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Abstract

[ENG] The current evidence of an accelerated expansion of the universe is briefly discussed from an
historical perspective and in the context of General Relativity, the concept of dark energy is introduced.
The presence of extra mass which doesn’t interact electromagnetically, called dark matter, is also shortly
adressed. Given the fluid equation describing the evolution of the energy density ρ of the universe for
FLRW models, a barotropic non-linear equation of state (EoS) P (ρ) is chosen, specifically the quadratic
form P (ρ) = P0 + αρ+ βρ2, already discussed by Ananda and Bruni in [1]. This particular form serves
as a general approximation for every P (ρ), as it is the Taylor expansion up to the second order about
ρ = 0. The EoS is studied in the high and low energy regimes and ultimately the full EoS is considered.
The cosmological behaviours are discussed and compared. In detail, the change in the free parameters
is explored in its consequences on closed, open and flat geometrical models of space-time, standard and
phantom behaviours are found along with different possibilities for future/past singularities. The whole
analysis is done using the theory of dynamical systems.

Abstract

[ITA] L’attuale evidenza di un’espansione accelerata dell’universo viene brevemente discussa da una
prospettiva storica e nel conteso della Relatività Generale, viene introdotto il concetto di energia oscura.
La presenza di massa in eccesso che non interagisce elettromagneticamente, chiamata materia oscura, viene
anch’essa brevemente affrontata. A partire dall’equazione del fluido che descrive l’evoluzione della densità
di energia ρ dell’universo per i modelli FLRW, un’equazione di stato (EoS) barotropica e non lineare
P (ρ) viene scelta, nello specifico nella forma quadratica P (ρ) = P0 + αρ+ βρ2, già discussa da Ananda
e Bruni in [1]. Questa forma serve in generale da approssimazione per qualsiasi P (ρ), questo perchè
essa è l’espansione in serie di Taylor troncata al secondo ordine rispetto a ρ = 0. La EoS viene studiata
nei regimi di alta e bassa energia ed infine si considera la EoS completa. I comportamenti cosmologici
che insorgono vengono discussi e comparati. Nel dettaglio, una variazione dei parametri presenti viene
esplorata nelle sue conseguenze sui modelli geometrici chiusi, aperti e piatti dello spazio-tempo, vengono
trovati comportamenti standard e comportamenti fantasma assieme a diverse possibilità per le singolarità
future/passate. L’analisi viene fatta con l’ausilio della teoria dei sistemi dinamici.
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Introduction

To create a cosmological model one must first choose a theory of gravity and secondly a way to describe
the energy-matter distribution present in the universe, once these are established, detailed predictions
on the evolution of space-time can be made. In this section we will present the fundamental results of
general relativity (GR), the standard and most experimentally verified gravitational theory, which we will
use, whilst the latter will be taken into consideration in the next section. We will also shortly adress the
presence of ”extra mass” in our universe which doesn’t interact electromagnetically (dark matter), along
with the evidence of an accelerated expansion for our universe and introduce the notion of dark energy,
which is a way to describe the negative pressure that drives this phenomena.

0.1 The expansion of the universe

The building blocks of the theory of general relativity (GR) are the 10, non-linear, Einstein field equations:

Rµν −
1

2
gµνR =

8πG

c4
Tµν (1)

Which connect the sources of the gravitational field, in the form of the stress-energy tensor Tµν , to the Ricci
tensor Rµν and the Ricci scalar R - both contractions of the Riemann tensor Rσ

µνρ - and to the metric tensor

gµν
(1). Rσ

µνρ and gµν give us information respectively on the curvature and the metric of the Riemmanian

manifold which is space-time. Also, G is the universal gravitational constant(2) and c the speed of light in
vacuum(3). Provided that we choose GR as our theory of gravity, these equations tell us that once the
components of the stress-energy tensor are specified, that is, when we specify the matter and energy content
of the universe, we possess all the information necessary to predict the evolution of the entirety of space-time.

There is the possibility, however, to introduce another (constant) term in the Einstein field equations, due
to the fact that these are not unique. In fact, this is exactly what Einstein did when he first proposed
them in 1917, with the equations that read:

Rµν −
1

2
gµνR+ gµνΛ =

8πG

c4
Tµν (2)

Λ was baptised cosmological constant and was originally chosen by Einstein to be positive, in the attempt
to describe a static universe, instead of the expanding/contracting solution predicted in the absence of this
extra term. A way of seeing it is that the effect of a positive Λ is equivalent to that of an ”anti-gravitational”
force, in particular preventing the universe from collapsing onto itself. This choice was proved to be a

1Cf. [6].
2G = 6.674−11kg−1m3s−2

3c = 299792458ms−1

v
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poor one: indeed subsequent works showed that the model was unstable for small perturbations(4), which
led once again to an expanding/contracting solution, hence it was believed it could not arise in the first
place. The final proof of a non-static universe came in 1929, when Hubble first observed(5) the expansion
of the universe formulating the empirical law that takes his name, that is:

v⃗ = H0r⃗ (3)

Here v⃗ is the velocity of recession of the galaxies from us and r⃗ the distance between us and them, H0 is
the present value(6) of the Hubble parameter (7) telling us the current expasion rate of the universe. The
cosmological principle, which states that on the largest scales the universe is spatially homogeneous and
isotropic, assures us that we are not privileged (nor underprivileged) observers, hence every galaxy is
moving away from one another according to Hubble’s law(8). In the scenario of a uniform expansion a
particularly convenient set of coordinates can be chosen: if r⃗ is the position vector connecting the two
celestial objects that we want to consider, the comoving coordinates are such that r⃗ = a(t)x⃗, where x⃗ is
the comoving distance which is constant in time and a(t) is the parameter that takes into account the
actual expansion (or contraction) of the physical coordinates, it is called scale factor. Noticing that the
velocity of recession is the time derivative of r⃗, and using the fact that x⃗ is time independent, we arrive to
a useful expression of the Hubble parameter: H = ȧ/a.(9) We can use this to write the most important
equation of standard cosmology, the Friedmann equation, in the form:

H2 =
8πG

3
ρ− Kc2

a2
(4)

Where K is the curvature of the universe and it can be 0, +1 or −1 respectively for flat, closed and open
models. It is more practical to introduce units such that 8πG ≡ 1 and c ≡ 1, which we will use from now
on, so the equation above becomes:

H2 =
1

3
ρ− K

a2
(5)

The Friedmann equation is the first integral(10) of the autonomous and non-linear system given by the fluid
equation (conservation of energy), which we will meet shortly, and the Raychaudhuri equation describing
FLRW(11) models in a GR context. Specifically, in the chosen units the Raychaudhuri equation reads:

Ḣ = −H2 − 1

6
(ρ+ 3P ) (6)

Now, taking a step back, we had come to the point in which, due to Hubble’s empirical proof of an
expanding universe, the cosmological constant constant that gave rise to a static universe was no more
needed, so much so that it was almost forgotten up until the late 1990s, when a new discovery was made.
Via observations of type Ia supernovas, it was seen for that the universe is expanding at an accelerated

4See the generalized Einstein universes that are found in throughout the analysis that follows.
5Actually, the first evidence of such came from Vesto Slipher in 1912, when he noticed via redshift observations that some

spiral galaxies were moving away from us, although he did not grasp the cosmological implications of the discovery.
6H0 = 100h kms−1Mpc−1 is a standard parametrization. The value of h is currently debated. In 2021 the SH0ES project

measured it as 0.73± 0.01 via standard candles method, while other indirect measures give somewhat lower estimates, such as
0.673± 0.012 by the analysis of the Planck satellite observations. However it is safe to say that h≈ 0.7 within a small error of
the order of a some percent.

7Historically known as the Hubble constant.
8Not taking into account the random motions that galaxies have in respect to one another, that is, ignoring the peculiar

velocities. Without neglecting peculiar velocities Hubble’s law would become: v⃗ = H0r⃗ + v⃗pec. The peculiar velocity of the
Milky Way is approximately 400kms−1, which is somewhat typical for a galaxy. Thus we see that what we just stated works
really well with very distant galaxies, where the vpec doesn’t contribute much, but not for neighbouring galaxies.

9In this script, the dot over the variable will always indicate the time derivative.
10This is true only once an equation of state P = P (ρ) is specified.
11The Friedmann-Lemâıtre-Robertson-Walker metric is the exact solution in GR describing a homogeneous, isotropic,

expanding/contracting path-connected universe.
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rate [8]. One of the possible explanations is to summon the argument of dark energy, an unknown form of
energy that provides the negative pressure needed for the accelerated expansion. In the simplest case,
dark energy can be described as the cosmological constant itself and it is generally accepted in standard
cosmology to be so, although this description is not devoid of problems, as the theoretical predictions of
quantum field theory strongly disagree with the value based on the empirical observations (cf. [9]).

0.2 Dark matter

Returning to the Friedmann equation we see that there is a particular energy density, called critical
density(12) ρC , for which the geometry of the universe at a certain time is flat, that is ρC = 3H2. The
common use is to express the total energy density with the dimensionless density parameter Ω, defined
as Ω(t) ≡ ρ/ρC . This is helpful, in that subdividing ρ in its different contributions gives an idea of how
the energy is distributed in our universe. For baryonic matter, i.e. the ”conventional” matter made
up by protons and neutrons (the elements gathered in the periodic table), the current estimate gives
ΩB ≈ 0.05(13). We know that the current energy density of the universe is close to the critical value, at
least within 10%, so in total Ω must be pretty close to 1. The dark energy contribution is estimated
to account for approximately 69% of the total energy density, so we are left with approximately 26% of
energy of unseen matter, namely:

ΩCDM ≈ 0.26 (7)

The CDM subscript stands for ”cold dark matter”. Cold in the sense that at the present time it is
non-relativistic, and dark matter in that we don’t really know of what it is made up of, if it is one or
more species of particles and so on. This is due to the fact that such matter does not interact with
electromagnetic fields and our experimental evidence of its presence is indirect. Although we will not adress
the evidences of dark matter in this script, we mention that proofs of its presence come from gravitational
arguments like the analysis of galaxy rotation curves, gravitational lensing observations, the theory of Big
Bang Nucleosynthesis (BBN), the analysis of the cosmic microwave background (CMB) and so on.

