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Abstract

It is common knowledge that the traditional Mean-Variance (MV) approach presents 

several non-negligible criticalities such as unintuitive and highly concentrated portfolios, 

input  sensitivity,  and  estimation  error  maximization.  Black-Litterman  (BL)  model  and 

Resampled Efficiency (RE) techniques are advanced methods that help to generate better 

allocations  than  the  traditional  “a  la  Markowitz”  method.  They  both  provide  more 

diversified and performing portfolios. 

On the one hand, the Black-Litterman model represents a well-known approach that 

overcomes this issue by assuming partial information on the expected returns. By blending 

a reference market distribution with subjective views on the market, the approach yields 

optimal portfolios that smoothly reflect those views. On the other, portfolio resampling, 

following a heuristic approach (there is no economic rationale derived from the optimizing 

behaviours of rational agents that supports this method) allows the portfolio manager to 

visualize  the  estimation  error  in  traditional  portfolio  optimization  methods.  RE 

optimization was invented by Richard Michaud and Robert Michaud and is a U.S. patented 

procedure, with worldwide patents pending. It was originally described in Michaud (1998, 

Chapter 6). New Frontier Advisors, LLC (NFA) is an exclusive worldwide licensee. 

Starting from a review of the literature about modern portfolio theory and a discussion 

of its limitations, the two approaches: BL and RE are introduced. The core of this work 

will  focus  on  the  implementation  of  Resampling  techniques  together  with  the  Black-

Litterman model for portfolio allocations,  carrying out an empirical examination of the 

usefulness  of  those  technologies.  Both  the  approaches  are  tested  over  the  month  that 

follows the end of the sampling period. A full set of portfolio performance indicators is 

provided. Both RE and BL approaches overperformed the MV under three dimensions: 

holding period return, absolute performance indicators such as Sharpe ratio and Sortino 

ratio, and relative performance indicators such as Tracking Errors and Information ratio. A 

short conclusion will be made at the end. 
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1. The evolution of portfolio theory

Portfolio Theory appeared at the beginning of the 20th century playing a crucial role in 

the  world  of  finance  until  the  publication  of  Markowitz’s  article  “Portfolio  selection” 

(1952). In its very early stage, from the beginning of the 20th century until 1933, Portfolio 

Theory was mainly  focused on the  analysis  of  individual  securities,  it  was  centred  on 

agents’ individual skills and capabilities, and was based on subjective assessment, without 

any codified  analytical  basis  and omitting  the  way in which securities  included in the 

portfolio impacted on the overall. 

Before Markowitz’s article, portfolio construction was plainly based on the  ”cherry-

picking”,  following  a  simple  diversification  principle  derived  from  the  law  of  large 

numbers introduced by Bernoulli in 1713. R. Hicks (1935) advocated a simple concept of 

diversification  based  on  the  law  of  large  numbers.  A  more  refined  concept  of 

diversification  was  given  by  John  Burr  Williams.  Williams  rightfully  deserves  to  be 

recognized  as  the  progenitor  of  the  "Gordon  growth  formula,"  the  Modigliani-Miller 

capital  structure  irrelevancy  theorem,  and  the  dividend  discount  model.  Despite  that, 

Williams had very little to say about the effects of risk on valuation because he believed 

that all risk could be diversified away. One last milestone before the “turning point” is 

represented  by  the  work  made  by  Dickson  Hammond  Leavens  (Diversification  of 

Investments,  1945).  In  his  work,  he  illustrated  the  benefits  that  diversification  might 

generate to a given portfolio when risks are independent introducing some vague notion of 

covariance, but most importantly, he recognized that full independence is very difficult to 

reach in capital markets and therefore there is a fraction of risk that cannot be diversified. 

What was missing prior to 1952 was a properly defined theory of investment that included 

the  effects  of  diversification  when  different  sources  of  risks  are  correlated  with  one 

another, distinguished between dominating and dominated portfolios, and analyzed risk-

return trade-offs on the portfolio in a wider way. 

In  1952,  an  article  titled  “Portfolio  Selection”  authored  by  Harry  Markowitz  was 

published in The Journal of Finance. It improved financial theory and investment practice 

enabling the optimization of the relationship between the expected return and the assumed 

risk and introducing the principle of diversification,  coming to form the foundations of 
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what  is  now  referred  to  as  the  Modern  Portfolio  Theory.  In  addition  to  that,  he  re-

elaborated the concept of diversification and its benefits. Yet, probably the most important 

aspect of Markowitz's work was to show that it is not a security's own risk that is important 

to an investor, but rather the contribution the security makes to the variance of his entire 

portfolio and that this was primarily a question of how that particular security covariate 

with all the other securities in his portfolio. 

Markowitz's  (1952)  approach  is  now  commonplace  among  institutional  portfolio 

managers who use it as a key principle both to structure their portfolios and measure their 

performance. It has been generalized, refined and adopted in uncountable ways and is even 

being used to  manage  the  portfolios  of  ordinary  investors.  Markowitz's  mean-variance 

methodology,  later  expanded  into  a  seminal  book  (Markowitz  1959),  is  the  classic 

paradigm of modern finance for efficiently allocating capital  among risky assets. In his 

1959 book on portfolio selection (Markowitz, 1959), Markowitz provided an extended and 

detailed  development  of  the  1952 mean-variance  model  of  portfolio  choice,  purposely 

designed for access by readers with a modest quantitative background. 

Markowitz's article  on portfolio  selection proposed expected return (defined by the 

mean)  and variance of the return of the portfolio  (as a whole)  as criteria  for portfolio 

selection. Both were considered as a possible hypothesis about actual behaviour and as an 

adage  for  how  investors  should  act1.  Markowitz  distinguished  between  efficient  and 

inefficient portfolios defining the so-called "efficient frontier", a term subsequently coined 

to define what Markowitz initially defined "set of efficient mean-variance combinations". 

He  proposed  means,  variances,  and  covariances  of  securities  to  be  estimated  by  a 

combination of statistical analysis and analyst’s judgment. From these estimates, the set of 

efficient  mean-variance  combinations  can be derived and presented  to  the investor  for 

choice of the desired risk-return combination. Markowitz in his article used geometrical 

analyses of three- and four-security examples to illustrate properties of efficient sets, He 

assumed nonnegative investments subject to a budget constraint. In particular, he showed 

that the set of efficient mean-variance combinations is piecewise parabolic.

There would be another interesting element that certainly deserves to be mentioned. A 

British economist, Andrew Donald Roy, in the same year, 1952, independently came up 

with the same equation relating portfolio variance of return to the variances of return of the 

1 It is worth to mentioning here that the theory of portfolio selection is a normative theory. A normative  
theory is one that describes a standard or norm assuming that decision-makers apply a set of rational criteria 
during the decision-making process, which is also considered rational.

 In this work, τ =0, p=1, q=2
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constituent securities (Roy, 1952). He developed a pretty similar mean-variance efficient 

set  which  included  the  covariances  of  returns  among securities.  There  were  two chief 

differences between Markowitz’s and Roy’s works:

I. whereas  Markowitz  left  it  up  to  the  investor  to  choose  where  along  with  the 

efficient  set  he  would  invest,  Roy advised  choosing the  single  portfolio  in  the 

mean-variance efficient set that maximizes the excess return of the portfolio over a 

"disaster level" return the investor places a high priority on not falling below per 

unit of volatility of the portfolio.

II. Markowitz’s required non-negative investments whereas Roy's allowed the amount 

invested in any security to be positive or negative

The principles of Modern Portfolio Theory changed the investment world forever and 

paved the  way for  the  development  of  pooled  funds,  indexed-based funds,  as  well  as 

exchange-traded funds. Portfolio theory concerns the design of optimal portfolios and its 

implication for asset pricing (H. K. Baker, G. Filbek, 2013) providing a framework within 

which to make sensible asset allocation decisions. The theory has undergone tremendous 

development since Markowitz (1952) " who laid out the initial mean-variance framework. 

At the very beginning of its introduction, the so-called Modern Portfolio Theory was not 

very successful. It generated relatively little interest among practitioners indeed, however, 

with time, the financial community began to appreciate its potential  and now, 70 years 

later, the concepts and intuitions illustrated in the theory continue to be one of the pillars of 

portfolio  managers'  day-to-day activity.  They are  equipped  with  many  more  tools  and 

concepts,  but  anyway,  their  financial  models  are  based on those very same principles, 

constantly being re-engineered to incorporate all the new findings. 

This, is probably, a result of its flexibility that allows the investment agent to consider 

elements  such  as  various  trading  costs  and  investment  policy  constraints.  The  theory 

behind MPT is relatively straightforward but its implementation can get quite complicated 

anyway.  MV optimization is useful as an asset management tool for many applications, 

including (Michaud, 1998):

I. Implementing investment objectives and constraints

II. Controlling the components of portfolio risk

III. Implementing  the  asset  manager’s  investment  philosophy,  style,  and  market 

outlook
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IV. Efficiently using active return information (Sharpe, 1985)

V. Conveniently and efficiently embedding new information into portfolios

Markowitz's Mean-Variance efficiency is also the basis for many important advances 

in financial theory. Some of the most important are the works of William Sharpe (1964), 

John  Lintner  (1965),  and  Jack  Treynor  (1961):  the  well-known Capital  Asset  Pricing 

Model,  which addresses the formalization of the relationship that  should exist  between 

asset returns and risk and the fundamental dichotomy between systematic and diversifiable 

risk. They defined the role that portfolios play in determining the appropriate individual 

asset risk premium (i.e., the return in excess of the risk-free return expected by investors as 

compensation  for  the  asset’s  risk).  According  to  their  theory,  the  “priced”  risk  of  an 

individual  security  is  affected  by  holding  it  in  a  well-diversified  portfolio.  The  early 

research provided the insight that an asset’s risk should be measured in relation to the 

remaining systematic or non-diversifiable risk, which should be the only risk that affects 

the asset’s price (meaning: the market remunerates only the systematic risk: the beta).

The starting point of Modern Portfolio Theory is that of a rational investor who, at 

time t, decides what portfolio of investments to hold for a time horizon of T. The investor 

makes decisions on the gains and losses he will make at time  t+T, without considering 

eventual gains and losses either during or after the period T. At time t+T, the investor will 

reconsider the situation and decide anew.  The theory dictates that given estimates of the 

returns,  volatilities,  correlations  of  a  set  of  investments  and constraints  on  investment 

choices (e.g., maximum exposures and turnover constraints), it is possible to perform an 

optimization that results in the risk/return or mean-variance efficient frontier. This frontier 

is “efficient” because underlying every point on this frontier is a portfolio that results in the 

greatest possible expected return for that level of risk or, the other way round, results in the 

smallest possible risk for that level of expected return. The portfolios that lie on the frontier 

make up the set  of efficient  portfolios  (Fabozzi  et  al,  2002).  At its  very basic  kind,  it 

provides a framework for building and selecting portfolios based on the expected return of 

the investment  and the risk appetite  of the investor.  The figure below schematizes  the 

Mean-Variance Portfolio optimization process.
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1.1.  The mean-variance optimization approach

The notation adopted in this, and the following sections, is based on Meucci, 2009, 

which provides an extremely clear and detailed description of the optimization problem. 

Consider a market of  N  securities. Denote  Pt the prices at the generic time  t  of the  N  

securities in the investor’s market. At the time T  when the investment is made, the investor 

can purchase αn units of the generic n-th security2. The N-dimensional vector α  represents 

the outcome of the allocation decision, which can be seen as a "black box" that processes 

two types of inputs: the information on the investor’s profile P and the information iT  on 

the market available at the time the investment decision is made.

A generic  allocation  decision  processes  the  information  on the  market  and on the 

investor and outputs the amounts to invest in each security in the given market:

1

α [∙ ] : [iT ,P ]⟼ RΝ

The investor evaluates the potential advantages of an allocation α  based on his primary 

index of satisfaction S, provided that the allocation is feasible since the investor is bound 

by a set (vector) of investment constraints C that limit his feasible allocations. Therefore, 

the optimal allocation is the solution to the following maximization problem:

2

α ¿≡argmax
α∈ C

{S (α ) }

In general, it is not possible to determine the analytical solution to this problem (cfr 

Meucci, 2009) but the Mean-Variance provides with two-step approximation to the general 

allocation  optimization  problem defined above.  In order to  solve explicitly  the general 

allocation problem it is necessary to determine the functional dependence of the index of 

satisfaction on all the moments and the dependence of each moment on the allocation.

The index of satisfaction is a function defined on the infinite-dimensional space of the 

moments of the distribution of the investors’ objectives ψ:

2 These units are specific to the security: for example in the case of equities the units are shares, in the 
case of futures the units are contracts, etc.
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3

S (α )≈ H (E {ψα } ,CM 2 {ψα } ,CM 3 {ψα },⋯ ).

Where CM k denotes the central moment of order k of a univariate distribution.

Suppose that it is possible focusing on the two first moments only and neglect all the 

higher moments, than, for a suitable bivariate function ~H :

4

S (α )≈~H (E {ψα } ,Var {ψα })

Since all  the indices  of satisfaction  S (cfr  Meucci,  2009) are consistent with weak 

stochastic dominance, for a given level of variance of the objective, higher expected values 

of the objective are always appreciated, no matter the functional expression of ~H . Hence, 

if  for  each  target  value  of  variance  of  the  investor’s  objective,  its  maximum possible 

expected value is pursued,  the solution to the general allocation problem is captured for 

sure.

In other words, the optimal allocationα ¿ that solves the maximization problem (i.e. the 

Mean-Variance  approach  pioneered  by  Markowitz)  must  belong  to  the  one-parameter 

family α (v ) defined as follows:

5

α (v )≡argmax
α∈ C

Var {ψα }=v

E {ψα }

Where  v is the target variance,  v ≥0.  Its solution is called the  Mean-Variance  efficient 

frontier. As a result, the general problem is reduced to a two-step recipe:

I. The computation of the mean-variance efficient frontier,

II. The following one-dimensional search to define the optimal allocation: 

6

α ¿≡α (v¿ )≡argmax
v ≥0

{S (α (v ) ) }

According to the investor’s objective ψα, the target variance v in the MV optimization 

can be interpreted as the riskiness of the solution  α (v ):  for a given level of risk  v, the 

investor seeks the allocation that maximizes the expected value of his objective. As the risk 

level v spans all the positive numbers, the one-parameter family of solutions α (v ) describes 
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a one-dimensional curve in the  N-dimensional space of all possible allocations,  and the 

optimal allocation α ¿ must lie on this curve.

