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Abstract

Major central banks in the world, notably the Fed and the ECB, have decided to revised their
monetary policy strategies, due to the economic environment of the last decade, characterized
by low level of inflation and by the zero lower bound. In this thesis, I estimated a DSGE model
for the euro area and I study the effect of the adoption of the average inflation targeting regime
based on a welfare loss function. The benefits of the average inflation target arise depending on
the design of the monetary policy rule. Specifically, the central bank must answer aggressively
to the deviation of the average inflation to its target.
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Chapter 1

Introduction

In the last decade, for most of the industrialized countries in the world, the economy has been

characterized by a low level of inflation rate, slow growth, and monetary policy has been con-

strained by the zero lower bound (ZLB), straining the effectiveness of traditional inflation tar-

geting policies. Many economists tried to rationalize these features, Koester et al. (2021) high-

lighted the main causes of low inflation in the euro area over the period 2013 - 2019, arguing

that, the underestimation of the economic slack, the inflation expectations being less well an-

chored to the ECB’s inflation aim, structural trends like globalisation, digitization and demo-

graphic change, have resulted in a persistent shortfall in inflation, enhanced by the fact that mon-

etary policy was constrained by the effective lower bound (ELB); Caldara et al. (2020) empha-

sized that the large negative Global Financial Crisis (GFC) shock sharply raised unemployment

and the inflation has persistently undershot the Federal Open Market Committee’s (FOMC) tar-

get rate. Generally speaking, policymakers and market participants expected a faster return of

inflation to 2 percent and a stronger economic activity than realized, moreover, together with

structural transformations that were difficult to ascertain in real time, this has lead to forecast

error, who have delayed the implementation of fast and effective monetary responses.

As a result, many central banks, notably the U.S. Federal Reserve and the European Central

Bank, decided to review their monetary policy strategy. The ECB, in July 2021, moved its

inflation target (IT) from the ceiling of the 2 percent to a symmetric target over the medium

term, which means that the Governing Council will consider a negative and a positive devia-

tions from this target as equally undesirable and with the aim of stabilize the change in prices at

2 percent. Overseas, at the 2020 Jackson Hole Economic Policy Symposium, Federal Reserve

Chair Jerome Powell announced a revision to the Fed’s long-run monetary policy framework,

replacing the flexible inflation target with average inflation target (AIT) to achieve its dual man-

date of price stability and maximum sustainable employment, see Powell (2020).
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8 Introduction

Under an AIT regime, a period of below-target inflation should be followed by a period in

which inflation is systematically above the target. Standard inflation targeting, instead, implies

that inflation should move to its target regardless of its deviations in the previous period. AIT

would benefit the economy by anchoring longer-term inflation expectations at a level consistent

with the central bank’s target, thereby avoiding the downward bias in inflation expectations that

can arise under IT when the zero lower bound potentially constrains the policy rate, maintaining

policy space for stabilization policy. Moreover, the promise of an above-target future inflation

under AIT during low level of inflation should raise near and medium-term inflation expecta-

tions, thereby reducing ex-ante real rates and stimulating the economy as households increase

their consumption.

Although AIT has gained a lot of consensus among policy makers, it has still many open ques-

tions. In a recent article on The Financial Times written by William Buiter, see Buiter(2021),

AIT is strongly criticized, defining it ”illiterate”. He argues that the new monetary strategy of

the Fed did not clearly expressed the average window of the target, which could lead to un-

necessary period of above target inflation. He also condemn the make-up feature of this policy:

past inflation can influence expectations of future inflation which can in turn drive actual current

and future inflation, but many other drivers guide expected future inflation such as past, present,

and anticipated future money growth, forward guidance, expected and unanticipated changes in

the monetary and fiscal policy regime, supply side developments, with no strong evidences that

past failure of inflation determine future deliberate failures.

In this work, I try to address some of the open questions. I contribute to the extant literature

along three dimensions. First, I assess the effect of the average inflation targeting in an estimated

model for the euro area. Thus, I estimated the Smets and Wouters (2007) model over the period

1995Q1 - 2019Q4 using macroeconomic observable variables of the euro area. This allows

me, to understand how the model fit the data and how policy related question can be interpret.

Second, I study the effect of an average inflation target over different time horizons. I include

the average of realized past inflation or the average of the future expected inflation. Finally, I

evaluate the welfare properties of the Average Inflation Targeting rules on the basis of a central

bank’s loss function.

I find that the design of the monetary policy rule is crucial to reap the benefits of the average

inflation targeting strategies. Especially, only under an aggressive response to average inflation

deviation from its target, the central can improve its objective function.

The thesis proceeds as follows. Chapter 1 describe the state of the literature, reporting the

main contributions on the evaluation of the AIT and highlighting the weakness and the open
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questions. Chapter 3 presents the log-linearized Smets and Wouters (2007) model. Chapter 4

reports the results of the Bayesian estimation, and Chapter 5 evaluate the different monetary

policies on the basis of a central bank’s loss function.



Chapter 2

Literature

AIT has gained increased attention among policymakers and academics in recent years. Nessén

and Vestin (2005) introduced AIT into the central bank’s optimization problem. Under perfect

communication and rational expectation, when the Philips curve has forward-looking compo-

nents, adopting an average inflation targeting strategy will result in lower welfare loss than a

one-period inflation target objective. The history dependence of the AIT interacts favourably

with expectations of future inflation. Targeting two-period average inflation, a positive shock

to inflation in one period will lead to lower expectations in the following period. This is crucial

under a forward-looking Philips curve, because, this change in expectations, will improve the

short-run trade-off faced by the central bank and lead to lower social loss. Similarly, Nakata

et al. (2020) studied the implications of average inflation targeting in a New Keynesian model

with a lower bound on nominal interest rates. They have analyzed the optimization problem of a

central bank that takes the assigned objective function as given and sets the short-term nominal

interest rate under discretion. They have considered two variants of the model. Under ratio-

nal expectations, AIT improves macroeconomic outcomes and increases people’s welfare when

compared to standard inflation targeting. Under bounded-rational expectations, as long as cog-

nitive limitations remain small, the results remain the same. However, if cognitive limitations

are sufficiently strong, the optimal averaging window is finite, and the welfare improvement

from abandoning standard inflation targeting in favour of average inflation targeting can be

small.

Similarly, but focusing on an interest rate targeting rule, instead of optimal policy, Mertens

and Williams (2019) show that AIT can mitigate the effects of the zero lower bound by rais-

ing inflation expectations when inflation is low. They use a standard New Keynesian model

augmented with a lower bound on interest rates and they investigate three classes of monetary

frameworks with their policy rules: inflation targeting, average inflation targeting and price-

10
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level targeting. Then, they compare with the benchmark case of optimal policy under discretion.

They affirm that all of these policies work through affecting expectations. However, among all

of these policies, AIT appears to be the best in raising inflation expectations during a period of

low inflation, resulting in an overall lower social loss. Also Svensson (2020a), which studied

monetary policy strategy of ”forecast targeting” within the Fed mandate, affirms that AIT, if

well receipted by the public, would anchor inflation expectation towards the target.

The paper of Arias et al. (2020) is the closet to this thesis. Indeed, their analysis largely

focuses on a class of makeup strategies in which policymakers seek to stabilize average in-

flation around the inflation target over some horizon. They compare a set of monetary pol-

icy rules, under the same estimated New Keynesian model, specifically the FRB/US model,

and they evaluate the different rules based on a welfare loss function. They find that makeup

strategies generally improve macroeconomic stability compared with a standard inflation target

approach, however, the size of these gains is moderate across the strategies considered, with

longer makeup windows yielding somewhat larger gains. Companion of this paper is the work

of Hebden et al. (2020). They examine how AIT performs under the FRB/US macroeconomic

model, but modify the assumptions about expectations formation. They find that, as long as

financial market participants understand the AIT strategies and believe in the central bank’s

commitment to implement them, the make-up rule can counteract the real effects of adverse

economic shocks. To be credible, the central bank will initially answer to a period of low with

an aggressive monetary policy accommodation. This will lead to overheating the economy and

bring a sustained period of inflation above the target. Moreover, they show that in a period of

low inflation and when the central bank is constrained by the ELB, the make-up strategies are

more credible since the public would see a strong commitment by the policymakers to mitigate

the economy’s issues. They also report that the adoption of a makeup strategy could inad-

vertently unanchor long-run inflation expectations. Furthermore, AIT works better than IT also

under uncertainty about the natural rate of unemployment, because makeup strategies implicitly

correct policy errors induced by misconception of slack in the economy.

As well stressed before, the effectiveness of AIT hinges on the extent to which people un-

derstand how these strategies are known and understood by households and firms. Coibion

et al. (2020) studied this issue using a daily survey of U.S. households run before and after

Powell’s speech of the adoption of the new monetary policy regime, and then followed up by

another survey around one year after the announcement. First of all, the authors show that the

announcement did not significantly affect the general public’s perception of monetary policy,

and neither being exposed to news about monetary policy changed households’ perceptions of
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how the Federal Reserve would act. Moreover, only a few people were able to recognize AIT

as the Fed new monetary policy strategy. In addition, they also control for the fact that could

take time to understand the new strategy, however, even after a year the results remain the same.

Finally, they studied the case when information about AIT was presented directly and concisely

to individuals: they wanted to understand if households’ beliefs could change in a manner con-

sistent with the theory. In detail, they provided some individuals with information about AIT,

others with information about IT. However, they find no significant differences in expectations

between individuals who are provided information about AIT compared to IT. Overall, these

findings suggest that AIT is unlikely to provide many of the economic benefits that theory often

attributes to it.

Most papers have seen before either impose rational expectations or assume that agents

are bounded-rational, but have perfect knowledge about the policy structure. Honkapohja and

McClung (2021) analyzed the performance of AIT when agents have imperfect knowledge

about the policy structure and learn to forecast over time. They show that the Central Bank can

fail to anchor expectations around the target steady-state if prices are flexible or the speed of

learning is very slow. Furthermore, an opaque AIT policy will typically fail to move from a

liquidity trap.

Another fundamental issue to take into account in implementing a policy of average-inflation-

targeting is the size of the time window used to calculate the average inflation rate. Related to

this topic Amano et al. (2020) examine how much history dependence should be embedded in

the AIT rule for the policy to be effective. They find that the optimal length for AIT is less than

two years. In contrast, the optimal window length declines substantially to about two quarters

when the economy is only subject to cost-push shocks and firms have adaptive expectations.

Related to the miscommunication of the horizon over which the Fed should target the average

inflation at 2 percent is the work of Jia and Wu (2021). They show that Fed ambiguous com-

munication about the time horizon of AIT is intentional and welfare improving. According to

this work, under uncertainty about economic fundamentals, the central bank has to convince

the private sector about its commitment to implement AIT. In this way, the central bank can

improve the trade-off between inflation and real activity. Only ex-post, the central bank has the

incentive to deviate from its communication and implement IT instead. This strategy is wel-

fare improving, but time-inconsistent. The central bank must be able to convince private agents

about its communication, but then it will be different from its actions.

The literature on average inflation targeting policies is still young compared to Price-level Tar-

geting and nominal GDP targeting, and many questions are still open. In this work, I especially
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try to address the importance of the design of the AIT rule. However, before jumping into the

monetary policy rule analysis, I estimated a DSGE model for the euro area, for which I present

the result in the next chapter.



Chapter 3

The model

For a better and consistent analysis, I estimated the Smets and Wouters (2007) (SW, hereafter)

medium-scale DSGE model, a well-known and recognized framework among central banks and

academics. It is particularly suited for evaluating the effect of different monetary policy rules.

Indeed, this model can be viewed as the foundation of frameworks used for policy analysis at

many central banks and policy institutions. Moreover, the SW model, being empirically con-

sistent with optimizing behavior, should be less prone to the Lucas (1976) critique, compare

to other studies based on backward-looking models. Largely based on the work of Christiano

et al. (2005), the SW model contains many shocks and frictions. The economy is populated by a

representative household, which receives, net of taxes, income from wages, from financial asset,

from renting capital to firms, and the interest rate determines the inter-temporal time pattern of

consumption. Moreover, they introduced habit formation in consumption, adjustment costs for

investments, utilisation costs, that make variables more sluggish and give random shocks a more

long-lasting effect. Furthermore, the model features price and wage rigidities. In addition, the

stochastic dynamics are driven by seven orthogonal structural shocks: total factor productivity

shocks, risk premium shocks, investment-specific technology shocks, wage and price mark-up

shocks, exogenous spending and monetary policy shocks.

This section develops the sticky-price and flexible-price economies of the log-linearized ver-

sion1.

1All the variables in lowercase letters represent log deviation from the non-stochastic steady-state.