0.3 The fluid equation and dark energy

Although a rigorous derivation of the fluid equation has to take into account GR, we can derive it by using
some simple and general thermodynamical arguments. In fact, conservation of energy can be expressed as
the first law of thermodynamics, that is

dE + PdV = TdS (8)

Here E, V and T are, respectively, the internal energy, the volume and the temperature of the system. P
is the pressure (force per unit area) exerted by the system on the environment and S is the entropy. If we
consider a gas trapped in a box of volume V , a reversible(14) adiabatic expansion is one for which there is
no exchange of energy in the form of mass or heat, in other words the only variation of energy is given by
the work done by the gas particles in order to move the sides of the box. In this case the variation of
entropy is zero, and, invoking the time dependence of the first law we arrive to

dE

dt
= −P

dV

dt
(9)

12At the present time, with H0 as Hubble parameter, we have the estimate: ρC = 2.78h−1 × 1011
M⊙

(h−1Mpc)3
, where

M⊙ ≈ 2× 1030kg is the solar mass and the megaparsec is Mpc = 106pc = 3.261× 106 light years = 3.086× 1022m.
13For these and the following estimates see [7] (cf. also [5]).
14In a thermodynamical sense this means that every change in the system happens via infinitesimal quasistatic variations of

its extensive properties (pressure, temperature, ...), so that the change can be reverted and the initial state reobtained. In
this way the process is continuous as at each moment the system passes through states of equilibrium.
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Replacing the gas with a fluid of time dependant energy density ρ(t) inside a region of co-moving spherical
volume V0 will serve us as model for an expanding (or contracting) universe. The change in time of the
volume is

V (t) =
4π

3
r3(t) =

4π

3
a3(t)x3 = a3(t)V0 (10)

This means that
dV (t)

dt
= 3a2(t)ȧ(t)V0 (11)

On the other hand, we can write the total energy of the fluid in the volume as

E(t) =
4π

3
r3(t)ρ(t) = a3(t)V0ρ(t) (12)

Hence
dE(t)

dt
= 3a2(t)ȧ(t)V0ρ(t) + a3(t)V0ρ̇(t) (13)

Altogether with the first law of thermodynamics we arrive to the fluid equation

ρ̇ = −3H(P + ρ) (14)

In order to solve this differential equation, an equation of state (EoS) for the pressure is needed. It
is generally assumed that a unique pressure is associated with each energy density (barotropic fluid),
P = P (ρ). Once this is set, the model for the universe is complete. In standard cosmology it is usually
taken into consideration a linear EoS of the form P = wρ, for example for standard baryonic matter (non
relativistic, pressurless) w = 0, for radiation w = 1/3. However, an accelerated expansion for the universe
is achieved only for w < −1/3(15), for which the fluid behaves as what has been dubbed ”dark energy”.
The simplest form of dark energy is indeed the cosmological constant itself, for which w = −1. In fact,
describing Λ as a fluid with the energy density:

ρΛ = Λ = const. (15)

We can add it up to the energy density ρ of the fluid in the Friedmann equation:

H2 =
1

3
(ρ+ ρΛ)−

K

a2
(16)

The fluid equation for ρΛ gives:
ρΛ = −PΛ (17)

Hence ρΛ provides the negative pressure needed for the accelerated expansion, as desired. It is important
to note that we haven’t made any implicit assumption on what dark energy actually is, we just described
it as a fluid that - in general - causes the negative pressure needed. This said, dark energy is generally
associated with the energy density of vacuum, moreover, as we have said, in the framework of the standard
cosmological model theoretical predictions for Λ give a value that is way larger than the estimates derived
by empirical data(16). This, together with the need to take into account, inside the Friedmann equation,
also for a dark matter component, leads to consider alternative possibilities that reproduce the dark energy
behaviour without leading to discrepancies with observations. One of the possibilities is to modify the
EoS and explore what kind of models arise in different scenarios and this is the road that we will take in
the present script.

15See the next chapter.
16This is known as the ”cosmological constant problem”.



The Quadratic Equation of State

In this chapter we will introduce the specific form of the EoS that we will analyze. The different regimes at
which we will look will be presented, together with the tools that will be used to understand the dynamics
of the solutions. Some first considerations on the essential behavioural traits of the solutions are adressed.

0.4 Effective cosmological constant

Let us recall the fluid equation:
ρ̇ = −3H(ρ+ P )

We immediately see that if P = −ρ we meet a stationary point for the energy density, this due to the time
derivative becoming zero. It is exactly what happens for the cosmological constant fluid, as previously seen.
Because of this we will say that, for the general barotropic EoS P = P (ρ), if there exists a ρΛ such that:

P (ρΛ) = −ρΛ (18)

Such ρΛ acts as an effective cosmological constant, because it plays the same role for the dynamical system
of that given by a cosmological constant term. We note that nothing prevents, in general, from the
possibility that more than one ρΛ is present: this will depend on the specific form of P (ρ).

0.5 Accelerated phases and asymptotical tendencies

Given that H ≡ ȧ/a, differentiating the Hubble parameter in respect of the time t yields:

Ḣ =
ä

a
− ȧ

a2
· ȧ (19)

Which means that:

Ḣ +H2 =
ä

a
(20)

Since ä is the parameter that regulates the acceleration/deceleration of the expansion or of the contraction
of the universe, taking into consideration (6), an accelerated phase is achieved for(17):

P (ρ) < −ρ

3
(21)

In addition to this, we can rewrite (14) in a convenient form to characterize another kind of behaviour.
Defining τ ≡ ln a we have that dτ = da/a, which leads to:

dρ

dt

1

H
=

dρ

dτ
(22)

17This limited only to the case in which we use General Relativity as our theory of gravity. Generally speaking, other
theories may produce different conditions for such behaviour.

ix
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Here we assume H > 0. Using (14) we arrive to:

dρ

dτ
= −3[ρ+ P (ρ)] (23)

We find that if ρ+ P (ρ) < 0 we meet a region in which the fluid behaves counterintuitevely. In fact, in
this region an expansion of the universe provides an increase in the energy density, whilst on the other
side a contratcion leads to a decrease of the latter (see [12, 13]). A cosmological fluid that follows this
dynamic has been called phantom fluid [11]. We see that, if there are fixed points (one or more) for (23),
they are ρΛ. These points behave as attractors(18) for (23) if ρ+ P (ρ) < 0 (phantom fluid) for ρ < ρΛ and
ρ+ P (ρ) > 0 (standard fluid) for ρ > ρΛ, meaning that the orbits which asympotically approach ρΛ do so
in the future. Vice versa, if the opposites of all the conditions we just mentioned are met, the point is a
repeller (i.e. an attractor in the past). If ρΛ satisfies ρ+ P (ρ) < 0 or ρ+ P (ρ) > 0 for both ρ < ρΛ and
ρ > ρΛ, the point is a shunt(19).

0.6 The EoS and its regimes

In our analysis, following the trail set by Ananda and Bruni in [1], we will take into consideration a
non-linear equation of state for the cosmological fluid and do a Taylor expansion about ρ = 0, which gives:

P (ρ) = P
∣
∣
∣
ρ=0

+ ρ · dP
dρ

∣
∣
∣
ρ=0

+
ρ2

2
· d

2P

dρ2

∣
∣
∣
ρ=0

+ O(ρ3) (24)

It can be proved [10] that - by a regrouping of terms - the Taylor expansion truncated at the second order
and done about the present day energy density ρ0 can be written in the general form:

P (ρ) = P0 + αρ+ βρ2 (25)

The three free parameters P0, α and β reproduce, by varying, many different cosmological scenarios, which
will be the focus of our study. It is important to stress that this is an approximation valid for every
non-linear barotropic EoS, hence the generality, and it includes the exact one only if the quadratic EoS in
”the correct one” for a specific set of parameters. From this standpoint we will investigate which of these
dark energy models could possibly be closer to the reality as we know it, furthermore it is possible that
these kind of EoS allow also for the description of dark matter, providing a framework for the so called
Unified Dark Matter (UDM) models. The latter try to unify the two concepts under a single entity, which
could explain a possible influence exerted by dark energy in the process of clustering undergone by dark
matter [2]. Albeit stricly relevant, the topic of UDM won’t be adressed in the present script, we will focus
instead solely on the dark energy component.

In order to gain a more detailed understanding of the behaviours that may arise from the chosen
EoS, the analysis will be at first subdivided in two different regimes: the high energy regime will be the
limit case in which the energy density term is predominant, we will study the equation:

PHE(ρHE) = αρHE + βρ2HE (26)

And the low energy regime will be the limit in which the quadratic term becomes neglectable, the equation
this time will be:

PLE(ρLE) = P0 + αρLE (27)

The subscripts HE and LE refer to the ranges of energy density and they serve as a reminder that the
two equations presented are limit cases of the full EoS, which will be presented in our last analysis.

18See the section ”Characterization of fixed points in a dynamical system” for detailed prescriptions on the nature of
equilibriums in the theory of dynamical systems.

19A shunt is an attractor for one of the orbits that asymptotically approaches it and a repeller for the other one.
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0.7 Singularities

With our choice of the EoS, the singularities that may arise are much richer than the standard ”Big
Bang/Big Crunch” asymptotical behaviours, for example we will encounter cases in which the energy
density or the scale factor diverge, or possibly both (in a phantom region). In detail, we will say that a
certain singularity is a Big Bang if a → 0 and ρ → ∞ in the past, Big Crunch if the same condition happens
in the future. Furthermore - provided that t⋆, a⋆ ( ̸= 0), ρ⋆ and |P⋆| are constant values respectevely of
t, a, ρ and |P | to be determined - as done in [1] (cf. also [14], [16]) we will classify the other possible
singularities in the following manner:

1. Type I ( or Big Rip) if, for t → t⋆, we have that a → ∞, ρ → ∞ and |P | → ∞.

2. Type II (or Sudden) if, for t → t⋆, we have that a → a⋆, ρ → ρ⋆ or 0 and |P | → ∞.

3. Type III if, for t → t⋆, we have that a → a⋆, ρ → ∞ and |P | → ∞.

4. Type IV if for t → t⋆ we have a → a⋆, ρ → ρ⋆ or 0, |P | → |P⋆| or 0 and the derivatives of H diverge.

0.8 Characterization of fixed points in a dynamical system

Let us consider the following planar system of differential equations involving the first time derivatives of
the energy density and of the Hubble parameter:

{

ρ̇ = X1(ρ,H)

Ḣ = X2(ρ,H)
(28)

If we define the vector z = z(t) ≡ (ρ(t), H(t)), (28) can be expressed in terms of the vector field
X = (X1(z), X2(z)) as:

ż = X(z) =

[
ρ̇

Ḣ

]

(29)

The fixed points of the system are - if they exist - those z = z̄i who satisfy X(z̄i) = 0, namely the stationary
points of the vector field. The information on the dynamical nature(20) of these points can be gained by
carrying out a spectral analysis of the linearization of X(z) about z̄i, which gives us an insight on how
the solutions behave in the tangent space of X(z̄i), so the validity is local. All this is done by finding the
eigenvalues λi of the system’s Jacobian matrix, JX(z) = (∂Xi/∂zj)i,j=1,2, and evaluating them in each
one of the fixed points. In detail, a sufficient condition for instability would be that at least one of the two
eigenvalues has positive real part (Re{λi} > 0 for some i); on the other hand a necessary condition for
stability would be that all eigenvalues have negative real part (Re{λi} < 0 for all i). Moreover, for an
autonomous planar system like this one there is a specific categorization: if the eigenvalues have nonzero
real part the fixed point is said to be hyperbolic, specifically: an attractor(21) if both eigenvalues have
negative real part and a repeller(22) if both have positive real part, else it is a saddle(23). If eigenvalues
are purely imaginary the fixed point is said to be a center(24).

20Cf. [3].
21Small perturbations (meaning a local validity) will bring back the system to this (stable) equilibrium. The phase portraits

in the neighbourhood of such points are inward nodes or inward spirals.
22Solutions tend to ”run away” from these points, hence the equilibrium is an unstable one: in fact small perturbations

won’t allow for the system to return in place. Here we locally have outward nodes or outward spirals.
23In this case the behaviour is hybrid, depending on which direction the perturbation is carried out, but there is no general

stability.
24Phase portraits are locally ellipses.



