
UNIVERSITÀ DEGLI STUDI DI PADOVA
Department of Information Engineering

Master’s Degree in Computer Engineering

Master Thesis

A Local-Search Approach
to Silhouette-Based Clustering

Supervisors Candidate

prof. Andrea Alberto Pietracaprina Davide Peressoni

prof. Geppino Pucci 2008571

prof. Fabio Vandin

dott. Ilie Sarpe

Academic Year 2021/2022

December 12, 2022

i

Abstract

Clustering aims to split a set of objects into k groups (called clusters),
in such a way each cluster contains similar objects and dissimilar objects
find place in different clusters. The silhouette coefficient is a metric which is
widely used to evaluate the goodness of a clustering.

In this thesis are presented some methods to solve the clustering problem
by optimizing the silhouette. The optimization is done by means of local
search techniques.

The proposed algorithms underwent an exhaustive phase of testing, in
comparison with the standard ones, on both real and synthetic datasets.
From the results we can see how one of the proposed algorithms can be
competitive with Lloyd’s algorithm for k-means and also overcame other
standard algorithms such as PAM for k-medoids.

ii

Sommario

L’obiettivo del clustering è suddividere un insieme di oggetti in k par-
tizioni (dette cluster), in modo che ogni cluster contenga oggetti simili e
oggetti dissimili trovino posto in cluster diversi. La silhouette è una metrica
molto usata per validare la bontà di un clustering.

In questa tesi sono presentati alcuni metodi per risolvere il problema
del clustering, ottimizzando la silhouette. L’ottimizzazione viene effettuata
grazie all’uso di tecniche di ricerca locale.

Gli algoritmi proposti sono stati sottoposti ad un’esaustiva fase di verifica
sperimentale, comparandone i risultati con quelli degli algoritmi standard,
sia su dataset reali che artificiali. Dai risultati possiamo vedere come uno
degli algoritmi proposti può essere competitivo con l’algoritmo di Lloyd
per k-means e addirittura battere altri algoritmi standard come PAM per
k-medoids.

Contents

Contents iii

List of Figures v

List of Tables v

List of Algorithms vi

1 Introduction 1
1.1 Clustering . 1
1.2 Local search . 2
1.3 Previous work . 3
1.4 Summary of contributions . 5
1.5 Structure of the thesis . 6

2 Preliminaries 9
2.1 Clustering . 9
2.2 Silhouette . 10
2.3 Clustering problems . 14

3 Algorithms for Silhouette-Based Clustering 19
3.1 The naïve algorithm . 19
3.2 Introducing memoization . 22
3.3 Using coresets . 24

4 Experimental Evaluation 31
4.1 Differences among proposed local search algorithms 33
4.2 Performance comparison of SampleOptimization 36

iv Contents

4.3 Using a different sampling technique 39
4.4 Refinement with two-pass . 41

5 Conclusions 43
5.1 Future works . 44

References 47

List of Figures

1.1 Hill climbing halts in local maximum. 3

2.1 Different distance functions give different clusterings. 10
2.2 Example of clustering of points in a bi-dimensional Euclidean space. . . 11

4.1 Evolution of the silhouettes on dataset Selfback with SampleOptimization. 35
4.2 Dependence from t of the number of iterations r with SampleOptimization. 38
4.3 Median performances on dataset Radius with two sampling techniques. 40
4.4 Median performances on dataset Gaussian with two sampling techniques. 41
4.5 Median performances on dataset Higgs with two sampling techniques. . 42

List of Tables

4.1 Proposed algorithms used in the experiments. 31
4.2 Datasets used in the experiments. 32
4.3 Comparison of the proposed algorithms on dataset Radius, using k = 5

and t = 5. 34

4.4 Comparison of the proposed algorithms on dataset Selfback, using k = 9
and t = 5. 34

4.5 Comparison of the proposed algorithms on dataset Cloud, using k = 10
and t = 5. 34

4.6 Median performances on dataset Radius, using k = 10. 36
4.7 Median performances on dataset Gaussian, using k = 10. 37
4.8 Median performances on dataset Higgs with Manhattan distance, using

k = 10. 38
4.9 Median performances on dataset Radius with two-pass, using k = 10. . 42

List of Algorithms

1 Silhouette computation. 12
2 sil_memo: Silhouette computed exploiting weights. 13
3 sample_pps: Probability Proportional to Size sampling. 13
4 Approximated silhouette computation. 14
5 Lloyd’s algorithm for k-means. 16
6 k-means++. 16
7 Partitioning Around Medoids (PAM) for k-medoids. 17

8 Naïve implementation of the local search. 20
9 ExactMemoization: Optimize exact silhouette with memoization. . . 23
10 ExactCoresetMemo: Optimize exact silhouette with coreset and mem-

oization. 25
11 ApproxCoresetMemo: Optimize approximated silhouette with coreset

and memoization. 27
12 SampleOptimization: Optimize on the sample. 29

Chapter 1
Introduction

1.1 Clustering

Clustering is a common technique of unsupervised machine learning, which comes
from statistical data analysis. The purpose of clustering is to split a set of objects
into k groups (called clusters), in such a way each cluster contains similar objects
and dissimilar objects find place in different clusters [AB84]. Clustering is very
useful when we want to classify a set of objects without knowing the categories
(labels) in advance. Hence, it is an important tool used in a wide spectrum of
applications areas: e.g. image processing, object recognition, data compression,
information retrieval, data mining, bioinformatics, network analysis, wireless sensor
networks. [AR14]

1.1.1 Silhouette

There is a metric which is widely used [HPK11; TSK16] to evaluate the quality of
a clustering: the silhouette coefficient [Rou87]. This is an internal measure, which
means it does not depend on external information, but only on the clustering itself.
The silhouette ranges from −1 to 1, whereas −1 indicates a low-quality clustering,
whilst value towards 1 are a sign of a good clustering where close (similar) objects
are in the same cluster and distant (dissimilar) objects in different clusters. In fact,
taking into account not only the distance of a point from its cluster, but also with
other clusters, the silhouette is an indicator of both intra-cluster similarity and
inter-cluster dissimilarity.

2 Introduction

1.1.2 Clustering strategies
A clustering method whose objective is to maximize the silhouette, which is the
aim of this thesis, would be interesting since this metric captures both intra-cluster
similarity and inter-cluster dissimilarity. However, it is difficult to achieve because
the actual computation of the silhouette (i.e., of the objective function) is inefficient.
For this reason classical clustering strategies usually involves the optimization of
some simpler metrics. We will review the most common of them in Section 2.3.

An alternative approach to the clustering problem is hierarchical clustering.
In these methods we typically start from the trivial clustering composed of n
single-point clusters. Then we merge the closest clusters (according to the specified
metric) until we found the desired number k of clusters, or another termination
condition is met [Nie16].

1.2 Local search
Local search is a generic method with the aim of solving complex optimization
problems [RN10]. Local search algorithms require the definition of a neighborhood
relation among the possible states of the problem. In fact, they start from a feasible
solution and move step-by-step to a neighbor solution until a goal state is found.
Unfortunately local search does not always return the optimal solution, but it
usually returns a good-enough one.

The local search strategy could be visualized as a connected graph whose nodes
are the states of the problem and the edges represent the neighborhood relation.
The local search starts from a node and moves along the edges to find a goal state.
There are several strategies to choose the neighbor solution to move to, but all use
only the information about neighbor states to make the choice (hence the search is
local).

1.2.1 Hill climbing
The hill climbing is a local search technique which has a greedy approach to the
selection of the next neighbor solution [SG06]. It computes the objective function
for all the neighbor states and moves to the one which maximizes (or minimizes,
for minimization problems) its value. Hill climbing would naturally end when no
improving neighbor is found, but many times it is useful to reduce the number
of iterations setting a termination condition such as the improvement is under a
desired threshold or a fixed maximum number of iterations is reached.

It is easy to see how the main weakness of hill climbing is that it could possibly
get stuck in points which are only locally optimum. An example can be seen in
Fig. 1.1, where the height of each node represents the objective function value of

1.3. Previous work 3

A B F

C E G

D

H

Figure 1.1: Hill climbing halts in local maximum.

the corresponding solution (in a maximization problem). If we start local search
from node A we will move to B because the objective function has a greater value
in B rather than in D. Then we will move, with the same reasoning, to C and
then to E. Since all the neighbors of E (C, D, G and F) have a lower value of the
objective function, hill climbing terminates. However, E is only a local maximum:
the global maximum is H, which could be reached only staring the local search
from F or G.

Many modifications of hill climbing which try to solve this problem are known:
the most famous are restarts, randomization, iterated local search [LMS10] and
simulated annealing [KGV83]. In particular simulated annealing allows, with a
certain probability, to move to a state which worsens the objective function, with
the aim to avoid local optima.

1.3 Previous work
The silhouette, as mentioned before, is widely used to validate a clustering, but it
is not considered during the clustering optimization itself. There is one exception:
when we do not known in advance the number k of clusters a very common technique
is to make some clusterings with various values of k and then take the one with the

4 Introduction

best silhouette [Lle+04]. But even if we use the silhouette to choose a clustering, it
is not involved in the making of that clustering.

An alternative for hierarchical clustering is proposed in [NNA20]. We start
with a cluster for each point, then we compute the ExtASI metric for each possible
merge of two clusters. The ExtASI metric is a convex combination of the silhouette
of the clustering and the ratio of points having positive silhouette. The merge
giving the best ExtASI is retained and the algorithm is reapplied. At the end a
dendogram of the merges is returned; each level has a different value of k and of
ExtASI. The level with the highest ExtASI is selected. Like other hierarchical
clustering techniques, this method is inefficient.

[LPB03] studies a variation of PAM (Partitioning Around Medoids) where the
silhouette is optimized (PAMSIL). Since the resulting algorithm is extremely slow
they tried using the medoid-based silhouette (MEDSIL) instead of the traditional
silhouette. The resulting algorithm is called PAMMEDSIL. MEDSIL differs from
the classical silhouette because it replaces the distance from a point to a cluster
(i.e. the mean distance between a point and all the points of a cluster) with the
distance between that point and the medoid of the desired cluster. Using the
medoid-based silhouette enhances the performances but reduces the optimization
power of the algorithm. Indeed, simplified silhouettes have been proven to be not a
so good estimator of the real silhouette [Alt+21]. To further reduce the complexity
of PAMMEDSIL, FastMSC and FasterMSC [LS22] were recently proposed. They
exploit some tricks from FastPAM and FasterPAM [SR21] to reduce the time
required computing the MEDSIL improvement by memorizing some partial results.

There are some studies in which the silhouette is used to guide the relocation of
the points with the aim of improve an existing clustering. For example in [LRB21]
and [Rob15] we could see two clusterings techniques, applied to the specific task of
vegetation classification, which relocate misclassified points in a way which tries to
maximize the silhouette coefficient. In particular the REMOS algorithms [LRB21]
relocate the points which have a negative silhouette in the nearest cluster (REMOS1
relocates only the point with the worst silhouette, while REMOS2 relocates all
points with negative silhouette). The other algorithm showed is OPTSIL [Rob15]
which moves every point in every cluster and puts the corresponding silhouette in
a priority queue. After each iteration the relocation which is atop of the queue is
chosen as new starting point. This method converges very slowly. Also in [AT07] it
is suggested to use the silhouette values to move misclassified objects in categorical
clustering.

In [SJB17] a strategy is presented to optimize the silhouette using group
search optimizations techniques. These optimization heuristics take inspiration

1.4. Summary of contributions 5

from animal searching behavior [HWS09]. Taking a group of different clusterings
{C(1), C(m)} from the same set of points, we call producer (C⋆) the one which gives
the highest silhouette and divide the remaining into scroungers and rangers. For
each clustering C(i) in the group, a Poisson sample of its points is moved to another
cluster: if the point x ∈ C(i)

a is sampled in a scrounger clustering C(i), it is moved
to the cluster C

(i)
b , of the same clustering, with the same label of the cluster C⋆

b

containing the point in the producer clustering; if instead it is in a ranger clustering
the point is relocated to a random cluster C(i)

c of this clustering. At the end of
each iteration the new producer is selected.