1.1.1. The set up

The investor’s objective that appears in the MV problem is a linear function of the 

allocation and of the market vector (the set of stochastic returns):

7

ψα≡α 'M

The market vector M is a simple invertible affine transformation of the market returns at 

the investment horizon. If the investor focuses on the final wealth, as in the MV approach, 

the market vector reads:

M≡PT +τ

Within the MV framework prices are considered normally distributed, hence: 

PT+τ N (μ , Σ)

Thus the objective (equation 7) is normally distributed:

ψα N (μα , σα
2
)

where,

μα=μ'α ,σ α
2
=α' Σα

The expected value and the covariance are respectively defined by:

8

E {ψα }=α ' E {M }

9

var {ψα }=α ' cov {M }α
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Hence, the MV efficient frontier can be re-expressed in the following form:

10

α (v )≡ argmax
α∈ C

α 'cov {M }α=v

α' E {M }

where v ≥0.

In addition to no short selling constraints and the other subjective set of constraints C, 

the only inputs required to compute the MV efficient frontier are the expected values of the 

market  vector  E (M ) and the  respective  covariance  matrix  cov (M ).  The  mean-variance 

approach is often presented and solved in terms of the returns instead of the market vector. 

Expressing an allocation in terms of relative weights is more intuitive than expressing it in 

absolute terms. This comes at a cost. To present the formulation in terms of returns it is 

necessary to make two restrictive assumptions:

I. the investor’s objective is final wealth,  or equivalently that the market vector is 

represented by the prices of the securities at the investment horizon:

11

ψα≡α ' PT+τ

II. the investor’s initial capital is not null:

12

wT≡α ' pT ≠0

The  linear  return  from  the  investment  date  T  to  the  investment  horizon  τ of  a 

security/portfolio that at time t  trades at the price Pt is defined as follows:

13

L≡
PT+τ

PT

−1

Now, considering the linear return on wealth:
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14

Lψ α≡
ψα

wT

−1

it  can be shown3 that  under the assumption  I  and II,  the MV efficient  frontier can be 

expressed equivalently in terms of the linear return on wealth as follows:

15

α (v )≡argmax
α∈ C

var {Lψα}=v

E {Lψα }

where v ≥0.

Considering now the relative weights w of a generic allocation:

16

w≡
diag ( pT )

α ' pT

α

Since the current  prices  pT  are  known, the relative  weights  w are a  scale-independent 

equivalent representation of the allocation  α .  Hence, the linear return on wealth can be 

expressed in terms of the linear returns of the securities in the market and the respective 

relative weights:

17

Lψα=w' L

As a result of the above properties for the derivation of the expected and the covariance 

matrix, it is possible to write the relative weights as follows:

18

w (v )≡ argmax
w∈ C

w'cov {L }w=v

w' E {L }

where v ≥0.

3 See Appendix 6.6, Meucci (2009)

12



Then, the efficient  frontier  expressed in terms of the allocation vector  α (v ) can be 

derived from equation 18 by inverting equation 16. The inputs necessary to solve equation 

18 are the expected value of the horizon specific linear returns  E {L } and the respective 

covariance  matrix  cov {L}.  Below the  steps  to  compute  these  inputs  necessary to  solve 

equation 18

I. Detect the invariants X t ,~τ behind the market relative to a suitable estimation horizon 

~τ .

II. Estimate the distribution of the invariants X t ,~τ

III. Project these invariants X t ,~τ to the investment horizon, obtaining the distribution of 

XT+τ , ~τ

IV. Map the distribution of the invariants XT+τ ,~τ into the distributionof the prices at the 

investment horizon of the securities PT+τ

V. Compute the expected value  E{PT+ τ } and the covariance matrix cov {PT +τ } of the 

distribution of the market prices

VI. Compute the inputs for the optimization of equation 10 i.e. the expected value and 

the  covariance  matrix  of  the  linear  returns,  from equation  13  using  the  affine 

equivariance of the expected value and of the covariance matrix respectively:

19

E {L}=diag ( pT )
−1
E {PT+τ }−1

20

cov {L}=diag ( pT )
−1
cov {PT +τ }diag ( pT )

−1

1.2. Structural pitfalls of classical Mean-Variance approach and 
possible alternatives

By virtue of what was stated in the previous section, it is not difficult to identify the 

reasons that  motivate  the  popularity  of  the  Mean-Variance  theory.  First,  the  paradigm 

proposed  by Markowitz  incorporates  two  crucial  aspects  for  every  asset  manager:  the 

contribution of diversification and the trade-off existing between risk and expected return.
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Despite  the  incredible  contribution  that  the  model  has  made,  both  academics  and 

practitioners have raised several objections to its efficiency as the appropriate framework 

for defining portfolio optimality. Except for a first period, in which economic literature 

ignored this methodology, from the mid-1960s the works dedicated to the confutation of 

the Mean-Variance approach have exponentially increased, fueling real debates between 

critics  and  proponents  of  Markowitz's  theory.  Criticisms  and  perplexities  are  mainly 

concerned to  investors  behaviours  and how they are  modelled  within  the  optimization 

process:

I. the  optimization  based  on  the  mean-variance  principle  ignores  any  preference 

toward statistical moments of order higher than the second,

II. Mean-Variance efficiency  is  not  strictly  consistent  with  expected  utility 

maximization.

III. the model assumes that investors have a single time horizon,

IV. even in a two-dimensional context, the standard deviation (variance) is an overly 

simplified  measure  of  risk,  unable  to  discriminate  between  rewarding  and 

penalizing phenomena.

1.2.1.  Mean-Variance approximates investors’ satisfaction

Recall from equation 3 that the investor’s satisfaction depends on all the moments of 

the  distribution  of  investor’s  objective.  The  mean-variance  approach  relies  on  the 

approximation,  according to which, the investor’s satisfaction is determined by the first 

two moments of the distribution of his objective (Equation 4). The “plain” Mean-Variance 

optimization ignores any preference toward statistical moments of a higher order than the 

second. This contributed to embracing the inclusion within the investor preference function 

of higher-order moments: the Skewness (i.e. the third moment) and the Kurtosis (i.e. the 

fourth moment).  Among the numerous works addressing this issue it is worth mentioning 

Samuelson (1958), Arditti and Levy (1975), Lee (1977), Kraus and Litzemberger (1976), 

Kane (1982), Lai (1991), Konno, Shirakawa and Yamazaki (1993), Simaan (1993), Konno 

and Suzuki (1995), Chunhachinda, Dandapani et al. (1997), de Athayde and Flores (2004), 

Pomante (2008), Meucci (2009). As rightly both Pomante (2008) and Meucci (2009) point 

out,  it  should  be  noted  that  in  the  case  of  inclusion  of  the  third  and fourth  statistical 
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moments, the portfolio optimization must be developed on a four-dimensional plane, with 

the  consequent  impossibility  of  graphically  representing  the  combinations  of  efficient 

portfolios. Furthermore, like the standard deviation, neither the Skewness nor the Kurtosis 

can be estimated as a weighted average of the measures of the individual assets, as these 

are influenced by the joint movements of the assets.  A portfolio optimization that includes 

statistical moments higher than the second hides some pitfalls that are not negligible: the 

inclusion of the third and/or fourth moment increases the probability that there is no vector 

of weights capable of maximizing the expected return, and portfolio asymmetry/extreme 

even exposure at the same time is quite high. 

The second problem concerns  the  ability  of  an  average  investor  to  translate,  with 

rationality, his degree of preference for indicators such as asymmetry and the kurtosis of 

returns. It is undeniable that the limited rationality of the typical investor, and its scarce 

familiarity with the moments of a distribution, make the identification of these parameters 

very complex, also due to the impossibility of attributing to them a meaning that goes 

beyond the mere mathematical value. 

1.2.2. Mean-Variance  inconsistency  with  expected  utility 
maximization

Utility  functions  to  define  portfolio  optimality  often  divide  practitioners  from 

academics. MV efficient portfolios are often good approximations of maximum expected 

utility4 and a practical framework for portfolio optimization. (Kroll, Levy, & Markowitz 

1984; Levy & Markowitz, 1979; Markowitz, 1987, chapter 3).

Markowitz’s efficiency is strictly consistent with expected utility maximization only 

under either of two conditions: normally distributed asset returns or quadratic utility, but 

the normal distribution assumption is unacceptable as a realistic hypothesis. Returns are 

neither  strictly  normal  nor  log-normal.  Returns  are  not  normal  due to limited  liability. 

Returns are not log-normal due to the possibility of an adverse event like market crashes. 

Additionally, the limitations of quadratic utility as a representation of investors’ behaviour 

are well known and unacceptable (Cfr. Meucci 2009). This is because a quadratic function 

4 Note  that  the  best-approximating  quadratic  function  is  simply  some  two-moment 
approximation of  maximum expected utility  that  is  a  function of  utility  parameters  (Michaud, 
2008) 
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is  not monotone increasing as a function of wealth,  from some point on,  the expected 

quadratic utility declines as a function of increasing wealth. Quadratic utility functions are 

primarily useful as approximations of expected utility maximization in some regions of the 

wealth spectrum (Michaud, 2008). 

The lack of specificity of the investor’s utility function is another important limitation 

of the utility function approach. Even small errors in estimating utility function parameters 

can bring the asset manager to a quite inefficient asset allocation. Perhaps differing in the 

value  of  only  one  or  two  parameters,  yet  represent  a  very  wide,  even  contradictory, 

spectrum of risk-bearing and investment behaviour (Rubinstein, 1973). Note that the best-

approximating quadratic function is simply some two-moment approximation of maximum 

expected utility that is a function of utility parameters. 

1.2.3.  Single time horizon

Modern Portfolio Theory framework, which is principally based on the mean-variance 

model,  is  fundamentally  single-period in nature where the investor makes  his  portfolio 

decision at the beginning of a period and then waits until the end of the period when the 

rate of return of his portfolio materializes. He cannot make any intermediate changes to the 

composition  of  his  portfolio  (Mossin,  1968;  Grauer  and Hakansson, 1982).  The model 

neglects the fact that the perception that investors have of the goodness of an investment is 

path-dependent since investors, discounting the effects of an early divestment, might also 

attribute value to the evolution over different timeframes of the principal itself. Starting 

from the example proposed by Mossin (1968), Pomante (2008) proposed a simplified case 

of a multiperiod model in which each investment decision implemented in the single sub-

period depends on what has been achieved in previous periods and on the opportunities 

relating to future sub-periods only at the beginning of the last subperiod the construction of 

the portfolio can be set up according to the one-period Markowitz logic. A similar work 

has been performed also by Michaud and Monahan (1981).

An intuitive alternative  is  to consider  the multiperiod distribution of the geometric 

mean of  return  instead  of  the  simple  average  (Crf.  Michaud,  1981,  2003,  2008)  since 

Mean-Variance  geometric  mean  investment  objectives  are  often  consistent  with  many 

institutional investment mandates. The geometric mean, or compound, return is the statistic 
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of choice for summarizing portfolio return over multiple periods. In fact, assuming that an 

investor experiences a 100% return in one period and a 50% negative return in the next 

period. The two-period average return is 25%, but the two-period wealth is the same as at 

the  beginning.  Therefore,  the  true  multiperiod  return  is  0%.  Basing  his  thoughts  on 

Hakansson  (1971),  Michaud  (2008)  stated  that  the  mean  and  variance  of  N-period 

geometric  mean  return  is  a  natural  N-period  generalization  of  Markowitz  efficiency. 

Various approximations show that portfolios on the single-period MV efficient frontier are 

often good approximations of N-period geometric mean efficient portfolios. Consequently, 

N-period geometric mean MV efficiency is roughly a special case of MV efficiency in 

many cases of practical interest.

1.2.4. The standard deviation is an over-simplified measure of 
risk 

In addition to the problem relating to the one-period investment decision framework 

and the two-dimensional preference space, there is a literary strand that considers the use 

of the standard deviation an over-simplified measure of risk, as investors, rather than being 

averse to  the mere  average  distance  from the  mean,  they should discriminate  between 

positive  volatility  (favourable,  with  respect  to  a  given  threshold  value)  and  negative 

volatility (adverse, with respect to a given threshold value) and therefore consider only the 

so-called  lower  partial  moments.  One  obvious  and  intuitively  appealing  example  of  a 

“downside” risk measure discussed as early as Markowitz (1959), is the semi-variance or 

semi-standard deviation of return. 

To satisfy an explicit request from asset managers and investors, who are increasingly 

comfortable  with downside and extreme measures,  such as the percentile,  the Value at 

Risk, and the probability of shortfall, and are more averse to the manifestation of returns 

placed in the left-hand portion of the distribution is also expressed there are alternative 

measures of risk such as the VaR, the Conditional VaR.  

Telser (1956) and Kataoka (1963), Harlow (1991), Nawrocki (1991), Feiring, Wong et 

al.  (1994)  implemented  an  optimization  model  aimed  at  minimizing  downside  risk 

measures, while Basak and Shapiro (2001), Cuoco, He and Issaenko (2001) and Alexander 

and Baptista (2002) adopted a maximization of expected utility subject to maintaining a 
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critical level of Value-at-Risk (VaR). The pros and cons of various risk measures depend 

on  the  nature  of  the  return  distribution.  In  the  event  that  the  returns  are  distributed 

normally, the use of the full moment indicator or the partial risk indicator leads to the same 

result;  this  is  because,  under  the  Gaussian  distribution  assumption,  the  portfolios  that 

minimize the variance are the same ones that minimize a partial moment. Hence, adopting 

a partial risk measure focused only on the left portion of the distribution would only make 

sense if the distribution of returns were not normal and therefore skewness and kurtosis 

phenomena  appeared.  (Cfr.  Pomante  Ugo,  2008).  From  this,  it  follows  that,  in  the 

hypothesis in which the Mean-Variance maximization is used in the presence of investors 

exclusively adverse to the downside,  the portfolios thus selected could be sub-optimal, 

since the portfolios capable of minimizing the variance could not be the same ones that 

minimize the partial third or fourth moment. It must also be said that the return distribution 

of an asset or portfolio depends on several factors: like the time horizon. On the one hand, 

the  returns  of  diversified  equity  portfolios,  equity  indexes,  and  other  assets  are  often 

approximately symmetric over periods of institutional interest, hence efficiency based on 

non-variance risk measures may be nearly equivalent to MV efficiency. On the other hand, 

the return distribution of diversified equity portfolios  becomes increasingly asymmetric 

over  long  time  horizons.  Furthermore,  some  securities,  such  as  options,  swaps,  hedge 

funds, and private equity, have return distributions that are unlikely to be symmetric. The 

return distributions of fixed-income and real estate indices are generally less symmetric 

than equity indices (Michaud, 2008).

