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Abstract

In this work we consider the quantum version of the classical Fermi-
Pasta-Ulam problem, i.e. we study the quantum dynamics of a one-
dimensional chain of particles interacting through nonlinear forces. Using
the quantum analogue of the classical Hamiltonian perturbation theory, in
the Heisenberg picture, we eliminate through a canonical transformation
the nonresonant anharmonic terms, computing the quantum version of
the Birkhoff normal form to second order. Such a normal form is shown
to display small divisors for large size systems, being thus useless to
describe anharmonic lattice vibrations. We then show that, for the initial
excitation of long wavelength modes (acoustic modes), which is the case
of low temperature lattices in thermal equilibrium, the dynamics of the
system is close to that of the quantum Korteweg-de Vries equation.
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Introduction

The aim of this work is to study the dynamics of a one-dimensional anharmonic
chain of bosons with fixed boundary conditions, which is the quantum equivalent of
one of the classical problems of statistical physics of the last century classically known
as the Fermi-Pasta-Ulam (in the following FPU) problem [1]. The FPU problem was
intended to describe the relaxation towards the thermodynamical equilibrium of a
solid: the dynamics of a classical one dimensional chain of particles with anharmonic
interaction were studied (numerically, initially, and then also analytically) and no
thermalisation was found. Motivated by the idea that a consistent model of a solid
must be a quantum one, we believe that it is important to study the out of equilibrium
dynamics of this quantum system. However, the ergodic and thermalisation properties
of closed quantum systems are still an open and complex subject of study (for example,
a review of the recent theoretical achievements can be found in [4]), so we do not enter
in such a treatment; but we want to emphasize that this type of problems is receiving
much attention in the last years. In fact such a system is already experimentally
studied in [3], where a preparation of out-of-equilibrium arrays of trapped one
dimensional Bose gases, containing from 40 to 250 87 Rb atoms, is reported. Like
the classical Fermi-Pasta-Ulam system, no thermalisation is found. A more recent
experiment is reported in [5], where local emergence of thermal correlations of a
one-dimensional Bose gas are studied.

We gave mainly two original contributions. We constructed the second-order non
resonant normal form of the quantum Fermi-Pasta-Ulam system using the tools of
Hamiltonian perturbation theory for the Heisenberg picture of Quantum Mechanics,
and calculated the shift of the energy levels due to the non-linearity of the forces.
These are results that can be experimentally verified. Moreover, we built a connection
between the dynamics of the acoustic modes of the system and the so-called quantum
Korteweg-de Vries equation, i.e. if a,TC, k=1,...,N — 1 are the creation operators
of the quantum Fermi-Pasta-Ulam system, then the Heisenberg equations for this
operators are equivalent to the Fourier-Galerkin truncation to the first N — 1 modes
of the equation

1 o )

where o € R and % is a 2N-periodic hermitian quantum field. Thus, the dynamics
of the acoustic modes of the system can be mapped, for a period of time increasing
with the number of particles, in the dynamics given by this quantum field equation,
which is already known in literature. For example, in [6] this equation is proven to be
integrable, admitting an infinity of commuting conserved quantities; this equation is

vil



viii

Introduction

also studied in Conformal Field Theory, for example in [9]. We remark that we have
constructed a strong and clear connection, which as far as we are aware was absent,
between this known equation and this physical system. The work is organized in the
following way:

1.

In the first chapter we provide a general overview of the Hamiltonian Mechanics
tools which will be used in the following. We also include some elements of
ergodic theory to understand the connection between integrability and lack of
thermalisation.

. In the second chapter we describe the Hamiltonian formulation of infinite

dimensional systems. A particular importance is given to Quantum Mechanics.

. In the third chapter we provide the classical construction of the Fermi-Pasta-

Ulam model and its normal modes of oscillation and we canonically quantize
the system.

In the fourth chapter we provide one of the formulations of Hamiltonian
perturbation theory an the mean principle, for the classical and the quantum
case.

. In the fifth chapter we build the second order non-resonant normal form for

the quantum case.

. In the sixth chapter we explain the so-called small divisors problem in our

system of interest, which leads us to consider the first order resonant Birkhoff
normal form for the acoustic modes. We also prove that the Heisenberg equation
for the creation operator of this normal form is equivalent to what is known in
literature as the quantum Korteweg-de Vries equation.



CHAPTER 1

Hamiltonian Mechanics

In this first chapter we will provide the basic tools of Hamiltonian mechanics
introducing the concept of Poisson algebras, a mathematical environment which
generalize the elementary Hamiltonian systems.

1.1 Poisson algebras and Hamiltonian systems

Definition 1.1 (Poisson brackets). Let I' be a differentiable manifold and <7 (T") the
algebra of real smooth functions defined on it. A function {, } : &(I") x & (I") —
o/ (T') is called a Poisson bracket on T' if it satisfies the following properties:

1. {F,G} =—{G,F} VF,G e (I') (skew-symmetry);

2. {aF +p8G,H} = o{F,H} + f{G,H} Va,B €Rand VF,G,H € o/(T") (left
linearity);

3. {F,{G,H}} + {G,{H,F}} + {H,{F,G}} = 0 VF,G,H € (') (Jacobi
identity);
4. {FG,H} =F{G,H}+{F,H}G VF,G,H € </ (I") (Leibniz rule).

Remark 1.1. Properties 1 and 2 imply right linearity, so the Poisson brackets are in
fact bilinear, as properties 1 and 4 imply the right Leibniz rule.

One can see that the Poisson brackets known from elementary Hamiltonian
mechanics, i.e., if (¢,p) € T', VF,G € &/ ()

oF 0G  OF 0G
F = —
56 Z <8Qi Op;  Op; 3%‘)

7

are included in this definition, and one clearly has
{ai.a} =0, {pispi} =0, {a,pj} =diy,

where 0; ; is the standard Kronecker delta.

1



2 Hamiltonian Mechanics

Definition 1.2 (Poisson algebra). The pair {</(T"),{, }}, where {, } is a Poisson
bracket on I' is called a Poisson algebra.

Remark 1.2. A Poisson algebra is a Lie algebra, with an additional property of the
product (the Leibniz Rule).

Definition 1.3 (Hamiltonian system). Given a differentiable manifold I' and a
Poisson algebra {7 (T"),{ , }}, a dynamical system & = u(z), u(z) € T,I, is a
Hamiltonian system, if there exists H € o/ (T'), called the Hamiltonian of the system,
such that

ui(z) = [Xp ()] = {zi, H}.
Xy is called the Hamiltonian vector field of H.

Again, this is a generalization of the elementary Hamiltonian systems, namely
systems whose dynamics satisfy the Hamilton equations

,_oH . _O0H
T P T

where (¢,p) € T = R?" and H(q, p) is the Hamiltonian of the system. If { , } :=

n 0 0 9 0\ ; : :
21:1(671-@ — @6—%) is the elementary Poisson bracket, one in fact has

8(]]‘ 8pj B apj 8(]]‘

) " (8q; OH dq; 6H> " 9H OH
4 = {qi, H ——E ( — —E i a— =
{ } j:l j:1 ]ap‘j 8])1

and, with an analogous computation {p;, H} = _gg ,

Remark 1.3. Hamiltonian systems are often introduced by means of symplectic
geometry, introducing a differentiable manifold and defining a symplectic form on it.
Although this approach is the most mathematically precise one, we choose to present
Hamiltonian systems in a more physical way, as it is more fitting to the calculations
we are going to perform.

At this point one can see that the elementary Poisson brackets can be written in
matricial form, namely VF,G € o/ (T")

O 1
{F,G} =VF -JVG, Jz( >
-1 0/,
nx2n
and J is called symplectic matriz or standard Poisson tensor, in a sense that will be
clarified below. It is useful to extend these notions from elementary Hamiltonian
mechanics to the general environment.

Proposition 1.1. A skew-symmetric, bilinear Leibniz bracket { , } on a differentiable
manifold " is such that

e
oxy,’

F
(F.G}=VF JVG=Y" %ij(x) (L.1)
gk

VF,G € o/ (T'), where
ij(x) = {xj,a;k} Vj,k. (1.2)



Change of coordinates and canonical transformations 3

This bracket satisfies the Jacobi identity (i.e. it is a Poisson bracket) if and only if
J(x) is such that

ank 8sz 8Jij .
PRt LRy . s = k. 1.
Z<J P + Jj Ba. + Ji o Vi, k (1.3)

S

Now we can give a general definition of Poisson tensors, and see that the symplectic
matrix J is in fact a particular case.

Definition 1.4 (Poisson tensor). Given a Poisson algebra {<7(I"),{, }}, a Poisson
tensor is a function operator J;;(z) = {z;,z;} Vo € T, skew symmetric and satisfying

. 8T 8.J;i .
3 <Ji an+‘]j 8;;+Jksﬂ> -0 Vjk

Remark 1.4. This is clearly a generalization of the symplectic matrix J, in fact it is
easily verified that any constant skew-symmetric tensor is a Poisson tensor.

Remark 1.5. Thanks to proposition 1.1, there is a one-to-one correspondence between
Poisson brackets and Poisson tensors. Therefore in the following we will denote
a Poisson algebra indiscriminately by {</(I'),{ , }} (when we want to stress the
algebraic valence) and {<7(T"), J}, where { , } and J are linked by the relation
J (@) = {wi, x5}

We have seen that every Poisson brackets can be written in the form (1.1), where
J(x) is a Poisson tensor. This leads to the fact that every Hamiltonian vector field
Xp(z) can be written as a function of the Poisson tensor, in fact

Xl = (o @} = Y G200 20 = 3 g 0 = o) v @),
ik J k

which is clearly a generalization of the standard Hamiltonian vector field IV H ().

It is possible to extend to the general environment the equations of evolutions
of observables, i.e. VF € o/ (I'), given a solution of the Hamilton equations & =
J(x)VH(x), t — x(t)

d B OF (z(t)) dov; OF(z(t)) , . (OH(z(t))
%F(x(t)) Z 8952 E N - 8:1:, JZJ (x) 8:6]‘ N {F7H}

? 2y

so that % = {F, H}. This equation will be the most general form of time evolution
equation for a Hamiltonian system, and will be particularly interesting for our work
when extended to the quantum mechanics environment.

1.2 Change of coordinates and canonical transformations

Of course, one is interesting in performing change of coordinates. In fact, a
dynamical system might appear obscure written as it is, but a change of variables
allows us to see it in a different light, highlighting some of its qualities. This is
indeed the concept of Liouville integrability, which we will see in the following
chapters. For Lagrangian systems, adapted to working on constrained systems,



4 Hamiltonian Mechanics

only a particular set of change of coordinates is allowed, in which the change of
velocities is bounded in a precise way to the change of positions. When Hamiltonian
systems are introduced in the most elementary way, i.e. the Legendre transform of
a Lagrangian system, one learns that the transformations of the momenta and the
transformations of the positions are no longer bounded but, again, only a particular set
of change of coordinates are allowed, often called symplectomorphisms of symplectic
transformations. In the general environment of Poisson algebras we will learn that
every change of coordinates maps Hamiltonian systems into Hamiltonian systems, at
the cost of changing the Poisson tensor.

