
University of Padua

Department of Engineering

Master’s Degree Thesis in

BIOENGINEERING

Continuous glucose monitoring based
algorithms for basal insulin therapy

modulation in type 1 diabetes

Supervisor Candidate

Dr. Andrea Facchinetti Lorenzo Meneghetti

Co-supervisors

Prof. Giovanni Sparacino
Ing. Martina Vettoretti

Academic Year 2015/2016





A Giancarlo Osto,
mio nonno.



I would like to thank my supervisor, Ing. Andrea Facchinetti, for the patient
guidance, motivation and advice he has provided throughout my work. I would
also like to thank Prof. Giovanni Sparacino for the trust he put in me and
Ing. Martina Vettoretti, who was very willing to assist me in each step to
complete the thesis.
Thanks to my family for having always been supportive in every moment of my
academic career. Thanks to my friends for all the good moments and laughs.
A special thank to my grandmother, my number one supporter.



Abstract

The standard treatment for type 1 diabetes is based on exogenous insulin
administrations tuned on the sparse blood glucose (BG) measurements. Re-
cently, this standard therapy has been improved by the introduction of con-
tinuous glucose monitoring (CGM) sensors, which allows measuring in a quasi
continuous way BG concentration for several days, and insulin pumps for the
subcutaneous insulin infusion.
In the last few years, thanks to the availability of such ”continuous” data
streams, particular attention has been paid to the development of strategies
for the real-time modulation of the basal insulin therapy to prevent, or at least
mitigate, risky hypoglycemic episodes by exploiting CGM data stream infor-
mation. In particular, most relevant strategies for basal insulin modulation
are based on the ”static risk” (SR) concept, which is logarithmic transforma-
tion of BG measurements into a risk values, fed with either the actual BG
value or the predicted ahead-of-time BG value obtained using a simple linear
predictor (LP). In addition, these algorithms have been developed and tested
on unrealistic simulated scenarios.
The aim of the present thesis was to develop a realistic in-silico framework to
study, starting from the Univ. of Padova/Univ. of Virginia type 1 diabetes
simulator, to test the performance of literature insulin algorithms for the basal
insulin therapy modulation and to present new methodologies for such a scope.
First, a new in-silico scenario was implemented which allows to generate realis-
tic hypoglycemic episodes that could happen after a meal. Then, state-of-art
algorithms for basal insulin modulation were modified by first substituting
the SR with the ”dynamic risk” (DR) concept, which improves SR by in-
tegrating in the formulation also the information on the glucose trend, and
second by replacing the simple LP algorithm for the real-time prediction of
glucose concentration with a more sophisticated autoregressive model (AR)
with forgetting factor.
Results obtained on 100 virtual subjects created with the modified Univ. of
Padova/Univ. of Virginia type 1 diabetes simulator shows that the use of
DR in place of SR in the basal insulin modulation strategy improves the
number of prevented hypoglycemic cases and lowers the average time-spent in
hypoglycemia, and that the performance are even better when the proposed
AR prediction algorithm is also used.





Contents

1 Glucose sensors and their use in insulin therapy of type 1
diabetes 1
1.1 Diabetes mellitus . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Blood glucose monitoring: SMBG and CGM . . . . . . . . . . 2
1.3 Insulin pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 CGM augmented insulin pumps . . . . . . . . . . . . . 6

2 CGM-based modulation of insulin therapy 7
2.1 Modulation of insulin injection . . . . . . . . . . . . . . . . . . 7
2.2 Pump suspension approach . . . . . . . . . . . . . . . . . . . . 7

2.2.1 First clinical study . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Algorithm combination approach . . . . . . . . . . . . 8
2.2.3 Randomized clinical trials . . . . . . . . . . . . . . . . 10

2.3 The brakes/power brakes approach . . . . . . . . . . . . . . . 11
2.3.1 Brakes . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Power brakes . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 In silico testing results . . . . . . . . . . . . . . . . . . 15

2.4 Brakes approach exploiting linear prediction . . . . . . . . . . 15
2.4.1 Linear prediction algorithm . . . . . . . . . . . . . . . 15

2.5 Aim of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Improvements of the algorithms for CGM-based modulation
of basal insulin 19
3.1 Use of the dynamic risk . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 The dynamic risk concept . . . . . . . . . . . . . . . . 19
3.1.2 Use for basal insulin modulation . . . . . . . . . . . . . 21

3.2 AR model based prediction . . . . . . . . . . . . . . . . . . . . 22
3.2.1 Use for basal insulin modulation . . . . . . . . . . . . . 23

4 Design and implementation of an in silico scenario to test the
modulation algorithms 25
4.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 The Padova/UVA T1D simulator . . . . . . . . . . . . . . . . 25

4.2.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . 25

3



4.2.2 The simulink implementation . . . . . . . . . . . . . . 26
4.3 Our simulated scearios . . . . . . . . . . . . . . . . . . . . . . 31

4.3.1 Scenario 1: highly variable insulin sensitivity . . . . . . 31
4.3.2 Scenario 2: delayed insulin bolus . . . . . . . . . . . . 31

4.4 Our simulink implementation . . . . . . . . . . . . . . . . . . 32

5 Results 43
5.1 Scenario 1: higly variable insulin sensitivity . . . . . . . . . . 43
5.2 Scenario 2: delayed insulin bolus . . . . . . . . . . . . . . . . 50

6 Conclusions 65



Chapter 1

Glucose sensors and their use in
insulin therapy of type 1
diabetes

1.1 Diabetes mellitus

The term ”diabetes mellitus”, commonly referred to as diabetes, describes a
metabolic disease of multiple etiology characterized by chronic elevated levels
of blood glucose (BG) or hyperglycemia with disturbances of carbohydrate,
fat and protein metabolism resulting from defects in insulin secretion, insulin
action, or both [1]. Diabetes is a chronic disorder of metabolism that afflicts
about 347 million people in the world and this number is estimated to grow
in the following years.
There are several pathogenetic processes that are involved in the development
of diabetes:

• Type 1 diabetes (T1D) In type 1 diabetes, the hyperglycemia condi-
tion is caused by an absolute deficiency in insulin production caused by
autoimmune destruction of the beta cells of the pancreas, with the pres-
ence of certain antibodies in blood. It usually develops in children and
adolescents although it can also occur later in life. Patients affected with
T1D require lifelong insulin injections for survival. Insulin injections can
be administered with different combinations: short-acting/long-acting,
intensive management with multiple injections prior to meals, once or
twice daily injections, insulin pumps.

• Type 2 diabetes
Type 2 diabetes is characterized by a hyperglycemia due to a defect
in insulin secretion usually with a contribution from insulin resistance
condition. It usually develops during adulthood although is on the rise
in children and adolescents. Type 2 diabetes is usually but not always
associated with obesity, decreased physical activity and unhealthy diets

1



BLOOD GLUCOSE MONITORING: SMBG AND CGM 1.2

and involves insulin resistance in nearly all cases. Patients do not require
lifelong insulin treatment but can control blood glucose with diet and
exercise alone, or in combination with oral medications, or with the
addition of insulin.

In the short term, diabetes causes symptoms of increased thirst (polydipsia),
increased urination (polyuria), increased hunger (polyphagia) and unexplained
weight loss. Over time, it can cause cardiovascular disease[5], foot ulcers[6],
retinopathy[7], kidney failure[8] and death[9].
In this thesis we will focus particularly on hypoglycemia prevention in T1D
because it represents one of most feared symptoms and one of the major causes
of mortality.

1.2 Blood glucose monitoring: SMBG and CGM

Apart from symptoms relief, diabetes treatment strategy is mainly focused on
targeting normal blood glucose levels (70-180 mg/dL) during the day. In or-
der to do so patients are required to regularly inject insulin doses on the basis
of the glycemia measured in the blood. To this purpose they are equipped
with glucometers to self-measure blood glucose and receive education about
self-monitoring for sign/symptoms of hypoglycemia and hyperglycemia. Cur-
rently, the standard technique through which health providers and patients as-
sess the effectiveness of the management plan is the finger-stick self-monitoring
of blood glucose (SMBG).

Fig. 1.1: SMBG finger stick procedure: a finger is pricked with a lancet to
obtain a small quantity of capillary blood for testing (taken from [10]).

It is based on the use of lancet devices as shown in figure 1.1: the patient
pricks his finger to obtain a small quantity of capillary blood that can be
analyzed to reveal its current blood glucose value. These measures should be
performed prior to meals and snacks, occasionally post-prandially, at bedtime,
before exercise and when low blood glucose is suspected [11].
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BLOOD GLUCOSE MONITORING: SMBG AND CGM 1.2

Unfortunately, in addition to worsening a patient’s quality of life by requiring
multiple actions per day, the few measurements performed with a SMBG
device do not provide a complete description of glucose trend during the day.
Continuous glucose monitoring (CGM) was proposed 15 years ago and repre-
sents a more promising technology for diabetes control, as we can see in figure
1.2.