High Energy Regime

As we previously mentioned, for high enough energy densities the quadratic term becomes the dominant
one in the EoS and in comparison the constant pressure P0 becomes irrelevant. In the present chapter we
will analyze the specific case in which, for α, β ̸= 0, we have:

PHE = αρHE + βρ2HE (30)

Inserting this equation in (14) and integrating from an arbirtary time t0 to t yields:

ρ̇HE = −3
ȧ

a
[ρHE(α+ 1) + βρ2HE ]

∫ t

t0

1

[ρHE(α+ 1) + βρ2HE ]

∂ρHE

∂t′
dt′

α ̸=−1
= − 1

α+ 1

∫ t

t0

{

−(α+ 1)

ρ2HE

1

[ 1
ρHE

(α+ 1) + β]

}

∂ρHE

∂t′
dt′ = −3

∫ t

t0

1

a

∂a

∂t′
dt′

1

α+ 1
ln

∣
∣
∣
∣

α+ 1 + βρHE

ρHE

ρ0
α+ 1 + βρ0

∣
∣
∣
∣
= 3 ln

a

a0

ρHE(a) =
ρ0(α+ 1)

(α+ 1 + βρ0)
(

a
a0

)3(α+1)
− βρ0

if α ̸= −1

Whilst otherwise we have:
∫ t

t0

1

βρ2HE

∂ρHE

∂t′
dt′ = − 1

β

(
1

ρHE
− 1

ρ0

)

= −3 ln
a

a0

ρHE(a) =

(
1

ρ0
+ 3β ln

a

a0

)−1

if α = −1

Where ρ0 = ρHE(t0), a0 = a(t0). For this script we will consider only the case in which α ≠ −1, in
order to focus on the broader spectrum of possible values for this parameter, which have not been largely
investigated yet(25).

If we want to obtain an effective cosmological constant we need to impose the constraint PHE(ρΛ) = −ρΛ
and see if some ρΛ satisfies it, if we do so we obtain:

ρΛ(α+ 1 + βρΛ) = 0 (31)

Excluding the trivial case(26) in which ρΛ = 0, we can define:

ρΛ ≡ − 1

β
(α+ 1) (32)

25This equation of state with the choice of α = −1 has already been investigated as a dark energy model in [14, 15].
26That is of no relevance for our problem since we are looking at ”high” energy densities, meaning high enough to be

dominant in comparison to P0. Surely high enough to be greater than zero, supposing for the general case 0 ̸= P0 ≪ ρHE ,
whatever the order of P0 may be.

xii
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Regarding as physical only non-negative values of the energy density and not considering ρΛ = 0 implies
that ρΛ is an effective cosmological constant only if:

1

β
(α+ 1) < 0 (33)

That is: α < −1 and β > 0 or vice versa.

Now, let us recall the functional form of the energy density that we will study:

ρHE(a) =
ρ0(α+ 1)

(α+ 1 + βρ0)
(

a
a0

)3(α+1)
− βρ0

(34)

Before proceeding by splitting the analysis in the various subcases (based on the range of the parameters),
we will show a specific case of how the analytical results that follow are obtained. For example, let us
consider a negative nominator for (34): the denominator must be negative as well, or else we would have
an overall negative energy density, so:

(α+ 1 + βρ0)

(
a

a0

)3(α+1)

< βρ0 (35)

This gives rise to an ulterior categorization. To begin with, if α+ 1 + βρ0 > 0 we have that:

ρ0 > −α+ 1

β
=⇒

(
a

a0

)3(α+1)

<

(

1 +
α+ 1

βρ0

)−1

a < a0

(

1 +
α+ 1

βρ0

)− 1
3(α+1)

︸ ︷︷ ︸

⋆

≡ a⋆
(36)

An additional condition arises that has to be satisfied: in order to exist for all α < −1 the term (⋆) must
be positive. This leads to the further restriction −1− βρ0 < α < −1. The only other possibility is that
α+ 1 = −n for n ∈ N/{0} which gives an odd 3n-root, allowing for a negative radicand. In this subcase
the scale factor a = a(t) satisfies a < a⋆, hence the expansion cannot continue to infinity, but a Type III
singularity is admitted in the future. We can infer this by evaluating the following relevant limit:

ρHE(a) =
(α+ 1)

β

[(
a
a⋆

)3(α+1)
− 1

]
a−→a−⋆−→ ∞ (37)

On the other hand, if α+ 1 + βρ0 < 0:

ρ0 < −α+ 1

β
=⇒ a > a⋆ (38)

Here the Type III singularity is admitted in the past.

To divide the study in cases with different behaviours, we begin by looking at when ρΛ doesn’t de-
fine an effective cosmological constant. We will then look at when it does define one and see wether the
fluid belongs to a standard or phantom portion of the phase space, this will be determined by the range of
the energy density, as ρΛ (that is now a physical energy density) acts as a separatrix between such regions.
The informations on the dynamics of the solutions - for the different curvature terms (K = 0,±1) - are
gained via the stability analysis presented in the following sections of this chapter. The three cases we
have to look at are:
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1. A: ρΛ < 0

Using the definition of a⋆ that we found in (36), the constraint we have suggests that we can
write:

ρHE(a) =
|α+ 1|

|β|
[(

a
a⋆

)3(α+1)
− 1

] (39)

However, there are two possibilities that yield ρΛ < 0, namely:

• A1 : α > −1 and β > 0. Imposing a positive energy density implies that a⋆ < a < ∞, and since:

lim
a→a⋆

ρHE = ∞, lim
a→∞

ρHE = 0 (40)

The energy density here falls in the range 0 < ρHE < ∞. Closed models can have a bounce
behaviour, reaching a minumum value of the scale factor (a⋆) and after that re-expand, or
evolve with a standard bounce at a minimum energy density and scale factor from/to a Type
III singularity. Open and flat models display solutions that, once again, can have a past/future
Type III singularity and they are correspondigly asymptotical to the fixed point A1 (Minkowski
universe), this can happen also for a specific subset of closed models.

• A2 : α < −1 and β < 0. Here we have 0 < a < a⋆ and the relevant limits for ρHE in this range
of the scale factor give the exact opposite results of (40), so in the end we find once again
0 < ρHE < ∞. What we see through the limits, since (39) is monotone, immediately tells us
that in this case the fluid has phantom behaviour, as the energy density increases when the
scale factor does so, and vice versa. A future singularity for a = a⋆ is present, for the closed
models this singularity is met also in the past and the motion of such solutions is that of a
phantom bounce: a contraction takes place, the minimum for both a and ρHE are reached, then
the universe re-expands.

2. B : ρΛ > 0 and ρHE > ρΛ

We can write:

ρHE(a) =
ρΛ

1−
(

a
a⋆

)3(α+1)
(41)

Again, due to the form of ρΛ we meet two subcases:

• B1 : α < −1 and β > 0. For the scale factor we find: a⋆ < a < ∞. This means that:

lim
a→a⋆

ρHE = ∞, lim
a→∞

ρHE = ρΛ (42)

So ρΛ < ρHE < ∞. The behaviour of the fluid is standard. In general, flat and closed models
have a past/future singularity for a = a⋆. Closed models display substantial difference depending
on which regions the initial conditions fall. Some of them have a singularity in the past/future
as the open and flat models do, others contract reaching a minimum scale factor and then
re-expand until the finite energy density present at the beginning is met again.

• B2 : α > −1 and β < 0. Here 0 < a < a⋆ and consequently ρΛ < ρHE < ∞, although this
time we are in presence of a phantom fluid. The solutions all have past/future singularities,
open and flat models are asymptotical in the future/past to ρΛ, whilst closed models undergo a
phantom bounce at minimum scale factor and energy density.
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3. C : ρΛ > 0 and ρHE > ρΛ

For this case we have:
ρHE(a) =

ρΛ

1 +
(

a
a⋆

)3(α+1)
(43)

With the two subcases that arise:

• C1 : α < −1 and β > 0. Here we have 0 < a < ∞, which means that 0 < ρHE < ρΛ with a
phantom behaviour for the solutions. No singularities are met, the solutions approach in the
past/future the finite energy density ρΛ. Flat models in this subset are, in the future/past,
asymptotical to a Minkowski universe. Closed models undergo a phantom bounce before
re-approaching ρΛ.

• C2 : α > −1 and β < 0. Again, 0 < a < ∞ and 0 < ρHE < ρΛ, this time with a standard
behaviour. Apart from that, here the main difference from C1 is that closed solutions have
another type of behaviour: they can either - depending on the subset - contract to a minimum
a and ρHE to then re-expand into a static universe devoid of matter, or oscillate infinitely
between two values of the energy density and of the scale factor.

0.9 Preliminary stability analysis: high energy regime

If we insert (30) in the autonomous system given by the fluid equation and the Raychaudhuri equation we
obtain: 





ρ̇HE = −3HρHE(α+ 1 + βρHE)

Ḣ = −H2 − 1

6
ρHE(1 + 3α+ 3βρHE)

(44)

The fixed points (constant orbits) are found simply by looking at the zeros of the vector field associated
to the system, namely ρ̇HE = Ḣ = 0. With ρ̇HE = 0 we find H = 0 or ρHE = 0 or ρHE = −(α+ 1)/β,
together with the second equation for Ḣ = 0 we arrive to what follows:

Name ρHE H Existence

A1 0 0 ∀α, β
A2 −1+3α

3β 0 α
β < − 1

3β

A3 −α+1
β +

√

−α+1
3β

α
β < − 1

β

A4 −α+1
β −

√

−α+1
3β

α
β < − 1

β

Existence conditions for the fixed points have been set imposing a positive energy density, which also
grants the existence of the square root in R appearing in A3 and A4. We will see if these conditions
are met later in the analysis. It is interesting to note that A1 corresponds to a Minkowski space-time,
for it is a static solution for the Einstein field equations in vacuum, i.e. a non-expanding/contracting
universe devoid of matter. It will be interesting to analyze the stability of A1 and see if small perturbations
around it can lead to very different types of solutions. A2 is instead a generalization of what goes by
the name of ”Einstein universe”: a static solution with a non-zero density of matter. Here to, it will
be crucial to look at the stability of this point to understand if, in the different cases, it is a possibility
for the past/future evolution of the present universe. To conclude, A3 and A4 are generalized(27) de
Sitter/anti-de Sitter(28) universes, which are spatially flat models: as we will see, they lie on symmetrically

27Originally a de Sitter universe contains no ordinary matter.
28de Sitter has a positive, in this case effective, cosmological constant, leading to an expansion. Anti-de Sitter has a negative

one, for the universe in this case contracts.
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opposite points on the parabola given by the Friedmann equation in the case in whichK = 0 (flat geometry).

The Jacobian matrix of (44) reads:

JHE
X (ρHE , H) =

[
−3H(α+ 1 + 2βρHE) −3ρHE(α+ 1 + βρHE)
−1

6(1 + 3α+ 6βρHE) −2H

]

(45)

Evaluating JX in each one of the fixed points and subsequently calculating the eigenvalues λ1, λ2 for these
matrices gives the following results:

Fixed point λ1(Ai) λ2(Ai)

A1 0 0

A2 1+3α
3

√
1
β −1+3α

3

√
1
β

A3 −2
3

√

−3(α+1)
β (α+ 1)

√

− 3
β (α+ 1)

A4 2
3

√

−3(α+1)
β −(α+ 1)

√

− 3
β (α+ 1)

The classification of the eigenvalues according to the criteria explained in the former chapter will be now
done case by case. We will start by considering the sign of β, and name HE1 the case in which β > 0,
HE2 the one in which β < 0. We will then consider the different subcases generated by varying the range
of α.