Proposition 1.2 (Change of variables). Let & = J(2)V,H(z), v € T' a Hamiltonian
system, and f : x + y = f(z) a change of variables with inverse g := f~':yr> x =
g(x). Then, the first Hamiltonian system is conjugated by f to

g =T y)VyH(y) (1.4)
where H = Hog and
of or7" 091", [oa]"
fa) = | 2L ZL = |2 ZZ 1
=@ 5] b = [5] s@ | as)
Proof. The proof is straightforward starting from the identities

O g0 Oy 2]
or; - dx; Oy, oz I = Oy ’

T
so that y = f(x) implies § = %i‘]x:g(y) = [%} J(x) {%} VyH]x:g(y). O

At this point, one might ask if the system (1.4) is still Hamiltonian. The answer
is given by the following proposition, which implies that a dynamical system is
Hamiltonian independently of the coordinates chosen (that, one can say, is the true
strength of the Hamiltonian formalism).

Proposition 1.3. Poisson brackets are characterized by coordinate-independent
properties.

Proof. Given a Poisson bracket { F, G}(z) = VF(z)-J(x)VG(x) we want to show that
it transforms into another Poisson bracket under any change of variables f: x — v,
with inverse ¢ = f~!'. We will denote with a tilde composition with the inverse,

namely F(y) := F(g(y)). By means of (1.5) one finds

af\T of
<a$> V,F|-J(z) (8:3) VyGlazgy) =

(52) o) (gg)T

=V, F(y) - J(y)V,Gly) = {F,G}(y).

{(F,G}(y) =

=V, F(y) - V,Gly) =

Equivalently, with notation independent of coordinates, one has

(F,G}={F,G}y < {FGlog={Fog,Gog}
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We must show thaat the bracket {ﬁ ) é}ﬁ, formally defined above, is an actual Poisson
bracket on the algebra of the transformed functions. To this end, we observe that
skew-symmetry, bi-linearity and Leibniz property follow directly from those of { , }.
The validity of the Jacobi identity can be shown by the repeated use of the latter
relation

—_~—

0=A{FA{G H}} +{G {H,F}} +{H {F,G}} =
= {F {G,H}}; + {G.{H,F}}y + {H,{F,G}}; =
= {Fv {GaH}ﬁ}ﬁ + {G’{HvF}ﬂ}ﬁ + {H’{F7G}ﬁ}ﬁ'
Thus, the change of variables f transforms Poisson brackets into Poisson brackets. [

Remark 1.6. A convenient way to characterize the transformation of a Poisson tensor
under a given change of variables is that {y;,y;}s = {fi, fj} o g holds for any change
of variables f : x — y.

Given the Hamiltonian dynamical system & = J(x)V,H(z), x € T', among
all the possible changes of variables concerning it, a privileged role is played by
those leaving the Poisson tensor and the Hamilton equations invariant in form, i.e.
mapping the equation @ = J(x)V H(x) into the equation y = J(y)V,H(y) for
any particular Hamiltonian. Such particular changes of variables are the so-called
canonical transformation of the given Poisson structure and are characterized by the
following equivalent conditions:

THy) = J(y);
{visyit ={fi, fi} o g;
{Fog,Gog}={F,G}ogVF,G.
Definition 1.5 (Canonical transformation). Given a Poisson algebra {7 (T"), J}, a
canonical transformation is a change of coordinates € : I' — I', x — y such that for
any Hamiltonian H, it conjugates the Hamiltonian system & = J(xz)V,H (x) into
y=J(y)VyH(y)
where H = H o ¢ 1.
Remark 1.7. The set of all the canonical transformation of a given Poisson structure

has a natural group structure with respect to composition (they are actually a
subgroup of all the change of variables).

If = (¢,p) € R? and J(x) = Joy,, then a direct computation shows that a
canonical transformation f: x — y = (Q, P),

3(Q,P)] P [8(Q,P)]T 2(Q,P) _of
aNa.p) | [0 |~ dgp) oz

preserves the Poisson brackets, i.e.

{Qi> Qj}(Q>p) =0, {PZ, Pj}(‘]vp) =0, {Qi7pj}(Q7p) = 5i,j

where we have stressed the fact that @ and P are functions of (g, p).

J2n:|:



6 Hamiltonian Mechanics

A very convenient way of performing canonical transformations is to do it through
Hamiltonian flows. To such a purpose, let us consider a Hamiltonian H(z) and its
associated Hamilton equations & = Xy (). Let ¢, denote the flow of H at time s,
so that ¢3;(§) is the solution of the Hamilton equations at time s corresponding to
the initial condition £ at s = 0. We also denote by

Ly:={,H}=(JVH)-V=Xg-V
the Lie derivative along the Hamiltonian vector field X .

Lemma 1.1. For any function F' one has
Fog¢y =eleFR,

Proposition 1.4. If H is independent of the time, the change of variables x — y =
¢35 (z) defined by its flow at time s constitutes a one-parameter group of canonical
transformation.

As we have seen, a canonical transformation (¢,p) — (Q, P) = (ag, fp), o, B €
R\ {0} must preserve the Poisson brackets, so if the initial Poisson tensor is Ja,,
the canonicity of the transformation is assured if aff =1, as

{Qi, Pj}(q,p) = aB0; .

However, one can relax the notion of canonical transformation to a transformation
which involves not only the coordinates, but also the Hamiltonian and the time
itself, (¢,p, H,t) — (Q, P, K,T) which preserves just the Hamilton equations. Such a
transformation will be called a non-univalent canonical transformation. In literature,
the canonical transformations are often called symplectic transformation, and the
non-univalent canonical transformations are called simply canonical. In this work,
since the difference between the two is very little, we will call all of them canonical or
symplectic indiscriminately. In this way, in a canonical transformation (g, p, H,t) —
(Q,P,K,T) = (agq, Bp,vH, 0t) the extra factor aff # 1 gained by the Poisson tensor
can be re-absorbed by a rescaling of the Hamiltonian and the time. The new equations
then will be

dQ 0K aP 0K

— = — =, — afB = 0.
T~ 9P ar ~ 90 f=n

At this point, we can easily see an application of the canonical transformation
formalism which will be useful in the following, i.e. the so called Birkhoff coordinates
(or complex coordinates) for the harmonic oscillator. Suppose we have a standard
Hamiltonian system, (¢, p) € R? with Hamiltonian

1
H(q,p) = 5(1?2 + w?q?).

The Hamilton equations read
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This system physically refers to a one-dimensional Harmonic oscillator with unitary
mass and frequency w. One can operate a change of coordinates R> — C2, (q,p)
(z,2*) where

_ wq+1p Z*_wq—ip
V2w ’ V2w ’

The resulting system is of course Hamiltonian, with Hamiltonian
K = w|z?

with |z|? = zz*, but the transformation is not canonical. In fact, the new Poisson

tensor is
= 0 1 CEN 0 —i
2w V2w V2w

where we have introduced the second Pauli matriz. The new Hamilton equations
read

[€] pol€

2= —iwz, 2F =iwz",
so that, the solutions of the Cauchy problem with initial datum zg is z(t) = e ®fz:
in this new coordinates, the solution rotates in the complex plane with frequency
w. These coordinates were initially introduced in classical mechanics, but they
find a strong application in quantum mechanics as they are the equivalent of the
creation and annihilation operators, which are used in the description of the quantum
harmonic oscillators and many-body systems.

Remark 1.8. Sometimes, instead of performing the change of variables written above,
two different steps are used. The first is a canonical rescaling (¢,p) — (¢/,p’) such
that ¢ = % and p = /wp’ which conjugates the harmonic oscillator Hamiltonian to

W, 2 2
5((]/ =+ p/ )?
and then pass to complex coordinates

el A 4

V2 T A

The two methods are of course equivalent, and transform the standard Poisson tensor
Js into os.

1.3 Integrability of Hamiltonian systems

Among all the possible Hamiltonian systems, it is interesting to study a particular
(and very special) class of them, i.e. the so-called integrable systems. Although there
are several (and somehow almost equivalent) concepts of integrability of a dynam-
ical system, the most common one concerns the quasi-periodicity of its solutions.
It is nonetheless important, however, to recall that initially the integrability of a
certain differential equation indicated that it can be solved exactly, explicitly or by
quadrature. As we will see, there is a strong connection between these two conceptions.



8 Hamiltonian Mechanics

In order to talk about Hamiltonian integrability we need to introduce its basilar
element, and its connection to the presence of symmetries of the given dynamical
system.

Definition 1.6 (First Integral). A function I € &7(I") endowed with the Poisson
brackets {, } is a first integral of the Hamiltonian H € &/ (T") if

{I,H} =0.

Definition 1.7 (Involution). Two first integrals I; and I of the same Hamiltonian
system are in involution if

{6, 12} =0.

Keeping in mind the time evolution equation for Hamiltonian systems I = {I,H},
we understand that a first integral of a Hamiltonian system is a function on the
phase space which doesn’t change along the flow of the system. It is easy to notice
that, due to the skew-symmetry of the Poisson brackets, any Hamiltonian system
admits at least a first integral which is the Hamiltonian itself.

Proposition 1.5. If the Hamiltonian H is invariant with respect to the Hamiltonian
flow of the Hamiltonian K, i.e. H o ¢% = H Vs € R, then K is a first integral of H.

This last proposition is the Hamiltonian version of the Nother theorem: for a
Hamiltonian system, a dynamical symmetry always produces a conserved quantity
(a first integral). Of course, when a first integral is present, a particular initial
data must evolve under the flow of the Hamilton equations on the level sets of this
first integral, which under the suitable assumptions are differentiable manifolds: the
effective phase space accessible to the dynamical system is smaller. If two symmetries,
and thus two first integrals are present, the initial data must evolve under the flow
on the intersection of the level sets of the two integrals, which (again, under some
assumptions) is a smaller differentiable manifold. One can imagine, then, that if
there exists a sufficient number of first integrals the motion becomes so constrained
that in some coordinates the flow becomes trivial, and thus exactly solvable. All this
is formalized by the celebrated Liouwville-Arnol’d theorem, which regards the so-called
Liouwville integrability

Definition 1.8. Given a 2n-dimensional Hamiltonian system, we say that it is
integrable in the sense of Liouville if it admits n first integrals in involution.

The importance of this type of integrability resides in the fact that it was proven
that a Hamiltonian system which is integrable in the sense of Liouville is also
integrable by quadrature. Morevoer, it was proven that if the 2n-dimensional system
is integrable and I, ..., I,, are n first integrals of the system, it is possible to perform
a canonical transformation f: (¢,p) — (¢,I) such that the Hamiltonian depends
only by the momenta I, and the transformed equations of motion are, for some w(I)

dp=w(), I=0.

Trivially, their solution is I(t) = Iy and ¢(t) = ¢o + w(lp)t. If the level sets of the
n first integrals are compact, then the motion is periodic and the phase space is
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foliated in invariant tori endowed with coordinates ¢ and radius dependent on I: if
we choose an initial data on a torus the flow remains on the same torus forever.