Fig. 1.2: Comparisons between SMBG and CGM measurements derived info
for diabetes treatment

A continuous glucose monitor (CGM) typically consists of a sensor, a wireless
transmitter, and a receiver that allows the user to follow his interstitial glu-
cose values throughout the day. Some receivers can also be integrated with
a sensor-augmented insulin pump (see section 1.3). The sensor consists of a
wire inserted subcutaneously most commonly into the abdomen, that mea-
sures interstitial glucose via generation of an electrical current when glucose
reacts with the enzyme glucose oxidase. The receiver provides the user a 24-h
continuous display of glucose data, collected every 5-10 min. Glucose values
are displayed on a receiver, insulin pump display, or smartphone. In figure 1.3
an example of a CGM sensor (Dexcom G4) is shown.

Fig. 1.3: Abdomen inserted CGM sensor (taken from [14]).
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CGM provides not only discrete glucose values, but also the benefit of the
glucose history including trends, rate of glucose change as well as the direction
of the change.

In clinical research, continuous glucose monitoring, with nearly continued use,
was associated with reduced time spent in hypoglycemia and a concomitant
decrease in HbA1c in children and adults with type 1 diabetes. [12]. Results
in children have been more disappointing, although clearly increased use in
the older (but not the younger) children is related to their efficacy. The use
of these devices does not lead to improved quality of life outcomes, although
satisfaction with the devices has been consistently strong in both adults and
children. [13]

From the practical point of view, it is interesting noting that the Food and
Drug Administration (FDA) did not allow CGM system labels to include
nonadjunctive use that is their direct usage for making therapy adjustments
without the indication of a finger stick, because of concerns of inaccuracy
that could lead to inappropriate treatment decisions. Past CGM systems,
including the Dexcom G4, Medtronic Enlite, and FreeStyle Navigator, received
regulatory approval in the United States specifically for adjunctive use, with
labeling indicating treatment decisions are to be based on blood glucose values
obtained through SMBG, not CGM readings. CGM systems are already being
used for diabetes treatment decisions in Europe. The Abbott Navigator II is
approved for use in determining insulin doses when glucose is not changing.
Most recently, the Dexcom G5 Mobile CGM system is now approved in Europe
to be used nonadjunctively [15].

Along with the above described benefits CGMs come with another interesting
feature that is their usage in combination with automated insulin pumps.

1.3 Insulin pumps

An insulin pump is a machine which enables insulin to be delivered either
automatically, or in response to instructions given by the pump wearer. It
drip feeds insulin into the body through the day and can also deliver larger
doses of insulin whenever needed, such as before meals. Insulin pumps can be
connected to the body via tubing or attached to the surface of the skin with
a patch and controlled remotely.

In figure 1.4 we can see an example of a tethered insulin pump: a small
tube (cannula) goes into and just under the skin and is held in place by an
adhesive patch. It allows insulin to pass from the tubing into the body. The
display screen displays information to the wearer that are chosen interactively
trough buttons. The motor turns round and causes the plunger to push insulin
through the reservoir and into the tubing as visualized in figure 1.5.

Insulin pumps use only quick acting insulin and deliver two different types
of dose: bolus and basal. The bolus is the dose of insulin that is specifically
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Fig. 1.4: OneTouch Ping insulin pump (taken from): [16])

Fig. 1.5: Automated insulin pump diagram (taken from: [17])

taken at meal times to help control blood glucose levels following a meal. This
dose mimics the insulin peaks evoked by the pancreas response that occur in
non-diabetic people. The basal dose represents a background dose of insulin
that is delivered constantly during the day, the same way as a non-diabetic
person pancreas would do. Basal insulin keep blood glucose levels steady
during periods of fasting. Figure 1.6 shows an example of insulin infusion
during the day, including basal insulin delivery and meal insulin boluses.

Fig. 1.6: Insulin delivery scheme during the day (taken from: [18])

Most pumps on the market can be set to deliver different rate of basal insulin
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for each hour of the day as planned with the physician. This can be a great
benefit since the need for background insulin can be variable at different parts
of the day.
UK National Institute for Health and Care Excellence reviewed different group
studies of adults and childred of mixed age and found that insulin pump
therapy resulted in improvement of HbA1c results and a reduced incidence
of severe hypoglycemia cases [19]. Insulin pumps give more control of blood
glucose levels over night and so they can help to reduce the chances of having
overnight hypoglycemic episodes, one of the main causes of mortality in young
patients affected with type 1 diabetes. [20]

1.3.1 CGM augmented insulin pumps

The most modern trend in insulin pump technology is for pumps to directly
interact with CGMs. Pumps that allow CGM integration include: Medtronic
MiniMed 640G, Medtronic MiniMed Paradigm Veo, Animas Vibe with Dex-
com G4 sensors. Animas vibe pump possess an on board food database to
help with carb counting. This pump is also a strong choice for people that
are specifically looking for a pump integrated with the Dexcom G4 Platinum,
which is, at time of writing, the most accurate CGM available (according to
diabetes.co.uk). The MiniMed 640G and Paradigm Veo can suspend insulin if
the sensor falls below a threshold and the user does not respond to an alarm.
[21]
The possibility of integrating a predictive algorithm to modulate basal insulin
delivery and prevent hypoglycemic episodes has been object of intensive study
lately. The following chapter will give an overview of some of the studies on
this matter.
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Chapter 2

CGM-based modulation of
insulin therapy

2.1 Modulation of insulin injection

Hypoglycemic episodes can be prevented by pre-emptively acting on the am-
punt of insulin that is injected into the organism. Since the quantity in-
troduced with the boluses cannot be reduced once in the circulation, many
studies explored the possibility of modulating the injection of basal insulin.
In the present chapter we will review three popular approaches. The first is
due to Buckingham et al. who evaluated the pump suspension feature that is
a pump shut-off for a given amount of time in response to a predicted hypo-
glycemia event based on current BG. The second methodology was proposed
by Hughes et al., who defined their method, consisting of insulin gradual at-
tenuation depending on a risk function, calculated basing on true or predicted
hypoglycemia values using a predictive Kalman filter. A third methodology
was presented by Patek et al. as part of a three-layer modular architecture for
the control of diabetes and is based on a linear predictor and a modulation
based on a risk function similar to the one described by Hughes et al.

2.2 Pump suspension approach

Different articles were published by Buckingham et al. to evaluate the feasibil-
ity of preventing hypoglycemic episodes by insulin pump suspension triggered
by a predicted glucose value. A first study 2.2.1 on a small group of patients
evaluated the performances of two predictive algorithms while second study
2.2.2 involved a system of different algorithms working simultaneously. Ex-
tended randomized clinical trials were also performed to evaluate the pump
suspension feature overnight.
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PUMP SUSPENSION APPROACH 2.2

2.2.1 First clinical study

In 2009 Buckingham et al. [22] analyzed the performance of two different
prediction algorithms in an experiment of induced hypoglycemia in 21 T1D
patients. Alongside they evaluated the duration of basal insulin hypoglycemic
effect. Glycemia monitoring was performed using the FreeStyle NavigatorÂő
(Abbott Diabetes Care, Alameda, CA). One algorithm was a modification of
the Navigator alarm, which uses a short-term linear extrapolation and uncer-
tainty threshold to predict hypoglycemia. The second algorithm was devel-
oped at Stanford and is based on multiple empirical, statistical models that
are used to estimate future glucose values. An increase in the prediction hori-
zon produce a bigger amount (60-80%) of prevented cases of hypoglycemia
in this scenario. The analysis of the duration of basal insulin hypoglycemic
effect resulted in the following: after 30 mins rate of change was maintained,
after 75 mins it reached zero. Following 90 mins of pump suspension, no
hyperglycemia episodes (BG level > 180 mg/dL) were observed.

2.2.2 Algorithm combination approach

Dassau et al. in 2010 [23] tested a hypoglycemia prediction algorithm (HPA)
using data from past clinical admissions in patients with mean age of 20 years.
The system involved the use of 5 different algorithms working simultaneously
to predict hypoglycemic situations with adjustable prediction horizon (35, 45,
55 mins). When a quorum amount (1-5) of algorithms produced a glycemic
predicted value above a defined threshold (70, 80, 90) an insulin pump-shutoff
was requested for 90 mins.

The algorithms used in the system are described here shortly.

Linear prediction: the linear projection (LP) uses the past 15 minutes
glucose values to obtain a linear extrapolation. The angular coefficient of the
straight line obtained is then considered as hypothetic glycemia trend and
used to project the future values.