Moreover, there are recent studies focused on applying other animal-inspired
optimization methods to the clustering problem. For example in [Gha+22] two
swarm intelligence optimization techniques are investigated.

Local search has been also used to obtain a bounded approximated solution to
the k-means problem [Kan+04]. Here the local step is the removal of a point from
the set of centers, replacing it with a non-center point. The objective function is
the same as k-means: the sum of all squared distance from each point to its center.

Furthermore, there are also some studies on applying the coreset technique
to solve k-means. This technique, which we will use in Section 3.3, consists of
solving the problem on a small sample (called coreset) of the input and then exploit
this solution to generate a solution for the whole input [Aga+05]. Obviously the
sample (coreset) must be a good representative of the full input for solving that
specific problem. The strategy presented in [FS06] runs Lloyd’s algorithm on the
coreset and after some iterations repetitively doubles the size of the coreset finally
reaching the entire instance; in this way the majority of iterations is done on a
small set of points. A more classical approach is taken by the following algorithms
where, after running a clustering algorithm on the coreset, the centers found on
the coreset are used to find the centers for the whole point set. In [HM04] local
search is used to swap the centers with other points, in [HK05] the points in the
coreset are the center of mass of some chunks in which the dataset was divided.
[FMS07] presents instead an approach were the points are sampled into the coreset
with a probability depending on their distance to current centers: a similar PPS
(Probability Proportional to Size, [Ski16]) strategy is used in [Alt+21] to build the
sample used to approximate the silhouette. A distributed (MapReduce) coreset
approach, for both k-means and k-median, is presented in [MPP19].

1.4 Summary of contributions
This thesis studies a new clustering method which, using a local-search approach,
aims at finding a good solution to the silhouette-based clustering problem, whose

6 Introduction

objective is to compute a clustering with maximum silhouette. We present several
algorithms which implement this method trying to improve performance by deploy-
ing techniques such memoization and the usage of coresets. In particular we show
as, to build the coreset, using a PPS (probability proportional to size) sample is
more effective than a uniform sampling technique. For all the proposed algorithms
we analyzed the theoretical time complexity, and compared their efficiency and
effectiveness (regarding the silhouette of the resulting clustering) with standard
algorithms not explicitly optimizing silhouette (i.e. k-means++, Lloyd’s and PAM)
via an extensive experimental analysis.

Among the proposed algorithms, the one exploiting both memoization and
coresets is indeed competitive with the most common algorithm for center-based
clustering. Indeed it always provides better solutions with respect to those computed
by k-means++. It also gives results similar to Lloyd’s algorithm both in time and
in silhouette. But more importantly it works also with non-Euclidean distances:
for example with Manhattan distance it reaches the results of PAM, but in much
less time.

Another advantages of out approach, with respect to center-based clusterings,
are that it does not require the definition of centers and that it is more scalable.
Indeed, our best algorithm has complexity O(nkt + rk4t2), where n is the number
of points, k the number of clusters, t the expected sample size for each cluster, and
r the number of local-search iterations. It can be noticed the term of the time
complexity which includes the number of iterations r is separated by the term
which includes the dataset size n: this means that for large datasets the number
of iterations is not relevant. This is a great advantage over the previously cited
algorithms, in which n and r are instead multiplied. For reference the complexity
of Lloyd’s algorithm is O(rnk) and FastPAM O(rn2).

1.5 Structure of the thesis
In Chapter 2 we will briefly review the main theoretical concepts that are used in
the thesis. We will provide the formal definition of clustering, of the silhouette
metric, of the relevant clustering problems, and discuss the most popular algorithms
to solve them.

Then, in Chapter 3, we will present our proposed method to solve the silhouette-
based clustering problem using a local-search approach. We present an algorithm
based on a straightforward implementation of the method, and several enhanced
algorithms. All the algorithms are accompanied by a rigorous analysis of their time
complexity and space usage.

After that, in Chapter 4, we will present and comment the results of a suite
of experiments which have been carried out to evaluate our algorithms and to

1.5. Structure of the thesis 7

compare them against some state-of-the-art ones.
Finally, in Chapter 5, we will resume our work and provide some suggestions

for future research.

Chapter 2
Preliminaries

In this chapter we will introduce the clustering problem and discuss some techniques
to solve it and evaluate the quality of the solutions. We will start by formally
defining a clustering, then we will illustrate the most used validation metric: the
silhouette index, along with an algorithm for its approximation. Finally, we will
define what is a silhouette-based clustering, we will talk about a widespread family
of clustering problems, known as the center-based clustering, and we will quickly
review the most famous algorithms for this family.

2.1 Clustering
▷ Definition 2.1 (Metric space). A metric space (U, d) is a set U with a distance
function d : U × U → R⩾0.

The distance function must fulfill these four properties:

Symmetry d(x, y) = d(y, x) ∀ x, y ∈ U ;

Null self distance d(x, x) = 0 ∀ x ∈ U ;

Positivity d(x, y) > 0 ∀ x ̸= y ∈ U ;

Triangular inequality d(x, y) + d(y, z) ⩾ d(x, z) ∀ x, y, z ∈ U .

▷ Definition 2.2 (Clustering). Given a set V ⊆ U from a metric space (U, d), we
can formally define the clustering task as finding a partition C = {C1, C2, . . . , Ck}
of V , that is

• ⋃︁k
i=1 Ci = V ;

• Ci ∩ Cj = ∅ ∀i ̸= j.

10 Preliminaries

The objective of the partition is to gather similar objects in the same cluster and
put dissimilar objects in different clusters.

The distance function has the purpose to represent the dissimilarity between
objects. As can be seen in Fig. 2.1, different distance functions may lead to different
clusterings. In the example, using a distance function focused on color similarity,
we obtain two clusters: one for blue objects, the other for green objects. If we
supply instead a distance function associated to the shape dissimilarity, we expect
a clustering in which a group contains squared objects, and the other circles.

V

C1 C2

C1

C2

color distance

shape distance

Figure 2.1: Different distance functions give different clusterings.

When objects are points in Euclidean space, and Euclidean distance is used,
the interpretation of a clustering becomes quite intuitive as a grouping into well-
separated sets of contiguous points (see Fig. 2.2).

2.2 Silhouette
As said in the introduction (see Section 1.1.1), the silhouette is the most used
metric to validate a clustering. Its relevance relies on the fact that it takes care of
both intra-cluster and inter-cluster distances and, being an internal measure, does
not rely on additional information, other than the clustering itself. We will now
provide the formal definition of this metric (Definition 2.3) and the algorithm to
compute it (Algorithm 1).

▷ Definition 2.3 (Silhouette). Given a clustering C = {C1, . . . , Ck} of V , the
silhouette of a point x ∈ Ci is

s(x) = b(x)− a(x)
max{a(x), b(x)}

2.2. Silhouette 11

V

C1

C2

Figure 2.2: Example of clustering of points in a bi-dimensional Euclidean space.

where a(x) is the mean distance from x to the objects of its cluster, and b(x) the
minimum mean distance of x from the points of another cluster:

a(x) =
∑︁

y∈Ci
d(x, y)

|Ci| − 1 ,

b(x) = min
i ̸=j

∑︁
y∈Cj

d(x, y)
|Cj|

.

Finally, the silhouette of a clustering is the average of the silhouettes of all
points:

s(C) =
∑︁

x∈V s(x)
|V |

.

It is easy to see, from Algorithm 1, how all mutual distances between objects in
V have to be computed in order to obtain the silhouette coefficient. From this we
can say that the silhouette computation has a quadratic complexity Θ(n2) in the
cardinality n = |V | of the point set.

2.2.1 Silhouette approximation
In [Alt+21] a method is shown to compute the silhouette with an approximation
error bounded in high probability, whose complexity is O(nkε−2 log(nk/δ)), where ε
and δ are the parameters governing the approximation error. The algorithm is also

12 Preliminaries

Algorithm 1: Silhouette computation.
Input: clustering C = {C1, . . . , Ck}
Output: silhouette of the clustering C
s← 0
let V := ⋃︁k

i=1 Ci be the set of all points
for i← 1 to k do

if |Ci| > 1 then
foreach x ∈ Ci do // For each point x in the clustering

a← ∑︁
y∈Ci

d(x, y)/(|Ci| − 1)
b← minj ̸=i{

∑︁
y∈Cj

d(x, y)/|Cj|}
s += (b− a)/ max(a, b)

return s/|V |

easily distributable. The idea starts from breaking down the silhouette computation
in two steps: the first step computes the weight of all points (Definition 2.4), the
second computes the silhouette starting from the weights (Algorithm 2).

▷ Definition 2.4 (Weight of a point). Define the weight of a point x with respect
to a cluster Ci as

Wi(x) :=
∑︂

y∈Ci

d(x, y).

We can then compute a(x) and b(x) as

a(x) = Wi(x)
|Ci| − 1 =

∑︁
y∈Ci

d(x, y)
|Ci| − 1 ,

b(x) = min
i ̸=j

Wj(x)
|Cj|

= min
i ̸=j

∑︁
y∈Cj

d(x, y)
|Cj|

.

[Alt+21] provides a way to compute an unbiased estimation of the weights.
Providing the approximated weights to Algorithm 2 (sil_memo), we obtain an
approximated silhouette ŝ(C) such that |ŝ(C)− s(C)| ⩽ 4ε

1−ε
.

2.2. Silhouette 13

Algorithm 2: Silhouette computed exploiting weights. (sil_memo)
Input: clustering C = {C1, . . . , Ck}, weights W of the clustering
Output: silhouette of the clustering C exploiting memoized weights W
s← 0
let V := ⋃︁k

i=1 Ci be the set of all points
for i← 1 to k do

if |Ci| > 1 then
foreach x ∈ Ci do

a← Wi(x)/(|Ci| − 1)
b← minj ̸=i{Wj(x)/|Cj|}
s += (b− a)/ max(a, b)

return s/|V |

Algorithm 3: Probability Proportional to Size sampling. (sample_pps)
Input: cluster C
Data: clustering C = {C1, . . . , Ck}, expected sample size t, required

probability δ
Output: A PPS sample SC of the given cluster. Each point x ∈ SC is

associated with its probability px.
if |C| ⩽ t then return C with px = 1
u← 1/|C|
p← 2u ln(2k/δ)
S

(0)
C ← Poisson sample of points x ∈ C, with probability p

foreach x ∈ S
(0)
C do

WC(x)← 0
foreach y ∈ C do

WC(x) += d(x, y)

foreach x ∈ C do
γ ← max

y∈S
(0)
C

{d(x, y)/WC(y)}
px ← min (1, t ·max(u, γ))

SC ← Poisson sample of points x ∈ C, with probability px

return SC with pxs

The weight estimation is done by computing them on a PPS (Probability Propor-
tional to Size) sample [Ski16]. The sampling technique is illustrated in Algorithm 3
(sample_pps). For each sample SCi

(of the cluster Ci), the approximated weight

14 Preliminaries

Ŵ i(x) is the sum of the distances between x and each point y of the sample SCi
,

divided by the probability py with which y was sampled:

Ŵ i(x) =
∑︂

y∈SCi

d(x, y)
py

.

Finally, in Algorithm 4, we can see all the components assembled to compute
the approximated silhouette.

Algorithm 4: Approximated silhouette computation.
Input: clustering C = {C1, . . . , Ck}
Output: approximated silhouette ŝ of clustering C
let V := ⋃︁k

i=1 Ci be the set of all points
for i← 1 to k do

SCi
← sample_pps(Ci)

foreach x ∈ V do Ŵ i(x)← ∑︁
y∈SCi

d(x,y)
py

return sil_memo(C, Ŵ)

2.3 Clustering problems
Clustering problems are optimization problems which aim at finding a clustering
of a set optimizing a given objective function. For example the silhouette-based
clustering (Definition 2.5) goal is to find a clustering which maximizes the silhouette.
In this thesis we will explore some algorithms which make use of local search
techniques to obtain an approximate solution of the silhouette-based clustering
problem.

▷ Definition 2.5 (Silhouette-based clustering). Given a set V ⊆ U from a metric
space (U, d), solving the silhouette-based clustering problem is to find a clustering
(Definition 2.2) C = {C1, . . . , Ck} of V which maximizes the silhouette (Defini-
tion 2.3):

C⋆ = argmax
C

s(C).