This is surely the case of the n-dimensional harmonic oscillator. As we have seen
for the one-dimensional case, one can introduce the Birkhoff variables z; and 2z,
k=1,...,n, so that the Hamiltonian is conjugated to ), w;€|zk|2 and the motion
is trivial: z(t) = 2z;(0)exp (—iwgt). This system surely has n first integrals in
involution, which are the modules |z |, while the phases evolve periodically in time:
the n-dimensional harmonic oscillator is an integrable system.

Although the integrable case is an exceptional one, it regards some of the most
significant problems in the history of physics, like the harmonic chain, the Euler rigid
body, or the Kepler problem. For these systems, the Hamiltonian environment must
not be seen as a tool to solve the equations of motion, but to give a deep look into
the geometric structure of the problem, and to understand the very interesting but
difficult case of systems next to the integrable ones: a system of masses bounded by
slightly non-linear forces, a rigid body in a weak force field, or two or more weakly
coupled Kepler problems. For this type of problems, like ours, one must turn to the
Hamiltonian perturbation theory which gives very useful tools.

1.4 Elements of ergodic theory

The integrability of a system has deep consequences on its thermalisation prop-
erties. In the following we will give a general idea of ergodic theory, providing the
main definitions and concepts and omitting the proofs in order to emphasize the
physical sense of the problem. We will follow [18|.

Ergodic theory is a mathematical field which started with the works by Von
Neumann and Birkhoff at the end of the twenties. The fundamental ideas come
from Boltzmann and Gibbs, who laid the foundations of Statistical Mechanics and
introduced the fundamental notion of ensembles to describe a macroscopic state
of a system with many degrees of freedom. Statistical mechanics was born for
understanding the macroscopic behaviour of a thermodynamic system starting from
its microscopic structure, using probability theory as a fundamental tool. We will
start by introducing Boltzmann’s and Gibbs’s points of view of Statistical Mechanics,
which affect deeply the basic notions of ergodic theory.

Let us consider a thermodynamic system constituted by a big number N of
identical subsystems, each of them having [ degrees of freedom; the complete system
then will have n = [N degrees of freedom. The 2[-dimensional phase space of
the single subsystem is traditionally denoted by p, and by I' = pV, dimI’ = 2n
the phase space of the whole system. Denoting with 2@ = (p(i),q(i)) € u the
canonical coordinates of the i-th subsystem, then the microscopic state of the system
is represented by a ordered N-tuple of points z@ in 1, or equivalently by a point
x = (q,p) in I'. The microscopic evolution then appears indistinctly as a motion
in I' or a N-tuple of motions in . The motion in I' is solution of the microscopic
differential equations: we suppose them to be Hamiltonian, with some Hamiltonian

of the kind
N

H(g,p) =Y h(p",d")+V(e), (pg) €T
=1
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Figure 1.1: The Maxwell-Boltzmann state W* dominates 'g1ap.

where h is the Hamiltonian of the single subsystem, and it is identical for each
of them, while V is a suitable interaction potential between the subsystems. The
presence of V is essential for the subsystems to interact and for the system to evolve
in a significant way: it is assumed, on the other hand, that V is considerably smaller
then the first term, and approximately irrelevant when it comes to compute the
energy.

The core of Bolzmann’s idea consists of dividing the p space into small cells w;
with the same volume w. To every choice of the occupation numbers of the cells
Nj corresponds a set W(Ny, Na,...) in I', arranged in a thin layer I'p4 A around
the constant energy surface X . For the effect of the dynamics the occupation
numbers change in time but for the energy conservation the motion is constrained to
the layer I'p4ap which represents the true phase space of the system. The central
idea of Boltzmann’s work is that, unless the system enters in very special regions,
with an extremely little volume, the points in y evolve maintaining the densities f;
constant, and the macroscopic state with them. One finds that almost the totality
of the accessible phase space corresponds to well defined densities, with irrelevant
fluctuations. One in fact finds that

NI

W(Nl,NQ, . ) = Ww

and that the maximum W* of W, with £ and N fixed is for N; = N with

N; = CNwe Pei, ct= Ze_ﬂejw,
J

so f; = f]* = Ce P, where f8 is a Lagrange multiplier. This is called Mazwell-
Boltzmann state.

At this point Boltzmann introduced a fundamental dynamical hypothesis, known
as ergodic hypothests: the microscopic dynamics is such that the point =z € T,
representative of the microscopic state of the system, wanders through all the layer
I'r+ar and spends in each volume W a time proportional to W itself. So, if the
system is observed in a random instant (chosen in long period of time) the probability
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of finding the system in a generic set coincides with its volume W. This interpretation
of volume in the phase space as a probability a priori of a set of microscopic states
is commonly called principle of equiprobability of the microscopic states, on which
the whole statistical mechanics is built: the ergodic hypothesis represents a possible
dynamic justification of it.

Boltzmann’s conclusion is that no matter how the system is prepared, even
in condition which are far from the thermodynamic equilibrium, the microscopic
dynamics will push the system into W*, and in this set it will spend the majority of
its time, up to extremely rare fluctuations.

Gibbs’s notion of macroscopic state is different from the one of Boltzmann’s, the
probability playing a more essential role. While Boltzmann thinks at the u space,
and associates the macroscopic state to a distribution f of the subsystems in the u
space where each of them is defined, Gibbs works directly in I', and identifies the
macroscopic state as a probability distribution p in this space; the interpretation of
p is that for a generic W C I' the a priori probability that one of the microscopic
states x € W is realized is

Pv) = [ pav.

where dV is the volume in I'. Every macroscopic state is then a measure in T,
with density p. Gibbs then considers at each time a family or ensemble of systems
in evolution, independent mental replicas of the same physical system in different
microscopic states, distributed in I' with a suitable probability density p. The idea is
that in every experiment the preparation of the system at ¢ = 0 determines a initial
distribution pg in I'; under the dynamics each initial condition evolves independently,
determining at each instant a suitable distribution p;. From the volume conservation
in the phase space follows the evolution equation for p;

pe(x) = po(¢~*(x)), wel,

denoting with z + ¢'(x) the microscopic evolution. The search for equilibrium states,
the ones in which p;(z) in each point x does not depend on ¢, becomes natural. An
example of equilibrium distribution is obtained for each I'g+a g as

() = .
p(@) 0 elsewhere

{Const in 'g+AE
The situation of equiprobability of the microscopic states is then, in Gibbs’s view,
an equilibrium state. It is clear that such a state is not unique: in fact, every

where F': R — R* is arbitrary and H is the Hamiltonian, is an equilibrium state.
Indeed, the dynamics preserves the energy, so one must work in a constant energy
surface X g instead of the whole phase space I'. One finds that the volume conservation
in the phase space induces a conserved measure p on each constant energy surface
Y.g. At this point one can introduce, instead of the density p in I', a superficial
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density in X, which we keep on calling p, and attribute to each set A C X the
probability

P(A) = [ e

with the same evolution equation.

Our aim is now to give the idea of a dynamical justification of these statistical
assumptions. We will just enter the problem, giving the most basilar definitions and
results, avoiding every kind of technical details.

Definition 1.9. For every function f: M — R, the function f: M — R defined by

F(2) = lim — Zfass

t—oo t

or in the continuous case

F(@) = Jim /MS

t—oco t
is called, if it exists, the time average of f.

For example, the average time of visit of an orbit in a measurable set A

1 ¢
TA(x) := lim —74(z,1), TA(x, 1) ::/ xA(¢%(x)) ds,
t—oo t 0
where x 4 is the characteristic function of A, is precisely the time average of x 4. The

time average of a function f, is itself a function f; it is instead a number the phase
average (f) of f, defined for every f € Li(M, u), by

/fdu

Theorem 1.1 (Ergodic theorem of Birkhoff-Kinchin). Let (M, u,®) a discrete dy-
namical system, and be f: M — R in Li. Then the limit

1 S
= Jm 3 Z @
exists almost everywhere in M, and one has

fle@) =f=), ()=

If the system is invertible, then the limit

? tlg]&tzf

exists almost everywhere, and almost everywhere coincides with f

Definition 1.10 (Ergodic system). The dynamical system (M, u, ¢) is said ergodic
if one of the following equivalent properties is satisfied:
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1. For every summable function f: M — R, time average and phase average
coincide:
f(z)=(f) almost everywhere in M;

2. For every measurable set A C M the average time of visit is equal to the
measure of A:

Ta(x) = pu(A) almost everywhere in M;

3. There are no summable non-trivial integrals of motion:
f(¢'(x)) = f(x) V¥t almost everywherein M =  f constant in M

for every f: M — R.

The first property is the most classical one, and is at the basis of the definition
of ergodicity in different textbooks of statistical mechanics; it corresponds to the
practical idea of substituting phase averages to time averages, which are in general
difficult to compute. The second property formalize to the idea by Boltzmann that
in an observation made in a casual time corresponds a probability of finding the
microscopic state of the system in A equal to the measure of A: in this way, for an
ergodic system, the volume assumes the meaning of probability. The third property,
finally, corresponds to the uniqueness of the equilibrium in Gibbs’s sense: if the
macroscopic state p; evolves with

pe(x) = pe(¢7"(2))

then the only equilibrium state, such that p; = pg for every ¢ is the uniform one
p(x) = 1 almost everywhere.

Clearly, every Hamiltonian system with one degree of freedom, on a constant
surface energy Y compact connected and with no singular point, is ergodic. It is
ergodic, then, the single harmonic oscillator H(q,p) = %(p2 + w?¢?) on each of the
constant energy curves. It is not ergodic instead, on the constant energy surface,
a system of two or more harmonic oscillators, H = %Z’;:l(p? + w?q?), or more

generally a system like
n

H(q,p) = Zhi(%’api);
i=1
in fact, the energies of the single components are first integrals, thus going against the
third property. An integrable system with n > 2 degrees of freedom is not ergodic,
since it admits n non-trivial first integrals. Systems like these prompt us to put a
very natural question: what happens if one includes a small coupling between the
oscillators? This is exactly the question to which Fermi, Pasta and Ulam tried to
answer in the celebrated work [1], that is the starting point of this work.
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CHAPTER 2

Infinite dimensional systems

Let La(A) be the space of real-valued square integrable function on a one dimen-
sional differentiable manifold A with norm

(fq) = /A dr f(x)g(x)  Vf.g € La(A).

In the following we will denote partial derivatives with a subscript, for example
0
o =

We would like to give an Hamiltonian structure to an infinite dimensional system,
namely a PDE system in the form

Vo = f(, Yy aw, .)€ La(A).

In this work, in fact, we will use the Heisenberg picture of Quantum Mechanics and
its Hamiltonian properties in order to understand the dynamics of the particular
quantum system which is the quantum equivalent of the classical Fermi-Pasta-Ulam
system [1]. With the tools provided by this theory of infinite dimensional systems
we will formulate Quantum Mechanics in an Hamiltonian environment, providing an
Hamiltonian formulation for the Schrodinger picture, and seeing its isomorphism (in
the algebraic sense) with the Heisenberg picture. Thanks to the Poisson structure
of Quantum Mechanics we will in fact extend the theorems known in the classical
environment and perform calculations that allows us to keep in close contact to the
well studied classical case.