Kalman filtering (KF): a Kalman filter is used to estimate glucose and its
rate of change, which are then used to make predictions about future glucose
levels. The filter is tuned to trade off the probability that a measured glucose
change is real versus the result of sensor noise.

gk+1

dk+1

fk+1


︸ ︷︷ ︸
xk+1

=

1 1 0
0 1 1
0 0 1


︸ ︷︷ ︸

Φ

gkdk
fk


︸ ︷︷ ︸
xk

+

0
0
1


︸︷︷︸
ΓW

wk
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yk =
[
1 0 0

]︸ ︷︷ ︸
C

gkdk
fk


︸ ︷︷ ︸
xk

+vk

The states are: blood glucose concentration (gk), its rate of change (dk), the
rate of change of the rate of change (fk).

x̂ is estimated then

x̂k|k−1 = Φx̂k−1|k−1

once yk is available

x̂k|k = x̂k|k−1 + L(yk − Cx̂k|k−1)

Lk is the steady-state Kalman gain matrix.

The Kalman gain L is calculated using the covariances Q and R. Given that
these covariances are not known in advance, they become tuning parameters.
Changing the relative weight between Q and R serves to trade off the confi-
dence in the model versus the confidence in the measurement.

The approach is presented in more details in simulation studies by Palerm et
al. [27]

Hybrid infinite impulse response:

A linear discrete-time-signal-processing method [24] generates output predic-
tions using previous output (glucose measurements) without input (insulin
infusion). The filter coefficients are used together with the predicted outputs
for a prediction horizon and are updated when prediction and parameter error
are larger than user-specified bounds. The filter performances can be tuned
by adjusting window length, prediction horizon and error criteria.

Statistical prediction: a probability of hypoglycemia is generated and
thresholded using multiple empirical, statistical models [25] to estimate future
blood glucose. The prediction algorithm is divided into three components:

1) calibration, which converts raw CGM and capillary blood glucose measure-
ments into a physiologically consistent, accurate blood glucose history;

2) prediction, which uses training data and the recent calibrated blood glucose
history to generate predictions and associated accuracy estimates;

3) hypoglycemic alarming, which transforms the predictions and accuracy
estimates into a probability of the patient becoming hypoglycemic, which is
then thresholded into a binary alarm.

Numerical logical algorithm: a three-point calculated rate of change using
backward difference approximation and the current glucose value are used into
logical expressions to detect impending hypoglycemia.
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PUMP SUSPENSION APPROACH 2.2

Fig. 2.1: Three point
backward difference

f ′(xi+1) ≈ 3yi+1 − 4yi + yi−1

xi+1 − xi−1

The logical expressions verify that:
- the rate of change is both negative and
within an acceptable range
- the CGM glucose values are within prede-
fined boundaries and that a pending hypo-
glycemic event is predicted within the thresh-
old time window
Numerical logical algorithm provides insensitivity to sensor signal dropouts
and easy tuning.

Hypoglycemia was defined for glucose readings < 60 mg/dL by the Freestyle
Navigator. The best results (91% of hypoglycemic events predicted) were ob-
tained when setting the prediction horizon to 35 min, the voting threshold to
three of five algorithms and a glucose threshold of 80 mg/dL. With a four of
five algorithms requirement, 82% of the events were predicted. The authors
highlighted the fact that balance between aggressiveness of the HPA and ef-
fectiveness is an important factor since too many false alarms are a detriment
to safety systems and will result in disconnecting of the system by the user,
rendering the system useless.
Buckingham et al [26] published a followup article, where they evaluated the
algorithm performances on clinical trials. They observed a mean difference of
12 mins between the second and the third algorithm activation. The difference
between the FreeStyle Navigator system and the true glucose values at the time
of pump suspension was 4±9 mg/dl (mean±SD) for successful events, 18±10
mg/dl when the predictive pump shutoff failed. The reasons why CGMs were
consistently reading higher blood glucose values in unsuccessful prediction
events were attributed to CGM inaccuracy or known lag time between the
two compartments.

2.2.3 Randomized clinical trials

Another study from Buckingham group in 2003 [28] performed randomized
clinical trials on 19 participants (18-56 years old) with type 1 diabetes. They
used a pump suspension system communicating with a laptop computer con-
taining the prediction algorithm which was a Kalman filter-based model. The
laptop contained a randomization schedule that indicated whether the algo-
rithm would be in operation that night (intervention night) or would not
be activated (control night). Audible glycemic alarms were produced at 60
mg/dL and 250 mg/dL. Different prediction horizon were tested (30, 50, 70
min), with the addition of different pump suspension criteria. The results
showed that the algorithm appeared to be successful in reducing nocturnal
hypoglycemia (≤ 70 mg/dL) by 40%. The number of nights with prolonged

10



THE BRAKES/POWER BRAKES APPROACH 2.3

hypoglycemia ≤60 mg/dL for more than 1 h was reduced by 60%. Overall,
they demonstrated that pump suspension is safe and feasible with use of a
bedside computer communicating with an insulin pump and CGM device.
In 2015, a more recent clinical study [29] involved a 42 nights (each) trial with
children with T1D (11-14 and 4-10 years). Important results in the cumula-
tive time >120/180 min in hypoglycemia although there was still not total
prevention.
Pump suspension feature was evaluated with different studies [30] [31] [32] to
assess the fact that it can be used as a mean to reduce the risk of nocturnal
hypoglycemia.

2.3 The brakes/power brakes approach

In their study presented in 2009 [33], Hughes at al., presented 2 algorithms:

• Brakes: based on continuous glucose monitoring data

• Power brakes: based on continuous glucose monitoring data and insulin
pump data

Both algorithms implemented a red/yellow/green light alert system, to inform
the user on the risk of hypoglycemia.

2.3.1 Brakes

The brakes algorithm macro scheme can be visualized in figure 2.2

Fig. 2.2: Brakes algorithm scheme (taken from [33])
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The BG value of the patient is read by the CGM and is then used by the
brakes algorithm to modulate the rate of basal insulin that would be normally
delivered. A ”traffic light” alarm is also generated to alert the patient of a
possible predicted hypoglycemic episode. The attenuation factor Φbrakes is
computed after assessing a patient’s current risk R(ȳ(t)) of hypoglycemia:

Φbrakes(R(ȳ(t))) =
1

1 + Γ ·R(ȳ(t))
(2.1)

where Γ = e−0.7672−0.0091·TDI+0.0449·CF is the ”aggressiveness parameter” and
ȳ(t) represents the patient’s current BG state and is calculated as the 15 min
non-weighted moving average of CGM reading

ȳ(t)
1

15

14∑
i=0

CGM(t− i) (2.2)

The algorithm modifies the current rate of insulin Jcommand that would be
administered by the pump without brakes, utilizing the calculated attenuation
factor:

Jactual(t) = Φbrakes(R(ȳ(t)))Jcommand (2.3)

The risk function is calculated as follows:

R(ȳ(t)) =


10[α(ln(ȳ(t))β − γ)]2 if 20 < ȳ(t) < 120 and

dȳ

dt
< 0

100 if ȳ(t) ≤ 120

0 otherwise

(2.4)

Where α = 0.918642, β = 1.29286 and γ = 7.57332.

2.3.2 Power brakes

In the power brakes algorithm (figure 2.3) insulin injected information is used
in conjuction with glucose values as we can see in figure. Insulin delivery rate
is calculated accounting for the insulin that has been injected in the past.

