indices. The Gurobi functions used are:

• GRBdelconstrs

• GRBupdatemodel

CPXdelcols

Removes a range of variables.

Prototype int CPXdelcols (CPXCENVptr env, CPXLPptr lp, int be-
gin, int end)

Description This routine deletes a range of variables from the specified
model object.

57

3 AN INTERFACE FOR GUROBI

Gurobi reduction: The map is easy to implement and requires the
use of an additional array for the indices. The Gurobi functions used are:

• GRBdelvars

• GRBupdatemodel

CPXaddlazyconstraints

Adds lazy constraints.

Prototype int CPXaddlazyconstraints (CPXCENVptr env, CPXLPptr
lp, int rcnt, int nzcnt, double const *rhs, char const *sense, int const *rmat-
beg, int const *rmatind, double const *rmatval, char **rowname)

Description This routine adds constraints to the list of constraints
that should be added to the LP sub-problem of a MIP optimization if they
are violated. This routine is necessary because the user may have a prior
knowledge of the model and may know a large set of cuts. In this case, it is
better to add the cuts as Lazy constraints: rather than adding them to the
original problem one by one, they are added only when they are violated.

58

3.3 Functions implemented

Gurobi reduction: While CPLEX has a dedicated routine for the lazy
constraint insertion, Gurobi need two steps to perform the same operation.
In fact, our procedure calls the previously implemented CPXaddrows routine
in order to add the appropriate number of new constraints, then sets their
Lazy attribute to 1 (one) to mark them as lazy. Gurobi, in general, provides
three different level of aggressiveness for each lazy constraint: it can be used
only to cut off a feasible solution, or can be pulled into the model or, even
more, used to cut off also the relaxation solution. Unfortunately, we had to
choose only one value for the mapping and the CPLEX user cannot control
this option. Also, unlike CPLEX, our implementation do not allow ranged
rows as lazy constraints.

The functions used are:

• CPXaddrows (previously implemented)

• GRBsetintattrelement

• GRBupdatemodel

CPXchgbds

Changes the lower or upper bounds of variables.

Prototype int CPXchgbds (CPXCENVptr env, CPXLPptr lp, int cnt,
int const *indices, char const *lu, double const *bd)

Description The routine changes the lower or upper bounds of a list
of variables of the specified problem. By setting the upper and lower bounds
to the same value, the value of a variable can be fixed at one value.

Gurobi reduction: The mapping is a simple loop that changes the LB
and UB attributes of the specified variables of a Gurobi model.

Functions used:

• GRBsetdblattrelement

• GRBupdatemodel

59

3 AN INTERFACE FOR GUROBI

CPXchgobj

Changes the objective coefficients.

Prototype int CPXchgobj (CPXCENVptr env, CPXLPptr lp, int cnt,
int const *indices, double const *values)

Description This routine changes the linear objective coefficients of a
set of variables in the specified problem object.

Gurobi reduction: Unlike CPLEX, Gurobi does not provide any ded-
icated function for changing the coefficients of the objective function. Our
mapping is a simple loop that changes the Obj attributes of the specified
variables of a Gurobi model, using the following functions:

• GRBsetdblattrelement

• GRBupdatemodel

CPXchgrhs

Changes a list of RHS values.

Prototype int CPXchgrhs (CPXCENVptr env, CPXLPptr lp, int cnt,
int const *indices, double const *values)

Description This routine changes the right-hand side coefficients of a
set of linear constraints in the specified problem object.

Gurobi reduction: The mapping is a simple loop that changes the
RHS attributes of the specified constraints of a Gurobi model, using the
functions:

• GRBsetdblattrelement

• GRBupdatemodel

60

3.3 Functions implemented

CPXgetctype

Gets the variable type.

Prototype int CPXgetctype (CPXCENVptr env, CPXCLPptr lp, char
*xctype, int begin, int end)

Description This routine gets the types for a list of variables in a prob-
lem object. The range of variables to select is specified with the parameters
begin and end.

Gurobi reduction: The mapping is simple as Gurobi stores the type
of each variable in the attribute array VType of the specified Gurobi model.
Our interface uses the Gurobi function:

• GRBgetcharattrarray

CPXchgcoef

Changes a coefficient.

Prototype int CPXchgcoef (CPXCENVptr env, CPXLPptr lp, int i,
int j, double newvalue)

Description This routine changes a single coefficient in the constraint
matrix, linear objective coefficients, right-hand side or ranges of the specified
problem object.

Gurobi reduction: Unlike CPLEX, multiple Gurobi routines are in-
volved according to the type of coefficient to be changed. The linear objective
row is referenced with the argument i = -1, while the RHS column is refer-
enced with j = -1. In these special cases the Gurobi attributes involved are
OBJ and RHS. Unfortunately, our interface does not support any change in
the range value of a constraint.

The Gurobi functions used are:
• GRBsetdblattrelement

• GRBchgcoeffs

• GRBupdatemodel

61

3 AN INTERFACE FOR GUROBI

3.3.3 Optimize

CPXmipopt

Solves a MIP problem.

Prototype int CPXmipopt (CPXCENVptr env, CPXLPptr lp)

Description This routine tries to find a solution to the specified MIP
problem. The value returned is 0 (zero) in case no errors occur, which does
not necessarily mean that a solution exists. A successful termination can also
be exceeding a user-specified limit or finding that the problem was infeasible
or unbounded.

The solution status must be obtained with the routine CPXgetstat.

Gurobi reduction: The mapping is direct, but the Gurobi routine is
more general than the Cplex one, because GRBoptimize solves every model
type. Then, before solving the specified model our interface also checks that
the input model is really a MIP.

Furthermore, if callbacks are set, we check here that the parameter con-
figuration is correct, as required by Gurobi:

• LazyConstraints to 1, for the lazy-constraint callback

• PreCrush to 1, for the user-cut callback

Functions used:

• GRBoptimize

CPXlpopt

Solves a LP problem.

Prototype int CPXlpopt (CPXCENVptr env, CPXLPptr lp);

Description This routine is similar to CPXmipopt, except for the type
of the problem to be solved. Linear optimizers are used.

62

3.3 Functions implemented

Gurobi reduction: The mapping is direct, but the Gurobi routine is
more general than the Cplex one, because GRBoptimize solves every model
type. Then, before solving the specified model our interface also checks that
the input model is really a LP. See the routine above.

Functions used:

• GRBoptimize

63

3 AN INTERFACE FOR GUROBI

3.3.4 Access problem data

We outline the design choices for mapping for the status codes related to the
CPXgetstat function.

The optimization status code is a value returned to the user after an
optimize call. The user should always check the status of the optimization
once it completes. Because we consider the optimization status code as an
output to the user, our interface needs to do a reverse mapping, from Gurobi
to Cplex. In general, Gurobi uses status codes in the following situations:

• after an optimize call, the optimization status is stored in the model
attribute Status;

• in a callback, when the current MIP node has terminated the optimiza-
tion.

CPLEX has a lot of status codes and includes some additional information
in the status, such as if the model has an integer solution or still not. Gurobi
instead has fewer optimization statuses and let the user find out them man-
ually from the attributes isMIP and SolCount. For this reason, our mapping
depends also on the values of the these two model attributes and, in the Ta-
ble below, we reported their possible combinations along the columns (LP,
when not MIP; MIP feasible, when there is at least one solution; or MIP
infeasible, when no solutions have been found yet).

Notes for Table 4:

• Brackets mean that an appropriate matching was not available and we
had to choose the one we consider the most suitable. We remark that
this is only a proposal, in order to have a unique definition and, if
necessary, it can be changed.

• The asterisk (*) means that to obtain a more definitive conclusion, the
DualReductions parameter must be set to 0 and the model re-optimized.

• We do not consider the “In progress” status, as it is used only for
asynchronous optimization calls.

64

G
ur

ob
is

ta
tu

s
LP

M
IP

(f
ea

si
bl

e)
M

IP
(i

nf
ea

si
bl

e)

LO
A

D
E

D
0

(z
er

o)
O

P
T

IM
A

L
C

P
X

_
ST

A
T

_
O

P
T

IM
A

L
C

P
X

M
IP

_
O

P
T

IM
A

L
//

IN
FE

A
SI

B
LE

C
P

X
_

ST
A
T

_
IN

FE
A

SI
B

LE
//

C
P

X
M

IP
_

IN
FE

A
SI

B
LE

IN
F_

O
R

_
U

N
B

D
C

P
X

_
ST

A
T

_
IN

Fo
rU

N
B

D
*

//
C

P
X

M
IP

_
IN

Fo
rU

N
B

D
(*

)
U

N
B

O
U

N
D

E
D

C
P

X
_

ST
A
T

_
U

N
B

O
U

N
D

E
D

C
P

X
M

IP
_

U
N

B
O

U
N

D
E

D
C

U
T

O
FF

(C
P

X
_

ST
A

T
_

A
B

O
RT

_
U

SE
R

)
(C

P
X

M
IP

_
A

B
O

RT
_

FE
A

S)
(C

P
X

M
IP

_
A

B
O

RT
_

IN
FE

A
S)

IT
E

R
A

T
IO

N
_

LI
M

IT
C

P
X

_
ST

A
T

_
A

B
O

RT
_

IT
_

LI
M

(C
P

X
M

IP
_

A
B

O
RT

_
FE

A
S)

(C
P

X
M

IP
_

A
B

O
RT

_
IN

FE
A

S)
N

O
D

E
_

LI
M

IT
//

C
P

X
M

IP
_

N
O

D
E

_
LI

M
_

FE
A

S
C

P
X

M
IP

_
N

O
D

E
_

LI
M

_
IN

FE
A

S
T

IM
E

_
LI

M
IT

C
P

X
_

ST
A
T

_
A

B
O

RT
_

T
IM

E
_

LI
M

C
P

X
M

IP
_

T
IM

E
_

LI
M

_
FE

A
S

C
P

X
M

IP
_

T
IM

E
_

LI
M

_
IN

FE
A

S
SO

LU
T

IO
N

_
LI

M
IT

//
C

P
X

M
IP

_
SO

L_
LI

M
IN

T
E

R
R

U
P

T
E

D
C

P
X

_
ST

A
T

_
A

B
O

RT
_

U
SE

R
C

P
X

M
IP

_
A

B
O

RT
_

FE
A

S
C

P
X

M
IP

_
A

B
O

RT
_

IN
FE

A
S

N
U

M
E

R
IC

(C
P

X
_

ST
A
T

_
N

U
M

_
B

E
ST

)
(C

P
X

M
IP

_
FA

IL
_

FE
A

S)
(C

P
X

M
IP

_
FA

IL
_

IN
FE

A
S)

SU
B

O
P

T
IM

A
L

(C
P

X
_

ST
A
T

_
N

U
M

_
B

E
ST

)
(C

P
X

M
IP

_
FA

IL
_

FE
A

S)
//

IN
P

R
O

G
R

E
SS

//

Ta
bl

e
4:

M
ap

pi
ng

fo
r

G
ur

ob
io

pt
im

iz
at

io
n

st
at

us

65

3 AN INTERFACE FOR GUROBI

CPXgetlb

Gets variable lower bounds.

