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Introduction

The aim of this thesis is to explore the very complex spatial structure of the reioniza-
tion field in standard and alternative cosmologies, with cold or warm dark matter and
cosmological constant. Existing and upcoming radio-telescopes like LOFAR (van Haar-
lem et al., 2013), CONCERTO (Kovetz et al., 2017) and SKA-1 (Square Kilometre Array
Cosmology Science Working Group et al., 2018) are designed to explore the dynamics of
the reionization process and the role of ionization sources using the intensity mapping
technique of the 21 cm (Bull et al., 2015) or other emission lines such as [CII] (Gong et
al., 2012). Contrary to galaxy redshift surveys, intensity mapping can survey efficiently
very large cosmological volumes and eventually be used to address questions of funda-
mental cosmology: is there any signature of primordial non-Gaussianities (Wyithe and
Morales, 2007) in intensity mapping? Is reionization affected by the nature of dark mat-
ter and possibly prove evidence for warm dark matter (Carucci et al., 2015)? This thesis
focuses on the last question and analyzes three different cosmologies with cold dark mat-
ter as reference or warm dark matter (with particles’ masses of mWDM = 2, 3 keV/c2),
using Monte Carlo methods to simulate the distribution of neutral hydrogen (HI) based
on dark-matter-only N -body simulations of the large scale structure. The statistical
tools used to quantify such difference are the Minkowski Functionals (MFs), described
in Mecke, Buchert, and Wagner (1994), spatial statistics offering a complete character-
ization of the morphology of any continuous random field (here the 21 cm temperature
fluctuations, i.e. the intensity map) going beyond the two-points correlation functions:
for a given thresholded field i.e. isocontour level of the intensity map, MFs measure the
area, the perimeter and the Euler characteristic of the connected regions, which accounts
of the number of isolated regions minus the number of holes. These statistics allow us
to describe the spatial distribution of neutral hydrogen in a more complete way with
respect to the commonly used halo mass function or the power spectrum. Improvements
on the intensity mapping technique and the study of the HI amount in the Universe
are fields of great interest nowadays and several efforts have been made to improve the
accuracy of the results.

The first chapter reviews fundamentals of dark matter particles’ physics (Peter and
Uzan, 2009) and structure formation and the main physical processes during the reion-
ization epoch (Barkana and Loeb, 2001). It is indeed the deep comprehension of the
physics involved what can suggest the appropriate observables to study this epoch. The
spin-flip transition between two states of the hydrogen atom (Field, 1958) is the most
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promising observable: the photons emitted have a specific wavelength of 21 cm and the
intensity of such radiation is strong enough to be detected by the current instruments.

In Chapter 2, it is described the starting point of the thesis work. Starting from
N -body simulations (Carucci et al., 2015) with cold or warm dark matter, for each
catalogue the halo mass function, the power spectrum and the HI bias are computed.
The second part accounts for the Monte Carlo simulation of the HI field, based on the
previousN -body simulations and independent hydro-dynamical simulations, establishing
a relation between the evolution of dark matter and neutral hydrogen haloes. Special
care is devoted to the determination of the HI halo mass (Spinelli et al., 2019).

The projection of the three-dimensional HI field on the celestial sphere and the
realization of 21 cm intensity maps tailored on the SKA1-MID and SKA1-LOW radio
surveys are discussed in Chapter 3. The limits and the advantages of the intensity
mapping technique are deeply analyzed and possible improvements are evaluated.

Finally, Chapter 4 is dedicated to the analysis of the intensity maps by Minkowski
functionals. A comparative analysis as function of redshift, scale and dark matter mass
is proposed.

ii



Chapter 1

Reionization epoch and 21 cm
cosmology

1.1 The pre-recombination Universe: dark matter candi-
dates

Dark Matter (DM) is produced in the early universe and according to its velocity
at decoupling from the thermal bath, one can distinguish between cold, hot and warm
candidates, corresponding to high mass (∼GeV or >TeV), intermediate mass (∼keV)
and small mass (∼eV). The aim of this section it to review the constraints on the mass
with respect to relic density observable today.

Suppose a gas of massive particles χ in thermodynamic equilibrium with their an-
tiparticles χ̄ for T � mχ. If the dark matter interacts only gravitationally, then their
interactions cannot guarantee thermal equilibrium and its density can be modified only
by annihilation or inverse annihilation

χ+ χ̄←→ l + l̄, (1.1)

where l is a Standard Model particle. The reaction rate is Γann = nχ 〈σv〉, where
〈σv〉 is the cross section times the relative velocity thermally averaged over all possible
initial states. A rule-of-thumb to define the equilibrium is by comparing Γann with the
expansion rateH. If Γann � H, then the equilibrium is never reach because DM particles
do not interact in an Hubble time. If Γann � H then the DM particles are in thermal
equilibrium and the evolution of their abundance can be easily studied.

The density distribution at equilibrium (Peter and Uzan, 2009) reads

nχ = gχ

∫ d3p

(2π)3 fχ(|p|) (1.2)

where the equilibrium distribution is

f eq
χ = 1

exp[(Eχ − µχ)/Tχ]± 1 (1.3)
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depending on the spin ("+" for Fermi-Dirac particles, "−" for Bose-Einstein particles).
When the DM particles χ were in equilibrium, then their number density can be ap-
proximated by

neqχ =

geff
ζ(3)
π2 T

3 T � mχ

gχ
(
mχT
2π

)3/2
e−

mχ
T T � mχ

(1.4)

where the internal degrees of freedom are geff = gχ for bosons and 3
4gχ for fermions (the

general expression is achieved supposing a FD or BE distribution), also ζ(3) ' 1.2.

1.1.1 Cold relics

For cold relics, decoupled from plasma when non-relativistic one has to solve the
general Boltzmann equation

L[f ] = C[f ] (1.5)

which describes the time evolution of a particle distribution f by the Liouville operator
L and the collision operator C. For a single DM component χ in a FRW cosmology the
momentum-averaged equation yields the time evolution of the number density nχ as

ṅχ + 3Hnχ = −〈σv〉
(
n2
χ − n2

χ,eq

)
, (1.6)

where nχ,eq is the density distribution at equilibrium. The conservation of entropy allow
us to write the number density as equation (1.6) and therefore becomes ṅχ+3Hnχ = sẎχ,
where Yχ = nχ/s and s is the entropy density

s = 2π2

45 g∗s(T )T 3, (1.7)

which today is s(t0) = 2891.2 cm−3. One therefore obtains

Ẏχ = −〈σv〉 s
[
Y 2
χ − Y 2

χ,eq

]
. (1.8)

Introducing the dimensionless variable

xFO = mχ

TFO
, (1.9)

the result for the freeze-out temperature is xFO ' 25. Equation (1.8) becomes

dYχ
dx = −〈σv〉 s

H x

[
Y 2
χ − Y 2

χ,eq

]
= −Γeff

ann
H

. (1.10)

It is useful to introduce the quantity ∆ ≡ Yχ − Yχ,eq, quation (1.10) therefore can be
written as

d∆
dx = −dYχ,eq

dx − λx−2∆ (∆ + 2Yχ,eq) , (1.11)
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Figure 1.1: Standard freeze-out for three different cross sections.

with the dimensionless parameter

λ = 〈σv〉
√
π

45
g∗

g
1/2
s,∗

mχMP (1.12)

encoding the fundamental parameters of χ.
For cold dark matter the Boltzmann equation can be solved approximately, in two

regimes and then matching those solutions at the freeze-out time. Before the freeze-out
the number density is well approximate by the equilibrium density, thus an approximate
solution is obtained by imposing d∆

dx = 0, which yields

∆< ≡ ∆ = − x2

λ [∆ + 2Yχ,eq]
dYχ,eq

dx . (1.13)

After the freeze-out Yχ ' ∆, so

d∆
dx = −λx−2∆2 (1.14)

and then
Y −1
χ (x) ' ∆−1

> = −
∫ x

xFO

dx λ
x2 . (1.15)

It reads today as

Y 0
χ = −

∫ ∞
xFO

dx λ
x2 =

√
45
π

g
1/2
∗
g∗,s

1
mχMP

1
J(xf ) , (1.16)
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where
J(xf ) =

∫ ∞
xf

dx〈σv〉
x2 (1.17)

and the corresponding matter density parameter is

Ωχh
2 = 1.07× 109GeV−1

g
1/2
∗ MPJ(xf )

. (1.18)

The cross section results in
〈σv〉 = α2

32πm2
χ

. (1.19)

Numerical solutions of equation (1.16) for three values of α are shown in Fig. 1.1.

1.1.2 Hot and warm relics

A relic is hot if relativistic at decoupling from the primordial plasma. The freeze-out
temperature can be computed as

geff
ζ(3)
π2 T 3

FO 〈σv〉 = π

3
√

10
g

1/2
∗ (TFO)T

2
FO

MP
(1.20)

and then

TFO = π3

3ζ(3)
√

10
g

1/2
∗ (TFO)
geff

1
〈σv〉MP

. (1.21)

In this case it is not necessary to solve the Liouville equation since equation (1.20) can
be solved analytically for TFO.

The limit TFO � mχ is fulfilled if the mass or the annihilation cross section of the
DM particles are really small, as for the neutrino. A hot relic with mass below the keV
scale would be strongly affected by free-streaming, with consequent lack of fluctuations
on small scales, contrary to the observed large-scale structure statistics (see also Fig.
1.8).

Once interactions stops being effective, the comoving dark matter number density is
frozen-out and today it reads

Y FO
χ =

nFOχ (TFO)
s(TFO) =

neqχ (TFO)
s(TFO) =

= 45ζ(3)
2π4

geff
g∗s(TFO) ' 0.0026 geff

( 106.75
g∗s(TFO)

)
,

(1.22)

a value preserved until today. For ρc = 1.053 × 10−5 h2 GeV cm−3 and setting ρχ(t0) =
mχnχ(t0) = mχY

FO
χ s(t0), one obtains

Ωχh
2 ' 7.6× 10−4geff

( 106.75
g∗s(TFO)

)
mχ

eV . (1.23)
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Figure 1.2: (Right) Free-streaming mass-scale and half-mode mass scale as a function
of the mass of the WDM particle (Schneider et al., 2012). (Left) XENON1T 90 percent
C.L. upper limit on the spin-dependent WIMP-proton cross section from a 1 ton year
exposure. The range of expected sensitivity is indicated by the green (1σ) and yellow
(2σ) bands (Aprile et al., 2019).

From the observational measured value Ωχh
2 ' 0.12, the bound on dark matter mass

(known as the Cowsik-McClennand bound (Cowsik and McClelland, 1972)) is

mχ . 1.3 eV 1
geff

(
g∗s(TFO)
106.75

)
, (1.24)

where the precise value depends on the value of g∗s at decoupling. For slightly massive
neutrinos g∗s = 10.75 and geff = 3/2, thus mν . 10 eV. On the contrary, if the particle
decouples at around 300 GeV, then g∗s = 106.75 and mχ . 100 eV: the particle will have
a very small relic abundance and temperature compared to the photons of the cosmic
background. These particles are called warm relics.