The risk of hypoglycemia Rm(ȳ(k)) is now derived from a metabolic state
observer, using a compartmental ”minimal model” [34].

x(k + 1) = Ax(k) +Bu(k) +Gω(k) (2.5)

where x(k) is the state of the system at sample time k, u(k) = Jactual(k) −
Jbasal(k) (Jbasal being the minimum value over the patient’s basal rate profile)
is the insulin input at stage k and ω(k) = meal(k)−mealref (k) is the ingested
glucose disturbance signal at stage k. The state observer is based on a steady
state kalman filter, based on knowledge of u(k) and y(k)
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Fig. 2.3: Power brakes algorithm scheme (taken from [33])

y(k) = CGM(k)−Gref (2.6)

Where CGM(k) is the readout of the continuous glucose monitor at k and
Gref is a glucose reference value (here set at 112.5 mg/dl).
The measurement signal is modeled as:

ŷ(k) = Cxτ (k) (2.7)

where CT =
[
1 0 0 0 0 0 0 0

]
and xτ (k) is the metabolic state ob-

server.
The metabolic state is expressed recursively:

x̂(k|k − 1) = Ax̂(k|k − 1) +Bu(k − 1) (2.8)

x̂(k|k) = x̂(k|k − 1) + Lf (y(k))− Cx̂(k|k − 1) (2.9)

where

Lf = APfC
T (CPfC

T +RS)−1 (2.10)

and Pf is the unique stabilizing solution to the algebraic Riccati equation

ATPA− ATPG(GTPG+RS)−1GTPA+QS = P (2.11)

Therefore the projected BG concentration at stage k is computed as follow

ŷ(k) = Cx̂τ (k) (2.12)

where τ represents an amount of time corresponding to the length of the
prediction window.
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x̂τ (k) = Aτ · x̂(k) + AτB · u(k) + AτG · w(k) (2.13)

Aτ =

{
0 if τ = 0∑τ−1

s=0 A
τ if τ > 0

(2.14)

When τ is set to 0 the risk is based only on the best estimate of BG given
all the data received up to stage k, when τ > 0 an assessment of the future
risk of hypoglycemia is performed, τ minutes ahead. Finally the prediction is
used to calculate the attenuation factor, using a modified version of the brakes
formula

Jactual(t) = Φpowerbrakes(R(ŷ(t)))Jcommand

Φpowerbrakes(Rm(ŷ(t))) =
1

1 + Γ ·Rm(ŷ(t))
(2.15)

Rm(ŷ(t)) =


10[α(ln(ŷ(t))β − γ)]2 if 20 < ŷ(t) < 120 and

dŷ

dt
< 0

100 if ŷ(t) ≤ 120

0 otherwise

(2.16)

Where α = 0.918642, β = 1.29286 and γ = 7.57332.

The green/yellow/red traffic light signal system was design to alert the user
as to their level of hypoglycemic risk. It worked as follows:
In brakes,

• if R( ¯y(t)) = 0, the green light is triggered

• if R( ¯y(t)) > 0 and ¯y(t) ≤ Kred, the yellow light is triggered

• if R( ¯y(t)) < Kred, the red light is triggered Kred is chosen as 80 mg/dL.

In power brakes,

• if Rm(ŷ(t)) = 0, the green light is triggered

• if Rm(ŷ(t))> 0 and ȳ(t)shutoff (t)≥Kred,IOB, the yellow light is triggered

• if Rm(ŷ(t)) < Kred, the red light is triggered

14
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2.3.3 In silico testing results

The efficiency of the algorithms were evaluated using the FDA-accepted Uni-
versity of Virginia/University of Padova Metabolic Simulator at the University
of Virginia. Two scenarios designed to cause hypoglycemia were taken into
consideration, an highly variable insulin sensitivity and a skipped meal. To
simulate the first one, a doubled rate of basal insulin was delivered to all 100
adult patients of the simulator, all of them starting from a BG concentration
of 150 mg/dL. To simulate the second one a premeal bolus was delivered,
avoiding the corresponding meal. The amount of this premeal bolus was de-
signed such that the subject will drop to a BG concentration of 50 mg/dl.
The percentage of hypoglycemia predicted events using Brakes and Power
Brakes was of 80% and 94% respectively for the first scenario and 83% and
93% for the second scenario.

2.4 Brakes approach exploiting linear predic-

tion

In their study published in 2012, Patek et al. [35] introduced a three-layer
modular architecture for the control of diabetes, consisting in a sensor/pump
interface module (IM), a continuous safety module (CSM), and a real-time
control module (RTCM), which separates the functions of insulin recommen-
dation (postmeal insulin for mitigating hyperglycemia) and safety (prevention
of hypoglycemia). A section of the CSM, the safety supervision model (SSM),
was designed to continuously monitor the patient’s state and to authorize
insulin recommendations intervening when needed to prevent hypoglycemia.

2.4.1 Linear prediction algorithm

Based on the history of CGM samples received up to the current time the
data coordination and state estimation blocks of the SSM compute a BG
estimate Ĝ(k) (mg/dL) for the current control update cycle k. The estimate
is computed as:

Ĝ(k) = Ḡ(k) + 17 · Ġ(k) (2.17)

where Ḡ(k) (mg/dL) is the unweighted average of CGM samples received in
(t− 10, t] and Ġ(k) (mg/dL/min) is the slope of the least-squares linear fit of
all CGM samples received in (t− 30, t].
The attenuation of basal insulin factor is calculated in similar fashion to the
one proposed by Hughes et al:

φ(ρ(k)) =
1

1 + ρ(k)
(2.18)
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The risk function ρ(k) is adapted from the BG symmetrization function in-
troduced in [36] and is computed as follows:

ρ(k) =


0 Ğ(k) ≥ 112.5

10[a(ln((Ğ(k))b − c)]2 Ğ(k) ∈ (20, 112.5)

100 Ğ(k) ≤ 20

(2.19)

where a = 1.509, b = 1.084, and c = 5.381, and

Ğ(k) = 0.5 · (G∗(k) + Ĝ(k)) (2.20)

G∗(k) is the estimated BG corrected through interactions with other modules:
the modulation algorithm that takes into account information from the deliv-
ery history of insulin up to the current time and assess the current amount of
insulin on board (IOB) Ic(k) and uses this to estimate G∗(k) that reflects the
impact of correction IOB through

G∗(k) = Ĝ(k)[Îc(k)]+ · θcorr(k) (2.21)

Insulin on board related calculations are not reported here, please refer to [35]
for details. The algorithm was presented as part of a modular architecture for
closed-loop control of diabetes therefore the algorithm performances were not
isolatedly evaluated.

2.5 Aim of the thesis

As we have seen in this chapter, basal insulin modulation algorithms seem to
be a powerful tool to avoid hypolgycemia, especially in an open-loop setup.
Therefore it is important to develop an in-silico simulation environment to
evaluate the efficacy and the performances of these algorithms. The aim of this
thesis will be to implement inside the Padova/UVA Type 1 diabetes metabolic
simulator (see section 4.2.1) a module that allows to simulate real-time func-
tioning of algorithms for basal insulin modulation therapy. In particular we
will reimplement the following literature algorithms:

• the Brakes insulin attenuation algorithm (see section 2.3.1) based on
”Static Risk” (SR), function presented in Hughes et al. [33]

• the linear prediction (LP) algorithm (see section 2.4) as described in
Patek et al. [35] limited to the BG estimation performed without the
corrections through the interactions with the other modules of the three-
layer architecture.

Therefore:

φLP (ρ(k)LP ) =
1

1 + ρLP (k)
(2.22)
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and

ρLP (k) =


0 Ĝ(k) ≥ 112.5

10[a(ln((Ĝ(k))b − c)]2 Ĝ(k) ∈ (20, 112.5)

100 Ĝ(k) ≤ 20

(2.23)

are calculated using Ĝ(k) from equation 2.17, to compute, with reference
to equation 2.3,

Jactual(t) = φLP (ρLP (k))Jcommand (2.24)

The two previous algorithms for basal insulin modulation are based on simple
assumptions and/or algorithms. In particular, the Brakes SR formula per-
forms a simple transformation of the current glucose value which does not
take into account its trend. This means, as we will see later in chapter 3, that
equal glucose values produce the same risk value despite of their predicted
behaviour (e.g approaching hypoglycemic threshold of moving away from it).
The brakes approach by linear prediction is based on a simple prediction algo-
rithm that may not be effective in all situations, being the algorithm a simple
linear extrapolation of the current glucose value and trend. Therefore in the
next chapter we will also try to evaluate the possible improvements on the
algorithm performance by:

• replacing the SR formula with the ”dinamic risk”(DR), a risk function of
glucose concentration introduced by Guerra et al. [37] which calculates
the glucose risk on the basis of glucose value and its trend.

• replacing the LP described in Patek et al. [35] with a autoregressive
(AR) model based prediction introduced by Sparacino et al. [38].
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Chapter 3

Improvements of the algorithms
for CGM-based modulation of
basal insulin

3.1 Use of the dynamic risk

3.1.1 The dynamic risk concept

A previous study by Kovatchev et al. [36] already suggested that the glycemic
range is asymmetric. The hypoglycemia range is much narrower than the
hyperglycemic range and health threats increase faster when moving deeper
in the first versus the latter range.

Let us consider for example glucose levels of 40 mg/dL or 210 mg/dL: even if
the two levels stay at an equal absolute distance from the hypo/hyperglycemic
threshold (70 and 180 mg/dL) the first condition corresponds to sever hypo-
glycemia while the second one to mild hyperglycemia. It is obvious now that
the risk for the patient increases much faster when glucose trend is moving
below the hypoglycemic threshold compared to when it moves above the hy-
perglycemic threshold.