0.10 HE1: β > 0

In this scenario the eigenvalues for A2 are real and opposite so, as long as α ̸= −1/3, the point is a saddle.
A3 and A4 are respectively an attractor and a repeller when they are real. To sum it up:

Fixed point Stability

A1 Undefined
A2 Saddle if α < −1

3 and ∄ otherwise
A3 Attractor if α < −1 and ∄ otherwise
A4 Repeller if α < −1 and ∄ otherwise

We will now split the case, according to the existence conditions of the fixed points, in three subcases.
For all the phase portraits in the script we will choose the following conventions: the fixed points will be
marked by red dots; the stable/unstable orbits which subdivide the phase space in regions with different
behaviours will be marked in green; each region of the phase space will have a typical behaviour and
the orbits in blue will depict particular solutions that describe this broader behaviour; the fixed points
lie on the intersections of the nullclines, which correspond to the dashed lines; the arrows in light grey
will describe the motion of the solutions in different points of the phase space; lastly, for reference, the
equation used to obtain the phase portrait will be shown on the top left, in light blue. For physical reasons
the region in which the energy density is negative will not be shown, while for H we consider all values
and we note that contracting models have H < 0, static ones have H = 0 and expanding models H > 0.

• HE1.1 : α < −1. Selecting, for example, α = −3
2 and β = 1, for which the conditions studied in this

section are met, the underlying phase portrait is obtained:
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Imposing K = 0 in the Friedmann equation gives a spatially flat cosmological model, the parabola
H2 = ρHE/3 acts as separatrix for open models (K = −1), whose trajectories lie underneath it, and
closed models (K = 1) whose trajectories lie above it. In detail: (a), (b), (e) and (f) are closed,
every other one represented is open. The horizontal nullcline (phantom separatrix ) intersecting A3
and A4 separates two regions with very different dynamics: underneath it lies the phantom region
(corresponding to the subcase C1), for the fluid behaves increasing in energy density as the universe
expands for H > 0 and vice versa for H < 0. Over this nullcline is the area where the fluid behaves
in a standard manner (subcase B1), increasing if the universe shrinks in size and decreasing if it
expands. The orbits (a) and the unlabelled one to its right represent solutions that move away from
the anti-de Sitter universe present in A4, asymptotically approaching an always faster contracting
universe with energy density that tends to infinity, the only difference here is that (a) is relative to
an open universe whilst the other orbit is for a closed one. (b) moves away from A4 and evolves
to a contracting universe with null energy density, and represents an open model. Simmetrically,
on the other side (e) evolves from a universe that has an infinite Hubble parameter to a universe
that is still expanding but at a finite rate, which reaches a finite energy density (A3) of a flat de
Sitter universe in the future, the model is open. The (d) orbit escapes an anti-de Sitter universe, it
contracts while the energy density falls, it gradually approaches a stationary point after which the
expansion starts and the energy density rises, to end in A3 (de Sitter) in the future, this is also an
open model. (c) is similar in some aspects, since it escapes A4 and reaches A3 in the future, but the
fluid behaves in a standard manner and the orbit represents a closed model. The regions to which
(c) and (d) belong undergo what is dubbed, respectively ”non-phantom/phantom bounce”, for the
motion which is undergone. The orbit (f) and the one to its left are respectively for open and closed
models, other than this they both evolve by moving away from a past Type I singularity into an
expanding flat universe in the future, the energy density decreases approaching the value of A3. At
last, (g) is the kind of solution that evolves from a past Type I singularity with an infinitely positive
Hubble parameter and energy density, to the same kind of singularity but with an infinitely negative
H and ρHE , the model is closed. As mentioned A1, A3 and A4 are stationary orbits describing a
flat universe. The upper two green lines are orbits that approach (right) and escape (left) A2, which
is a closed stationary solution. The two green lines below A2 are evolving from A2 to A3 (right) and
from A4 to A2 (left), they are closed models. The linear stability methods left A1 undefined, but it
can be seen that, locally, the orbits above H2 = ρHE/3 flow from left to right, as does the parabola
itself (starting in A4 and ending in A3), whilst under it the flow lines come in from the right and
out from the left, but never touching A1 and instead diverging towards A3 and A4 respectively, as
(e) and (b) do.

• HE1.2: −1 < α < −1
3 . For the following phase portrait we have set α = −2/3 and β = 1:
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We see that, for this specific subcase, the fluid exhibits a standard behaviour in all of the phase space
(A1 ), the phantom separatrix is absent. The parabola in green corresponds to the flat models, above
it lie the closed ones, below it the open ones. The (a) orbit evolves leaving a Minkowski universe
(the fixed point A1) towards a Type III singularity, on the other hand (f) does the symmetrical
opposite under time reversal, they are both closed models. (b) and (d) behave respectively as (a)
and (f), but they are open models. (c) evolves by moving away from the Minkowski universe in A1,
entering a contracting phase in which a minumum value of the scale factor is reached, the trend
then reverts and an expansion takes place until A1 is reached again in the future (standard bounce
model). The (g)-type orbits are turn-around models: the universe leaves a Type III singularity,
reaches a maximum scale factor, then contracts again into a Type III singularity. The orbits that
lie on ρHE = 0 leave (H < 0) or approach (H > 0) the Minkowski universe present in A1. The
green orbits that connect A1 to A2 (Einstein static universe) in H < 0 move from A1 to A2 while
contracting, the ones in H > 0 move from A2 to A1 whilst expanding. The green orbits above the
Einstein static universe leave (H < 0) or approach (H > 0) A2 with a Type III singularity on the
other side of the evolution.

• HE1.3: α ≥ −1
3 . To obtain the phase portrait below we have set α = 1 and β = 1:

Again, as we found for the previous subcase, all solutions behave in a standard manner, as the energy
density increases for a contracting universe, it decreases for an expanding one. The only fixed point
that still exists in the ρHE > 0 region, under these conditions, is the Minkowski universe (static, zero
energy density) in A1. The (a)-type and (b)-type orbits correspond to open models which respectively
leave/approach A1 to/from a Type III singularity. From the green parabola - on which models with zero
curvature lie - above, all solutions start and end in a Type III singularity, as the (c) solution (an example
of a closed orbit in this region) does.
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0.11 HE2: β < 0

In this case A2 presents, when it exists, purely imaginary eigenvalues, which makes it a center. On the
contrary when A3 and A4 exist they assume saddle nature, A1 remains undefined. Summing up we have:

Fixed point Stability

A1 Undefined
A2 Center for α > −1

3 and ∄ otherwise
A3 Saddle for α > −1 and ∄ otherwise
A4 Saddle for α > −1 and ∄ otherwise

• HE2.1: α < −1. Here we have set α = −3/2 and β = −1:

Only A1 exists as fixed point in this subcase. The phase space for ρHE > 0 (physical region)
all behaves in phantom manner (condition A2 ). (a) and (b) are open models and they evolve
leaving/approaching a Type III singularity in the past/future, (a) contracts asymptotically towards
a universe with null energy density and (b) expands its way leaving such universe. Closed models,
such as (c), start and end in a Type III singularity, with a turn-around fashion: a minimum a is
reached before an the trend inverts. The parabola in green represents the flat models - it is also
the separatrix between open and closed models, as in all the other cases - in H < 0 solutions leave
a Type III singularity to approach a Minkowski universe (A1), in H > 0 the solutions have the
opposite behaviour.

• HE2.2: −1 < α < −1
3 . Choosing α = −1/2 and β = −1 gives the following phase portrait:

Here the Einstein universe, corresponding to the fixed point A2, is absent. The phase space is
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separated, by the green horizontal line (ρHE = ρΛ) on which A2 and A3 lie, in two regions: above it
the solution portray phantom behaviour (B2 ), below it a standard one (C2 ). In detail, the orbits (b),
(c) and (d) behave in a standard manner, whilst (a), (e) and (f) are phantom models. The parabola
that connects the orbits for flat space-time models with K = 0 is shown, the fixed points A4, A1 and
A3 lie on it. As for all the other cases, closed models lie over it, open ones under it. Starting from
(a), this open phantom model evolves leaving a Type III singularity and approaching the phantom
separatrix whilst contracting more and more. (b) escapes from the fixed point A1 (Minkowski), the
energy density increases as the universe contracts, eventually reaching the phantom separatrix as
well, the model is open. (c) is closed and exhibits a bounce behaviour, it leaves A1 while contracting,
reaching a finite value of the scale factor (the contraction then arrests) and energy density - at the
intersection with the vertical nullcline - then the trend reverses: an expansion takes place while the
energy density decreases, eventually reaching the static and flat universe A1 in the future. The (d)
and (e) orbits are the symmetrical opposites (inverting future and past) of, respectively, (b) and (a).
The region where (f) lies reunites orbits that start and end in a Type III singularity (turnaround
models), passing through a phantom bounce phase.

• HE2.3: α ≥ −1
3 . In the phase portrait that follows we have selected α = 1 and β = −1:

The fixed point A2 reappears, this time with a center-type nature. The behaviour of (a), (b), (d),
(e), (f) and the orbits that lie on the separatrices remains the same as it is described for the HE2.2
phase portrait. The only difference is for the region to which (c) belongs: these closed non-phantom
models evolve as concentric orbits around A2, which is a generalized static Einstein model. Orbits
of this kind contract and expand periodically for infinity while the energy density decreases and
increases correspondingly, the reversal of the trend is met on the intersections with the vertical
nullcline, on which the maximum and minimum values of ρHE and of H are reached.



Low Energy Regime

In the low energy approximation the quadratic term in (25) becomes neglectable in comparison to the
linear and the constant terms, the EoS takes the affine form:

PLE = P0 + αρLE (46)

Consequently, the fluid equation becomes:

ρ̇LE = −3
ȧ

a
[P0 + ρLE(α+ 1)] (47)

As we have done for the high energy regime, we can integrate (47) to obtain the following functional
expression of the energy density:

ρLE(a) =







ρ0 − 3P0 ln
(

a
a0

)

, if α = −1

− P0
α+1 +

[

ρ0 +
P0
α+1

] (
a
a0

)3(α+1)
, if α ̸= −1

(48)

Here we have called ρ0 ≡ ρ(t = 0) and a0 ≡ a(t = 0), where t0 is the arbitrary instant of time from
which we started integrating. As we did before, since we are interested in the more general case, we will
study the energy density under the condition α ≠ −1. To make the function more clear we can define
ρ̃Λ ≡ −P0/(α+ 1), so that:

ρLE(a) = ρ̃Λ + (ρ0 − ρ̃Λ)

(
a

a0

)3(α+1)

(49)

From (46) we immediately see that ρ̃Λ defines an effective cosmological constant and it is positive only if
P0/(1 + α) < 0. From this standpoint, we will start by looking at the case in which ρ̃Λ doesn’t define an
effective cosmological constant, we will then look at when an effective cosmological constant is present. In
the latter scenario, since ρ̃Λ falls in the physical region of the phase space (ρLE > 0), we will find the two
possibilities ρLE < ρ̃Λ and ρLE > ρ̃Λ. The tree cases are:

1. D : ρ̃Λ < 0

Here we can rewrite (49) in a more insightful form:

ρLE(a) = −|ρ̃Λ|+ (ρ0 + |ρ̃Λ|)
(

a

a0

)3(α+1)

(50)

Imposing ρLE(a) > 0 we see that all values of a are possible in this range of ρ̃Λ, in fact it is implied
that:

(
a

a0

)3(α+1)

>
|ρ̃Λ|

ρ0 + |ρ̃Λ|
> 0 (51)

So 0 < a < ∞. Again, the ρ̃Λ < 0 range is obtained under two possible conditions:

xxi
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• D1 : P0 > 0 and α > −1. Under these constraints the energy density range is −|ρ̃Λ| < ρLE < ∞,
in fact for a → ∞ we have ρLE → ∞ and for a → 0 we have ρLE → −|ρ̃Λ|. As we will see in
the phase portraits that follow, the exact behaviour of these kind of solutions is better defined
taking into consideration the geometry of the universe. In detail, the open models cannot be
regarded as physical, as the evolution includes (either in the past or in the future) portions
of the phase space with negative energy density. Flat solutions start by expanding until a
stationary point is met - in correspondence of a null energy density - then the trend reverses
and a contraction takes place. The same happens for the closed models in two of the subcases,
except that the maximum a is reached at a generic minimum of ρLE . The difference happens
for closed models in the −1 < α < −1/3 range, where an infinite cycle of contractions and
expansions around the center B1 takes place, in this case the scale factor is clearly limited both
superiorly and inferiorly.