2.1 Lagrangian formulation

We will introduce the Hamiltonian structure of an infinite dimensional system
starting by the Lagrangian formulation, and then pass to the Hamiltonian formulation
performing the Legendre transform. In analogy with the finite dimensional case, the
Lagrangian will be a real functional L(1), ). Instead of the sum over the discrete
indices in the finite dimensional case, we have now a integral over A of a function

15
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L, 1, 1y) called Lagrangian density

L, ) = /A L, ) da

The action is the integral over the time of this quantity

S(w)z/RL(z/},M) dt:/R/Ag(w’%’W de dt

We would like to apply the principle of least action, i.e. find the equations of motion
by searching the critical points of the action functional S, but to perform such task
we need first of all to define differentiation in the infinite dimensional space Lo. In
the finite dimensional case, for a function f: R" — R, x — f(x) we have

d
(@) = L f @+ eh)eco = V() - b
In the infinite dimensional case we define the weak differential of a functional
F(yn,...,¢y) along the direction (hy,...,hy), with hijga =0Vi=1,...,n
d
dF(¢17' wn) = 7F(w1+5h17'--7wn+5hn)‘520

and the Lo-gradients Vy, F' such that

n

dF =) (Vy,F hi).
=1

We now calculate the Ls-gradients of L along the directions h, hy

AL (1) = / L P+ et + bty + o) eco do

&Z 8$ 0%
hy + ht) dx
= .G+ gt
0% do¥ 0¥
=[50~ gt Gihe) @
0 that 0.8 d 0% 0.
dL = (w - @a—%,m + <8777[)t’ he).
The Ls-gradients of L are then
0% dio% 0%
=2 _ 29z L=2%.
Vi oy dx Oy’ Vi 8%

The principle of least action reads dS(i) = 0, so

aS(0) = [ drt.w) i

/ (VoL h) + <th he)) dt

// VwL— th )hd{L‘dt

= (VS h).
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The equation of motion are then

04 _doz 4oz _

d
V¢S Vy Vi, 0 o dx O,  dt Oy

dt

which are the Fuler-Lagrange equations for the Lagrangian density .Z.

Remark 2.1. In theoretical physics a slightly different notation is used, which we will
use in the following. The weak differential

dF(y) == 6F(y)

is called Gateaux differential while h =: d1) so that

d
OF () = < F(Y + 20 0.

The Lo-gradient are called functional deriative V. F =: g—fz so that

oF
S (W) = (3.,50).
The Euler-Lagrange equation thus reads
d §L oL
it 2.1
dt oy oY (21)

2.2 Hamiltonian formulation

In analogy to the well known finite dimensional case, we define the momentum

oL
oy

Suppose the above relation is invertible, i.e. it exists a smooth function .# such that

1/% = 35(7%77)

s

This hypothesis is verified, for example, if L is convex in 1, but it is not if the
dependence is linear. Starting from a Lagrangian functional L we can now define the
Hamiltonian as its Legendre transform

H(yp,m) = ((m,91) — LY, ¢1)) [ =7 (,m)

which can be written as a function of a Hamiltonian density A as H = |, A dx
where

= (7‘('1/1,5 — f(d}’ waca wt))\wt:?(wnr)'

In the following we will understand the evaluation of ¢, in % (¢, 7). The action
functional is S(¢, m) = [((m,¢) — H(¢, 7)) dt. A direct computation shows that
the least action principle implies the Hamilton equations for ¢ and 7, i.e.

0H 0H

wt:g7 Wt:—w.



18 Infinite dimensional systems

In this way we have seen that ¢ and 7 defined as above are a infinite dimensional
Hamiltonian system, with the standard Poisson tensor J and the standard partial
derivative substituted by functional derivatives

()=o)

Moreover, the algebra of real-valued, square-integrable functions of ¢ and 7 together
with the Poisson tensor J form a Poisson algebra, which can be object of changes of
variables and canonical transformations as described in the previous section.

2.3 Quantum mechanics

2.3.1 Hamiltonian structure of the Schrédinger equation

Let us consider the Schrédinger equation for the wave function ¢: A x R — C,
x — P (x,t), of a single particle with mass m > 0 and position z in some d-dimensional
differentiable manifold! A in a potential V (x)
L oY - h?
zha =Hy = —%A@D + V. (2.2)
Our aim is to look for an Hamiltonian formulation of this equation, i.e. look for
an Hamiltonian, function of v (z,t), whose Hamilton equations are precisely the
Schrodinger equation (and its complex conjugate). Of course this whole construction
can be extended to the many-particle case.
First of all we want to formulate the problem in a Lagrangian environment. The
Schrodinger equation and its complex conjugate are the Euler-Lagrange equations
for the Lagrangian density

LW 0 ¥7) = 5 (W = bu) = V[P = |V (23)
and L = | A-Z dx. In fact, the Euler-Lagrange equation for ¢* are

d
d dL oL d, . d h? o
it v G L D DY vl Tt

which is of course (2.2). One would like to apply the Legendre transform in order to
pass to the Hamiltonian formulation, but as L is linear in v and v}, the change of
variables

oL
0ty
is not invertible, and the whole construction of the Legendre transform theory cannot

be applied. However, if we define ¢ as the "coordinate" and 7hy* as the "momentum"
and use the standard Poisson tensor Jo, we have a Hamiltonian system of Hamiltonian

™

2
H:/%”dx, %:iwwyhvwﬁ
A 2m

!Common choices for A are R%, or the torus T¢ = (R/1Z)? for some [ > 0, for d = 1,2, 3.
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In fact, the Hamilton equations are

6H 16H 1,04 R2OVy2. 1, k2
= 5r ihow ihlae Y amoove) T am vt VY)

which is (2.2), and

Vi

o0H
5
which gives its complex conjugate. One can also use the so called Birkhoff structure,
which is a more symmetric Poisson structure where 1 is the coordinate and * is
the momentum. In these coordinates, the Poisson tensor is 22, in fact the Hamilton

n
equations are
<wt>1 i _ 1y (%
vi) T\ i in™\ 34

and %Jg = 09. Observe that, in this Poisson algebra, the Poisson bracket of two
functions F(¢,v*) and G(v,1*) is given by

1 OF G O0F oG
F - = [ (= _ il
(6= [ G e~ b
Remark 2.2. The Hamiltonian H (v, 1*), namely

Tt :Zhw: = —

) dx.

o [ o v i :
H(.") = [ GeAVof +VIol) do = [ 420 do = (v, 110)

is the quadratic (Hermitian) form associated to H (the Hamiltonian operator)
computed in ).

2.3.2 Schroédinger and Heisenberg pictures as Poisson algebras

We have just shown that the Schrodinger equation admits a Hamiltonian formu-
lation in terms of the Poisson bracket

1 oF 6G 0F 6G
(R.6) =5 | Grtgr ~ a0 &

with Hamiltonian H (¢, 9*) = (@b,ﬁ@@ Here the phase space of the system is
the space Lo of complex valued, square-integrable wave-functions, and the Poisson
Algebra is the algebra of real functions F'(i,1*) endowed with the bracket { , }
defined above. In this picture, called Schrédinger picture, the wave function evolves
in time, and the functions defined on the phase space evolve as a consequence.

¥(0) — P(t)
3 +
F(0),9(0)) — F(4(t),4"(t))

An alternative formulation of quantum mechanics is the following. First, the flow

of the Schrédinger equation is explicitly introduced, in the form of a unitary time-

evolution operator U(t) solution of
d -~

ih— U (t) = HU(), U(0)=1.
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One easily checks that, due to the above equation and initial condition, UT(£)U(t) = 1
vVt € R. For the sake of simplicity H and all the other self-adjoint operators are
supposed to be independent of time. One then finds

U(t) = e #lt §‘ :ﬂ( HLY.
j=0

Second, it is postulated that the relevant physical quantities that are measurable, i.e.
the so-called observables, correspond to the quadratic (Hermitian) forms associated
to certain self-adjoint linear operatos, computed in ¥ (¢), namely

<¢(t)71211/1(t)), where Af = A.

The above quadratic form is called the quantum expectation of the operator A at
time t. Now, one has

(W(t), Av(t)) = (¥(0), Ag(£)¥(0))

where Ag(t) := Uf(t)AU(t). In other words, the quantum expectation of the
time-independent operator A a time t equals the quantum expectation of the time
dependent operator A g (t) at time ¢ = 0. One can thus think of the wave function as
fixed to its initial value, letting the operators evolve in time. This is the so-called
Heisenberg picture. In such a picture the operators evolve according to the similarity
transformation A — UT(¢)AU () =: A (t). One easily finds that

d ; 1. .

called the Heisenberg equation of motion for Ay (t). Observe that the bracket A
is a bilinear, skew-symmetric, Jacobi and Leibniz product in the space of self-adjoint
operators: a Poisson bracket on the algebra of linear self-adjoint operatos acting on
Lo, which then becomes a Poisson algebra.

In order to compare the Poisson algebra of the Schrodinger picture to that of
the Heisenberg picture, one has to restrict the algebra of the functions in the former
pictures to that of the real quadratic functions. Thus, to any such function .# (¢, ¢*)
there correspond a linear self-adjoint operator F' such that .# (Y, ") = (w,ﬁ ()N

A~

and such a correspondence is a bijection. Now, given % (¢,¢*) = (¢, Fib) and
G, %) = <¢,éw>, one has
1 0F 69  OF 09
(7,9} = 7 A(w(w* - 5@!)*@) dx
1 A A A oA
= 5 [1EGo = (Fo)6v] do

1

= (W, FGu) = (4, GFY)]

1.~ =«
— (. [F.CJ)

l.e.

{(, FY), (b, F)} = (@, o
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Such a relation shows that the Poisson algebras of the Schréodinger and of the
Heisenberg picture are isomorphic. More precisely, the map

Q: F s F =Q(F) = (¥, Fy)

that associates linear self-adjoint operators to their quadratic forms, (elements of
the Heisenberg algebra to elements of the Schrédinger algebra) is a bijection and
preserves the product

[Q(F),Q(G)) = QU [F,C).

Thus @ is a isomorphism between the two algebras.
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CHAPTER 3

The classical FPU problem and its quantization

After World War 11, Fermi became interested in the development and potentialities
of the electronic computing machines, trying a selection of problems for heuristic
work where in absence of closed analytic solutions experimental work on a computing
machine would perhaps contribute to the understanding of properties of solutions, for
example regarding long-time behaviour of non-linear physical systems. In particular,
the first of these work was the study of the ergodic properties of a one-dimensional
anharmonic chain, which was the simplest non-linear model for a metal, expecting
the thermalisation to show. In particular:

— A chain of 64 particles with fixed boundary conditions was considered, the
force between the particles satisfying the Hooke Law, plus weak non-linear
corrections;

— The equations of motion were resolved numerically;
— The results were analysed in Fourier components and plotted against time.

The initial data were chosen by setting all the energy in the first Fourier component
and the program was let run, waiting for an energy equipartition state, in which all
the Fourier components had approximately the same amount of energy.