Figure 3.1 displays a simulated continuous glucose profile. Points A1, A2, B1
and B2 are highlighted and labeled together with a portion of the tangent line
to the glucose profile in these points. Circle labeled as C represents a partic-
ular event of hypoglycemic threshold crossing. Both A1 and A2 represent a
glucose concentration just below the hypoglycemic threshold but with differ-
ent derivatives, whereas B1 and B2 represent two episodes of hypoglycemic
threshold crossing again with two different derivatives. Using this example
is now clear that if only we were to use SMBG measurements to define the
patient risk when in one of those 4 points we would not have a complete in-
formation. In fact the clinical risk associated with A1 is far more dangerous
than the one with A2 because in the first case the patient is heading deeper in
the hypoglycemia region while in the other one he is recovering. Similarly B2
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USE OF THE DYNAMIC RISK 3.1

Fig. 3.1: Simulated glucose profile: equal glycemic values (A1 and A2 or B1
and B2) may not represent a situation of equivalent health risk

situation is more dangerous than B1 because the patient is going faster into
the hyperglycemic region.
The original methodology proposed by Kovatchev et al. [36] calculates the
standard risk (SR) function r(g) given a generic glycemic level g

r(g) = 10 · f(g)2 (3.1)

where

f(g) = γ · [(ln(g))α − β] (3.2)

With α, β and γ being scalars equal to 1.084, 5.381 and 1.509. The above
function r(g) maps the glycemic range (20-600) mg/dL to the (static) risk
space range (0-100).
Starting from r(g), two quantities, the low and high glucose risk, rl(g) and
rh(g), respectively, are defined as

Rl(g) =

{
r(g) if f(g) < 0

0 otherwise
(3.3)

Rh(g) =

{
r(g) if f(g) > 0

0 otherwise
(3.4)

To distinguish the risk coming from situation A1 versus A2 and B1 versus B2
for example a modification in the risk calculation is required. A DR measure
has to be defined that takes into account not only the glycemic value but also
the derivative of its trend. Conceptually this requires a function in the form
of:

DR = Φ(g,
dg

dt
) (3.5)
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DR function should be able to have two desirable properties:

1. in stationary conditions (derivative = 0)

DR(g, 0) = r(g) (3.6)

that is when glucose value is stable DR should equal SR.

2. when glucose is moving toward critical hypo/hyperglycemic regions, r(g)
should be amplified whereas it should be attenuated when g is approach-
ing normoglycemia.

The solution proposed is:

DR(g,
dg

dt
) =

{
SR(g) · e+µ dr

dt if SR(g) > 0

SR(g) · e+µ dr
dt if SR(g) > 0

(3.7)

where r is the function of g of equation 3.1.

The following equation

dr

dt
=
dr

dg

dg

dt
= {10γ2 · [(ln(g))2α−1 − β(ln(g))α−1] · 2α1

g
} · dg

dt

can be exploited to obtain a calculation of dr
dt

, with α, β and γ equal to those
defined before. Figure 3.1 displays the effect of dynamic risk compared to
simple risk.

3.1.2 Use for basal insulin modulation

In this thesis we will test the effect of the replacement the standard risk
formula that is calculated in the brakes algorithm with a dynamic risk.

Specifically, with reference to equation 2.1, we will substitute R(ȳ(t)) with
DR(ȳ(t)) that is calculated with:

DR(ȳ(t)) =


DR(g, dg

dt
) if 20 < ȳ(t) < 120

100 if ȳ(t) ≤ 120

0 otherwise

(3.8)

where DR(g, dg
dt

) is calculated as in 3.7, and proceed on calculating the atten-
uation factor as:

Φbrakes(DR(ȳ(t))) =
1

1 + Γ ·DR(ȳ(t))
(3.9)
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Fig. 3.2: Comparison between Static risk (above) and Dynamic risk (below):
risk is amplified when moving towards the hyper/hypoglycemic zone.

3.2 AR model based prediction

Hypo/hyperalerts can be generated on the basis of ahead-of-time prediction of
glucose concentration by using past CGM data and suitable time-series mod-
els. In their paper, Sparacino et al. [38] evaluated the possibility of describing
past glucose data by a first-order autoregressive (AR) model. Following a
time-varying modeling approach: at each sampling time, a new set of model
parameters is first identified by means of weighted least squares techniques.
Then, the model is used to forecast glucose level for a given prediction horizon
(PH).
Considering a generic auto-regressive (AR) model structure:

y(n) = a1 ∗ y(n− 1) + a2 ∗ y(n− 2) + ...+ ap ∗ y(n− p) + w(n)

Where y(n) represents the glucose sample at time t(n), w(n) is a random vari-
able with variance σ2, a1...ap are the model variables. The set of parameters
θ = [σ2,a1,...,ap] is estimated using Linear Least Squares weighted with for-
getting factor (µ). Once Θ is determined, the model is used to calculate the
prediction of glucose level T steps ahead, i.e., Θ̂n+T .
The way with which past data are weighted is a key aspect in model fitting.
Here, the weight µk is assigned to the sample taken k instants before the actual
sampling time, i.e., is the weight of the sample at time tn−k. The parameter
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behaves like a forgetting factor. The forgetting factor µ, thus, belongs to the
range (0,1) and its value regulates the length of the ”memory” of the past data
which participate to the determination of theta.
The algorithm can be summed up with the following equations:

PN+1 =
1

µ
[PN −

PNΨN+1ΨT
N+1PN

µ+ ΨT
N+1PNΨN+1

]

kN+1 =
PNΨN+1

µ+ ΨT
N+1PNΨN+1

e(N + 1) = y(N + 1)−ΨT
N+1âN

âN+1 = âN + e(N + 1)kN+1

where ΨN+1 = [y(N) y(N − 1) ... y(N − p+ 1)]T is the vector containing the
past N BG measurements, P is the error covariance matrix and it is initialized
to a arbitrarily high initial value, k is the filter gain matrix, e is the prediction
residual and â is the predicted model state.

3.2.1 Use for basal insulin modulation

In this thesis we will try to use the AR model based predictor in place of the
linear predictor used by Patek et al. That is, with reference to equations,
2.22, 2.23 and 2.24 we will substitute Ĝ(k), calculated with LP, with ĜAR(k),
calculated with AR.
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Chapter 4

Design and implementation of
an in silico scenario to test the
modulation algorithms

4.1 Rationale

In order to evaluate the performance of the algorithm already presented in
literature we reproduced them inside the Padova/UVA T1D simulator (see
section 4.2.1) together with the new innovations proposed in chapter 3 in a
Simulink environment. To evaluate their ability to detect and prevent hy-
poglycemia we simulated some scenarios where a patient erroneous behaviour
would induce an hypoglycemic event (see section 4.3). In section 4.4 we report
details on the simulink implementation of the implemented algorithms.

4.2 The Padova/UVA T1D simulator

4.2.1 The model

The Padova/UVA T1D simulator [39] is able to simulate a model of the
glucose-insulin system in the normal human capable of describing the physi-
ological events which occur during a standard mixed meal.

To derive the simulator parameters a unique meal data set of 204 normal in-
dividuals who underwent a triple tracer meal protocol was used, thus allowing
to obtain, in a virtually model-independent fashion, the time course of all the
relevant glucose and insulin fluxes during a meal.

In figure 4.1 we show the scheme relation of the measured plasma concen-
trations, i.e., glucose G and insulin I and the glucose fluxes, i.e., rate of ap-
pearance Ra, production EGP , utilization U , renal extraction E, and insulin
fluxes, i.e., secretion S, and degradation D. The healthy state simulator re-
quires an adaptation to the type 1 diabetes phisiology. In fact it does not have
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Fig. 4.1: Scheme of the glucose-insulin control system which puts in relation
the measured plasma concentrations to glucose fluxes and insulin fluxes.

a beta-cell module resembling the pathologic condition and utilize a model of
subcutaneous insulin absorption to simulate the bolus and basal insulin in-
jections. The unit processes of glucose and insulin subsystem are shown in
figure 4.2. The model for each of them was identified from average data with
a forcing function strategy.

The simulator has a virtual population of 100 adult subjects that have dif-
ferent parameter values to simulate different metabolic characteristics such as
glycemic basal value, correction factor etc. For details on the description of
every module equations we refer to the original article [39].

4.2.2 The simulink implementation

The simulator is implemented in a MATLAB/Simulink environment. From
the main code it is possible to set the different settings to be used in the simu-
lation such as meal amounts and times, virtual subjects population, simulation
duration, insulin infusion and glucose infusion.

In figure 4.3 a very high level organization of the simulator is shown. In the
”Padova Open Loop” subsystem (labeled as A in the figure) all the operations
of insulin injection are calculated accordingly to the simulation settings and
their effect is simulated. In this subsystem we implemented our algorithm for
basal insulin modulation. The subsystem ”meal generator” calculates meals
amounts and uses them together with insulin injection information to simulate
the metabolic process in the subsystem labeled as C in figure.
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Fig. 4.2: Unit process models and forcing function strategy: endogenous glucose
production (top left panel); glucose rate of appearance (top right panel); glucose
utilization (bottom left panel); insulin secretion (bottom right panel). Entering
arrows represent forcing function variables, outgoing arrows are model output.