14
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3.1 Sticky-price economy

3.1.1 The goods market equilibrium condition

The aggregate resource constraint is given by

yt = cyct + iyit + zyzt + ϵ
g
t . (3.1)

Output yt is equal to consumption ct, investment it and capital utilization rate zt. cy is the steady-

state share of consumption in output (equals to 1 − gy − iy), where gy and iy are respectively the

steady-state exogenous spending-output ratio and investment-output ratio; iy = γ− 1+ δ, where

γ is the steady-state growth rate, while δ is the depreciation rate of capital. Finally, zy = Rk
∗ky,

where Rk
∗ (equals to β−1γσc −1− δ) is the steady-state rental rate of capital. ϵg is the government

spending shock.

3.1.2 Consumption

Consumption is defined as

ct =
h

1 + h
ct−1 +

1
1 + h

Et[ct+1] −
1 − h

σc(1 + h)
(rt − Et[πt+1] + ϵb

t )

+
(σc − 1)
σc(1 + h)

Wh
∗L∗

C∗
(lt − Et[lt+1])

(3.2)

where ct represent the aggregate private consumption, rt the central bank nominal interest

rate, πt the inflation rate and lt the household’s hours worked. Consumption at time t depends

on a weighted average of past and expected future consumption, on expected growth in hours

worked and the ex ante real interest rate. Wh
∗ is the steady-state aggregate nominal wage rate,

L∗ the steady-state composite labour input and C∗ the steady-state household’s consumption.

The parameter h, the modified household’s consumption habits parameter, is equal to λ / γ,

where λ is the the external habit formation. σc is the inverse of the elasticity of inter-temporal

substitution. Finally, ϵb is the risk premium shock and represent a wedge between the interest

rate controlled by the central bank and the return on assets held by the households.
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3.1.3 Investment

The investment equation is given by

it =
1

1 + βγ1−σc
it−1 +

βγ1−σc

1 + βγ1−σc
Et[it+1] +

1
φγ2(1 + βγ1−σc)

qt + ϵ
i
t (3.3)

where it is the aggregate investment and qt the real value of the existing capital stock. β is

the discount factor, φ the steady-state elasticity of the capital adjustment cost function and ϵ i

represents a disturbance to the investment-specific technology process.

3.1.4 Capital

The value of capital equation is

qt =
1 − δ

1 − δ + Rk
∗

Et[qt+1] +
Rk
∗

1 − δ + Rk
∗

Et[rk
t+1] − (rt − Et[πt+1] + ϵb

t ) (3.4)

where qt is the value of capital stock at time t, which depends positively on the its expected

future value and the expected rental rate on capital rk
t , while negatively on the ex ante real

interest rate and the risk premium shock.

The capital accumulation equation is

kt =
1 − δ
γ

kt−1 +
γ + δ − 1

γ
it + (γ − 1 + δ)

(︂
1 + βγ(1−σc)

)︂
γφϵ i

t (3.5)

kt is the installed capital that is a function of the flow of investment and the relative efficiency

of these investment expenditures captured by the investment specific technology shock.

3.1.5 Production

Turning to the supply side, the aggregate production function is defined as

yt = ϕp
(︁
αks

t + (1 − α) lt + ϵ
a
t
)︁ (3.6)

where output yt is produced using capital ks
t and labor services lt (hours worked). Parameters

ϕp and α represent respectively the presence of fixed cost in production and the share of capital

in production.
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Capital services used in production

ks
t = kt−1 + zt (3.7)

are a function of capital installed in the previous period and the degree of capital utilization zt,

which is a positive function of the elasticity of the capital utilization adjustment cost function

with respect to utilization normalized to be between zero and one

zt =
1 − ψ
ψ

rk
t . (3.8)

and rk
t is the rental rate of capital equals to

rk
t = −(kt − lt) + wt (3.9)

that is negatively related to the capital-labor ratio and positively to real wage.

3.1.6 Wages

The real wage equation is given by:

wt =
βγ1−σc

1 + βγ1−σc
Et [wt+1] +

1
1 + βγ1−σc

wt−1

βγ1−σc

1 + βγ1−σc
Et [πt+1] −

βιwγ
1−σc

1 + βγ1−σc
πt +

ιw
1 + βγ1−σc

πt−1

−
1

1 + βγ1−σc

(︂
1 − βγ1−σcξw

)︂
(1 − ξw)

ξw (1 + (ϕ − 1) ϵw)
µw

t + ϵ
w
t

(3.10)

where wt is a function of expected and past wages, expected and past inflation, wage mark-up

shock ϵw
t and wage mark-up µw

t , which, in the monopolistically competitive labor market, is

given by the equation

µw
t = wt −

(︄
σllt +

1
1 − h

(ct − hct−1)
)︄

(3.11)

that is the difference between the real wage and the marginal rate of substitution between work-

ing and consuming, where σl is the elasticity of labor supply with respect to real wage and h is

the habit parameter in consumption.

In general, real wages do not depend on lagged inflation if wage indexation is zero (ιw = 0) and

the speed of adjustment to the desired wage mark-up depends on the degree of wage stickiness

ξw, the curvature of the Kimball labor market aggregator ϵw and the steady state labor mark-up

(ϕw − 1).
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3.1.7 Prices

Under monopolistic competitive goods market, cost minimization by firms implies that the price

mark-up (µp
t ) is equal to the difference between the marginal product of labor and the real wage:

µ
p
t =mplt − wt = α (kt

s
− lt) − wt + ϵ

a
t (3.12)

Due to price stickiness, as in Calvo (1983), and partial indexation to lagged inflation of those

prices that can not be reoptimized, prices adjust only sluggishly to their desired mark-up. Profit

maximization by price-setting firms gives rise to the following New-Keynesian Phillips curve:

πt =
βγ1−σc

1 + βιpγ1−σc
Et [πt+1] +

ιp

1 + βιpγ1−σc
πt−1

−
1

1 + βιpγ1−σc

(︂
1 − βγ1−σcξp

)︂ (︂
1 − ξp

)︂
ξp

(︂
1 + (ϕ − 1) ϵp

)︂ µ
p
t + ϵ

p
t

(3.13)

Therefore, inflation depends positively on past and expected future inflation, price mark-up

shock ϵ p
t , while negatively on the price mark-up. As for wages, when the degree of indexation to

past inflation, ιp = 0, the inflation equation reverts to a standard, purely forward-looking Phillips

curve, so, assuming that all prices are indexed to lagged inflation ensures that the Phillips curve

is vertical in the long run. The speed of adjustment to the desired mark-up depends on the

degree of price stickiness (ξp), the curvature of the Kimball goods market aggregator (ϵp), and

the steady-state mark-up (ϕp − 1).

3.1.8 Monetary policy rule

The monetary authority adjusts rt following a generalized taylor rule given by the equation:

rt = ρrt−1 + (1 − ρ)[rππt + ry(yt − yp
t )] + r∆y[(yt − yp

t ) − (yt−1 − yp
t−1)] + ϵr

t . (3.14)

which depends on inflation and on output gap, represented by the difference between actual and

potential output (yp
t ) defined as the level of output that would prevail under flexible prices and

wages in the absence of the two “mark-up” shocks. In addition, it also depend on a short-run

feedback from the change in the output gap. The parameter ρ captures the degree of interest

rate smoothing. Finally, the monetary policy shock is given by ϵr
t .
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3.2 Flexible-price economy

The model is expanded with a flexible-price-wage version of the previous 14 equations in order

to calculate the model-consistent output gap.

3.2.1 Flexible-price equilibrium

The market equilibrium under flexible price is given by:

yp
t = cyc

p
t + iyi

p
t + zyz

p
t + ϵ

g
t (3.15)

3.2.2 Flexible-price consumption

The flexible-price consumption is defined as

cp
t =

h
1 + h

cp
t−1 +

1
1 + h

Et

[︂
cp

t+1

]︂
−

1 − h
σc(1 + h)

(rp
t + ϵ

b
t )

+
(σc − 1)
σc(1 + h)

Wh
∗L∗

C∗
(lp

t − Et[l
p
t+1])

(3.16)

where cp
t is flexible-price consumption, rp

t the natural interest rate and lp
t flexible-price worked

hours.

3.2.3 Flexible-price investment

Investment under flexible price is equal to

ip
t =

1
1 + βγ1−σc

ip
t−1 +

βγ1−σc

1 + βγ1−σc
Et[i

p
t+1] +

1
φγ2(1 + βγ1−σc)

qp
t + ϵ

i
t (3.17)

where ip
t is flexible-price investment and qp

t the flexible-price real value of existing capital stock.

3.2.4 Flexible-price capital

Flexible-price capital stock is given by

qp
t =

1 − δ
1 − δ + Rk

∗

Et[q
p
t+1] +

Rk
∗

1 − δ + Rk
∗

Et[r
kp
t+1] − (rt + ϵ

b
t ) (3.18)
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where rkp
t is the flexible-price rental rate on capital equal to

rkp
t = −(kp

t − lp
t ) + wp

t (3.19)

and the flexible-price capital accumulation equation is given by

kp
t =

1 − δ
γ

kp
t−1 +

γ + δ − 1
γ

ip
t + (γ − 1 + δ)

(︂
1 + βγ(1−σc)

)︂
γφϵ i

t (3.20)

3.2.5 Flexible-price production

The flexible-price aggregate production function is defined as

yp
t = ϕp

(︁
αksp

t + (1 − α) lp
t + ϵ

a
t
)︁ (3.21)

where yp
t represents the pontential output that is a function of flexible-price labor services lp

t and

flexible-price capital services ksp
t , that is equal to

ksp
t = kp

t−1 + zp
t (3.22)

that is a function of flexible-price capital installed in the previous period (kp
t−1) and the degree

of flexible-price capital utilization (zp
t )

zt =
1 − ψ
ψ

rk
t . (3.23)

3.2.6 Flexible-price wages

Real wages under flexible-price are equal to

wp
t = σll

p
t +

1
1 − h

(︂
cp

t − hcp
t−1

)︂
(3.24)

3.2.7 Flexible-price marginal cost

Under flexible prices there is no marginal cost by definition. This leads to

ϵαt = αrkp
t + (1 − α)wp

t (3.25)
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3.3 The stochastic structure

3.3.1 AR(1) shocks

The total factor of productivity shock ϵa
t , the risk premium shock ϵb

t , the investment-specific

technology shock ϵ i
t and the monetary policy shock ϵr

t follow a first-order autoregressive func-

tional form as

ϵk
t = ρkϵ

k
t−1 + η

k
t (3.26)

∀k ∈ {a, b, i, r}, where ρk ∈ [0, 1[ is the first-order autoregressive parameter of the shock k, and

ηk
t an i.i.d-normal error term.

3.3.2 Government spending shock

In addition, the government spending shock ϵg
t follows a first-order autoregressive process im-

pacted by technology shocks such as

ϵ
g
t = ρgϵ

g
t−1 + η

g
t + ρgaη

a
t (3.27)

where ρg ∈ [0, 1[ is the first-order autoregressive parameter and ηg
t is an i.i.d normal error term.

The inclusion of the technology shock is empirically motivated by the fact that, in estimation,

the exogenous spending also includes net exports, which may be affected by domestic produc-

tivity developments (ρga).

3.3.3 ARMA(1,1) shocks

Finally, the price and the wage markup shock follows an ARMA(1,1) functional form such as

ϵ s
t = ρsϵ

s
t−1 + η

s
t − µsη

s
t−1 (3.28)

∀s ∈ {p,w}, where ρs ∈ [0, 1[ is the first-order autoregressive parameter of the shocks s, µs is

the moving average term and ηs
t an i.i.d normal error term. The inclusion of the MA term is

designed to capture the high-frequency fluctuations in inflation and wages.

Summing up, the model determine 14 endogenous variables: yt, ct, it, qt, ks
t , kt, zt, rk

t , µw
t , wt, µ

p
t ,

πt, lt and rt. The stochastic behaviour of the system of linear rational expectations equations is

driven by all the seven exogenous disturbances reported above.



Chapter 4

Model estimation

4.1 Bayesian estimation

The model is estimated using Bayesian techniques as in the works of Smets and Wouters

(2003, 2007). Prominent academics, such as Geweke (1999), Landon-lane et al. (2000), Lubik

and Schorfheide (2003), An and Schorfheide (2007), and in more recent works of Christiano

et al. (2018) and Fernández-Villaverde and Guerrón-Quintana (2021), demonstrated how the

Bayesian approach has become an excellent tool to estimate DSGE models. First, Bayesian es-

timation fits the complete, solved DSGE model, likewise, estimation is based on the likelihood

generated by the DSGE system. Moreover, it uses the information about the prior distribu-

tions coming from micro or macro-econometric studies, thereby linking them with the previous

calibration-based literature. The inclusion of priors also helps identifying parameters. Further-

more, Bayesian estimation explicitly addresses model misspecification by including shocks,

that are observation errors, in the structural equations. Finally, the resulted posterior distribu-

tion can be used to evaluate how the model fits the data, and how it can be useful for policy

analysis.