R. Michaud in his book 2008, said that comparing the MV efficient frontier with a 

mean-semi-variance  efficient  frontier  based  on  the  same  historic  data5 results  in  two 

virtually identical efficient frontiers. There is a small mismatch in the middle reflecting the 

fact that some equity indices have asymmetrically less downside risk. 

1.2.5. Difficulty in estimating the inputs

The critical  elements analyzed so far focus on the basic assumptions of the model, 

however, it is possible to identify a further source of perplexity related to the inability of 

5 Michaud used eight  different  asset  class:  Euro Bonds,  US Bonds, Canada Equity,  France  Equity,  
Germany Equity, Japan Equity, UK Equity, US Equity. 
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the Mean-Variance framework to adapt to the operating practices of the subjects involved 

in the asset allocation process. Markowitz’s optimization doesn’t make any assumptions 

about  the  composition  of  efficient  portfolios.  The  problem  of  restrictions  on  the 

composition of portfolios, which is quite an issue from an operational standpoint6, has been 

tackled by many authors. Among them Sharpe (1974), Fisher (1975), Rosemberg and Rudd 

(1978, 1979), Dybvig (1984) Black and Litterman (1992), Michaud (1998). 

From an operational point of view all the literature converges defining: 

I. instability of the final output, and

II. the ambiguity of the final output,

as three of the most important and limitations of MV optimization. Small changes in input 

assumptions  often  imply  large  changes  in  the  optimized  portfolio  and  could  suggest 

extreme and/or non-intuitive weights for some of the assets in the portfolio (Jorion, 1985 

Black & Litterman,1990,1991,1992, Green & Hollifield, 1992, Best e Grauer (1991). 

In  many practical  applications,  an  equally  weighted  portfolio  may be  substantially 

closer to the “true” Mean-Variance optimality than an optimized portfolio. Meaning: in 

many cases, equally-weighted portfolios outperform mean-variance portfolios (DeMiguel, 

Garlappi, & Uppal, 2009; Jobson & Korkie, 1981; Jorion, 1985). Moreover, the overuses 

of  statistically  estimated  information  exaggerate  the  impact  of  estimation  errors. 

Estimation errors in the forecasts significantly impact the resulting portfolio weights. As a 

result,  MV-optimized  portfolios  are  likely  to  be  “error  maximized”  (Brandt  1995, 

Michaud, 1998) and, often, have little, if any, reliable investment value.

Markowitz’s Mean-Variance optimization provides the right way to invest given that 

the risk-return estimates are correct. Both instability and ambiguity of the optimized asset 

allocation can be therefore connected to estimation errors.

In recognition of these concerns, the original approach proposed by Markowitz only 

serves as a starting point and the classical mean-variance framework is often extended in 

several different directions for portfolio management in practice indeed.  

6 Because beyond their personal preferences, asset managers must also be compliant with regulatory, 
corporate, and investment policy constraints
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2. Alternative approaches for portfolio selection

The previous section summarizes the major weaknesses of the mean-variance model, 

noting that the most illustrated shortcoming in implementing the model is the sensitivity of 

the portfolio constructed to changes in inputs. Perhaps the simplest and most immediate of 

the heuristic techniques is the equally weighted strategy. This strategy is characterized by 

high diversification. Including all the investable universe in the portfolio, ensures the agent 

has selected those assets  that  would be chosen if  he would have had the correct  input 

parameters. However, the use of this strategy implies an a priori renunciation of selecting 

the construction of a truly effective solution and that, in fact, the outcome of the strategy is 

left to luck, not to the skill of the asset manager. Meucci (2005) made a point here:

“Just like the hands of a broken watch, which happen to correctly indicate the time  

only twice a day, the prior allocation is only good in those markets, if any, where the  

optimal allocation happens to be close to the prior allocation”

Imposing weight constraints  within quadratic  programming to overcome estimation 

error is another of the most widely used Heuristic Techniques (Frost and Savarino, 1988, 

Jagannathan and Ma, 2003). The effect that the imposition of constraints produces on the 

composition of efficient portfolios is intuitive: by restricting the numerical range within 

which the weights of the asset classes can vary, the portfolios obtained are more diversified 

than those that would be obtained with the unconstrained7 optimizations.

Portfolio managers are required to mitigate these types of problems by engineering 

techniques  capable  of  re-proposing the  original  model  more  consistently  with  the  real 

operational  context.   Practitioners,  as  well  as  academic  financial  literature,  allocated  a 

considerable amount of resources to the estimation error issue, developing various exotic 

statistical  and investment  proposals  for  improving optimization  inputs.  Starting  from a 

classic Mean-Variance optimization, there are two paths (not necessarily alternatives) that 

can  be  followed  in  order  to  minimize  the  distance  that  separates  the  risk-return 

7 The  unconstrained  expression  identifies  the  optimizations  that  have  the  sole  constraint  of  non-
negativity of the weights.
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combinations  of  true  efficient  portfolios  compared  to  the  combinations  of  portfolios 

considered erroneously optimal (Pomante, 2008):

I. act on optimization, trying to get closer to the composition of truly efficient portfolios 

(Resampled Efficiency).

II. operate on estimated parameters, reducing the error (Bayesian techniques);

II.1. Michaud Resampled Efficiency 

Michaud Resampled Efficiency [RE] technology introduces Monte Carlo resampling 

and bootstrapping methods into MV optimization to reflect the uncertainty in investment 

information more realistically. 

Consider an allocation  α . The market prices  PT+τ
θ  and the allocation  α  determine the 

investor’s objective ψ 8, which in turn determines the investor’s satisfaction S:

21

(α , PT+τ
θ )⟼ψα

θ
⟼ Sθ (α )

A chain similar to equation 21 holds for the investor’s constraints ensuing from the 

investor’s multiple secondary objectives9:

22

(α , PT+τ
θ )⟼~ψα

θ
⟼

~Sθ (α )⟼Cθ

Hence, the optimal allocation function that, for each value of the input parameters  θ, 

maximizes the investor’s satisfaction given his investment constraints is the following:

23

α (θ )≡argmax
α∈ Cθ

{Sθ (α )}

8 Notice that, in all its specifications, the objective is a linear function of the allocation and of a market  

vector:  ψα=α' M  and the distribution of  M  can be easily computed from the distribution of the security 

prices PT+τ  at the investment horizon and vice versa (cfr Meucci, 2009, appendix 2.4).
9 When an index of the satisfaction is estimable, the satisfaction associated with the allocation  α  is a 

function of any of the equivalent representations of the distribution of the objective ψα(cfr Meucci, 2009, sez 
5.3)
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Since  the  true  value  θt of  the  market  parameters  is  not  known,  the  truly  optimal 

allocation  cannot  be  implemented.  Furthermore,  as  already  discussed,  the  optimal 

allocation function is extremely sensitive to the input parameters θ: a slightly wrong input 

can give rise to a very large opportunity cost.

Unlike  the  Black-Litterman  approach  (see  section  3.3),  where  the  estimation  error 

problem  is  addressed  by  smoothing  the  estimate  of  the  input  parameters  before  the 

optimization, the resampling technique tackles the above issue by averaging the outputs of 

a set of optimizations.

The assumptions of the original resampling recipe are the following:

I. the agent’s objective is based on the Mean-variance formulations in terms of linear 

returns and relative weights, 

II. the market consists of equity-like securities for which the linear returns are market 

invariants, 

III. the investment horizon and the estimation interval coincide, 

IV. the investment constraints are such that the dual formulation is correct, 

V. the constraints do not depend on unknown market parameters.

Under the above assumptions the Mean-Variance problem expressed by Equation 18 

can be written in its dual formulation as follows:

24

w (i)≡argmin
w∈ C
w' μ≥ e( i )

w' Σw ,i=1 ,…, I

Where:

μ : vector of expected linear returns of the assets

Σ: matrix of the covariances of linear returns of the assets

{e(1 ) ,…,e( I ) }: the significative grid of target expected values

C: the set of investment constraints

i=1 ,… , I  represents the number of portfolios composing the efficient frontier.

The resampled efficiency engineered by Michaud (1998) defines the efficient portfolio 

weights through the following steps:

22



I. Estimate the inputs μ̂ ,0
.  and Σ̂0

.  of the mean-variance framework from the analysis 

of the observed time series iT  of the past linear returns10:

iT≡ {I 1 ,…, IT }

II. Consider the time series  iT  as the realization of a set of  market invariants,  i.e. 

independent and identically distributed returns:

IT≡ {L1 ,…, LT }

III. Make assumptions on the distribution generating the returns, for instance assuming 

normality, and set the estimated parameters (sample mean)  as the true parameters 

(population mean) that determine the distribution of the returns:

Lt N ( μ̂ ,0
. Σ̂0

. )

IV. Resample a large number Q of Monte Carlo scenarios of realizations of the returns 

[step II] from the adopted distribution [step III]:

iTq
. ≡ { I1q

. ,…, ITq
. } , q=1 ,…,Q

V. Estimate the inputs μ̂q
.  and Σ̂q

.  of the mean-variance framework from the resampled 

time series [step IV]: as in Step I.

VI. Compute  the  global  minimum-variance  portfolio  from  each  of  the  resampled 

inputs:

wMVq
.

=argmin
w∈ C

w ' Σ̂q
. w ,q=1 ,…,Q

VII. Compute the respective estimated expected value in each scenario:

eq
. ≡ wMV μ̂q

. ,q=1 ,… ,Qq
.

VIII. Compute the maximum estimated expected value in each scenario:

10 By means of additional constraints it is possible to include the investor’s multiple objectives in the  
allocation problem. Indeed, the multiple objectives are accounted for by imposing that the respective index of 
satisfaction  ~S exceed a minimum acceptable threshold ~s (cfr Meucci, 2009, sez 6.1).
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eq
. ≡max { μ̂q

. ' δ (1 ) ,… , μ̂q
. ' δ (N ) } , q=1 ,…,Q

where δ  is the canonical basis11

IX. For  each  scenario  q determine  a  grid  { e(1 )

q
. ,… , e (I )

q
. } of  equally-spaced  target 

expected values

[
e(1 )

q
.

⋮

e(i )

q
.

⋮

e( I )

q
. ]≡[

eq
.

⋮

eq
.
+

eq
.
− eq

.

I−1
(i−1 )

⋮

eq
.

]
X. Solve  the  mean-variance  dual  problem  [Equation  25]  for  all  the  Monte  Carlo 

scenarios q=1 ,… ,Q and all the target expected values i=1 ,… , I :

25

w (i)
q
. ≡argmin

w∈ C
w ' μ̂q

. ≥ e( i )

q
.

w ' Σ̂q
. w

XI. Define  the  resampled  e􀀡cient  frontier  as  the  average  of  the  above allocations, 

possibly rejecting some outliers:

wℜ
(i) ≡

1
Q∑

q=1

Q

w (i ) ,i=1 ,… , Iq
.

where "RE" stands for "resampled"

XII. Compute the efficient allocations from the respective relative weights:

αℜ

(i )≡wT diag (pT )
−1
wℜ

(i) , i=1 ,… , I

where wT, adopting the same notation of the previous section is the initial budget.

XIII. Choose the optimal allocation according to the preferences.

11 This can be done by means of the sample estimators for example 
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This  model  has  been  the  subject  of  debate  (Scherer  2002)  because  even  though 

portfolio resampling is a thoughtful heuristic, some features make it difficult to interpret by 

the inexperienced. On the one hand, by factoring in estimation error in a Bayesian-like 

framework,  RE  optimization  tries  to  avoid  unreliable  and  self-defeating  principles  of 

design  and  management  that  follow  from in-sample  parameter  certainty  MV portfolio 

optimization  analytics.  On  the  other,  unlike  the  Bayesian  and  the  Black-Litterman 

approaches, where the estimation error is tackled by smoothing the estimate of the input 

parameters before the optimization, the resampling technique averages the outputs of a set 

of optimizations. 

The resampling technique is very innovative. It displays several advantages but also a 

few drawbacks such as reducing the sensitivity to the market parameters. Still Markowitz 

and Usmen (2003) expressed concern that RE optimization illustrated in Michaud (1998) 

may require revision of expected utility axioms. Michaud (2003) clarified the issue (the 

misunderstanding) demonstrating that RE optimization is fundamentally based on expected 

utility  considerations.  Note  that  resampling  deals  with  sampling  error  only.  In  theory, 

sampling  error  in  means  that  arises  from  not  having  enough  data  can  be  cured  by 

lengthening the observation period (in the case of variance, increasing the frequency of 

observations would help). Because the involved distributions are likely to be nonstationary, 

however (i.e., the mean and covariance tend to vary over time), enlarging the data set in 

this way is not always appropriate. Scherer (2002) dealt with this trade-off.

Kohli (2005) conducts an empirical study based on stock market data from 2011 to 

2013  and  find  “no  conclusive  advantage  or  disadvantage  of  using  resampling  as  a 

technique to obtaining better returns,” but “resampled portfolios do seem to offer higher 

stability and lower transaction costs.” Scherer (2006) runs a new Monte Carlo simulation, 

which reveals that the James–Stein shrinkage estimator outperforms portfolio resampling.

Frahm (2013), by contrast, tried to justify the application of Resampled EfficiencyTM 

and  proved  that  portfolio  resampling  has  a  strong  foundation  in  the  classic  theory  of 

rational behaviour. Every noise trader could do better by applying the Michaud procedure. 

By contrast, a signal trader who has enough prediction power and risk-management skills 

should  refrain  from portfolio  resampling.  The  crucial  point  is  that  in  most  simulation 

studies,  investors  are  considered  noise traders.  This  explains  why portfolio  resampling 

performs well in simulation studies but could be mediocre in real life.
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2.1.1.  Peculiarities  of  the  model:  The  Resampled  Efficient 
FrontierTM Maximum Return Point

The RE technique is characterized by a peculiarity that is a source of perplexity: by 

increasing  the  risk  of  a  specific  asset  class  and  leaving  the  remaining  parameters 

unchanged, the weight of the latter is bound to increase (see Scherer, 2004 and Pomante, 

2008). It is disheartening for an asset manager to know that the increase in the standard 

deviation of the returns of an asset class, a "symptom" of a deterioration in quality,  is  

received by resampling with an increase in the weight of the market itself. However, this 

limit is destined to disappear if applied to optimizations not subject to the hypothesis of the 

impossibility of carrying out short selling since in the absence of short selling, the greater 

weight  that  this  market  assumes  in  the  positive  projections  (highly  positive  simulated 

returns) is not offset by the negative weights assumed in the unfavourable (highly negative 

simulated returns) simulations (Pomante, 2008).

Furthermore, the RE technique tends to violate one of the fundamental rules of mean-

variance optimization: the resampled frontier may have a negative slope, thus negating the 

investor risk aversion principle.