The benefit of silhouette-based clustering is that not only does it minimize the
distances of a point from those of the same cluster (intra-cluster distance), but also
maximizes the distances from a point to the points of other clusters (inter-cluster
distance). Despite this benefit, silhouette-based clustering is not used yet, aside
from some preliminary work (see Section 1.3). In fact, simpler metrics, which

2.3. Clustering problems 15

involve only intra-cluster distances, are commonly used as objective function. The
most famous family is that of center-based clustering (Definition 2.6).

▷ Definition 2.6 (Center-based clustering). Given a set V ⊆ U from a metric space
(U, d), the center-based clustering problem is the family of optimization problems
with the following objective functions, which capture intra-cluster dissimilarity:

k-means minµ1,µ2,...,µk∈U,C
∑︁k

i=1
∑︁

x∈Ci
d(x, µi)2;

k-medians minµ1,µ2,...,µk∈U,C
∑︁k

i=1
∑︁

x∈Ci
d(x, µi);

k-medoids minµ1,µ2,...,µk∈V,C
∑︁k

i=1
∑︁

x∈Ci
d(x, µi);

k-center minµ1,µ2,...,µk∈U,C maxk
i=1 maxx∈Ci

d(x, µi)

where C = {C1, . . . , Ck} is a clustering of V .
In summary the goal is to find a center µi for each cluster Ci, and assign each

point to the best cluster in such a way the sum of squared distances (for k-means),
the sum of distances (for k-medians and k-medoids) or the maximum distance (for
k-center) between a point and the center of its cluster is minimized. The difference
between k-medians and k-medoids is that in the former the centers are part of the
metric space set U , whilst in the latter they must be elements of the set V . So, in
k-medoids, the center of the cluster is indeed a point of the cluster, and it is called
medoid.

All of these problems are NP-hard, but fortunately there are several approxima-
tion algorithms for them which give a good solution. In particular for the k-means
problem in Euclidean space, we have the well known Lloyd’s heuristic [Llo82;
WH07] which, given a good selection of initial centers µi, usually returns a good
clustering doing O(rnk) distance computations, where r is the required number
of iterations of the algorithm. It is not guaranteed that Lloyd’s algorithm would
return the optimal solution, or a solution with a specified approximation guarantee,
since it could get trapped in a local minimum [SI84]. The algorithm (5) is divided
in two parts: the first computes the centroid for each cluster µi = ∑︁

x∈Ci

x
|Ci| , whilst

the second redistributes the points assigning each point to the cluster with the
nearest centroid. The two parts are repeated until a local minimum is found (the
objective function does not improve anymore).

For what concerns the computation of the initial clustering C, the k-means++
algorithm (6) is widely used [VA06]. It starts by taking the first center randomly
from the set of elements V , and then it picks up the next k − 1 centers from the
remaining elements of V . Each element has probability to be selected as center
proportional to the sum of its squared distances with the already chosen centers.
The obtained centers could be used as a starting point for other center-based

16 Preliminaries

Algorithm 5: Lloyd’s algorithm for k-means.
Input: clustering C = {C1, . . . , Ck}
Output: clustering C⋆ = {C⋆

1 , . . . , C⋆
k} optimized for k-means

let V := ⋃︁k
i=1 Ci be the set of all points

C⋆ ← C // Current optimal clustering
ϕ⋆ ←∞ // Objective function value for the current optimal clustering
do

ϕ← ϕ⋆

ϕ⋆ ← 0
for i← 1 to k do // Compute centers

µi ←
∑︁

x∈C⋆
i

x/|C⋆
i |

for i← 1 to k do C⋆
i ← {}

foreach x ∈ V do // Assign points to the nearest cluster
i← argminj d(x, µj)
ϕ⋆ += d(x, µi)2

C⋆
i ← C⋆

i ∪ {x}
while ϕ⋆ < ϕ
return C⋆

Algorithm 6: k-means++.
Input: set V , number of clusters k
Output: clustering C = {C1, . . . , Ck} over V . Each cluster Ci is associated

with its center µi ∈ Ci.
let M = {µ1, . . . , µk} be the (initially empty) set of centers chosen so far
µ1 ← Unif(V) // Pick first center at random
for i← 2 to k do

α = ∑︁
x∈V \M

∑︁
µ∈M d(x, µ)2 // Probability normalization factor

foreach x ∈ V \M do // Compute probabilities
px = ∑︁

µ∈M d(x, µ)2/α

sample new center µi from V \M according to probability distribution p

foreach x ∈ V \M do
ix ← argminj d(x, µj) // Find the center which minimizes the distance

for j ← 1 to k do
Cj ← {µj} ∪ {x ∈ V \M : ix = j} // Assign points to cluster of the nearest

center

return C with µis

2.3. Clustering problems 17

algorithms, or instead to already build a clustering simply assigning each point to
the cluster with the nearest center (as in the second part of Lloyd’s algorithm).
We remark how the centers returned by k-means++ are medoids (the centers are
elements of the set V), and so they can be used as a starting point also for algorithms
solving the k-medoids problem.

Algorithm 7: Partitioning Around Medoids (PAM) for k-medoids.
Input: set V , initial medoids M = {µ1, . . . , µk} ⊂ V
Output: clustering C⋆ = {C⋆

1 , . . . , C⋆
k} over V , optimized for k-medoids

ϕ⋆ ←∞
do

ϕ← ϕ⋆

i⋆ ← 0 // To save the best medoid swap
for i← 1 to k do

foreach x ∈ V \M do
µ̄i ← µi

µi ← x // Swap medoid µi and point x

// Compute new objective function value
φ← 0
for j ← 1 to k do Cj ← {µj}
foreach y ∈ V \M do

j ← argminl d(y, µl)
φ += d(y, µj)
Cj ← Cj ∪ {y}

if φ < ϕ⋆ then
ϕ⋆ ← φ
C⋆ ← C = {C1, . . . , Ck}
i⋆ ← i
x⋆ ← x

µi ← µ̄i // Restore medoid µi

if i⋆ ̸= 0 then µi⋆ ← x⋆ // Apply medoid swap
while ϕ⋆ < ϕ
return C⋆

The principal algorithm for k-medoids is Partitioning Around Medoids (PAM)
[KR90], which could indeed be used also with other objective functions involving
the selection of medoids. As it can be seen in Algorithm 7, it computes a local
search swapping a medoid with another point of the set and evaluating the new
objective function to move to the best configuration. The main drawback of PAM

18 Preliminaries

is its time complexity: in the naïve implementation it is O(rn2k2). Storing the
old distances allows simplifying the computation of the new objective function
value, reducing the cost by a factor O(k). Finally the FastPAM algorithm exploits
a trick derived from splitting in parts the computation of the cost and achieves
a complexity of O(rn2) [SR21], which is O(k2) faster, but is still squared in the
number of elements of V .

Chapter 3
Algorithms for Silhouette-Based

Clustering

The approaches here presented aims to solve the clustering problem by optimizing
the silhouette coefficient using the local search technique of hill climbing. The
neighborhood of a solution is the moving of each point in each cluster: each neighbor
differs from the current state only for a point which is relocated in another cluster.

3.1 The naïve algorithm
The naïve way to achieve such local search is presented in Algorithm 8 (Naïve). It
begins stating that the input clustering C is the so on best clustering C⋆, then, at
each iteration, it tries to move each point x of the current reference clustering C
from its cluster Ci to all other clusters Cj. If one of these new clusterings C ′ has
a better silhouette score it becomes the new optimal clustering C⋆. Finally the
optimal clustering becomes the reference clustering for the next iteration. When
the improvement on the silhouette is lower than a threshold η the so on optimal
clustering is returned.

It is easy to see that the number of silhouettes to be computed is 1+r ·n ·(k−1),
where the clustering is on a set of n = |V | points and r iterations are required. So,
computing the silhouette in the naïve way, the complexity is Θ (rn3k).

To reduce the complexity we could instead use an approximated silhouette.
For example, as early said in Section 2.2.1, [Alt+21] presents a way to compute
an approximated silhouette with bounded error 4ε2

1−ε
with probability at least

1− δ, in time O(nkε−2 log(nk/δ)). Using this approximated silhouette, the overall
complexity of our local search would lower to O (rn2k2ε−2 log(nk/δ)). The use of
the approximated silhouette could lead to some false positives (a clustering with

20 Algorithms for Silhouette-Based Clustering

Algorithm 8: Naïve implementation of the local search.
Input: clustering C = {C1, . . . , Ck}
Output: clustering C⋆ = {C⋆

1 , . . . , C⋆
k}, optimized for silhouette

C⋆ ← C // Current optimal clustering
s⋆ ← sil(C) // Silhouette of the current optimal clustering
do

s← s⋆ // Silhouette of the reference clustering
for i← 1 to k do

foreach x ∈ Ci do // For each point x in the clustering
C ′

i ← Ci \ {x}
for j ← 1 to k, j ̸= i do // For each cluster, except the one containing

x

C ′
j ← Cj ∪ {x}
C ′ ← C \ {Ci, Cj} ∪ {C ′

i, C ′
j} // Move x from Ci to Cj

s′ ← sil(C ′)
if s′ > s⋆ then
C⋆ ← C ′

s⋆ ← s′

C ← C⋆ // Update the reference clustering for the next iteration
while s⋆ − s > η // Repeat until there is no significative improvement
return C⋆

lower silhouette being chosen as optimal) and false negatives (a clustering with a
higher silhouette being discarded). To take care of this when two silhouettes are
compared the approximation error must be taken into consideration: the condition
s′ > s⋆ must become s′̂ > s⋆̂ + ε̄, and the ending condition s⋆ − s > η should be
substituted by s′̂ − s⋆̂ > η + ε̄.

▷ Lemma 3.1. Fixing ε̄ ⩾ 8ε
1−ε

the false positive probability is

P
(︂
s′̂ > s⋆̂ + ε̄

⃓⃓⃓
s′ < s⋆

)︂
⩽ 2δ + δ2

3.1. The naïve algorithm 21

Proof.

P
(︂
s′̂ > s⋆̂ + ε̄

⃓⃓⃓
s′ < s⋆

)︂
= P

(︂
s′̂ − s⋆̂ > ε̄

⃓⃓⃓
s′ < s⋆

)︂
=

= P

⎛⎜⎝(︂s′̂ − s′
)︂
−
(︂
s⋆̂ − s⋆

)︂
> (s⋆ − s′)⏞ ⏟⏟ ⏞

>0

+ε̄

⃓⃓⃓⃓
⃓⃓⃓ s⋆ − s′ > 0

⎞⎟⎠ ⩽

⩽ P

⎛⎜⎜⎜⎝(︂s′̂ − s′
)︂
−
(︂
s⋆̂ − s⋆

)︂
⏞ ⏟⏟ ⏞

<|s′̂−s′|+|s⋆̂−s⋆|

> ε̄

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ s⋆ − s′ > 0

⎞⎟⎟⎟⎠ ⩽ P
(︂
|s′̂ − s′|+ |s⋆̂ − s⋆| > ε̄

)︂
=

Calling e′ = |s′̂ − s′| and e⋆ = |s⋆̂ − s⋆|

=P
(︃

e′ + e⋆ > ε̄
⃓⃓⃓⃓

e′ <
4ε

1− ε
, e⋆ <

4ε

1− ε

)︃
P
(︃

e′ <
4ε

1− ε

)︃
P
(︃

e⋆ <
4ε

1− ε

)︃
+

P
(︃

e′ + e⋆ > ε̄

⃓⃓⃓⃓
e′ >

4ε

1− ε
, e⋆ >

4ε

1− ε

)︃
P
(︃

e′ >
4ε

1− ε

)︃
P
(︃

e⋆ >
4ε

1− ε

)︃
+

P
(︃

e′ + e⋆ > ε̄
⃓⃓⃓⃓

e′ <
4ε

1− ε
, e⋆ >

4ε

1− ε

)︃
P
(︃

e′ <
4ε

1− ε

)︃
P
(︃

e⋆ >
4ε

1− ε

)︃
+

P
(︃

e′ + e⋆ > ε̄
⃓⃓⃓⃓

e′ >
4ε

1− ε
, e⋆ <

4ε

1− ε

)︃
P
(︃

e′ >
4ε

1− ε

)︃
P
(︃

e⋆ <
4ε

1− ε

)︃

Recalling that

P
(︃
|ŝ− s| > 4ε

1− ε

)︃
⩽ δ, P (•) ⩽ 1

P
(︃

e′ + e⋆ > ε̄
⃓⃓⃓⃓

e′ <
4ε

1− ε
, e⋆ <

4ε

1− ε

)︃
⩽ P

(︃ 8ε

1− ε
> ε̄

)︃
= 0

we can conclude

P
(︂
s′̂ > s⋆̂ + ε̄

⃓⃓⃓
s′ < s⋆

)︂
⩽ 0 · 1 · 1 + 1 · δ · δ + 1 · 1 · δ + 1 · δ · 1 = 2δ + δ2

▷ Corollary 3.1.1. Keeping ε̄ > 8ε
1−ε

the false negative probability, in the bad case
where the discarded silhouette is higher of more than 2ε̄, is:

P
(︂
s′̂ < s⋆̂ + ε̄

⃓⃓⃓
s′ > s⋆ + 2ε̄

)︂
⩽ 2δ + δ2

22 Algorithms for Silhouette-Based Clustering

Proof.