Prototype int CPXgetlb (CPXCENVptr env, CPXCLPptr lp, double
*lb, int begin, int end)

Description This routine gets a range of lower bounds on the variables
of the specified problem object. In case a variable has no lower bound, then
the value returned is less than or equal to -CPX_INFBOUND.

Gurobi reduction: The mapping is immediate, as it is sufficient to
access the LB attribute in the specified Gurobi model, through the function:

• GRBgetdblattrarray

CPXgetnumcols

Gets the number of variables.

Prototype int CPXgetnumcols (CPXCENVptr env, CPXCLPptr lp)

Description This routines returns the number of columns in the con-
straint matrix, i.e. the number of variables in the specified problem object.

Gurobi reduction: The mapping is immediate, as it is sufficient to
access the NumVars attribute in the specified Gurobi model.

Function used:

• GRBgetintattr

66

3.3 Functions implemented

CPXgetnummipstarts

Gets the number of loaded MIP starts.

Prototype int CPXgetnummipstarts (CPXCENVptr env, CPXCLPptr
lp)

Description This routine gets the number of MIP starts in the problem
object.

Gurobi reduction: Unfortunately, Gurobi supports only one solution
vector as MIP start. Thus, the value returned is only 1 (one) or 0 (zero). To
decide if a MIP start has been set, our interface checks the attribute vector
Start. If at least one element has a value different from GRB_UNDEFINED,
then a MIP Start is already present.

Function used:

• GRBgetdblattrelement

CPXgetnumrows

Gets the number of constraints.

Prototype int CPXgetnumrows (CPXCENVptr env, CPXCLPptr lp)

Description This routine accesses the number of rows in the constraint
matrix, not including the objective function nor the bounds constraints on
the variables.

Gurobi reduction: The mapping is immediate, as it is sufficient to
access the NumConstrs attribute in the specified Gurobi model through the
function:

• GRBgetintattr

67

3 AN INTERFACE FOR GUROBI

CPXgetobj

Gets the obj function coefficients.

Prototype int CPXgetobj (CPXCENVptr env, CPXCLPptr lp, double
*obj, int begin, int end)

Description This routine gets a range of objective function coefficients
of the specified problem object. The beginning and end of the range are
required.

Gurobi reduction: The mapping is immediate, as it is sufficient to
access the OBJ attribute in the specified Gurobi model through the function:

• GRBgetintattr

CPXgetobjval

Gets the solution objective value.

Prototype int CPXgetobjval (CPXCENVptr env, CPXCLPptr lp, dou-
ble *objvalp)

Description This routine gets the solution objective value, returning
a non-zero value if no solution exists.

Gurobi reduction: The mapping is immediate, as it is sufficient to
access the ObjVal attribute in the specified Gurobi model, through the func-
tion:

• GRBgetdblattr

Note that the model must have been solved to optimality

68

3.3 Functions implemented

CPXgetstat

Gets the solution status.

Prototype int CPXgetstat (CPXCENVptr env, CPXCLPptr lp)

Description This routine gets the solution status of the specified prob-
lem after an LP or MIP optimization.

Gurobi reduction: This is a reverse mapping, that is from Gurobi to
CPLEX, because the solution status returned by the solver must be converted
accordingly in order to be recognized by the CPLEX user. Choosing how to
convert the solution is quite complicate, because involved attributes are Sta-
tus, isMip and SolCount and a combination of them is necessary to preserve
the compatibility with CPLEX (see the Table 4 and the design choices at the
beginning of this Chapter).

The Gurobi functions involved are only multiple calls to:

• GRBgetintattr

CPXgetub

Gets variable upperbounds.

Prototype int CPXgetub (CPXCENVptr env, CPXCLPptr lp, double
*ub, int begin, int end)

Description This routine gets a range of upper bounds on the variables
of the specified problem object. In case a variable has no upper bound, then
the value returned is less than or equal to +CPX_INFBOUND.

Gurobi reduction: The mapping is immediate, as it is sufficient to
access the UB attribute in the specified Gurobi model, through the function:

• GRBgetdblattrarray

69

3 AN INTERFACE FOR GUROBI

CPXgetx

Gets the solution values.

Prototype int CPXgetx (CPXCENVptr env, CPXCLPptr lp, double
*x, int begin, int end)

Description This routine gets the solution values for a range of prob-
lem variables. The beginning and end of the range must be specified.

Gurobi reduction: The mapping is immediate, as it is sufficient to
access the X attribute in the specified Gurobi model, through the functions:

• GRBgetdblattrarray

CPXgetbestobjval

Gets the best bound.

Prototype int CPXgetbestobjval (CPXCENVptr env, CPXCLPptr lp,
double *objvalp)

Description This routine gets the currently best known bound of all
the remaining open nodes in a branch-and-cut tree. If no solution information
is available, then for a MIP this routine returns -infinity for minimization
problems and +infinity for maximization problems.

Gurobi reduction: The mapping is immediate, as it is sufficient to
access the ObjBound attribute in the specified Gurobi model, through the
functions:

• GRBgetdblattr

Note: to use this routine, the model must have been solved to optimality.

70

3.3 Functions implemented

CPXgetnodecnt

Gets the number of nodes used.

Prototype int CPXgetnodecnt (CPXCENVptr env, CPXCLPptr lp)

Description This routine gets the number of nodes used to solve a
mixed integer problem.

Gurobi reduction: The mapping is immediate, as it is sufficient to
access the NodeCount attribute in the specified Gurobi model, through the
functions:

• GRBgetdblattr

Note: to use this routine, the model must have been solved to optimality.

71

3 AN INTERFACE FOR GUROBI

3.3.5 File Input/Output

CPXordwrite

Writes a priority order file.

Prototype int CPXordwrite (CPXCENVptr env, CPXCLPptr lp, char
const *filenamestr)

Description This routine creates a .ord file and stores the priority
order information associated to the specified problem object.

Gurobi reduction: The mapping is direct, but the Gurobi routine is
more general than the Cplex one. In fact, GRBwrite is also used to write
optimization models, solutions vectors, basis vectors, start vectors and pa-
rameter settings in the specified file. As Gurobi determines the type of data
to store according to the file suffix, our interface will check that the specified
file extension is correct, i.e. “.ord”.

Functions used:

• GRBwrite

CPXreadcopyorder

Retrieves the priority order information from file.

Prototype int CPXreadcopyorder (CPXCENVptr env, CPXLPptr lp,
char const *filenamestr)

Description This routine reads the specified priority order file and
copies the priority order information into the specified problem object.

72

3.3 Functions implemented

Gurobi reduction: The mapping is direct, but the Gurobi routine is
more general than the Cplex one. In fact, GRBread is also used to read start
vectors for MIP models, basis files for LP models or parameter settings from
the specified file. As Gurobi determines the type of data to read according
to the file suffix, our interface will check that the specified file extension is
correct, i.e. “.ord”.

Functions used:

• GRBread

• GRBupdatemodel

CPXsolwrite

Writes a solution file.

Prototype int CPXsolwrite (CPXCENVptr env, CPXCLPptr lp, char
const *filenamestr)

Description This routine creates a .sol file and stores the solution for
the specified problem object.

Gurobi reduction: The mapping is direct, but the Gurobi routine is
more general than the Cplex one. In fact, GRBwrite is also used to write
optimization models, priority order information, basis vectors, start vectors
and parameter settings in the specified file. As Gurobi determines the type
of data to store according to the file suffix, our interface will check that the
specified file extension is correct, i.e. “.sol”.

Functions used:

• GRBwrite

CPXwritemipstarts

Writes a MIP start file.

Prototype int CPXwritemipstarts (CPXCENVptr env, CPXCLPptr
lp, char const *filenamestr, int begin, int end)

73

3 AN INTERFACE FOR GUROBI

Description This routine creates a .mst file and stores the solution for
the specified problem object.

Gurobi reduction: A direct mapping is not possible as Gurobi sup-
ports only one MIP Start at a time. Then, our interface allows only a value
of 0 (zero) for the begin and end arguments.

Also, the Gurobi routine is more general than the Cplex one. In fact,
GRBwrite is also used to write optimization models, priority order informa-
tion, basis vectors, start vectors and parameter settings in the specified file.
As Gurobi determines the type of data to store according to the file suffix,
our interface will check that the specified file extension is correct, i.e. “.mst”.

Functions used:

• GRBwrite

CPXwriteparam

Writes a parameter settings file.

Prototype int CPXwriteparam (CPXCENVptr env, char const *file-
namestr)

Description This routine creates a .prm file and stores the name and
current value of the parameters that are not at their default setting in the
environment specified.

Gurobi reduction: The mapping is simple for the routine itself, but
for the file data content the work is very hard. As a direct mapping for each
parameter of Cplex is not possible, we chose to store only Gurobi parameters
to the specified file.

Anyway, the Gurobi routine is more general than the Cplex one. In
fact, GRBwrite is also used to write optimization models, priority order
information, basis vectors and start vectors in the specified file. As Gurobi
determines the type of data to store according to the file suffix, our interface
will check that the specified file extension is correct, i.e. “.prm”.

Functions used:

• GRBwrite

74

3.3 Functions implemented

CPXwriteprob

Stores an optimization model to file.

Prototype int CPXwriteprob (CPXCENVptr env, CPXCLPptr lp, char
const *filenamestr, char const *filetypestr)

Description This routine writes a problem object to a file in the spec-
ified format.

Gurobi reduction: The mapping is direct, but the Gurobi routine is
more general than the Cplex one. In fact, GRBwrite is also used to write
priority order information, basis vectors, start vectors and parameter settings
in the specified file. As Gurobi determines the type of data to store according
to the file suffix, valid file extensions are “.mps”, “.rew”, “.lp” and “.rlp”.

Functions used:

• GRBwrite

75

3 AN INTERFACE FOR GUROBI

3.3.6 Parameters setting

CPXgetdblparam

Gets a parameter value of type double.

Prototype int CPXgetdblparam (CPXCENVptr env, int whichparam,
double *valuep)

Description This routine obtains the current value of a parameter of
type double.

Gurobi reduction: As already seen, this mapping is rather complex.
First, a matching for each parameter of Cplex is not always possible (for
a complete list, see the Parameter chapter). Second, there is a compati-
bility problem with the environments, because Cplex uses the same envi-
ronment for all the associated problems. Gurobi, instead, creates a sep-
arate copy of the environment for each model object associated with the
parent environment. To maintain the compatibility with Cplex, we have
to manually warrant the parameter consistency of each copy of the par-
ent environment. We expect that the environment specified in input is a
“parent” environment and not a “child”, i.e. a derived copy of it. Thus, be-
fore returning the requested parameter, our interface performs the following
steps:
1: Convert the parameter name from CPLEX to Gurobi
2: Retrieve the associated environment entry from our global list
3: Get the list of models associated with this parent environment
4: Get the parameter value from the parent environment
5: Check all the child environments have the same parameter value

Functions used:

• GRBgetdblparam

76

3.3 Functions implemented

CPXgetintparam

Gets a parameter value of type int.