A statistical approach to portfolio optimality leads to some significant differences from 

classical MV optimization. One significant difference is that the Resampled Frontier [RF] 

curve may have, at some point, a negative first derivative. This means that the maximum 

risk portfolio on the RF may not be also the maximum return portfolio. Michaud (1998) 

distinguished the two points on the frontier calling this the latter “maximum return point” 

[MRP] of the RF.
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Figure 1: Certainty Levels and the REF Maximum Return Point (from Michaud, 2008a)

The possible existence of an MRP is a quite important and very useful property of RF 

portfolio optimality. Figure12 4 illustrates how the RF MRP may arise. In each of the above 

panel (A,B, and C) there are the plots of the efficient frontier and three high risk assets 

(top-right  of  the  plots).  The  uncertainty  of  information  is  indicated  by  the  elliptical 

confidence area around each of them. Panel “A” reflects the Markowitz case, where risk 

and return are point estimates and it is assumed high certainty of information. Here, the 

maximum return portfolio includes only the maximum return asset. Panel “B” exhibits a 

moderate amount of uncertainty in the return distribution of the three assets. Since the true 

maximum return asset can no longer be known with certainty,  the Resampled Efficient 

Frontier [REF] maximum return portfolio includes a significant amount of the middle asset 

(although not as much as the top asset) and has a lower expected return than the Markowitz 

maximum return portfolio (Panel “A”). Panel “C” depicts a high level of uncertainty in the 

expected  return  estimates.  High  uncertainty  of  information  implies  small  statistical 

distinction between the three assets and the RF includes significant allocations in all three 

assets. In this case, an MRP may emerge where the RF has a downward-sloping inefficient 

12 A basis for a vector space is a set of linearly independent elements of that space that can generate all  
the other vectors by means of linear combinations. The number of these elements is the dimension of that 
vector space. In the case of the Euclidean space RN , this number is N . Therefore, a basis is a set of vectors 

e (n) , n=1 ,… ,N ,  such  that,  for  suitable  scalars,  any  vector  v of  RN can  be  expressed  as  a  linear 

combination: v=∑
n=1

N

wne
( n). The canonical basis is the following set of vectors (cfr Meucci, 2009):

[
δ (1 )

⋮

δ (N )]≡[
(1,0 ,…,0 )

'

⋮

(0,0 ,…,1 )
' ]
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segment. Any risk beyond the MRP is not optimal indeed and is not, by definition, part of 

the REF.

II.2. Bayesian estimation

Bayesian  approach has  its  roots  in  works  of  Zellner  and Chetty  (1965),  Mao and 

Sarndal (1966), Kalymon (1971), Barry (1974), Barry and Winkler (1975, 1976), Klein 

and Bawa (1976, 1977), Brown (1978), Bawa, Brown and Klein (1979). Acting directly on 

the input parameters could alleviate many of the unpleasant inconveniences involved in a 

la  Markowitz  portfolio  optimization.  Bayesian  estimation  in  a  simulation  study  often 

reflects  a  superior  level  of  risk-return  estimation  than  can  be  achieved  in  investment 

practice  (cfr.  Robert,  1994).  Markowitz  and  Usmen (2003)  addressed  the  issue  of  the 

relative importance of Bayesian estimation versus RE optimization.

Bayesian statistics offers an operational advantage of no small importance: the final 

estimators can be directly influenced by asset managers’ market views, thus favouring the 

construction of inputs and therefore portfolios which are much more consistent with the 

expectations of the asset managers.

Indeed, the Bayesian estimation process allows the portfolio manager to figure out the 

posterior distribution of the market parameters. This distribution explicitly acknowledges 

that an estimate cannot be a single number. Furthermore, the posterior distribution includes 

within a sound statistical framework both the investor’s experience (the prior knowledge), 

and the information from the market. Bayesian allocations rely on Bayes-Stein shrinkage 

estimators  of  the  market  parameters,  providing  a  mechanism  that  mixes  the  positive 

features of the prior allocation and the sample-based allocation. The estimate of the market 

is shrunk (indirectly, through the market parameters) towards the investor’s prior in a self-

adjusting way and the overall opportunity cost is reduced.

The  “classical”  estimator  is  a  function  that  processes  current  information  iT  and 

outputs  an  S-dimensional  vector  θ̂. Information  consists  of  a  time  series  of  T  past 

observations of the market invariants13:

13 This figure is a.
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iT≡ {x1 ,⋯ , xT }

The output θ̂ is a number which is supposed to be close to the true, unknown parameter θt:

iT ⟼ θ̂

The Bayesian estimation is different both in terms of "input" and "output". First of all, 

in a Bayesian context, an estimator does not yield a number θ̂. Instead, it yields a random 

variable θ, which can take values within a given range Θ. The distribution of θ is called the 

posterior distribution. It can be represented for instance in terms of its probability density 

function f po (θ ) . The true, unknown parameter θt is assumed to be hidden most likely in the 

proximity of those values where the posterior distribution is more peaked. The possibility 

that θt  might lie in some other region of the range Θ is acknowledged as well. 

Secondly, in a Bayesian context, an estimator does not depend only on backwards-

looking historical information iT . Indeed, the investor typically has some prior knowledge 

of  the  unknown value  θt  based  on  his  experience  eC,  where  C denotes  the  level  of 

confidence in his experience:

iT , eC ⟼ f po (θ )

The figure below, taken from Meucci,  2009,  provides  a  graphical  interpretation  of 

Bayesian approach to parameter estimation.
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Figure 2: Bayesian approach to parameter estimation

On the one hand, the purely classical estimator based on historical information iT  gives 

rise to a distribution of the market parameters θ that reaches its peak around the classical 

parameter estimate θ̂. The larger the number of observations T in the time series, the higher 

the concentration of the historical distribution around the parameter θ̂. 

On the other hand, the investor equates his personal experience  eC to a number C of 

pseudo-observations  located  in  a  “prior”  value θ0.  These  observations  give  rise  to  a 

distribution  of  the  market  parameters  θ which  is  called  the  prior  distribution,  whose 

probability density function is denotet as  f po (θ ). The larger the number of these pseudo-

observations, the higher the investor’s confidence in his own experience and thus the more 

concentrated the prior distribution around θ0. Therefore, the Bayesian posterior provides a 

way to blend the above two distributions into a third distribution, i.e. a spectrum of values 

and respective probabilities for the parameters θ. In particular, when the confidence in the 

investor’s experience is large,  the posterior becomes peaked around the prior value  θ0. 

When the number of observations (the level of confidence on its prior knowledge) C in the 

time series is large, the posterior becomes peaked around the classical estimate θ̂.

The  literature  on  Bayesian-style  portfolio  optimization  models  is  extremely  rich. 

Consequently,  preferring  to  remain  adherent  to  the  arguments  that  are  intended  to  be 

treated in this work, it is considered appropriate to provide an overview of the literature 

related to the Black-Litterman model.
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II.3. Black-Litterman allocation

Fischer Black and Robert Litterman revolutionize portfolio management in 1990 with 

the creation of the Black-Litterman Global Asset Allocation Model. The model has been 

quickly adopted for optimal portfolio allocation across international equity, fixed income 

and currency  markets.  One  of  these  was  the  Black-Litterman  Global  Asset  Allocation 

Model.

While the more famous Black-Scholes Option Pricing Model was developed before 

Fischer Black’s move to Goldman Sachs’s Trading and Arbitrage Division, innovations 

such as the Black-Litterman Global Asset Allocation model and the Black-Derman-Toy (a 

model for pricing fixed income derivatives) were developed while he worked at the firm.

In  1986  Fischer  Black  brought  Robert  Litterman,  a  PhD  in  economics  from  the 

University of Minnesota, onto the Goldman Sachs Fixed Income Research team. Three 

years later,  the two were tasked with creating an asset allocation model to help clients 

diversify their global bond portfolios. The goal was to create a quantitative and disciplined 

approach  to  structuring  international  bond  portfolios  in  a  manner  consistent  with  the 

portfolio  manager’s  unique  view of  markets.  The  model  could  also  be  used  reversely 

engineered, evaluating an existing portfolio to quantify the investor’s implied viewpoint on 

various markets as reflected in current holdings. The user of the model needed only to 

determine where his or her assumptions regarding returns diverged from the market view 

and the degree of confidence in these contrarian assumptions .  With this  input,  Black-

Litterman would calculate the appropriate asset allocation.

Developed in 1990, the Black-Litterman model became a prized asset of the recently 

formed Goldman Sachs Asset Management (GSAM) Division, established in 1988. Fischer 

Black himself  moved to GSAM in  1990 and the  model,  initially  used exclusively  for 

bonds, was extended to equities in 1991.

The  Black-Litterman  model  was  published  in  the  Journal  of  Fixed  Income  in 

September 1991. In the article,  Black and Litterman outlined the value of their  model: 

saying that this new asset allocation approach lets investors derive portfolios that appear 

balanced and reflect  their  views,  without  resorting  to  arbitrary  constraints  on portfolio 

composition. The model also lets portfolio managers incorporate their market views in a 

manner that approximates the way they actually think about their outlook. Further studies 

about the Black-Litterman approach have been made by He and Litterman (1999, 2002) 
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providing more  detail  on  the  workings  of  the  model,  but  not  quite  a  complete  set  of 

formulas.

Bevan and Winkelmann (1998) provide details on how they use Black-Litterman as 

part  of  their  broader  Asset  Allocation  process  at  Goldman  Sachs,  including  some 

calibrations  of  the  model  which  they  perform.  This  is  useful  information  for  anybody 

planning on building Black-Litterman into an ongoing asset allocation process. Drobetz 

(2001)  provides  further  description  of  the  Black-Litterman  model  including  a  good 

discussion of how to interpret the confidence in the estimates. Fusai and Meucci (2003) 

introduced yet another non-Bayesian variant of the model which removed the parameter τ 

altogether.  Meucci  (2005)  followed  up on this  paper  and coined  the  phrase,  “Beyond 

Black-Litterman”.

Meucci  (2006)  provides  a  method  to  use  non-normal  views  in  Black-Litterman. 

Meucci (2008) extends this method to any model parameter and allows for both analysis of 

the full distribution as well as scenario analysis.

Sahamkhadam et al (2020) extended the Black-Litterman approach to incorporate tail 

dependency in portfolio optimization and estimate the posterior joint distribution of returns 

using vine copulas.

II.3.1. The Black-Litterman set-up

The Black-Litterman  optimization  makes  use  of  Bayes’  rule  directly  shrinking the 

market towards the investor’s prior views14. 

Consider the optimal allocation function defined by Equation 23 that, for each value of 

the  input  parameters  θ,  maximizes  the  investor’s  satisfaction  given  his  investment 

constraints:

α (θ )≡argmax
α∈ Cθ

{Sθ (α )}

As stated before, since the true value  θt of the market parameters is not known, the 

truly optimal  allocation cannot be implemented.  Furthermore,  the allocation function is 

14 The invariants are random variables that refer to a specific estimation-horizon ~τ  and are independent 

and identically distributed (i.i.d.) across time (cfr Meucci, 2009, sez 4).
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extremely  sensitive  to  the  input  parameters  θ.   In  the  general  case the market  can be 

described by a generic distribution and the investor can express views on any function of 

the market. 

Consider a market represented by the multivariate random variable  X . This could be 

the  set  of  any variable  that  directly  or  indirectly  fully  determines  the  market  (market 

invariants,  market  prices,  asset  returns…).  Assume that  it  is  possible  to  determine  the 

distribution of this random variable, as represented for instance by the probability density 

function f X , by means of a reliable model/estimation technique (e.g.: general equilibrium 

arguments, nonparametric estimators, or maximum likelihood estimators).

To  smooth  out  the  estimation  error  risk  that  affects  f X ,  the  portfolio  manager, 

according to his knowledge of the prior distribution “tweaks” the outcome expressing his 

view V   as a conditional distribution V∨x. He assesses that the outcome of the market is V

, a random variable that, depending on the market, would be larger or smaller than the 

value  X  predicted by the "standard" model. The conditional distribution is modelled, as 

represented for instance by the probability density function f V∨x, according to the portfolio 

manager’s level of confidence in his own view. His opinion might regard a specific area of 

the market, therefore the view refers to a generic multivariate function g (X ) on the market 

and, as a consequence, the conditional model for the view becomes f V∨g (X ).

Once the model has been set up, the portfolio manager will produce a specific number 

v:  his  prediction  on  V .  At this  point  the distribution  of the market  conditioned on his 

opinion  X∨v can  be  computed.  The representation  of  this  distribution  in  terms  of  its 

probability density function follows from Bayes’ rule, that in this context is reframed as 

follows:

26

f X∨v (x∨v )=
f V∨g ( X )

(v∨x ) f X (x )

∫ f V∨g (X )
(v∨x ) f X ( x )dx

Black and Litterman (1990, 1992) computed and discussed the analytical solution to 

equation 26 in a general case. Firstly, the "official" model for the  N-dimensional market 

vector X  was assumed to follow a normal distribution15:

15 See, He and Litterman (2002) for an interpretation in terms of shrinkage of market parameters.

33



27

X N (μ ,Σ )

Second, the investor’s area of expertise is a linear function of the market:

28

g (X )≡P x

where P, called the "pick" matrix is a KxN matrix. Each of its K rows is an N-dimensional 

vector  that  corresponds  to  one view and defines  the  linear  combination  of  the  market 

involved in that view. The above identity (equation 29) is very “flexible”, in the sense that 

the investor does not necessarily need to express views on all  the market variables.  In 

addition,  the views do not necessarily need to be expressed in absolute terms for each 

market variable considered, as any linear combination of the market constitutes a potential 

view.

Third, the conditional distribution of the investor’s views given the outcome of the 

market is assumed normal:

29

V∨P x N (P x ,Ω )

Where  Ω is  a  matrix  (which  is  symmetric  and positive)  that  denotes  the  portfolio 

manager’s confidence in his own opinion. Ω can be defined (Meucci, 2009) as follows:

30

Ω≡( 1c−1)PΣ P '

where c is a positive scalar. 

This reflects an "empirical Bayesian" approach: the agent gives, relatively speaking, 

more leeway to those combinations that are more volatile according to the official market 

model (equation 27). The scalar c tweaks the absolute confidence in the investor’s views: 

XIV. If  c⟶ 0 , the scatter matrix Ω is infinite, the portfolio manager’s is not confident 

in his own at all and, therefore his views have no impact. 
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XV. If c⟶ 1   on the contrary, the scatter matrix  Ω is null, which means the portfolio 

manager’s confidence in his own views is total. 