• D2 : P0 < 0 and α < −1. For a → ∞ we have ρLE → −|ρ̃Λ| and for a → 0 we have ρLE → ∞.
Again, −|ρ̃Λ| < ρLE < ∞. Here open models are nonphysical, because they reach the negative
energy density portion of the phase space. Flat and closed solutions are characterized by a
bounce: at first a contraction takes place, a minimum of a is reached - with minimum ρHE : 0
for flat models, nonzero for closed ones - then the expansion starts and goes on. As we can
notice, in this range the fluid has phantom behaviour.

2. E : ρ̃Λ > 0 and ρLE > ρ̃Λ

The energy density can be written as:

ρLE(a) = ρ̃Λ + |ρ0 − ρ̃Λ|
(

a

a0

)3(α+1)

(52)

Again, 0 < a < ∞. There are two ways to satisfy ρ̃Λ > 0:

• E1 : P0 > 0 and α < −1. Calculating the relevant limits in the range of the scale factor, we
see that for the energy density is valid ρ̃Λ < ρLE < ∞. The closed models behave as in D2
and each one of the solutions in this subset is a phantom one. Open models are asymptotical
to ρLE = ρ̃Λ in the past/future, approaching/leaving a phase in which ρLE → ∞ as well as
a → ∞. The same happens for flat models, with the only difference that solutions fall off/into
the equilibriums B2/B3(29).

• E2 : P0 < 0 and α > −1. The range for the energy density remains ρ̃Λ < ρLE < ∞. The fluid is
standard, here open and flat solutions are all asymptotical to the phantom separatrix ρLE = ρ̃Λ
while coming from Big Bang/Big Crunch singularities. The closed ones have a bounce behaviour,
in that they leave or arrive to a flat universe (in the fixed points), reaching a maximum energy
density in correspondence of a minimum of the scale factor.

3. F : ρ̃Λ > 0 and ρLE < ρ̃Λ

Here we can write:

ρLE(a) = ρ̃Λ − |ρ0 − ρ̃Λ|
(

a

a0

)3(α+1)

(53)

Equally as before, we find that in general 0 < a < ∞, and as we found in E we have two subcases:

• F1 : P0 > 0 and α < −1. Here the range for the energy density is −∞ < ρLE < ρ̃Λ. Once again
open models aren’t acceptable because they do not satisfy ρLE > 0 for all the times. The closed
models revolve in closed loops about an Einstein universe solution (fixed point), alternating

29See the linear stability analysis that follows.
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moments of expansion with moments of contraction, which implies that the range of a is limited
by a maximum and a minimum. Lastly, flat models leave a de Sitter universe (expanding, fixed
energy density), pass through a static universe with null energy density (Minkowski) and then
return towards a contracting de Sitter solution. The behaviour is non-phantom for every orbit.

• F2 : P0 < 0 and α > −1. Here the range remains the same: −∞ < ρLE < ρ̃Λ, but as we have
seen in the other cases (D, E ) these significant limits are obtained inverting the extremal points
of a in respect to the cases ”1”(30). The open models are not physical, the closed and flat
ones are asymptotical to ρLE = ρ̃Λ (de Sitter) both in the past and in the future, portraying a
phantom bounce.

0.12 Preliminary stability analysis: low energy regime

If we look at the dynamical system given by the fluid equation together with the Raychaudhuri equation,
imposing (46) we have:

{

ρ̇LE = −3H[P0 + ρLE(α+ 1)]

Ḣ = −H2 − 1
6 [3P0 + ρLE(3α+ 1)]

(54)

The fixed points, where both first derivatives of ρLE and H are zero, together with their existence
conditions, are:

Name ρLE H Existence

B1 − 3P0
3α+1 0 P0

3α+1 < 0

B2 − P0
α+1 +

√

− P0
3(α+1)

P0
α+1 < 0

B3 − P0
α+1 −

√

− P0
3(α+1)

P0
α+1 < 0

As done in the previous chapter, the existence is established by imposing a positive energy density and
that the fixed points must be real numbers. When it exists, B1 represents a model for a generalized
Einstein universe, that is a static one with fixed nonzero energy density. On the other hand, when B2 and
B3 are present they are respectively expanding and contracting de Sitter models, namely flat universes
with nonzero energy density. The Jacobian matrix of the dynamical system reads:

JLE
X (ρLE , H) =

[
−3H(α+ 1) −3P0 − 3ρLE(α+ 1)

−3α+1
6 −2H

]

(55)

The eigenvalues of the matrix, evaluated in the fixed points Bi, are:

Fixed point λ1(Bi) λ2(Bi)

B1
√
−P0 −

√
−P0

B2
√

−3(α+1)
P0

− 2√
−3P0(α+1)

B3 −
√

−3(α+1)
P0

2√
−3P0(α+1)

To gain information on the nature of the fixed points, we will look at the cases that give rise to different
behaviours, according to the techniques of stability analysis presented in the first chapter. A main factor
is the sign of the constant pressure term, P0, which gives an instant categorization for B1. Once that is
established, different subcases arise by choosing the range of α, fixing the nature of B2 and B3.

30Essentially, as we found before, the limits remain the same but the trend is inverted. In F2, for example, ρ̃Λ is obtained
when a → 0, whilst in F1 it is found for a → ∞.
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0.13 LE1: P0 > 0

With a positive constant pressure term, the point B1 - which is the solution for a generalized Einstein
universe (static, fixed nonzero energy density) - gives eigenvalues which are both purely imaginary: this
makes B1 a center. Existence for B1 is granted only if α < −1

3 , otherwise the equilibrium won’t be present.
B2 and B3 are saddles if they are real numbers, that is if α < −1; with P0 > 0 this is also their existence
condition, so here B2 and B3 do not exist for α > −1. It is interesting to note that for α ≥ −1/3 no fixed
points are found. To sum it up, in this case the nature of the fixed points is as follows:

Fixed point Stability

B1 Center if α < −1
3 and ∄ otherwise

B2 Saddle if α < −1 and ∄ otherwise
B3 Saddle if α < −1 and ∄ otherwise

We will now proceed by looking at the three subcases that arise from the existence conditions of the
equilibriums:

• LE1.1: α < −1. We set P0 = 1 and α = −2 to obtain the following phase portrait:

The horizontal line intersecting B2 and B3, namely ρ̃Λ = P0/(1 + α), is the phantom separatrix. As
we can see, for ρLE > ρ̃Λ the fluid behaves in a phantom manner (subcase E1 ), in that the energy
density decreases for a contracting universe and vice versa for an expanding one. On the other side,
for ρLE < ρ̃Λ the fluid behaves in a standard manner (F1 ). The orbits (a), (b) (d) and (e) represent
open models. (a) is a phantom model and it evolves from a Type I singularity in the past whilst
approaching the phantom separatrix in the future, that is a contracting universe with fixed energy
density. (e) is the exact symmetric of (a) under time reversal. (b) and (d) have to be excluded
because they are nonphysical, in fact in their evolution they enter the prohibited domain ρLE < 0. (c)
and (f) represent closed models: (c) behaves in a standard manner, it undergoes alternating phases
of expansion/contraction to a maximum/minumum a; (f) starts and ends in a Typy I singularity,
undergoing at first a contraction - to a minimum a - and then an expansion (phantom bounce). The
(c)-type orbits are distributed concentrically about the static Einstein universe in B1. The other two
fixed points are de Sitter universes and they lie on the parabola for flat models: in the standard
region these models evolve leaving B2 and going towards B3 in the future, on the phantom separatrix
they evolve leaving B3/approaching B2 in both directions and in the phantom region the left branch
of the parabola starts from a Type I singularity and approaches B3 in the future, whilst the right
one leaves B2 to reach the same type of singularity.
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• LE1.2: −1 < α < −1
3 . For the following phase portrait we have set P0 = 1 and α = −2/3:

Here the phantom separatrix is absent, along with B2 and B3 which do not exist. All models behave
in a standard way (D1 ), but no one of them is physical: the open ones have to be discarded because
their evolution enters the ρLE < 0 region. Closed models, as (b), oscillate between a maximum and
minum a around the fixed point B1. Flat models lie on the separatrix (a) and evolve from a standard
Big Bang to a standard Big Crunch, with a Minkowski universe as interlude (in the vertex of the
parabola, with H = 0 and ρLE = 0).

• LE1.3: α ≥ −1
3 . By setting P0 = 1 and α = 1 we obtain:

Here, except for closed models, the behaviour is similar to LE1.2. The fluid is standard in all the
phase space (D1 ) and open models are nonphysical because they reach ρLE < 0. There is a total
absence of fixed points, for their existence conditions are not met in this subcase. Closed models
start from standard Big Bang, evolve to a maximum a and recollapse in a standard Big Crunch. Flat
models are a specific case of this behaviour for that, as in LE1.2, they reach a Minkowski universe
before recollapsing.

0.14 LE2: P0 < 0

The negative constant pressure term makes the root in the eigenvalues for B1 real, because of this the
point assumes a saddle nature. On the other side, when the existence conditions for B2/B3 are met, they



xxvi CHAPTER 0. LOW ENERGY REGIME

exhibit attractor/repeller nature. Here there are no fixed points for α < −1. In total:

Fixed point Stability

B1 Saddle if α ≥ −1
3 and ∄ otherwise

B2 Attractor if α > −1 and ∄ otherwise
B3 Repeller if α > −1 and ∄ otherwise

• LE2.1: α < −1. Fixing P0 = −1 and α = −2 the following phase portrait is obtained:

The fluid behaves in a phantom manner (subcase D2 ) in all of the physical portion of the phase
space and no fixed points exist. As we found in other of the previous subcases, trajectiories beneath
the separatrix for open and closed models, i.e. the orbit for flat models, are nonphysical. This
means that in this scenario all open models have to be discarded. Similarly to LE1.3, closed and flat
models evolve leaving and approaching a Type I singularity, with an intermediate phase in which a
stationary point for a (a minimum) is reached, in this context the behaviour is dubbed as ”phantom
bounce”. For the flat model the minimum corresponds to a Minkowski universe.