Prototype int CPXgetintparam (CPXCENVptr env, int whichparam,
CPXINT *valuep)

Description This routine gets the current value of the specified param-
eter of type CPXINT, or int.

Gurobi reduction: The implementation is similar to CPXgetdblparam
routine. Functions used:

• GRBgetintparam

CPXsetdblparam

Sets a parameter value of type double.

Prototype int CPXsetdblparam (CPXENVptr env, int whichparam,
double newvalue)

Description This routine sets the value of the specified parameter of
type double.

Gurobi reduction: The implementation is similar to CPXgetdblparam
routine. Functions used:

• GRBsetdblparam

77

3 AN INTERFACE FOR GUROBI

CPXsetintparam

Sets a parameter value of type int.

Prototype int CPXsetintparam (CPXENVptr env, int whichparam,
CPXINT newvalue)

Description This routine sets the value of the specified parameter of
type int.

Gurobi reduction: The implementation is similar to CPXgetdblparam
routine. Functions used:

• GRBsetintparam

78

3.3 Functions implemented

3.3.7 Callbacks

While CPLEX provides several kinds of callbacks, Gurobi models can only
have a single callback function. The where argument in the Gurobi call-
back function is the only way to distinguish the context, in the optimization
process, where the callback was invoked. To map the multiple CPLEX call-
backs into a single Gurobi callback, we implemented a dispatcher routine able
to wrap the user custom procedures and call them at the right point. Cur-
rently, our interface properly supports the following callbacks: Lazy, Usercut,
Heuristic and Info callback.

Data structures We defined the following data structures to store the
pointers to the custom procedures the user can provide and their data inside
callbacks.

/* Define struct to point user procedures */
struct callback_pointers {

int (* lazy_cb)(CALLBACK_CUT_ARGS);
int (* usercut_cb)(CALLBACK_CUT_ARGS);
int (* heur_cb)(CALLBACK_HEURISTIC_ARGS);
int (* info_cb)(CPXCENVptr , void *, int , void *);

};

/* Define struct to point user data in callbacks */
struct callback_data {

void *lazyData;
void *usercutData;
void *heurData;
void *infoData;

};

Dispatcher for the callbacks Here, we describe the general behaviour
of the algorithm we used to dispatch the user callbacks. Our implementation
is completely transparent to the user, because all the provided data input
and output are properly wrapped.

About the Gurobi where attribute:

• GRB_CB_MIPSOL is obtained when all binary/integer variables are
integer or a heuristic finds a new incumbent (i.e. a new integer-feasible
solution)

79

Algorithm 6 Callback dispatcher algorithm
Input: where status from the solver

Output: return status to the solver

if (where = GRB_CB_MIP) then
wherefrom CPX_CALLBACK_MIP
"Point to INFO callback"

else if (where = GRB_CB_MIPSOL) then
wherefrom CPX_CALLBACK_MIP_CUT_FEAS
"Point to LAZY callback"

else if (where = GRB_CB_MIPNODE) then
status “Get optimization status of LP relaxation”
if (status = GRB_UNBOUNDED) then

wherefrom CPX_CALLBACK_MIP_CUT_UNBD
"Point to LAZY callback"

else if (status = GRB_OPTIMAL) then
wherefrom CPX_CALLBACK_MIP_HEURISTIC
"Point to HEURISTIC callback"
"Add returned solution to Gurobi"
wherefrom CPX_CALLBACK_MIP_CUT_LAST
"Point to USERCUT callback"

else
{skip callback if node is reported to be cut off or infeasible}

end if
end if

80

3.3 Functions implemented

• GRB_CB_MIPNODE (optimal) when the LP relaxation at the node
is proven optimal (solution can be fractional)

• GRB_CB_MIPNODE (unbounded) in case of an unbounded ray is
found (solution can be fractional)

Callback infos mapping The table below provides the mapping for the
most common information codes requested with the CPXgetcallbackinfo func-
tion. Along rows there are the information requested by the CPLEX user
through the callbacks, along columns the Gurobi context (where argument)
in which the request was generated. To obtain the Gurobi mapping, it is
necessary to match the information with the context.

For some information codes, several workarounds were necessary because
Gurobi does not provide that information natively. For example, to obtain
the MIP relative gap we computed the following expression:

|objbst� objbnd|
e�10

+ |objbst|

For the cutoff information, we used both the best bound information and
the cutoff parameter value.

The asterisk (*) means that the information is an obvious consequence,
e.g. from the fact that Gurobi callbacks are always executed in single-thread
mode, while the MIP feasibility depends on the number of solutions found.

81

C
P

LE
X

requested
inform

ation
G

R
B

_
C

B
_

M
IP

G
R

B
_

C
B

_
M

IP
SO

L
G

R
B

_
C

B
_

M
IP

N
O

D
E

C
P

X
_

C
A

LLB
A

C
K

_
IN

FO
_

B
E

ST
_

IN
T

E
G

E
R

M
IP

_
O

B
JB

ST
M

IP
SO

L_
O

B
JB

ST
M

IP
N

O
D

E
_

O
B

JB
ST

C
P

X
_

C
A

LLB
A

C
K

_
IN

FO
_

B
E

ST
_

R
E

M
A

IN
IN

G
M

IP
_

O
B

JB
N

D
M

IP
SO

L_
O

B
JB

N
D

M
IP

N
O

D
E

_
O

B
JB

N
D

C
P

X
_

C
A

LLB
A

C
K

_
IN

FO
_

N
O

D
E

_
C

O
U

N
T

M
IP

_
N

O
D

C
N

T
M

IP
SO

L_
N

O
D

C
N

T
M

IP
N

O
D

E
_

N
O

D
C

N
T

C
P

X
_

C
A

LLB
A

C
K

_
IN

FO
_

N
O

D
E

S_
LE

FT
M

IP
_

N
O

D
LFT

N
/A

N
/A

C
P

X
_

C
A

LLB
A

C
K

_
IN

FO
_

M
IP

_
IT

E
R

A
T

IO
N

S
M

IP
_

IT
R

C
N

T
N

/A
N

/A
C

P
X

_
C

A
LLB

A
C

K
_

IN
FO

_
C

U
T

O
FF

(w
ith

w
orkaround)

(w
ith

w
orkaround)

(w
ith

w
orkaround)

C
P

X
_

C
A

LLB
A

C
K

_
IN

FO
_

M
IP

_
FE

A
S

M
IP

_
SO

LC
N

T
(*)

M
IP

SO
L_

SO
LC

N
T

(*)
M

IP
N

O
D

E
_

SO
LC

N
T

(*)
C

P
X

_
C

A
LLB

A
C

K
_

IN
FO

_
M

Y
_

T
H

R
E

A
D

_
N

U
M

0
(*)

0
(*)

0
(*)

C
P

X
_

C
A

LLB
A

C
K

_
IN

FO
_

U
SE

R
_

T
H

R
E

A
D

S
1

(*)
1

(*)
1

(*)
C

P
X

_
C

A
LLB

A
C

K
_

IN
FO

_
M

IP
_

R
E

L_
G

A
P

(w
ith

w
orkaround)

(w
ith

w
orkaround)

(w
ith

w
orkaround)

Table
5:

C
allback

inform
ation

codes
m

apping

82

3.3 Functions implemented

CPXcutcallbackadd

Adds user-cuts and lazy-constraints through callbacks.

Prototype int CPXcutcallbackadd (CPXCENVptr env, void *cbdata,
int wherefrom, int nzcnt, double rhs, int sense, int const *cutind, double
const *cutval, int purgeable)

Description This routine adds lazy constraints and globally valid cuts
to the current node LP subproblem during MIP branch and cut. It can be
called only from a lazy-constraint or user-cut callback.

Gurobi reduction: The mapping is a bit complex, as our interface
has to discriminate the calls the user performs (to insert lazy constraint or
user-cuts), based on the wherefrom parameter.

Unfortunately, Gurobi does not support any purgeable parameter in user
cuts, neither is possible to force the user-cut insertion to the model. User-cuts
are subjected to Gurobi filter and can be removed in any moment. Also, range
constraints are not supported. For using this routine, is necessary to set pa-
rameters CPX_PARAM_MIPCBREDLP and CPX_PARAM_PRELINEAR
to zero. According to the context, the Gurobi functions used are:

• GRBcblazy

• GRBcbcut

CPXgetcallbackinfo

Gets information through callbacks.

Prototype int CPXgetcallbackinfo (CPXCENVptr env, void *cbdata,
int wherefrom, int whichinfo, void *resultp)

Description This routine accesses information about the current opti-
mization process from within a user-written callback function.

83

3 AN INTERFACE FOR GUROBI

Gurobi reduction: This mapping required hard work, because of the
different kinds of information we can retrieve though this routine. The im-
plementation is based on the Table previously presented. As we can see, the
mapped information is different, according to the context (wherefrom pa-
rameter). Also, some values needed type or value conversions before being
presented to the CPLEX user.

Depending on the information requested, the Gurobi functions used are:

• GRBcbget

• GRBgetintattr

• GRBgetdblparam

CPXgetcallbacknodex

Gets the LP solution through a callback.

Prototype int CPXgetcallbacknodex (CPXCENVptr env, void *cb-
data, int wherefrom, double *x, int begin, int end)

Description This routine retrieves the primal variable values for the
subproblem at the current node during MIP optimization from within a user-
written callback.

84

3.3 Functions implemented

Gurobi reduction: The implementation is a bit tricky, because Gurobi
need as argument a solution vector of size equal to the number of variables
in the model. To maintain the compatibility with CPLEX and let the user
retrieve a partial solution vector, our interface has to allocate an intermediate
buffer vector where to store the LP solution values and return only the ones
requested.

Also, Gurobi let the retrieval of the LP relaxation solution only when the
where argument is GRB_CB_MIPSOL or GRB_CB_MIPNODE with sta-
tus OPTIMAL. Unfortunately, in case the node LP is unbounded we cannot
retrieve the solution vector to separate lazy constraints.

Finally, the values are related to the original problem only if the param-
eter CPX_PARAM_MIPCBREDLP is set to zero (0).

The Gurobi functions used are:

• GRBgetintattr

• GRBcbget

CPXsetlazyconstraintcallbackfunc

Sets the lazy-constraint callback.

Prototype int CPXsetlazyconstraintcallbackfunc (CPXENVptr env, int(*lazyconcallback)
(CALLBACKCUTARGS), void *cbhandle)

Description This routine sets and modifies the user-written callback
for adding lazy constraints. A NULL pointer disables the callback.

Gurobi reduction: The pointers to the user procedure and callback
data are stored on a global list and associated to the specified environment.

As described before, our interface uses two internal data structures, in
order to wrap both the pointer to the callback and the user callback data. In
fact, Gurobi uses only a single multi-purpose callback and the user function
provided is called by our internal dispatcher. No Gurobi functions are directly
called from this routine.

85

3 AN INTERFACE FOR GUROBI

CPXsetusercutcallbackfunc

Sets the user-cut callback.

Prototype int CPXsetusercutcallbackfunc (CPXENVptr env, int(*cutcallback)
(CALLBACKCUTARGS), void *cbhandle)

Description This routine sets and modifies the user-written callback
for adding cuts. A NULL pointer disables the callback.