Fourth, the portfolio manager expresses his opinion on his area of expertise. This will 

turn into a specific value v of the views V .

By means of Bayes’ rule (equation 26) the distribution of the market, conditioned on 

the investor’s views, can be computed:

31

X∨v N (μBL , ΣBL)

Where, the expected returns values are:

32

μBL (v ,Ω )≡μ+ΣP ' (P Σ P'
+Ω )

−1
PΣ

and the covariance matrix is:

33

ΣBL (Ω )≡Σ−Σ P' (P ΣP '
+Ω )

−1
P Σ

Notice that the value of the views v, does not affect the expression of the covariance. 

This is a peculiarity of the normal setting (cfr Meucci 2009). The expression of the Black-

Litterman market distribution can be used to determine the optimal asset allocation that 

includes the investor’s views. At this point, the Black-Litterman allocation α BL is defined 

as the optimal allocation function [equation 23] computed using the market “adjusted” by 

the view [equation 26]:

34

α BL [v ]≡argmax
α∈ Cv

{Sv (α ) }
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3. Empirical analysis

Beyond the theoretical profile, the topic of greatest interest is analysing the behaviour 

of the models on an operational level. The purpose of this paragraph is to show a practical 

implementation  case.  Assume an asset  manager  wants  to  build long-only portfolios  by 

combining multiple equity asset classes. The investment time horizon is monthly. There 

are  ten  asset  classes  that  he  considers  potentially  interesting,  and  a  market  index  is 

associated with each of them:

1. MSCI ACWI AERODEFENSE

2. MSCI ACWI BEVERAGES

3. MSCI ACWI BIOTEC

4. MSCI ACWI ENERGY

5. MSCI ACWI FINANCIALS

6. MSCI ACWI HEALTHCARE

7. MSCI ACWI INDUSTRIALS

8. MSCI ACWI IT

9. MSCI ACWI CHEMICALS

10. MSCI ACWI PHARMA

Assuming that the returns of the indices are serially independent and identically distributed 

(i.i.d.), the inputs are estimated by considering a sample of 120 months (Apr. 2012 – Apr 

2022)16 historical returns. All the asset classes are in dollars, this to avoid the discussion of 

currencies17. The optimized portfolios are constrained to have non-negative weights and 

sum to one. The risk free rate is set to zero. Figure 3 and 4 summarizes the set of sample 

estimates: average monthly returns, standard deviations and correlations.

16 The original paper assumed the market was represented by the linear returns on a set of securities and  
the parameters (μ , Σ ) satisfy a general equilibrium model.

17  Source: Refinitiv EIKON [Thompson Reuters]
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Figure 3 Assets moments: average returns and standard deviations
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Figure 4 Assets correlation

3.1. The classical MV optimization 

The application of the classical MV optimization model allows identifying the return-

risk combinations that on the risk-return plan draw the set of points representing efficient 

portfolios:  Figure 5. The task of showing the composition map of the hundred optimal 

portfolios is entrusted to Figure 6, which displays the allocations from minimum risk (on 

the left-hand side of the charts)  to the maximum return (on the right-hand side of the 

charts).  Each  colour  represents  a  particular  asset  class.  A  vertical  slice  of  the  chart 

illustrates the weights of each asset class in the portfolio at each level of risk.  The leftmost 

points of the efficient frontier, those characterized by the lowest risk (whose composition is 

shown in the left part of Figure 6), are obtained by combining approximately 40% of MSCI 

BEVERAGES, 30% of MSCI PHARMA, 20% of MSCI HEALTHCARE, 5% OF MSCI 

IT, and 5% of MSCI BIOTEC. The rightmost points of the efficient frontier assume quite 

extreme exposures, combining only the two assets that are expected to generate the highest 

returns: MSCI IT (≈ 75% of the overall) and MSCI BIOTEC. MSCI IT is present in almost 
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all  efficient  portfolios  because  of  its  extremely  high  expected  return  and  moderate 

volatility (Figure 3a). The last portfolio on the far right of the Efficient Frontier, i.e. the 

maximum return portfolio, is actually a 100% bet on the IT market. 

Figure 5 MV efficient Frontier

Figure 6 MV Efficient frontier composition map
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Figure 7 shows the weights of the MSR (or Tangency) and the GMV portfolios.  As 

expected,  50%  of  the  asset  classes:  MSCI  ACWI  AERODEFENCE,  MSCI  ACWI 

ENERGY, MSCI ACWI FINANCIALS, MSCI ACWI INDUSTRIALS and MSCI ACWI 

CHEMICALS are never selected. With reference to the reasonableness of the allocation, 

beyond the need to maximize the expected return given a level of risk, optimal portfolios 

must  have  composition  requirements  that  make  them  appear  reasonable,  showing  a 

convincing  diversified  allocation.  Looking  at  the  composition  of  the  MSR  and  MV 

portfolios (Figure 7), the allocation is extremely concentrated. 

Figure 7 Mean-Variance MSR and GMV portfolios weights
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3.2.  Visualization of the input estimation pitfall

The simplest approach to estimating the input is to rely on historical data. Figure 8 

shows four efficient frontiers where one is constructed using the last 10 (Figure 8a), 5 

(Figure 8b), 2 (Figure 8c),  and 1 (Figure 8d) years of monthly returns.  The optimized 

portfolios are constrained to have non-negative weights and sum to one as in the previous 

section.

The estimated frontiers show a considerable discrepancy, and this is no surprise because 

the  four  frontiers  use  different  input  values  in  portfolio  construction  using  the  mean-

variance method. 

Figure 8: MV Efficient frontiers with four different time windows

Figure 9 shows the weights of the Maximum Sharpe Ratio (MSR) and the Global 

Minimum Variance  (GMV) Portfolios  of  the  four  samples,  while  figure  10  maps  the 

composition of the four efficient frontiers. Figures 8 and 9 clearly show how the optimal 

portfolios for the four cases differ. Especially when investors are interested in tangency 

portfolios (Figure 8).
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 The effect of input estimation on the allocation’s performance is quite relevant. When 

longer time series are considered (Figures 8a and 8b), the MSR portfolios are expected to 

generate a monthly return of approximately 1,3% and 1,6 for the 10Y and 5Y samples 

respectively, with 4.3% and 5.5% volatility. Considering shorter time windows (fig. 8c and 

fig.  8d),  returns  are  much  higher:  around  2%,  whit  volatility  between  3.6  and  4.7 

percentage points. 

Figure 9: Mean-Variance MSR and GMV Portfolio Weights
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Figure 10 MV Efficient Frontier Composition Map. Different samples: 10Y, 5Y, 3Y, 1Y

Portfolios'  composition  changes  dramatically  as  well.  While  10Y and  5Y samples 

consider (in terms of return) MSCI ACWI IT the most performing asset class, both 2Y and 

1Y  samples  “bet”  on  MSCI  ACWI  ENERGY.  Using  historical  measures  raises  the 

problem of establishing how much to go back in the process of calculating the inputs. 

Nobody knows whether an allocation based on one year of data is less/or reliable than an 

allocation based on ten years of data. There is no optimal length of time series: short time 

series have the peculiarity of better reflecting more recent history, while long time series 

are instead statistically more significant (often only a long series is able to catch surprises). 

The visualization of the effect of the input estimation problem can also be approached 

differently.  Figure  11  exhibits  1000 statistically  equivalent  MV EF (fig.  11a)  and the 

“original”  MV EF (fig.  11b).  Each simulated EF in the left-hand panel,  as well  as the 

original EF in the right-hand panel, consist of 100 portfolios from lowest to the highest 

return. Each simulated EF is defined to be consistent with the uncertainty in the original 

data set, i.e., the 10Y sample data adopted in the previous sections. The simulated returns 

assume a multivariate normal distribution,  hence the correlation between asset prices is 

maintained. The optimized portfolios are constrained to non-negative weights and sum to 

one. 
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Figure 11 Simulated and original MV Efficient frontiers

For the efficient  frontier  in  Figure 11,  the  data  resampling  simulation  proceeds as 

follows:

I. Monte Carlo simulation of 10 years of correlated monthly returns based on the 

data in Figures 3 and 4  for the nine asset classes.

II. Computation of optimization inputs parameters from the simulated return data.

III. Computation of efficient frontier portfolios that satisfy the long-only constraint 

IV. Repeat steps I through III 1000 times. By definition, each simulated efficient 

frontier is statistically equivalent to the efficient frontier in Exhibit 2.5.

By definition, each simulated Efficient Frontier of Figure 11a is statistically equivalent 

to  the  Efficient  Frontiers in  Figure  11b,  Figure8. The  simulations  clearly  show  that 

estimation error in both the risk and return dimensions strongly affects  MV optimality 

ambiguity. The dispersion of the simulated frontiers is enormous. Some simulated frontiers 

have roughly half the range of risk of the original MV efficient frontier while others have 

significantly more risk. The range of returns among the simulated frontiers is even more 

impressive

Note  the  range  of  risk  and  return  displayed  in  the  simulated  efficient  frontiers 

compared to the original frontier. While the original frontier returns range from 0.75% to 

1.35%, the simulated efficient frontier returns range from -0.5% to 3.3%.
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3.3. A comparison between MV and RE

In Figure 11a, every simulated MV EF is the optimal way to invest for a given set of 

inputs.  However,  the  inputs  are  highly  uncertain.  From  a  practical  perspective,  the 

instability of MV efficiency with estimation error demonstrated in Figure 11a may indicate 

little investment value. In reality, the variation suggests a statistical route for transforming 

MV optimization into a more investment useful procedure (Michaud, 2007). Resampled 

Efficiency (RE) defines the optimal portfolio weights by averaging the weights of each 

simulated optimal portfolio. For example: 

1. Since  all  simulated  EF are  equally  likely,  the  optimal  GMV RE portfolio (the 

leftmost portfolio on the EF) is the average of the portfolio weights of all the 1000 

simulated GMV MV portfolios.

2. Equivalently,  since  all  simulated  EF  are  equally  likely, the  optimal  MR  RE 

portfolio (the rightmost portfolio on the EF) is the average of the portfolio weights 

of all the 1000 simulated MR MV portfolios.

Figure 12 displays a comparison between the Markowitz-like EF and the RE optimized 

frontier  (REF)  based on the  10Y sample  data  adopted  in  the  previous  sections18.  The 

optimized portfolios are, as usual, constrained to have non-negative weights and sum to 

one. The risk-free rate is set to zero.

18 The currency theme  is well explained in the Litterman (2003), Black and Litterman (1991,  
1992), Black  (1989a, 1989b), Grinold (1996), Meese and Crownover (1999), and Grinold and Meese 
(2000).
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Figure 12 MV Efficient Frontier vs Resampled Efficient Frontier

Figure 12 illustrates  that  REF plots below the MV frontier.  Superficially  this  may 

suggest that the RE optimization may be inferior as an investment framework. Let the next 

section investigate it. 

Figure 13 MV and RE Frontier Portfolio Composition Maps
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Figure 13 goes provides a portfolio composition map of the MV and RE optimal asset 

allocations of Figure 12. The left-hand panel is the composition map for MV efficiency; 

the right-hand panel represents RE optimality.

The  composition  map  for  the  REF  illustrates  very  different  and  more  diversified 

portfolios. REF optimality includes all assets. There is a smooth transition from one risk 

level to another. 

The greater degree of diversification of resampled solutions compared to efficient ones 

is  evident.  Furthermore,  the  RE  technique  is  capable  of  discriminating  between  asset 

classes, especially favouring the diversification of the riskier ones. This phenomenon is 

quite  welcome  since  most  of  the  problem  of  estimation  error  is  attributable  to  the 

concentration in high-risk asset classes. As Figure 13 indicates, while the MR (Maximum 

Return) MV optimal portfolio represents a 100% bet in the MSCI ACWI IT, the MR RE 

portfolio is very well diversified and much less risky (as figure 12 exhibits, the MR RE 

delivers 4.1% volatility against the 4.7% vol. delivered by the MR MV), more acceptable, 

investment19. 

3.4. A comparison between MV and Black-Litterman 

The Black-Litterman model, as discussed above, is an asset allocation approach that 

allows investment analysts to incorporate subjective views (based on investment analyst 

estimates)  into  market  equilibrium returns.  By blending  analyst  views and equilibrium 

returns instead of relying only on historical asset returns. 

19 The  simulated  MV  efficient  frontier  procedure  may  have  a  number  of  variations.  For  
example,  the  return  distribution  assumption  can  be  changed,  or  historical  data  may  be 
bootstrapped.  In  many  cases  in  practice  the  number  of  simulated  returns  for  computing  the 
simulated MV efficient  frontiers is not associated with a historical return data set and must be 
assumed (Michaud, 2007).
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Figure 14 MV vs BL Efficient Frontier

The Universe of Assets is defined at the beginning of the section. The optimization is, 

as always, based on the same 10Y sample and constrained to have non-negative weights 

and  sum  to  one.  The  risk-free  rate  is  set  to  zero.  This  example  assumes  two  strong 

dependent views and one strong independent view20:

I. MSCI ACWI ENERGY is going to have a 0.1% monthly return with uncertainty 

1e-6;

II. MSCI  ACWI  AERODEFENCE  is  going  to  outperform  MSCI  ACWI 

HEALTHCARE by 0.2% monthly return with uncertainty 1e-5;

III. MSCI ACWI FINANCIALS is  going to  outperform MSCI ACWI IT  by 0.5% 

monthly return with uncertainty 1e-5. 

The implied returns are calculated by reverse optimization. The general formulation of 

portfolio optimization is given by the Markowitz optimization problem. To find the market 

portfolio,  each  asset  is  regressed against  the  benchmark:  the  index MSCI ACWI.  The 

imposed constraints are fully invested and long-only. As regards the scalar that defines the 

20 Notice that, statistically thinking, each asset weight in the maximum return RE portfolio is equal to 
the probability that it is truly the maximum return asset (Michaud, 2007).
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degree  of  confidence  in  the  prior  belief  of  the  expected  return,  this  example  uses  1/n 

(where n is the number of the asset, i.e. 10).

Comparing the BL Blended Expected Return to the Prior Belief of Expected Return, the 

expected  return from the Black-Litterman  (3rd column of  Table  1 )  model  is  indeed a 

mixture of both prior belief and investor views. For example, as shown in Table 1, the 

prior belief assumes return for MSCI ACWI FINANCIALS similar to MSCI ACWI IT: 

0.751% against 0.699%. In the blended expected return, MSCI ACWI FINANCIALS has a 

higher  return  than  MSCI  ACWI IT  by  approximately  20  basis  points  0.893% against 

0.612%.  This  difference  is  due  to  the  imposed  strong  view  that  MSCI  ACWI 

FINANCIALS   outperforms MSCI ACWI IT by 0.2%. MSCI ACWI ENERGY, according 

to the strong absolute view, has a BL Blended Expected Return of 0.997%. 