1.1.3 Constraints on dark matter

The most famous thermal candidates1 are Weakly Interacting Massive Particles
(WIMPs). These candidates are motivated from particle physics and naturally arise
in theories addressing the origin of the electroweak scale. Broadly speaking, they have
mass and cross section in the following range

1 GeV . mWIMP . 10 TeV, σWIMP ' 1 pb. (1.25)

The first interesting constraint on the dark matter nature is given by the considera-
tions exposed in the previous section, and the bounds are reported in Fig. 1.2 (left).The
current knowledge about WIMPs can be summed in Fig. 1.2 (right), where the experi-
mental constraints on the WIMPs mass with respect to their cross section are reported.

1Dark matter particle candidate which was in thermal equilibrium in the early universe at very high
temperature and whose departure from thermal equilibrium is the process that set today relic density.
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Figure 1.3: The Lee-Weinberg limit (Chung, Kolb, and Riotto, 1999).

A second constraint is the one given by the Lee-Weinberg limit, in Fig. 1.3, that relates
the abundance of neutrino or WIMPs to their mass, in order to explain the amount of
dark matter measured.

1.2 The post-recombination Universe: structures’ forma-
tion

During the recombination epoch (e.g. Barkana and Loeb (2001) and Mo, van den
Bosch, and White (2010)), around redshift z ≈ 1300, electrons and protons recombined
to form hydrogen atoms. At this time, the Universe was almost completely neutral and
very homogeneous, as suggested by the extended Copernican principle in the Cosmic
Microwave Background (CMB, see Planck Collaboration et al. (2018) for the latest
results). The Universe continued expanding adiabatically, cooling and entering a dark
age. The CMB temperature decreased with redshift as

TCMB = 2.736 (1 + z)K. (1.26)

Due to the expansion of the Universe and to recombination, the recombination rate
started to decrease until it became much lower than the expansion rate and the number
of free electron was frozen (Fig. 1.4). The fluctuations of the matter density field started
growing not linearly, collapsing and forming the first objects. The dark age ended when
the first stars, quasars and galaxies began to form. Having a radaitive spectrum very
energetic, they are responsible for the ionization of the Inter Galactic Medium (IGM).

1.2.1 Linear evolution

After the recombination was almost completely uniform, with spatial energy density
fluctuations of the order 10−5. The gravitational instability along with the expansion of

6



Figure 1.4: Fraction of free-electron density depending on the redshift.

the Universe, allowed the growth of these fluctuations, into the formation of today large
scale structure.

Consider the Newtonian theory for the evolution of the density ρ and velocity u of
a non-relativistic fluid under the influence of a gravitational field with potential φ. The
fluid description is valid as long as the mean free path of the particles in consideration is
much smaller than the scale of interest. The fluid description is also valid for a pressure-
less dust (i.e. for collision-less dark matter), as long as the local velocity dispersion of the
dark matter particles is sufficiently small that particle diffusion can be neglected. The
time evolution of a fluid is given by the continuity equation (1.27), the Euler equation
(1.28) and the Poisson equation (1.29)

Dρ
Dt = −ρ∇r · u, (1.27)

Du
Dt = −∇rP

ρ
−∇rφ, (1.28)

∇2
rφ = 4πGρ, (1.29)

where r is the proper coordinate and
D
Dt ≡

∂

∂t
+ u · ∇r. (1.30)

The comoving coordinated x is defined as

r = a(t)x (1.31)

and proper velocity u = ṙ can be written as

u = ȧ(t)r + v, v ≡ aẋ. (1.32)
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Writing ρ in terms of the density perturbation contrast against the background,

ρ(x, t) = ρ̄(t)[1 + δ(x, t)], (1.33)

and using the fact that ρ̄ ∝ a−3, equations (1.27) and (1.29) become

∂δ

∂t
+ 1
a
∇ · [(1 + δ)v] = 0, (1.34)

∂v
∂t

+ ȧ

a
v + 1

a
(v · ∇)v = −∇Φ

a
− ∇P
aρ̄(1 + δ) , (1.35)

∇2Φ = 4πGρ̄a2δ, (1.36)

where Φ ≡ φ+ aäx2/2 and ∇ ≡ ∇x = a∇r.
The equation of state of the fluid is determined by the thermodynamic process that

the fluid undergoes. In special cases where the pressure of the fluid depends only on the
density ρ, the set of fluid equations is completed with the equation of state, P = P (ρ, S),
with S the specific entropy. From thermodynamic considerations, it is possible to define
the adiabatic sound speed, as

cs =
(
∂P

∂ρ

)1/2

S

. (1.37)

Thus, the Euler equation (1.35) can be written as

∂v
∂t

+ ȧ

a
v + 1

a
(v · ∇)v = −∇Φ

a
− c2

s
a

∇δ
(1 + δ) −

2T
3a∇S. (1.38)

In special cases where both δ and v are small so that the nonlinear terms can be neglected,
one obtains

∂δ

∂t
+ 1
a
∇ · v = 0, (1.39)

∂v
∂t

+ ȧ

a
v = −∇Φ

a

cs2

a
∇δ − 2T̄

3a∇S, (1.40)

where T̄ is the background temperature. Differentiating equation (1.39) and using equa-
tions (1.29) and (1.40), the result is

∂2δ

∂t2
+ 2 ȧ

a

∂δ

∂t
= 4πGρ̄δ + cs2

a2 ∇
2δ + 2

3
T̄

a2∇
2S. (1.41)

In the linear regime, the equations governing the evolution of the perturbations are
all linear in perturbation quantities. If the curvature of the Universe can be neglected
the mode functions can be chosen to be plane waves and the perturbation fields can be
represented by their Fourier transforms. For example,

δ(x, t) =
∑

k
δk(t) exp(ik · x), δk(t) = 1

V

∫
δ(x, t) exp(−ik · x)d3x, (1.42)
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where V is the volume of a large box in which the perturbations are assumed to be
periodic and k is the comoving wavenumber equal to 2π

λ . Fourier transforming equation
(1.41), one obtains

d2δk
dt2 + 2 ȧ

a

dδk
dt =

[
4πGρ̄− k2cs2

a2

]
δk −

2
3
T̄

a2k
2Sk. (1.43)

Pressureless fluid For perturbations in a pressureless fluid, equation (1.43) becomes

d2δk
dt2 + 2 ȧ

a

dδk
dt = 4πGρ̄mδk, (1.44)

where ρ̄m is the mean density of the fluid. For non-relativistic (i.e. cold) dark matter
this equation admits a generic solution of type δ(x, t) = D+(t)A(x) + D−(t)B(x). If
the late-time universe is dominated by a cosmological constant, the decreasing mode is
D−(t) ∝ H(t) and the corresponding growing mode is given by

D+(t) ∝
√

ΩΛa3 + Ωka+ Ωm

a3/2

∫
a3/2da

(ΩΛa3 + Ωka+ Ωm)3/2 . (1.45)

Here the contribution of the radiation field is neglected, as subdominant for z � 104.
The baryonic sound speed varies spatially, so the baryon temperature and density

fluctuations must be tracked separately. The evolution of the linear density fluctuations
of the dark matter (δdm) and the baryons (δb) is described by two coupled second-order
differential equations (Naoz and R. Barkana, 2007):

δ̈dm + 2Hδ̇dm = 3
2H

2
0

Ωm

a3 (fbδb + fdmδdm) (1.46)

δ̈b + 2Hδ̇b = 3
2H

2
0

Ωm

a3 (fbδb + fdmδdm)− k2

a2
kBT̄

µ
(δb + δT) (1.47)

where µ is the mean molecular weight, T̄ and δT are the mean baryon temperature and
its dimensionless fluctuation, and fb and fdm the baryon and dark matter mass fractions.
Defining δtot = fbδb + fdmδdm, one obtains

δ̈tot + 2Hδ̇tot = 3
2H

2
0

Ωm

a3 δtot − fb
k2

a2
kBT̄

µ
(δb + δT). (1.48)

On small scales (δb � [δtot, δdm]), equation (1.47) becomes

δ̈dm + 2Hδ̇dm ∼= fdm
3
2H

2
0

Ωm

a3 δdm. (1.49)

Finally, in the approximation of a uniform sound speed, the evolution of the density
fluctuations is described by a different set of coupled second order differential equations:

δ̈dm + 2Hδ̇dm = 3
2H

2
0

Ωm

a3 (fbδb + fdmδdm) (1.50)

δ̈b + 2Hδ̇b = 3
2H

2
0

Ωm

a3 (fbδb + fdmδdm)− k2

a2 c
2
sδb. (1.51)
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Perturbations in two non-relativistic components When baryons and pressure-
less cold dark matter co-exist, density perturbations of baryons induced by a pressureless
(cold) dark matter component obeys, as long as the dark matter component is dominat-
ing, the equation (in Fourier space):

d2δb
dt2 + 2 ȧ

a

dδb
dt + k2cs2

a2 δb = 4πGρ̄0
a3

0
a3 δdm, (1.52)

where δdm is the density perturbations in the dark matter, obey equation (1.44). A
solution of this equation is

δb(k, t) = δdm(k, t)
1 + k2/k2

J
, (1.53)

where
k2

J = 3a2H2

2c2
s

(1.54)

is the Jeans scale.
The statistical properties are given by the variance of the different k-modes, propor-

tional to the power spectrum P (k)

〈δkδ
∗
k′〉 = (2π)3P (k)δ(3)(k− k′). (1.55)

Different evolution models (concerning the kind of dark matter or the inflaction paradigm,
for example) give very different power spectrum, allowing to make strong statements
about the nature of the Universe. The power spectrum is indeed a powerful statistical
tool, that can give informations about the evolution of structures on large and small
scale:

• k � kJ: on large scales, it evolves proportionally to the square of the growth factor
D+(t), what is called linear evolution;

• k � kJ: on small scales, the contribution from non-linear gravitational growth of
perturbations becomes more significant and the power spectrum grows non-linear.

An estimate for the free-streaming length can be obtained by computing the comoving
length scale that a particle may travel up until matter-radiation equality (tEQ). The
Jeans length drops dramatically and perturbations may collapse under gravity. From
Kolb and Turner (1990), one obtains

λfs =
∫ tEQ

0

v(t)dt
a(t) ≈

∫ tNR

0

cdt

a(t) +
∫ tEQ

tNR

v(t)dt
a(t) (1.56)

where tNR is the epoch when the WDM particles become non-relativistic, which occurs
when TWDM < mWDMc

2/3kB, where TWDM and mWDM are the characteristic tempera-
ture and mass of the WDM particles. In the non-relativistic regime, it yields to

λfs ≈ rH(tNR)
[
1 + 1

2 log tEQ
tNR

]
≈ 0.4

(
mWDM

keV

)−4/3
(

ΩWDMh
2

0.135

)1/3

Mpc. (1.57)
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Figure 1.5: Transfer function computed according to equation (1.58), for two values
of WDM masses. Here ΩWDM = 0.269 according to Carucci et al. (2015).