• LE2.2: −1 < α < −1
3 . For the phase portrait below we have set P0 = −1 and α = −2/3:

The fixed points B2 and B3 reappear, respectively as attractor and as repeller. The phantom region
lies underneath the phantom separatrix that connects horizontally the equilibriums. The solutions
(a), (b), (d) and (e) have negative curvature (open universes); (b) and (d) are nonphysical whilst (a)
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leaves a flat universe (in B3) towards a Big Crunch and (e) comes from a Big Bang and approaches
a flat expanding universe (in B2), the latter both portray a standard behaviour. On the other
hand, (c) and (f) are closed models, the first one is phantom, the second is standard: they evolve
by contracting and leaving the flat B3 solution, in order to re-expand to B2 in the future. During
their evolution a minimum in the scale factor is achieved, the only difference being that in (f) the
minimum happens in the maximum of ρLE whilst in (c) it happens for its minimum, as expected.
Speaking about the flat universe solutions: two of them are the fixed points B2 (stable) and B3
(unstable); the lower part of the parabola in green (phantom) defines a contraction that starts with
the solution leaving B3 - a Minkowski universe is then reached - and ends with an expansion towards
B2; the left upper branch represents a contraction towards a Big Crunch, on the flipside the right
one evolves from a Big Bang towards the fixed expansion rate and energy density in B2.

• LE2.3: α ≥ −1
3 . The phase portrait below is obtained by imposing P0 = −1 and α = −2/3:

In this subcase the three possible fixed points are all present and they behave as previously stated.
B2 and B3 lie on the intersection between the phantom separatrix ρLE = ρ̃Λ and the parabola for flat
models given by the Friedmann equation with zero curvature term. The phantom region lies below
the phantom separatrix, whilst the standard region is above it. (a), (b) and (d) are open models, the
(b)-type solutions are nonphysical and have to be excluded for the same reasons stated in the other
subcases. (a) evolves leaving a flat de Sitter universe (in B3) and contracting until a standard Big
Crunch singularity is reached, (d) behaves symmetrically as it leaves a standard Big Bang singularity
in the past whilst approaching the flat expanding de Sitter universe in B2. The orbits (c), (e), (f),
(g), (h) represent closed universes and the only one of them that behaves in a phantom manner is
(c). (c) leaves B3 and contracts to a minimum a (minimum ρLE), then re-expands towards the flat
expanding de Sitter universe in B2. The (f) orbit is similar to the (c) one (bounce models), apart
from the fact that it represents a standard fluid, so that the minimum of the scale factor is achieved
in correspondence of the energy density maximum. (e) represents closed standard solutions that
evolve leaving a Big Bang singularity and approaching B2 in the future, likewise (h) leaves B2 and
goes towards a standard Big Crunch. The (g)-type solution is a turn-around model as it evolves from
a past Big Bang, it expands reaching a minimum of the energy density and finally it recollapses into
a Big Crunch singularity. The orbits on the phantom separatrix are attracted by B2 and repelled by
B3, in detail, starting from left to right: the first one leaves B3 whilst approaching a Big Crunch,
the second one moves away from B3 towards B2 and the third one evolves from a Big Bang to reach
B2 in the future; in each case the energy density of the universe remains fixed.



Full Equation of State

We will now consider the full quadratic equation of state:

P (ρ) = P0 + αρ+ βρ2 (56)

For which the fluid equation now reads:

ρ̇ = −3H[P0 + (α+ 1) + βρ2] (57)

To obtain a functional form for the energy density, we need to integrate:

∫ t

t0

1

[P0 + (α+ 1)ρ+ βρ2]

∂ρ

∂t′
dt′ = −3

∫ t

t0

1

a

∂a

∂t′
dt′ (58)

Which gives:

2 arctan
(
2βρ+α+1√

∆

)

√
∆

∣
∣
∣
∣
∣

t

t0

= −3 ln

(
a

a0

)

(59)

Here ∆ ≡ (α+ 1)2 − 4βP0 is the discriminant of the quadratic denominator in the left term of (58). It is
also directly connected to the presence of an effective cosmological constant, in fact P (ρΛ) = −ρΛ gives
the same equation for which ∆ is the discriminant. This suggests that three different scenarios may occur:
we will have two effective cosmological points if ∆ > 0, one if ∆ = 0 and none if ∆ < 0 (no real solution is
admitted). When they exist these points are:

ρΛ,1 ≡
−(α+ 1) +

√
∆

2β
and ρΛ,2 ≡

−(α+ 1)−
√
∆

2β
(60)

The presence of ρΛ,1/2 depends on the range of ∆ as much as the solutions of (59) do. Due to this, we will
present the latter in the context of the three main cases that arise based on the discriminant:

1. G : ∆ < 0

In this case the energy density assumes the form:

ρ =
Γ−

√

|∆| tan
[
3
2

√

|∆| ln
(

a
a0

)]

2β + 2β√
|∆|

Γ tan
[
3
2

√

|∆| ln
(

a
a0

)] (61)

Having defined Γ ≡ 2βρ0 + (α+ 1).

• G1 : β > 0 and P0 > 0. The scale factor has an upper and lower bound, namely a1 < a < a2.
This leaves the energy density with no limits whatsoever and, being the behaviour in this subset
standard, the minimum/maximum of ρ are reached for the maximum/minimum of a. The open
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models of this subset are all to be disregarded: their evolution enters the prohibited ρ < 0
region. Closed models can behave in a loop manner, oscillating infinitely in a limited portion of
the phase space, or reach a maximum a (minimum ρ) and recollapse, this happens also to the
flat models in this subset (for which min{ρ} = 0).

• G2 : β > 0 and P0 > 0. The scale factor is limited, as it was in G1, but the behaviour of the
fluid is phantom, this means that the maximum ρ is reached in correspondence to the maximum
a and the same for the minimums. The open solutions in this subset are nonphysical, the flat
and closed ones are turn-around models.

2. H : ∆ = 0

In this case a single effective cosmological constant point is present, that is ρ̄ ≡ ρΛ,1 = ρΛ,2,
leading to:

ρ = ρ̄Λ +
1

3β ln
(

a
a0

)

+ 2β
Γ

(62)

The fact that ρ̄Λ ∈ R does not mean that such point is present in the phyisical region of the phase
space, meaning that such thing happens only if ρ̄Λ > 0.

• H1 : β > 0, P0 > 0 and ρ < ρ̄Λ. With this subset of conditions we have 0 < a < a1, the
energy density is upperly bound by the effective cosmological constant (−∞ < ρ < ρ̄Λ) and the
behaviour of the fluid is standard, so that maxima and minima of a and ρ occur accordingly.
Open models are nonphysical; flat models expand from one de Sitter point (in H > 0) and
re-contract to the symmetrical one (in H < 0), the maximum for a is reached in correspondence
with the origin (H = 0, ρ = 0) of the phase space; closed models evolve in infinite concentric
loops around a static generalized Einstein universe.

• H2 : β > 0, P0 > 0 and ρ > ρ̄Λ. The fluid still exhibits standard behaviour, but here a1 < a < ∞
and ρ̄Λ < ρ < ∞ which means that a Type III singularity is possibly admitted as an attractor
in the future/past. The behaviour of the solutions depends on wether ρ̄Λ is physical (> 0) or
not (< 0). If ρ̄Λ > 0 all open and flat models start/end in the singularity and end/start in
the expanding/contracting fixed generalized de Sitter points; closed models either undergo a
bounce and turn-around (starting and ending in the singularity) or they start and end in the
generalized de Sitter fixed points, two solutions can also start/end in a generalized Einstein
universe and end/start in a generalized de Sitter point. If ρ̄Λ < 0 the open models enter the
prohibited region in their evolution, whilst flat and open ones undergo a recollapse.

• H3 : β < 0, P0 < 0 and ρ < ρ̄Λ. Here a1 < a < ∞ and −∞ < ρ < ρ̄Λ, with a correspondence of
maxima/minima for a and ρ, because of the phantom behaviour that is met with this subset
of conditions. The open models are nonphysical, the flat end closed ones leave a contracting
generalzied de Sitter fixed point and approach an expanding one in the future.

• H4 : β < 0, P0 < 0 and ρ > ρ̄Λ. Here 0 < a < a1 and ρ̄Λ < ρ < ∞, the behaviour of the fluid
is phantom and the presence of a past/future singularity is a general feature of the solutions.
However, if ρ̄Λ < 0, during their evolution the open models always enter the negative energy
density portion of the phase space, hence they are nonphysical. Closed models always undergo
a phantom bounce, whilst if ρ̄Λ > 0 the flat and open ones approach or leave, on one extreme
of the orbit, a contracting or expanding phase with ρ → ρ̄Λ.

3. I : ∆ > 0
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Here we have ρΛ,1 ̸= ρΛ,2 and:

ρ =
ρΛ,2

(
a
a0

)−3
√
∆
− ρΛ,1C

(
a
a0

)−3
√
∆
− C

(63)

Having set C ≡ ρ0−ρΛ,2

ρ0−ρΛ,1
. The parameter β influences the effective cosmological points in that for

β > 0 we have ρΛ,1 > ρΛ,2, for β < 0 we have ρΛ,1 < ρΛ,2. The sign of C is also influent in
determining in which region ρ0 falls, but it won’t be relevant for our present considerations, in which
we give general descriptions of all the possible regions. For physical reasons we assume that both the
effective cosmological constant points are positive for the following subdivision:

• I1 : β > 0, P0 > 0 and ρ < ρΛ,2. We implicitly assume ρΛ,2 > 0, otherwise we would not have
any physical solutions with this subset of conditions. Here we have an upper limit for the scale
factor, 0 < a < a1, and −∞ < ρ < ρΛ,2. The behaviour is standard, so that ρ

a→a1→ −∞ and

vice versa ρ
a→0→ ρΛ,2. Open models are nonphysical, they all evolve to ρ < 0. Flat models

evolve from a contracting generalized de Sitter point to an expanding one, one closed solution
does the same whilst the other ones loop infinitely - between maximums and minimums of a
and ρ - around a generalized Einstein universe (also closed).

• I2 : β > 0, P0 > 0 and ρΛ,2 < ρ < ρΛ,1. Here 0 < a < ∞ and obviously ρΛ,2 < ρ < ρΛ,1, the
fluid in this subset is phantom and maximums/minimums behave accordingly. Open models
leave/approach a contracting/expanding de Sitter fixed point and approach/leave ρΛ,2. Flat
models evolve from one contracting de Sitter point to another, or from an expanding one to
another. Closed models move from a contracting de Sitter point to an expanding one, reaching
a minimum a in the middle of their evolution.

• I3 : β > 0, P0 > 0 and ρ > ρΛ,1. Here 0 < a < ∞ and ρΛ,1 < ρ < ∞, the behaviour is standard.
A Type III singularity in the past/future is a general feature in most of the models in this
subset. Open and flat ones are asymptotical to either contracting or expanding generalized flat
de Sitter points. Closed models can either undergo a standard bounce (after an expansion) and
contract back to the singularity, or they can evolve from one contracting de Sitter point to an
expanding one, else they are linked to a generalized Einstein universe in some way. In the latter
case they start/end in the singularity or in one of the de Sitter fixed points.

• I4 : β < 0, P0 < 0 and ρ < ρΛ,1. In this subset we have a1 < a < ∞ and −∞ < ρ < ρΛ,2, the
fluid exhibits phantom behaviour. Open models are nonphysical, flat ones and closed ones
evolve from a contracting generalized de Sitter flat point to an expanding one. Both flat and
closed models reach a minimum for a and ρ (together) in their evolution, for the flat case this
minimum corresponds to a Minkowski universe: the origin.