The metabolic process is calculated accounting for the set of differential equa-
tions described in [39], using a S-function, as shown in figure
The Padova open loop subsystem is shown in figure 4.5. The meal time insulin
bolus generator (labeled as A) calculates insulin bolus to be injected at meal
time, the insulin correction bolus calculator (B) the post meal correction bolus
(when abilitated), the insulin modulation subsystem (C) applies the insulin
modulation algorithms.
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4.3 Our simulated scearios

Two different scenarions were implemented to induce hypoglycemia in the
virtual subjects. In the first scenario we recreated the same glucose profiles
of high variable insulin sensitivity described in the brakes algorithm study
whereas in the second we created a more realistic hypoglycemic episodes that
could happen in real life e.g. after a meal because of an higher insulin dosing.

4.3.1 Scenario 1: highly variable insulin sensitivity

In their brakes/power brakes article [33], Hughes et al. reported a tentative of
simulating a highly variable insulin sensitivity (e.g. after a physical activity).
In fact, an increase in insulin sensitivity makes the actual basal insulin delivery
rate too high to achieve euglycemia. In theory, the best way to recreate this
scenario would be to modify the insulin sensitivity of the virtual patient. How-
ever, this results impossible since such a module for rapid and high changes of
insulin sensitivity has not been implemented yet. Therefore to achieve such
a variation of insulin sensitivity, the authors of the paper [33] delivered twice
the amount of normal basal insulin rate to all the 100 subjects, initialized at
glucose concentration of 10 mg/dL, to achieve their respecting fasting glucose
concentration of 112.5 mg/dL.
In figure 4.6 we can see the BG traces and the average value of the 100 virtual
subjects produced during the scenario reproduction which, in our case, was
carried out defining the following settings:

• 32 hours long simulation;

• basal insulin delivery doubling happens starting from the 24h time mark
and lasts until the end of the simulation;

• since the simulator does not allow to set an initial glucose concentration
for the simulation we artificially led the patients blood glucose values
to 150 mg/dL using the glucose infusion rate feature of the simulator
that delivers a specific glucose amount over time to achieve the desired
glucose concentration (150 mg/dL in our case);

• patients basal glucose values were also artifically modified and set to
112.5 mg/dL to mirror the conditions described in the article [33].

4.3.2 Scenario 2: delayed insulin bolus

In the simulator, insulin boluses are calculated optimally therefore it is quite
hard to obtain hypoglycemia in a large amount of subjects. As we can see in
figure 4.7 A, a sample subject is given a correctly calculated insulin bolus at
meal time which happens at 2 hours from the start of the simulation and his
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Fig. 4.6: Insulin sensitivity increase scenario: in different colours the BG
profiles of the 100 simulator subjects, in black the average BG of them.

BG never crosses the hypoglycemic threshold, here visualized at 65 mg/dL.
However, in real-life situations, to perfectly control meal insulin boluses is a
hard task as several mistakes can be made such as erroneous carbs estimation,
bolus injection time delays or wrong correction boluses injections. In this
scenario, we tried to reproduce a situation where a patient assumes a pre-
meal insulin bolus for a meal containing 70g of carbs (correctly estimated)
but forgets to take it at meal time and injects it 30 minutes afterwards. We
will assume that in this scenario the patient is not able to retrieve his pre-
meal BG value therefore calculations for the insulin bolus amount will be
performed using his BG value at the time of the injection. This erroneous
behaviour of the patient is known to cause hypoglycemia and was tested in
the simulator with different amount of delay time to achieve the best scenario
in which a reasonable amount of subjects would go into hypoglycemia for best
results analysis. In figure 4.7 B an example of this scenario is provided. The
30 minutes delay in the bolus injection is enough to cause in the patient an
hypoglycemia that lasts for more than two hours if not treated.

4.4 Our simulink implementation

In the open loop module of the Padova/UVA T1D simulator we inserted a
section that uses the current BG values computed by other sections of the
simulator to calculate the basal insulin attenuation factor through the use of
the algorithms described in section 2.3.1, 2.4 and 3.
The implemented solution that is shown in figure 4.8 features:

• A prediction module (figure 4.9), that performs real-time glycemia pre-
diction using either the linear (LP) algorithm or the AR model based
(AR) one. Input is current BG value and output is predicted glycemia
using the selected PH.
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Fig. 4.7: Delayed bolus scenario: A) regular behaviour, no delay in insulin
bolus injection; B) injection of meal insulin bolus with 30 a minutes delay.

• An attenuation module (figure 4.10), where the basal insulin attenuation
factor is calculated using either the standard risk (SR) or the dynamic
risk (DR). Input values are predicted glycemia and current BG to cal-
culate its derivative. In case prediction is disabled the input is current
BG. Output value is the attenuation factor to be multiplied to normal
basal insulin value.

The simulation settings can be decided using the simulator main code that
sets active or inactive different switch controlling:

• CGM noise presence in prediction input (labeled as X in figure 4.8)

• usage of predicted or true BG value (labeled as Y)

• application of insulin modulation or not (labeled as Z)

In the linear prediction module, visualized in figure 4.11, first the unweighted
average of the BG values received in (t − 10, t] is calculated. Then, using
a delay line together with the current BG value, a linear fit is calculated
using matlab function polyfit. The angular coefficient is selected from the
function output and is multiplied for the PH value and finally summed to the
unweighted average BG value to obtain the prediction. The last subsystem
before the output recasts the data format and checks for negative values.
The AR prediction module (figure 4.12) uses two memory blocks to memorize
the autoregressive model parameters that are updated at every iteration (see
section 3.2). The MATLAB function block computes the model parameters
and the BG prediction using the current and the last BG values.
In the SR module (figure 4.13), the unweighted average of the BG last 15
values is calculated before the SR and the attenuation factor, calculated using
the formula described in [33].
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The DR module (figure 4.14) calculates SR using the BG as input, it then uses
this value, together with the BG current derivative and the dr

dg
to compute DR.

Finally it is restricted to the 20-120 interval similarly to the brakes formula.
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Chapter 5

Results

We used the simulink implementation described in the previous chapter to
try and recreate the results obtained by Hughes et al. with their brakes
algorithm using a SR and make a comparison with the results obtained when
introducing a linear predictor with different prediction horizon (PH) values
(17 and 30 minutes), and when using a DR instead. We then recreated the
delayed bolus scenario in which we evaluated the effect of the brakes algorithm
compared with the DR when using a linear predictor or an AR model based
one, with different PH values.

5.1 Scenario 1: higly variable insulin sensitiv-

ity

A visual example of the application of the insulin modulation algorithms to
one virtual subject when using modulation calculated with SR or DR and
when using different PH. can be seen in figure 5.1 and 5.2.
In figure 5.1a and 5.2a we can see that as insulin delivery rate is doubled the
example virtual subject BG drops into hypoglycemia. The application of the
SR based basal insulin modulation algorithms (figure 5.1b) gradually lower the
basal insulin delivery when BG value begins to fall into the hypolgycemic area,
until reaching a value close to zero. As soon as the BG derivative assumes a
positive value, insulin modulation ceases and basal delivery rate returns to its
previous value. In order to evaluate the algorithms performances we will not
analyze the following BG oscillations and insulin suspension that are cause
to maintenance of the doubled insulin value in this scenario. The application
of the DR makes so that the insulin modulation process is moved up and
attenuation is performed more rapidly. Again the basal insulin delivery rate
value reaches a value very close to zero and then normal delivery is restored
gradually as soon as the patient starts moving away from the hypoglycemic
zone.

In figure 5.3 we can visualize the results obtained on all the 100 virtual sub-
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SCENARIO 1: HIGLY VARIABLE INSULIN SENSITIVITY 5.1

(a) no prediction (b) 17min prediction

Fig. 5.1: Highly variable insulin sensitivity scenario: BG and insulin infusion
when not using insulin modulation (a) and when using SR based insulin

modulation with and without prediction (b). Example on 1 virtual subject.