P
(︂
s′̂ < s⋆̂ + ε̄

⃓⃓⃓
s′ > s⋆ + 2ε̄

)︂
= P

(︂
s′̂ − s⋆̂ < ε̄

⃓⃓⃓
s′ − s⋆ > 2ε̄

)︂
=

= P

⎛⎜⎝(︂s′̂ − s′
)︂
−
(︂
s⋆̂ − s⋆

)︂
< ε̄−(s′ − s⋆)⏞ ⏟⏟ ⏞

<−2ε̄

⃓⃓⃓⃓
⃓⃓⃓ s′ − s⋆ > 2ε̄

⎞⎟⎠ ⩽

⩽ P
(︂(︂

s′̂ − s′
)︂
−
(︂
s⋆̂ − s⋆

)︂
< −ε̄

)︂
= P

(︂(︂
s′ − s′̂

)︂
−
(︂
s⋆ − s⋆̂

)︂
> ε̄

)︂
⩽

⩽ P
(︂
|s′̂ − s′|+ |s⋆̂ − s⋆| > ε̄

)︂
⩽ 2δ + δ2

3.2 Introducing memoization
In Algorithm 8 (Naïve) for each relocation we are recomputing the whole silhouette,
which is an expensive task. Many times frequent expensive computations can be
mitigated using memoization. This caching strategy consist in saving some results
which will not change in some contiguous iteration and reuse their saved values
instead of recomputing them [Mic68]. Memoization exchanges so time complexity
for memory occupation.

Even if the change in the clustering given by a local step is minimal, potentially
the silhouette of all points could change. Obviously the ones of the two clusters
involved in the move, but also the silhouettes of other points could be affected
since the cluster involved in the computation of b(x) could change. For this reason
we have to recompute from scratch the silhouette each time. Fortunately, as we
saw in Definition 2.4, we can write the silhouette formula in a different way, as
suggested by [Alt+21], which allows us to memoize part of its computation. Thus,
given the weights W , we can easily compute the silhouette in time O(nk), as can
be seen in Algorithm 2 (sil_memo). This computation has a smaller complexity
than the usual one, but requires in input the weights of the clustering.

Since, in our local search, a lot of weights in the computation of silhouettes do
not change (for example those of the clusters not interested in the moving of the
point x), we can memoize them, as can be seen in Algorithm 9 (ExactMemoization).
The new part of the algorithm is highlighted in blue: at the beginning all weights are
computed and stored in a matrix W of size k × n. The weights W ′ of a temporary
clustering C ′ are essentially the weights W of the current reference cluster C, except
for clusters Ci and Cj : for each i (j) the new weights are computed. Before passing
to a new cluster Ci (Cj) the previous weights are restored. This update operation
is very easy since to recompute the weights of a cluster after the moving of a point,
it is sufficient to only add/subtract the distances involving that point. In fact

3.2. Introducing memoization 23

Algorithm 9: Optimize exact silhouette with memoization.
(ExactMemoization)

Input: clustering C = {C1, . . . , Ck}
Output: clustering C⋆ = {C⋆

1 , . . . , C⋆
k}, optimized for silhouette

let V := ⋃︁k
i=1 Ci be the set of all points

for i← 1 to k do
foreach x ∈ V do Wi(x)← ∑︁

y∈Ci
d(x, y) // Memoize weights

C⋆ ← C, W ⋆ ← W
s⋆ ← sil_memo(C, W)
do

s← s⋆

W ′ ← W // The weights of each move will be based on those of the new reference
clustering

for i← 1 to k do
foreach x ∈ Ci do

C ′
i ← Ci \ {x}

foreach y ∈ V do W ′
i (y) −= d(x, y)

for j ← 1 to k, j ̸= i do
C ′

j ← Cj ∪ {x}
C ′ ← C \ {Ci, Cj} ∪ {C ′

i, C ′
j}

foreach y ∈ V do W ′
j(y) += d(x, y)

s′ ← sil_memo(C ′, W ′)
if s′ > s⋆ then
C⋆ ← C ′, W ⋆ ← W ′

s⋆ ← s′

W ′
j ← Wj // Restore weights of Cj

W ′
i ← Wi // Restore weights of Ci

C ← C⋆, W ← W ⋆

while s⋆ − s > η
return C⋆

W ′
i (y) =

∑︂
z∈C′

i

d(y, z) =
∑︂

z∈Ci\{x}
d(y, z) =

∑︂
z∈Ci

d(y, z)− d(x, y) = Wi(y)− d(x, y);

W ′
j(y) =

∑︂
z∈C′

j

d(y, z) =
∑︂

z∈Cj∪{x}
d(y, z) =

∑︂
z∈Cj

d(y, z) + d(x, y) = Wj(y) + d(x, y).

The algorithm always computes the exact silhouette.

24 Algorithms for Silhouette-Based Clustering

The computational complexity is

k∑︂
i=1

O(n|Ci|) + Tsil + r
k∑︂

i=1
|Ci|

⎛⎝O(n) +
k∑︂

j=0,j ̸=i

(O(n) + Tsil)
⎞⎠ =

= O
(︂
n2
)︂

+ O(nk) + r
k∑︂

i=1
|Ci|

(︂
O(n) + O (nk) + O

(︂
nk2

)︂)︂
= O

(︂
rn2k2

)︂

where Tsil = O(nk).
The memory required for the memoization is O(nk).

▷ Lemma 3.2 (Number of iterations). The theoretical maximum number of required
iterations r is O (min (η−1, kn))

Proof. In the worst case the starting silhouette could be −1. At each iteration the
silhouette grows at least of η, so in 2

η
iterations it reaches at least 1, which is the

maximum reachable value.
On the other side the clustering combinations are finite, in particular they are

O(kn). We never go to a state we had been before since it would not bring any
enhancement in silhouette.

3.3 Using coresets
We could think that using approximated silhouette in Algorithm 9 (ExactMem-
oization), as we suggested for Algorithm 8 (Naïve), would reduce the time com-
plexity, but this is not the case. The time complexity would indeed increase to
O
(︂
rn2k

(︂
log(nk/δ)

ε2 + k
)︂)︂

. This is due to the fact that the approximated silhouette
presented in [Alt+21] uses a sample SC1 , . . . , SCk

of the clusters to estimate the
weights W . So we cannot use the trick of Algorithm 9 (ExactMemoization) that to
update the silhouette we can add/subtract one distance, but we have to recompute
the samples of the clusters involved in the point move.

The samples are build using a PPS (Probability Proportional to Size) sampling
scheme [Ski16], which is resumed in Algorithm 3 (sample_pps). The resulting
samples, of expected size t = Θ (ε−2 log(nk/δ)), contain the representatives of the
cluster points. The cost of a clustering on the representatives has been shown to
be a good approximation of the real cost of the clustering [CCK18], making the
samples a coreset of the clustering. A coreset is in fact a subset of the original
instance on which it is easy to obtain a good approximation of a measure on the
whole original instance [Aga+05].

We could exploit the fact samples are coresets of the clusters to reduce the
time complexity of our local search reducing the number of point relocations.

3.3. Using coresets 25

Algorithm 10: Optimize exact silhouette with coreset and memoization.
(ExactCoresetMemo)

Input: clustering C = {C1, . . . , Ck}
Output: clustering C⋆ = {C⋆

1 , . . . , C⋆
k}, optimized for silhouette

let V := ⋃︁k
i=1 Ci be the set of all points

for i← 1 to k do
SCi
← sample_pps(Ci) // Compute samples

foreach x ∈ V do Wi(x)← ∑︁
y∈Ci

d(x, y)
C⋆ ← C, W ⋆ ← W
s⋆ ← sil_memo(C, W)
do

s← s⋆

W ′ ← W
i⋆ ← j⋆ ← 0 // To save the clusters involved in the moving
for i← 1 to k do

foreach x ∈ SCi
do // Move only points from samples

C ′
i ← Ci \ {x}

foreach y ∈ V do W ′
i (y) −= d(x, y)

for j ← 1 to k, j ̸= i do
C ′

j ← Cj ∪ {x}
C ′ ← C \ {Ci, Cj} ∪ {C ′

i, C ′
j}

foreach y ∈ V do W ′
j(y) += d(x, y)

s′ ← sil_memo(C ′, W ′)
if s′ > s⋆ then
C⋆ ← C ′, W ⋆ ← W ′

s⋆ ← s′

i⋆ ← i, j⋆ ← j

W ′
j ← Wj

W ′
i ← Wi

C ← C⋆, W ← W ⋆

if i⋆ ̸= 0 then // Update samples
SCi⋆ ← sample_pps(Ci⋆)
SCj⋆ ← sample_pps(Cj⋆)

while s⋆ − s > η
return C⋆

26 Algorithms for Silhouette-Based Clustering

In Algorithm 10 (ExactCoresetMemo) only the points of the samples are moved.
Obviously not all solutions are explored, but the exact silhouette is always computed.
The intuition behind this approach is that the points in the coreset are the most
influential on the silhouette (in fact they are used to approximate the weights
of the clustering); so moving them we can somewhat maximize the silhouette
improvement.

In blue are highlighted the differences with Algorithm 9 (ExactMemoization).
The major difference is that only the points which are selected by the PPS sampling
are moved, the other will remain where they are. Using the samples we are required
to recompute them after changing the clusters; for this reason we have to recompute
samples SCi

and SCj
after moving a point from Ci to Cj.

The computational complexity is

k∑︂
i=1

(︂
Tsamplei + O(n|Ci|)

)︂
+ Tsil+

+ r

⎛⎝2Tsample +
k∑︂

i=1
|SCi
|

⎛⎝O(n) +
k∑︂

j=0,j ̸=i

(O(n) + Tsil)
⎞⎠⎞⎠ =

= O (n(n + log(nk/δ))) + O(nk)+

+ r

(︄
n log(nk/δ) +

k∑︂
i=1
|SCi
|
(︂
O(n) + O (nk) + O

(︂
nk2

)︂)︂)︄
=

= O
(︂
n2 + rnk3ε−2 log(nk/δ)

)︂
= O

(︂
n2 + rnk3t

)︂

where

• Tsil = O(nk)

• Tsamplei = O (|Ci| log(nk/δ)) = O (n log(nk/δ))

• |SCi
| = O (ε−2 log(nk/δ)) = O(t)

The memory required for the memoization is O(nk).