• I5 : β < 0, P0 < 0 and ρΛ,1 < ρ < ρΛ,2. Here the energy density is clearly bound by the two
effective cosmological constants, whilst the scale factor is unlimited a priori (more constraints
are given by the particular class of solutions), so 0 < a < ∞, the fluid is standard in this
scenario. Open models either collapse towards the maximum energy density and minimum
scale factor, starting from a flat de Sitter contracting fixed point, or do the exact opposite and
they approach the flat de Sitter expanding fixed point. Flat models behave in a similar manner,
with the only difference that they move from one fixed point to the other, so the rate at which
the expansion/contraction happens is not unlimited. Closed models can contract from one de
Sitter fixed point and subsequently expand to another one (with same energy density ρ = ρΛ,1),
or they can loop infinitely around a generalized Einstein static solution (meaning, as usual,
within a limited unchanging range of a and ρ), else they are connected to the same Einstein
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universe and either start and end on it, or start/end on it and end/start either on a contracting
or expanding flat generalized de Sitter universe.

• I6 : β < 0, P0 < 0 and ρ > ρΛ,2. Here 0 < a < a1, ρΛ,2 < ρ < ∞, hence a past/future
singularity is admitted and in fact all models (for all the geometries) have one. The fluid behave
in a phantom manner. Open models are, on one extreme, asymptotical to the upper effective
cosmological constant energy density, flat ones to, with the only difference that they reach a
finite Hubble parameter and their expansion/contraction rate does not increase (in absolute
value) indefinitely. On the other extreme of flat and open models there is the singularity. Closed
solutions undergo a phantom bounce, hence they are turn-around models, the singularity is
found at both extremes of their orbit. The geometry of closed models tends to a flat one in
the past and in the future, as it does in all the closed phantom bounce models we saw, the
curvature of the open models also tends to zero but either in the past (contracting models) or
in the future (expanding models).

0.15 Preliminary stability analysis: full EoS

The dynamical system composed by (14) and (6) with the pressure given by (56) is:







ρ̇ = −3H[P0 + (α+ 1)ρ+ βρ2]

Ḣ = −H2 − 1

6
[3P0 + (3α+ 1)ρ+ 3βρ2]

(64)

We find seven possible fixed points for the system, this time we meet a much richer variety of existence
conditions, which have been found by imposing the reality condition for the square roots and by considering
only non-negative values of the energy density:

Name ρ H Existence for β > 0 Existence for β < 0

C1 0 0 P0 = 0 P0 = 0

C2 −(3α+1)+
√

(3α+1)2−36P0β

6β
0

P0 ≤ P1, α < −1
3 P1 < P0 < 0, α > −1

3
or P0 < 0, α > −1

3

C3 −(3α+1)−
√

(3α+1)2−36P0β

6β
0 0 < P0 < P1, α < −1

3

P0 > 0, α < −1
3

or P0 ≥ P1, α > −1
3

C4± −(α+1)+
√

(α+1)2−4P0β

2β ±
√

−(α+1)+
√

(α+1)2−4P0β

6β

P0 ≤ P2, α < −1
P2 < P0 < 0, α > −1

or P0 < 0, α > −1

C5± −(α+1)−
√

(α+1)2−4P0β

2β ±
√

−(α+1)−
√

(α+1)2−4P0β

6β
0 < P0 < P2, α < −1

P0 > 0, α < −1
or P2 ≤ P0, α > −1

We see that, when these points exist, they are respectively: C1 a Minkowski universe (present only if
P0 = 0), C2 and C3 generalized Einstein universes, C4± and C5± four generalized de Sitter universes
(expanding for the +, contracting for the −). In addition, we note how the conformation of the phase
space is strongly influenced by the range of the constant pressure term P0, for which we defined:

P1 ≡
(3α+ 1)2

36β
, P2 ≡

(α+ 1)2

4β
(65)

These two values - as well as the sign of P0 - are significant factors in the characterization of the topology.
The Jacobian of the system reads:

JX(ρ,H) =

[
−3H[(α+ 1) + 2βρ] −3[P0 + (α+ 1)ρ+ βρ2]

−3α+1
6 − βρ −2H

]

(66)
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The eigenvalues of the matrix, evaluated in the fixed points Ci, are:

Fixed point λ1(Ci) λ2(Ci)

C1 0 0

C2

√

γ2

1
−γ1

√
γ2

1
−36P0β−36P0β

18β

√

γ2

1
−γ1

√
γ2

1
−36P0β−36P0β

18β

C3

√

γ2

1
+γ1

√
γ2

1
−36P0β−36P0β

18β
-

√

γ2

1
+γ1

√
γ2

1
−36P0β−36P0β

18β

C4± ∓
√

δ−γ2

6β
(1 + 3δ

2
) +

√

6δ2(3δ−3γ2−4)+8(γ2(3δ−1)+δ)
48β

∓
√

δ−γ2

6β
(1 + 3δ

2
)−

√

6δ2(3δ−3γ2−4)+8(γ2(3δ−1)+δ)
48β

C5± ±
√

−(δ+γ2)
6β

( 3δ
2
− 1) +

√

− 6δ2(3δ+3γ2+4)+8(γ2(3δ+1)+δ)
48β

±
√

−(δ+γ2)
6β

( 3δ
2
− 1)−

√

− 6δ2(3δ+3γ2+4)+8(γ2(3δ+1)+δ)
48β

Here we defined γ1 ≡ 3α+ 1, γ2 ≡ α+ 1, δ ≡
√

(α+ 1)2 − 4P0β =
√

γ22 − 4P0β in order to simplify the
expressions. We note that the sign of β this time is not influential in regards to the nature of the fixed
points, hence we can sum up the linear stability of the latter before considering the various cases:

Fixed point Stability

C1 Undefined
C2 Saddle for γ21 ̸= 36P0β and undefined otherwise
C3 Center for γ21 ̸= 36P0β and undefined otherwise
C4+ Attractor for γ22 ̸= 4P0β and undefined otherwise
C4− Repeller for γ22 ̸= 4P0β and undefined otherwise
C5+ Saddle for γ22 ̸= 4P0β and undefined otherwise
C5− Saddle for γ22 ̸= 4P0β and undefined otherwise

Here the stability nature of the points is given implicitly intending that their existence conditions are met.
Now, for the analysis that follows, we will subdivide in the two cases β > 0 (EoS1) and β < 0 (EoS2),
with the logic of the two previous chapters. We will then follow the same procedural scheme used by
Ananda and Bruni in [1], that is: the qualitatively relevant phase portraits will be presented extensively,
these satisfy limited subsets of conditions for P0 and α and their importance is due to the fact that they
differ qualitatively from the phase portraits we already found in the other chapters. Before doing so, for
EoS1 and EoS2 separately, a table that reunites all the other possible subcases and that specifies their
qualitative similarities (to the phase portraits shown in the script) will be shown. This is done because,
apart from quantitative differences in the parameters, that are not fundamental for our analysis, there are
a limited number of possible topologies that the phase spaces may assume and our aim is to discuss these
type of diverse scenarios.

0.16 EoS1: β > 0

The subcases for which the phase portraits are qualitatively similar to those we already met or to those
we will meet in the following paragraphs - with reference to these - are reported in the table below:

α < −1 −1 ≤ α < −2/3 −2/3 ≤ α < −1/3 −1/3 ≤ α

P0 > P1 LE1.3 LE1.3 LE1.3 LE1.3
P0 = P1 EoS1.1 EoS1.1 EoS1.1 LE1.3

P2 < P0 < P1 EoS1.2 EoS1.2 - -
P1 < P0 < P2 - - EoS1.2 LE1.3

P0 = P2 EoS1.3 EoS1.2 EoS1.2 LE1.3
0 < P0 < P2 EoS1.4 EoS1.2 EoS1.2 LE1.3

P0 = 0 HE1.1 HE1.2 HE1.2 HE1.3
P0 < 0 LE2.3 LE2.3 LE2.3 LE2.3
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The subcases in which the phase space has a different topology from the ones seen in the previous chapters
are the following:

• EoS1.1: α < −1, P0 = P1. By choosing α = −7/3 and β = 1, we have that P0 = P1 = 1 and we
obtain the following phase portrait:

Only one fixed point exists within this subset of conditions, it is given by the two generalized static
Einstein universes C2 and C3, that here are coinciding. The fluid is standard, but not all models
are acceptable. In fact, the open universes such as (a) are nonphysical as their evolution involves
the ρ < 0 portion of the phase space. The lower green line represents the parabola given by the
Friedmann equation for K = 0, that is all the flat models, which in this case is just one single solution.
The flat model evolves as the closed universes of the (b)-type and (c)-type do, in a turn-around
fashion: they leave a Type III singularity while expanding, the maximum a and minimum ρ are
reached, then the contraction takes place and a Type III singularity is approached again in the
future. The solutions that lie on the stable orbits represented by the upper green lines respectively
leave/approach (left/right) a Type III singularity towards/from the static universe C2=C3. This
subcase corresponds to the condition G1.

• EoS1.2: α < −1, P2 < P0 < P1. We set α = −2 and β = 1, so that 1/4 < P0 < 25/36 and we choose
P0 = 1/2 for the following phase portrait:

The fluid behaves in a standard manner and the only difference from the previous subcase is that C2
and C3 divide into two distinct points, the first being a saddle and the latter a center. The new
solutions that arise are those closed universes of the (c)-type which evolve in closed loops centered
in C3, they alternate phases of expansion and contraction, reaching respectively a maximum a
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(minimum ρ) and a minimum a (maximum ρ). The green orbit that surrounds C2 expands and
re-contracts from/to the generalized Einstein universe in C3. Once again, we are in the G1 condition.

• EoS1.3: α < −1, P0 = P2. We set α = −3 and β = 1, so P0 = P2 = 1 and the following phase
portrait is obtained:

Here the behaviour is richer: with this choice of parameters the existence conditions for the de
Sitter universes C4± and C5± are met. We are in the presence of four fixed points, since C4+
and C5+, C4− and C5− coincide. The phantom separatrix ρ = ρ̄Λ - which connects the fixed de
Sitter universes - appears, dividing the lower region (H1 ) from the upper one (H2), both with
standard behaviour. (a) and (d) are open models and they reach/leave a Type III singularity
from/to the contracting/expanding de Sitter fixed points. (b) is nonphysical, (c) evolves in the same
way as it did in EoS1.2. (e) and (h) respectively leave/approach a Type III singularity to/from
the expanding/contracting de Sitter fixed points, they are closed models. The (f)-type solutions
also represent closed models which contract from C4− to a minimum a (maximum ρ) and then
expand to C4+ in the future. The solutions in the region where (g) lies are, once again, standard
closed turn-around models which leave and then reach again a Type III singularity. Flat solutions
leaving the de Sitter fixed points in the region below the phantom separatrix do not terminate on
the symmetrical fixed point, instead they are asymptotical to the separatrix, that is they continue
contracting/expanding at an increasing rate towards a finite value of the energy density. On the other
hand, the remaining non-fixed flat models, that is the ones in the ρ > ρ̄Λ region, are asymptotical
to a Type III singularity. Lastly, there two stable orbits (in green) that leave C4± towards the
generalized Einstein point C2; from there, the other two solutions that approach/leave C2 do so
leaving/approaching a Type III singularity.