The posterior distribution estimation combines the prior assumption of the distribution of the

parameters with a likelihood function, which describe the data, under the Bayesian’s law:

p(θ|Y) =
p(Y |θ)p(θ)

p(Y)
(4.1)

First, p(θ) is the prior distribution of the parameter vector θ before observing the sample Y. It

stands for a probability density function such as a normal, gamma, inverse gamma, beta, or

uniform distribution.

The likelihood function, p(Y |θ), describes the density of the observed data, given the model and

22



4.1 Bayesian estimation 23

its parameters.

The marginal density, p(Y), of the data conditional to the model is equal to the equation:

p(Y) =
∫︂

p(Y |θ)p(θ) dθ (4.2)

and normalizes the posterior density such that it integrates to one. Therefore, the posterior

kernel correspond to the numerator of the posterior density, such that:

p(θ|Y) ∝ p(Y |θ)p(θ) ≡ K(θ|Y) (4.3)

and this equation is fundamental to rebuild all the posterior moments of interest. Estimating the

likelihood function with the use of the Kalman filter, it is possible to derive the log-likelihood

and rewrite the above equation as the log posterior kernel:

lnK(θ|Y) = lnLp(Y |θ) + ln p(θ) (4.4)

where the first term on the right hand side is now known after carrying out the Kalman filter

recursion.

Maximizing the log posterior kernel with respect to θ, it is possible to find the mode of the

posterior distribution. Finally, trough the use of the Metropolis-Hasting algorithm, it is possi-

ble to simulate the posterior distribution of the parameters. The MH algorithm is a ”rejection

sampling algorithm” used to generate a sequence of sample, known as ”Markoc Chain” from

a distribution that is unknown at the outset. First of all, it starts from a point of θ, which is

typically the posterior mode and it run in a loop. It draws a propose, that is θ∗ from a jumping

ditribution of the form

J(θ∗|θt−1) = N(θt−1, cΣm) (4.5)

where Σm is the inverse of the Hessian computed at the posterior mode. Then it calculate the

acceptance ratio, such as

r =
K(θ∗|Y)
K(θt−1|Y)

(4.6)

and finally accept or discard the proposal, and update, if necessary, the jumping distribution:

θt =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
θ∗, with probability min(r,1)

θt−1, otherwise
(4.7)
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The acceptance ratio and the scale factor are very important in this procedure. If the scale factor

is too small, the acceptance rate will be too high and the Markov Chain chain is likely to get

“stuck” around a local maximum. On the other hand, if the scale factor is too large, the accep-

tance rate will be very low and the chain will spend too much time in the tails of the posterior

distribution.

Once the algorithm has draw the distribution, this will produce the mean and the standard devi-

ation of each parameters and the DSGE model is estimated. For a more detailed and completed

analysis I remaind to the book of Herbst and Schorfheide (2015)

The next section report the Bayesian estimation of the SW DSGE model on the Euro area.

Section 4.2 will present the data set and its transformation, section 4.3 will describe the prior

distribution, section 4.4 will comment the posterior distribution and finally, section 4.5 will

analysis the results.

4.2 Data

The data needed for the estimation are mainly sourced from the ECB statistical warehouse, ex-

cept for the interest rate and the weekly working hours time series. I used data over the period

1995Q1-2019Q4 for the Euro Area 19. These quarterly time series include real GDP, GDP

deflator, private final consumption, gross fixed capital formation, population level, employment

and compensation per hours. To identify the policy interest rate, I combined the short-term rate

obtained from the Area Wide Model database, Fagan et al. (2005), with the shadow interest rate

developed by Wu and Xia (2017) for the euro area. This strategy allows to account for uncon-

ventional monetary policy implemented when the economy is stuck at the zero lower bound,

experienced in the Euro zone after the global financial crisis, capturing important information

otherwise absent in the ECB deposit rate. Similarly, data for average weekly working hours are

collected from the work of Botelho et al. (2021) in which they derived the series from the data

available in the European Union Labour Force Survey (EU-LFS).

One of the characteristic of this model is that it features a deterministic growth rate driven by

labor-augmenting technological progress, so that the data do not need to be detrended before es-

timation. As a result, to obtain the seven key macroeconomic variable needed for the estimation,

I transformed the observed time series according to the following equations:

GDPt = 100ln
(︄

RGDPt

POPLEVt

)︄
, (4.8)
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INFt = 100ln
(︄

RGDPDEFt

RGDPDEFt−1

)︄
, (4.9)

RAT Et = 100ln
(︃ INTRAT Et

4

)︃
, (4.10)

CONS t = 100ln
(︄

PFCt

RGDPDEFt ∗ POPLEVt

)︄
(4.11)

INVt = 100ln
(︄

GFCFt

RGDPDEFt ∗ POPLEVt

)︄
(4.12)

WAGEt = 100ln
(︄
COMPHOURt

RGDPDEFt

)︄
(4.13)

HOURS t = 100ln
(︄
HOURWORKEDt

EMPLt

POPLEVt

)︄
(4.14)

where RGDPt is the real gdp, RGDPDEFt is the real gdp deflator, PFCt is the private final

consumption, GFCFt is gross fixed capital formation, INTRAT Et is the time series for the in-

terest rate constructed as descried above, COMPHOURt is the average compensation per hour,

HOURWORKEDt is average weekly hours worked, whereas POPLEVt and EMPLt stand for

total level of population and the employment level respectively, and they are both transformed

in indexes of the same base. Finally, the transformed observed time series enter in the model

through the following measurements equations:

GDPt = yt − yt−1 + γ (4.15)

CONS t = ct − ct−1 + γ (4.16)

INVt = it − it−1 + γ (4.17)

WAGEt = wt − wt−1 + γ (4.18)

where GDPt, CONS t, INVt and WAGEt are respectively the data series of the real output, the

real consumption, the real investment and the wage inflation described above, on the other hand

γ = 100(γ−1) is the common quarterly trend growth rate to real GDP, consumption, investment

and wages.

The inflation, interest rate and worked hours data are measured by:

INFt = πt + π (4.19)

RAT Et = rt + r (4.20)
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HOURS t = lt − lt−1 + l (4.21)

where π = 100(Π∗ − 1) is the quarterly steady state inflation rate, r = 100(β−1γσcΠ∗ − 1) is the

steady state nominal interest rate, which will be determined by estimating the discount rate, and

l is steady-state hours worked, normalized to be equal to zero.

4.3 Calibration and prior distributions of the parameters

All the prior distributions are specified as in Smets and Wouters (2007). First of all, some of

the parameters were kept fixed in the estimation. These include the depreciation rate δ, which

is set to be equal to 0.025, the steady state exogenous spending share gy is fixed at 0.18, the

steady-state mark-up in the labor market λw is set at 1.5 and the curveture parameters of the

Kimball aggregators in the goods and labor market (ϵp and ϵw) are both set at 10. Other two

parameters were kept fixed and not clearly identify: the persistence productivity and spending

shock (ρa and ρg) both fixed at 0.98.

For what concerns the prior distributions, the parameters of the utility functions are set as fol-

lows: the mean of the inter-temporal elasticity of substitution, σc, is 1.5 and the standard error

is 0.375 under Normal distribution; the mean of the elasticity of labor supply, σl, which also

follows a Normal distribution, is 2 with a standard error of 0.75; the habit formation parameter,

h, has a Beta distribution with mean of 0.7 and a standard error of 0.1. The adjustment cost

parameter for investment, φ, is assume to be Normal around a mean of 4 with a standard error

of 1.5. The share of fixed cost in production, ϕp, follows a Normal distribution with prior mean

of 1.25 and a standard error of 0.125 and the Beta distribution of the capacity utilization elas-

ticity parameter, ψ, is set with a mean of 0.5 and a standard deviation of 0.15. The parameters

describing the price and the wage setting all follows a Beta distribution. The Calvo probabilities

(ξw and ξp) are assumed to fluctuate around a mean of 0.50 and a standard deviation of 0.10,

while the prior mean of the degree of indicization to past inflation is set to be 0.5 with a standard

error of 0.15.

The parameter of the monetary policy rule, that are the long-run reaction on inflation (πr),

the long-run reaction on output gap (πy) and the short-run reaction coefficient to the change in

the output gap are described by a Normal distribution with mean around 1.5, 0.125 and 0.125

and standard errors of 0.125, 0.05 and 0.05, respectively. The coefficient on the lagged interest

rate, ρ follows a Beta distribution with mean 0.75 and standard deviation 0.10.

Finally, the standard errors of the shocksσk, ∀k ∈ {a, b, g, i, r, p,w}, follow an inverse gamma
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Table 4.1: Prior and posterior distribution of the structural parameters

Prior Posterior

Dist. Mean Std. dev. Mode Mean HPD inf HPD sup

φ Normal 4.00 1.50 4.89 5.89 3.80 7.95
σc Normal 1.50 0.37 1.23 1.38 1.05 1.69
λ Beta 0.70 0.10 0.70 0.67 0.60 0.80
ξw Beta 0.50 0.10 0.90 0.89 0.84 0.94
σl Normal 2.00 0.75 2.09 2.10 1.07 3.12
ξp Beta 0.50 0.10 0.95 0.93 0.90 0.95
ιw Beta 0.50 0.15 0.19 0.20 0.07 0.32
ιp Beta 0.50 0.15 0.31 0.34 0.14 0.53
ψ Beta 0.50 0.15 0.73 0.71 0.55 0.88
ϕp Normal 1.25 0.12 1.69 1.72 1.57 1.86
rπ Normal 1.50 0.25 1.47 1.41 1.01 1.73
ρ Beta 0.75 0.10 0.93 0.91 0.87 0.95
ry Normal 0.12 0.05 0.15 0.17 0.11 0.23
r∆y Normal 0.12 0.05 0.23 0.22 0.15 0.29
π̄ Gamma 0.62 0.10 0.54 0.54 0.43 0.64
100(β−1 − 1) Gamma 0.25 0.10 0.31 0.27 0.09 0.44
γ̄ Normal 0.40 0.10 0.24 0.20 0.10 0.28
ρga Normal 0.50 0.25 1.31 1.33 1.14 1.52
α Normal 0.30 0.05 0.07 0.06 0.03 0.09

Notes: The posterior distribution are derived from the estimation of a Euro Area 19 sample data over the period 1995Q1 -
2019Q4. The results are obtained using the Metropolis-Hastings algorithm with 10 millions draws and two parallel chains,
neglecting 2 millions draws and resulting in an acceptance ratio of 32%. The convergence diagnostic test is based on Brooks
and Gelman (1998) and compares between and within moments of multiple chains. HPDi (Highest Posterior Density interval)
is the shortest interval among all of the Bayesian credible intervals: any point within the interval has a higher density than
any other point outside. All the estimation is implemented in Dynare.

distribution with a mean of 0.10 and 2 degrees of freedom. The persistence parameters of the

AR(1) ρs, ∀s ∈ {b, i, r, p,w}, and MA (µp and µw) processes follow a beta distribution with mean

0.5 and a standard deviation of 0.2.

4.4 Posterior distribution of the parameters

Tables 4.1 and 4.2 give the mode, the mean and the highest posterior density interval of the pa-

rameters obtained by the Matropolis-Hasting algorithm with 10 millions draws and two parallel

chains, and an acceptance ratio of 32 percent. The figure representing the multivariate Brooks

and Gelman (1998) convergence test is reported in the appendix B.1.