Table 1 Prior Belief vs BL Blended Expected Return
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Figure 15 MV and BL Frontier Portfolio Composition Maps

The allocation from the BL model is slightly more diversified compared to the MV 

(Figure 15), especially in the MSR portfolio. See Figure 16. Looking at the MSR portfolio, 

BL optimization has generated more diversified portfolios and therefore it seemed to be 

effective in overcoming the problem of the reasonableness of the allocation. In the left end 

of the EF, the problem related to extreme allocations and corner portfolios persists. 

Figure 16 MV vs BL Maximum Sharpe ratio portfolio composition

50



Figure 17 Black-Litterman MSR and GMV portfolios weights

3.5. Portfolio Performance 

The main purpose of this section is to present how Michaud’s and Black-Litterman 

optimization frameworks perform compared to the conventional Mean-Variance approach. 

In order to do this, the performance of the following portfolios has been evaluated over the 

month  which  followed the  end of  the  sample  period  adopted  to  run the  optimizations 

(2/05/2022 - 02/06/2022)21:

1. Benchmark [MSCI ACWI]22

2. GMV MV [Mean-Variance]

21 All views reflect the outlook of the writer and have been defined ex-ante with respect to the valuation 
period

22  dd/mm/yyyy
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3. GMV RE [Resampling Efficiency]

4. GMV BL [Black-Litterman]

5. MSR MV

6. MR [Maximum Return] RE

7. MSR BL

It must be emphasized that the fact that a single month is taken into consideration in 

this  analysis  represents  a  great  limitation  of  this  report.  Who  writes  preferred  not  to 

implement a backtest logic as the asset allocation is derived based on the performance of 

the assets themselves. This could have compromised the unbiasedness of the performance 

analysis.  Considering  the  single  month,  there  is  a  risk  that  certain  results  are  purely 

coincidental. However, due to a lack of time, it was impossible to adopt a longer estimation 

time after both the estimation period of the moments and the definition of the views in the 

BL model.

Figure 16 Relevant Portfolios Daily Cumulated Returns

The simplest way to measure the return of an investment is to calculate the percentage 

change of its total value during the investment horizon, also known as the holding period. 

Figure 16 exhibits the performance of each portfolio over the tested period. The only two 

portfolios that provided a positive gross monthly return are the MR RE, and the MSR BL 

(Table 2).
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Table 2 Holding period return

In this analysis, the MSR portfolio in the Michaud framework is not analyzed due to 

the  way  the  model  is developed  in  MATLAB. While  in  the  MV  and  BL  cases  the 

definition  of  the  efficient  frontier  occurs  through the use  of  specific  commands  (“p = 

Portfolio”  first,  and “p.estimateFrontier”  then),  in  the  case  of  the  Michaud model,  the 

weights of the 100 portfolios that make up the RE frontier are extrapolated (taking the 

average  value)  by  a  three-dimensional  array  (in  the  code:  "STORE_  WTS")  of  size 

100x10x1000. Where 100 are the efficient portfolios composing the efficient frontier, 10 

are the asset classes that make up the investable  universe and 1000 are the number of 

Monte Carlo simulations.  The vectors relating to risks and rewards are then calculated 

accordingly (see code on page 69) and plotted in the risk-return area. 

There  are  no  functions  in  MATLAB that  allow the  user  to  retrieve  the  Tangency 

portfolio  from this  process.  The GMV RE portfolio,  on  the  other  hand,  can  be  easily 

defined as it is the average of the portfolio weights of all the 1000 simulated GMV MV 

portfolios and is the first portfolio from the left for both the frontiers (MV and RE). 

Despite this, considering that the strength of the methodology invented by Michaud is 

to provide a well-diversified MR portfolio, it makes sense to evaluate its performance. The 

same does not apply to MV and BL methods that, considering the MR portfolio as a 100% 

bet on the asset with a higher expected return, don't have any optimization logic.
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3.5.1. Absolute performance indicators

Even  though  the  holding  period  return  characterizes  a  fundamental  aspect  of 

performance,  to  appraise  the  risk-adjusted  performance  of  each  strategy  the  following 

indicators are applied (Table 3):

1. Sharpe  Ratio  (Sh):  which  measures  the  excess  return  of  an  asset  per  unit  of 

volatility;

2. Sortino  Ratio  (So):  which  measures  the  excess  return  of  an  asset  per  unit  of 

downside volatility;

3. The  Treynor  ratio (Tr):  measures  the  excess  return  of  an  asset  per  unit  of 

systematic risk;

4. Value-at-Risk (VaR): which, in a horizon equivalent to the frequency of the returns 

(daily in this case), the VaR (α) is the maximum loss  that  can be suffered with 

probability 1 – α23 (with a probability  α the loss will be larger than the Value-at-

Risk);

5. Expected Shortfall (ES): that is is a risk measure sensitive to the shape of the tail of 

the distribution of returns on a portfolio. It is calculated by averaging all of the 

returns in the distribution that are worse than the VAR of the portfolio at a given 

level of confidence;

6. Calmar Ratio (Cal): which is an index used to measure the return in relation to the 

drawdown  risk24:  it  allows  the  investor  to  compare  the  potential  gain  and  the 

possibility of loss of a given investment;

7. Sterling Ratio (Ste): which is the return per unit of extreme risks where those are 

set to the (absolute value of) the average of the k largest Drawdowns25;

23  The movement of a market index is a representation of how the market behaves, and market indices  
are usually benchmarks for evaluating portfolio performance. Thus, a composite index it is also used as the  
main benchmark (Index).

24  In this work, α=0.05
25  The Drawdown monitors the losses and is recovered in a recursive way (see MATLAB code). In 

general, the Drawdown sequence is graphically analyzed to identify the largest losses, and the time to recover  
from losses (a better strategy has smaller losses and a quick recovery from the minimums)

54



8. Farinelli-Tibiletti ratio (FT): which are ratios of average gains to average losses 

with respect to a target  τ, each raised by a power index: p (upside power) and 

q(downside power )26.

Table 3 Absolute performance indicators

When comparing many performance measures results are, in general, not concordant. 

Consequently,  there  is  no  one  portfolio  strategy  that  is  ultimately  better  than  others. 

Likewise,  no  one  measure  of  performance  can  fully  represent  the  performance  of 

portfolios. In this work, to appraise the overall performance, a composite index (CI) which 

compares/ranks strategies across performance measures is adopted (Table 4). The scoring 

method is simple. For each indicator, a value ranging from 1 (best) to 7 (worst) is assigned 

to each strategy. The minimum score i.e. 7 is given by the fact that 7 different strategies are 

being considered. The CI simply adds up the scores received in each indicator. Assuming 

that the indicators are equally important, the strategy that, from a general point of view, has 

performed best, is the one with the lowest value. For example: strategy A receives a 1 for 

each of the 8 indicators, strategy B receives a 2 for each of the 8 indicators. The CI of 

strategy A is 8, the CI of strategy B is 16. Result: Strategy A performed better than strategy 

B.

26 In this work, k=5
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Table 4 Ranking absolute performance indicators

The  portfolios  with  a  higher  risk  component  (MSR  and  MR)  are  those  that  overall 

generated the best performance from all points of view. In particular, the MR RE and MSR 

portfolios  are  the  ones  that  are  best  positioned  in  the  composite  index  (Table  4). 

Constructing portfolios from BL and RE optimization leads to investment with the overall 

highest Sharpe and Sortino ratios. MSR BL has the highest Sharpe ratio (0.04762) and 

Sortino ratio (0.07367). The high return of RE and MV portfolios comes at a price; when it 

comes to the VaR and ES the best portfolio is the MSR MV. 

3.5.2. Relative performance indicators

Most performance metrics present the absolute performance of portfolios. Sometimes, 

relative performance is of greater interest. In fact, most portfolio managers regularly assess 

their performance relative to a benchmark (Table 5). The relative performance indicators 

adopted in this analysis are the following:

1. Tracking Errors  (TE):  which measures  the mean of  the  difference  between the 

returns of the portfolio and its benchmark;

2. Tracking Error Volatility (TEV): which measures the variance of the difference 

between the returns of the portfolio and its benchmark;

3. Semi TEV: which measures the downside deviations of the difference between the 

returns of the portfolio and its benchmark;

4. Information Ratio (IR): which is TE over TEV;

5. Semi IR: which is TE over semiTEV;
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Table 5 Relative performance indicators

The variance underlying these calculations is the empirical variance calculated on the 

daily returns that make up the month of observation.

MSR MV has a very low tracking error compared to the other portfolios but both RE 

MR and MSR BL were able to exploit the upside volatility delivering a positive average 

excess return over the benchmark with a lower TEV (Table 5). The ability to exploit the 

upside benefit of the volatility is reflected also in having dominant IR and semiIR.

Again,  to  provide  a  more  intuitive  picture  of  the  overall  relative  performances,  a 

composite index of ranks is created (Table 6). In this case, the MS RE is, overall, the best 

portfolio. It is worth mentioning the high IR of the MS RE: 56.48784. The MSR BL is the 

second-best: 38.89486 (Table 5).

Table 6 Ranking relative performance indicators
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4. Conclusions

Markowitz,  in 1952, revolutionised the financial  sector with his Portfolio Selection 

work, creating a scientific method for researching and managing an investment portfolio. 

The theory has shown some problems in its practical implementation:

1. The estimation risk related to the model parameters;

2. The instability of the mean-variance solutions;

3. The operative choice of the target returns;

4. The absence of investor views.

The RE and BL methods are two alternative and more sophisticated tools that can be 

used to determine the optimal weight of a portfolio. Both the methods enhance portfolio 

performance  in  terms  of  better  diversification  (RE in  particular)  and in  terms  of  risk-

adjusted returns.

The  RE  method  can  overcome  the  problem  of  sensitivity  to  input  changes  that 

characterize the MV method. The problem is solved by generating data using Monte Carlo 

simulation. The rationale behind this approach consists in limiting the extreme sensitivity 

of the optimal allocation function to the market parameters by averaging several sample-

based allocations in different scenarios. The Black-Litterman is an effective approach that 

can,  but  does  not  necessarily  need  to,  rely  on  the  contingent  historical  information 

available when the investment decision is made.  The model's great turning point is the 

inclusion of investor views, combined with historical estimated returns, generating a new 

set of expected returns, capable of improving and stabilising the portfolio's performance as 

seen above. Yet, a very pleasant point of the BL model is that of being able to compensate  

for the limiting effect  of considering the standard deviation  (or the variance)  as a risk 

measure, as it can exploit the potential benefit of the upside volatility by means of the 

views of the asset manager. Clearly, this peculiarity can also prove to be a double-edged 

sword as the model will prove to be much more performing, the better are the skills of the 

asset manager who implements it in determining how the market will evolve. In light of 

that,  while  the Michaud model  is  also suitable  for an "uninformed" asset  manager,  the 

effectiveness of the BL model is strictly dependent on the capabilities of the asset manager. 
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From the point of view of rationality in the composition of portfolios, it is evident that 

both the logic adopted by BL and the logic devised by Michaud, represent an evolution of 

the Mean-Variance method. It is worth mentioning that while MR MV is a 100%  bet on 

MSCI ACWI IT,  and the MR BL is  a  100% bet  on MSCI ACWI ENERGY, the  RE 

method is the only one of the three methods that can offer a well-diversified MR portfolio. 

As regards the performance of portfolios, both the Michaud model and the BL model 

outperform  the  MV  model.  In  particular,  the  MSR portfolio  of  the  BL  model  is  the 

portfolio that, among those analyzed, can offer a greater holding period: 1.194%. The MR 

portfolio of the Michaud method follows with a holding period equal to 0.702%. The MV 

method MSR generates a negative return of -0.965%. Looking at the absolute performance 

indices, the MR portfolio of the Michaud method and the MSR portfolio of the BL method 

are the two portfolios that have performed better with a CI of 18 for both. The relative 

performance  indicators  instead  indicate  the  MR  portfolio  developed  according  to  the 

Michaud logic as the best portfolio with a CI of 8.

As already explained above, at the beginning of section 3.5, the performance analysis 

carried out in this paper presents a major limitation due to the shortness of the analysis 

period: only one month. Having more time available, it would certainly have been more 

exhaustive to extend the analysis period to at least 12 months, making a rebalancing of 

portfolios  on  a  monthly  basis.  A  performance  evaluation  through  the  simulation  of  n 

possible scenarios is not a viable path as it would make the BL model lose its forward-

looking peculiarity. 