The results, shown in figure 3.1 were quite surprising, and became known as
the Fermi-Pasta-Ulam paradox: instead of the energy equipartition, a recurrent
meta-state was found in which the energy is exchanged by the lower Fourier modes
only, and after some time the system recurs to the initial data, the ~ 97% of the
energy returning to the first Fourier component. These results were one of the first
intimations that the prevalent (at those times) beliefs in the universality of mixing
and thermalisation in non-linear systems may not be always justified.

The solution of the paradox can be seen in multiple equivalent ways, one of them
being the existence and stability of solitons for the Korteweg-de Vries equation

Ui = aUygyy + bUU,.

23
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Figure 3.1: The recurrence results of the original work [1]. As one can see, the energy returns
almost completely to the first Fourier component.

In 1965 in fact, using the continuum limit, Zabusky and Kruskal [2], were able
to relate the periodic behaviour of the FPU system to the dynamics of localized
excitations, nowadays known as solitons, of this equation. Moreover, in [11] it was
found that the continuum limit of the Hamilton equations for the acoustic modes
(i.e. long wavelength modes) was equivalent to the Korteweg-de Vries equation,
which admits an infinite number of conserved quantities in involution, and thus
is integrable. Applying the ergodic theory, it is clear that a system described by
this equation cannot show any thermalisation property. However, the equivalence
of the Fermi-Pasta-Ulam system with the Korteweg-de Vries equation is obtained
in a perturbative way, therefore it holds only for a long, but finite, period of time.
The perturbative approach and the integrability of the Korteweg-de Vries equation
explains the meta-stability of the Fermi-Pasta-Ulam recurrence state.

In this chapter we will construct the traditionally called o+ 8 FPU model, starting
from the physical system of particles with equal masses and a certain interaction.
Then we will pass to the normal modes of oscillation, which is the starting point
for the canonical quantization of the system. Then we will canonically quantize the
system and pass to a set of coordinates particularly useful in our work, which are
the creation and annihilation operators.

3.1 Construction of the model

Let us consider a one dimensional chain of length L of N + 1 particles with mass
m, r, € Rn=0,..., N being the coordinate of the n-th particle, with the analytical
interaction potential energy ¢(z,+1 — x,). We denote the momentum of the n-th
particle by y, € R. In the following we will often denote by (x,y) the coordinates of
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the whole phase space. Here we will consider fixed boundary conditions, i.e.
o — 0, N = L, Yo = 0, YN = 0. (3.1)

The Hamiltonian of the system will then be

Since the Hamilton equations are

0K
Yk = T oz ¢ (Trt1 — wx) — @' (2 — Tp—1)
B OK _ y
YT oy m

the system surely has (at least) the equilibrium (x¢?,y°?) such that

€q

i —xpl = apl — )t vn. (3.3)

€eq
Yy =Y, X n—1

This physically corresponds to a state where all the particles stay still and equally
distant from one another. Denoting with a the interspacing between the particles in
the equilibrium configuration one has

! =0, z{%=a, 25'=2a, ... , z¥=na, ..., z{=Na,
so, given the boundary conditions, surely Na = L, which is the classic crystal
configuration.

Now we want to change coordinates, putting us in a frame where only small
deviations from the equilibrium are considered. Moreover, we want to deal only
with non dimensional quantities. With this in mind we will operate the change of
coordinates (zn,yn) — (qn,pn) and the reparametrization of the time T +— ¢ that
conjugates K to H, where

Tp =Na+aqn, Yn = "Pn

A
T=rt, K=m"% (3:4)

Remark that we denoted with T' the old dimensional time, ¢ the new non dimensional
time, and 7 € R a parameter yet to be specified. With the rescaling of the Hamiltonian
and the time, this transformation is canonical. The boundary conditions 3.1 become

g0 =po =gn =pn =0. (3.5)

With this new coordinates the Hamiltonian K 3.2 becomes (yet to be rescaled
according to 3.4)

=

-1
ma® p

T2

;w

N—
Z $(a+ a(gns1 — an))-
=0

3
Il
—
3
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In the same frame of mind, denoting ,,¢ := gn+1 — ¢n, and being the interaction
potential energy analytic, we can expand it in Taylor expansion around the point a,
obtaining

(g
slatabng) = 3 5D,

s>0
The potential energy will be
> e z (320"
5>0 !
N-1 ¢(s) N—
P(a)N + ¢'(a) ZO(%H —qn) + 2 o] Z Int1 — Gn)°

Being Eg:_ol (gn+1 — qn) = 0 (it is easy to verify keeping in mind the fixed
boundary conditions), and eliminating the constant term, one can write the potential
energy

¢(2) a a2 N-1 (Z)(S) 3 N—-1
(2) Z (QnJrl - Qn) ; ) (Qn+1 - Qn)3+
n=0 ’ n=0

L oW (aat 2

4' (qn+1 - Qn)4 + e

n=0
Remark that by assuming that the equilibrium is stable, one must require that

¢ (a) >0

The new Hamiltonian is

N-1 p ¢(s as~ 2 2 N-1
H=) T+ — > (1= )" (3.6)
n=1 §>2 n=0

still containing the arbitrary parameter 7, which will be chosen by setting the

. . . (2) .
coefficient of the quadratic term of the Taylor expansion TM’T@ =1, that is

m
¢@(a)

With this choice of 7, the following coefficients are

T =

so that the Hamiltonian has the traditional form of the Fermi-Pasta-Ulam Model
(also known as FPU)
N—-1 o N—-1
p 1 o B
H= ?n Z |: n+1 — Qn)2 + g(Q’f%F]. - Qn)3 + Z(anrl - qn)4 +ol- (37)

n=1 n=0
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Remark 3.1. The non-dimensional parameters 7, «, 3, ecc. .. are obtainable from the
physical potential ¢, the number of particles N and the length of the chain L. Some
examples of these parameters for various potentials are found in [20].

Remark 3.2. If o # 0 one can set &« = 1, by means of the canonical transformation
gn — ¢, and a reparametrization of the time ¢ — ¢’ that conjugates H to H' such
that

q b
Qn:la pn:l
(0% [0
H/
t=t, H=—,
(6

and then redefining 8’ = B/a?, v = v/a?, ...

Remark 3.3. Here we use fixed boundary conditions, which are a particular case
of the periodic ones, in the following sense. Given a FPU system with M = 2N
particles with periodic boundary conditions, i.e.

4j+M = qj, DPj+M = Pj V7,

one can find a particular set of initial data whose evolution is precisely the evolution
of a FPU system with N particles and fixed boundary conditions. In fact, suppose
that the Hamiltonian for 2N particle with periodic boundary condition is

N-1 o N-1
H(q,p) = n:ZNH % + n:ZN+1 u(Gm+1 — Gn)
and suppose we take a set of initial data which satisfy to the condition
n = —G—n, Pn=—D—n, V.
Denoting z = (g, p) this condition can be written in a matrix form as T'zp =: 2, = 2o,

with
-1

-1

It is easy to verify that the transformation z +— 2’ = Tz is canonical, and that
HoT = H. Thus, supposing z; is the solution of the Hamilton equations Z; = X (20)
for the initial data z{, = zp we have (since the transformation is canonical)

Z"é = XHoT(ZE)) = XH(Z()).
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So Tz and z; are solutions of the same differential equation with the same initial
data, and for the Cauchy—Lipschitz theorem they are the same solution, z; = T'z;.
Physically, for such initial data the dynamics maintain the condition

n = —q—pn, Pn=—D—n, VN

true: the motion is then symmetric, the coordinates with positive n mirroring the
ones with negative n, while (qo,po) = (¢n,pn) = 0. It is exactly the dynamics of a
N particle system with fixed boundary condition.

3.2 Normal modes

From now on we shall consider only FPU models (3.7) truncated up the 4-th
order, called a 4+ 8 models. Let us now introduce the normal modes of oscillation of
the FPU chain, i.e. a canonical transformation

N (g, p)n = (@, Py (3.8)
such that, defining ¢ (n) := % sin %, one has

1@k =05 ann()
: _ «—N-1
Py =31 pndr(n)

and on the other hand

N-1

1L )= Yl Qudr(n)
Pn = k=1 Pk¢k(n)

Remark 3.4. One has 22[711 k()b (n) = dp 1 (see lemma 3.2).

Proposition 3.1. This change of variables conjugates the Hamiltonian 3.7 to the
Hamiltonian' H := H o 4 1

N—-1 P2+w2Q2 ap N-1 D
_ k kXk
H(Q’P)_Zf%—zm Z AD(klw--,kD)Hwstks
k=1 D>2 E1,...kD s=1
(3.9)
where L
T
=2sin—, k=1,..., N -1
W sin 5N , ,

are the frequencies and
1 I
AD(k’l,...,k‘D) = 5 Z 5g.k,0+ Z Z(—l) 504972[]\[
oD cesD 1>1
are called selectors, where . = { —1,1}.

Now we show how we got to (3.9).

n order to avoid heavy notations, we will use the same symbol for conjugated Hamiltonians.
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Lemma 3.1. YN " cos ™0 = S™  _(N6j 95n + Ok 25+1)

Proof. Let us begin by calculating the quantity ZN 01 e (the result will be its

real part). Note that if & € 2ZN then the result is simply N.

N-1 . . _mk

;akn 1_ez7rk ewrk_l e taN (( 1)k_1)

Z e N = ik = 7k -k TN k .
_ 1—¢e'~ e'2n (e'2N — e "2N ) 2isin 3

Now we take the real part:

N-1 N L
Rez S pe (e 2N ((— 17)rk 1)) _ %(1 (1)) = {0 ?fk ?b even

2i sin 3 1 if kis odd

Lemma 3.2. Zivz_ll (k) pn (k') = O i

Proof. Using the prosthaphaeresis formula sin asin 8 = (cos (a — 8) — cos (o + 3)),
one finds that

, 1 w(k —k')n w(k+K)n
Z On(k)on (k') = =N (cos ~ — cos ~ ).

Now we use Lemma 3.1 and find

3 > [Nkt 258 — Oktkr 258) + (Ok—p 251 — Optr 2541)]-
seZ

Now, 1 <k,k'<N-1,502<k+k <2N—-2and2—- N <k—K <N —2: the
first term is non zero only if kK — k' = 0; besides, if k + k" is odd k — k' is also odd:
the second term is always zero. The result is then %Nék—k',o = Op /- ]

By using Lemma 3.2 one can easily see that the kinetic part of (3.7) becomes

P
?|pn:2iv: Prgr(n) — Z D
n=1 k=1

Now we will show how to compute the perturbation part, i.e.

D Uldnt1 = )l g5 o¥ 1 00 )

where

Sy

D>2
Note that g2 = 1, g3 = o, g4 = 5 and so on. First of all let us compute the difference
Gn+1 — qn for a generic n =10,..., N — 1. One has
N-1
dn+1 — 4n = Z Qk an-‘rl ) - (bn(k))
k=1
N

-1
2 k 1 k
Qu i T i T

- /2 mk(2n + 1
wiQk Ncos (2]\7)

e
Il
—

=

Ed
—_
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So, the D-degree perturbation energy will be

. N-1 ap (2 D/2  N-1 N-1 D 2n+1)
D > (gni1 — qn)” = D (N) > H‘*’k Qr, ) HCO
n=0 k1,....kp=1s=1 n=0 s=1

In order to do this computation, a general formula for the product of cosines will be
useful.