Gurobi reduction: The pointers to the user procedure and callback
data are stored on a global list and associated to the specified environment.

As described before, our interface uses two internal data structures, in
order to wrap both the pointer to the callback and the user callback data. In
fact, Gurobi uses only a single multi-purpose callback and the user function
provided is called by our internal dispatcher. No Gurobi functions are directly
called from this routine.

CPXgetheuristiccallbackfunc

Gets the heuristic callback.

Prototype int CPXgetheuristiccallbackfunc CPXCENVptr env, int(**heuris-
ticcallbackp) (CALLBACKHEURISTICARGS), void ** cbhandlep)

Description This routine accesses the user-written callback to be called
during MIP optimization after the LP relaxation has been solved to optimal-
ity.

Gurobi reduction: The pointers to the user procedure and callback
data are retrieved from a global list, according to the specified environment.

As described before, our interface uses two internal data structures, in
order to wrap both the pointer to the callback and the user callback data. In
fact, Gurobi uses only a single multi-purpose callback and the user function
provided is called by our internal dispatcher. No Gurobi functions are directly
called from this routine.

86

3.3 Functions implemented

CPXgetinfocallbackfunc

Gets the informational callback.

Prototype int CPXgetinfocallbackfunc (CPXCENVptr env, int(**callbackp)
(CPXCENVptr, void *, int, void *), void **cbhandlep)

Description This routine accesses the user-written callback routine to
be called regularly during the optimization of a mixed integer program (MIP).

Gurobi reduction: The pointers to the user procedure and callback
data are retrieved from a global list, according to the specified environment.

As described before, our interface uses two internal data structures, in
order to wrap both the pointer to the callback and the user callback data. In
fact, Gurobi uses only a single multi-purpose callback and the user function
provided is called by our internal dispatcher. No Gurobi functions are directly
called from this routine.

CPXgetusercutcallbackfunc

Gets the user-cut callback.

Prototype int CPXgetusercutcallbackfunc (CPXCENVptr env, int(**cutcallbackp)
(CALLBACKCUTARGS), void **cbhandlep)

Description This routine accesses the user-written callback for adding
cuts.

Gurobi reduction: The pointers to the user procedure and callback
data are retrieved from a global list, according to the specified environment.

As described before, our interface uses two internal data structures, in
order to wrap both the pointer to the callback and the user callback data. In
fact, Gurobi uses only a single multi-purpose callback and the user function
provided is called by our internal dispatcher. No Gurobi functions are directly
called from this routine.

87

3 AN INTERFACE FOR GUROBI

CPXsetheuristiccallbackfunc

Sets the heuristic callback.

Prototype int CPXsetheuristiccallbackfunc (CPXENVptr env, int(*heuris-
ticcallback) (CALLBACKHEURISTICARGS), void *cbhandle)

Description This routine sets or modifies the user-written callback to
be called during MIP optimization after the LP relaxation has been solved
to optimality. The heuristic procedure the user supplied is not called if the
LP relaxation is infeasible or cut off.

Gurobi reduction: The pointers to the user procedure and callback
data are stored on a global list and associated to the specified environment.

As described before, our interface uses two internal data structures, in
order to wrap both the pointer to the callback and the user callback data. In
fact, Gurobi uses only a single multi-purpose callback and the user function
provided is called by our internal dispatcher. No Gurobi functions are directly
called from this routine.

CPXsetinfocallbackfunc

Sets the informational callback.

Prototype int CPXsetinfocallbackfunc (CPXENVptr env, int(*callback)
(CPXCENVptr, void *, int, void *), void *cbhandle)

Description This routine sets the user-written callback. The informa-
tional routine is called regularly during the optimization of a mixed integer
program and during certain cut generation routines.

Gurobi reduction: The pointers to the user procedure and callback
data are stored on a global list and associated to the specified environment.

As described before, our interface uses two internal data structures, in
order to wrap both the pointer to the callback and the user callback data. In
fact, Gurobi uses only a single multi-purpose callback and the user function
provided is called by our internal dispatcher. No Gurobi functions are directly
called from this routine.

88

3.3 Functions implemented

CPXgetlazyconstraintcallbackfunc

Gets the lazy-constraint callback.

Prototype int CPXgetlazyconstraintcallbackfunc (CPXCENVptr env,
int(**cutcallbackp) (CALLBACKCUTARGS), void **cbhandlep)

Description This routine accesses the user-written callback for adding
lazy constraints.

Gurobi reduction: The pointers to the user procedure and callback
data are retrieved from a global list, according to the specified environment.

As described before, our interface uses two internal data structures, in
order to wrap both the pointer to the callback and the user callback data. In
fact, Gurobi uses only a single multi-purpose callback and the user function
provided is called by our internal dispatcher. No Gurobi functions are directly
called from this routine.

89

3 AN INTERFACE FOR GUROBI

3.3.8 Other functions

CPXcopymipstart

Sets MIP start values.

Prototype int CPXcopymipstart (CPXCENVptr env, CPXLPptr lp,
int cnt, int const *indices, double const *values)

Description This routine copies MIP start values to the specified prob-
lem object.

Gurobi reduction: Gurobi allows only one MIP start solution at a
time. For this reason, our interface allows only a value of 1 (one) for the cnt
argument. Our implementation is a reduction to CPXaddmipstarts, described
below.

CPXcopyorder

Sets a priority order for branching.

Prototype int CPXcopyorder (CPXCENVptr env, CPXLPptr lp, int
cnt, int const *indices, int const *priority, int const *direction)

Description This routine copies a priority order for each variable to
the specified problem object. During branching, integer variables with higher
priorities are given preference over integer variables with lower priorities.

Gurobi reduction: Gurobi allows only to specify one priority value for
each variable, to decide the branching order. No settings for the branching
direction are provided. To set the BranchPriority attribute in the specified
Gurobi model, the following functions are used:

• GRBsetintattrlist

• GRBupdatemodel

90

3.3 Functions implemented

CPXdelmipstarts

Deletes a range MIP starts.

Prototype int CPXdelmipstarts (CPXCENVptr env, CPXLPptr lp,
int begin, int end)

Description This routine deletes a range MIP starts. The range is
specified using a beginning and ending index that represent the first and last
MIP start to delete.

Gurobi reduction: Unfortunately, only one solution can be inserted as
MIP start to the solver. The pseudocode of the operations performed by our
interface is the following:
1: n get the number of variables
2: for all model variable xi, i 2 (0, n� 1) do
3: xi GRB_UNDEFINED
4: end for

The Gurobi functions used are:

• GRBsetdblattrelement

• GRBupdatemodel

CPXgetnumcores

Gets the number of cores.

Prototype int CPXgetnumcores (CPXCENVptr env, int *numcoresp)

Description This routine gets the number of logical cores of the ma-
chine where the code is being run.

Gurobi reduction: No Gurobi function is available for this purpose.
Thus, our interface retrieves the number of cores directly from the low-level
system libraries: “windows.h” for WIN32, “sys/param.h” and “sys/sysctl.h”
for MacOS,“unistd.h” for Unix-derived systems.

91

3 AN INTERFACE FOR GUROBI

CPXgettime

Gets the current timestamp.

Prototype int CPXgettime (CPXCENVptr env, double *timestampp)

Description This routine returns an absolute value from the wall-clock
real time.

Gurobi reduction: Our interface supports only the wall-clock time,
while for CPU time it is sufficient to call the function clock() of the C library
“time.h. No Gurobi functions are called, but only the time() utility function
of the previously mentioned C library.

CPXaddmipstarts

Adds multiple MIP starts.

Prototype int CPXaddmipstarts (CPXCENVptr env, CPXLPptr lp,
int mcnt, int nzcnt, int const *beg, int const *varindices, double const *val-
ues, int const *effortlevel, char **mipstartname)

Description This routine adds multiple MIP starts to the specified
problem object

Gurobi reduction: As Gurobi allows only one MIP start solution at
a time, our interface allows only a value of 1 (one) for the mcnt argument.
The provided solution can be complete or partial, in which case Gurobi will
attempt to fill in values for missing start values. As effortlevel argument we
allow only the CPX_MIPSTART_AUTO value, to remind that Gurobi do
not support this setting. To set the Start attribute for the variables in the
specified Gurobi model, the following functions are used:

• GRBsetdblattrlist

• GRBupdatemodel

92

3.4 Main differences

3.4 Main differences

Below, we sum up in few points the main differences between CPLEX and
Gurobi API interfaces we encountered during our thesis.

• First of all, and as already mentioned, Gurobi gives each model its
own copy of a Gurobi environment and allows each model to have its
own parameter settings. In CPLEX, all models belonging to the same
environment use the same parameter values. This peculiarity has been
completely managed by our interface.

• Unlike CPLEX, Gurobi use a "lazy update" approach. It means that af-
ter making any change to a model, we need to call GRBupdatemodel in
order for those changes to be applied and visible. This approach makes
it more efficient to build or modify a model, because it reduces the
overhead due to repetitive calls for modifying the model. As CPLEX
applies immediately any change to the model, our interface has the
responsibility of calling the Gurobi update routine, before the control
returns to the user.

• Attributes are an important concept in Gurobi. While CPLEX pro-
vides a lot of different routines for accessing and modifying the various
attributes of a model, Gurobi handle them through an elegant interface
of attribute management routines. There are several kind of attributes:
the ones associated with variables (e.g. lower bounds), with constraints
(e.g. the right-hand side) or with the overall model (e.g. the objective
value for the current solution).

• Parameters are instead a common concept. Both solvers shares some
parameters for certain algorithms although they uses different names,
while in other cases the available parameters and their values are com-
pletely different. Find a matching Gurobi parameter for every CPLEX
parameter is impossible, as well as pointless, because Gurobi and CPLEX
use different strategies. In general, keeping the default solver settings is
the most clever thing, but sometimes a similar result can be achieved.

• As far as MIP Start solutions, they are poorly supported by Gurobi.
While CPLEX supports multiple hint solutions at a time with different
effort levels, Gurobi permits only one start solution in the pool and the
effort level option is not available. For this reason, our interface allows
only the CPX_MIPSTART_AUTO option, to mean that Gurobi will
decide whether to consider the suggested solution or not.

93

3 AN INTERFACE FOR GUROBI

• As far as range constraints, the way each solver stores them internally
differs. In Gurobi, every range constraint adds both a new constraint
and a new variable, because they are stored internally as equality con-
straints, while the extra variable captures the range information. In
CPLEX, no additional variable is added, but only the new range con-
straint.

• As far as static lazy constraints, while CPLEX has a dedicated routine
for their insertion, Gurobi provides an attribute able to convert every
inserted constraint to a lazy constraint, with up to three different levels
of aggressiveness, as already described.

• Unlike CPLEX, Gurobi lacks of a deterministic time counter. The
related CPLEX routine counts, in ticks unit, the memory accesses the
solver required. This metric is very informative and useful, because
RAM access is usually the main bottleneck for the optimization process.

• About the callback procedures and their utility routines, a lot of differ-
ences emerged from our study. As they deserved special attention, we
outline their different characteristics in the following dedicated para-
graph.