However, the fluctuations inside the horizon grow logarithmically during radiation dom-
ination and free-streaming does not switch off immediately after tEQ. About the WDM
density transfer function, following Viel et al. (2005) and Bode, Ostriker, and Turok (2001)
one obtains

TWDM(k) =
[
PWDM

lin
PCDM

lin

]1/2

=
[
1 + (αk)2µ

]−5/µ
, (1.58)

with µ = 1.12 and

α = 0.049
[
mWDM

keV

]−1.11 [ΩWDM
0.25

]0.11 [ h
0.7

]1.22
h−1 Mpc. (1.59)

The transfer function for mWDM = 2, 3 keV is shown in Fig. 1.5. The steep dumping
from k ≈ 101 h−1Mpc to k ≈ 102 h−1Mpc of the transfer function and consequently of the
WDM power spectrum reflect the lack of structure below scales of r = 2π/k ≈ 1h−1 Mpc.
The masses of sterile neutrino WDM particles mνs can be obtained from mWDM through

mνs = 4.43keV
(mWDM

1keV

)4/3 (ΩWDM
0.1225

)−1/3
. (1.60)

The effective free-streaming length is defined as λeff
fs ≡ α and the free-streaming mass is

Mfs = 4π
3 ρ̄

(
α

2

)3
. (1.61)

The half-mode length is instead the length scale at which the amplitude of the WDM
transfer function is reduced by half:

λhm = 2πα(2µ/5 − 1)−1/2µ ≈ 13.93α (1.62)
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and the corresponding mass is

Mhm = 4π
3 ρ̄

(
λhm

2

)3
≈ 2.7× 103Mfs. (1.63)

The normalization (amplitude) of the power spectrum is not predicted by any current
theory of cosmic perturbation, so it has to be fixed by observations. The prescription
used depends on the variance of the galaxy distribution. These quantities are related
by:

σ2(R, z) = 1
2π2

∫
P (k, z)W̃ 2

R(k)k2dk, (1.64)

where
P (k, z) = D2

+(z)P (k, 0), (1.65)

and W̃ is the Fourier transform of a window function W . For the top-hat window
function,

WR(r) =


(

4π
3 R

3
)−1

if r ≤ R,
0 otherwise,

(1.66)

where R is a comoving radius and one has

W̃R(k) = 3
(kR)3 [sin(kR)− kR cos(kR)] . (1.67)

The window size can be label by the mean mass contained in it:

M(R) ≡ ρ(t0)4π
3 R3, (1.68)

where ρ is the mean density of the Universe, conventionally measured at present-day,
ρ̄(t0) ≡ ρ0. The normalization of the amplitude of the power spectrum is often specified
by the value of σ8 ≡ σ(R = 8h−1Mpc) (e.q. σ8 = 0.8159 from Planck Collabora-
tion (2016)), consistent with the specifics of the simulations used in Chapter 2. In Fig.
1.6, the power spectrum in obtained using equation (1.65) and with the CAMB code (Lewis
and Challinor, 2011).

The structure formation in cold dark matter models proceeds hierarchically: at early
times, the majority of dark matter is situated in low-mass haloes and high-mass haloes
are formed from the merging of the former.

In Fig. 1.8 the difference in the large scale structure evolution for different models is
shown: while the difference between cold dark matter (left) and warm dark matter with
an intermediate mass (mp = 1 keV, center) is not immediately visible, the WDM effects
are prominent in the right panel, where mp = 0.25 keV.
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Figure 1.6: Power spectrum for 0 ≤ z ≤ 5.

Non-linear evolution: spherical collapse and halo mass function

A non-linear description of the evolution of the Universe is necessary as soon as the
matter density become of order unity. The dynamics of dark matter collapse can be
exactly solved only in some specific symmetry (e.g. spherical symmetry) and for regions
(smaller than the Hubble horizon cH−1(z)). Considering an initial times ti top-hat of
uniform overdensity δi inside a sphere of radius R, the formation of an halo can been
analyze in a Newtonian context:

r̈ = −GM
r2 − 4πG

3 (ρ+ 3p)restr, (1.69)

considering all the matter that does not participate in the collapse. Being rdm and rb
the physical radii that enclose a fixed mass of dark matter and of baryons, we obtain
two coupled non-linear equations of motion:

r̈dm = − 1
r2

dm

4πG
3 r3

dm(ρdm + ρb) +H2
0 ΩΛrdm −

8πG
3 ρrrdm, (1.70)
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Figure 1.7: Density maps from simulations with a length of L = 25h−1Mpc at z = 1.1.
From left to right: CDM, WDM with mp = 1 keV and WDM with mp = 0.25 keV. The
WDM effects are prominent in the last one, where the voids are noticeably emptier
than in CDM (Schneider et al., 2012).

r̈b = − 1
r2

b

4πG
3 r3

b(ρdm + ρb) +H2
0 ΩΛrb −

8πG
3 ρrrb. (1.71)

Since the time when the fluctuation enters the horizon is substantially early in the
radiation- dominated universe, the baryon-photon coupling yields δb, δγ � δdm, δtot
initially. The resulting critical (linear) ovendensity at the time of collapse in shown in
Fig.

The overdensities star growing linearly, as δL = δi
D+(t)
D+(ti) , until it reaches a radius of

maximum expansion and it collapses. The corresponding δ (equation (1.33)) is called δc
and it is given by (Henry, 2000)

δc(z) = 3 (12π)
2
3

20 (1 + 0.0123 log10 Ωm(z)) (1.72)

with
Ωm(z) = Ωm,0 (1 + z)3 ρc,0

ρc(z)
= 0.308 (1 + z)3

(
H0
H(z)

)2
, (1.73)

where
ρ(z) = 3H(z)2

8πG . (1.74)

The symmetry of the initial perturbation would yield in the evolution of the halo to a
singularity, the halo indeed reaches a state of virial equilibrium by violent relaxation. The
final overdensity relative to the critical density at the collapse redshift can be obtained
using the virial theorem. The critical overdensity at collapse will be

∆c = ρcoll
ρb

= (1 + δcoll) ≈ 18π2 ≈ 178 (1.75)

in Einstein-de Sitter model and

∆c = 18π2 − 82d− 39d2 (1.76)
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Figure 1.8: Critical overdensity versus collapse redshift. It is compared δc for the
full calculation (solid curves) to the results with other assumptions. The top panel
compares to several cases that include only some of the physical ingredients that affect
the spherical collapse calculation. The bottom panel shows results also for the Viel
et al. (2005) set of parameters (dashed curve). From Naoz and R. Barkana (2007).

with

d ≡ Ωm(z)− 1 (1.77)

Ωm(z) = Ωm,0(1 + z)3

Ωm,0(1 + z)3 + ΩΛ,0 + Ωk,0(1 + z)2 (1.78)

for a ΛCDM cosmology. The critical overdensity define the virial radius

rvir = 0.784
(

M

108h−1M�

)1/3 [ Ωm,0
Ωm(z)

∆c

18π2

]−1/3 (1 + z

10

)−1
h−1 kpc, (1.79)

and the circular velocity Vc = (GM)1/2 r
−1/2
vir . One can therefore deduce the virial

temperature as totally defined by the kinetics of the structure

Tvir = µmpV
2
c

2kB
= 1.98× 104

(
µ

0.6

)(
M

108h−1M�

)2/3 [ Ωm,0
Ωm(z)

∆c

18π2

]1/3 (1 + z

10

)
K,

(1.80)
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withmp the proton mass and µ the mean molecular weight that depends on the ionization
fraction (µ = 0.59 for fully ionized primordial gas, µ = 0.61 for a mixture of ionized
hydrogen with singly ionized helium, µ = 1.22 for neutral primordial gas).

The baryon overdensity is closely related to the virial temperature Tvir through the
relation (Barkana and Loeb, 2001)

δb = ρb
ρ̄b
− 1 =

(
1 + 6

5
Tvir

T̄

)3/2
− 1 (1.81)

where T̄ is the background gas temperature. One can deduce the minimum halo mass
for baryonic objects, which is close to the Jeans mass if δ > 100 and so Tvir > 2.9 ×
103[(1 + z)/100]2 K (see Figure 1.10).

The simplest statistics for cosmic structures is the abundance of haloes described by
the so-called mass function, i.e. the number density of haloes per unitary mass. The
first and simpler analytic model, developed by Press and Schechter (1974), is based on
a filtered Gaussian random field of density perturbations linearly growing and becoming
non-linear according to the spherical collapse model, i.e. as soon as δ(R) > δsc (equation
(1.72)). The result is

dn
d lnM = 2ρm

M

d
d lnM erfc

(
ν√
2

)
=
√

2
π

ρm
M

d ln σ−1

d lnM ν exp
(
−ν

2

2

)
, (1.82)

where
ν = δsc(z)

σ(M, z) (1.83)

accounts for the density threshold in units of the rms-variance (equation (1.64)). A better
model accounting for the ellipsoidal collapse remark the multiplicative fudge factor 2
solving the cloud-in-cloud problem (Jedamzik, 1995), Sheth and Tormen (1999) is used
in this thesis because it is easily generalizable to WDM and HDM cosmologies. The
original expression for CDM is

dn
d lnM = ρ̄

M

d ln σ−1

d lnM
2A
ν

(
1 + 1

ν ′2q

)(
ν ′2

2π

)1/2

exp
(
−ν
′2

2

)
(1.84)

where ν ′ =
√
aν, a = 0.707, q = 0.3 and A ≈ 0.322. In Fig. 1.9, the Sheth Tormen

mass function is shown for different redshifts. Other models will be considered, such as
Watson et al. (2013) and Despali et al. (2016).

In the same way, in Sheth, Mo, and Tormen (2001) the large scale halo-to-mass is
defined as

b(ν) = 1 + 1√
aδsc

[
√
a(aν2) +

√
ab(aν2)1−c − (aν2)c

(aν2)c + b(1− c)(1− c/2)

]
, (1.85)

where the best esteem for the parameters a, b, c is a = 0.707, b = 0.5, c = 0.6, and ν is
the one defined in equation (1.83).
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Figure 1.9: Sheth-Tormen mass function for z ∈ [0, 5].

1.2.2 Reionization process

The reionization of the universe is a complex process starting about 100 million years
after Big Bang and covering about 1 Gyr that depends on the radiation field and the
atomic and molecular species that fill the particle horizon.

Before the production of metals, the most abundant molecule was the molecular
hydrogen H2; the primary formation processes were

H + e− → H− + hν, (1.86)
H− + H→ H2 + e−. (1.87)

Molecular hydrogen is quite fragile and it can be photo-dissociated by photons with
energies larger than 13.6 eV, to which the IGM was transparent before it is ionized.
The UV flux capable of dissociating H2 throughout the collapsed environments in the
universe is lower than the minimum flux necessary to ionize the atomic hydrogen; after
the beginning of star formation process, the formation of additional stars due to H2
cooling is suppressed. A further fragmentation is possible only in objects with a virial
temperature higher than 104 K. The evolution in redshift is described in Fig. 1.10 (top-
pannel): low-mass objects collapse creating ionized hydrogen (HII) bubbles, but the
formation of new objects is delayed until H2 is dissociated and objects with Tvir > 104

K collapse. This is the beginning of the reionization epoch.
The reionization epoch is divided into three main stages, shown in Fig. 1.10 and

1.11:
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Figure 1.10: Stages in the reionization of hydrogen in the IGM.