The posterior mean of the steady-state inflation rate is about 2 percent and the mean of the

discount rate is about 1 both on annual basis. The posterior mean of the trend growth rate is

equal to 0.24, which is similar to the average quarterly growth rate of output per capita over the
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Table 4.2: Prior and posterior distribution of the structural parameters

Prior Posterior

Dist. Mean Std. dev. Mode Mean HPD inf HPD sup

ηa Invgamma 0.10 2.00 0.32 0.34 0.27 0.40
ηb Invgamma 0.10 2.00 0.03 0.04 0.02 0.05
ηg Invgamma 0.10 2.00 0.39 0.39 0.33 0.45
ηi Invgamma 0.10 2.00 1.25 1.23 1.07 1.39
ηm Invgamma 0.10 2.00 0.13 0.13 0.11 0.15
ηp Invgamma 0.10 2.00 0.19 0.18 0.13 0.22
ηw Invgamma 0.10 2.00 0.11 0.11 0.08 0.13
ρb Beta 0.50 0.20 0.97 0.94 0.90 0.98
ρi Beta 0.50 0.20 0.06 0.08 0.01 0.15
ρr Beta 0.50 0.20 0.25 0.31 0.15 0.47
ρp Beta 0.50 0.20 0.66 0.64 0.38 0.91
ρw Beta 0.50 0.20 0.81 0.73 0.51 0.91
µp Beta 0.50 0.20 0.86 0.80 0.53 0.96
µw Beta 0.50 0.20 0.76 0.62 0.39 0.85

Notes: The posterior distribution are derived from the estimation of a Euro Area 19 sample data over the period
1995Q1 - 2019Q4. The results are obtained using the Metropolis-Hastings algorithm with 10 millions draws and two
parallel chains, neglecting 2 millions draws and resulting in an acceptance ratio of 32%. The convergence diagnostic
test is based on Brooks and Gelman (1998) and compares between and within moments of multiple chains. HPDi
(Highest Posterior Density interval) is the shortest interval among all of the Bayesian credible intervals: any point
within the interval has a higher density than any other point outside. All the estimation is implemented in Dynare.

sample data which is around 0.28. The implied mean steady-state real interest rate is to 4 percent

on an annual basis. For what concerns the posterior distribution of the main parameter, many

of them are worth to mention. The mean of the steady-state elasticity of the capital adjustment

cost function, φ, is higher then its prior, suggesting a slower response of investment to changes

in value of capital. The Calvo probabilities (ξw and ξp) turn out to be much higher than assumed

a priori, suggesting an contract duration of more than 2 years. On the other hand, the mean of

the degree of wage and price indexation is less than 0.50, where the degree of wage stickiness

is lower (ξw = 0.20) than price stickiness (ξp = 0.34). Furthermore, the estimated mean of the

capacity utilization cost (ψ = 0.71) and of the fixed cost share (ϕp = 1,72) is much higher than

assumed in assumed prior distribution, while the share of capital cost in production α much

lower. The rest of the estimated behavioural parameters are very similar to their prior.

Turning to the monetary policy reaction function parameter, there is a very high degree of

interest rate smoothing, with a mean equal to 0.91. The long run coefficient is a bit smaller than

its prior (rπ = 1.41), and the policy respond strongly to both output gap level (ry = 0.17) and to

change in the output gap (r∆y = 0.22) in the short run.

A worth discussion is needed for the estimated processes of the exogenous shock variable.
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Especially, the persistence of the risk premium shock turns out to be very high. However, the

absence of financial frictions in model induce the risk-premium shock to capture the output and

the consumption drop of the global financial crisis. When there is the presence of this breaks in

the data, the AR(1) process tend to move as a random walk. Also the persistence parameters of

the price and wage mark-up shocks are very high. On the contrary, the persistence of monetary

policy shock is relatively low, while for the investment-specific technology process is extremely

low.

Overall, the parameters seem to be very informative. For a more detailed anyalsis I reported

the figures of the prior and the posterior distributions in the Appendix B.2.

4.5 FEVD, IRFs and Historical Variance Decomposition

Now I use the estimated model to analyse what guides output, inflation and interest rate dynam-

ics, how the economy reacted to the Global Financial Crisis and how monetary policy responded

to it.

Figure 4.1 reports the forecast error variance decomposition based on the mode of the model’s

posterior distribution. The forecast horizon includes 6 period: the first four quarters and quarter

8 (short run), and five and ten years (the medium-long run). Movements in GDP are clearly

driven by demand shocks, even in the long run, dominated by the strong persistence of the risk

premium shock, as anticipated in section 4.3. In the first quarter the exogenous spending shock

accounts for the 50 percent of the total demand shock. It vanishes in the long run when the

risk-premium shock dominates the others. Indeed, the latter accounts for the 60 percent of the

total movement of the GDP after 10 years. Large part of forecast error variance is also explained

by the productivity shock, which represents the 45 percents of the movement in the first quarter

and it decreases over time. However, it is still persistent after 10 year explaining 25 percent

of the movements. On the other hand, price and wage mark-up shocks do not have an impact

over the forecast horizon. The impact of monetary policy shocks on output is in line with the

literature (see Christiano et al. (1999), which in long run do not strongly determines the output

movements (around 10 percent).

The second and the third graphs of figure 4.1 show show that, the forecast error variance decom-

position of the interest rate, after one quarter, is explained by 50 percent by the monetary policy

shock and 50 percent by the risk premium shock. The latter, in the long run, explains almost

the total movement of the interest rate dynamics. On the other hand, forecast error variance for

inflation is totally driven by price mark-up shocks: prices explain idiosyncratically movements



30 Model estimation

Figure 4.1: Forecast Error Variance Decomposition

Note: The FEVD is computed at the mode of the posterior distribution.

in inflation. Notably, wage mark-up shocks does not influence the inflation’s dynamics. The

strong impact of risk premium on the real economics variables are also evident in the figure 4.2,

where I reported the estimated impulse response functions. The risk-premium shock explains

much of the variation in the short run of output, consumption and investments compare to the

other shocks, even though a big part of investment movements in the short-run is explained

by the investments shock itself. As also expected, a tightening monetary policy action by the

central bank would reduce output, consumption and investments in the short run, but very lit-

tle effects in the long-run. Furthermore, it negatively impacts the inflation and positively the

interest rate.

As in Gali (1999), Francis and Ramey (2005) and Smets and Wouters (2007) the positive

technology shock increases the output, consumption, and investments, but immediately reduces

hours worked, which returns positive after one here.

The estimated model allowed also to analyse how the economy responded to the Global

Financial Crisis. Figure 4.3 shows the historical variance decomposition of real GDP per capita

growth and real consumption per capita growth. In both series, the drop caused by the Global

Financial Crisis is driven by the risk-premium shock. Given the absence of financial frictions
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Figure 4.2: The Estimated Bayesian Impulse Response Functions
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(a) Estimated IRFs to productivity shock
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(b) Estimated IRFs to risk-premium shock
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(c) Estimated IRFs to investment shock
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(d) Estimated IRFs to monetary policy shock

Note: y represents the output, pinf the inflation rate, r the nominal interest rate, c the consumption, inve the
investments, and lab the hours worked.

in the model, the risk-premium shock captures the movements of a financial shock during the

recession. High risk premium rates lowered the demand, causing the consumption, investment

and output drop. The central bank tried to answer to the shock of risk premium lowering the

interest rates, aiming to the negative shock in demand cushioning the crisis. This is evident

in the figure 4.4b where the interest rate is driven down by the risk-premium shock. Finally,

the figure 4.4a shows the historical variance decomposition of inflation. The common shifts

in inflation are mainly driven by price mark-up shocks. Moreover, the graph shows that the

negative demand shocks contributed to low inflation, particularly after the GFC.

These results suggests the necessity to add financial frictions to the model. As pointed out

by Christiano et al. (2018), DSGE model prior the Global Financial Crisis were not equipped

by financial frictions because economic crisis did not seem closely tied to disturbances in finan-

cial markets. Moreover, the financial frictions that were included in dynamic stochastic general

equilibrium models did not seem to have very big effects. However, after the GFC many re-

searcher integrated financial frictions in DSGE models (e.g. Gertler and Kiyotaki (2015) and

Christiano et al. (2014). However, the results of the estimation represents quite well the dy-

namic of the euro area economy, which allow me to analyse the effect of the introduction of an

average inflation targeting rule in the next chapter.



32 Model estimation

Figure 4.3: Historical Variance Decomposition

(a) Historical variance decomposition of real GDP growth

(b) Historical variance decomposition of real consumption growth

Note: Historical data over the period 1995Q1 - 2019Q4. The big drop describe the GFC. Each color represents
a different shock where, ea (blue) is the productivity shock, eb (light green) is the risk-premium shock, eg (red)
the exogenous government spending shock, eqs (balck) is investment-specific technology shock, em (pink) is the
monetary policy shock, epinf (dark green) is the price mark-up shock, and ew (yellow) is the wage mark-up shock.
Trend per-capita growth is estimated at 0.96 percent.
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Figure 4.4: Historical Variance Decomposition

(a) Historical variance decomposition of inflation rate

(b) Historical variance decomposition of the shadow interest rate

Note: Historical data over the period 1995Q1 - 2019Q4. The big drop describe the GFC. Each color represents
a different shock where, ea (blue) is the productivity shock, eb (light green) is the risk-premium shock, eg (red)
the exogenous government spending shock, eqs (balck) is investment-specific technology shock, em (pink) is the
monetary policy shock, epinf (dark green) is the price mark-up shock, and ew (yellow) is the wage mark-up shock.
Mean inflation is estimated at 2.16



Chapter 5

Evaluating monetary policy rules

Having estimated the model parameters, I can now run a series of exercises to evaluate several

monetary policy rules and assess the effect of the average inflation targeting on the euro area. In

this section, I first present each rule, I discuss the result of the stochastic simulation and finally,

I compare a welfare function under different policy regimes to evaluate which strategy works

best.

5.1 Moneteary policy rules

5.1.1 Flexible Inflation Targeting rules

For standard inflation targeting rules, I refers to flexible inflation targeting rules or Taylor-type

reaction functions, see Svensson (1999). The term ”flexible” indicates that the central bank is

also concerned to stabilize the real economy, for instance, the output variability. This is differ-

ent to a ”strictly” inflation targeting rule, which aims to only stabilize the prices movements.

Historically, this strategy has been interpreted as an implicit adherence to a “bygones be by-

gones” approach. Policymakers react to their best estimate of current economic conditions and

the medium-term outlook. They do not take into account the history of inflation. Even if there

has been a long period of inflation undershooting there is no attempt to later overshoot the target

for some time. This type of policies have been structured à la Taylor (1993). The first flexible

IT rule I am going to consider is the Taylor (1999)’s inertial feedback rule:

rt = ρrt−1 + (1 − ρ)[rππt + ry(yt − yp
t )] + εr

t (5.1)

”Inertial” because the coefficient ρ denotes the degree of policy rate smoothing and such inertia

serve to introduce some history dependence in the policy. In this equation, the interest rate

34
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gradually responds to the deviation of inflation from its target, which is normalized to zero, and

the output gap, that is the difference between actual output (under sticky prices) and potential

output, when the prices are flexible (see Chapter 3). Note that, in the original Taylor rule, the

natural interest rate is constant. However, log-linearization of the model around the steady-state

eliminates this natural interest rate from the rule.

The second flexible inflation targeting rule is the policy rule introduced in the Smets and

Wouters (2007) model:

rt = ρrt−1 + (1 − ρ)[rππt + ry(yt − yp
t )] + r∆y(∆yt − ∆yp

t ) + εr
t (5.2)

This rule gradually responds to deviation in inflation from its inflation objective, which is nor-

malized to zero, to the output gap, defined as the difference between actual output (under sticky

prices) and potential output, when the prices are flexible, and, in addition to the previous rule,

to the deviations of the output gap from the previous periods. Also, this equation present the

inertial parameter and the natural interest rate has been eliminated due to the log-linearization

around the steady-state.

Although they are both Taylor-type rules, hereafter, I will call the first monetary policy Taylor

rule and the second one SW rule.

5.1.2 Average Inflation Targeting rules

Average inflation targeting rules enter in that class of rules called ”Make-up Strategies” or

”forecast targeting rules”, see Svensson (2020b). Under these strategies, the policymakers try

to stabilize average inflation around its target over some horizon. Differently, from price-level

targeting rules, AIT seeks to undo past deviations of inflation from its medium-long-run target

goal over a window of fixed length. As discussed previously, the optimal horizon window is

still unclear among researchers. In this exercise I propose some interpretations of the AIT rule

based on the works of Arias et al. (2020), Svensson (2020a), Coenen et al. (2021). Average

inflation is calculated over lengths of 4 or 8 years of the average past inflation and 4 or 8 years

of the future expected inflation. Thus, πAIT
t is equal to

πAIT
t =

πt + πt−1 + .... + πt−n

n
, n = {16, 32} (5.3)

or

πAIT
t =

πt + πt+1 + .... + πt+n

n
, n = {16, 32} (5.4)
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where n = 16 indicates 16 quarters, or 4 year, therefore n = 32 represents 8 years.

The average inflation then enters in the Taylor-type rules presented above in the form of:

inertial Taylor (1999) rule:

rt = ρrt−1 + (1 − ρ)[rππAIT
t + ry(yt − yp

t )] + εr
t (5.5)

and Smets and Wouters (2007) rule:

rt = ρrt−1 + (1 − ρ)[rππAIT
t + ry(yt − yp

t )] + r∆y(∆yt − ∆yp
t ) + εr

t (5.6)

As it can be noticed, the AIT and IT are structured in the same way. If πAIT
t = πt, then the

central bank will react as under a flexible inflation target regime. In the end, considering all the

time windows and the two base forms, there are 4 AIT rules which are built on the line of the

SW rule, and another 4 AIT rules which are based on the structure of the Taylor rule. The only

difference is in how inflation is identified: for AIT rules, inflation enters as an average variable

over a defined time horizon 4 or 8 years of average future inflation, and 4 or 8 years of past

realized inflation. Summing up, I will analyze 10 monetary policy rules: 2 flexible IT rules, and

8 AIT rules.

5.1.3 Models results

To study the effects of all the rules presented above, I run 10 stochastic simulations of the same

Smets and Wouters (2007) model presented in chapter 2, but, each time, accounting for the

ten 10 different monetary policy rules. The parameters of the models were calibrated with the

estimated mode of the posterior distributions. In this section, I report the impulse response

functions and the variances of variables that I will use to compute the welfare loss function

later.