In the Algorithm 10 (ExactCoresetMemo) the initial exact silhouette computa-
tion dominates the complexity, for this in Algorithm 11 (ApproxCoresetMemo) we
use approximated weights in the initial phase. The initial silhouette is the same
approximated one proposed in [Alt+21]. Then, since the approximated weights are
an unbiased estimator of the real weights, we can treat them as the real weights and
simply sum/subtract one distance as in previous algorithms, without recompute
the samples. It would be indeed an error to sum/subtract the distance divided by

3.3. Using coresets 27

Algorithm 11: Optimize approximated silhouette with coreset and memo-
ization. (ApproxCoresetMemo)

Input: clustering C = {C1, . . . , Ck}
Output: clustering C⋆ = {C⋆

1 , . . . , C⋆
k}, optimized for silhouette

let V := ⋃︁k
i=1 Ci be the set of all points

for i← 1 to k do
SCi
← sample_pps(Ci)

foreach x ∈ V do Ŵ i(x)← ∑︁
y∈SCi

d(x,y)
py

// Approximated weights

C⋆ ← C, Ŵ
⋆
← Ŵ

ŝ⋆ ← sil_memo(C, Ŵ) // Approximated silhouette
do

ŝ← ŝ⋆

Ŵ
′
← Ŵ

i⋆ ← j⋆ ← 0
for i← 1 to k do

foreach x ∈ SCi
do

C ′
i ← Ci \ {x}

foreach y ∈ V do Ŵ
′
i(y) −= d(x, y)

for j ← 1 to k, j ̸= i do
C ′

j ← Cj ∪ {x}
C ′ ← C \ {Ci, Cj} ∪ {C ′

i, C ′
j}

foreach y ∈ V do Ŵ
′
j(y) += d(x, y)

ŝ′ ← sil_memo(C ′, Ŵ
′)

if ŝ′ > ŝ⋆ and ŝ′ > ŝ + ε̄ then // Take care of approximation error
C⋆ ← C ′, Ŵ

⋆
← Ŵ

′

ŝ⋆ ← ŝ′

i⋆ ← i, j⋆ ← j

Ŵ
′
j ← Ŵ j

Ŵ
′
i ← Ŵ i

C ← C⋆, Ŵ ← Ŵ
⋆

if i⋆ ̸= 0 then
SCi⋆ ← sample_pps(Ci⋆)
SCj⋆ ← sample_pps(Cj⋆)

while ŝ⋆ − ŝ > η+ε̄ // Take care of approximation error
return C⋆

28 Algorithms for Silhouette-Based Clustering

its related probability: in this way also the points represented by the moved point
would be moved.

The computational complexity is

k∑︂
i=1

(︂
Tsamplei + O(n|SCi

|)
)︂

+ Tsil+

+ r

⎛⎝2Tsample +
k∑︂

i=1
|SCi
|

⎛⎝O(n) +
k∑︂

j=0,j ̸=i

(O(n) + Tsil)
⎞⎠⎞⎠ =

= O
(︂
n log(nk/δ)(1 + kε−2)

)︂
+ O(nk)+

+ r

(︄
n log(nk/δ) +

k∑︂
i=1
|SCi
|
(︂
O(n) + O (nk) + O

(︂
nk2

)︂)︂)︄
=

= O
(︂
rnk3ε−2 log(nk/δ)

)︂
= O

(︂
rnk3t

)︂

where

• Tsil = O(nk)

• Tsamplei = O (|Ci| log(nk/δ)) = O (n log(nk/δ))

• |SCi
| = O (ε−2 log(nk/δ)) = O(t)

The memory required for the memoization is O(nk).

A common approach to take advantage by the coresets in problems which are
solved by expensive algorithms, is to run the algorithm on the coreset, and then
extend the obtained result to the whole instance. In our case we can run the
expensive local search of Algorithm 9 (ExactMemoization) on the small coreset of
the cluster samples, and then assign the points not in the coreset to the nearest
cluster. This is what Algorithm 12 (SampleOptimization) does. We first compute all
cluster PPS samples, then apply Algorithm 9 (ExactMemoization) to our coresets.
We thus obtain a clustering of the coreset, optimized for its silhouette, which should
be a good representative of an optimization on the entire clustering. Finally, we
assign the remaining points to the nearest cluster in a way similar to the second
part of Lloyd’s algorithm: we find for each point the cluster which minimizes
the mean distance with the point (the equivalent of finding the nearest center in
Lloyd’s) and then, at the end, assign each point to its chosen cluster.

3.3. Using coresets 29

Algorithm 12: Optimize on the sample. (SampleOptimization)
Input: clustering C = {C1, . . . , Ck}
Output: clustering C⋆ = {C⋆

1 , . . . , C⋆
k}, optimized for silhouette

for i← 1 to k do
SCi
← sample_pps(Ci) // Compute samples

let SC := {SC1 , . . . , SCk
}

S⋆
C ← exact_memoization(SC) // Apply Algorithm 9 (ExactMemoization) to the
sample

let S̄ := ⋃︁k
i=1 Ci \ SCi

be the set of not sampled points
foreach x ∈ S̄ do ix ← argmini

{︃∑︁
y∈S⋆

Ci

d(x,y)
|S⋆

Ci
|

}︃
// Find the cluster which

minimizes the mean distance
foreach x ∈ S̄ do S⋆

Cix
← S⋆

Cix
∪ {x} // Assign not sampled points to the

nearest cluster
return S⋆

C

The computational complexity is
k∑︂

i=1
Tsamplei + Texact_memoization + |S̄|Targmin + |S̄| =

= O(n log(nk/δ)) + O(rm2k2) + O(nm−m2) + O(n−m) =
= O(n log(nk/δ)) + O(rm2k2) + O(nm) + O(n) =

= O(nm + rm2k2) = O(nkt + rk4t2)

where

• Tsamplei = O (|Ci| log(nk/δ))

• |SCi
| = O (ε−2 log(nk/δ)) = O(t)

• m = ∑︁k
i=1|SCi

| = O (kε−2 log(nk/δ)) = O (kt)

• |S̄| = n−m

• Targmin = ∑︁k
i=1 |S⋆

Ci
| = ∑︁k

i=1 |SCi
| = m

• Texact_memoization = O(rm2k2)

The memory required for the memoization is O(mk) = O (k2ε−2 log(nk/δ)) =
O (k2t).

As we can see we have a great improvement on the time complexity, and also,
for the first time, in the memory required for the memoization.

Chapter 4
Experimental Evaluation

To validate the proposed approach, a suite of experiments has been performed.
A first set of experiments (illustrated in Section 4.1) was directed to discover
the differences, in performances, among the proposed local search algorithms,
reported in Table 4.1. Since Algorithm 9 (ExactMemoization) returns the same
solution of Algorithm 8 (Naïve), but, thanks to memoization, requiring less distance
computations, the latter algorithm was not tested. Its results would be indeed the
same of the former for what concerns silhouette, but a lot worse in time. Then
another set of experiments (discussed in Section 4.2) has been executed to compare
the best proposed local search algorithm (which resulted to be Algorithm 12,
SampleOptimization) with the most common algorithms for clustering, namely,
k-means++, Lloyd’s algorithm and PAM k-medois. After that, in Section 4.3,
we compared two variants of Algorithm 12 (SampleOptimization): the standard
one, which uses the PPS sample of [Alt+21], and an alternative which uses a
sample extracted through Poisson Sampling with uniform probability. Finally, in
Section 4.4, we conclude the evaluation with an experiment directed to understand
if a second pass of Algorithm 12 (SampleOptimization) could refine the result of
the first execution.

Algorithm 9 ExactMemoization
Algorithm 10 ExactCoresetMemo
Algorithm 11 ApproxCoresetMemo
Algorithm 12 SampleOptimization

Table 4.1: Proposed algorithms used in the experiments.

For the experiments both real and artificial datasets were used. They are
reported in Table 4.2. Real case datasets were taken from UCI Machine Learning
Repository [DG17].

32 Experimental Evaluation

Dataset Radius is the combination of Radius Queries and Radius Queries
Count (without the count component), from the Query Analytics Workloads
dataset1[SAT18; AST18]. It contains 60 000 (1 000 in the truncated version used
in Section 4.1) circles represented by triplets composed by the bi-dimensional
coordinate of the center, and the radius. The circles are taken from Gaussian
distributions over a real dataset.

From dataset Selfback2 [San+16] we took 1 000 points of participant number
26. The data is collected by two accelerometers positioned on the wrist and on
the thigh of the participant, during exercise activities. The points contain the
three-dimensional coordinates of both accelerometers.

Dataset Cloud3 is made of 1024 vectors of parameters obtained from AVHRR
images of clouds (raging both visible and infrared spectrum).

The artificial Gaussian dataset contains 10 000 points on a bi-dimensional plane.
The points are generated according to a Gaussian distribution around 5 centers.
There is also an 1% of noisy points uniformly distributed.

The Higgs4 [BSW14] dataset is the result of Monte Carlo simulations of signal
processes producing Higgs bosons. Each point is composed by 21 measurements
and 7 summary features, but we used a reduced version with only 10 000 points
containing the 7 summary attributes. For this dataset the Manhattan distance was
used, and so Lloyd’s algorithm was replaced by PAM k-medoids [KR90].

Name Real / Artificial number of points (n) dimension of points
Radius Synthesized from Real 1 000 (truncated) 3
Selfback Real 1 000 (truncated) 6
Cloud Synthesized from Real 1 024 10
Radius Synthesized from Real 60 000 3

Gaussian Artificial 10 000 2
Higgs Artificial 10 000 (truncated) 7

Table 4.2: Datasets used in the experiments. The first three are used in Section 4.1,
the last three in other experiments.

For each experiment k-means++ was initially run to obtain a starting clustering
from the list of points. Then, from this clustering, the proposed algorithms and
Lloyd’s were run. All the experiments use Euclidean distances, except for dataset

1https://archive.ics.uci.edu/ml/datasets/Query+Analytics+Workloads+Dataset
2https://archive.ics.uci.edu/ml/datasets/selfBACK
3https://archive.ics.uci.edu/ml/datasets/cloud
4https://archive.ics.uci.edu/ml/datasets/HIGGS

https://archive.ics.uci.edu/ml/datasets/Query+Analytics+Workloads+Dataset
https://archive.ics.uci.edu/ml/datasets/selfBACK
https://archive.ics.uci.edu/ml/datasets/cloud
https://archive.ics.uci.edu/ml/datasets/HIGGS

4.1. Differences among proposed local search algorithms 33

Higgs for which Manhattan distance was used.5 Recall that Euclidean distance is
d2(x, y) =

√︂∑︁
i(xi − yi)2 and Manhattan distance is d1(x, y) = ∑︁

i|xi − yi|.
The data collected in the experiments are the execution time, the iterations

performed by the local-search algorithms (r) and the final exact silhouette com-
puted on the whole clustering. This silhouette is the optimized metric only for
ExactMemoization and ExactCoresetMemo: Lloyd’s optimizes the sum of squared
distances, PAM the sum of distances, ApproxCoresetMemo the approximated sil-
houette (on the whole clustering) and SampleOptimization the exact silhouette on
the sample. The final clustering for SampleOptimization is composed, as described
in Section 3.3, assigning each point not in the sample to the closest cluster.

The tables in the following sections also report the improvements in the silhouette
obtained by the various algorithms with respect to the one obtained by k-means++
and k-means++ combined with Lloyd (i.e. the difference between current algorithm
silhouette and reference silhouette), and the speedup with respect to Lloyd’s
execution time (i.e. the ratio between the time required by Lloyd’s algorithm and
that required by the current algorithm). In all the executions the probability δ was
set to 0.1 and the threshold η to 0.001; the other parameters are reported in the
performances tables: the number of clusters k, and the sample expected size t.

All the experiments have been run single-threaded on a machine with Intel Core
i5-4210U @ 1.70 GHz and 8 GiB of RAM running GNU/Linux NixOS 22.11 with
kernel Linux 5.15.67 x86_64 and OpenJDK 17.0.4+8-nixos.

4.1 Differences among proposed local search algo-
rithms

As said, in this section we will compare the local search algorithms proposed
in Chapter 3 to understand their optimization power and to assess their time
performance. The Tables 4.3 to 4.5 report the results of these experiments. For
each algorithm we can see the silhouette of the obtained clustering, the number of
local-search iterations performed and the required time.

A first observation that derives from the results reported in Tables 4.3 to 4.5, is
that generally all the proposed algorithms achieve an improvement in silhouette on
the clustering returned by k-means++; further evidence of this fact will be provided
in Section 4.2.