• EoS1.4: α < −1, 0 < P0 < P2. We set α = −4 and β = 1, so that P2 = 9/4 and we choose P0 = 1.
The following phase portrait is obtained:



0.17. EoS2: β < 0 xxxv

Here the generalized flat de Sitter points C4± and C5± split, generating an horizontal phantom
separatrix which connects C4− and C4+, as well as one that connects C4− and C4+. The upper
separatrix corresponds to ρ = ρΛ,1, the lower one to ρ = ρΛ,2, they divide the phase space into three
regions. The lower and upper regions respectively satisfy the conditions I1 and I3, whilst the middle
region corresponds to I2 and it portrays a phantom behaviour. The qualitative differences in respect
to the subcase EoS1.3 are found in the I2 region: open models such as (b) and (f) are asymptotical
to the effective cosmological constants; (b) leaves C4− and tends to ρΛ,2 in the future, (f) leaves ρΛ,2
and towards C4+. The non-fixed flat models in this region evolve by moving between C4− and C5+
whilst contracting, or between C5+ and C4+ whilst expanding. The (e)-type solutions are the only
closed models in this region and they move from C4− to C4+, at first contracting to a minimum
scale factor (and energy density), then re-expanding.

0.17 EoS2: β < 0

For the case β < 0 the qualitative similarities with the phase portraits present in the script are the
following:

α < −1 −1 ≤ α < −2/3 −2/3 ≤ α < −1/3 −1/3 ≤ α

P0 > 0 LE1.1 LE1.1 LE1.1 LE1.1
P0 = 0 HE2.1 HE2.2 HE2.2 HE2.3

P1 < P0 < 0 LE2.1 EoS2.3 EoS2.3 EoS2.1
P0 = P1 LE2.1 EoS2.3 EoS2.3 EoS2.2

P2 < P0 < P1 - - EoS2.3 EoS2.3
P1 < P0 < P2 LE2.1 EoS2.3 - -

P0 = P2 LE2.1 EoS2.4 EoS2.4 EoS2.4
P0 < P2 LE2.1 LE2.1 LE2.1 LE2.1

The subcases with a new kind of behaviour are:

• EoS2.1: α > −1
3 , P1 < P0 < 0. By setting α = 1 and β = −1 we obtain P1 = −4/9, finally setting

P0 = −1/4 we derive the following phase portrait:



xxxvi CHAPTER 0. FULL EQUATION OF STATE

Here the upper horizontal separatrix is given by ρ = ρΛ,2 and it connects C5− to C5+, the lower
one by ρ = ρΛ,2 and it connects C4− to C4+. These two separatrices divide the phase space into
three regions, the fluid exhibits phantom behaviour in the upper (I6 ) and lower (I4 ) ones, whilst
it behaves in a standard manner only in the central one (I5 ). (a) is open, it leaves a Type III
singularity (asymptotically in respect to the flat model) in the past and continues contracting whilst
approaching ρΛ,2 in the future, (i) is its symmetrical and it expands from ρΛ,2 to the Type III
singularity. (b) and (f) are also open, they are asymptotical to ρΛ,2 and terminate, respectively in
the past/future, in the flat contracting/expanding de Sitter fixed points. (c) is nonphysical, (d) is
a closed phantom model in which the universe contracts from C4− to a minimum a (ρ) and then
expands to C4+. (e) does the same as (d) but with a standard behaviour. The other closed orbits in
the central region either loop around the generalized Einstein universe in C3, eventually the green
stable orbits start/terminate from/in C2. (j) represents a turn-around model, and it undergoes a
phantom bounce when the minimum for the scale factor is reached.

• EoS2.2: α > −1
3 , P0 = P1. We choose α = 1 and β = −1, so P0 = P1 = −4/9. We obtain:

This subcase is similar to the previous one, the only difference being that the two generalized Einstein
fixed points now coincide. This changes the possibilities for the closed models in the region, which
evolve from C4− to C4+ as (f) and (g) do, but there are no longer loop models where phases of
contraction and expansion alternate in an infinite fashion. There exists also a closed solution that
leaves C4− moving towards the static fixed point C2 while contracting, and one that leaves the latter
to approach the expanding generalized de Sitter flat universe C4+ in the future.

• EoS2.3: α > −1
3 , P2 < P0 < P1. We choose α = 1 and β = −1 once again, so that −1 < P0 < −4/9

and we set P0 = −1/2 to obtain the following phase portrait:
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In this subcase the two generalized Einstein static universes do not exist, hence the closed models in
the central region can only evolve by leaving C4− while contracting, reach a minimum a (maximum
ρ) and then re-expand into the generalized de Sitter flat universe in C4+. The rest of the phase
space remains the same as in the previous subcase.

• EoS2.4: α > −1
3 , P0 = P2. We set α = 1, β = −1, thus P0 = P2 = −1, and we find the following

phase portrait:

Here the two sets of generalized de Sitter fixed points coalesce, leaving only one horizontal separatrix
of equation ρ = ρ̄Λ. We are in the H set of conditions, specifically the upper region satisfies H4 and
the lower one H3 : the behaviour is phantom in all of the phase space. The qualitative traits of the
phase space are the same of EoS2.2 and EoS2.3, except for the middle region that here is no longer
present.



Conclusions

In this script we started by presenting the essential results of GR necessary for model building in cosmology,
we also adressed the current evidence of an accelerated expansion of our universe - and its link with
the concept of dark energy - as well as the presence of extra mass (dark matter) that does not interact
electromagnetically and of which we now have several proofs. The fluid equation has been presented
and the importance of finding a barotropic EoS that describes the pressure contribute P (ρ) has been
stressed, for it is crucial in the description of the dynamics of the cosmos, the energy density content
can then be derived via integration as a function of the scale factor a(t). We pointed out that a specific
EoS could account for the dark energy component and that it might also provide a description for dark
matter, in the framework of UDM models. The scenario for which the cosmological fluid behaves as an
effective cosmological constant term was adressed and the conditions that generate accelerated phases in
the expansion of the universe were discussed. We saw that the fluid can behave in two different manners:
a standard one, for which an increase in the scale factor causes a decrease in the energy density, and a
phantom one, for which the dynamic is more counterintuitive as a and ρ increase/decrease accordingly.
At this point we introduced the central object of our study: a specific form for the EoS. We chose the
quadratic form (25), already studied by Ananda and Bruni in [1], which is significant for it is the Taylor
expansion up to the second order of any P (ρ) about 0, or after a regrouping of terms about the present
energy density ρ0 [10]. We divided the analysis into three regimes: the high energy regime; for which the
constant pressure term can be neglected; the low energy regime, for which the quadratic term can be
neglected; the complete EoS. The study was done via the theory of dynamical systems, a linear stability
analysis was carried out for each fixed point and a phase portrait was shown for every subcase, that is
for every subset of parameters that gave rise to different qualitative behaviours. The fixed points that
we found were of three types: generalized Einstein universes, namely static solutions with a finite energy
density; generalized de Sitter flat universes, with a constant (negative or positive) rate of expansion and a
fixed energy density; a Minkowski universe, corresponding to a static, flat model with null energy density
(the origin). We saw that the presence of such points and their dynamical nature depended on the specific
subcase, in many cases small changes of one or more parameters gave rise to totally different topologies of
the phase space. A main fact was that accelerated phases in the evolution of the universe were present in
a lot of solutions and, for a substantial number of subcases, we found the presence of an effective cosmo-
logical constant (or two for the full EoS), with different orbits that were asymptotical to it in the past/future.

In the high energy regime we found phantom models (with all curvatures) that approach/leave an
effective cosmological constant whilst leaving/approaching a null energy density (C1 ) - in this case ρΛ
is met at zero curvature - or whilst leaving/approaching a Type III singularity asymptotically to a flat
universe (B2 ). Other phantom models (A2 ) can tend to a null energy density on one extreme and to a
Type III singularity (asymptotically to K = 0) on the other, else they can undergo a phantom bounce,
reaching both at early and late times the singularity. Standard models in the high energy regime can be
asymptotical to an effective cosmological constant in the past/future and to a Type III singularity in the
future/past, or undergo a turn-around by starting and ending in the singularity, there are also four orbits
which start/end in a generalized Einstein universe (B1 ). Another possibility is for the standard fluid
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to start/end with a null energy density while end/start in a Type III singularity (A1 ) or in an effective
cosmological constant (C2 ). A1 admits standard turn-around models to, on the other hand C2 can also
start/end (eventually also end/start) in a Minkowski universe, it presents the possibility for standard
loop models (around a generalized Einstein universe) - namely universes that oscillate infinitely between
maximum a (minimum ρ) and minimum a (maximum ρ) - as well.

In the low energy regime we found open and flat phantom solutions that are asymptotical to an ef-
fective cosmological constant in the past/future and to a Type I singularity (Big Rip) in the future/past,
as well as closed turn-around models that start and end in a Type I singularity (E1 ), all these models
have K → 0 when they reach the singularity. Other phantom solutions in this regime can either tend to
an effective cosmological constant in one extreme and to a null energy density (or again to the constant)
on the other (F2 ), else they can be closed or flat models which start and end in a Big Rip (D2 ). The
fluid can also exhibit standard behaviour and have the same dynamics, namely start and end in a Big Rip,
possibly also loop around a closed generalized Einstein universe (D1 ). Other possibilities for standard
solutions would be to approach both at early and at late times an effective cosmological constant (flat
ones) or to loop (closed ones) around a generalized Einstein point (F1 ); else they can tend on one extreme
to an effective cosmological constant and on the other one to a Big Bang/Big Crunch, or to a generalized
Einstein universe, or once again to the effective cosmological constant (E2 ). In detail, in the subset E2
we found models in which the standard fluid evolves as a closed universe from an early time Big Bang
to approach, at late times, a flat generalized de Sitter point dominated by the effective cosmological constant.

When we adressed the full EoS we presented a list of subcases for which the topology of the phase
space was qualitatively similar to the ones already reported, but we also found new types of possible
behaviours for the solutions. For the phantom case we have flat and open solutions which can be asymp-
totical on both sides to two different effective cosmological constant terms, or closed ones asymptotical on
both sides to one of the constants (I2 ). There are also phantom solutions which can start/end in a Type
III singularity and end/start on an effective cosmological constant, or they can undergo a phantom bounce
as turn-around models (H4, I6 ). Another possibility for the phantom fluids is to leave/approach a null
energy density from/to a Type III singularity (G2 ). Lastly, some phantom solutions can evolve to/from a
null energy density from/to an effective cosmological constant (H3, I4 ). For the standard case there is
the possibility for a tendency, both in the past and in the future, to an effective cosmological constant
(I5 ), the constant can also be approached in the past/future with a null energy density at late/early times
(H1, I1 ). A Type III singularity is part of a subset of standard solutions and on the other side of the
orbit the fluid can either approach a null energy density (G1 ) or an effective cosmological constant (H2, I3 ).

As we already said, we stress a focal point in the analysis was the discovery that in many subsets
of parameters - in the various regimes - accelerated stages for the expansion (or contraction) of the cosmos
were predicted. An effective cosmological constant term (or two) was present in diverse scenarios, with
diverse solutions that displayed asymptotical tendencies towards such values. We found that generalized
de Sitter fixed points were directly linked to the presence of an effective cosmological constant as they lied
in the intersection between these constant values of the energy density and the parabola for flat models
(the Friedmann equation for K = 0). Interestingly, such points were often attractors/repellers for a large
enough class of solutions. This, all together, can provide for a possible description of dark energy in its
effects. Our analysis, however, was limited to the study of the only quadratic EoS, hence it was aimed at
showing the effects that this component has only when it is the dominant one in the cosmological fluid,
that is when standard matter and radiation have not prevailing effects on the dynamics. Nonetheless, the
significance of the study is given by the possibility that these components can - within certain subsets of
conditions for the chosen EoS - coexist, allowing for dark energy to be the dominant in certain cosmic
eras, such as the present one.
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