• z ≥ 30: this is the pre-overlap phase, in which the Universe is mostly neutral
except for isolated HII regions produced by individual ionizing sources that turn
on and ionize their surroundings. Although the nature of these sources is an open
research field in astrophysics, the main candidates are quasars, young galaxies and
Population III stars. The ionizing photons propagate through the high-density
regions surrounding with high recombination rate; emerging from these regions,
the ionization front can propagate with no difficulties into the low-density regions,
leaving behind haloes of neutral gas (Figure 1.10, top panel).

• 15 . z . 30: in the second, central stage the individual HII regions start to overlap,
leaving the IGM partially ionized and partially neutral. The overlap between near
HII regions increase the ionizing intensity, allowing these regions to expand into
high-density gas. This phase can be seen as a rapid phase transition (about 0.172
Gyrs in Planck cosmology), lasting less than an Hubble time. The end of this stage
is marked by a state in which neutral regions are located inside self-shielded, high-
density clouds where the ionizing radiation can not enter, while the low-density
IGM is highly ionized (Figure 1.10, middle panel).

• 5 . z . 15: during the last post-overlap phase the Universe is almost completely
ionized, with only a small neutral fraction. As galaxy formation proceeds, the high-
density regions are more and more ionized, but collapsed object retain neutral gas
even at present time. Nevertheless, below z ≈ 1.6, all ionizing sources are visible
from every point in the IGM; above this redshift, absorption by Lyman−α forest
clouds makes only a few number of sources visible from every point in the IGM
(Figure 1.10, bottom panel).
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Figure 1.11: Maps of the ionization fraction from simulation (Santos et al., 2008) at
redshifts z = 20.60, 15.24, 10.00, 7.40. To be noted the clear separation between the
highly ionized regions (in red) and the mostly neutral IGM (black).

Studying this epoch, or more specifically the post-reionization epoch, is possible
thanks to the 21cm emission line, which allows to distinguish and look at different
epochs using the appropriate frequency. Indeed, a rest-frame wavelength λ0 = 21 cm
emitted by a source at redshift z corresponds to a frequency ν(z) = ν0/(1 + z) with
ν0 = c/λ0 = 1420 MHz.

Hydro-dynamical simulations that involve also radiative transport are necessary to
describe structure formations (e.g. Ciardi, Stoehr, and White (2003), Pawlik, Schaye,
and Dalla Vecchia (2015) and Aubert, Deparis, and Ocvirk (2015)).

1.3 The 21 cm line
The first radio waves originated from an astronomical object were unexpectedly de-

tected in 1932 by Karl Jansky in an attempt to study short wave transmissions. The
signal was coming from the Milky Way and soon the radio emissions from stars, galaxies,
quasars and pulsars allowed to map the Milky Way and to study the radio emission from

19



the Sun (Jansky, 1982). The main discover for cosmology was made in 1964, again by
chance, by Penzias and Wilson: the cosmic microwave background (CMB) radiation.
The 21cm line characteristic of neutral hydrogen was first detected in 1951 by Ewen and
Purcell at Harvard University (Ewen and Purcell, 1951) and in 1952 the first maps of
the neutral hydrogen distribution in the Galaxy were presented: for the first time the
spiral structure of the Milky Way was revealed. The first review on this topic by George
Field appeared in 1958 (Field, 1958).

The 21cm is a transition between the two hyperfine states of the 12S1/2 ground level
of hydrogen. The hyperfine interaction between proton and electron is induced by the
coupling between the proton and electron spins, respectively ~I and ~s, as usual described
by the interaction hamiltonian (in natural units)

H = −~µp · ~B = −
(
gpe

2mp

~I

)
·
(8π

3 ~µeΨ2
0

)

= −
(
gpe

2mp

~I

)
·
(
−8π

3
gee

2me
Ψ2

0~s

)
=

= 16π
3

(
e

2me

)2 me

mp
gpΨ2

0 ~I · ~s. (1.88)

being ge = 2. The total angular momentum ~F is the sum of the two spins,

~F = ~I + ~s, (1.89)

so the coupling reads
~I · ~s = 1

2
(
F 2 − I2 − s2

)
. (1.90)

Being both s and I equal to 1
2 , F is 0 or 1, splitting the ground level into a hyperfine

doublet. The F = 1 state corresponds to a proton and an electron with parallel spin
(i.e. maximum energy), and split into three components in an external magnetic field;
it is therefore called triplet state. The F = 0 state accounts for a configuration with
anti-parallel spins (i.e. minimum energy), not spliting in an external magnetic field;
it is called singlet state. The transition (F = 1) → (F = 0) is equivalent to a spin-
flip of the electron with respect to the proton, with the energy levels separated by
∆E = hν = 5.9 × 10−6 eV, a wavelength of 21cm or a frequency of 1420 MHz (in
vacuum).

This line has been used to probe of the hydrogen gas along the line-of-sight to some
background radio source. from a macroscopic point-of-view, the emission and absorp-
tion processes are accounted for the radiative transfer through gas; in a collisionless
approximation, for an intensity Iν , along a path described by coordinate s,

dIν
ds = −ανIν + jν (1.91)

20



where αν and jν are the absorption the emission coefficients. Since the photon frequencies
ν are smaller than the peak frequency of the CMB (νCMB = 160.23 GHz), the Rayleigh-
Jeans approximation holds. Defining the brightness temperature

T = Iν c
2

2kBν2 (1.92)

and the optical depth along the line-of-sight as

τν =
∫

ds αν(s), (1.93)

The solution of equation (1.91) reads

T obs
b = Tex

(
1− e−τν

)
+ TR(ν) e−τν . (1.94)

in which TR is the temperature of a background radio source and Tex is the uniform
temperature of a cloud with τν .

The excitation temperature of the 21cm line, called the spin temperature TS , is
defined by the relative number densities of hydrogen atoms in the two hyperfine levels
n0 (singlet level) and n1 (triplet level)

n1
n0

= g1
g0

exp
(
−T?
TS

)
, (1.95)

with T? ≡ hc/kBλ21 = 0.068 K.
The optical depth of a cloud of hydrogen is

τν =
∫

ds
[
1− exp

(
− ∆E
kBTS

)]
σ0φ(ν)n0 (1.96)

where n0 = nH
4 , σ(ν) = σ0φ(ν) is the 21 cm cross section with σ0 ≡ 3c2A10

8πν2 accounting for
the spontaneous decay rate of the spin-flip transition vita the Einstein coefficient A10 =
2.85×10−15 s−1 and φ(ν) the normalized line profile (

∫
φ(ν)dν = 1). To evaluate equation

(1.96), a form for s(ν) has to be chosen, in order to determine the range of frequencies dν
over the path ds that correspond to a fixed observed frequency νobs. This can be done
by relating the path length to the cosmological expansion ds = −cdz/(1 + z)H(z) and
the redshifting of light to relate the observed and emitted frequencies νobs = νem/(1 + z)
(Pritchard and Loeb, 2012).

The differential brightness temperature is (Pritchard and Loeb, 2012)

δTb = TS − TR
1 + z

(1− exp(−τν))

≈ TS − TR
1 + z

τ

≈ 27xHI (1 + δb)
(

Ωbh
2

0.023

)√
0.15

Ωmh2
1 + z

10

[
TS − TR
TS

]
∂rvr

(1 + z)H(z)mK (1.97)
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Figure 1.12: Time evolution of fluctuations in the 21cm brightness from the beginning
of stars formation to the end of the reionization epoch; the absorption phase of the 21cm
radiation is indicated in blue, the emission in red. The evolution of the brightness
temperature is also reported. From Pritchard and Loeb (2012).

where xHI is the neutral fraction of hydrogen, δb is the fractional overdensity in baryons,
and ∂rvr is the velocity gradient along the line of sight.

The detectability of the signal depends on the value of the term [· · · ], i.e. the relative
difference between the value of the spin temperature and the CMB temperature. Three
cases are possible:

• TS > TR: emission, δTb > 0;

• TS = TR: no signal, δTb = 0;

• TS < TR: absorption, δTb < 0.

The evolution of the brightness temperature is described in Fig. 1.12.
The spin temperature results from three processes: the interaction of the 21 cm

photons with the CMB photons; hydrogen atoms collisions with other particles (mainly
electrons and hydrogen atoms itself); the spin-flip caused by Lyα photons (2P → 1S).
The equilibrium between these effect gives the spin temperature:

TS = 1 + xα + xc
1
Tγ

+ xα
Tα

+ xc
Tc

. (1.98)

Tγ is the CMB mean temperature, Tα the temperature of the Lyα radiation, TK is the
gas kinetic temperature, closely coupled with Tα by recoil during repeated scattering, xc
the coupling coefficient regarding atomic collisions and xαthe coupling coefficient due to
the scattering of Lyα photons. More specifically:

• Atomic collisions (hydrogen-hydrogen, HH; hydrogen-proton, Hp; hydrogen-electron,
He) may induce spin-flip in hydrogen and dominate the coupling in the early Uni-
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Figure 1.13: Hyperfine structure of the 2P and 1S level of the hydrogen atom (J. R.
Pritchard and Furlanetto, 2006).

verse when the gas density was large. One has

xic ≡
C10
A10

T?
Tγ

(1.99)

with i = HH, Hp, He and C10 the collision rate inducing 1→ 0 transition. During
the cosmic dark ages the coupling is dominated by collisions, which can lead to a
suppression of the 21 cm signal by about 5 percent.

• A second channel of coupling is given by the resonant scattering of Lyα photons,
a process known as Wouthuysen-Field effect (Field, 1958), illustrated in Fig. 1.13.
An hydrogen in the singlet state can be excited into one of the central 2P hyperfine
states by the absorption of a Lyα photon. Once the Lyα photon is re-emitted, this
has access to the levels 11S1/2 and 10S1/2 of the two ground state hyperfine levels;
if the transition occurs to the triplet state, then a spin-flip occurs. The coupling
coefficient is

xα = 4
27

Pα T?
A101, Tγ

(1.100)

with Pα the scattering rate of Lyα photons

Pα =
∫

dΩ
∫
Jν
hν
σνdν (1.101)

and σν the Ly-α absorption cross-section.

1.4 Intensity mapping techniques

Line-Intensity Mapping (IM) uses the integrated emission from spectral lines in galax-
ies and the diffuse intergalactic medium to track the growth and evolution of cosmic
structure (Kovetz et al., 2017). Instead of focusing on a single galaxy (see Fig. 1.14),
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Figure 1.14: Lyman-α image of the UM287 Nebula. From Cantalupo et al. (2014).

which would demand an high resolution and sensitivity, IM consists in the measure-
ment of the spatial fluctuations in the line emission from many galaxies individually
not-resolved. This technique is therefore sensitive to all the sources of emission along
the line-of-sight. Faint and extended emission sources can be detected easier than with
traditional galaxy surveys, although with much poor spatial resolution.