Among the local search algorithms we can easily see how SampleOptimization
returns the best improvement in silhouette and takes the less time to achieve
it. For what concerns the running time, it is clearly the winner, since it takes

5With Higgs dataset PAM replaced Lloyd’s since the latter is suited only for the standard
Euclidean distance.

34 Experimental Evaluation

Optimization Exact
r

Time Improves Improves Speedups
algorithm silhouette [ms] k-means++ Lloyd’s Lloyd’s
k-means++ 0.32208 – 63 – – –

Lloyd’s k-means 0.36942 30 118 0.04734 – –
ExactMemoization 0.32506 3 4773 0.00298 -0.04436 0.02472
ExactCoresetMemo 0.3225 1 158 0.00042 -0.04692 0.74684

ApproxCoresetMemo 0.3219 1 91 -0.00018 -0.04752 1.2967
SampleOptimization 0.36153 2 16 0.03945 -0.00789 7.375
Table 4.3: Comparison of the proposed algorithms on dataset Radius, using k = 5
and t = 5.

Optimization Exact
r

Time Improves Improves Speedups
algorithm silhouette [ms] k-means++ Lloyd’s Lloyd’s
k-means++ 0.1765 – 19 – – –

Lloyd’s k-means 0.4651 28 41 0.2886 – –
ExactMemoization 0.26931 49 182110 0.09281 -0.19579 0.00023
ExactCoresetMemo 0.24814 34 7107 0.07164 -0.21696 0.00577

ApproxCoresetMemo 0.2425 40 8778 0.066 -0.2226 0.00467
SampleOptimization 0.56987 40 1090 0.39337 0.10477 0.03761
Table 4.4: Comparison of the proposed algorithms on dataset Selfback, using k = 9
and t = 5.

Optimization Exact
r

Time Improves Improves Speedups
algorithm silhouette [ms] k-means++ Lloyd’s Lloyd’s
k-means++ 0.31047 – 23 – – –

Lloyd’s k-means 0.44944 13 22 0.13897 – –
ExactMemoization 0.35513 8 35652 0.04466 -0.09431 0.00062
ExactCoresetMemo 0.35264 6 1621 0.04217 -0.0968 0.01357

ApproxCoresetMemo 0.32285 14 4434 0.01238 -0.12659 0.00496
SampleOptimization 0.41822 15 378 0.10775 -0.03122 0.0582
Table 4.5: Comparison of the proposed algorithms on dataset Cloud, using k = 10
and t = 5.

advantage of executing the heaviest part only on a small sample with fixed expected
size O(kt). The real surprising result is instead on the silhouette of the returned
clustering. It is indeed comparable to the one of the clustering returned by Lloyd’s,
and always higher than those of the clustering returned by the others local search
algorithms. While the worse approximation provided by ExactCoresetMemo and

4.1. Differences among proposed local search algorithms 35

ApproxCoresetMemo can be justified by the fact that these algorithms can swap only
points of the samples, the surprisingly good results provided by SampleOptimization,
even superior to those of ExactMemoization, which works on the entire datasets,
were somewhat unexpected. In fact, this can be explained by observing that each
point of the sample is a representative of more points, and so moving a single point
in the sample means moving more points in the complete clustering. This permits
our algorithm to converge faster.

2 4 6 8 10 12 14 16 18 20 22 24
0.1

0.2

0.3

0.4

0.5

Iteration r

Si
lh

ou
et

te

Silhouette on sample
Silhouette on whole clustering

Figure 4.1: Evolution of the silhouettes on dataset Selfback with SampleOptimiza-
tion.

Another interesting aspect can be seen in Fig. 4.1: the plot reports the silhouette
computed on the sample and on the complete set of points6 at the end of each
iteration of SampleOptimization. As can be seen an improvement of the silhouette
on the sample does not always correspond to an improvement on the silhouette
on the entire clustering. This non-monotonicity property can be potentially due
to a sort of simulating annealing effect, in the sense that SampleOptimization is
able to skip some local maxima by letting some iterations to temporarily worsen
the silhouette value. As it can be seen, in facts after the 5th iteration we have a
significant lowering of the final silhouette, but then it restarts to grow reaching
higher values (with the 20th iteration) than before.

6The final step of assigning each point outside the sample to the nearest cluster was done at
each iteration in order to compute the silhouette on the final clustering.

36 Experimental Evaluation

4.2 Performance comparison of SampleOptimization
with k-means++, Lloyd’s algorithm and PAM

Now we have assessed SampleOptimization to be the best among the proposed local
search strategies, we will analyze another batch of experiments directed to compare
this algorithm to the known ones. The results of these experiments are reported in
Tables 4.6 to 4.8, where values are medians over 5 runs (3 in the experiments with
Higgs dataset). This was not needed in the previous analysis since the results were
sufficiently well separated to conclude the difference in performance among the
algorithms was not imputable to the noise. Instead in this case, where the results
were closer each other, we opted in for a more robust analysis.

The datasets used in this phase are Radius, Gaussian and Higgs (with Manhattan
distance), which were described in the beginning of this chapter. These datasets
contain more points of those used in Section 4.1: n is one order of magnitude bigger.
Even Radius was used as whole and not truncated as before.

Optimization Exact
r

Time Improves Improves Speedups
algorithm silhouette [ms] k-means++ Lloyd’s Lloyd’s
k-means++ 0.32778 – 660 – – –

Lloyd’s k-means 0.36126 63 2171 0.03348 – –
SampleOpt t = 5 0.35114 19 978 0.02336 -0.01012 2.21984
SampleOpt t = 10 0.35607 29 3818 0.02829 -0.00519 0.56862
SampleOpt t = 15 0.36642 43 12699 0.03864 0.00516 0.17096
SampleOpt t = 20 0.35679 34 10975 0.02901 -0.00447 0.19781
SampleOpt t = 25 0.34816 19 12908 0.02038 -0.0131 0.16819
SampleOpt t = 50 0.34286 17 52026 0.01508 -0.0184 0.04173
SampleOpt t = 100 0.34277 4 35796 0.01499 -0.01849 0.06065

Table 4.6: Median performances on dataset Radius, using k = 10.

The first observation we can make from the results presented in Tables 4.6
to 4.8 is that, as in the previous set of experiments, SampleOptimization always
obtains an improvement with respect to k-means++. Moreover, it is comparable
with Lloyd’s algorithm: they achieve somewhat similar silhouette values. The time
required by these two last algorithms is more variable, because of a high variance
of the number of iterations as we will discuss later on; however, with the largest
dataset Radius, SampleOptimization achieved 2 times speed up on Lloyd’s. It is
important to remark that from the time complexity analysis done in Chapter 3,
as SampleOptimization should perform a lot better than this with big datasets
where n ≫ k4. This because in that case the number of iterations r will not be
the dominant component of the time complexity O(nkt + rk4t2). Another great

4.2. Performance comparison of SampleOptimization 37

advantage of SampleOptimization on Lloyd’s algorithm is that it does not require
the selection of the centers, not being a center-based algorithm.

Optimization Exact
r

Time Improves Improves Speedups
algorithm silhouette [ms] k-means++ Lloyd’s Lloyd’s
k-means++ 0.36528 – 105 – – –

Lloyd’s k-means 0.68246 28 158 0.31718 – –
SampleOpt t = 5 0.78467 20 675 0.41939 0.10221 0.23407
SampleOpt t = 10 0.80074 61 6998 0.43546 0.11828 0.02258
SampleOpt t = 15 0.78929 67 17608 0.42401 0.10683 0.00897
SampleOpt t = 20 0.78784 81 37964 0.42256 0.10538 0.00416
SampleOpt t = 25 0.7863 82 51952 0.42102 0.10384 0.00304
SampleOpt t = 50 0.64578 106 240210 0.2805 -0.03668 0.00066
SampleOpt t = 100 0.58311 99 717661 0.21783 -0.09935 0.00022

Table 4.7: Median performances on dataset Gaussian, using k = 10.

For what concerns the expected sample size, we can conclude that it is convenient
to use small values of t. Besides the evident benefit in time given by the smaller
sample, we usually obtain similar silhouette results to those given by higher
values of t, and sometimes even higher. This last astonishing outcome can have
the same reason of the fact SampleOptimization outperforms ExactMemoization
(see Section 4.1).

Another interesting aspect could be seen in Fig. 4.2: there is a point (respectively
t = 80, 75 and 50 for the three datasets) where the number of iterations executed
by our algorithm drops. These values of t, for which a local step improving more
than the threshold is harder to achieve, are such 1/tk ≈ η. Knowing the silhouette
of the sample to be the mean of the silhouettes of its points (which are O(tk)), we
can in fact suppose the possible improvement achievable in a step to be O(1/tk).
Indeed, from the data collected in the experiments, it can be observed how the
mean step improvement (i.e. the silhouette improvement w.r.t. k-means++, divided
by the number of iterations) is O(1/tk).

With dataset Gaussian we have a great improvement on both k-means++ and
Lloyd’s. With t = 10 we reached even the silhouette of 0.80 (aided by the dataset
which has natural clusters and very low noise).

A further interesting detail is the variance of the collected data: for each
experiment and for each algorithm (i.e. a row in the previous tables) the variance
of the silhouette is very small, instead the variance of the number of iterations r
(and so the time) is very high. This means that the returned clustering should

38 Experimental Evaluation

10 20 30 40 50 60 70 80 90 100
0

50

100

Expected sample size t

M
ed

ia
n

nu
m

be
r

of
ite

ra
tio

ns
r Radius

Gaussian
Higgs

Figure 4.2: Dependence from t of the number of iterations r with SampleOpti-
mization.

quite always be good, whilst it could be more probable the case of an unluckily
slow run (requiring more iterations).

4.2.1 Using non-Euclidean distance functions

Optimization Exact
r

Time Improves Improves Speedups
algorithm silhouette [ms] k-means++ PAM PAM
k-means++ 0.06879 – 151 – – –

PAM k-medoids 0.13114 18 12638785 0.06235 – –
SampleOpt t = 5 0.12375 25 824 0.05496 -0.00739 15338.33131
SampleOpt t = 10 0.15331 45 4829 0.08452 0.02217 2617.26755
SampleOpt t = 15 0.22956 89 13224 0.16077 0.09842 955.74599
SampleOpt t = 20 0.1156 31 11553 0.04681 -0.01554 1093.98295
SampleOpt t = 25 0.31333 104 56215 0.24454 0.18219 224.8294
SampleOpt t = 50 0.08153 10 21440 0.01274 -0.04961 589.49557
SampleOpt t = 100 0.08753 9 73723 0.01874 -0.04361 171.43612

Table 4.8: Median performances on dataset Higgs with Manhattan distance, using
k = 10.

One known Lloyd’s algorithm weakness is that it works well only with Euclidean
distances [SYR13]. Our proposed local search algorithms work with arbitrary

4.3. Using a different sampling technique 39

distance functions. To explore this scenario we can see the results in Table 4.8
where Manhattan distance was used instead of Euclidean one. Since Lloyd’s is not
indicated in this situation, the algorithm was replaced with PAM (Partitioning
Around Medoids): a popular approximation algorithm for solving the k-medoids
problem.

In this case, k-means++ returns a poorly optimized clustering with silhouette
values in the order of 10−2. It can be seen how our proposed SampleOptimization
can achieve a one order of magnitude step in silhouette improvement. This is an
important observation because it tells us the algorithm is able not only to fine-tune
already good solutions, but also to obtain a good solution from a not so good one.

SampleOptimization enhances the silhouette of the clustering returned by k-
means++ only slightly less than PAM, except for t = 10, 15 and 25 where there is an
improvement. In any case the speedup is really significative: PAM has a O(rn2k2)
time complexity which could not compete with the one of SampleOptimization. As
said in Section 2.3, there are some enhancements of PAM, such as FastPAM which
has complexity O(rn2) [SR21], but losing only a factor k2 our proposed algorithm
remains very competitive.