Within this work, it was decided not to apply the logic of the RE method to the Black-

Litterman model as this would nullify the benefit generated by the insertion of the views; 

but  an  interesting  enrichment  of  this  analysis  could  be  given  by  inserting  weight 

constraints to the MV method and then resampling the resulting efficient frontier.
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Annex: MATLAB CODE

Mean Variance 

clear
clc

%% UNCONSTRAINED MEAN-VARIANCE PORTFOLIO OPTIMIZATION - ESTIMATION ERROR

% loading data
A1=readtable("Assets10yS.xlsx");
A2=readtable("Assets5yS.xlsx");
A3=readtable("Assets2yS.xlsx");
A4=readtable("Assets1yS.xlsx");
LABELS=A1.Properties.VariableNames(2:end)'; 

% Computing monthly returns
mret1=tick2ret(A1{:,2:end});
%mret1=mret1*100;
mret2=tick2ret(A2{:,2:end});
%mret2=mret2*100;
mret3=tick2ret(A3{:,2:end});
%mret3=mret3*100;
mret4=tick2ret(A4{:,2:end});
%mret4=mret4*100;

%storing a vector which defines colors
COL=['#131E3A','#7285A5',"#598BAF","#B43757",'#784B84','#702963', ...
'#F9A602', '#FD6A02','#FCD12A','#BDB7AB'];

%Risk free rate (monthly)
Rf=0.0;

MON_RET=mean(mret1);
STD=std(mret1);
CORRELATIONS=corr(mret1);

figure(1);
subplot(2,1,1);
barh(MON_RET);
title('a) Average Montly Returns');
ylabel('Markets');
xlabel('Average Returns');
set(gca,'YTickLabel',LABELS);
grid on;
subplot(2,1,2);
barh(STD,'r');
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title('b) Standard Deviations');
ylabel('Markets');
xlabel('Standard Deviations');
set(gca,'YTickLabel',LABELS);
grid on;

figure(2);
plot(mret1(:,:));
grid on;
title('Volatility');
ylabel('Monthly return');
xlabel('Time');
colororder(COL);
LEGEND= legend(LABELS,'Location','SouthOutside');

figure(3);
clrLim = [-1,1];
diamLim = [0.3, 1];
imagesc(CORRELATIONS)
colormap(gca,'parula');
colorbar();
caxis(clrLim);
set(gca,'Xtick',1:10,'XTickLabel',LABELS);
set(gca,'Ytick',1:10,'YTickLabel',LABELS);
axis equal
axis tight
title('Correlation');

%% MV OPT

% Creating Portfolio
p1=Portfolio("AssetList",LABELS,'RiskFreeRate',Rf);
p1=estimateAssetMoments(p1,mret1);
p1=setDefaultConstraints(p1);
p2=Portfolio("AssetList",LABELS,'RiskFreeRate',Rf);
p2=estimateAssetMoments(p2,mret2);
p2=setDefaultConstraints(p2);
p3=Portfolio("AssetList",LABELS,'RiskFreeRate',Rf);
p3=estimateAssetMoments(p3,mret3);
p3=setDefaultConstraints(p3);
p4=Portfolio("AssetList",LABELS,'RiskFreeRate',Rf);
p4=estimateAssetMoments(p4,mret4);
p4=setDefaultConstraints(p4);

pwgt1=p1.estimateFrontier(100);
pwgt2=p2.estimateFrontier(100);
pwgt3=p3.estimateFrontier(100);
pwgt4=p4.estimateFrontier(100);

% MAX Sharpe (or Tangency Portfolio)
wMSR1=estimateMaxSharpeRatio(p1);
[riskMSR1, retMSR1]=estimatePortMoments(p1,wMSR1);
wMSR1=round(wMSR1,6);
wMSR2=estimateMaxSharpeRatio(p2);
[riskMSR2, retMSR2]=estimatePortMoments(p2,wMSR2);
wMSR2=round(wMSR2,6);
wMSR3=estimateMaxSharpeRatio(p3);
[riskMSR3, retMSR3]=estimatePortMoments(p3,wMSR3);
wMSR3=round(wMSR3,6);
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wMSR4=estimateMaxSharpeRatio(p4);
[riskMSR4, retMSR4]=estimatePortMoments(p4,wMSR4);
wMSR4=round(wMSR4,6);

% Minimum Variance Portfolio
wGMV1=p1.estimateFrontierLimits('Min');
[riskGMV1, retGMV1]=estimatePortMoments(p1,wGMV1);
wGMV1=round(wGMV1,6);
wGMV2=p2.estimateFrontierLimits('Min');
[riskGMV2, retGMV2]=estimatePortMoments(p2,wGMV2);
wGMV2=round(wGMV2,6);
wGMV3=p3.estimateFrontierLimits('Min');
[riskGMV3, retGMV3]=estimatePortMoments(p3,wGMV3);
wGMV3=round(wGMV3,6);
wGMV4=p4.estimateFrontierLimits('Min');
[riskGMV4, retGMV4]=estimatePortMoments(p4,wGMV4);
wGMV4=round(wGMV4,6);

figure(4);
[EF1risk,EF1ret]=p1.plotFrontier(100);
hold on
[mu1, sigma1] = getAssetMoments(p1); 
scatter(sqrt(diag(sigma1)), mu1,'oc','filled');
scatter(riskMSR1,retMSR1,'filled','o');
scatter(riskGMV1,retGMV1,'filled','o');
legend('EF','Assets','MSR','GMV',Location='best')
ylabel('Expected Return')
xlabel('Standard Deviation')
text(sqrt(diag(sigma1))+0.001,mu1,LABELS)%,'FontSize',7); % Label ticker 
names
hold off  

figure(5)
area(EF1risk,pwgt1')
xlabel ('Volatility'); ylabel ('Weight');
colororder(COL);ylim([0 1]); xlim([min(EF1risk) max(EF1risk)]);
title('Composition Map') %Efficient Portfolio EP
legend(LABELS);

figure(6)
subplot(2,1,1);
bar([wMSR1]);
set(gca,'Xtick',1:10,'XTickLabel',LABELS);
title('a) MSR Portfolio Composition');
ylim([0 1])
subplot(2,1,2)
bar([wGMV1]);
set(gca,'Xtick',1:10,'XTickLabel',LABELS);
title('b) GMV Portfolio Composition');
ylim([0 1])

%% Different samples analysis
% Data Visualization: Plot 4 different frontiers with different time 
windows

figure(7);
hold on;
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[EF1risk,EF1ret]=p1.plotFrontier(100);
[EF2risk,EF2ret]=p2.plotFrontier(100);
[EF3risk,EF3ret]=p3.plotFrontier(100);
[EF4risk,EF4ret]=p4.plotFrontier(100);

scatter(riskMSR1,retMSR1,'filled','o');
scatter(riskMSR2,retMSR2,'filled','o');
scatter(riskMSR3,retMSR3,'filled','o');
scatter(riskMSR4,retMSR4,'filled','o');
scatter(riskGMV1,retGMV1,'filled','o');
scatter(riskGMV2,retGMV2,'filled','o');
scatter(riskGMV3,retGMV3,'filled','o');
scatter(riskGMV4,retGMV4,'filled','o');

legend('EF 10Y Sample','EF 5Y Sample','EF 2Y Sample','EF 1Y 
Sample','MSR_1_0_Y_S','MSR_5_Y_S','MSR_2_Y_S','MSR_1_Y_S','GMV_1_0_Y_S','
GMV_5_Y_S','GMV_2_Y_S','GMV_1_Y_S',Location='best')

hold off

% Data Visualization: plot bar graphs with weights

figure(8)
subplot(2,1,1)
bar([wMSR1,wMSR2,wMSR3,wMSR4]);
set(gca,'Xtick',1:9,'XTickLabel',LABELS);
legend('Weights 10Y Sample','Weights 5Y Sample','Weights 2Y 
Sample','Weights 1Y Sample',Location='best');
title('a) MSR Portfolio Composition')
ylim([0 1])
subplot(2,1,2)
bar([wGMV1,wGMV2,wGMV3,wGMV4]);
set(gca,'Xtick',1:9,'XTickLabel',LABELS);
legend('Weights 10Y Sample','Weights 5Y Sample','Weights 2Y 
Sample','Weights 1Y Sample',Location='best');
title('b) GMV Portfolio Composition')
ylim([0 1])

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Optional 

figure(9)
subplot(2,2,1)
[EF1risk,EF1ret]=p1.plotFrontier(100);
hold on
[mu1, sigma1] = getAssetMoments(p1); 
scatter(sqrt(diag(sigma1)), mu1,'oc','filled');
scatter(riskMSR1,retMSR1,'filled','o');
scatter(riskGMV1,retGMV1,'filled','o');
legend('EF_1_0_Y_S','Assets','MSR_1_0_Y_S','GMV_1_0_Y_S',Location='best')
ylabel('Expected Return')
xlabel('Standard Deviation')
text(sqrt(diag(sigma1))+0.0001,mu1,LABELS)%,'FontSize',7); % Label ticker 
names
title('a) MV EF 10Y Sample') %Efficient Portfolio EP
hold off 

subplot(2,2,2)
[EF2risk,EF2ret]=p2.plotFrontier(100);
hold on
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[mu2, sigma2] = getAssetMoments(p2); 
scatter(sqrt(diag(sigma2)), mu2,'oc','filled')
scatter(riskMSR2,retMSR2,'filled','o');
scatter(riskGMV2,retGMV2,'filled','o');
legend('EF_5_Y_S','Assets','MSR_5_Y_S','GMV_5_Y_S',Location='best')
ylabel('Expected Return')
xlabel('Standard Deviation')
text(sqrt(diag(sigma2))+0.0001,mu2,LABELS)%,'FontSize',7); % Label ticker 
names
title('b) MV EF 5Y Sample') %Efficient Portfolio EP
hold off

subplot(2,2,3)
[EF3risk,EF3ret]=p3.plotFrontier(100);
hold on
[mu3, sigma3] = getAssetMoments(p3); 
scatter(sqrt(diag(sigma3)), mu3,'oc','filled'); 
scatter(riskMSR3,retMSR3,'filled','o');
scatter(riskGMV3,retGMV3,'filled','o');
legend('EF_2_Y_S','Assets','MSR_2_Y_S','GMV_2_Y_S',Location='best')
ylabel('Expected Return')
xlabel('Standard Deviation')
text(sqrt(diag(sigma3))+0.0001,mu3,LABELS)%,'FontSize',7); % Label ticker 
names
title('c) MV EF 2Y Sample') %Efficient Portfolio EP
hold off

subplot(2,2,4)
[EF4risk,EF4ret]=p4.plotFrontier(100);
hold on
[mu4, sigma4] = getAssetMoments(p4); 
scatter(sqrt(diag(sigma4)), mu4,'oc','filled');
scatter(riskMSR4,retMSR4,'filled','o');
scatter(riskGMV4,retGMV4,'filled','o');
legend('EF_1_Y_S','Assets','MSR_1_Y_S','GMV_1_Y_S',Location='best')
ylabel('Expected Return')
xlabel('Standard Deviation')
text(sqrt(diag(sigma4))+0.0001,mu4,LABELS)%,'FontSize',7); % Label ticker 
names
title('d) MV EF 1Y Sample') %Efficient Portfolio EP
hold off

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Data Visualization: plot EF Composition maps

figure(10)
subplot(2,2,1)
area(EF1risk,pwgt1')
xlabel ('Volatility'); ylabel ('Weight');
colororder(COL);ylim([0 1]); xlim([min(EF1risk) max(EF1risk)]);
title('a) 10Y Sample') %Efficient Portfolio EP

subplot(2,2,2)
area(EF2risk,pwgt2')
xlabel ('Volatility'); ylabel ('Weight');
colororder(COL);ylim([0 1]); xlim([min(EF2risk) max(EF2risk)]);
title('b) 5Y Sample') %Efficient Portfolio EP

subplot(2,2,3)
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area(EF3risk,pwgt3')
xlabel ('Volatility'); ylabel ('Weight');
colororder(COL);ylim([0 1]); xlim([min(EF3risk) max(EF3risk)]);
title('c) 2Y Sample') %Efficient Portfolio EP

subplot(2,2,4)
area(EF4risk,pwgt4')
xlabel ('Volatility'); ylabel ('Weight');
colororder(COL);ylim([0 1]); xlim([min(EF4risk) max(EF4risk)]);
title('d) 1Y Sample') %Efficient Portfolio EP

legend(LABELS);

save Sez4.mat

Figure 11

clear
clc

load Sez4.mat

%% data set up

mu = mu1;
C = sigma1;
Nports = 100;

p_RE = Portfolio;
p_RE = setAssetMoments(p_RE, mu, C);
p_RE = setDefaultConstraints(p_RE);

PortWts = estimateFrontier(p_RE, Nports);
[EffRisk, EffReturn] = estimatePortMoments(p_RE, PortWts);

% keeping asset correlation 

A = chol(C);

%%%%%%%%%%%%%%%%%%%%%%%%%%

B =1000;

for j = 1:B
    dbstop if error

    Gamma2 = randn(size(mu,1),Nports);
    R = A'*Gamma2;
    sim_mu = mu'+(mean(R'));
    sim_C = cov(R');

    p_RE = Portfolio;
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    p_RE = setAssetMoments(p_RE, sim_mu, sim_C);
    p_RE = setDefaultConstraints(p_RE);

    PortWts = estimateFrontier(p_RE, Nports);
    [PortRisk, PortReturn,] = estimatePortMoments(p_RE, PortWts);

figure(1)
   subplot(1,2,1)
    [EF_RErisk,EF_REret]=p_RE.plotFrontier(100); 
    xlabel('Standard Deviation')
    ylabel('Expected Returns')
    grid("on")
    colororder(['#C21807';'#222021';'#C7C6C1'])
    title('a) Statistically equivalent MV EFs')
    hold on
end

hold off

subplot(1,2,2)
[EF1risk,EF1ret]=p1.plotFrontier(100);
xlabel('Standard Deviation')
ylabel('Expected Returns')
grid("on")

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Michaud RE

clear
clc

load Sez4.mat

EXP_RET = mu1;
COV = sigma1;

ASSET=10;
SIZE=11;
SIM= 1000;

% MV eff front.
[RISK2,ROR2,WTS2]=portopt(EXP_RET,COV,100);

STORE_WTS=zeros(100,ASSET,SIM); 

% Run the technology 

for i = 1:SIM
i
SIM_RET= mvnrnd(EXP_RET, COV,SIZE);
EXP_RET_SIM=mean(SIM_RET);
COV_SIM=cov(SIM_RET);
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[RISK,ROR,WTS]=portopt(EXP_RET_SIM,COV_SIM,100);

if i<100 
figure(1)
area(WTS)
xlabel ('Efficinet Portfolios'); ylabel ('Weight');
colororder(COL);
ylim([0 1]);
legend(LABELS,'Location','EastOutside');
xlim([1 100]);
end

STORE_WTS(:,:,i)= WTS;
end 

RESAPL_WEIGHTS=mean(STORE_WTS,3);

EXP_RET_RESAMPL= RESAPL_WEIGHTS*EXP_RET;

RISK_RESAMPL = zeros(100,1);

for i = 1 :100
RISK_RESAMPL(i,1) = sqrt(RESAPL_WEIGHTS(i,:)*COV*RESAPL_WEIGHTS(i,:)');
end 

%% Plot frontiers

figure(2)
plot (RISK2,ROR2,'R','LineWidth',2)
hold on 
plot (RISK_RESAMPL,EXP_RET_RESAMPL,'B','LineWidth',2)
scatter(sqrt(diag(sigma1)), mu1,'oc','filled');
hold off
title('Efficient Frontier versus Resampled Frontier')
legend('Eff Front','RESAMPLED Front','Assets',Location='best')
text(sqrt(diag(sigma1))+0.001,mu1,LABELS)
xlabel('Standard Deviation')
ylabel('Expected Returns')
grid("on")

figure(3)
subplot(1,2,1)
area(WTS2)
legend(LABELS,'Location','best')
title('Composition of Efficient Portfolios')
ylim([0 1]);
xlim([1 100]);
colororder(COL);
subplot(1,2,2)
area(RESAPL_WEIGHTS)
title('Composition of Resampled Portfolios')
ylim([0 1]);
xlim([1 100]);
colororder(COL);

save Michaud_RE.mat
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Black Litterman

clear
clc

load Sez4.mat

% define data taking 10y sample 
r_assets=mret1;
A_Bench=readtable("Bench10yS.xlsx");
r_Bench=tick2ret(A_Bench{:,2:end});
r_mkt=mean(r_Bench);
var_mkt=var(r_Bench);
Sigma=sigma1;

assetNames = LABELS';
numAssets = size(mret1, 2);