The emission fluctuations is related to the underlying large scale structure of the
Universe and the information about the radial distribution along the line-of-sight can be
scanned by the frequency dependence. Since large cosmological volumes can be surveyed
in a small amount of time, the intensity mapping technique promises to be very efficient
for cosmological studies.

This work is based on the 21 cm emission line. However, other emission lines can be
studyed, especially for astrophysics purposes (see Fig. 1.15):

• The [OIII] line2 is originated from diffuse and highly ionized regions near young
O-type stars: this is an interesting line because may provide informations about
low-metallicity environments where photo-dominated regions (PDRs) may occupy
only a limited volume of the interstellar medium.

• The [CII] line is instead originated from PDRs at high redshift. It is used to
estimate the star formation rate estimates biased by dust extinction, even if it
depends strongly on the metallicity. This line can also be used to measure the
systemic redshift of the galaxies.

2As usual in astrophysics Xn and [Xn] symbols indicate the permitted and forbidden lines of the
element X ionized (n− 1) times. The roman number n = I therefore indicates a neutral element.
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Figure 1.15: Ratio between line luminosity, L, and star formation rate, Ṁ?, for
various lines observed in galaxies. From Pritchard and Loeb (2012).

• The HeII line, with a frequency of 1640 Å, may be a signature of metal-free Pop-
ulation III stars especially at high-redshifts. It is particularly important because
these massive stars produce more HeII ionizing photons than metal enriched stellar
populations. Remark however that these stars are formed in small galaxies, very
difficult to detect.

• Other lines are typically less luminous.

Many experiments dedicated to several emission lines exist or are upcoming, with an
amazing science case spanning from the reionization epoch to star formation, large scale
structure and dark energy studies. Table 1.1 lists and Fig. 1.16 illustrates some of the
more recent experiments dedicated to IM, showing the redshift range, the angular extent
of the survey (upper border of rectangles) and their angular resolution (lower border).

Experiment Line Frequency Redshift range
HERA HI 50 − 250 MHz 5 − 27
SKA-LOW* HI 50 − 350 MHz 3 − 27
CHIME* HI 400 − 800 MHz 0.8 − 2.5
HIRAX* HI 400 − 800 MHz 0.8 − 2.5
SKA-MID* HI 350 MHz − 14 GHz 0 − 3
BINGO HI 939 − 1238 MHz 0.13 − 0.48
LOFAR HI 115 − 190 MHz 6.5 − 11.4
CCAT-prime [CII] 185 − 440 GHz 3.3 − 9.3
TIME [CII] 200 − 300 GHz 5.3 − 8.5
CONCERTO* [CII] 200 − 360 GHz 4.3 − 8.5
COPSS CO 27 − 35 GHz 2.3 − 3.3
COMAP CO 26 − 34 GHz 2.4 − 3.4, 5.8 − 7.8
SPHEREx Hα, Lyα 60 − 400 THz 0.1 − 5, 5.2 − 8

Table 1.1: Details of some of the ongoing and upcoming intensity mapping experi-
ments.
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Figure 1.16: A representative list of current and proposed intensity mapping exper-
iments. The redshift range, the maximum resolution and the total sky coverage are
reported. From Kovetz et al. (2017).

This thesis considered in particular the SKA project because of the ground breaking
results expected from its observations. Once completed, SKA will be able to detect
signals from a redshift range 0 < z < 27, i.e. covering the central part of the reionization
epoch. SKA is an international project based on two radio telescopes covering low and
mid-range wavebands, under construction in South Africa (SKA-MID) and Australia
(SKA-LOW). The first project date back to the 1990s and the first part of the telescope
will be completed around 2023 (SKA1, further divided into SKA1-MID and SKA1-
LOW). The second part of the project is expected to be completed in late 2020s and it
will have a total collecting area of approximately one square kilometre.

The science case covers a very broad list of topics (Taylor, 2013):

• strong-field tests of gravity, using pulsars and black holes: pulsars in binary systems
with a black hole companions are expected to be detected quite often; in the same
way, pulsars can constraint gravity waves physics;

• origin and evolution of cosmic magnetism: measurements of polarized synchrotron
radiation arising from relativistic particles interacting with magnetic fields will be
performed;

• galaxy evolution and cosmology: as explained in this Chapter, the 21cm emission
line provide informations about cosmic evolution of HI and star formation, allowing
also to constraint the equation of state of dark energy;

• probing the Dark Ages: the low frequency of the telescope can study the structure
of the intergalactic medium before and during the reionization epoch;
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• the cradle of life: terrestrial planet formation is also an observable of SKA.

During this work, the phase 1 of construction is considered; in particular two instru-
ments will be taken into account, SKA1-MID and SKA1-LOW (Table 1.2).

Experiment Frequency ν Resolution Antennae Diameter Area Location
SKA1-MID 350 MHz − 14 GHz 1 MHz 250 15 m 0.044 km2 South Africa
SKA1-LOW 50 − 350 MHz 1 MHz 911 35 m 0.88 km2 Australia

Table 1.2: Technical details of SKA1-MID and SKA1-LOW
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Chapter 2

Non-linear evolution of dark
matter and neutral hydrogen

2.1 Dark matter simulations
The three-dimensional large-scale structure traced by HI is obtained by Monte Carlo

simulations based on dark-matter-only N -body simulations by Carucci et al. (2015),
which solve the Newtonian dynamics accounting for either WDM (mWMD = 2, 3 keV)
or CDM in comoving cubic box L = 100 h−1 Mpc. The DM halo catalogues have been
extracted by standard FoF techniques with linking length l = 0.16. Catalogues are
provided for redshifts z = 0, 1, 2, 3, 4, 5.

Using Pylians (Villaescusa-Navarro, 2018) and nbodykit libraries (Hand et al., 2019),
the power spectrum of haloes has been computed. For each catalogue the density
field is computed over a grid of 5123 cells,1 which correspond to a cell size of length
l = 0.195 h−1 Mpc. The mass-assignment scheme used to assign halo masses to the
grid is the Cloud-In-Cell one (CIC); given a number density distribution of objects
n(r) =

∑
j δ(r − rj), where rj is the coordinate of the object j, the convolved density

value on the g-th grid point rg = gl (g is an integer vector and l the grid spacing) is

nf (rg) =
∫
n(r)W (r− rg)dr, (2.1)

where W (r) is the mass assignment function. In real space for the CIC scheme, the
expression of W (x) = ΠiW (xi) is

W (xi) =
{

1− |xi|, |xi| < 1
0, else.

(2.2)

Other methods, such as the Nearest Grid Point (NGP) or the Triangular Shaped Cloud
(TSC) are often used and the description of these mass assignment schemes in relation
with the computation of the power spectrum can be found in Cui et al. (2008).

1Indeed a more dense grid would be more appropriate, but considering the dimension of the box the
result will not be affected by a different choice.
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Figure 2.1: 2-dimensional projection of cold dark matter catalogues.

The maximum and minimum comoving wavenumbers are

kmin = 2π
L/2 ≈ 10−1 h Mpc−1, kmax = 2π

d̄
≈ 101 h Mpc−1, (2.3)

where d̄ is the mean distance between halos, defined by 4π
3 Nhd̄

3 = L3.

Figure 2.2: Halo cold dark matter
mass function (solid), compared to the
Sheth-Tormen one (dashed).

Figure 2.3: Power spectrum com-
puted from catalogues with z ∈ [0, 5].

Cold dark matter. The number and mass range of CDM haloes are reported in Table
2.1 as function of redshift. As shown in Fig. 2.1, the filamentary structure on large scales
becomes progressively more evident at late time. The halo mass function is reported
in Fig. 2.2, compared to the Sheth-Tormen mass function. There is a good agreement
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Figure 2.4: Warm dark matter haloes evolution for mWDM = 2 keV. For mWDM =
3 keV there is no visible difference and it is not shown.

between the two. Finally, the power spectrum is shown in Fig. 2.3: to be noted the
asymptotic trend for larger k and small scales, tracing instead the evolution on large
scales.

z 0 1 2 3 4 5
Nhaloes 834, 092 975, 122 1, 011, 773 944, 381 793, 404 599, 559

Mmin [h−1 M�] 2.6 · 109

Mmax [h−1 M�] 8.5 · 1014 2.8 · 1014 1.1 · 1014 2.4 · 1013 1.1 · 1012 3.8 · 1011

Table 2.1: Number of haloes and maximum and minimum masses per catalogue.

Warm dark matter. WDM halo catalogues were provided with two WDM masses,
mWDM = 2 keV and 3 keV. Like for CDM the number of haloes and the maximum and
minimummasses are reported in Table 2.2. As expected, the number of haloes with warm

mWDM z 0 1 2 3 4 5

2 keV
Nhaloes 653, 284 756, 190 776, 214 709, 688 583, 553 433, 809

Mmin [h−1 M�] 2.6 · 109

Mmax [h−1 M�] 8.5 · 1014 2.8 · 1014 1.1 · 1014 2.3 · 1013 1.1 · 1013 3.7 · 1012

3 keV
Nhaloes 746, 236 872, 016 902, 648 837, 065 696, 366 521, 722

Mmin [h−1 M�] 2.6 · 109

Mmax [h−1 M�] 8.5 · 1014 2.8 · 1014 1.1 · 1014 2.3 · 1013 1.1 · 1013 3.7 · 1012

Table 2.2: Number of haloes per catalogue.

dark matter is systematically lower than the ones for cold dark matter: less massive and
therefore faster particles (see the free-streaming wavelength described in Chapter 1), that
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slows the formation of structures on large scales. The halo mass function is reported in
Fig. 2.5 for both masses. Again it is in well agreement with the Sheth-Tormen mass
function, even if the measured one is systematically lower for small masses. Finally, the
power spectrum is shown in Fig. 2.6 for both masses.

Figure 2.5: Halo warm dark matter mass function (solid line), compared to the
Sheth-Tormen one (dashed line). On the left for mWDM = 2 keV and on the right for
mWDM = 3 keV.

Figure 2.6: Power spectrum computed from catalogues with z ∈ [0, 5]. On the left
for mWDM = 2 keV and on the right for mWDM = 3 keV.

Important differences in CDM and WDM structures are clear. As shown in Fig.
2.7, while for halo masses larger than v 1011 h−1M� the difference between the two
cosmologies are not evident, as dominated by sample variance, for masses lower than
v 1011 h−1M� the mass function for lighter dark matter particles is smaller by 20-25
percent: the number count of dwarf galaxies is a clear probe for the nature of the DM
candidate.

The power spectrum is shown in Fig. 2.8: the lighter is the dark matter particle and
the larger values the power spectrum assumes, because of the less power of the signal
caused by the free-streaming length.
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Figure 2.7: Halo mass function for cold dark matter (solid line), warm dark matter
with mWDM = 2 keV (dashed line) and warm dark matter with mWDM = 3 keV (dotted
line).