Finally, also our interface has some known limits, for example we do not allow
the long int versions of CPLEX variables (e.g. CPX_CALLBACK_INFO_BEST_IN-
TEGER_LONG) or the CPXX versions of the routines (e.g. CPXXaddcols).
This was a design choice, but with few changes is possible to adapt the code
to make it work.

94

3.4 Main differences

3.4.1 Callback functions

As already seen, the most relevant difference between the callback functions
of the two solvers lies in their number. While CPLEX makes available to the
user several kinds of callbacks, even very advanced, Gurobi has only a single
multi-purpose callback. For this reason our interface required a dispatcher,
able to call the different callbacks the CPLEX user had provided, within a
single Gurobi callback.

Also the number of threads involved in callbacks execution differs. When
Gurobi solves a model using multiple threads, the user callback is only ever
called from a single thread [GRB]. CPLEX, instead, allows multi-threading
also for the callbacks. By default, only one thread is used inside CPLEX
callbacks, but the user can force more threads if he takes the responsibility
to manage the thread-safety of the involved data structures.

When we use callbacks to add our custom cuts or lazy constraints, usu-
ally two parameters need to be set. The first parameter, MIPCBREDLP
for CPLEX and PreCrush for Gurobi, controls whether the callback accesses
node information of the original model or node information of the reduced,
presolved model. The second parameter, PRELINEAR for CPLEX and Lazy-
Constraints for Gurobi, controls the type of reductions, linear or full, that
occurs during preprocessing. Only linear reductions always guarantee that
users can add their own custom cuts or lazy constraints to the presolved
model, because each variable in the original model can be expressed as a
linear form of variables in the presolved model.

95

3 AN INTERFACE FOR GUROBI

Lazy-constraint callback CPLEX calls lazy-constraint callback at inte-
ger nodes or when an integer-feasible solution is available, for example found
by a heuristic.

Lazy-constraint callbacks are also called when the LP relaxation is un-
bounded, to give us the opportunity to cut off the unbounded ray. In fact, the
possible values for the wherefrom argument are CPX_CALLBACK_MIP_CUT_FEAS
or CPX_CALLBACK_MIP_CUT_UNBD. On the contrary, Gurobi does not well
support unbounded models with the lazy-constraint callback. In fact, when
Gurobi finds an unbounded ray and the lazy callback is called, with a where
argument of MIPNODE and an UNBOUNDED status, the relaxation solu-
tion for the current node is not available, because Gurobi allows to retrieve
it only when its optimization status is OPTIMAL. For this reason, it is not
possible to cut off the unbounded ray within the Gurobi lazy callback. This
force the user to build only model formulations representable by a bounded
polytope, as we did in our UFL example.

In general, Gurobi allows lazy-callbacks calls when the where argument
is either equal to GRB_CB_MIPSOL or GRB_CB_MIPNODE, and the
most relevant operations a Gurobi user can perform inside a lazy-constraint
callback are: add a constraint that cuts off the solution, retrieve additional
information or terminate the optimization.

User-cut callback We report as Algorithm 7 an example of cut loop,
adopted on a previous version of CPLEX. In general, a cut loop is a strategy
very useful to reduce the lower bound, because gives many opportunities to
exploit the user prior knowledge about the model. As a possible drawback,
we can also have an excess of generated user cuts, which can heavily slow
down the model formulation, or a delay in the solver execution. For these
reasons, each solver manages this phase in different ways:

• At each node, CPLEX is involved on a loop where, after an optimal
solution for the LP relaxation is available, the user-cut callback is called
to separate some cuts, that is, generate some violated cuts. If performed
steps turn out to be effective, the whole separation is reiterated several
times until the user signals to terminate or the progress becomes poor.
In these cases, CPLEX stops its internal cut separation and gives the
user a last opportunity to separate other cuts.

• Instead, we noticed that Gurobi performs only a single call to the user-
cut callback (through where = MIPNODE), once at each node. Except
for the root node, our custom separator has a single opportunity to
generate violated cuts for each node, as soon as an optimal solution for
the LP relaxation has been found.

96

Algorithm 7 How cut loop works in CPLEX 12.5.1 (ref. [AIBM13])
1: while (“Root node is not solved”) do
2: “Solve LP relaxation”
3: if (“Enough progress has been done, since last iteration”) then
4: “Call HEURISTIC callback”
5: “Call CPLEX internal heuristics”
6: “Apply probing”
7: wherefrom CPX_CALLBACK_MIP_CUT_LOOP
8: “Call USER-CUT callback”
9: if (“User did not signal to terminate loop”) then

10: “Separate CPLEX internal cuts and the user cut pool”
11: “Filter cuts” {according to user’s cut purging flag}
12: continue {jump to next iteration}
13: end if
14: end if
15: wherefrom CPX_CALLBACK_MIP_CUT_LAST
16: “Call USER-CUT callback”
17: if (“Cuts have been found”) then
18: “Filter cuts”
19: else
20: break {exit the while}
21: end if
22: end while
23: while (“MIP node is not solved”) do
24: “Solve LP relaxation”
25: if (“Enough progress has been done, since last iteration”) then
26: wherefrom CPX_CALLBACK_MIP_CUT_LOOP
27: if (“User did not signal to terminate loop”) then
28: if (“No cuts have been found at the first iteration”) then
29: “Separate CPLEX internal cuts and the user cut pool”
30: end if
31: “Filter cuts”
32: continue {jump to next iteration}
33: end if
34: end if
35: wherefrom CPX_CALLBACK_MIP_CUT_LAST
36: “Call the USER-CUT callback”
37: if (“Cuts have been found”) then
38: “Filter cuts”
39: else
40: break {exit the while}
41: end if
42: end while 97

3 AN INTERFACE FOR GUROBI

As a consequence of the Gurobi behaviour described above, our interface al-
ways performs calls the user-cut callback only with the value CPX_CALLBACK_-
MIP_CUT_LAST in the wherefrom argument, and never with the CPX_CALLBACK_-
MIP_CUT_LOOP value. Furthermore, we cannot set any degree for the purge-
able value, i.e. to mark when cuts can be eliminated, but we have to trust
Gurobi to manage them conveniently.

Heuristic callback As already described in the algorithm for the user cut
loop, CPLEX usually calls the heuristic callback after an optimal solution
to the subproblem has been obtained, and Gurobi does the same (through
the argument where = MIPNODE). The CPLEX user can provide an inte-
ger solution replacing the incumbent in case it has a better objective value,
while for Gurobi this is not necessarily always true. In general, both solvers
support only one solution, at a time, and also the user can provide, to both
of them, an incomplete solution to let the internal heuristics complete it.
But, while CPLEX always let the user load the objective value for a solu-
tion he found, even without forcing a check for its feasibility, Gurobi only
accepts the whole solution vector. That means Gurobi has no other ways to
know its objective value until the solution vector is checked for feasibility.
Unfortunately, Gurobi behaviour can result tricky for some strategies of our
heuristics, because the lack of the objective information can delay the solver
awareness about a new incumbent. Also, new solutions can be added only
from here (where = MIPNODE) and not from other positions, such as from
a lazy callback (having argument where = MIPSOL).

Another thing we remark is that, before using the heuristic callback, it is
often recommended to set the same parameters already described for the lazy-
constraint and user-cut callback (MIPCBREDLP and PRELINEAR). This
is because our custom heuristics usually have to be applied to the original
problem, and not to a presolved version.

Finally, a limit of our interface is that the heuristic callback is called
whenever the user-cut callback is called. This is because for both of them
Gurobi uses the same where argument, i.e. MIPNODE. To module indepen-
dently the calls to the heuristic and user-cut procedures, a tradeoff parameter
based on priority or frequency may result useful, for example:
i f (rand () > HeurFreqParameter ∗ RAND_MAX) { . . }

Informational callback Both CPLEX and Gurobi call regularly the in-
formational callback during the MIP optimization and also during certain cut
generation routines. There are only few differences, all about the information
we are able to retrieve inside the informative callback.

98

3.4 Main differences

CPLEX, for example, allows the retrieval of the solution vector of the
current incumbent (through CPXgetcallbackincumbent), while Gurobi can
only get its objective value. Another situation is when the user needs to
know the number of MIP iterations performed: a CPLEX user can access the
information CPX_CALLBACK_INFO_MIP_ITERATIONS from several
callback positions, while the Gurobi equivalent MIP_ITRCNT is readable
only from the informative callback. This fact can preclude the control of
some user-cut procedures or heuristic algorithms based on the number of
MIP iterations.

99

4 TEST: CPLEX VS GUROBI

4 Test: Cplex vs Gurobi

We present here a computational comparison between CPLEX and Gurobi, using
both the UFL code (Section 2) and the Gurobi interface (Section 3).

4.1 Test description

To perform the tests, we compiled the code we wrote previously for the UFL
problem, linking the CPLEX APIs; then we combined the same code with our
interface and compiled it, linking the Gurobi APIs. Now, for each compiled
executable, our challenge consists of solving the testbed instances to proven
optimality, within a time limit of 30 minutes, and with the same hardware
we described in Section 2.5. As the original code had been developed and
calibrated with CPLEX, we have also to consider that Gurobi may result
penalized.

For a fair comparison, we wanted to make sure that both CPLEX and
Gurobi solvers operated in the same conditions, to avoid that one solver
were disadvantaged by some solver-specific features or different behaviours
of the other. As CPLEX and Gurobi can also exploit the capability of parallel
computing, they could make use of all available cores to explore several nodes
simultaneously. Unfortunately, as already reported in [ASJ15], there are
some issues when working with multiple threads and using the user-generated
cuts on Gurobi. In fact, the user-cut callback is only ever executed in single-
thread mode (see [GRB]) and, as a consequence, the additional cuts generated
by our separator are added only periodically to the model formulation. This
may lead to situations where Gurobi explores child nodes without taking into
account the violated cuts in the parent node. A solution to this problem can
be the setting of the thread count to one and this ensures that the cuts are
applied immediately. At the same time, turning off parallel computation can
lead to a non-realistic performance.

For all these reasons, we will first make some “fair” comparisons between
CPLEX and Gurobi, in single-thread mode only. On this context, we will
try to enable and disable the user-cut and the heuristic callbacks, in turn.
The lazy-constraint callback is always kept enabled, as it is strictly required
for the correctness of the model. Then we will compare Gurobi with itself,
trying to switch the number of threads from one to two, in order to realize
how much the parallelism can influence the optimization performance. In
this case, the user-cut and the heuristic callbacks will be kept disabled.

Finally, we will briefly outline a computational comparison also for the
Local Branching matheuristic (described in Section 3). We chose, instead,
not to report also the runs with Hardfix matheuristic, as it involves some

100

4.2 Testbed

solver-specific features and the comparison would not have been fair.

4.2 Testbed

The testbed we used is composed by the same 18 instances, randomly se-
lected, we described in Chapter 2.5 (ref. to Section 2).