(a) SR (b) DR

Fig. 5.2: Highly variable insulin sensitivity scenario: BG and insulin infusion
when not using insulin modulation (a) and when using DR based insulin

modulation with and without prediction (b). Example on 1 virtual subject.
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jects. After the initial period where all subjects are brought to a glucose
concentration of 150 mg/dL, the doubling of the basal insulin infusion (hap-
pening at 24h) would cause severe hypoglycemia in the entirety of the subjects
as one would observe in figure 5.3a. When applying the Brakes fed by SR algo-
rithm a noticeable improvement can be seen in the average BG value (black)
although many patients (coloured traces) still experience severe hypoglycemia
for prolonged time. The introduction of DR, as we can see in figure 5.3c,
lowers the amount of patients experiencing hypoglycemia compared to when
using a SR, however is still not able to perform a good prevention in many
cases. The difference in behavior during the recovery phase between SR and
DR is due to the risk formulation. The SR sets risk equal to zero when the BG
derivative is not negative that happens during the recovery phase while the
DR formulation that we provided already produces a different risk behaviour
during the ”fall” and the ”rise” phases.

This difference results in a faster recovery together with a bigger ”rebound
effect” in BG values after the insulin modulation when using DR. Using a 17
min PH (figures 5.3d and 5.3e) produces a big reduction of the number of
patients experiencing hypoglycemia. However, when using SR, some patients
are not able to recovery through the applied basal insulin modulation and
remain under the hypoglycemic threshold. With the same PH, the use of DR
is able to successfully make all the patients recover from the hypoglycemic
area, although some of them still experience hypoglycemia for a period of
time. The modulation performed by using a 30 min PH (figures 5.3f and
5.3g) seems to provide the better prevention, especially when using the DR,
in which case only one patient seems to cross the hypoglycemic threshold.

In figure 5.4 we report the results showing average BG value and SD deviation
for the 100 simulator subjects again when using SR/DR and with different
PH. We can again observe that without the usage of the insulin modulation
algorithm the totality of the subjects would go and remain in hypoglycemia.
Brakes fed by SR are effective on average BG values but not as much for
a considerable portion of subjects, here visualized by the lower double SD
curve. DR introduces an improvement by increasing the minimum BG values
reached by the patients but is still unable to provide complete prevention.
The ”rebound” effect is here seen not to cause hypoglycemia even in extreme
cases (higher double SD curve). The usage of a 17 min prediction seems to
be effectively move up the basal insulin modulation in time for hypoglycemia
prevention in the majority of the cases. By extending the PH to 30 min even
better results are achieved especially when using DR where the lowest SD
curve seems to never cross the hypoglycemic threshold.

From a distinct comparison between the average BG values displayed in figure
5.5a we can see that when BG value is approaching the hypoglycemia region,
DR is able to detect effectively a higher risk in the patient situation resulting
in a faster basal insulin attenuation and a higher average minimum BG value
in the simulator subjects.
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(a) no modulation

(b) SR (c) DR

(d) SR with 17m prediction (e) DR with 17m prediction

(f) SR with 30m prediction (g) DR with 30m prediction

Fig. 5.3: Single BG values and average value (black) of the 100 virtual
simulator subjects in the highly variable insulin sensitivity scenario.
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(a) no modulation

(b) SR (c) DR

(d) SR with 17m prediction (e) DR with 17m prediction

(f) SR with 30m prediction (g) DR with 30m prediction

Fig. 5.4: Average BG value (100 subjects) in highly variable insulin
sensitivity scenario. Blue trace represents average BG and red traces single

(straight line) and double (dashed) standard deviation values.
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(a) no prediction (b) 17min prediction

Fig. 5.5: Comparison between SR (blue) and DR (red). Average values (100
subjects).

In figure 5.5b the same behaviour is observed even when using a prediction
algorithm and higher BG values are maintained. The lengthening of the PH
also produces an advance in the time of activation of the insulin modulation
resulting in better prevention both when using a SR and a DR (figure 5.6a
and 5.6b).

(a) SR (b) DR

Fig. 5.6: Prediction horizon increase effect in SR and DR with no prediction
(blue), 17 min prediction (red), 30 min prediction (green). Average values

(100 subjects).

In table 5.1 the statistical results concerning the amount of hypoglycemic
cases are shown for different hypoglycemic thresholds (70, 60 and 55 mg(dL).
As we can see, without using any modulation algorithm every subjects ex-
perience hypoglycemia. The usage of modulation based on SR is effective
in general but still fails to prevent in 30% of the cases considering an hypo-
glycemic threshold of 70 mg/dL. DR improves the performance, lowering the
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unsuccessful cases to 20%. The 17 min prediction produced a further lower-
ing of the amount of subjects with a BG value below 70 mg/dL, with only 3
subjects below 55 mg/dL. The lengthening of the prediction horizon from 17
to 30 minutes produced a serious improvement in number of prevented cases.
Using a 30 min PH prediction we managed to obtain a almost total prevention
of hypoglycemic events with except for a couple of patients.

70 mg/dL 60 mg/dL 55 mg/dL

no modulation 100 100 100

SR 31 16 12

DR 20 11 8

SR 17 min prediction 14 7 3

DR 17 min prediction 9 3 2

SR 30 min prediction 4 2 2

DR 30 min prediction 2 1 1

Table 5.1: Hypoglycemic events statistics: number of subjects with a least a
BG value below 70/60/55 mg/dL.
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5.2 Scenario 2: delayed insulin bolus

We tried to simulate a scenario in which the patient does not perform a BG
measure before a meal (containing 70 grams of carbs) to calculate the adequate
insulin bolus. He then proceeds to measure his BG with a definite time amount
of delay following the meal and accounts the insulin bolus amount accordingly
to that measurement.

(a) no modulation (b) SR

(c) DR (d) DR (with noise)

Fig. 5.7: Delayed insulin bolus scenario: BG and insulin infusion when not using
insulin modulation (a) and when using SR (b) or DR (c) based insulin modulation

with and without prediction and with noise (d). Example on 1 virtual subject.

A preliminar analysis was performed to evaluate the adequate amount of time
delay that would provide the most interesting statistical distribution regarding
the number of hypoglycemia cases induced on the population and the one that
would be considered reasonably realistic. Following different tries we decided
to use the value of 30 minutes.
In this scenario we evaluated again the efficacy of the brakes algorithm in
preventing hypoglycemia when using a SR or a DR and when using two dif-
ferent prediction algorithm, linear prediction (LP) or ar model based (AR),
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with different prediction horizons (PH).
Finally we used a CGM noise model described by Facchinetti et al. in [40]
in addition to the BG signal in input to the prediction module and evaluated
the different algorithms performance.
An example of the application of the basal insulin modulation algorithms is
shown in figure 5.7 for one example virtual subject. Compared to when not
using insulin modulation (figure 5.7a), SR (figure 5.7b) is able to reduce the
time spent in hypoglycemia by inducing a reduction of the delivery rate of
basal insulin for a duration of 2 hours. DR based insulin modulation (figure
5.7c also appears effective to reduce the time spent in hypoglycemia and to
prevent it completely when using a 30 min prediction even when considering
CGM noise (figure 5.7d).

(a) 17m PH (b) 30m PH

(c) 17m PH with CGM noise (d) 30m PH with CGM noise

Fig. 5.8: Example of glycemia prediction (with and without CGM noise) in one
patient using LP (red) or AR (yellow). True BG value is shown in blue.

In figure 5.8 an example of the prediction performed with LP and AR with
and without CGM signal noise is shown on one virtual patient. We can see
that both algorithms are able to predict efficiently the glucose trend and that
the prediction is effectively in advance of the true value signal by the value of
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SCENARIO 2: DELAYED INSULIN BOLUS 5.2

the PH. Both algorithms predict a bigger peak of BG value than the true one
at meal time, and a slight lower value of BG in the descending phase of the
BG curve, after meal. Even when in presence of noise, as shown in figure 5.8c
and 5.8d, both algorithms seem to be able to provide a quite good estimation
of the BG trend.
Simmetrically to scenario 1, we report the results for the 100 virtual subjects in
figure 5.9 and figure 5.10. We also show in figure 5.9 and 5.10 the calculated
average and SD. We can see that, when using DR, the average value does
not go below the 60 mg/dL threshold and the recovery phase resolves quicker.
Observing the results produced by the use of LP and AR prediction algorithms
we can say that both prediction are able to effectively influence the prevention
of hypoglycemia in average.
We also report some comparisons using only average BG values of the 100
subjects. In figure 5.13a and 5.13b we can see again just like in the previous
scenario that DR is able to prevent hypoglycemia more efficiently than SR.
The difference of performance between the LP and the AR predictor when
using a 17m PH is barely visible, when using a 30m PH, the LP predictor
shows a small advantage (see figures 5.14a and 5.14b)
The increase of the prediction horizon provides better hypoglycemia preven-
tion both when using LP (figure 5.15a) and when using AR (figure 5.15b).
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(a) no modulation (b) SR

(c) SR 17LP (d) SR 30LP

(e) SR 17AR (f) SR 30AR

Fig. 5.9: Single BG values and average value (black) of the 100 virtual simulator
subjects in the highly variable insulin sensitivity scenario. SR based insulin

modulation.
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(a) no modulation (b) DR

(c) DR 17LP (d) DR 30LP

(e) DR 17AR (f) DR 30AR

Fig. 5.10: Single BG values and average value (black) of the 100 virtual simulator
subjects in the highly variable insulin sensitivity scenario. DR based insulin

modulation.
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(a) no modulation (b) SR

(c) SR 17LP (d) SR 30LP

(e) SR 17AR (f) SR 30AR

Fig. 5.11: Average BG value (100 subjects) in delayed insulin bolus scenario.
Blue trace represents average BG and red traces single (straight line) and double

(dashed) standard deviation values.
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(a) no modulation (b) DR

(c) DR 17LP (d) DR 30LP

(e) DR 17AR (f) DR 30AR

Fig. 5.12: Average BG value (100 subjects) in delayed insulin bolus scenario.
Blue trace represents average BG and red traces single (straight line) and double

(dashed) standard deviation values.
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(a) no prediction (b) 17m LP

Fig. 5.13: Comparison between SR and DR when not using prediction (a) and
when using 17m PH LP. Average value (100 subjects).