% total 3 views: 2 absolute, 1 relatives
v = 3;  
P = zeros(v, numAssets);
q = zeros(v, 1);
Omega = zeros(v);

% View 1
P(1, assetNames == "MSCIACWIENERGY") = 1; 
q(1) = 0.01;
Omega(1, 1) = 1e-6;

% View 2
P(2, assetNames == "MSCIACWIAERODEFENSE") = 1; 
P(2, assetNames == "MSCIACWIHEALTHCARE") = -1; 
q(2) = 0.002;
Omega(2, 2) = 1e-5;

% View 3
P(3, assetNames == "MSCIACWIFINANCIALS") = 1; 
P(3, assetNames == "MSCIACWIIT") = -1; 
q(3) = 0.005;
Omega(3, 3) = 1e-5;

viewtable = array2table([P q diag(Omega)], 'VariableNames', [assetNames 
"View_Return" "View_Uncertainty"]); 

tau = 1/size(r_assets, 1);
C = tau*Sigma;

% Find the market portfolio.

numAssets = size(r_assets,2);
LB = zeros(1,numAssets);
Aeq = ones(1,numAssets);
Beq = 1;
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opts = optimoptions('lsqlin','Algorithm','interior-point', 
'Display',"off");
wtsMarket = lsqlin(r_assets, r_Bench, [], [], Aeq, Beq, LB, [], [], 
opts);

% Find δ
shpr = mean(r_Bench)/std(r_Bench);
delta = shpr/sqrt(wtsMarket'*Sigma*wtsMarket); 

% Compute Implied expected rert
PI = delta*Sigma*wtsMarket;

% Compute the Estimated Mean Return and Covariance
mu_bl = (P'*(Omega\P) + inv(C)) \ ( C\PI + P'*(Omega\q));
cov_mu = inv(P'*(Omega\P) + inv(C));

table (assetNames', PI, mu_bl, 'VariableNames', 
["Asset_Name","Prior_Belief_of_Expected_Return", 
"Black_Litterman_Blended_Expected_Return"])

% Portfolio Optimization and Results
port = Portfolio('NumAssets', numAssets, 'lb', 0, 'budget', 1, 'Name', 
'Mean Variance');
port = setAssetMoments(port, mu1, Sigma);
wts = estimateMaxSharpeRatio(port);

portBL = Portfolio('NumAssets', numAssets, 'lb', 0, 'budget', 1, 'Name', 
'Mean Variance with Black-Litterman');
portBL = setAssetMoments(portBL, mu_bl, Sigma + cov_mu);  
pwgtBL=portBL.estimateFrontier(100);

% MAX Sharpe (or Tangency Portfolio)
wMSRBL=estimateMaxSharpeRatio(portBL);
[riskMSRBL, retMSRBL]=estimatePortMoments(portBL,wMSR1);
wMSRBL=round(wMSRBL,6);

% Minimum Variance Portfolio
wGMVBL=portBL.estimateFrontierLimits('Min');
[riskGMVBL, retGMVBL]=estimatePortMoments(portBL,wGMV1);
wGMVBL=round(wGMVBL,6);

figure(1)
hold on;
[EF1risk,EF1ret]=p1.plotFrontier(100);
[EFBLrisk,EFBLret]=portBL.plotFrontier(100);
scatter(sqrt(diag(sigma1)), mu1,'oc','filled');
hold off
title('MV Efficient Frontier versus BL Efficient Frontier')
legend('MV Eff Front','BL Eff Front','Assets',Location='best')
text(sqrt(diag(sigma1))+0.001,mu1,LABELS)

figure(2)
ax1 = subplot(1,2,1);
idx = wts>0.001;
pie(ax1, wts(idx), assetNames(idx));
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colororder(['#FD6A02';'#702963';"#598BAF"]);
title(ax1, port.Name ,'Position', [-0.05, 1.6, 0]);

ax2 = subplot(1,2,2);
idx_BL = wMSRBL>0.001;
pie(ax2, wMSRBL(idx_BL), assetNames(idx_BL));
colororder(['#BDB7AB';'#FCD12A';"#598BAF";'#702963';'#784B84';"#B43757";'
#7285A5']);
title(ax2, portBL.Name ,'Position', [-0.05, 1.6, 0]);

figure(3)
subplot(1,2,1)
area(EF1risk,pwgt1')
xlabel ('Volatility'); ylabel ('Weight');
colororder(COL);ylim([0 1]); xlim([min(EF1risk) max(EF1risk)]);
title('a) Composition map of MV efficient Portfolios')
legend(LABELS,'Location','best')

subplot(1,2,2)
area(EFBLrisk,pwgtBL')
xlabel ('Volatility'); ylabel ('Weight');
title('b) Composition map of BL efficient Portfolios')
colororder(COL);ylim([0 1]); xlim([min(EFBLrisk) max(EFBLrisk)]);

figure(4)
subplot(2,1,1);
bar([wMSRBL]);
set(gca,'Xtick',1:10,'XTickLabel',LABELS);
title('a) MSR Portfolio Composition');
ylim([0 1])
subplot(2,1,2)
bar([wGMVBL]);
set(gca,'Xtick',1:10,'XTickLabel',LABELS);
title('b) GMV Portfolio Composition');
ylim([0 1])

figure(5)
plot (RISK2,ROR2,'R','LineWidth',2)
hold on 
plot (RISK_RESAMPL,EXP_RET_RESAMPL,'B','LineWidth',2)
[EFBLrisk,EFBLret]=portBL.plotFrontier(100);
scatter(sqrt(diag(sigma1)), mu1,'oc','filled');
hold off
title('MV Efficient Frontier, Resampled Frontier, BL Efficient Frontier')
legend('MV Eff Front','RE Front','BL Eff Front','Assets',Location='best')
text(sqrt(diag(sigma1))+0.001,mu1,LABELS)
xlabel('Standard Deviation')
ylabel('Expected Returns')
grid("on")

save BL.mat
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Performance

clear
clc

load Sez4.mat
load BL.mat
load Michaud_RE.mat

 %% data setup

ASSET=10;
SIZE=23;
Assets_ret = readmatrix('Performance.xlsx','Range','B2');
Benchmark_ret = readmatrix('PerformanceBench.xlsx','Range','B2');
Rf=0
RF=ones(23,7).*Rf;

pretGMV_MV= zeros(12,1);
pretGMV_RE= zeros(12,1);
pretGMV_BL= zeros(12,1);
pretMSR_MV= zeros(12,1);
pretMR_RE= zeros(12,1);
pretMSR_BL= zeros(12,1);

for i=1:SIZE
    pretGMV_MV(i,:)= wGMV1' * Assets_ret(i,:)';
    pretGMV_RE(i,:)= (RESAPL_WEIGHTS(1,:)) * Assets_ret(i,:)';
    pretGMV_BL(i,:)= wGMVBL' * Assets_ret(i,:)';
    pretMSR_MV(i,:)= wMSR1' * Assets_ret(i,:)';
    pretMR_RE(i,:)= (RESAPL_WEIGHTS(end,:)) * Assets_ret(i,:)';
    pretMSR_BL(i,:)= wMSRBL' * Assets_ret(i,:)';
end

allret=[Benchmark_ret pretGMV_MV pretGMV_RE pretGMV_BL pretMSR_MV 
pretMR_RE pretMSR_BL];

%% PERFORMANCE MEASURES

%% Cum ret

Cum_allret=cumprod(allret)-1;

figure(1)
for i=1:7
    plot(Cum_allret(:,i),LineWidth=2);
    hold on
end
xlabel('Days')
ylabel('Daily Cumulated returns')
grid("on")
title ('Portfolios Cumulated Returns')
legend({'Benchmark';'GMV MV';'GMV RE';'GMV BL';...
    'MSR MV';'MR RE';'MSR BL'});
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ylim ([-0.07 +.07]);
set(gca,'Xtick',1:24);

hold off

allret=allret-1;

%% Absolute performance measures
%---------------------------------------------------------------------

% Sharpe
pm1=mean(allret)'./sqrt(var(allret))';

% Sortino
s2=zeros(size(allret,2),1);
for j=1:size(allret,2)
    % compute semi-standard deviation
    s2(j)=sqrt(var(allret(allret(:,j)<0,j)));
end
pm2=mean(allret)'./ s2;

% Treynor
s3=zeros(size(allret,2),1);
for j=1:size(allret,2)
    s3(j)= (((allret(:,1)-mean(allret(:,1)))')*(allret(:,j)-
mean(allret(:,j))))...
        /((allret(:,1)-mean(allret(:,1)))'*(allret(:,1)-
mean(allret(:,1))));
end
pm3=mean(allret)'./ s3;

%--------------------------------------------------------------------
% Value-at-Risk
alpha=0.05;
s4=quantile(allret,alpha);
pm4=mean(allret)'./ abs(s4)';
adjust=[-1;-1;-1;-1;-1;1;1];
pm4=pm4.*adjust;

% Expected Shortfall
alpha=0.05;
s5=zeros(size(allret,2),1);
for j=1:size(allret,2)
    % compute conditional mean
    s5(j)=mean(allret(allret(:,j)<quantile(allret(:,j),alpha),j));
end
pm5=mean(allret)'./ abs(s5);
pm5=pm5.*adjust;

%------------------------------------------------------------------------
-
% DrawDown sequence
DD=zeros(size(allret,1),size(allret,2));
for i=1:size(allret,2)
    DD(1,i)=min(allret(1,i),0);
    for j=2:size(allret,1)
        DD(j,i)=min(0,(1+DD(j-1,i))*(1+allret(j,i))-1);
    end
end
s6=max(abs(DD))';
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% Calmar ratio
pm6=mean(allret)'./s6;

% Sterling ratio
k=5;
s7=zeros(size(allret,2),1);
for j=1:size(allret,2)
    % average of the largest DD
    [sDDj,~]=sort(abs(DD(:,j)),'descend');
    s7(j)=mean(sDDj(1:k));
end
pm7=mean(allret)'./s7;

%--------------------------------------------------------------------
% Farinelli-Tibiletti
P=1;    % upside power
Q=2;    % downside power
Tau=0;  % threshold
% compute upside and downside partial moments
u8=zeros(size(allret,2),1);
s8=zeros(size(allret,2),1);
for j=1:size(allret,2)
    % compute partial moments
    u8(j)=(mean((abs(allret(:,j)-Tau).*(allret(:,j)>=Tau)).^P)).^(1/P);
    s8(j)=(mean((abs(allret(:,j)-Tau).*(allret(:,j)<Tau)).^Q)).^(1/Q);
end
pm8=u8./s8;

%---------------------------------------------------------------------

% summarizing results
allPM=[pm1 pm2 pm3 pm4 pm5 pm6 pm7 pm8];
Tab3=table({'Benchmark';'GMV MV';'GMV RE';'GMV BL';...
    'MSR MV';'MR RE';'MSR 
BL'},allPM(:,1),allPM(:,2),allPM(:,3),allPM(:,4),allPM(:,5),allPM(:,6),al
lPM(:,7),allPM(:,8),...
    'VariableNames',{'Strategy' 'Sh' 'So' 'Tr' 'VaR' 'ES' 'Cal' 'Ste' 
'FT'});
Tab3

% Ranks
[~,pm1r]=sort(pm1,'descend');
pm1r(pm1r)=1:length(pm1r);
[~,pm2r]=sort(pm2,'descend');
pm2r(pm2r)=1:length(pm1r);
[~,pm3r]=sort(pm3,'descend');
pm3r(pm3r)=1:length(pm1r);
[~,pm4r]=sort(pm4,'ascend');
pm4r(pm4r)=1:length(pm1r);
[~,pm5r]=sort(pm5,'ascend');
pm5r(pm5r)=1:length(pm1r);
[~,pm6r]=sort(pm6,'descend');
pm6r(pm6r)=1:length(pm1r);
[~,pm7r]=sort(pm7,'descend');
pm7r(pm7r)=1:length(pm1r);
[~,pm8r]=sort(pm8,'descend');
pm8r(pm8r)=1:length(pm1r);
allPMr=[pm1r pm2r pm3r pm4r pm5r pm6r pm7r pm8r];
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% compute a composite index
CIpm=allPMr*ones(size(allPMr,2),1);

% summary table
Tab4=table({'Benchmark';'GMV MV';'GMV RE';'GMV BL';...
    'MSR MV';'MR RE';'MSR BL'},CIpm, 
allPMr(:,1),allPMr(:,2),allPMr(:,3),allPMr(:,4),allPMr(:,5),...
    allPMr(:,6),allPMr(:,7),allPMr(:,8),...
    'VariableNames',{'Strategy' 'CI' 'Sh' 'So' 'Tr' 'VaR' 'ES' 'Cal' 
'Ste' 'FT'});
Tab4

%% Relative performance measures

% Compute tracking errors
allTE=allret(:,2:end)-(allret(:,1)*ones(1,size(allret,2)-1));
TE=mean(allTE);
TEV=var(allTE);
SemiTEV=zeros(size(allTE,2),1);
for j=1:size(allTE,2)
    % compute semi-standard deviation
    SemiTEV(j)=sqrt(var(allTE(allTE(:,j)<0,j)));
end
IR=TE'./TEV';
SemiIR=TE'./SemiTEV;

Tab5=table({'GMV MV';'GMV RE';'GMV BL';...
    'MSR MV';'MR RE';'MSR BL'},TE',TEV',SemiTEV,IR,SemiIR,...
    'VariableNames',{'Portfolio' 'TE' 'TEV' 'SemiTEV' 'IR' 'SemiIR'});
Tab5

% Rank the different scores 
[~,pm1t]=sort(TE','descend');
pm1t(pm1t)=1:length(pm1t);
[~,pm2t]=sort(TEV','ascend');
pm2t(pm2t)=1:length(pm1t);
[~,pm3t]=sort(SemiTEV,'ascend');
pm3t(pm3t)=1:length(pm1t);
[~,pm4t]=sort(IR,'descend');
pm4t(pm4t)=1:length(pm1t);
[~,pm5t]=sort(SemiIR,'descend');
allPMt=[pm1t pm2t pm3t pm4t pm5t];

% Compute a composite index
CIpmt=allPMt*ones(size(allPMt,2),1);

Tab6=table({'GMV MV';'GMV RE';'GMV BL';...
    'MSR MV';'MR RE';'MSR 
BL'},CIpmt,allPMt(:,1),allPMt(:,2),allPMt(:,3),allPMt(:,4),allPMt(:,5),..
.
    'VariableNames',{'Portfolio' 'CI' 'TE' 'TEV' 'SemiTEV' 'IR' 
'SemiIR'});
Tab6

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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