101

4 TEST: CPLEX VS GUROBI

4.3 Computational Results

4.3.1 Solve to proven optimality

The first comparison we report is between CPLEX and Gurobi in single-
thread mode, with all the callbacks enabled (lazy, user-cut and heuristic).
The runs are shown in Figure 6, where we reported the respective upper-
and lower- bounds over time. As the time is on a logarithmic scale, the very
first time slice is not very significant. We chose to represent only the real
wall-clock time, and not other units, because we believed this metric it more
suitable to compare the overall performance of two different solvers, although
it is less accurate from a strictly algorithmic point of view.

On this challenge, CPLEX reaches the proven optimality all the times
Gurobi does, plus two more instances. Gurobi reaches at the root node a
lower bound which, in many cases, is not very satisfactory, probably because
of the smaller amount of time spent at the root node. This probably due
to the fact that Gurobi inserts less cuts to the model formulation and, as
the resulting LP relaxation is thinner, the root node can be solved quickly.
Obviously, the drawback emerges on the lower bound value. In fact, CPLEX
seems to prefer to spend many more cut-loop iterations at the root node, in
order to fully exploit the deeper cuts we provide. In general, root node gap
improvement is a good indicator of the quality of cuts, but in the UFL case
we know for sure our cuts were rather efficient in reducing computational
time and the number of enumeration nodes. Indeed, as Table 6 reports, our
separator procedure for the UFL problem proved to be extremely effective
with CPLEX, while Gurobi seems not exploiting it properly, in particular
when solving B&B nodes.

For this reason, we made another comparison between the two solvers
and this time we disabled our cut separator, that is, for both of the solvers
we turned the user-cut callback off. Surprisingly, Figure 7 shows that, on
a fair comparison, Gurobi demonstrates better abilities to reduce the gap
and, in particular, to increase the best lowerbound, even at the nodes. Most
probably, because Gurobi internal separator can generate deeper cuts than
CPLEX for this problem.

To have a confirmation of what observed above, we made a test also with
Gurobi itself, with the user-cut callback enabled and disabled. In Figure 8 we
notice no substantial differences between the two runs and we can say that
Gurobi does not exploit effectively the additional cuts we provided through
our separator procedure inside the user-cut callback.

The reasons for such a result are several, but we identified two main
contributions:

102

In
st

an
ce

n
,
m

z
o
p
t

g
a
p
fi
n
a
l

g
a
p
r
o
o
t

L
B

r
o
o
t

t r
o
o
t

[s
]

B
&

B
n
o
d
es

t f
i
n
a
l

[s
]

O
p
ti

m
iz

at
io

n
S
ta

tu
s

C
P
X

G
R

B
C

P
X

G
R

B
C

P
X

G
R

B
C

P
X

G
R

B
C

P
X

G
R

B
C

P
X

G
R

B
C

P
X

G
R

B
C

P
X

G
R

B

10
00

-1
0

10
00

14
34

16
4.0

00
0

14
34

15
4.0

00
0

0.0
00

1
0.0

00
1

0.0
08

5
0.5

80
4

14
29

27
1.5

26
6

81
28

31
.23

53
19
.7

14
.0

11
4

10
60

58
.5

92
8.0

O
P
T

.
O

P
T

.

15
00

-1
0

15
00

20
00

83
7.0

00
0

20
04

07
4.0

00
0

0.0
00

1
0.0

04
0

0.0
23

2
0.7

34
0

19
82

19
5.9

14
3

77
73

49
.61

06
24
.3

22
.0

39
6

67
5

40
8.5

18
00
.0

O
P

T
.

T
.L

IM
.

20
00

-1
0

20
00

25
58

11
8.0

00
0

25
98

62
7.0

00
0

0.0
00

1
0.0

23
0

0.0
40

9
0.7

98
7

25
16

53
3.8

56
9

76
08

94
.44

30
34
.7

29
.0

95
66

4
40

1.7
18

08
.0

O
P

T
.

T
.L

IM
.

25
00

-1
0

25
00

31
02

07
4.0

00
0

31
58

12
0.0

00
0

0.0
01

5
0.0

32
5

0.0
07

2
0.9

33
6

30
96

37
2.7

73
6

54
19

66
.17

55
33

5.3
21
.0

13
50

88
4

18
00
.0

18
01
.0

T
.L

IM
.

T
.L

IM
.

30
00

-1
0

30
00

35
73

78
8.0

00
0

36
38

61
9.0

00
0

0.0
04

5
0.2

31
8

0.0
83

7
0.7

18
1

33
95

70
5.3

77
4

14
36

94
0.6

65
9

53
.7

11
2.0

88
2

99
4

18
00
.1

18
00
.0

T
.L

IM
.

T
.L

IM
.

50
0-

10
50

0
79

85
77
.00

00
79

85
82
.00

00
0.0

00
1

0.0
00

1
0.0

22
2

0.7
10

4
79

04
62
.59

72
31

71
60
.06

24
2.6

2.0
48

56
7

4.8
16

7.0
O

P
T

.
O

P
T

.

M
O

5
10

0
14

08
.76

64
14

08
.76

64
0.0

00
0

0.0
00

0
0.0

37
1

0.1
94

9
13

56
.46

85
12

37
.11

07
0.0

0.0
56

34
5

0.2
1.0

T
.L

IM
.

O
P
T

.

M
P
4

20
0

29
38
.75

00
29

38
.75

00
0.0

00
0

0.0
00

0
0.0

49
2

0.1
80

6
27

94
.28

60
25

23
.41

56
0.8

0.0
19

1
81

3
4.7

13
.0

O
P
T

.
O

P
T

.

M
Q

3
30

0
42

75
.43

17
42

75
.43

17
0.0

00
0

0.0
00

0
0.0

37
1

0.1
81

6
41

16
.70

52
37

76
.84

40
1.7

1.0
60

62
4

4.4
22
.0

O
P
T

.
O

P
T

.

M
R

2
50

0
26

54
.73

47
26

54
.73

47
0.0

00
0

0.0
00

0
0.0

55
9

0.3
23

4
25

06
.36

59
20

69
.67

00
6.5

2.0
21

1
94

0
40
.4

92
.0

O
P
T

.
O

P
T

.

M
S
1

10
00

52
83
.75

74
52

83
.75

74
0.0

00
1

0.0
00

1
0.0

68
3

0.6
84

0
49

22
.81

81
28

75
.66

47
31
.9

6.0
21

57
52

14
48

6.3
10

36
.0

O
P
T

.
O

P
T

.

M
T

1
20

00
10

06
9.8

02
8

10
24

6.9
40

6
0.0

64
1

0.4
77

5
0.0

95
0

0.6
98

9
91

30
.72

28
52

60
.91

62
95
.4

19
.0

37
30

89
1

18
00
.1

18
01
.0

T
.L

IM
.

T
.L

IM
.

ga
25

0b
-2

25
0

27
51

41
.00

00
27

51
41
.00

00
0.0

00
1

0.0
00

1
0.0

13
2

0.0
61

0
27

23
51
.32

36
26

54
01
.09

83
2.6

0.0
36

81
8

39
60

6
57

2.7
93

5.0
O

P
T

.
O

P
T

.

ga
50

0a
-2

50
0

51
17

40
.00

00
51

12
78
.00

00
0.0

02
4

0.0
01

5
0.2

77
0

0.0
27

0
37

30
67
.82

19
50

54
47
.14

67
3.0

6.0
24

90
0

79
25

18
00
.0

18
00
.0

T
.L

IM
.

T
.L

IM
.

ga
75

0c
-4

75
0

90
16

34
.00

00
90

23
29
.00

00
0.0

23
8

0.0
25

7
0.0

29
0

0.0
87

5
87

54
48
.77

59
85

26
16
.93

94
48
.3

7.0
11

04
2

26
72

18
00
.0

18
00
.0

T
.L

IM
.

T
.L

IM
.

gs
25

0a
-1

25
0

25
79

64
.00

00
25

79
64
.00

00
0.0

00
1

0.0
00

1
0.2

83
2

0.0
16

9
18

69
91
.83

98
25

56
88
.61

90
0.5

1.0
13

49
84

72
84

1
15

66
.4

15
35
.0

O
P
T

.
O

P
T

.

gs
50

0b
-1

50
0

53
91

33
.00

00
53

85
01
.00

00
0.0

09
7

0.0
09

1
0.0

12
0

0.0
50

7
53

28
61
.46

77
52

21
36
.86

84
25
.1

2.0
21

62
0

88
91

18
00
.0

18
00
.0

T
.L

IM
.

T
.L

IM
.

gs
75

0c
-3

75
0

90
22

40
.00

00
90

30
93
.00

00
0.0

26
4

0.0
27

7
0.0

30
6

0.0
85

4
87

46
07
.04

01
84

62
31
.47

47
41
.5

5.0
10

75
4

25
29

18
00
.0

18
00
.0

T
.L

IM
.

T
.L

IM
.

Ta
bl

e
6:

C
P

LE
X

vs
G

ur
ob

ip
ro

ve
n

op
tim

al
ity

-S
in

gl
e-

th
re

ad
-U

se
rc

ut
,H

eu
ris

tic
an

d
La

zy
ca

llb
ac

ks
O

N

103

Figure
6:

C
P

LE
X

vs
G

urobi,single-thread
com

parison
-U

sercut
cb

O
N

-H
euristic

cb
O

N
-Lazy

cb
O

N

104

Fi
gu

re
7:

C
P

LE
X

vs
G

ur
ob

i,
sin

gl
e-

th
re

ad
co

m
pa

ris
on

-U
se

rc
ut

cb
O

FF
-H

eu
ris

tic
cb

O
N

-L
az

y
cb

O
N

105

Figure
8:

G
urobisingle-thread

com
parison,w

ith
V

S
w

ithout
U

sercut
cb

-H
euristic

cb
O

N
-Lazy

cb
O

N

106

4.3 Computational Results

1. After each new node has been solved, Gurobi calls our cut separator
only once (with callback argument where = MIPNODE) and does not
iterate the user-cut callback on the same node, as CPLEX instead
does. The lack of a cut-loop may justify the lower number of user-cuts
inserted on each B&B node.

2. At the same time, a lot of user cuts are purged too early, because of
the Gurobi cut filter. In order not to hurt the performance, Gurobi
developers claimed, that at root node as soon as cuts become inactive,
they will be removed. At nodes, if there are more than one cuts, Gurobi
will pick more promising cuts based on some measures, like violation
[ZGRB10]. Cuts that are “relatively similar” to cuts already in the cut-
pool are filtered out [DFI13] (e.g. cutting planes for which the angle
between their normal vectors is smaller than a certain amount). As a
result, only a small fraction of the user-cuts we generated are actually
used and there is no way to force their insertion.

At this point, we wondered also how much the heuristic callback we provided
was actually exploited by the solvers. On a fair comparison, where our al-
gorithm is switched off and both solvers have only their internal heuristics,
Gurobi is much more competitive (see Figure 9) than when our algorithm is
turned on. We will come back on this in the next Chapter.

Until now, we had been performing all the runs on single-thread mode.
Turning off parallel computation often can lead to a non-realistic perfor-
mance, because on a realistic environment we want to exploit all the power
of the solver. To see how much the performance can change when working
in single-thread rather than with 2 threads, we compared Gurobi with itself,
without the usercut and heuristic callbacks. Figure 10 shows that Gurobi
scales very well and it cleverly exploits all cores available.