(a) 17m PH (b) 30m PH

Fig. 5.14: Comparison between LP and AR prediction with 17m (a) and 30m (b)
prediction horizon. Average value (100 subjects).
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(a) 17m PH (b) 30m PH

Fig. 5.15: Effect of increasing PH when using LP (a) or AR (b). Average value
(100 subjects).
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In the previous scenario the totality of the subjects experienced extremely
low BG values for a very prolonged time and therefore virtual death. This
scenario instead represents a more realistic scenario where all the subjects,
with different times, naturally recover from the hypoglycemic state. Therefore
we cannot easily evaluate the algorithms efficacy just by looking at the graphic
results of the 100 virtual subjects combined. Unlike a normal scenario where
no bolus delay is applied (see table 5.2) almost the entirety of the subjects
(70-80%) experience mild or severe hypoglycemia in this scenario.
In order to perform a more thorough analysis we went on calculated together
with the number of hypoglycemia cases similarly to scenario 1, the average
time that a patient would spend with a BG value under the 70, 60 and 50
mg/dL thresholds. Together with this data we calculated the number of sub-
jects that during the simulation spent a time higher than 60, 90 and 120
minutes below the 70, 60 and 50 mg/dL threshold.

70 mg/dL 60 mg/dL 55 mg/dL
Normal 6 2 0

30m bolus delay 82 74 72

Table 5.2: Number of subjects that experience BG values below 70/60/55
mg/dL, normal scenario and bolus delay.

In table 5.3 and 5.4 we report the statistics relatively to the percentage of single
cases prevented. We can see that overall DR is better than SR at preventing
hypoglycemia as it provides better results in every scenario. For example
severe hypoglycemic cases (below 55 mg/dL) went from 47 using SR to 36
using DR. Introducing prediction algorithms resulted in better prevention and
raising the prediction horizon increased the positive effect as well. Using
DR with a 17 minutes prediction algorithm the percentage of subjects below
70 mg/dL went from 70% (normal case) to 50%. Increasing the prediction
horizon to 30 minutes lowered this percentage to around 30%. AR prediction
provided overall sligthly worse results than LP. This difference goes to almost
unnoticed in the 70 mg/dL threshold result to a ∼5% difference in the 50
mg/dL threshold. The introduction of CGM noise in the prediction input
module resulted in a overall slightly higher amount of prevented cases. This
may be due to possible lower than normal BG values detected that triggered
the risk function thus the attenuation in advance and resulted in higher basal
insulin attenuation.
Results when using SR and DR are shown in tables 5.5 and 5.6 respectively.
Once again DR shows better results than SR in every aspect. The average time
below 70mg/dL is reduced from 53% to 43% and the amount of subjects below
70mg/dL for more than 60min is reduced from 50 to 35 when no prediction
is applied. The implementation of a prediction algorithm together with the
DR was effective both when using LP and AR, the average time below 55
mg/dL is decreased by 50% when using a 17m PH and is halved when using
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a 30m PH. The comparison between LP and AR is somewhat in favor of
the LP, consistently scoring lower average times and number of subjects in
hypoglycemia although with very little difference. The introduction of CGM
noise seems again to produce better results in hypoglycemia prevention but
this result can be attributed to erroneous lower than true BG values which
trigger the risk function in advance. Encouraging results can be observed
when using a DR with any predictor and a 30min PH: the totality of the
subjects does not spend a time higher than 90 minutes below the 60 mg/dL
threshold.

70
mg/dL

60
mg/dL

55
mg/dL

no modulation 82 74 72

SR 71 57 47

SR
(noise)

71 57 47

SR AR 17m 66 42 32

SR LP 17m 65 39 32

SR AR 17m
(noise)

60 38 29

SR LP 17m
(noise)

59 36 29

SR AR 30m 54 31 27

SR LP 30m 45 28 23

SR AR 30m
(noise)

48 29 26

SR LP 30m
(noise)

43 27 21

Table 5.3: Number of subjects with a BG value under 70/60/55 mg/dL in
delayed bolus scenario, SR attenuation.
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70
mg/dL

60
mg/dL

55
mg/dL

no modulation 82 74 72

DR 68 45 36

DR
(noise)

68 45 36

DR AR 17m 54 31 28

DR LP 17m 53 31 26

DR AR 17m
(noise)

53 30 26

DR LP 17m
(noise)

55 30 26

DR AR 30m 37 25 23

DR LP 30m 33 24 18

DR AR 30m
(noise)

35 25 21

DR LP 30m
(noise)

32 22 18

Table 5.4: Number of subjects with a BG value under 70/60/55 mg/dL in
delayed bolus scenario, DR attenuation.
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Chapter 6

Conclusions

Continuous glucose monitoring is a promising tool in type 1 diabetes treatment
especially when combined with insulin pump to provide basal insulin delivery
rate modulation.

In this thesis we created a simulink environment starting from the Padova/UVA
type 1 diabetes simulator in which we could test different algorithms for basal
insulin modulation. In particular we were able to successfully recreate a sce-
nario in which hypoglycemia is induced in patients to simulate a highly vari-
able insulin sensitivity situation (scenario 1), as proposed by Hughes et al.
[33] and we created a more realistic scenario of hypoglycemia by simulating a
delayed meal insulin bolus situation (scenario 2). We managed to reproduce
an algorithm for basal insulin modulation based on a standard risk function
and to test its functioning in conjunction with a prediction algorithm pro-
posed by Patek et al. [35]. We evaluated the introduction of a Dynamic
risk, as described in [37] to improve the algorithm performance and a more
complex prediction algorithm based on an autoregressive model, presented by
Sparacino et al. [38].

The reproduction of scenario 1 was useful to recreate the results of Hughes
et al. [33] and test the correct simulink implementation of state of ar basal
insulin modulation algorithms. The implementation of the proposed scenario
2 was necessary to create more realistic hypoglycemic episodes that could
happen in real life and to have a more realistic evaluation of the algorithm
performances in terms of number of hypoglycemia cases prevented and time in
hypoglycemia reduction. The introduction of DR was successful in improving
the performance of every modulation algorithm when compared to SR, induc-
ing a quicker response of the insulin attenuation mechanism when observing
a BG value trend approaching the hypoglycemic region. The prediction algo-
rithms that we implemented were both efficiently able to predict the glucose
trend and reduced the amount of hypoglycemic cases and time spent in hypo-
glycemia in every situation. Among all results, of note that by using DR plus
AR with a 30 minutes PH none of the simulator virtual patients experienced
severe hypoglycemia (< 55mg/dL) for more than 90 minutes, whereas the
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state of art algorithm could not achieve a complete prevention. The compar-
ison between the performances of the LP and the AR prediction algorithms
suggested that no clear improvements are provided when introducing AR,
even if it seems more promising when noisy data are simulated. The reason
is probably the fact that the AR predictor seems to be more effective when
predicting increasing BG trends rather than decreasing BG trends.
Future work will consist in:

• the creation of other different realistic physiological scenarios of hypo-
glycemia to test the algorithm performance, especially when the Padova/UVA
simulator will be provided of new time varying insulin sensitivity mod-
ules or physical activity modules, or in presence of drugs/modifications
that can alter insulin sensitivity;

• the creation of more realistic and challenging scenarios by the ”techno-
logical” point of view by considering more complex/realistic CGM error
modules;

• the development of new bsal insulin modulation strategies that are not
exclusively based on current blood glucose value but take also into ac-
count other important variables such as the effect of the previously in-
jected insulin boluses, e.g. by exploiting the concept of the so-called
insulin on board.
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