Figure 2.8: Power spectrum for cold dark matter (solid line), warm dark matter with
mWDM = 2 keV (dashed line) and warm dark matter with mWDM = 3 keV (dotted line).
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2.2 Halo HI mass
Villaescusa-Navarro, Genel, et al. (2018) proved that neutral hydrogen essentially

collapse within dark matter haloes and that the amount of neutral hydrogen outside
the dark matter haloes is negligible. From virialisation arguments, Bagla, Khandai,
and Datta (2010) shown that the maximum and minimum masses, Mmax and Mmin are
related to the dark matter halo circular velocity vcirc through

M = 1010M�

(
vcirc

60 km s−1

)3 (1 + z

4

)−3/2
, (2.4)

Mmax is obtained for vcirc ' 200 km s−1, Mmin for vcirc ' 30 km s−1. A fast approach is
to use Halo Occupation Distribution (HOD) techniques, where the HI content of dark
matter haloes depends only on halo mass, defining the HI halo mass MHI(M). Although,
it does not model the spatial distribution of HI within dark matter haloes and it neglect
possible environmental dependencies. Another approach is to model the HI distribu-
tion taking into account the cosmological context with hydro-dynamical simulations
(Villaescusa-Navarro, Genel, et al., 2018): in these simulations the physical processes
included are the star formation, the feedback from stellar winds, supernovae and Ac-
tive Galactic Nuclei (AGN) and black hole accretion. Different empirical models for the
HI halo mass MHI(M) have been proposed (e.g. Bagla, Khandai, and Datta (2010),
Villaescusa-Navarro, Genel, et al. (2018), Baugh et al. (2019)). The expectation is a lin-
ear relation between halo DM mass and HI mass, above a certain mass threshold, since
low mass haloes are not expected to host large amounts of HI (due to astrophysics pro-
cesses like tidal stripping and photo-ionization). The more recent and complete model is
the one proposed in Spinelli et al. (2019) and it is the one used here the semi-empirical
form fitted on hydro-dynamical simulations is

MHI(M) = M

a1

(
M

1010

)β
e
−
(

M

Mbreak

)α
+ a2

 e−
(
Mmin
M

)0.5

; (2.5)

see Table 2.3 for the values of parameters. At low-mass the relation is asymptotically

z a1 a2 α β
log10(Mbreak) log10(Mmin)

(h−1 M�) (h−1 M�)
0 0.42 8.7 · 10−4 −3.7 · 10−5 −0.70 12.1 11.4
1 3.8 · 10−3 1.6 · 10−3 0.24 1.70 8.30 −1.3
2 5.8 · 10−4 1.5 · 10−3 0.52 0.63 11.66 −3.11
3 1.7 · 10−3 4.4 · 10−4 0.47 0.23 12.30 −2.23
4 1.7 · 10−3 3.4 · 10−4 0.55 0.19 12.26 −2.75
5 5.2 · 10−3 −5.5 · 10−4 0.05 0.04 12.20 −3.71

Table 2.3: Coefficients for HI mass (2.5).

scale-free (MHI ∝ Mβ), with a tiny though not vanishing offset (a2). The exponential
cut-off accounts for the absence of HI in high-mass haloes, because of tidal stripping
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and photo-ionization (Tvir ∼ 104 K for Mvir ∼ 1014 h−1M�). Equation (2.5) fits the
results from hydrogen simulations at several redshifts illustrating the stochastic relation
between Mh and MHI; see Fig. 2.9.

Figure 2.9: HI halo mass for different redshift, according to equation (2.5) and to
Table 2.3.

To quantify the scatter of the MHI(M), in Fig. 2.10 the density distribution of the
HI mass hosted by haloes of different mass, at different redshifts, is shown (Spinelli et
al., 2019). In red, the semi-analytical model in equation (2.5).

The neutral hydrogen density is defined as

ΩHI(z) = ρHI(z)
ρc,0

, (2.6)

and it is approximately constant with redshift, assuming a value of ΩHI ≈ 10−3. In Fig.
2.11, the abundance of neutral hydrogen from several observational sources is shown.

Several attempts have been made to fit the observations taking into account many
of the physical processes involved. One can obtain the mean HI density parameter
averaging the HI mass relation MHI(M) over the halo mass function distribution n(M),
i.e.

ΩHI(z) = 1
ρc,0

∫ ∞
0

n(M, z)MHI(M, z)dM, (2.7)

At higher redshift, the model predicts a clear decrease of ρHI(z) with respect to the
observational data (bottom of Fig. 2.11). This trend is shared by independent semi-
analytic models (e.g. Lagos et al. (2014)), while hydro-dynamical simulations generally
predict an opposite trend or significantly weaker evolution (e.g. Villaescusa-Navarro,
Genel, et al. (2018)). At high redshift, the observational measurements are based on
Damped Lyman-α systems (DLα): although the physical origin of these systems is still
debated, the measurements based on these objects are robust.
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Figure 2.10: Scatter of MHI(M) from hydrodynamical simulations. In red the fit of
equation (2.5). From Spinelli et al. (2019).

According to Villaescusa-Navarro, Genel, et al. (2018), the HI bias function bHI(z)
can be obtained by the halo mass function n(M, z) (equation (1.84)), the halo HI mass
MHI(M) (equation (2.5)) and the bias b(M) (equation (1.85)) as

bHI(z) = 1
ρc,0ΩHI(z)

∫ ∞
0

n(M, z)b(M, z)MHI(M, z)dM =

=
∫∞

0 n(M, z)b(M, z)MHI(M, z) dM∫∞
0 n(M, z)MHI(M, z) dM .

(2.8)
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Figure 2.11: (Top) cosmic HI density ΩHI measurements plotted as a function of
redshift from different sources. The linear weighted fit of all ΩHI measurements and its
95% confidence interval is shown as a black line with grey area. The blue dash-dot line
shows the powerlaw fit of all measurements. From Hu et al. (2019). (Bottom)the trend
of MHI(M) described in equation (2.5) with respect to the observations. A clearly
descreasing evolution with redshift is shown. From Spinelli et al. (2019).

Remark that the MHI(M) proposed in this work is valid in the range of halo masses
probed by the simulations, so 2 × 109 h−1M� < M < 1015 h−1M�. The integration
boundaries in equation (2.8) are fixed according.

The halo bias b(M) is computed as follows. Firstly the mass variance σ(M) was
computed according to equation (1.64) using the linear matter spectrum computed with
CAMB (for CDM) and eventually corrected (for WDM, see equation (1.58)). Sheth Mo
Tormen bias b(M) (equation (1.85)) is then obtained using the ΛCDM value for δc. It
is shown in Fig. 2.13. The bias computed are reported in Table 2.4, along with the HI
density, computed according to equation (2.7). There is not a clear difference between
the bias computed for CDM and WDM particles: one can notice that in general the lower
is the dark matter mass and the higher is the bias at high redshift, but the differences
are less than 1 percent and therefore the three models can not be distinguished. The two
CDM quantities are compared with the ones computed in Villaescusa-Navarro, Genel,
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et al. (2018): here the bias is calculated as

bHI(k) =
√
PHI(k)
Pm(k) . (2.9)

The values on large scales (small k) should be equal to the linear HI bias computed above;
small corrections are interpreted as box-size effect. This assumption is in agreements
with the results of Anderson et al. (2018) and Springel et al. (2018).

Figure 2.12: Mass variance computed for redshifts 0 ≤ z ≤ 5, depending on the mass,
in ΛCDM cosmology. The differences with the ones for a ΛWDM cosmology are not
visible and so the corresponding figures are not reported.

Figure 2.13: Dark matter bias computed for redshifts 0 ≤ z ≤ 5, depending on the
mass M (left) and on ν (right), according to the Sheth, Mo, Tormen (2001) model, for
a ΛWDM cosmology.
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mWDM z 0 1 2 3 4 5

� keV (CDM)

bHI 1.03 1.45 1.89 2.31 2.77 3.21
ΩHI · 103 0.43 0.41 0.23 0.13 0.07 0.04
bth

HI 0.84 1.49 2.03 2.56 2.82 3.18
Ωth

HI · 103 1

2 keV bHI 1.04 1.46 1.90 2.33 2.81 3.28
ΩHI · 103 0.43 0.41 0.23 0.13 0.07 0.04

3 keV bth
HI 1.04 1.45 1.90 2.32 2.79 3.24

ΩHI · 103 0.43 0.41 0.23 0.13 0.07 0.04

Table 2.4: Bias bHI and ΩHI computed for WDM scenario.

2.3 HI Monte Carlo simulations

Monte Carlo sampling techniques are applied to the dark matter catalogues, to ob-
tain a synthetic HI catalogue. These simulations are performed with two methods: a
parametric model and a non-parametric model. Remark the one-to-one correspondence
between DM and HI haloes. For each catalogue, 100 realization of HI distribution have
been simulated.

Parametric model. Given a dark matter halo of mass Mh, a Gaussian probability
density function N (µHI, σ

2
HI) is defined with mean µ = MHI(Mh) given by equation

(2.5) and variance σ2
HI = b2HIσ

2(Mh) given by equations (2.8) and (1.64). The final HI
catalogue is obtained by the standard inverse transform sampling method.

Non-parametric model. Instead of inversion sampling, a Monte Carlo sampling can
be performed directly from the mass relation measured in HI-DM hydro-dynamical sim-
ulations, interpreted as two-dimensional probability distribution function p(Mh,MHI).
Given a dark matter halo of mass Mh, the corresponding conditional pdf pHI(MHI|Mh)
of Fig. 2.10 is used for a new inverse transform. the procedure is illustrated in Fig. 2.14
for redshift z = 4.

Figure 2.14: Conditional pdf (left) and cdf (right) ofMHI, for fixed dark matter mass
Mh. Continuous line for the parametric model and dashed for the non-parametric one.
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Compared to the (Gaussian) sampling based on the parametric model of MHI(M),

1. it is no more necessary to use a semi-analytical model such as the one in equation
(2.5), whose expression can not reproduce correctly the amount of neutral hydrogen
in the Universe at high redshifts,

2. in the semi-analytical model a cut-off for small dark matter masses is present
according to (2.4), but there is not indication on the dark matter halo maximum
mass to host a neutral hydrogen distribution; with the non-parametric model, the
probability of obtaining an HI halo for large DM masses is intrinsically vanishing,

3. for DM haloes with intermediate masses, the HI mass is strictly related to the
physics of the processes accounted for by the simulation, which is in general more
reliable.
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Chapter 3

21 cm Intensity Mapping

3.1 Temperature maps: algorithm

The three-dimensional HI realizations simulated in Chapter 2 are used to create
two-dimensional maps of temperature, as follows:

1. The HI density field is resampled on a Cartesian grid of 10243 cells using the CIC
mass assignment scheme already described in Chapter 2. A finer grid e.g. of 20483

cells as in Villaescusa-Navarro, Genel, et al. (2018), whose cells are comparable to
the virialization radius of an HI halo, would be more appropriate but computa-
tionally expensive for this preliminary work.