Figure 5.1 displays the IRFs of the shock of (from the top to the bottom) productivity, risk

premium and monetary policy to three key macroeconomic variables (from left to the right):

output, inflation and interest rate. To make the graphs easier to read, I describe the behaviour of

only four monetary policy rules: two for IT and two for AIT. These are the SW and the Taylor

rules and their respective AIT counterpart which I consider as the average time horizon of 4

years of expected future inflation.

Overall, there is a significant difference between the SW rules and the Taylor rules, but not
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Figure 5.1: IRFs of simulated models under different monetary policy rules

Note: Bold solid line: SW rule; thin solid line: AIT SW rule - average of 4 years future expected inflation, bold
dashed line: Taylor rule; thin dashed line: AIT Taylor rule - average of 4 years future expected inflation.

much difference between the IT rules and their AIT counterparts. In detail, a productivity shock

leads to an increase in output and a drop in the inflation rate. The interest rate also decreases,

however, in the short term, the impact is stronger under the SW rule, while it has almost no

effect under the Taylor rule. A risk-premium shock results in an increase in output, which is

stronger under the Taylor rule, and in inflation. This shock increases the interest rate by 0.1

percent under both rules, even though the curve in the short term is steeper under the SW rule.

The monetary policy shock leads to a decrease in output, which in the short term is stronger

under the Taylor rule, however, it reaches the steady-state equilibrium faster than the SW rule.

The monetary policy shock lowers also inflation and rises the interest rate under both policy

rules.

Figure 5.2 reports the results of the variances of the output gap, inflation, and output growth

computed through the stochastic simulation over the ten models. For each figure, the first 5
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Figure 5.2: Variance results of the simulated models

Note: the number 1 to 10 on the x-axes represent each of the ten models analyzed. 1 is the SW rule, 6 is the
Taylor rule. From 2 to 5 are, in order, the AIT-SW rule that consider as average inflation period 4 years past
realized inflation (2), 4 years expected future inflation (3), 8 years past realized inflation (4), 8 years expected
future inflation (5). In parallel , from columns 7 to 10, the AIT-Taylor rule that consider as average inflation period
4 years past realized inflation (7), 4 years expected future inflation (8), 8 years past realized inflation (9), 8 years
expected future inflation (10).

columns belong to the family of the SW rule, while the last 5 columns to the Taylor rule.

Overall, SW rules better stabilize the output gap e and output growth, instead, the Taylor rules

are more efficient to stabilize inflation. The output variances of the AIT rules are higher than the

IT rules (which are described by columns 1 and 6). Notably, on the other hand, the AIT rules

that consider an average time window of 4 or 8 years of the realized past inflation (columns

2, 4, 7, and 9) show a lower variance, meaning that the make-up strategies better stabilize the

inflation rate.

5.2 Central Bank Losses

The preferences of the central bank are represented by a loss function that seeks to minimize.

This function also represent the objective of the society, therefore an indication of the welfare. It

is traditional to assume that the loss function it based on the historical variances of the variables

of interest of the central bank, see Galı́ (2015). The welfare loss function equation is defined as

Lt = var(πt) + λavar(xt) (5.7)

where xt takes the form of output gap or output growth and λa is the weight that the central bank

gives to the output. Literature has largely stated that, see Woodford (2003), the central bank

should assign only a small weight to the measures of economic activity in its objective function.

Also, Blanchard and Galı́ (2007) established that stabilizing inflation allows the central bank to

simultaneously stabilize welfare-relevant measures of economic activity, therefore λa should be
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Table 5.1: Central Bank Loss Functions
xt = outputgap

Monetary rule Time horizon λa = 0.048 λa = 0.25 λa = 1.042

SW (2007) flexible inflation targeting 1 1 1
Average of 4 years future expected π 1.026 1.026 1.026
Average of 4 years past realized π 1.039 1.042 1.043
Average of 8 years future expected π 1.064 1.065 1.065
Average of 8 years past realized π 1.082 1.089 1.089

Taylor (1993) flexible inflation targeting 1.329 1.355 1.359
Average of 4 years future expected π 1.347 1.374 1.379
Average of 4 years past realized π 1.369 1.399 1.404
Average of 8 years future expected π 1.379 1.408 1.413
Average of 8 years past realized π 1.408 1.439 1.446

Notes: Welfare loss functions obtained by the sum of the variance of the inflation and output gap computed with stochastic simulations of
the Smets and Wouters model using 10 different monetary policy rules and calibrated at the mode of the posterior distribution estimated in
chapter 4.

close to zero. Recently, Debortoli et al. (2019) showed that assigning a high weight on standard

measures of economic activity could be strongly beneficial. For example, an output measure

could stand for the welfare-relevant variables which are not included in the simple mandate.

As a result, to test the results of the different simulations as the relative importance assigned to

real volatility in the loss function varies, I decided to consider three values of λa. As a proxy

of strict inflation target, λa = 0.048 as in Woodford (2003), as a proxy of dual mandate, λa =

0.25. Yellen (2012) defined the dual mandate as a loss function that assigns equal weights for

inflation and the unemployment gap. The weight of the unemployment gap equals one converts

into a coefficient equals 0.25 of the output gap. Finally, λa = 1.042, the optimal parameter found

in Debortoli et al. (2019). With the results of the variances obtained above, I can compute the

loss function for each of the ten models. The results reported in table 5.1 are calculated from the

variance of inflation and output gap. This table shows the results of the central bank objective

function of each model relative to the outcome of the SW rule which is fixed at 1. First of all, it

can be noticed that the results are consistent over the λ values. Moreover, the SW rule dominates

all the others, which rank. Particularly, it reaches a stronger result than the standard Taylor rule.

The latter is 30 percent higher than the benchmark case. Differently from the Taylor rule, is that

the central bank, when acting according to a SW rule, set the interest reacting to the deviations of

the output gap, but also to the deviations of the output gap from the previous periods. This leads

to a smaller value of the variance of the output gap, resulting in a lower loss function. Overall,

AIT does not seem to behave as expected. It performs worse than the IT rules. Moreover, as



40 Evaluating monetary policy rules

more as the time horizon increases, the value of the loss function rises. Additionally, since it

Table 5.2: Central Bank Loss Functions
xt = output growth

Monetary rule Time horizon λa = 0.048 λa = 0.25 λa = 1.042

SW (2007) flexible inflation targeting 1 1 1
Average of 4 years future expected π 1.022 1.012 1.005
Average of 4 years past realized π 1.038 1.023 1.012
Average of 8 years future expected π 0.999 1.013 1.022
Average of 8 years past realized π 0.995 1.014 1.027

Taylor (1993) flexible inflation targeting 1.201 1.689 2.019
Average of 4 years future expected π 1.207 1.698 2.030
Average of 4 years past realized π 1.216 1.714 2.050
Average of 8 years future expected π 1.207 1.727 2.078
Average of 8 years past realized π 1.208 1.742 2.102

Notes: Welfare loss functions obtained by by the sum of the variance of the inflation and output gap computed by the stochastic simulation
of the SW model calibrated at the mode of the posterior distribution estimated in chapter 4.

is difficult for the central bank to observe the dynamics of the potential output, I also compute

the value of a welfare loss function which include in its preferences the output growth, which

is easier to observe. Table 5.2 reports the results of the loss functions considering the variance

of the output growth. When λa is equal to 0.25 and 1.042 the SW rule dominates the other as

in the case of the output gap. Instead, in a ”strict” inflation target regime, the AIT Smets and

Wouters rules, which count for an average inflation target over a window of eight years best

perform on the others. However, the outcome is very similar: 0.1 and 0.5 percent better than its

flexible inflation target counterpart. On the contrary, AIT Taylor rules evidence a greater loss

function compared to the standard IT-Taylor rule. Overall, the results are consistent with the

previous table: this exercise evidence that the SW rule better fulling the central bank objective

function, leading to the best result in terms of welfare improvement. To understand how the

welfare functions respond to the economic shocks, I also investigate how the rules behave when

only one shock per time is active in the model. The results are reported in table 5.3. Column

three, ”Total loss”, represent the results of the loss function where the variance of inflation is

summed up with the variance of the output gap, and the latter is multiplied by λa = 1.042. This

benchmark case coincides with column 5 of table 5.1, but they are presented in levels instead of

relative shares. Columns 4 - 6 show the contribution to the loss function of every single shock. I

decided to report only the shocks with the highest share. Risk-premium determines most of the

variance of the loss function, followed by the monetary policy shock and by productivity shock.
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Table 5.3: Central Bank Loss Functions
shock analysis

Single shock active per time

Monetary rule Time horizon Total loss Productivity Risk-premium Monetary

SW (2007) IT 29.12 0.06 23.81 5.01
AIT 4y fut. exp. π 30.20 0.08 24.76 5.16
AIT 4y past π 30.60 0.08 25.03 5.21
AIT 8y fut. exp. π 31.56 0.11 25.92 5.32
AIT 8y past π 32.04 0.10 26.27 5.38

Taylor (1993) IT 35.89 0.08 29.28 6.26
AIT 4y fut. exp. π 36.71 0.09 30.04 6.36
AIT 4y past π 36.83 0.10 30.05 6.35
AIT 8y fut. exp. π 37.54 0.12 30.75 6.44
AIT 8y past π 37.70 0.11 30.82 6.44

Notes: Welfare loss functions obtained by the stochastic simulation of the SW model calibrated at the mode of the posterior distribution
estimated in chapter 4. The simulations were run for only one shock active per time. This means that the standard deviation of 6 shocks
out of 7 were set to zero.

Moreover, this table confirms the dominance of the SW rule on the other policy: it figures in a

lower loss over all the single shocks.

To check the validity of these results, I try to understand if the dominance of the SW rule is

guided by that that I calibrated the models with the mode of the posterior distribution estimated

using the SW rule itself. Therefore, I re-estimated the model but considering the Taylor rule

as the monetary policy function. The results of the estimation are in Appendix C. Overall, the

Table 5.4: Central Bank Loss Functions
estimated model with Taylor rule

Monetary rule Time horizon λa = 0.048 λa = 0.25 λa = 1.042

SW (2007) flexible inflation targeting 1 1 1
Average of 4 years future expected π 1.000 0.999 0.998
Average of 4 years past realized π 0.983 0.999 1.008
Average of 8 years future expected π 1.006 1.004 1.003
Average of 8 years past realized π 0.978 0.999 1.009

Taylor (1993) flexible inflation targeting 1.024 1.080 1.109
Average of 4 years future expected π 1.017 1.075 1.106
Average of 4 years past realized π 1.008 1.080 1.117
Average of 8 years future expected π 1.021 1.079 1.110
Average of 8 years past realized π 1.003 1.079 1.118

Notes: Welfare loss functions obtained by the stochastic simulation of the SW model calibrated at the mean of the posterior distribution
reported in Appendix C.3.
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mean of the posterior distribution is similar to the benchmark model: the risk-premium shock

is persistent, there is a high degree of price indicization, and the policy responds strongly to the

deviation in the output gap.

Then, I run the same exercise to compute the loss functions for the 10 models. Table 5.4 reports

the results calculated over a loss function that sums the variance of inflation and output growth.

Overall, the loss functions are very close to each other, and even the SW rule does not dominate

as in the previous table, still performs as the best rule. Taking into account the average period

of past and future expected value of inflation under the Taylor rule leads to a similar outcome

of the SW inflation target rule. The results of AIT are not so stronger to justify a change in the

monetary policy regime. However, as in table 5.2, when λa is equal to 0.048 or when the central

bank does not strongly weigh the output in its loss function, make-up strategies improve the

welfare and help the central bank to reach its objectives.

5.3 The importance of the design of the rule

In the previous section, I assumed that the central bank gives the same importance to inflation

independently of the policy chosen. The estimated Taylor-principle parameter was around 1.5,

for every monetary policy rule, I have considered so far. However, Arias et al. (2020) and

Coenen et al. (2021) showed that when the central bank decides to adopt an AIT rule, it put

more weight on the inflation parameter. In their works, the AIT rule takes this form:

Rt = 0.85Rt−1 + 0.15
(︂
r∗ + π̄(4)

t + ygap
t + T

(︂
π̄(4T )

t − π∗
)︂)︂

(5.8)

where T is the length of the make-up window, which they set at 4 or 8 years and the numbers in

brackets indicate the respective number of quarters. Since T appears also as the coefficient of the

average inflation to its long-run target, this means that ”as the length of the window increases,

the rule puts more weight on deviations of average inflation from the long-run objective” Arias

et al. (2020).