Lemma 3.3. VD € N, let be 6°) = (0y,...,0p) and ¥ = {—1,1}. Then,
D

Hcos@s = 2% Z COoS (O-.Q(D)

s=1 ce.#D

Proof. We will proceed by induction. The formula is trivially true for D = 1. Suppose
it is true for a generic D. Then,

D+1 1
H COS&S e 7D Z COS(U . H(D))COSGD+1
s=1 2 oe.sP
1
= D71 Z [cos (o - 0) +0p1) + cos (o - 0P) —0p 1)
oesD
- QD% Y. cos(o- 0P O
cesD+1

Using Lemma 3.3 the D-degree perturbation energy becomes

p N-1
D
D Z(Qnﬂ - Qn)D =

n=0
D/2 N-1
%) (]37) 21D > HW @k, Z 2 COS( 2n+1)k.0>’

ki,....kp=1s=1 n=0 ge.7D
where k = (k1,...,kp).
Lemma 3.4. If k € Z one has

Z cos A T2 2n + 1 Z(—1)8N5k,25N-

seZ

. .mk(2n+1) . .
Proof. First of all we compute Zg 01 e’ 2v , and the result will be its real part.

One can see that, if k = 2sN, s € Z, then the result is (=1)*N. Otherwise one has

Nl 77]‘7(2"‘9‘1) -k N-1 -kn
Z el aN = olan Z N
n=0 n=0
_1\F _
s B -
2isin (55 )
il—(—1)*
2 sin (&)

N—1 Zﬂ'k(2n+1)

So in this case Re(}_, ;e ) =0. O
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Let us now define the selector
1
Ap(k1,...,kp) = 3 Z Z(—l)l(sa.k,zm- (3.10)
ocesD leZ
An alternative but completely equivalent form of the selector is
1 l
AD(kl, ceey kD) = B Z (50.]6,0 + Z Z(—l) 50.].672[]\/. (3.11)
cesP cesD I>1

By means of this definition and of Lemma 3.4 one can see that the D-degree
perturbation energy can be written in a more compact way

. 9 D/2 N N-—1 D
[D<N> 2[)_1] > AD(kl,...,kD)I:Ilwstks (3.12)

E1,...kp=1

For example, let us write the selectors of degree two, three, and four. For D = 2

Ao (k1,k2) = Ok, ey -

For D=3
As(k1, ko, k3) = Oky 4k ks + Okgths b + Okgtky ks — Oky-+hkot+ks, 2N - (3.13)
For D =4,

A4(k17 ko, k3, k4) = 5k1+k2+k37k4 + 5k2+k‘3+k4,k1 + 6k3+k4+k1,k2 + 5k4+k1+k2,k3+
+ 5k1+/€27k3+k4 + 5k1+k37k2+k4 + 6k1+k4,k2+k3+
= Oky+hoths kat+2N — Ok +hotka,kg+2N — Oky+hs-+ha,ko+2N T

= Okythsthak1+2N — Oky+hotks+ks,2N-

(3.14)
In this way, one can compute explicitly the Hamiltonian (3.9), and find
W2Q? . N-1 D
H= Z k f+ ) DEN)PAT Z Ap(kr,.. kp) [ ] wr.Qx,
=3, D(QN) / kD s=1

N—1 P24wiQ? . . . .
Remark 3.5. Hy =), —E—=k=* is precisely the Hamiltonian of N — 1 non coupled
harmonic oscillators, so, in a sense, is integrable. Thus here we are considering N — 1
coupled oscillators with cubic and quartic interaction.

One can now perform a canonical rescaling, namely a symplectic change of
coordinates (Q, P) — (Q', P') such that

Ql /
Qr = , Po=ywpP, k=1,...,N-1
or VWb
which conjugates the Hamiltonian (3.9) to
N-1 2 2
P/ /
H(Q/,P,) — § W k:_ng‘
k=1

N-1

D
+Z 2N D/2 1 Z Ap( kl,---vk?D)H\/@Q;cs. (3.15)
s=1

1,-kD
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In order to perform quantization, it is useful to pass to complex coordinates, i.e.

_ @b Q- if

2k , 2= k:1,...,N—1. 3.16
This conjugates (3.15) to
N-1
H(z,2%) =Y wilal
k=1
g N-1 D
D *
+ Z W Z AD(kla-'-ykD>Hw/wk5(st+zks)' (3.17)
D>3 ki,kp s=1

Remark 3.6. The change of coordinates (3.16) is not symplectic, so it does not
preserve the poisson structure. One can easily see with a direct computation that
the new Poisson structure is

{Zk, Z;;/} = _i(sk,k/
so that the ODEs related to H are
. OH .
2k = —lzg5 = —WE2k+ ...
0z},

and its complex conjugate for z.

The Hamiltonian (3.17) is the starting point of the analysis in [11], in which
it was found that the Hamilton equations for the first modes zj, k < N are, in a
certain way that will be specified in the following, equivalent to the Korteweg-de
Vries equation. Our aim is to quantize this system, and find out which equation is
the quantum equivalent of the KdV, using the tool of the Hamiltonian theory of
perturbations. We will write the calculations for the quantum case, while, since the
computations are very similar and differ only for the commutativity of products, we
only report the results for the classical case.

3.3 Canonical quantization of the FPU problem

In order to quantize the FPU problem, one can proceed in two different, but as
we will show, completely equivalent ways.

The first is to start from the "physical" Hamiltonian (3.2), rescale the momenta
and the positions to obtain non dimensional quantities, and then pass to the normal
modes of oscillation (@, P). Finally quantize the momenta, namely substitute Py
and Qk, Vk =1,..., N — 1, with hermitian non dimensional operators P, and Qk
such that

b= —i Q V.
0Qk,
The second is to start from the "physical" Hamiltonian (3.2) and canonically quantize
the momenta ¥,, and coordinates z,,, namely substitute y,, and z, Vn =1,..., N —1,
with hermitian dimensional operators ¢, and Z,, such that

Jn = —ih n.

0y,
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Then, rescale (Z,7) in order to obtain non dimensional quantities (¢, p) such that

)
D = —1 Vn,
T og,

and then pass to the normal modes of oscillation (Q, P), and find again

The first way is the continuation of what we did in the previous sections. Here we
will proceed with the second alternative method, and show its equivalence with the
first.

Consider a quantum Hamiltonian operator

N-—1 @2 N-—1 9
K=Y 2o nel — & I = —ih Vn=1,N—1.
nzl om + 7;) (b(xn-‘rl xn)v Yn ? 92 n s

This is a Hamiltonian system in the Poisson algebra of the Heisenberg picture, so all
the notions from Hamiltonian mechanics are well defined. We look for a canonical
non univalent transformation (2,4, K,T) — (4, p, H,t) of the form

Ty =na+ agn, Yo = BDn

K:’yﬁ’, T=rt

which conjugates K to

N-1l . N-1lr., A2 5 5 \3 5 4 \4
2 Py (Qn-i-l - Qn) (Qn-‘rl - Qn) (Qn-i-l - Qn)
=3 5+ > [ 5 +a ; +5 1 ...
n=1 n=
such that:
1. aff =~

2. in order to "normalize" the kinetic energy 3% = ym;
3. in order to "normalize" the quadratic term of the potential energy qﬁ(z)(a)a2 =
s

4. pp = —i%.
The last condition is satisfied if and only if
af = h.

We have four equations for four parameters. The solution is

Vh
Tma® @ 8= Vime@ @)V, ~=h o T o

o =
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When passing to the normal modes of oscillation

{@n => C?k;cbk(n) {Qk = > n ndr(n)
b=y Prdi(n) Py =3, Pntr(n)

)

where ¢ (n) = 4/ ]%, s1n( ") the condition Py, = —i 82 is automatically satisfied.
k

00, 8
aQn Z IGgn, 8Qk ;QSIC 6Qk

In fact, being

one has

P —Z¢k

0 .0
ZZ% )ow (n 8Qk/>__Z -

9Qx

Remark 3.7. 1t is easy to verify that the operators Qk and ﬁk satisfy the commutation
rule

[Qka Pk:’] = i5k,k/.

We have shown that one can obtain in two different but equivalent ways the
quantum Hamiltonian operator for the FPU problem, as a function of the normal
modes of oscillation Qg, P, as in 3.9:

N-1

D
(O P — kak 9o 9
Q P = 2 + Z 2N)D/2 1 Zk AD kl?"'ukD)l_[lwstkS'
— ki,....kp 5=

As we did in the previous section, one can now perform a canonical rescaling, namely
a symplectic change of coordinates (Q), P) — (@), P’) such that

R Q\ N
kai, =ywP., k=1,...,N—1
\/uTk \/7 k
which conjugates the previous Hamiltonian to
N-1 5,2 2
Wp—————— il k + k
2
k=1
= oY
T2 paN)bET S Ak, ko) [[ VARG (318)
D23 k17 7kD s=1

At this point, it is useful to introduce the annihilation and creation operators® aj, and
az which are the analogous of the complex coordinates introduced in the previous
chapter. We define

Q) +iP} p_Qp—ib

2Since the symbols a and a' will be used only to indicate these operators, the circumflex will be
omitted.

ajp =
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They inherit the commutation rule from the one of @}, and P}: being [Q}, 154] =0k q

one obtains

5k:q Ok.q
: —= =
9 + 9 k,q

while the other mixed commutators are always zero. This conjugates the Hamiltonian
operator 3.18 to

[akv :;]

N-1
wkakak
k=1
N-1 D
+ Z ND/2 D1 S Aplkr,..o k) [] v (ak, +af), (3.19)
kl,.A.,k)DZI s=1
and we will call
an N-1 D
V(a,a') = Z SNDA T > Aplkr,-.. ko) [ ver (ar, +a])
ki,...kD s=1

the perturbation term. We will call in the following the Hamiltonian operator (3.19)
the quantum Fermi-Pasta-Ulam (or ¢F'PU) Hamiltonian. It is important to notice
that we arrived to this formulation of the quantum problem simply starting from the
canonical quantization of the physical Hamiltonian, so the only physical assumption
that we made is the validity of the canonical quantization, i.e. to substitute to the
momentum ¥y, an operator

Y
Yo = 5%,

3.4 Normal Ordering

Here we will show the normal ordering of the Hamiltonian of the o 4+ 8 model.
First of all we need to define it.