2. In order to observe the radiation emitted at redshift z a slice of the HI density
field with comoving width d is selected to reproduce the appropriate frequency
bandwidth. For the SKA-1 survey, with frequency resolution is δf = 1 MHz the
relation f(z) = f0/(1 + z) between the observed and rest-frame frequencies f and
f0 yields the limits of the redshift range

z − δzi = f0
f(z) + δf/2 − 1, z + δzf = f0

f(z)− δf/2 − 1, (3.1)

corresponding to a comoving width

d = χ(z + δzf)− χ(z − δzi) =
∫ z+δzf

z−δzi
c

dz
H(z) , (3.2)

where χ(z) is the comoving radial distance. The HI mass densities ρHI(x) are
obtained dividing each three-dimensional cell by the volume of the cell itself.

3. The slice is then projected onto a two-dimensional grid. A weight is associated to
each grid points along the line-of-sight. One can choose, for example, to assign a
larger weight to closer points on the line-of-sight, taking into account the spectral
resolution.
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4. The HI densities are transformed to brightness temperature through equation
(1.97), written in a more convenient way as

δTb(x) = 189h H0
H(z)(1 + z)2 ρHI(x)

ρc
mK. (3.3)

5. To account for the angular resolution, the two-dimensional grid is convolved with
a Gaussian filter of rms-variance

σθ(z) = θ χ(z)
2
√

2 ln 2
, (3.4)

where θ is the desired angular resolution. For intensity mapping studies, Bull et
al. (2015) showed that the best approach is via single-dish observations, for which
the angular resolution is given by

θ = λ(z)
D

= λ0(1 + z)
D

, (3.5)

with D the diameter. For the single dish for SKA experiments is reported in
Table 1.2, according to redshift: for z = 1, 2 SKA-MID is considered (D = 15m),
for z = 3, 4, 5 SKA-LOW is considered (D = 35m). Table 3.1 summarizes the
parameters for 1 ≤ z ≤ 5. The procedure is completely general and can therefore
be applied also to other intensity line surveys.

z f (MHz) d (h−1 Mpc) Nslices σθ (h−1 Mpc)
1 710.0 4.75 21 27.51
2 473.3 6.30 15 64.56
3 355.0 7.45 13 45.22
4 284.0 8.38 11 63.73
5 236.7 9.21 10 82.90

Table 3.1: Parameters used to create maps of temperature, according to equations
(3.2) and (3.4).

For larger redshifts, the slice width necessary to obtain the desired frequency reso-
lution increases: an higher number of HI haloes are therefore needed to attain the same
level of accuracy. Large value of the Gaussian filter variance lowers the resolution of
the maps, being comparable to the box-size. Catalogues at redshift z = 0 were not
considered, since the projection is geometrically meaningless.

3.2 Intensity maps

The intensity maps in ΛCDM and ΛWDM cosmologies at z = 1, 2, 3, 4, 5 i.e. the
relative temperature fluctuations (δTb − δT b)/σδTb are shown in Fig. 3.1.
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Figure 3.1: Maps of intensities for redshifts (from top to bottom) 1 ≤ z ≤ 5 of the
same slice.
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The resolution is progressively decreasing at higher redshifts. A remarkable exception
is the map at z = 3, due to the change of parameters from SKA-MID to SKA-LOW:
being the rms-variance (3.4) proportional to D−1, at z = 3 SKA-LOW parameters are
used and therefore the resolution is improved. Nevertheless, even if only one realization
of HI distribution is considered here, some difference is already visible in the three
models at z = 1. Large-scale structure traced by HI becomes more sharpened at lower
redshifts, reflecting the evolution of the underlying filamentary structure discussed in
Chapter 2. It is worth noticing that the values of temperature fluctuations are for the
most part positive, i.e. δTb > δT b, meaning that the hydrogen line is in emission and
not in absorption according to equation (1.97) and to the post-reionization phase, which
occurs in the redshift range 0 . z . 5.

For each redshifts, five not-adjacent slices have been considered in order to avoid a
cross-correlated signal. For each slice, only 50 maps of intensities have been computed,
due to the high computational costs required by the map-making algorithm.
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Chapter 4

Minkowski Functionals analysis

4.1 Definition
A mathematically well-established technique to quantify the morphology of the large-

scale structure, completing the information obtained using cumulants and correlation
functions, is based on the Minkowski functionals (MFs) V (d)

k , integral measures which
generalise the notion of volume accounting for the content, shape (geometry) and con-
nectivity (topology) of spatial patterns. In two dimensions, the MFs of a continuous
body correspond to its surface area V0, perimeter V1, and the Euler characteristic V2
which accounts of the number of isolated regions minus the number of holes. MFs were
first introduced in cosmology by Mecke, Buchert, and Wagner (1994), generalizing the
seminal study by Gott, Melott, and Dickinson (1986) on the topology of the large-scale
structure based on the genus curve. The power of MFs originates in the characterisation
theorem Hadwiger (1957), which proves that for any convex sets in d dimensions and,
as an extensions, for the convex ring of all unite unions of convex bodies, there exist
only d+ 1 linearly independent measures (the MFs) that preserve additivity, motion in-
variance under Galilean transformations, and conditional continuity under the Hausdorff
measure. These properties

1. assure that these global functionals can be obtained by summing up their local
contributions, with a consequent computational effort always of order O(N) for N
sources, unlike n-point correlation functions for which it is O(N logN) for n = 2
and O(Nn) for n ≥ 3;

2. support the principal kinematical formula, which provides an explicit prescription
to deal with irregular boundaries of the survey;

3. guarantee convergence when dealing with iterative smoothing, the result being
robust against short-scale spatial irregularities.

It is worth to stress the importance of the whole set of MFs and so of the study of the
morphology of structures. For illustration, let us consider the patterns in Fig. 4.1a and
4.1b: both figures have the same number of objects (3 simply connected sets) and they
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(a) (b) (c) (d)

Figure 4.1: A representation of a two-dimensional distribution. Figures 4.1a and 4.1b
share the same number of isolated regions and holes and the same area, but not the
same perimeter. Vice versa, Figures 4.1c and 4.1d have the same area and perimeter,
but a different Euler characteristic.

have been constructed with the same area A. Namely, the MFs V0 (area) and V2 (Euler
characteristic) will not be able to distinguish the two figures. Conversely, V1 (perimeter)
is different in the two cases. Saying R′ the radius of the three identical disks in Fig.
4.1a, and R (r) the radius of the inner (outer) disks in Fig. 4.1b (let us consider n = 3
inner disks and N = 4 outer disks), the equivalence of the surface areas of the two sets
reads

nπR′2 = nπR2 + nNπr2, (4.1)
giving R′ =

√
R2 +Nr2, the condition to obtain the same perimeter is

2πR′ = 2πR+ 2Nπr = 2π
√
R2 +Nr2, (4.2)

which reads
R = 1−N

2 r, (4.3)

which has no positive solution for N > 1. Vice versa, different objects with the same
perimeter will be distinguish from the area. The Euler characteristic gives information
about the number of the objects: consider the shapes in Fig. 4.1c and 4.1d, where all the
objects have been generated with the same area and perimeter. In this case, the Euler
characteristic (which is equal to the number of objects over a given threshold minus the
number of objects under the threshold), will be different for each frame and therefore V2
can distinguish between the two.

Being the 21 cm IM highly non-Gaussian, MFs are well suited for their analysis.
Remark that MFs contain implicitly information about higher order moments (n-point
correlation functions), which enables one to draw conclusions about the statistical spatial
properties of patterns not accessible by two-point statistics (the power spectrum informs
only about the amplitude of the Fourier modes of a random field, while all the non-
Gaussian information is in the phases).

Consider a d-dimensional random field f , with mean 〈f〉 = 0 and variance σ2
0 ≡

〈
f2〉.

MFs are defined for the excursion set of f , namely

Qν = {Ω : f(Ω)/σ0 > ν} . (4.4)
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According to Matsubara (2003), for a weakly non-Gaussian field in d-dimension, MFs
V

(d)
k (ν) reads

V
(d)
k (ν) = 1

(2π)(k+1)/2
ωd

ωd−kωk

(
σ1√
dσ0

)k
e−ν

2/2 {Hk−1(ν) (4.5)

+
[1

6S
(0)Hk+2(ν) + k

3S
(1)Hk(ν) +k(k − 1)

6 S(2)Hk−2(ν)
]
σ0 +O(σ2

0)
}
,

written in terms of Hermite polynomials Hn(ν)

H−1(ν) =
√
π

2 e
ν2/2erfc

(
ν√
2

)
,

H0 = 1,
H1(ν) = ν, (4.6)
H2(ν) = ν2 − 1,
H3(ν) = ν3 − 3ν,
H4(ν) = ν4 − 6ν2 + 3,

of the volume of the k-dimensional unitary sphere ωk ≡ πk/2/Γ(k/2 + 1), giving ω0 = 1,
ω1 = 2 and ω2 = π in two dimensions, and the skewness parameters S(i) defined by

S(0) ≡ 〈f3〉
σ4

0
, (4.7)

S(1) ≡ −3
4
〈f2(∇2f)〉
σ2

0σ
2
1

, (4.8)

S(2) ≡ − 3d
2(d− 1)

〈(∇f) · (∇f)(∇2f)〉
σ4

1
, (4.9)

which characterize the skewness of fluctuating fields and their derivatives. For a Gaus-
sian field, the skewness parameters are all zero and in equation (4.5) the second line is
vanishing as well.

The first line represent the case of a Gaussian field and the second one introduce
a first-order deviation from Gaussianity, as reported in Hikage, Komatsu, and Matsub-
ara (2006) for the CMB analysis. IM at 21 cm is non-Gaussian at low redshift, but it
is possible to understand at which redshift it has been Gaussian looking at the appro-
priate frequency: SKA will give access to a redshift of z = 27 at the beginning of the
reionization epoch.

This thesis aim to study and compare the intensity maps obtained in Chapter 3 and
so it focus on the d = 2 case, giving k = 0, 1, 2. The quantity σj is given by

σ2
j ≡

1
4π
∑
l

(2l + 1) [l(l + 1)]j ClW 2
l , (4.10)

where W is a window function and quantify the effect of the experimental beam transfer
function, the pixelization window function, and the extra Gaussian smoothing. The
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angular power spectrum in two-dimensions is defined as usual as

〈alma∗l′m′〉 = Clδll′δmm′ , (4.11)

where the harmonic coefficients alm define the usual spherical harmonic expansion of the
field f in the direction Ω = (ϑ, φ), i.e.

f(Ω) =
∑
lm

almYlm(Ω). (4.12)

For intensity mapping, the random field f is the standardized temperature fluctuations
f(z) = f0/(1 + z).

The skewness parameters (4.7), (4.8) and (4.9) can be expanded into spherical har-
monics and written in terms of the angular bispectrum Bm1m2m3

l1l2l3
≡ 〈al1m1al2m2al3m3〉.