Therefore, I decided to translate these features into my model and run the same exercise as

before to evaluate the resulted loss functions. I compare three rules structured à la SW rule.

rt = ρrt−1 + (1 − ρ)[1.47πt + ry(yt − yp
t )] + r∆y(∆yt − ∆yp

t ) + εr
t (5.9)

rt = ρrt−1 + (1 − ρ)[4π̄16
t + ry(yt − yp

t )] + r∆y(∆yt − ∆yp
t ) + εr

t (5.10)
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rt = ρrt−1 + (1 − ρ)[8π̄32
t + ry(yt − yp

t )] + r∆y(∆yt − ∆yp
t ) + εr

t (5.11)

Equation 5.9 is the benchmark case, a flexible inflation target rule, in which I set the inflation

parameter equal to 1.47 as a result of the estimation presented in chapter 4. Equations 5.10 and

5.11 stand for an AIT rule calculated on the average of 4 and 8 years of realized past inflation.

Under a 4 (8) year make-up window, the central bank responds to the deviation of inflation

with a coefficient equal to 4 (8). The inflation objective is normalized to zero and the monetary

authority answer also to deviation in the output gap, and output gap from the previous period.

Figure 5.3 presents the impulse response functions obtained by the stochastic simulations of the

SW model with the above policy rules. The IRFs show the shock (from the top to the bottom)

of productivity, risk premium and monetary policy to three key macroeconomic variables (from

left to the right): output, inflation and interest rate. The solid line is the benchmark SW rule, the

dashed line the 4 years AIT SW rule and the dotted line is the 8 years AIT SW rule. Overall, the

Figure 5.3: IRFs of simulated models under different monetary policy rules

Note: The solid line is the benchmark SW rule, the dashed line the 4 years AIT SW rule and the dotted line the 8
years AIT SW rule.



44 Evaluating monetary policy rules

Figure 5.4: IRFs of simulated models under different monetary policy rules

Note: The solid line is the benchmark SW rule, the dashed line the 4 years AIT SW rule and the dotted line the 8
years AIT SW rule.

effect of shocks on output and interest are similar among the three rules. A productivity shock

rises output and decreases interest rate in the short. A risk premium shock leads to an increase

in output and interest rate, which is higher under the IT rule. Generally, AIT rules cushion the

effects of a risk premium shock over all the variables. The impact of a monetary policy shock

of the AIT rules on output and interest rate is much the same as the IT rule. On the other hand,

inflation responds differently to the shocks among the three rules, where the AIT rules better

stabilize inflation. Overall the AIT rules better respond to the economic shocks.

With the variances reported in Figure 5.4, I computed the loss functions using equation 5.7

and the results are displayed in table 5.5. Assuming a strong reaction to inflation deviations by

the central bank under AIT rules results in lower loss functions. The outcomes are consistent

among the different values of λa and if either output gap (A) or output growth (B) are in the

loss equation. When the loss functions are computing summing the output gap, the AIT rules

improve the welfare by 20 percent compared to a flexible IT rule. These results are in line with

the works of Arias et al. (2020) and Coenen et al. (2021).

Table 5.5: Central Bank Loss Functions - aggressive answer to inlation

Monetary rule Time horizon λa = 0.048 λa = 0.25 λa = 1.042

(A) SW (2007) Flexible inflation targeting 1 1 1
Average of 4 years past realized π 0.79 0.79 0.79
Average of 8 years past realized π 0.80 0.80 0.80

(B) SW (2007) Flexible inflation targeting 1 1 1
Average of 4 years past realized π 0.89 0.95 0.98
Average of 8 years past realized π 0.85 0.93 0.98

Notes: (A) results of the sum of the variance of inflation and output gap; (B) results of the sum of the variance of inflation and output
growth. Welfare loss functions obtained by the stochastic simulation of the SW model calibrated at the mode of the posterior distribution
estimated in chapter 4.



Conclusions

The economic environment of the last decade has led the major central banks to review their
monetary policy strategies bringing into attention the make-up strategies rule. In this thesis I
try to assess the effects of such policies in an estimated model for the euro area. First of all,
the model works well and fit the data. However, since I estimated the model over the period of
GFC, the introduction of financial friction could help to better identify the behaviour of some
parameters, see Christiano et al. (2018). Moreover, introducing an AIT rule in the estimated
model, there are no significant improvements on the basis of a welfare loss functions. However,
I showed that the benefits of AIT strategies came up only when there is a strong and aggressive
response to inflation deviation by the central bank, as assumed in Arias et al. (2020). Under this
conditions, AIT rule better cushions the shocks to the inflation rate and significantly reduce the
variability of output gap and inflation, resulting in a lower welfare loss function, comparing it
with a standard flexible inflation targeting rule.
Many questions are not addressed in this thesis. Practical challenges regarding the implemen-
tations of the AIT strategy are not treated in this model analysis. For example, how people
understand the new policy regime, or how the central bank is coherent and transparent in their
communication. This is crucial for the analysis of expectation formations and how they interact
with the new policy. Introducing information frictions in a DSGE model would help to under-
stand if the benefits of the AIT strategies would be the same as under the assumption of rational
expectations. This would be interesting as a future research work.
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Appendix A

Legend - variables and parameters

Table A.1: Endogenous

Variable LATEX Description

robs RAT E Observed interest rate
pinfobs INF Inflation
dy GDP Output growth rate
dc CONS consumption growth rate
dinve INV Investment growth rate
dw WAGE Wage growth rate

labobs HOURS log hours worked
yf yp Output flex price economy
wf wp real wage flex price economy
mc µp gross price markup
zcap z Capital utilization rate
rk rk rental rate of capital
k ks Capital services
pk q real value of existing capital stock
c c Consumption
inve i Investment
y y Output
lab l hours worked
pinf π Inflation
w w real wage
r r nominal interest rate
kp k Capital stock

50
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Table A.2: Exogenous

Variable LATEX Description

ea ηa productivity shock
eb ηb risk premium shock
eg ηg Spending shock
eqs ηi Investment-specific technology shock
em ηm Monetary policy shock
epinf ηp Price markup shock
ew ηw Wage markup shock

Table A.3: Parameters

Variable LATEX Description

crhob ρb persistence risk premium shock
crhoqs ρi persistence risk premium shock
crhoms ρr persistence monetary policy shock
crhopinf ρp persistence price markup shock
crhow ρw persistence wage markup shock
cmap µp coefficient on MA term price markup
cmaw µw coefficient on MA term wage markup
curvw εw Curvature Kimball aggregator wages
curvp εp Curvature Kimball aggregator prices

csadjcost φ investment adjustment cost
csigma σc risk aversion
chabb λ external habit degree
cprobw ξw Calvo parameter wages
csigl σl Frisch elasticity
cprobp ξp Calvo parameter prices
cindw ιw Indexation to past wages
cindp ιp Indexation to past prices
czcap ψ capacity utilization cost
cfc ϕp fixed cost share
crpi rπ Taylor rule inflation feedback
crr ρ interest rate persistence
cry ry Taylor rule output level feedback
crdy r∆y Taylor rule output growth feedback

constepinf π̄ steady state inflation rate
constelab l̄ steady state hours
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Table A.3 – Continued

Variable LATEX Description

constebeta 100(β−1 − 1) time preference rate in percent
ctrend γ̄ net growth rate in percent
cgy ρga Feedback technology on exogenous spending
calfa α capital share
cg

ḡ
ȳ steady state exogenous spending share



Appendix B

Results estimation SW model with the SW
rule

B.1 Multivariate convergence diagnostic test

Figure B.1: Multivariate convergence diagnostics for the Metropolis-Hastings. The first, second
and third rows are respectively the criteria based on the eighty percent interval, the second and
third moments. The different parameters are aggregated using the posterior kernel.
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B.2 Prior and Posterior distributions

Figure B.2: Priors and posteriors.
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Figure B.3: Priors and posteriors.
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Figure B.4: Priors and posteriors.
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Figure B.5: Priors and posteriors.
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B.3 Bayesian IRFs

Figure B.6: Bayesian IRF: Orthogonalized shock to ηa.
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Figure B.7: Bayesian IRF: Orthogonalized shock to ηa.
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Figure B.8: Bayesian IRF: Orthogonalized shock to ηa.
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Figure B.10: Bayesian IRF: Orthogonalized shock to ηb.
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Figure B.11: Bayesian IRF: Orthogonalized shock to ηg.

mc

10 20 30 40

0.005

0.01

0.015

0.02

zcap

10 20 30 40

0.02

0.04

0.06

0.08

rk

10 20 30 40

0.05

0.1

0.15

k

10 20 30 40

0.02

0.04

0.06

0.08

pk

10 20 30 40

-0.06

-0.04

-0.02

0

c

10 20 30 40

-0.3

-0.2

-0.1

inve

10 20 30 40

-0.05

0

0.05

0.1

0.15

y

10 20 30 40

0.2

0.3

0.4
lab

10 20 30 40

0.1

0.15

0.2



B.3 Bayesian IRFs 59

Figure B.12: Bayesian IRF: Orthogonalized shock to ηg.
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Figure B.13: Bayesian IRF: Orthogonalized shock to ηg.
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Figure B.14: Bayesian IRF: Orthogonalized shock to ηi.
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Figure B.15: Bayesian IRF: Orthogonalized shock to ηi.
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Figure B.16: Bayesian IRF: Orthogonalized shock to ηm.

mc

10 20 30 40

-0.3

-0.2

-0.1

zcap

10 20 30 40

-0.1

0

0.1

rk

10 20 30 40

-0.2

0

0.2

k

10 20 30 40

-0.6

-0.4

-0.2

pk

10 20 30 40

-0.6

-0.4

-0.2

0

c

10 20 30 40

-0.6

-0.4

-0.2

inve

10 20 30 40

-1.5

-1

-0.5

0

y

10 20 30 40

-0.6

-0.4

-0.2

0
lab

10 20 30 40

-0.3

-0.2

-0.1

0

Figure B.17: Bayesian IRF: Orthogonalized shock to ηm.
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Figure B.18: Bayesian IRF: Orthogonalized shock to ηp.
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Figure B.19: Bayesian IRF: Orthogonalized shock to ηp.
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Figure B.20: Bayesian IRF: Orthogonalized shock to ηw.
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Figure B.21: Bayesian IRF: Orthogonalized shock to ηw.
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B.4 Historical and smoothed variables

Figure B.22: Historical and smoothed variables.
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Appendix C

Results estimation SW with Taylor rule

C.1 Multivariate convergence diagnostic test - Taylor rule

Figure C.1: Multivariate convergence diagnostics for the Metropolis-Hastings. The first, second
and third rows are respectively the criteria based on the eighty percent interval, the second and
third moments. The different parameters are aggregated using the posterior kernel.
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C.2 Prior and Posterior distributions - Taylor rule

Figure C.2: Priors and posteriors.
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Figure C.3: Priors and posteriors.
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Figure C.4: Priors and posteriors.
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Figure C.5: Priors and posteriors.
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Table C.1: Results from Metropolis-Hastings (parameters)

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

ρb beta 0.500 0.2000 0.935 0.0289 0.8928 0.9814
ρi beta 0.500 0.2000 0.069 0.0412 0.0100 0.1244
ρr beta 0.500 0.2000 0.269 0.0889 0.1218 0.4136
ρp beta 0.500 0.2000 0.685 0.1794 0.4243 0.9356
ρw beta 0.500 0.2000 0.717 0.1386 0.5003 0.9188
µp beta 0.500 0.2000 0.625 0.2029 0.3106 0.9311
µw beta 0.500 0.2000 0.613 0.1497 0.3752 0.8517
φ norm 4.000 1.5000 6.792 1.1282 4.9266 8.6259
σc norm 1.500 0.3750 1.060 0.1211 0.8695 1.2593
λ beta 0.700 0.1000 0.815 0.0415 0.7489 0.8828
ξw beta 0.500 0.1000 0.884 0.0304 0.8357 0.9336
σl norm 2.000 0.7500 1.684 0.5991 0.6800 2.6351
ξp beta 0.500 0.1000 0.914 0.0277 0.8800 0.9500
ιw beta 0.500 0.1500 0.196 0.0756 0.0737 0.3129
ιp beta 0.500 0.1500 0.349 0.1297 0.1370 0.5576
ψ beta 0.500 0.1500 0.628 0.1236 0.4276 0.8330
ϕp norm 1.250 0.1250 1.692 0.0862 1.5491 1.8322
rπ norm 1.500 0.2500 1.293 0.1854 1.0000 1.5480
ρ beta 0.750 0.1000 0.873 0.0243 0.8347 0.9126
ry norm 0.125 0.0500 0.198 0.0283 0.1514 0.2443
r∆y norm 0.125 0.0500 0.125 0.0464 0.0482 0.2020
π̄ gamm 0.625 0.1000 0.515 0.0576 0.4209 0.6081
100(β−1 − 1) gamm 0.250 0.1000 0.217 0.0869 0.0799 0.3540
l norm 0.000 2.0000 0.689 0.9593 -0.8780 2.2708
γ̄ norm 0.400 0.1000 0.222 0.0413 0.1538 0.2886
ρga norm 0.500 0.2500 1.458 0.1074 1.2823 1.6348

norm 0.300 0.0500 0.056 0.0162 0.0288 0.0820
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Table C.2: Results from Metropolis-Hastings (standard deviation of structural shocks)