It is good to remark how our local search differs from PAM not only by
the objective function (as does for example PAMSIL [LPB03], already cited in
Section 1.3). As a matter of fact the swaps are completely different: in our strategy
we swap a point between two clusters, while in PAM the swap is between a medoid
and a non-medoid. Consequently, our strategy does not require the computation of
centers. This indeed is a great advantage which, for example, allows us to apply the
memoization trick exposed in Section 3.2, which saves a lot of computations. This
memoization could not be applied to PAMSIL because the used swap technique
could possibly move a lot of points to another cluster and so the weights must be
recomputed.

Moreover, we adopted a coreset technique, on the top of the local search, which
brings a great enhancement of performances both in quality and in execution time.
This sampling methodology offers a well representative coreset, while the simplified
silhouette adopted in PAMMEDSIL lacks representativeness.

4.3 Using a different sampling technique
A legitimate question would be if we really need a PPS sample to build the coreset
for SampleOptimization, or instead a simpler uniform sample would suffice. To
answer this question we executed a third batch of experiments running two variants
of SampleOptimization: the standard variant based on the PPS sampling technique
by [Alt+21], and a variant where PPS sampling is replaced by the simpler Poisson

40 Experimental Evaluation

sampling, where each point x from a cluster Ci is included in the sample with
uniform probability t/|Ci| independently of the other points.

The results are presented in Figs. 4.3 to 4.5. In the plots we can see, for each
value of t, the (exact) silhouette on the sample, the exact silhouette on the whole
clustering and the required number of iterations. In blue with the original PPS
sampling, in red with the uniform sample.

5 10 15 20 25
0.3

0.35

0.4

0.45

0.5

0.55

Expected sample size t

M
ed

ia
n

sil
ho

ue
tt

e

Sample sil. Exact sil. (PPS)
Sample sil. Exact sil. (unif.)

5 10 15 20 25

10

20

30

40

Expected sample size t

M
ed

ia
n

nu
m

be
r

of
ite

ra
tio

ns
r

PPS sample
uniform sample

Figure 4.3: Median performances on dataset Radius with two sampling techniques.

We can easily notice how using a uniform sampling technique the number of
iterations performed (and so the execution time) is lower than using a PPS sample.
The difference is notably remarked for dataset Gaussian. This could be somewhat
expected since a uniform sample has the effect of regularize the dataset. This
regularized, and less representative, sample offers fewer possibilities of improvement
since all the states of our local search tends to be similar, leading to early stops.

The greater representativeness of the PPS sample can be seen in the silhouette
values of the experiments with Radius and Higgs datasets. In fact, we can notice
how the silhouette on the sample is closer to the silhouette on the whole clustering
using a PPS sample: the silhouette using a uniform sample has a greater variance
if computed on the sample or on the complete dataset. Indeed, even if using a
uniform sample usually brings to a better improvement of the silhouette internally

4.4. Refinement with two-pass 41

5 10 15 20 25

0.5

0.6

0.7

0.8

Expected sample size t

M
ed

ia
n

sil
ho

ue
tt

e

Sample sil. Exact sil. (PPS)
Sample sil. Exact sil. (unif.)

5 10 15 20 25

20

40

60

80

Expected sample size t

M
ed

ia
n

nu
m

be
r

of
ite

ra
tio

ns
r

PPS sample
uniform sample

Figure 4.4: Median performances on dataset Gaussian with two sampling tech-
niques.

used by the local search, this improvement does not correspond to a better final
silhouette. As a matter of fact the PPS sample offers the best final silhouette. The
only black sheep is the dataset Radius, for which the two sampling strategies offer
a similar final result. This could be due to the fact that for this particular dataset
a uniform sample would be enough representative.

4.4 Refinement with two-pass
Since the sample loses its representativeness going on with iterations, we devised an
improved strategy based on running SampleOptimization twice and recomputing a
new sample before the second run. More precisely, in a first pass, the algorithm is
run to provide a clustering for the whole dataset, which, based on the experimental
results of the previous subsections, is already rather good. Then, in the second
pass, a new sample is computed for this clustering and the algorithm is run again
using this new sample, which will hopefully refine the quality of the clustering.
This technique could also reduce the probability of ending up in local maximum,
since it restarts the search from a very different point.

In Table 4.9 we can see the results after the first pass and after the second pass

42 Experimental Evaluation

5 10 15 20 25

0.1

0.15

0.2

0.25

Expected sample size t

M
ed

ia
n

sil
ho

ue
tt

e

Sample sil. Exact sil. (PPS)
Sample sil. Exact sil. (unif.)

5 10 15 20 25

20

30

40

50

Expected sample size t

M
ed

ia
n

nu
m

be
r

of
ite

ra
tio

ns
r

PPS sample
uniform sample

Figure 4.5: Median performances on dataset Higgs with two sampling techniques.

Optimization Exact
r

Time
algorithm silhouette [ms]
k-means++ 0.32778 - 651

Lloyd’s k-means 0.36126 63 1958

SampleOpt t = 5 first run 0.35114 19 925
refinement 0.35897 9 444

SampleOpt t = 10 first run 0.35607 29 3107
refinement 0.3633 14 1788

SampleOpt t = 50 first run 0.34286 17 42011
refinement 0.35368 3 7875

SampleOpt t = 100 first run 0.34277 4 31511
refinement 0.34257 4 33872

Table 4.9: Median performances on dataset Radius with two-pass, using k = 10.

of SampleOptimization. As it can be seen, even if the second pass usually improves
the silhouette, the improvement is not significative and so the refinement does not
seem to bring a substantial practical benefit.

Chapter 5
Conclusions

In this thesis we developed a local search algorithm for solving the clustering
problem optimizing the silhouette. The local step is moving a point from a cluster
to another. Moreover, we enhanced a straightforward implementation of the
algorithm by exploiting memoization and combined it with the sampling strategy
from [Alt+21] obtaining the coreset-based algorithm, dubbed SampleOptimization.

An extensive experimental analysis provided evidence SampleOptimization can
be competitive with the standard Lloyd’s algorithm for k-means, in the sense
that our algorithm returns a clustering whose silhouette is comparable with the
one of the clustering returned by Lloyd’s algorithm, sometimes also in less time.
When more time was required the resulting silhouette was indeed higher. From
the theoretical time complexity analysis we can also notice how the speed-up
would be higher for largest datasets where n ≫ k3t2, since SampleOptimization
affords greater scalability over Lloyd’s approach. In addition, it can be notice
how SampleOptimization would be easily distributable. The distributability of the
first part, where the clusters are sampled, was already shown in [Alt+21]. Also,
the last part of the algorithm is easily parallelizable being formed of loops having
independent iterations.

Another strong feature of SampleOptimization is that it can be used also with
non-Euclidean distances, for which Lloyd’s algorithm is either not suited or not at all
applicable (due to its use of centroids). For example, with Manhattan distances we
saw how SampleOptimization outperforms the most popular algorithm for k-median,
PAM, taking merely about 1/16 000 of the time. Moreover, SampleOptimization is
likely to outperform also the most famous improvements of PAM: FastPAM and
FasterPAM.

We wish to point out that our approach can also be employed for non-center
based clusterings. This allowed us to define the local step in a different way from
PAM-based algorithms aiming at optimizing the silhouette (e.g. PAMSIL), which

44 Conclusions

yielded us to better optimizations.
With another set of experiments, we provided evidence that the sampling

technique plays an important role in the goodness of the final result. In fact our
SampleOptimization highly benefits from the representativeness of the PPS sample
adopted, with respect to a simpler uniform sample.

5.1 Future works
As always, there is still room for improvement. For example, a method to find
at runtime the best value for t (the expected sample size in SampleOptimization)
could be devised. In fact, we saw from the experiments that increasing the sample
size raises its representativeness, but with too many points the local search cannot
make any significative improvement, and gets stuck at local maxima, or does not
fulfill the threshold of minimal improvement.

The experiments suggest that the silhouette of the clustering returned by
SampleOptimization, expressed as a function of the expected sample size is a curve
initially increasing, and then, after a global maximum, decreasing. If this is true
and if the silhouette of the sample is indeed a good representative of the silhouette
on the whole clustering1, then a simple method to pick t could be applied, namely
by running the local search on the sample for small values of t and then picking
the result which maximizes the silhouette, to be passed to the last part of the
algorithm.

Another interesting aspect to study would be the adjustment of the threshold η
to the sample size to avoid early saturations.

Moreover, while the experiments in Section 4.4 indicate that repeating Sam-
pleOptimization twice with the same expected sample size t does not yield significant
improvements, we could test the benefits of a second run of SampleOptimization
with a different value of t. A smaller value of t could avoid some local maxima and
permit a faster move across states, whilst a greater t (combined with a smaller η)
would increase the possible routes towards the optimum, allowing ending up in
better states.

We can also take inspiration from the optimizations done in PAM, and how they
were adapted in [LS22]. In fact, we can save, at the beginning of each local search
iteration, for each point, the three closest clusters. Sure enough one of the three
cluster will be involved in the computation of b(x). Then, in the computation of the
memoized silhouette, to obtain b(x) we have to take the minimum among the weights
with those three clusters and the two clusters involved in the moving of the point2,

1Actually, it is sufficient that there is a monotonicity relation between the two silhouettes.
From our experiments we can say this could quite be possible.

2Excluded the cluster of x in the case we are computing b(x) for the moved point.

5.1. Future works 45

instead of comparing the weights of all clusters. This, for large values of k ≫ 5,
would reduce of a factor O(k) both the computation of the memoized silhouette
and of ExactMemoization, bringing the complexity of SampleOptimization from
O(nkt + rk4t2) to O(nkt + rk3t2). We really need to save the three nearest clusters
because the two clusters involved in the moving of the point could possibly be the
two closest. In this case, where the weights of these two clusters have changed, we
could be sure the distances with the other clusters (which did not change weights)
to be greater only of the third nearest.

References

[AB84] Mark S. Aldenderfer and R. Blashfield. Cluster analysis. Sage, 1984.
isbn: 0803923767.

[Aga+05] Pankaj K. Agarwal, Sariel Har-peled, Kasturi, and R. Varadarajan.
“Geometric approximation via coresets”. In: Combinatorial and com-
putational geometry 52.1 (2005). url: http://sarielhp.org/p/04/
survey/.

[Alt+21] Federico Altieri, Andrea Pietracaprina, Geppino Pucci, and Fabio
Vandin. “Scalable distributed approximation of internal measures for
clustering evaluation”. In: Proceedings of the 2021 SIAM International
Conference on Data Mining (SDM). SIAM. 2021, pp. 648–656. doi:
10.1137/1.9781611976700.73.

[AR14] Charu C. Aggarwal and Chandan K. Reddy. “Data clustering”. In:
Algorithms and applications. Chapman&Hall/CRC Data mining and
Knowledge Discovery series, Londra (2014).

[AST18] Christos Anagnostopoulos, Fotis Savva, and Peter Triantafillou. “Scal-
able aggregation predictive analytics”. In: Applied Intelligence 48.9
(2018), pp. 2546–2567.

[AT07] S. Aranganayagi and K. Thangavel. “Clustering Categorical Data Using
Silhouette Coefficient as a Relocating Measure”. In: International Con-
ference on Computational Intelligence and Multimedia Applications (IC-
CIMA 2007). Vol. 2. 2007, pp. 13–17. doi: 10.1109/ICCIMA.2007.328.

[BSW14] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. “Searching for
exotic particles in high-energy physics with deep learning”. In: Nature
communications 5.1 (2014), pp. 1–9.

http://sarielhp.org/p/04/survey/
http://sarielhp.org/p/04/survey/
https://doi.org/10.1137/1.9781611976700.73
https://doi.org/10.1109/ICCIMA.2007.328

48 References

[CCK18] Edith Cohen, Shiri Chechik, and Haim Kaplan. “Clustering Small
Samples With Quality Guarantees: Adaptivity With One2all PPS”.
In: Proceedings of the AAAI Conference on Artificial Intelligence 32.1
(Apr. 2018). doi: 10.1609/aaai.v32i1.11772.

[DG17] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. 2017.
url: http://archive.ics.uci.edu/ml.

[FMS07] Dan Feldman, Morteza Monemizadeh, and Christian Sohler. “A PTAS
for K-Means Clustering Based on Weak Coresets”. In: Proceedings of the
Twenty-Third Annual Symposium on Computational Geometry. SCG ’07.
Gyeongju, South Korea: Association for Computing Machinery, 2007,
pp. 11–18. isbn: 9781595937056. doi: 10.1145/1247069.1247072.