Definition 3.1. Given A a product of any number of operators a; and aL, Vk, we
define

— NJA] is the product of the same operators in A rearranged in a way such as
all the af operators are to the left, taking into account the commutation rule
[a, ag] = 01,4 N[A] is said the normal ordering of A;

— : A: 1is the product of the same operators in A rearranged in a way such as all
the a! operators are to the left, without taking into account the commutation
rule [a, azg] = k4 (so treated as if they were commuting real numbers);

Remark 3.8. N[A] and A are the same operator: only its functional form changes.
: A: and A instead are two different operators.
So, for example, given A = akazg

N[A] = a:;ak + O g c A =alag.
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The normal ordering of

2
H(@ks + aLS) = ag, ag, + aklaLQ + azlakQ + azlazz.

s=1
is more complicated. The first, third and fourth term are already ordered normally,
so we just have to rearrange the second term replacing akla};Q with az2ak1 + Oky ko -

So one has

2

: H(aks + azs): = Qf, fy + alt:zakl + achlalQ + allalt;z’
s=1
2
N [H(aks + azs) = A, Ak, + azga’kl + azlakz + al];lazg + 5k1,k2'
s=1

The normal ordering of terms like ]2, (ax, + (ILS) grows exponentially with the

degree D, so one can imagine that normal ordering this kind of quantities becomes
more and more complicated.

Our aim is to normal order the qFPU Hamiltonian operator(3.19) for the a + /3
model, namely

N-1
ﬁ(a, aT) = wkazak
k=1
D

! Z W Z Ap(ki,-- kp) [ | voor (ax, + af,),

k1,...kp s=1

where the {ay, } and {aL } are called respectively annihilation operators and creation
operators, and where we dropped out the constant term ), <% (which refers to the
vacuum energy). This manipulation of the Hamiltonian operator will be useful when
we will apply the perturbation theory. The quadratic term is already normal ordered,
so we will start by normal ordering the perturbation term. We will denote by Hy
and H, the cubic and quartic term of the Hamiltonian, i.e.

N-1 3
A «
Hs(a,a’) = S Ag(k ko, ks) [ voon, (ak, +af) (3.20)
12\/N k1,k2,k3=1 s=1
6 N-—1 4
Hy(a,al) = N - ;k 1A4(/-c1, ko, ks, kg) Hl,mks(aks 1 a}%). (3.21)
1,R2,R3,R4= s=

We will need to compute quantities like

N-1 D
Z AD(kl,...,k‘D)N [H'\/@(akg +a;rgs)
s=1

ki,...kp=1

where wy, and Ap are defined in the previous sections, for D = 3, 4, where the products
are made with increasing s (remind that products of operators do not commute) Let
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us forget about the frequencies for the moment (they are real commuting numbers).
Let us start to compute

D
N [H(aks + a};s)

s=1

For D = 3 one has

3
N [H(aks + aLs)

s=1

3
: H(aks + a;[gs) t 5k17k2 (ak’3 + aJlrcg) + 5]61,/63 (akz + a;f@) + 5k2,k3 (ak’1 + azl)a (3'22)
s=1

while for D =4

il

(ak, + GLS)

:u;

(ar, +a25): + Ok ks * H (ak, +aJlrcs): + Ok kg * H (ak, +alts): +

- L

s=1 5=3,4 5=2,4
0kt | (an, +af): +0kmss [] (are +af): +0kopa: [] (an, +af): +
5=2,3 s=1,4 s=1,3
0kt [ (k. +af) 0+ Oy o Okaes + ks s Okaska + O s O s (3-23)
s=1,2

Now consider

N-1 D
Z AD(k‘l,...,k‘D)N [H ‘/wks(ak5+a,ts)
k1,....kp=1 s=1

for D = 3. When we apply the selector As(ki,k2,k3) = Ok +ko ks + Okgthy o +
Okotks by — Okitkotks 2N and sum over ki, kg, k3 = 1...,N — 1 some terms are
vanishing. Look for example at the first term of the selector dj, 1, x, applied to
Ok g (Qy + CLLQ) and to O, k, (ak, + all): k3 = ki + k2 can be equal neither to k; nor
to ko, as they are never zero, so they will not contribute. The same is valid for the
other terms of the selector. One finally has

N-1 3

> Aslku ke k)N ([ (an, +4af,) | =
k1,k2,k3=1 s=1
N-1 3
Z [AS(kh ko, k3> : H(aks + GLS) D+ 5k1+k27k36k1,k2 (aks + a23)+
k1 ,k2,ks=1 s=1

+ 6k2+k3,k1 5k‘27k3 (ak‘1 + a]];l) + 6k3+k17k‘2 6k‘3,k1 (ak‘2 + alt;z)'f_

— Oy a k2 (O o (g + L) + Gy ey (g + @) + Ok iy (ary + GL))]
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If we sum over ki, ka, k3 we can rename the {k;} in a suitable way so that some
contributions to the sum are equal. So one obtains

N-1 3
Z Az (K1, k2, k3) N [H(aks +aL) =
k1,k2,k3=1 s=1

N-—1 3

Z |: kla k’2, k'g H ak +ak5 +3(6k’1—|—k}27k‘3_5k1+k’2+k372N)5k17k2 (a’k“3+a£3)i|
k1,k2,ks=1 s=1

One can see that N [ﬁg] contains terms of the third order in @ and af that will be

denoted by ﬁég), and terms of the first order, that will be denoted by ﬂél). One
finds that

N-1
3
( )(a a ) N E V Wk Why Wk
12 k177€2,k3 1

As(k1, ko, k3)|ak, ag, 0k, + 3a£lak2ak3 + 3a£1a22ak3 + aLlaLQazg]. (3.24)

In general one finds that

AP (a,al) =

g N-1 D D /p\ D= D
D t
oo 2 Hvensot ko> (5) ek I
ki,kp=1s=1 d=0 t=1  t=D—d+1
(3.25)
One also finds
N-1
(1
a5 (a,al) = > Dk Ok haks — Okykatks 28)0ky ko (s + af)
\/>k1,k2,k3 1
N-1
4\/»{ Z Wiy v/ Whs 02y ks Ay + ak Z Wiy v/ Whs 02y 4 ks,2N (A + azs)}
ko,k3=1 ko,ks=1
o B1(N) N—-1
= m{ Z Wi/ wak (azk + aék) — Z Wi y/WaN—2k (a2N—2k + CL;N_%)}
k=1 k=Bz(N)
where
N—1 . - N+l . :
£= if Nisodd 22 if N is odd
Bl(N) = N272 . . BQ(N) = Nig . . .
== if N is even —5= if N is even
By sending 2N — 2k to 2k in the second sum one obtains
B1(N)
1
H( )(a a Z Vwar(wrp — wny—_k) (ag —i—a;k). (3.26)
4\F
Remark 3.9. The coefficient wy — wy_ is non zero for every k = 1,..., B1(N). In

fact it vanishes if and only if £k = N/2 > B{(N).
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Consider now D = 4. We recall the selector, which is (3.14)

Ay(k1, k2, k3, k1) = Okytkotks ks + Okotksthakr + Okstha-th ko T Okgthy+ho ks
+ Ok ko ks+ha T Ok ks ko+ka + Oy +ha ko s+
- 5k’1+k’2+k37k4+2N - 5k1+k2+k’4,k3+2N - 5k1+k3+k4,k2+2N+
- 5k2+k3+k4,k1+2N - 5k1+k2+k3+k’472N'

When we apply Ay to (3.23) and sum over kq, ko, k3, kg = 1..., N — 1 some terms
are vanishing. For example, let us consider the term in (3.23)

T Can, +al,) ko

5s=3,4

When multiplied by, for instance, 0p,4k,+kqk, and summed over ki, ko, k3, ks =
1...,N —1 it is non zero if and only if

ki=k
! 2 - ks+ks=0
ko + ks + ks = k1

which never happens. The same is true for 0g, 4k 4k ko» Oki+ks kot+ka AN O 4 ks koths-
Now consider the selector term 0, 4 k;+ky ko+2n- If k1 = ko its contribution is zero,
because k3 + k4 < 2N — 2 < 2N. So we can state that when we have something in
(3.23) multiplied by Ok; k;» for some i, j, the terms inside the selector with k; and k;
in the two different "sides" of the delta do not contribute.

Because of this we can also state that the terms with two deltas in (3.23), of the
form 0, k, 0k, k., contribute only when multiplied by 0k, tky-tks-+k4,2-
Finally one has

N-—1 4
Z A4(k17k27k37k4)N[H(a’ks +a;€ ):| =
K1,k k3 ka=1 =1
N—-1 4
S [Au(k ko, ks, k) : H (ar, +af): +
k1,k2,k3,ka=1 s=1
t0kks ¢ ] (ke +a) ¢ (Okatkathaes + Oks-thathoasks T Okstha s kst
s=3,4

— Ok thatha,kat2N = Okytkotks ks +2N — Oy +hoths+ka,2N )T

+ Ok ke - H (ak, + CLL) : (6k1+k’2+k37k4 + Okothgthakr T Oky+ha koths T
s=1,4

— Okyhotkskat2N — Okotkstha ks +2N — Okytkotks+ks,2N)F
NI

— (O oxOks ks + Oy ks Ok ks =+ Ok e Ok ks ) Ok ko ks +ka 2N

where in ... we omit the other contributions, which one can obtain from the other
by simply rearranging ki, ko, k3, k4 in the other possible ways. Now we can rename
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the {ks} in a suitable way and find

N-1 4
ST Aulkr ke ks, k)N [ [ (ar, +af,)] =
k1,k2,ks3,ka=1 s=1
N-—1 4
Z [A4(k17 k27k37 k4> : H(a‘k‘s + a;;s) T+
k1,ko,k3,ka=1 s=1

. Ty
+ 60, ks H (ak, + aks) : (5k1+k’2+k37k4 + Oky+hatha,ky T Okytha ky+ha
s=3,4

— Ok otk ka+2N — Okytkotka ks +2N — Oy +ho+hs+ha,2N )T

- 35161 k2 6’63 k4 5161 +ka+k3 +k472N]

From the normal ordering of H, one obtains

N-1 4 4
N[ﬁ4] = 32% Z A4(klak27k3vk4)H1/wks{ : H(aks +CL};5)
k1,k2,k3,ka=1 s=1 s=1

60k, ¢+ | (ar, + af) 430k, 50k ks }-
s=3,4

Like the cubic term of the perturbation, the normal ordering of the quartic term
also contains non quartic terms H f) and H 20)7 while the quartic term H f) can be

obtained by the general formula (3.25) and is

N-1
a{Y(a,a") = ?QLN Y ok Okwewe Aa(k, ko, ks, k)

k1,k2,k3,ka=1
[k, Qly Ay Oy + 4a£lak2ak3ak4 + 6a21a22ak3ak4 + 4a,];1a,£2a23ak4 + azlahalgajﬂl].
(3.27)

7 (0)

Consider the constant term H, ’, which reads

40) 36 —
A= 32N Z Whey Wy Wiy Whey Oy ez Ok oy Oy +o-+hg o 2N
k1,k2,k3,ka=1

3/6 N-1

=—— § Wiy Why 021 +2k3,2N
32N 1 3 1+ 3
kl,kg—l

:32NZ WEWN —k-

Being wy, = 2sin g; N, a direct computation shows that the constant term is

Remark 3.10. In the thermodynamic limit N — oo this term converges to —2—?.
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The quadratic term H f) instead reads

N-—1 4
S 3
i?) ((17 aT) = 167’?\7 Z H VWE. A4(k1, ko, k3, k4)5k1,k2 (akgak4+2a£3ak4 +a£3a£4).

k1,k2,k3,ka=1s=1

Writing explicitly the selector A4 and repeating the same arguments in the previous
section one finds

5 N-1
ﬁ@)(a aT)——B Wy /W W
4 9 - 16N kl k:3 k:4
k1,k3,kq4=1
(202k; ks ka T 02y katha — 202k +ks kat+2N — 02k +hs+ka2N)

(agar, + 2a£3ak4 + aL,“LQ'
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CHAPTER 4

Perturbation theory

4.1 Classical perturbation theory and mean principle

Let us suppose to have an Hamiltonian, defined in some phase space A,

Hy=h+Y X"P,

where h is integrable, so we know its hamiltonian flow (;SZ, ans A is a small parameter.
We call A" P, the perturbation of Hy and h the unperturbed part of Hy. Our aim
is to look for a new set of coordinates such that the Hamiltonian, written in these
new coordinates, is integrable up to a certain order r. One might ask if a canonical
transformation %) : x — y such that H o ‘K/\_l = h + A" ... exists, that is a set of
coordinates which eliminates completely the perturbation at the r-th order in A.
Such a transformation, sadly, doesn’t generally exists up to any order, as stated by
Poincaré’s little theorem.