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

ηa invg 0.100 2.0000 0.455 0.0577 0.3598 0.5485
ηb invg 0.100 2.0000 0.040 0.0078 0.0273 0.0519
ηg invg 0.100 2.0000 0.377 0.0340 0.3214 0.4312
ηi invg 0.100 2.0000 1.196 0.0950 1.0392 1.3473
ηm invg 0.100 2.0000 0.134 0.0107 0.1162 0.1507
ηp invg 0.100 2.0000 0.148 0.0230 0.1102 0.1837
ηw invg 0.100 2.0000 0.113 0.0153 0.0881 0.1383

C.4 Bayesian IRFs - Taylor rule

Figure C.6: Bayesian IRF: Orthogonalized shock to ea.
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Figure C.7: Bayesian IRF: Orthogonalized shock to ea.
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Figure C.8: Bayesian IRF: Orthogonalized shock to eb.
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Figure C.9: Bayesian IRF: Orthogonalized shock to eb.
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Figure C.10: Bayesian IRF: Orthogonalized shock to eg.
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Figure C.11: Bayesian IRF: Orthogonalized shock to eg.
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Figure C.12: Bayesian IRF: Orthogonalized shock to eqs.
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Figure C.13: Bayesian IRF: Orthogonalized shock to eqs.
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Figure C.14: Bayesian IRF: Orthogonalized shock to em.
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Figure C.16: Bayesian IRF: Orthogonalized shock to epin f .
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Figure C.17: Bayesian IRF: Orthogonalized shock to epin f .
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Figure C.18: Bayesian IRF: Orthogonalized shock to ew.
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Figure C.19: Bayesian IRF: Orthogonalized shock to ew.
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Appendix D

Codes

D.1 Dynare code

Here I report the Dynare code that I used to estimate the model and to run the stochastic simu-
lations. The code was developed by Johannes Pfeifer and it is available at his GitHub’s page.

var labobs robs pinfobs dy dc dinve dw ewma epinfma zcapf rkf kf pkf cf

invef yf labf wf rrf mc zcap rk k pk c inve y lab pinf w r a b g qs ms

spinf sw kpf kp;

varexo ea eb eg eqs em epinf ew;

parameters curvw cgy curvp constelab constepinf constebeta cmaw cmap calfa

czcap csadjcost ctou csigma chabb ccs cinvs cfc

cindw cprobw cindp cprobp csigl clandaw

crdpi crpi crdy cry crr

crhoa crhoas crhob crhog crhols crhoqs crhoms crhopinf crhow

ctrend cg;

// fixed parameters

ctou=.025;

clandaw=1.5;

cg=0.18;

curvp=10;

curvw=10;

// estimated parameters initialisation

calfa=.24;

cbeta=.9995;

csigma=1.5;

76

https://github.com/JohannesPfeifer/DSGE_mod/tree/master/Smets_Wouters_2007
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cfc=1.5;

cgy=0.51;

csadjcost= 6.0144;

chabb= 0.6361;

cprobw= 0.8087;

csigl= 1.9423;

cprobp= 0.6;

cindw= 0.3243;

cindp= 0.47;

czcap= 0.2696;

crpi= 1.488;

crr= 0.8762;

cry= 0.0593;

crdy= 0.2347;

crhoa= 0.98;

crhob= 0.5799;

crhog= 0.98;

crhols= 0.9928;

crhoqs= 0.7165;

crhoas=1;

crhoms=0;

crhopinf=0;

crhow=0;

cmap = 0;

cmaw = 0;

//constelab=0;

model(linear);

//deal with parameter dependencies; taken from usmodel_stst.mod

#cpie=1+constepinf/100;

#cgamma=1+ctrend/100 ;

#cbeta=1/(1+constebeta/100);

#clandap=cfc;

#cbetabar=cbeta*cgammaˆ(-csigma);

#cr=cpie/(cbeta*cgammaˆ(-csigma));

#crk=(cbetaˆ(-1))*(cgammaˆcsigma) - (1-ctou);

#cw = (calfaˆcalfa*(1-calfa)ˆ(1-calfa)/(clandap*crkˆcalfa))ˆ(1/(1-calfa));

//cw = (calfaˆcalfa*(1-calfa)ˆ(1-calfa)/(clandap*((cbetaˆ(-1))*(cgammaˆcsigma)

- (1-ctou))ˆcalfa))ˆ(1/(1-calfa));
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#cikbar=(1-(1-ctou)/cgamma);

#cik=(1-(1-ctou)/cgamma)*cgamma;

#clk=((1-calfa)/calfa)*(crk/cw);

#cky=cfc*(clk)ˆ(calfa-1);

#ciy=cik*cky;

#ccy=1-cg-cik*cky;

#crkky=crk*cky;

#cwhlc=(1/clandaw)*(1-calfa)/calfa*crk*cky/ccy;

#cwly=1-crk*cky;

#conster=(cr-1)*100;

// flexible economy

0*(1-calfa)*a + 1*a = calfa*rkf+(1-calfa)*(wf) ;

zcapf = (1/(czcap/(1-czcap)))* rkf ;

rkf = (wf)+labf-kf ;

kf = kpf(-1)+zcapf ;

invef = (1/(1+cbetabar*cgamma))* ( invef(-1) +

cbetabar*cgamma*invef(1)+(1/(cgammaˆ2*csadjcost))*pkf ) +qs ;

pkf = -rrf-0*b+(1/((1-chabb/cgamma)/(csigma*(1+chabb/cgamma))))*b

+(crk/(crk+(1-ctou)))*rkf(1) + ((1-ctou)/(crk+(1-ctou)))*pkf(1) ;

cf = (chabb/cgamma)/(1+chabb/cgamma)*cf(-1) +

(1/(1+chabb/cgamma))*cf(+1)

+((csigma-1)*cwhlc/(csigma*(1+chabb/cgamma)))*(labf-labf(+1)) -

(1-chabb/cgamma)/(csigma*(1+chabb/cgamma))*(rrf+0*b) + b ;

yf = ccy*cf+ciy*invef+g + crkky*zcapf ;

yf = cfc*( calfa*kf+(1-calfa)*labf +a );

wf = csigl*labf +(1/(1-chabb/cgamma))*cf -

(chabb/cgamma)/(1-chabb/cgamma)*cf(-1) ;

kpf = (1-cikbar)*kpf(-1)+(cikbar)*invef +

(cikbar)*(cgammaˆ2*csadjcost)*qs ;

// sticky price - wage economy

mc = calfa*rk+(1-calfa)*(w) - 1*a - 0*(1-calfa)*a ;

zcap = (1/(czcap/(1-czcap)))* rk ;

rk = w+lab-k ;

k = kp(-1)+zcap ;

inve = (1/(1+cbetabar*cgamma))* ( inve(-1) +

cbetabar*cgamma*inve(1)+(1/(cgammaˆ2*csadjcost))*pk ) +qs ;

pk = -r+pinf(1)-0*b

+(1/((1-chabb/cgamma)/(csigma*(1+chabb/cgamma))))*b +
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(crk/(crk+(1-ctou)))*rk(1) + ((1-ctou)/(crk+(1-ctou)))*pk(1) ;

c = (chabb/cgamma)/(1+chabb/cgamma)*c(-1) + (1/(1+chabb/cgamma))*c(+1)

+((csigma-1)*cwhlc/(csigma*(1+chabb/cgamma)))*(lab-lab(+1)) -

(1-chabb/cgamma)/(csigma*(1+chabb/cgamma))*(r-pinf(+1) + 0*b) +b ;

y = ccy*c+ciy*inve+g + 1*crkky*zcap ;

y = cfc*( calfa*k+(1-calfa)*lab +a );

pinf = (1/(1+cbetabar*cgamma*cindp)) * ( cbetabar*cgamma*pinf(1)

+cindp*pinf(-1)

+((1-cprobp)*(1-cbetabar*cgamma*cprobp)/cprobp)/((cfc-1)*curvp+1)*(mc)

) + spinf ;

w = (1/(1+cbetabar*cgamma))*w(-1)

+(cbetabar*cgamma/(1+cbetabar*cgamma))*w(1)

+(cindw/(1+cbetabar*cgamma))*pinf(-1)

-(1+cbetabar*cgamma*cindw)/(1+cbetabar*cgamma)*pinf

+(cbetabar*cgamma)/(1+cbetabar*cgamma)*pinf(1)

+(1-cprobw)*(1-cbetabar*cgamma*cprobw)/((1+cbetabar*cgamma)*cprobw)*(1/((clandaw-1)*curvw+1))*

(csigl*lab + (1/(1-chabb/cgamma))*c -

((chabb/cgamma)/(1-chabb/cgamma))*c(-1) -w)

+ 1*sw ;

//Inflation average - 4 year future expected inflation

pinfait = 1/16*(pinf + pinf(+1) + pinf(+2) + pinf(+3) + pinf(+4) +

pinf(+5) + pinf(+6) + pinf(+7) + pinf(+8) + pinf(+9) + pinf(+10) +

pinf(+11) + pinf(+12) + pinf(+13) + pinf(+14) + pinf(+15));

//Inflation average - 4 year past realized inflation

pinfait = 1/16*(pinf + pinf(-1) + pinf(-2) + pinf(-3) + pinf(-4) +

pinf(-5) + pinf(-6) + pinf(-7) + pinf(-8) + pinf(-9) + pinf(-10) +

pinf(-11) + pinf(-12) + pinf(-13) + pinf(-14) + pinf(-15));

//Inflation average - 8 year future expected inflation

pinfait = 1/32*(pinf + pinf(+1) + pinf(+2) + pinf(+3) + pinf(+4) +

pinf(+5) + pinf(+6) + pinf(+7) + pinf(+8) + pinf(+9) + pinf(+10) +

pinf(+11) + pinf(+12) + pinf(+13) + pinf(+14) + pinf(+15)+

pinf(+16) + pinf(+17) + pinf(+18) + pinf(+19) + pinf(+20) +

pinf(+21) + pinf(+22) + pinf(+23) + pinf(+24) + pinf(+25) +

pinf(+26) + pinf(+27) + pinf(+28) + pinf(+29) + pinf(+30) +

pinf(+31));

//Inflation average - 8 year past realized inflation

pinfait = 1/32*(pinf + pinf(-1) + pinf(-2) + pinf(-3) + pinf(-4) +

pinf(-5) + pinf(-6) + pinf(-7) + pinf(-8) + pinf(-9) + pinf(-10) +

pinf(-11) + pinf(-12) + pinf(-13) + pinf(-14) + pinf(-15) +

pinf(-16) + pinf(-17) + pinf(-18) + pinf(-19) + pinf(-20) +

pinf(-21) + pinf(-22) + pinf(-23) + pinf(-24) + pinf(-25) +

pinf(-26) + pinf(-27) + pinf(-28) + pinf(-29) + pinf(-30) +

pinf(-31));
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//SW rule

r = crpi*(1-crr)*pinf

+cry*(1-crr)*(y-yf)

+crdy*(y-yf-y(-1)+yf(-1))

+crr*r(-1)

+ms ;

//AIT SW rule

r = crpi*(1-crr)*pinfait

+cry*(1-crr)*(y-yf)

+crdy*(y-yf-y(-1)+yf(-1))

+crr*r(-1)

+ms ;

//Taylor rule

r = (1 - crr)*(crpi*pinf + cry*(y - yf))

+ crr*r(-1) + ms;

//AIT Taylor rule

r = (1 - crr)*(crpi*pinfait + cry*(y - yf))

+ crr*r(-1) + ms;

a = crhoa*a(-1) + ea;

b = crhob*b(-1) + eb;

g = crhog*(g(-1)) + eg + cgy*ea;

qs = crhoqs*qs(-1) + eqs;

ms = crhoms*ms(-1) + em;

spinf = crhopinf*spinf(-1) + epinfma - cmap*epinfma(-1);

epinfma=epinf;

sw = crhow*sw(-1) + ewma - cmaw*ewma(-1) ;

ewma=ew;

kp = (1-cikbar)*kp(-1)+cikbar*inve + cikbar*cgammaˆ2*csadjcost*qs ;