[FS06] Gereon Frahling and Christian Sohler. “A Fast K-Means Implemen-
tation Using Coresets”. In: Proceedings of the Twenty-Second Annual
Symposium on Computational Geometry. SCG ’06. Sedona, Arizona,
USA: Association for Computing Machinery, 2006, pp. 135–143. isbn:
1595933409. doi: 10.1145/1137856.1137879.

[Gha+22] Kareem Kamal A. Ghany, Amr Mohamed AbdelAziz, Taysir Hassan
A. Soliman, and Adel Abu El-Magd Sewisy. “A hybrid modified step
Whale Optimization Algorithm with Tabu Search for data clustering”.
In: Journal of King Saud University - Computer and Information
Sciences 34.3 (2022), pp. 832–839. issn: 1319-1578. doi: 10.1016/j.
jksuci.2020.01.015.

[HK05] Sariel Har-Peled and Akash Kushal. “Smaller Coresets for K-Median
and k-Means Clustering”. In: Proceedings of the Twenty-First Annual
Symposium on Computational Geometry. SCG ’05. Pisa, Italy: Associa-
tion for Computing Machinery, 2005, pp. 126–134. isbn: 1581139918.
doi: 10.1145/1064092.1064114.

[HM04] Sariel Har-Peled and Soham Mazumdar. “On Coresets for K-Means
and k-Median Clustering”. In: Proceedings of the Thirty-Sixth Annual
ACM Symposium on Theory of Computing. STOC ’04. Chicago, IL,
USA: Association for Computing Machinery, 2004, pp. 291–300. isbn:
1581138520. doi: 10.1145/1007352.1007400.

[HPK11] J. Han, J. Pei, and M. Kamber. Data mining: concepts and techniques.
2011.

[HWS09] S. He, Q. H. Wu, and J. R. Saunders. “Group Search Optimizer: An
Optimization Algorithm Inspired by Animal Searching Behavior”. In:
IEEE Transactions on Evolutionary Computation 13.5 (2009), pp. 973–
990. doi: 10.1109/TEVC.2009.2011992.

https://doi.org/10.1609/aaai.v32i1.11772
http://archive.ics.uci.edu/ml
https://doi.org/10.1145/1247069.1247072
https://doi.org/10.1145/1137856.1137879
https://doi.org/10.1016/j.jksuci.2020.01.015
https://doi.org/10.1016/j.jksuci.2020.01.015
https://doi.org/10.1145/1064092.1064114
https://doi.org/10.1145/1007352.1007400
https://doi.org/10.1109/TEVC.2009.2011992

References 49

[Kan+04] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D.
Piatko, Ruth Silverman, and Angela Y. Wu. “A local search approxi-
mation algorithm for k-means clustering”. In: Computational Geometry
28.2 (2004). Special Issue on the 18th Annual Symposium on Com-
putational Geometry - SoCG2002, pp. 89–112. issn: 0925-7721. doi:
10.1016/j.comgeo.2004.03.003.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by
simulated annealing”. In: Science 220.4598 (1983), pp. 671–680. doi:
10.1126/science.220.4598.671.

[KR90] L. Kaufman and P.J. Rousseeuw. “Partitioning Around Medoids (Pro-
gram PAM)”. In: Finding Groups in Data. John Wiley & Sons, Ltd,
1990. Chap. 2, pp. 68–125. isbn: 9780470316801. doi: 10 . 1002 /
9780470316801.ch2.

[Lle+04] R. Lletí, M.C. Ortiz, L.A. Sarabia, and M.S. Sánchez. “Selecting vari-
ables for k-means cluster analysis by using a genetic algorithm that
optimises the silhouettes”. In: Analytica Chimica Acta 515.1 (2004),
pp. 87–100. issn: 0003-2670. doi: 10.1016/j.aca.2003.12.020.

[Llo82] S. Lloyd. “Least squares quantization in PCM”. In: IEEE Transactions
on Information Theory 28.2 (1982), pp. 129–137. doi: 10.1109/TIT.
1982.1056489.

[LMS10] Helena R. Lourenço, Olivier C. Martin, and Thomas Stützle. “Iterated
Local Search: Framework and Applications”. In: Handbook of Meta-
heuristics. Ed. by Michel Gendreau and Jean-Yves Potvin. Boston,
MA: Springer US, 2010, pp. 363–397. isbn: 978-1-4419-1665-5. doi:
10.1007/978-1-4419-1665-5_12.

[LPB03] Mark Van der Laan, Katherine Pollard, and Jennifer Bryan. “A new
partitioning around medoids algorithm”. In: Journal of Statistical
Computation and Simulation 73.8 (2003), pp. 575–584. doi: 10.1080/
0094965031000136012.

[LRB21] Attila Lengyel, David W. Roberts, and Zoltán Botta-Dukát. “Com-
parison of silhouette-based reallocation methods for vegetation classi-
fication”. In: Journal of Vegetation Science 32.1 (2021), e12984. doi:
10.1111/jvs.12984.

[LS22] Lars Lenssen and Erich Schubert. “Clustering by Direct Optimization
of the Medoid Silhouette”. In: Similarity Search and Applications. Ed. by
Tomáš Skopal, Fabrizio Falchi, Jakub Lokoč, Maria Luisa Sapino, Ilaria
Bartolini, and Marco Patella. Cham: Springer International Publishing,
2022, pp. 190–204. doi: 10.1007/978-3-031-17849-8_15.

https://doi.org/10.1016/j.comgeo.2004.03.003
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1002/9780470316801.ch2
https://doi.org/10.1002/9780470316801.ch2
https://doi.org/10.1016/j.aca.2003.12.020
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1007/978-1-4419-1665-5_12
https://doi.org/10.1080/0094965031000136012
https://doi.org/10.1080/0094965031000136012
https://doi.org/10.1111/jvs.12984
https://doi.org/10.1007/978-3-031-17849-8_15

50 References

[Mic68] Donald Michie. ““Memo” Functions and Machine Learning”. In: Nature
218.5136 (Apr. 1968), pp. 19–22. issn: 1476-4687. doi: 10 . 1038 /
218019a0.

[MPP19] Alessio Mazzetto, Andrea Pietracaprina, and Geppino Pucci. “Accurate
MapReduce Algorithms for k-median and k-means in General Metric
Spaces”. In: 30th International Symposium on Algorithms and Compu-
tation (ISAAC 2019). Ed. by Pinyan Lu and Guochuan Zhang. Vol. 149.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019,
34:1–34:16. isbn: 978-3-95977-130-6. doi: 10.4230/LIPIcs.ISAAC.
2019.34.

[Nie16] Frank Nielsen. “Hierarchical Clustering”. In: Feb. 2016, pp. 195–211.
isbn: 978-3-319-21902-8. doi: 10.1007/978-3-319-21903-5_8.

[NNA20] N. Nidheesh, K. A. Abdul Nazeer, and P. M. Ameer. “A Hierarchical
Clustering algorithm based on Silhouette Index for cancer subtype
discovery from genomic data”. In: Neural Computing and Applications
32.15 (Aug. 2020), pp. 11459–11476. issn: 1433-3058. doi: 10.1007/
s00521-019-04636-5.

[RN10] Stuart Russel and Peter Norvig. “Beyond Classical Search”. In: Artificial
Intelligence. A Modern Approach. 3rd ed. Prentice Hall, 2010. Chap. 4.

[Rob15] David W. Roberts. “Vegetation classification by two new iterative
reallocation optimization algorithms”. In: Plant Ecology 216.5 (May
2015), pp. 741–758. issn: 1573-5052. doi: 10.1007/s11258-014-0403-
2.

[Rou87] Peter J. Rousseeuw. “Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis”. In: Journal of Computational and
Applied Mathematics 20 (1987), pp. 53–65. issn: 0377-0427. doi: 10.
1016/0377-0427(87)90125-7.

[San+16] Sadiq Sani, Nirmalie Wiratunga, Stewart Massie, and Kay Cooper.
“SELFBACK—activity recognition for self-management of low back
pain”. In: International Conference on Innovative Techniques and Ap-
plications of Artificial Intelligence. Springer. 2016, pp. 281–294.

[SAT18] Fotis Savva, Christos Anagnostopoulos, and Peter Triantafillou. “Ex-
plaining aggregates for exploratory analytics”. In: 2018 IEEE Inter-
national Conference on Big Data (Big Data). IEEE. 2018, pp. 478–
487.

[SG06] Bart Selman and Carla P. Gomes. “Hill-climbing search”. In: Encyclo-
pedia of cognitive science 81 (2006), p. 82.

https://doi.org/10.1038/218019a0
https://doi.org/10.1038/218019a0
https://doi.org/10.4230/LIPIcs.ISAAC.2019.34
https://doi.org/10.4230/LIPIcs.ISAAC.2019.34
https://doi.org/10.1007/978-3-319-21903-5_8
https://doi.org/10.1007/s00521-019-04636-5
https://doi.org/10.1007/s00521-019-04636-5
https://doi.org/10.1007/s11258-014-0403-2
https://doi.org/10.1007/s11258-014-0403-2
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7

References 51

[SI84] Shokri Z. Selim and M. A. Ismail. “K-Means-Type Algorithms: A Gener-
alized Convergence Theorem and Characterization of Local Optimality”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence
PAMI-6.1 (1984), pp. 81–87. doi: 10.1109/TPAMI.1984.4767478.

[SJB17] Kim Sung-Soo, Baek Jun-Young, and Kang Bum-Soo. “Group Search
Optimization Data Clustering Using Silhouette”. In: Journal of the
Korean Operations Research and Management Science Society 42.3
(Aug. 2017), pp. 25–34.

[Ski16] Chris J. Skinner. “Probability Proportional to Size (PPS) Sampling”.
In: Wiley StatsRef: Statistics Reference Online. John Wiley & Sons, Ltd,
2016, pp. 1–5. isbn: 9781118445112. doi: 10.1002/9781118445112.
stat03346.pub2.

[SR21] Erich Schubert and Peter J. Rousseeuw. “Fast and eager k-medoids
clustering: O(k) runtime improvement of the PAM, CLARA, and
CLARANS algorithms”. In: Information Systems 101 (2021), p. 101804.
issn: 0306-4379. doi: 10.1016/j.is.2021.101804.

[SYR13] Archana Singh, Avantika Yadav, and Ajay Rana. “K-means with Three
different Distance Metrics”. In: International Journal of Computer
Applications 67.10 (2013).

[TSK16] P. N. Tan, M. Steinbach, and V. Kumar. Introduction to data mining.
2016.

[VA06] Sergei Vassilvitskii and David Arthur. “k-means++: The advantages
of careful seeding”. In: Proceedings of the eighteenth annual ACM-
SIAM symposium on Discrete algorithms. 2006, pp. 1027–1035. url:
http://ilpubs.stanford.edu:8090/778/.

[WH07] Gregory A. Wilkin and Xiuzhen Huang. “K-Means Clustering Algo-
rithms: Implementation and Comparison”. In: Second International
Multi-Symposiums on Computer and Computational Sciences (IMSCCS
2007). 2007, pp. 133–136. doi: 10.1109/IMSCCS.2007.51.

https://doi.org/10.1109/TPAMI.1984.4767478
https://doi.org/10.1002/9781118445112.stat03346.pub2
https://doi.org/10.1002/9781118445112.stat03346.pub2
https://doi.org/10.1016/j.is.2021.101804
http://ilpubs.stanford.edu:8090/778/
https://doi.org/10.1109/IMSCCS.2007.51

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Clustering
	Local search
	Previous work
	Summary of contributions
	Structure of the thesis

	Preliminaries
	Clustering
	Silhouette
	Clustering problems

	Algorithms for Silhouette-Based Clustering
	The naïve algorithm
	Introducing memoization
	Using coresets

	Experimental Evaluation
	Differences among proposed local search algorithms
	Performance comparison of SampleOptimization
	Using a different sampling technique
	Refinement with two-pass

	Conclusions
	Future works

	References