The final expression is Matsubara (2003)

S(0) = 1
4πσ4

0

∑
limi

Bm1m2m3
l1l2l3

Gm1m2m3
l1l2l3

Wl1Wl2Wl3 , (4.13)

S(1) = 3
16πσ2

0σ
2
1

∑
limi

l1(l1 + 1) + l2(l2 + 1) + l3(l3 + 1)
3

×Bm1m2m3
l1l2l3

Gm1m2m3
l1l2l3

Wl1Wl2Wl3 , (4.14)

S(2) = 3
8πσ4

1

∑
limi

{ [l1(l1 + 1) + l2(l2 + 1)− l3(l3 + 1)] l3(l3 + 1) + (cyc.)
3

}
×Bm1m2m3

l1l2l3
Gm1m2m3
l1l2l3

Wl1Wl2Wl3 , (4.15)

where (cyc.) means the addition of terms with the same cyclic order of the subscripts
as the previous term and Gm1m2m3

l1l2l3
is the Gaunt integral

Gm1m2m3
l1l2l3

≡
∫
dn̂Yl1m1(n̂)Yl2m2(n̂)Yl3m3(n̂). (4.16)

The summation over mi can be done by using

Bm1m2m3
l1l2l3

= Gm1m2m3
l1l2l3

bl1l2l3 . (4.17)

where bl1l2l3 is the reduced bispectrum. The power spectrum is

Cl = 2
π

∫ ∞
0

k2dkP (k)g2
T l(k), (4.18)

with gT l(k) is the normalized Bessel transform of the selection function S(r) (Mo, van
den Bosch, and White, 2010)

gT l(k) =
∫
S(r)jl(kr)r2dr∫
S(r)r2dr . (4.19)

48



Approximating S(r) by a Dirac delta function δ(D)(r − d∗), where d∗ is the comoving
distance of IM (the slice selected in Chapter 3). Then equation (4.18) becomes

Cl = 2
π

∫ ∞
0

k2P (k)jl(kd∗)2dk. (4.20)

Using the power spectrum computed from the dark matter halo catalogues, it is possible
to compute Cl and therefore the express analytically the MFs. It is important to stress
that this third-order model is not sufficient to describe the highly non-Gaussian field
observed in 21 cm IM. However, one can fairly expect that it is well-suited for IM at
sufficiently low frequency, i.e. probing very high redshifts. The Fig. 4.2 illustrate the

Figure 4.2: Intensity maps and MFs for z = 1.
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Figure 4.3: Referring to Fig. 4.2, MFs comparison for ΛCDM and ΛWDM with
m = 2 keV, at z = 1.

Figure 4.4: Referring to Fig. 4.12, MFs comparison for ΛCDM and ΛWDM with
m = 2 keV, at z = 3.

highly non-Gaussian temperature field simulated at z = 1 for the three cosmologies
along with the corresponding MFs of the standardized temperature as function of the
threshold ν. Increasing from negative to positive values, only the high-temperature
regions contribute to the surface V0, which therefore decreases. V1 and V2 have a less
trivial dependence, only qualitatively resembling the curves expected for a Gaussian field.
The negative values of V2 corresponds to temperature underdensities, which trace the
cosmic voids, while positive peaks (especially visibles in maps at z ≥ 3; see Appendix)
corresponds to excess of temperatures, which trace the haloes with higher mass up to
about 1012M�.

4.2 Analysis

Minkowski functionals have been computed for the intensity maps obtained in Chap-
ter 3 using minkfncts2d libraries (Mantz, Jacobs, and Mecke, 2008). For every redshift
and every cosmology, 50 Monte Carlo simulations of a single slice have been computed.
The mean and the standard deviation of the MFs have been calculated and the results

50



Figure 4.5: Intensity maps and MFs for z = 1 for a smaller regions.

are shown in Figure 4.2 for z = 1. For the two redshifts, in Figures 4.3 (z = 1) and 4.4
(z = 3), the comparison between the ΛCDM and ΛWDM with m = 2 keV cosmologies
are reported. We decided not to show the ΛWDM with m = 3 keV cosmology since the
differences with the two other models are not visible. Even though the error bars of the
differences between the cosmologies calculated by quadratic propagation (bottom panels
in Figure 4.3 and 4.4) are always compatible with zero, e.g. MFs can not identify the
different cosmologies, there is room for interesting remarks. First, in Figures 4.4 and
the analogues figures in Appendix there is a trend for V0 at low threshold: the difference
between the ΛCDM and the ΛWDM has a negative minimum and immediately after
a positive maximum. The minimum can be interpreted as a signature of voids, which
in ΛWDM are typically larger than in ΛCDM due to the larger free-streaming length
of WDM compared to CDM (rigorously infinite). In Appendix the results of the same
analysis for redshifts z = 2, 4, 5 and for all the slices analyzed are reported.

Consider the Figure 4.3, the differences between the two DM models is more evident
than for other redshifts and slices, especially for the Euler characteristic. Looking at
the corresponding intensity maps, the differences are remarkable near the denser regions
(left-bottom quarter of the figure). Consequently, one can think about measuring MFs
only in regions where the emission temperature is way above the mean value. An in-
teresting example is reported in Figure 4.5, where only a portion of the original maps
have been analyzed, showing a more evident discrepancy for ΛCDM and ΛWDM (m = 2
keV) cosmologies. A systematic algorithm to select the appropriate regions has not been
defined yet and not all the maps present the same property. It will be matter of further
studies.
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Figure 4.6: MFs for z = 1 considering all the slices analyzed.

Finally, all the MFs computed for a given redshift have been weighted and the results
are shown in Figure 4.6 (in Appendix the analogues figures for redshifts z = 2, 3, 4, 5).
Since the slices are not adjacent, their correlation is reduced; averaging all of them
provides a first rough estimate of the MFs for larger surveys. The perfect agreement
between the two cosmologies suggests even more the necessity to investigate the small
scales structure to get a better insight into the dark matter sector.

Interestingly enough, while for redshift z < 2 the Euler characteristic V2 is smoothing
decreasing with threshold, at higher redshift small but robust wiggles not confused with
noise appear for positive large values of the threshold (2 < ν < 5). They suggest
a spongy-like topology of the temperature field in the high-density regions, i.e. holes
appear within the largest peaks of temperature. This is a signature of a non-trivial
reionization process, which seems however independent of the nature of dark matter:
at these values of threshold, the relative difference between CDM and WDM intensity
maps are always consistent with zero.
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Conclusion and future
perspectives

During this thesis several statistical tools have been explored and developed. Firstly,
Monte Carlo simulations have been implemented using a standard parametric method
and a new non-parametric method that better grasps the physical processes occurring
during the reionization as described by hydrodynamical simulations, allowing us to ob-
tain neutral hydrogen catalogues from both cold and warm dark matter haloes cata-
logues. Then an algorithm to create two-dimensional intensity maps has been realized
flexible enough to be applied to large cosmological volumes and to every emission line
and dedicated survey, accounting for the specific spectral response function and angular
resolution. Indeed this algorithm can be used both for cosmological and astrophysical
studies. The morphology of matter or gas distribution is completely described using
Minkowski functionals, which are able to provide information and constraints on differ-
ent cosmologies.

Intensity mapping applied to 21 cm emission line is a very promising research field.
A large number of radio-telescopes are devoted to survey large portions of the sky as
LOFAR (van Haarlem et al., 2013) and SKA-1 (Square Kilometre Array Cosmology
Science Working Group et al., 2018). The preliminary simulations work seems to be
able to provide strong information and constraint on cosmology and astrophysics, spacing
from primordial non-Gaussianity to dark matter particles and models.

Several improvements of this work are possible. The HI halo mass, that we used to
simulate HI haloes starting from dark matter catalogues, is not completely known so far
(Spinelli et al., 2019): as reported in Chapter 2, at large redshift the function does not
reproduce the correct amount of HI (measured using several astrophysical bounds) and
its evolution is not totally understood yet. The resolution of the simulations could be also
improved using a finer grid with cell size comparable to the virialization radius of an HI
halo: the next step would be based on simulations at higher resolution, requiring a much
larger computational power and resources. This operation would upgrade the quality
of the maps. The rms-variance of the Gaussian smoothing depends on (1 + z)/D (Bull
et al., 2015) where D is the diameter of the single dish and its value becomes comparable
to the size of the intensity map we used. Therefore, considering catalogues with a larger
box-size would improve the resolution of the maps and the analysis consequently.

This thesis has not addressed one major problem of the data analysis, i.e. the con-
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tamination of the signal by foregrounds (Cunnington et al., 2019). Regardless the clean-
ing technique (Villaescusa-Navarro, Alonso, and Viel, 2017), some residual foreground
might still contaminate the final maps; a complete analysis of MFs should account for
this occurrence by including in the final maps a controlled fraction of foregrounds. Their
impact as function of the threshold level is not trivial and could be degenerate with a
potential, genuine signature of the WDM. The problem of modeling the galactic and
extra-galactic foregrounds is an open research field in intensity mapping studies, which
so far produced several models and cleaning techniques. The cross-correlations with
other emission lines, such as [CII] or [OIII], and with galaxy surveys (Padmanabhan,
Refregier, and Amara, 2019) such as Euclid (Laureijs et al., 2011) would be decisive to
study the reionization epoch and the HI evolution.
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Appendix

The MFs comparison for different slices at redshifts z = 1 and z = 3 are shown in
Figures 4.7 and 4.13. The complete results presented in Chapter 4 are here shown for
redshifts z = 2 (Figures 4.8, 4.9, 4.10 and 4.11), z = 3 (Figures 4.12, 4.13 and 4.14)
z = 4 (Figures 4.15, 4.16, 4.17 and 4.18) and z = 5 (Figures 4.19, 4.20, 4.21 and 4.22).

Figure 4.7: MFs comparison for ΛCDM and ΛWDM with m = 2 keV, at z = 1, for
different slices.
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Figure 4.8: Intensity maps and MFs for z = 2.
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Figure 4.9: Referring to Fig. 4.8, MFs comparison for ΛCDM and ΛWDM with
m = 2 keV, at z = 2.

Figure 4.10: MFs comparison for ΛCDM and ΛWDM with m = 2 keV, at z = 2, for
different slices.

Figure 4.11: MFs for z = 2 considering all the slices analyzed.
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Figure 4.12: Intensity maps and MFs for z = 3.
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Figure 4.13: MFs comparison for ΛCDM and ΛWDM with m = 2 keV, at z = 3, for
different slices.

Figure 4.14: MFs for z = 3 considering all the slices analyzed.
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Figure 4.15: Intensity maps and MFs for z = 4.
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Figure 4.16: Referring to Fig. 4.15, MFs comparison for ΛCDM and ΛWDM with
m = 2 keV, at z = 4.

Figure 4.17: MFs comparison for ΛCDM and ΛWDM with m = 2 keV, at z = 4, for
different slices.

Figure 4.18: MFs for z = 4 considering all the slices analyzed.
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Figure 4.19: Intensity maps and MFs for z = 5.
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Figure 4.20: Referring to Fig. 4.19, MFs comparison for ΛCDM and ΛWDM with
m = 2 keV, at z = 5.

Figure 4.21: MFs comparison for ΛCDM and ΛWDM with m = 2 keV, at z = 5, for
different slices.

Figure 4.22: MFs for z = 5 considering all the slices analyzed.
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