Finally, for completeness, we made a comparison also between the two
solvers, both with 2 threads, both without the usercut and heuristic callbacks.
As Figure 11 shows, they are both very competitive and its performance are
almost comparable.

107

Figure
9:

C
P

LE
X

vs
G

urobi,single-thread
com

parison
-U

sercut
cb

O
FF

-H
euristic

cb
O

FF
-Lazy

cb
O

N

108

Fi
gu

re
10

:
G

ur
ob

ip
er

fo
rm

an
ce

w
ith

1
or

2
th

re
ad

s
-U

se
rc

ut
an

d
he

ur
ist

ic
cb

O
FF

-L
az

y
cb

O
N

109

Figure
11:

C
P

LE
X

vs
G

urobiw
ith

2
threads

-U
sercut

and
heuristic

cb
O

FF
-Lazy

cb
O

N

110

4.3 Computational Results

4.3.2 Local Branching

We present, here, a computational comparison for one of the two matheuris-
tics we developed in Section 2. Thanks to our interface, we reused the code
of Local Branching and ran it both with CPLEX and Gurobi solvers.

For each instance, the execution had a time limit of 15 minutes and the
root node computation was forced to end after a gap limit of 20% (from the
lower bound) had been reached. In this case we are not interested in a proven
optimal solution, but we are looking only for a good heuristic solution. The
runs are shown in Figure 12, where we plotted for each instance the gap
of the incumbent solution over time, from the optimal or best solution we
knew. As the time is on a logaritmic scale, the very first time slice is not
very significant. We chose to represent only the real wall-clock time, and not
other units, because we judged this metric it more suitable to compare two
different solvers, altrough it is less accurate.

Differently from Cplex, in many cases Gurobi seems terminating the root
node processing much later and, often, before reaching the gap of 20% we
had set. In fact, observing the results we reported in Table 7, we have also
a numerical confirmation of this fact. Actually, we notice that for Gurobi
the gap at the root node (groot) is often higher than CPLEX, but sometimes
Gurobi solves the root node with a better lower bound (LBroot). This means
that the issue resides not only in the lower bound at the root node, but also
in the upperbound, that is, Gurobi lacks of a good incumbent solution on
this phase.

Observing the output log of the solver, we realized that our heuristic call-
back seems less effective for Gurobi. In certain cases, it happens that our
custom heuristic finds a better integer-feasible solution, but when passing
it to the solver, the incumbent solution remains the same and our hint is
ignored. We suppose that this behaviour is due to the differences, that we
already described, between CPLEX and Gurobi about the heuristic callback
management. In fact, while CPLEX receives both the solution vector and
the objective value from the heuristic callback, Gurobi allows only the trans-
fer of the solution vector, taking the responsibility to compute its objective
value. As Gurobi seems involved only periodically in such a computation,
the objective value of the heuristic solution stays unknown to the branch-
and-cut algorithm until the Gurobi feasibility-check ends. When the number
of heuristic solutions found grows rapidly, having an objective value immedi-
ately available is very important, for example to give a priority to solutions
and to discard the worst ones. Moreover, CPLEX allows us to insert a
heuristic solution even without the need of a feasibility-check and this is why
CPLEX seems performing better on this sense. Also there are some issues

111

Figure
12:

G
ap

from
best

solution
know

n
over

tim
e

-U
sercut,H

euristic
and

Lazy
callbacks

O
N

112

In
st

an
ce

n,
m

z o
p
t

t f
[s

]
t r

o
o
t

[s
]

g r
o
o
t

L
B

r
o
o
t

C
P

X
G

R
B

C
P

X
G

R
B

C
P

X
G

R
B

C
P

X
G

R
B

C
P

X
G

R
B

10
00

-1
0

10
00

1
4
3
9
6
4
0
.0

0
0
0

14
85

43
6.

00
00

23
2.

8
20

6.
2

4
.6

13
.7

0
.1

7
9
8

0.
58

04
1
2
4
9
8
8
3
.4

5
8
6

81
28

63
.1

47
0

15
00

-1
0

15
00

2
0
0
6
0
2
2
.0

0
0
0

21
52

76
1.

00
00

89
8.

1
38

6.
2

1
3
.2

21
.1

0
.1

8
1
7

0.
73

40
1
7
1
9
3
1
6
.5

0
7
9

77
73

78
.0

65
3

20
00

-1
0

20
00

2
5
7
7
5
6
8
.0

0
0
0

27
33

33
8.

00
00

89
7.

5
56

4.
0

2
2
.1

28
.6

0
.1

9
9
9

0.
79

87
2
1
8
6
7
3
2
.4

7
7
2

76
09

40
.5

99
0

25
00

-1
0

25
00

3
1
2
9
0
8
1
.0

0
0
0

34
49

33
3.

00
00

89
9.

1
30

0.
6

30
.8

2
2
.3

0
.1

8
6
2

0.
88

00
2
6
7
3
6
2
0
.7

1
3
4

54
19

68
.9

25
6

30
00

-1
0

30
00

3
6
4
8
7
0
0
.0

0
0
0

39
14

14
6.

00
00

89
8.

9
89

9.
4

4
5
.3

11
1.

2
0
.1

9
4
1

0.
71

81
3
0
5
4
6
6
5
.8

2
1
8

14
36

96
7.

22
25

50
0-

10
50

0
7
9
9
2
6
3
.0

0
0
0

80
75

36
.0

00
0

39
.4

23
5.

8
0.

9
2.

5
0
.1

8
1
3

0.
71

04
6
8
4
5
9
7
.7

2
2
3

31
71

66
.7

86
5

M
O

5
10

0
14

08
.7

66
4

14
08

.7
66

4
1.

9
2.

8
0.

1
0.

1
0
.1

8
8
8

0.
19

88
12

07
.0

83
5

1
2
3
7
.1

1
0
7

M
P

4
20

0
29

38
.7

50
0

29
38

.7
50

0
21

.0
52

.8
0.

1
0.

1
0
.1

5
4
0

0.
18

06
2
5
8
8
.5

9
9
8

25
23

.4
15

6
M

Q
3

30
0

42
75

.4
31

7
42

75
.4

31
7

17
.5

12
7.

0
0.

1
0.

4
0
.1

6
2
4

0.
18

16
37

13
.3

53
6

3
7
7
6
.8

4
4
0

M
R

2
50

0
26

54
.7

34
7

26
54

.7
34

6
15

2.
8

53
9.

5
0.

4
1.

7
0
.1

8
4
4

0.
26

70
2
2
8
5
.4

2
7
5

20
69

.8
67

5
M

S1
10

00
52

83
.7

57
4

52
83

.7
57

4
89

9.
5

89
9.

4
1
.7

6.
0

0
.1

8
3
9

0.
47

09
4
4
4
1
.4

8
8
9

28
75

.6
77

8
M

T
1

20
00

1
0
0
6
9
.8

0
2
8

10
08

9.
45

99
89

0.
0

90
0.

4
9
.0

18
.4

0
.1

7
9
1

0.
48

59
8
4
1
1
.9

8
1
9

52
67

.4
68

4
ga

25
0b

-2
25

0
2
7
5
1
4
1
.0

0
0
0

27
51

50
.0

00
0

88
5.

2
89

9.
3

0.
2

0.
2

0.
17

84
0
.0

6
1
0

22
88

09
.5

70
8

2
6
5
4
0
1
.0

9
8
3

ga
50

0a
-2

50
0

5
1
3
0
5
1
.0

0
0
0

51
78

98
.0

00
0

88
9.

6
1.

3
2.

7
1.

0
0.

27
58

0
.0

2
7
0

37
30

67
.8

21
9

5
0
5
4
4
7
.1

4
6
7

ga
75

0c
-4

75
0

90
05

02
.0

00
0

90
05

02
.0

00
0

89
4.

3
89

9.
4

1.
0

3.
7

0.
18

32
0
.0

8
7
5

73
87

29
.5

65
2

8
5
2
6
1
6
.9

3
9
4

gs
25

0a
-1

25
0

2
5
8
6
8
6
.0

0
0
0

26
26

17
.0

00
0

69
.8

0.
2

0.
5

0.
1

0.
28

18
0
.0

3
8
2

18
69

91
.8

39
8

2
5
4
1
4
9
.8

2
3
9

gs
50

0b
-1

50
0

53
95

62
.0

00
0

5
3
9
5
2
9
.0

0
0
0

89
9.

0
89

9.
0

0.
9

1.
0

0.
18

54
0
.0

5
0
7

44
25

74
.1

05
3

5
2
2
1
3
6
.8

6
8
4

gs
75

0c
-3

75
0

9
0
3
7
3
2
.0

0
0
0

90
40

07
.0

00
0

87
8.

1
89

9.
1

1.
1

3.
1

0.
19

20
0
.0

8
5
4

73
69

23
.7

40
8

8
4
6
2
3
1
.4

7
4
7

Ta
bl

e
7:

Lo
ca

lB
ra

nc
hi

ng
ru

n,
C

P
LE

X
vs

G
ur

ob
ic

om
pa

ris
on

-U
se

rc
ut

,H
eu

ris
tic

an
d

La
zy

ca
llb

ac
ks

O
N

113

4 TEST: CPLEX VS GUROBI

when passing a previously found solution through the MIP Start, because
this kind of suggestion is very important between each Local Branching iter-
ation and the others. Any inefficiency on this phase impacts negatively not
only on the branch-and-cut algorithm but also on internal heuristics (e.g.
RINS).

Finally, for the reasons written above and in the presence of some solver-
specific features, as far as our Hardfix matheuristic we chose not to report its
runs, as any comparison would not have been fair on these circumstances.

114

5 Conclusions

In our thesis, we developed an advanced example of a MIP problem and tested
it on an modern MIP solver, CPLEX. Our purpose was to have a comparison
also with another commercial solver, able to compete at an almost equivalent
performance. Then, we developed an interface for Gurobi, in order to reuse
the same code already working for the CPLEX APIs. Using both the UFL
code and our interface, we finally made a computational comparison between
CPLEX and Gurobi.

As the original code was developed and calibrated with CPLEX, Gurobi
resulted penalized. On fair conditions and with the callbacks enabled, our
UFL code interfaced with Gurobi had a significant loss of speed. At the same
time, after switching the callbacks off, no substantial differences emerged be-
tween CPLEX and Gurobi, and rather Gurobi satisfied the positive expecta-
tions on many more cases.

We believe that such a result is due to a different type of management for
some of the advanced features the two MIP solvers provide, in particular for
the user-cut and the heuristic callbacks. In fact, as seen in Section 3, Gurobi
user-cut callbacks appear less advanced, because:

• they work exclusively on single-thread;

• they do not offer any option to force addition of cuts;

• they offer only one point where to add cuts (MIPNODE context);

• they share the same “where” argument with the heuristic callback;

• the priority among heuristic and the user-cut procedures has to be
managed manually by the programmer, as well as there is no option
for tuning their respective frequency of execution.