// measurment equations

dy=y-y(-1)+ctrend;

dc=c-c(-1)+ctrend;

dinve=inve-inve(-1)+ctrend;

dw=w-w(-1)+ctrend;

pinfobs = 1*(pinf) + constepinf;

robs = 1*(r) + conster;

labobs = lab + constelab;

end;
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steady_state_model;

dy=ctrend;

dc=ctrend;

dinve=ctrend;

dw=ctrend;

pinfobs = constepinf;

robs =

(((1+constepinf/100)/((1/(1+constebeta/100))*(1+ctrend/100)ˆ(-csigma)))-1)*100;

labobs = constelab;

end;

shocks;

var ea;

stderr 0.4618;

var eb;

stderr 1.8513;

var eg;

stderr 0.6090;

var eqs;

stderr 0.6017;

var em;

stderr 0.2397;

var epinf;

stderr 0.1455;

var ew;

stderr 0.2089;

end;

estimated_params;

// PARAM NAME, INITVAL, LB, UB, PRIOR_SHAPE, PRIOR_P1, PRIOR_P2, PRIOR_P3,

PRIOR_P4, JSCALE

// PRIOR_SHAPE: BETA_PDF, GAMMA_PDF, NORMAL_PDF, INV_GAMMA_PDF

stderr ea,0.4618,0.01,3,INV_GAMMA_PDF,0.1,2;

stderr eb,0.1818513,0.025,5,INV_GAMMA_PDF,0.1,2;

stderr eg,0.6090,0.01,3,INV_GAMMA_PDF,0.1,2;

stderr eqs,0.46017,0.01,3,INV_GAMMA_PDF,0.1,2;

stderr em,0.2397,0.01,3,INV_GAMMA_PDF,0.1,2;

stderr epinf,0.1455,0.01,3,INV_GAMMA_PDF,0.1,2;

stderr ew,0.2089,0.01,3,INV_GAMMA_PDF,0.1,2;

crhob,.2703,.01,.9999,BETA_PDF,0.5,0.20;
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crhoqs,.5724,.01,.9999,BETA_PDF,0.5,0.20;

crhoms,.3,.01,.9999,BETA_PDF,0.5,0.20;

crhopinf,.8692,.01,.9999,BETA_PDF,0.5,0.20;

crhow,.9546,.001,.9999,BETA_PDF,0.5,0.20;

cmap,.7652,0.01,.9999,BETA_PDF,0.5,0.2;

cmaw,.8936,0.01,.9999,BETA_PDF,0.5,0.2;

csadjcost,6.3325,2,15,NORMAL_PDF,4,1.5;

csigma,1.2312,0.25,3,NORMAL_PDF,1.50,0.375;

chabb,0.7205,0.001,0.99,BETA_PDF,0.7,0.1;

cprobw,0.7937,0.3,0.95,BETA_PDF,0.5,0.1;

csigl,2.8401,0.25,10,NORMAL_PDF,2,0.75;

cprobp,0.7813,0.5,0.95,BETA_PDF,0.5,0.10;

cindw,0.4425,0.01,0.99,BETA_PDF,0.5,0.15;

cindp,0.3291,0.01,0.99,BETA_PDF,0.5,0.15;

czcap,0.2648,0.01,1,BETA_PDF,0.5,0.15;

cfc,1.4672,1.0,3,NORMAL_PDF,1.25,0.125;

crpi,1.7985,1.0,3,NORMAL_PDF,1.5,0.25;

crr,0.8258,0.5,0.975,BETA_PDF,0.75,0.10;

cry,0.0893,0.001,0.5,NORMAL_PDF,0.125,0.05;

crdy,0.2239,0.001,0.5,NORMAL_PDF,0.125,0.05;

constepinf,0.7,0.1,2.0,GAMMA_PDF,0.625,0.1;//20;

constebeta,0.7420,0.01,2.0,GAMMA_PDF,0.25,0.1;//0.20;

constelab,1.2918,-10.0,10.0,NORMAL_PDF,0.0,2.0;

ctrend,0.3982,0.1,0.8,NORMAL_PDF,0.4,0.10;

cgy,0.05,0.01,2.0,NORMAL_PDF,0.5,0.25;

calfa,0.24,0.01,1.0,NORMAL_PDF,0.3,0.05;

end;

varobs dy dc dinve labobs pinfobs dw robs;

write_latex_dynamic_model;

write_latex_parameter_table;

write_latex_definitions;

options_.TeX=1;

//for the estimation

estimation(mode_check,order=1,mode_compute=6,datafile=eudata01,first_obs=1,

bayesian_irf,

presample=4,lik_init=2,prefilter=0,mh_replic=10000000,mh_nblocks=2,mh_jscale=0.20,mh_drop=0.2,tex)

mc zcap rk k pk c inve y lab pinf w r g kp yf dy pinfobs robs wf;

shock_decomposition y dy dc dinve labobs pinfobs dw robs;

//for the stochastic simulation

stoch_simul(periods=0,order=1,nodisplay,irf=20,conditional_variance_decomposition=[1:8,20,40,100])

c inve pinf r drate y dy yf output_gap lab w;
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collect_latex_files;

D.2 Matlab codes

To run the dynare files for stochastich simulations and save the variances

clear all

addpath /Applications/Dynare/4.6.1/matlab

*%path/0-smets-and-wouters-rule

dynare stoch_simul_smets_and_wouters;

%getting moments variances

var = diag(oo_.var);

str = ["c"; "inve" ; "pinf"; "r"; "drate"; "y"; "dy"; "yf"; "output_gap";

"lab"; "w"];

columns = ["variable", "variance"];

X=[str,var];

T=[columns;X];

cd path/xlsx_var_output

writematrix(T,’***.xlsx’);

For the IRFs charts

clear all

load("***/stoch_simul_smets_and_wouters_results.mat");

y_ea = oo_.irfs.y_ea

pinf_ea = oo_.irfs.pinf_ea

r_ea = oo_.irfs.r_ea

c_ea = oo_.irfs.c_ea

inve_ea = oo_.irfs.inve_ea

lab_ea = oo_.irfs.lab_ea

w_ea = oo_.irfs.w_ea

y_ea = y_ea.’

pinf_ea = pinf_ea.’

r_ea = r_ea.’

c_ea = c_ea.’

inve_ea = inve_ea.’

lab_ea = lab_ea.’

w_ea = w_ea.’
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T_a = table (y_ea, pinf_ea, r_ea, c_ea, inve_ea, lab_ea, w_ea)

filename = "***/irfs_SW.xlsx"

writetable(T_a,filename,"Sheet",1)

D.3 Python code

To compute the loss functions

#Model 1, Loss function file.

#Using calibrating model of Smets and Wouters work of 2007

#Monetary policy rule: Smets and Wouter (2007)

import pandas as pd

import numpy as np

import glob

path = r’***’

all_files_eu01 = glob.glob(path + "/*.xlsx")

#loading results of the 01 model conditional on schocks

df_01=pd.read_excel(path + "/var_SM.xlsx")

df_aitSW4FL=pd.read_excel(path + "/var_aitSW4FL.xlsx")

df_aitSW4BL=pd.read_excel(path + "/var_aitSM4BL.xlsx")

df_aitSW8FL=pd.read_excel(path + "/var_aitSM8FL.xlsx")

df_aitSW8BL=pd.read_excel(path + "/var_aitSM8BL.xlsx")

df_TR=pd.read_excel(path + "/var_TR.xlsx")

df_aitTR4FL=pd.read_excel(path + "/var_aitTR4FL.xlsx")

df_aitTR4BL=pd.read_excel(path + "/var_aitTR4BL.xlsx")

df_aitTR8FL=pd.read_excel(path + "/var_aitTR8FL.xlsx")

df_aitTR8BL=pd.read_excel(path + "/var_aitTR8BL.xlsx")

df_PLT=pd.read_excel(path + "/var_PLT.xlsx")

df_GR=pd.read_excel(path + "/var_garin_rule.xlsx")

#Compiting the variance of the 01 model conditional on schocks

variances = [’pinf’, ’output_gap’, ’drate’, ’dy’]

var_SW=[]

for i in variances:

var_SW.append(df_01.loc[df_01[’variable’] == i, ’variance’].iloc[0])

var_aitSW4FL=[]
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for i in variances:

var_aitSW4FL.append(df_aitSW4FL.loc[df_aitSW4FL[’variable’] == i,

’variance’].iloc[0])

var_aitSW4BL=[]

for i in variances:

var_aitSW4BL.append(df_aitSW4BL.loc[df_aitSW4BL[’variable’] == i,

’variance’].iloc[0])

var_aitSW8FL=[]

for i in variances:

var_aitSW8FL.append(df_aitSW8FL.loc[df_aitSW8FL[’variable’] == i,

’variance’].iloc[0])

var_aitSW8BL=[]

for i in variances:

var_aitSW8BL.append(df_aitSW8BL.loc[df_aitSW8FL[’variable’] == i,

’variance’].iloc[0])

var_TR=[]

for i in variances:

var_TR.append(df_TR.loc[df_TR[’variable’] == i, ’variance’].iloc[0])

var_aitTR4FL=[]

for i in variances:

var_aitTR4FL.append(df_aitTR4FL.loc[df_aitTR4FL[’variable’] == i,

’variance’].iloc[0])

var_aitTR4BL=[]

for i in variances:

var_aitTR4BL.append(df_aitTR4BL.loc[df_aitTR4BL[’variable’] == i,

’variance’].iloc[0])

var_aitTR8FL=[]

for i in variances:

var_aitTR8FL.append(df_aitTR8FL.loc[df_aitTR8FL[’variable’] == i,

’variance’].iloc[0])

var_aitTR8BL=[]

for i in variances:

var_aitTR8BL.append(df_aitTR8BL.loc[df_aitTR8FL[’variable’] == i,

’variance’].iloc[0])
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var_PLT=[]

for i in variances:

var_PLT.append(df_PLT.loc[df_PLT[’variable’] == i, ’variance’].iloc[0])

var_GR=[]

for i in variances:

var_GR.append(df_GR.loc[df_GR[’variable’] == i, ’variance’].iloc[0])

#computing the loss function for different lambda (weight of the output_gap)

lambdag = (0.048, 0.25, 1.042)

var=[var_SW, var_aitSW4FL, var_aitSW4BL, var_aitSW8FL, var_aitSW8BL, var_TR,

var_aitTR4FL, var_aitTR4BL, var_aitTR8FL, var_aitTR8BL, var_PLT, var_GR]

loss_matrix=[]

for v in var:

for x in lambdag:

l = v[0] + x*v[1] + v[2]

loss_matrix.append(l)

loss_matrix=pd.DataFrame(loss_matrix, columns=[’model_1’])

lamba=[]

schock=[’SW_’, ’aitSW4FL_’, ’aitSWfBL_’, ’aitSW8FL_’, ’aitSW8BL_’, ’TR_’,

’aitTR4FL_’, ’aitTR4BL_’, ’aitTR8FL_’, ’aitTR8BL_’, ’PLT_’, ’GR_’]

value=[’0.048’, ’0.25’, ’1.042’]

for s in range(len(schock)):

for v in range(len(value)):

str= schock[s] + value[v]

lamba.append(str)

lamba=pd.DataFrame(lamba, columns=[’rule_lamba’])

loss_functions_eu01=loss_matrix.join(lamba)

display(loss_functions_eu01)

#prepare the final dataset

numbers = [0.048,0.25,1.042]

loss_functions_eu01[’lambda_type’] = np.tile(numbers,

len(loss_functions_eu01)//len(numbers) + 1)[:len(loss_functions_eu01)]

schocks = pd.Series([’SW’, ’aitSW4FL’, ’aitSWfBL’, ’aitSW8FL’, ’aitSW8BL’,

’TR’, ’aitTR4FL’, ’aitTR4BL’, ’aitTR8FL’, ’aitTR8BL’, ’PLT’, ’GR’],

name="rule").to_frame()

schocks_df = pd.DataFrame(np.repeat(schocks.values,3,axis=0),

columns=schocks.columns)

loss_functions_eu01 = pd.concat([loss_functions_eu01,schocks_df],axis=1)
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loss_functions_eu01 =loss_functions_eu01.drop([’rule_lamba’], axis=1)

loss_functions_eu01 = loss_functions_eu01.pivot(index="rule",

columns="lambda_type", values="model_1")

#Final dataset to excel

loss_functions_eu01.to_excel("loss_functions_SW_estimated_with_mode.xlsx")
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