Also, as outlined in Section 4, Gurobi heuristic callback does not provide any
argument for passing the objective value of a new solution found to the solver,
neither permits to bypass the feasibility check. User’s heuristic solutions are
considered only a hint for Gurobi and sometimes can be totally ignored, at
Gurobi discretion (e.g. in case the solver is busy in other tasks or too many
solutions have been proposed and there is no time to check them all).

As far as the lazy-constraint callback, its functionalities are fully pre-
served, as verified on Section 4. The same we can say for the informative
callback.

Nevertheless, all the results we obtained from both the commercial solvers
are very satisfying. Also the software interface we implemented resulted very

115

5 CONCLUSIONS

useful because it is not limited only to our UFL example, but it is ready
to be applied on most codes already written for CPLEX. Existing software,
then, can run directly with Gurobi solver preserving its functionalities and
without the need of any migration process.

116

6 References

[FLS10] M. Fischetti, A. Lodi, and D. Salvagnin. “Just MIP it!”. In:
Matheuristics. Springer US (2010): p. 39-70

[KMN13] E. Klotz, A.M. Newman. "Practical Guidelines for Solving Diffi-
cult Mixed Integer Linear.". Surveys in Operations Research and
Management Science 18.1 (2013): p. 18-32.

[FLS15] M. Fischetti, I. Ljubic, M. Sinnl. "Thinning out facilities: a Ben-
ders decomposition approach for the uncapacitated facility loca-
tion problem with separable convex costs." (2015). Submitted

[FL03] M. Fischetti, A. Lodi. "Local branching.", Mathematical pro-
gramming 98.1-3 (2003): p. 23-47

[FM14] M. Fischetti, M. Monaci. "Exploiting erraticism in search.", Op-
erations Research 62.1 (2014): p. 114-122

[COIN] COIN-OR website, http://www.coin-or.org/

[JUL] JuliaOpt website, http://www.juliaopt.org/

[LD15] M. Lubin, I. Dunning. "Computing in operations research using
Julia.", INFORMS Journal on Computing 27.2 (2015): p. 238-
248.

[B04] D. Baracco. “Interfacing a MIP heuristic based on ILOG CPLEX
with different LP solvers”, master’s degree thesis (2004).

[CMK] CMake website, http://cmake.org/

[CPX] IBM ILOG CPLEX Documentation, Version 12.6.1, © Copyright
IBM Corp. 1987, 2014

[GRB] Gurobi Optimizer Reference Manual, Version 6.0, Copy-
right © 2014, Gurobi Optimization, Inc. (website:
http://www.gurobi.com/documentation/6.0/refman/)

[AIBM13] T. Achterberg, IBM archived material (2013).

[ZGRB10] Zonghao Gu, Gurobi forum (2010).

[ASJ15] S.J. Albinski. "A branch-and-cut method for the Vehicle Relo-
cation Problem in the One-Way Car-Sharing.", master’s degree
thesis (2015).

117

6 REFERENCES

[DFI13] I. R. de Farias Jr, E. Kozyreff, R. Gupta, M. Zhao. "Branch-and-
cut for separable piecewise linear optimization and intersection
with semi-continuous constraints.", Mathematical Programming
Computation 5.1 (2013): p. 75-112.

118

Appendix

Useful tips

We briefly collect here some useful tips we discovered during our work.

ParallelMode Setting the parallel mode switch to Deterministic (instead of
Opportunistic) adds some synchronization points for the threads,
in order to have a deterministic behaviour in the parallel search.
Even though we renounce a faster performance, we have the war-
ranty that the solver will always produce the same output, which
is very useful for live demos or debugging purposes.

Callbacks When using Cplex callbacks, it is necessary to set CPX_PARAM_MIP-
CBREDLP parameter to CPX_OFF and CPX_PARAM_PRELINEAR
to zero, in order to keep the original mapping we defined for the
variables of the model.

Ticks The deterministic ticks that CPLEX measures is basically the
number of memory accesses that CPLEX performs. Two runs
using the same CPLEX binary with the same settings and the
same data will produce the same deterministic time.

Mipstarts Remember that every change to the model discards the search
tree, so there’s no way to keep the cuts for the next start. Cut
separation is typically cheap, though, so there’s not a lot of scope
for improving performance by reusing them.

Multithread When using more than one thread, be careful to the thread
safety, in particular in the callbacks: when editing data, mutual
exclusion techniques or, better, private structures for each CPU
must be implemented.

Loop In case we dynamically try to add a non-violated constraint to the
model, e.g. through a deterministic lazy callback or separator, the
solver goes in loop, because the solver does not see any violated
constraint and calls the user callback another time, with the same
input. As the results are the same, the solver enters in an infinite
loop.

Epsilon Due to numerical precision, we used an absolute TOLERANCE
of 1 · 10�5 whenever we compare values of type double. In par-
ticular, in case we are in a lazy callback and we are deciding

119

6 REFERENCES

whether a constraint is violated or not, using an epsilon of tol-
erance is imperative to avoid an infinite loop. In fact, the solver
may not recognize as violated a constraint we generated, because
of different results during comparison.

Frozen Due to numerical instability, a thread can freeze during the runs,
without raising any warning: it is useful to implement a counter
to react, e.g. skip the node, when a thread is frozen.

120

Unix Scripts

• To solve multiple instances in batch:

#!/bin / sh
i f [�z "$1"] ; then # input argument i s empty

echo "Usage : . / l i s t . sh data/ i n s t an c e s "
e l s e

f o r f i l e in $ (l s $1 | grep �Ev " . opt | . bub"$)
do

i f [�f "$1/ $ f i l e "] ; then
echo " So lv ing in s t anc e : $ f i l e "

. / u f l S o l v e r $1/ $ f i l e 2>&1 | t ee �a data/ $ f i l e . txt
f i

done
f i

• To extract the best known upperbound from solution files:

cat ∗/∗ . bub | grep �o " [0�9.]∗" $

• To read the stats from execution:

grep �E "STAT" output . txt

121

6 REFERENCES

Python Scripts

• To plot the results we used the PyLab library for Python. An example:

#!/usr/bin/python

import sys , getopt , csv , re
from pylab import *

def main(argv):
inputfile = []
try:

opts , args = getopt.getopt(argv ,"hi:",["ifile="])
except getopt.GetoptError:

print ’test.py -i <inputfile >’
sys.exit(2)

for opt , arg in opts:
if opt == ’-h’:

print ’test.py -i <inputfile1.csv > -i <inputfile2.
csv > ..’

sys.exit()
elif opt in ("-i", "--ifile"):

inputfile.append(arg)

if inputfile == []:
print ’No input files provided. Type -h for help’
sys.exit(2)

print ’Input file is "’, inputfile

for dataFile in inputfile:
convertCsvToPlot(dataFile)

show()

def convertCsvToPlot(inputfile):
with open(inputfile , ’rb’) as csvfile:

lines = csv.reader(csvfile , delimiter=’;’)
x = []
y = []
m = 3 # number of vertical sub -plots

n = 6 # number of horizontal sub -plots

p = 1
for col in lines:

if col[0] == ’HARDFIX ’:
x.append(float(col[2])) #walltime

y.append(float(col[3])) #obj value

122

print ’[’, col[3] , ’,’ , col[2], ’]’
print ’ ’

elif col[0] == ’LOCALBRANCH ’:
x.append(float(col[1])) #iter

y.append(float(col[3])) #obj value

print ’[’, col[3] , ’,’ , col[1], ’]’
print ’ ’

elif col[0] == ’STAT’:
try:

found = re.search(’[^/]*$’, col[1]).group(0)
except AttributeError:

found = col[1]
sys.exit(2)

print ’was file: ’, found
print ’\n’

#divide by .bub or .opt

opt = getStateOfArt(found)
for k in range(len(y)):

if (opt < float(y[k])):
y[k] = abs(opt-float(y[k]))/(1e-10+abs(opt))

* 100
else:

y[k] = -abs(opt-float(y[k]))/(1e-10+abs(opt))
* 100

subplot(m,n,p)
p += 1
plot(x, y)
xlabel(’iter’)
#xscale(’symlog ’)

ylabel(’gap %’)
title(found)
grid(True)
#reset variable arrays

x=[]
y=[]

subplots_adjust(left=0.05 , bottom=0.05, right=0.95 ,
top=0.95, wspace=0.5,
hspace=0.6)

def getStateOfArt(string):
val = { ’1000 -10’ : 1434154 ,

’1500 -10’ : 2000801 ,
’2000 -10’ : 2558118 ,
’2500 -10’ : 3101800 ,
’3000 -10’ : 3570766 ,

123

6 REFERENCES

’500 -10’ : 798577 ,
’MO5’ : 1408.76638 ,
’MP4’ : 2938.75002 ,
’MQ3’ : 4275.43167 ,
’MR2’ : 2654.734663 ,
’MS1’ : 5283.757394 ,
’MT1’ : 10089.459863 ,
’ga250b -2’ : 275141 ,
’ga500a -2’ : 511333 ,
’ga750c -4’ : 900044 ,
’gs250a -1’ : 257964 ,
’gs500b -1’ : 537931 ,
’gs750c -3’ : 901714

}
return val[string]

if __name__ == "__main__":
main(sys.argv[1:])

124

Acknowledgements

Ritengo innanzitutto doveroso porgere i miei più sentiti ringraziamenti al
mio relatore, prof. Matteo Fischetti, per la sua disponibilità ed i suoi
preziosi consigli, ma soprattutto per la passione che ha saputo trasmettere a
noi studenti per questa materia.

Ringrazio infinitamente la mia famiglia, che mi è sempre stata accanto
in ogni momento e mi ha dato tutti i mezzi per poter raggiungere questo
traguardo.

Grazie ai miei genitori, Leandro e Roberta, per tutto.
Grazie a Laura, mia sorella, che mi ha sopportato sin dalla nascita e che

ha intrapreso anche lei un arduo percorso (tieni duro!), nonostante i miei
tentativi iniziali per farla desistere.

Grazie a Laura, mia morosa, che è entrata nella mia vita ed è la mia
felicità.

Grazie a Laura, mia nonna, che aspetta sin da quando ero piccolo di
esserci oggi, solo per poter vedere la laurea del suo primo nipote.

Ringrazio tutti i miei parenti, zii e zie, cugini e cugine, nonni e nonne,
che hanno sempre fatto il tifo per me.

Ringrazio tutti i miei amici e tutte le persone che non hanno mai smesso
di credere in me.

Un grazie a Pancio, che mi ha sempre accolto come un fratello.
Un grazie a Edo, che sin dalle elementari non mi ha mai abbandonato.
Un grazie a Com e Pippo, per l’altruismo dimostrato a Londra, e a tutti

gli altri inseparabili amici delle superiori che mi sono vicini nonostante le mie
assenze.

Ringrazio infine tutti i miei compagni di progetto, in particolare Luca,
Nicola, Mauro e Matteo che hanno scelto di lavorare con me in più di una
occasione. Non ci siamo mai accontentati del massimo, ma siamo sempre
andati oltre!!

Padova, 12 ottobre 2015

Ale