Instead we look for a less restrictive transformation, a canonical transformation

Gy
A-close to the identity, i.e. ||\ — Id|| = O(A), and regular in A, such that
Hyo6, ' =h+AS1 +ASs+..., and {S;,h}=0 Vi=1,...,m

so that it conjugates the perturbation to a collection of first integrals of the unper-
turbed part h, up to a certain order r. An Hamiltonian in this form is said to be
the r-th order Birkhoff normal form of Hy. In the following we will construct such a
transformation for » = 2, noticing that the construction for any order r can be done
in an analogous way.

We will proceed by the so called Lie method, i.e. searching for a canonical
transformation such that €, L= f = qﬁ)éz ) qﬁgl, where (G1 and G2 are two unknown
Hamiltonians, called generatrices. From the identity

FO¢SGZ — esLiF

43
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for any F': A — R and where L; = {-,G;}, i = 1,2, one obtains

1
Hofy = h+A(L1h+P1)+A2(L2h+§L%h+L1P1+P2)+. o= h+AS FA2S .. ..

(4.1)
We will start by the first order, i.e. by finding one or more Hamiltonians G; (as we
will see, there will be an infinite number of them) such that {S;,h} = 0. This will
be done by the so called mean principle or averaging method, which is by averaging
the perturbation along the flow of the unperturbed part h.

Definition 4.1 (Average). For any F': A — R we define its average along the flow
of h, or simply average, the function

_ 1 [t
F = lim /Fo¢;ds.
0

t—oo t

With the following lemma one can understand why the average along the flow of
h produces a first integral.

Lemma 4.1. For any F: A - R, Fo¢¥ = F Yu € R.

Proof.
t—o0

_ 1 [t
Fo¢f = <lim t/ Fo¢fld8>o¢z
0

Using the group property of the flow ¢; o ¢} = gbff“ one obtains

1 t
lim — | Fo gbff“ds
t—oo t Jo

and by denoting v = s+ u

1 u+t 1 0 1 t 1 u+t
: - v — 1 - ) : - v : - v
tlgrolo s Fogydv tliglo ; /u Fod)hdv+tliglo ; /0 Fogbhdv—l—tlggo r /t Fogjdv.
In the t — oo limit only the second term survives, leading to F. ]

From (4.1) we can read an equation for 57 and G
S1=Lih+ P (4.2)
which we will solve with the following proposition.

Proposition 4.1 (First order mean principle). If gbz 18 limated in t, then

_ o1t s
Sl :P1 :tli{gog ) P10¢hd8 (43)
and
1/t _
Gr= % + lim = / (s — 1)(Py — Py) o dds (4.4)
t—oo t 0

where 4, is any function such that {41,h} = 0.
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Proof. Our aim is to find a function S7 such that S o ¢j = 51, or equivalently
estn S, = 8, Vs. So we have

d
S = GSthl = GSthl + GSLhLlh = GSL’Lpl — €SLthG1 = 65LhP1 — df€SLhG1.
S

Now, integrating both sides of the last equation in ds from 0 to ¢ and diving by ¢ we
have, Vt
etLhGl -Gy

1 t
S = / dse*tnpp —
t /s t

Now, sending t — oo and using the fact that gbfl is limited the second term vanishes
and

1/t _
S1 = lim - dse*tn Py = Py.

t—oo t 0

Now we find an expression for G;. Starting from S; = P, — L,G1 = P, we get
L;,G1 = P, — P;. So, one has

t ¢ ¢
/ (s —t)etn(P, — Py)ds = / (s —t)e*r L,Ghds = / (s — t)dieSLhGlds.
0 0 0

S

Integrating by parts we have

t t
/ (S — t)eSLh (Pl — Pl)ds =tG — / Gl 9} gb‘flds,
0 0

and thus, sending ¢ — oo,

t—o00

1/t 1/t _
G1 = lim / G1 o ¢jds + lim / (s —t)(PL — P1) o ¢jds.
The first term, being the average of G along the flow of h, G, is a first integral of
h, so we have the thesis. ]

Now we proceed to the construction of the second order normal form. From (4.1)
we find

1
Sy = Loh + 5L%h + L1 Py + Py, (4.5)

which is an equation for Sy and Go with the same form as (4.2), and thus it will be
solved likewise.

Proposition 4.2 (Second order mean principle). If ¢! is limited in t, then, denoting
P) = %L%h +LiP+ Py,

t

1 .
52 = tli)rgo ; o Pé o) ¢hd8 (46)
and .
1 _
Go =% + lim — / (8 — t)(Pé — P’Q) o (ﬁids (4.7)
t—oo t Jo

where %5 is any function such that {4, h} = 0.
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At this point, the generalization for the construction of the r-th order Birkhoff
normal form for any r is straightforward. For the n-th order we will have an equation
of the form

Sp = Lyh+ P

for some P/, which will contain the P; for i < n, h, and G; for i < n, which leads us

to -
S, =PF,.

G, will be found solving the so called homological equation
LyGp =Py, (4.8)

where, for any F': A — R, F :=F — F is the fluctuation of F around its average.

4.2 Quantum perturbation theory

In this section we will discuss perturbation theory in a quantum environment,
proceeding in analogy with the classical case thanks to the Poisson structure of the
algebra of hermitian operators in the Heisenberg picture. Given an Hamiltonian
operator h, we say that an hermitian operator Ay is in the Heisenberg picture if its
evolution satisfies the so called Heisenberg equation

d .
aAH(t) =

- An(t), 5] (4.9)

The Heisenberg equation (4.9) can be solved, at least formally, and

A

An(t) = UJ(HAUA(1)
where A = AH(O) is the operator in the Schrédinger picture, and
Oy (t) = e~Hth
is the time-evolution operator. We now define the Lie derivative
L=l
so that we can write (4.9) as

d - A
—Ag(t) = 2 Ag(t).
g An(t) =L Au(t)
The equivalence between these two forms of the Heisenberg equation leads us to the
identity ) L R

Ul(t) AU () = €% A. (4.10)

Equation (4.10) will be used to map the formulas in the previous section to the
quantum environment, in order to perform quantum perturbation theory. We will
proceed by computing the first order normal form for a general Hamiltonian operator.
In particular, suppose we have a quantum Hamiltonian operator

H="h+ AP+ )P+ ...
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Our aim is to look for a unitary transformation, generated by an unknown Hamiltonian
operator (G at the time A € R, such that H is conjugated to

ﬁl]t()\)ﬁf/l()\) = AH =h+A\S1 +..., such that [S1,h] =0,

where U;(\) = e~ #*¢1 and 4 = o ,G4).

This problem is formally equivalent to the classical one, up to the different meaning
of the Lie derivative which, in the quantum mechanics case, is given by (4.10). At
this point one can write the formulas for Sy and Gy without proving them, thanks
to the formal equivalence of the two problems given by their Poisson structures:

N - . 1 t A A
$1=P1 = Jim - i Ul (s) Py U (s)ds (4.11)
and .
R 1 N N = . A
Gi=lim - [ (s—1) T()(Py — P1)Un(s)ds + % (4.12)
o0 0

where 9, is any hermitian operator such that [4), h] = 0. The second order normal
form can be obtained by means of a second generatrix (s, in the same way of the
classical case, and it is given by

Sy = Py

where Py = Py + AP, + %,,2”12]51. One can see that, if S, =0 (which, as we will

find, is our case), then
N = 1 —&=——5—
52—P2+%[P1,G1]. (4.13)
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CHAPTER D

Second order non-resonant Birkhoff normal form

We will use quantum perturbation theory developed in the previous chapter to
eliminate the perturbation, as much as possible, from the Hamiltonian operator of
the a+ 8 quantum Fermi-Pasta-Ulam model up to quartic terms. An analysis similar
to the one treated in this work was made by Herbert Frohlich in 1952 (see [15]),
were a unitary transformation was applied to a superconductive system, in order to
eliminate the interaction of the electrons with the lattice vibrations. For the classical
case, the second order Birkhoff normal form of the a + 8 FPU model was computed
by Henrici and Kappeler in [10] for periodic boundary conditions.

5.1 Construction of the quantum normal form

In this chapter we will construct the second order Birkhoff normal form of the
quantum FPU Hamiltonian, using equations (4.11), (4.12) and (4.13) (remembering
that in our unity of measure i = 1), where

h=Hy,  P=Hy, P=H

Remark 5.1. In the following, as the order of the normal form is defined to be the
number of perturbative steps, we will call the first (or second) order normal form
the corrections up to the cubic (or quartic) terms. So Py and Gy are cubic in a, and
aT while P2 and Gg are quartic.

As we need to manage averages along the flow of H, of operators containing a
and af, first of all we need to solve the Heisenberg equation (4.9) for a and af, with
= chv:_ll wkazak. Heisenberg equation for the annihilation operators reads

~

a(t) = —ifag(t), h(a,al)] = —i Z wqlak(t), q (t)aq(t)] = —iwrag(t),

and so ‘
ap(t) = age” ™" VYk=1,...,N — 1. (5.1)
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The creation operator is its hermitian conjugate, so
al(t) =ale™  Vk=1,...,N - 1. (5.2)

In order to calculate averages, we will proceed in the following way. I:I3 and Hy
contain linear combinations of products of a and af. When the time evolution
operators at a time s € R are applied, each aj brings a factor e~™** while each
az brings a factor e™**. Overall, a phase will be added containing combinations of
frequencies with relative signs according to (5.1) and (5.2). For example, the time
evolution acts on alalam giving

WE—wp —wm)s

i .
akalamez(

It is clear now that to perform averages we need to calculate, for some 2 € R,

quantities like
1 T
lim / e s,
T‘)OOT 0

If Q = 0 then the limit is trivially 1. If 2 #0

lim 1 /T e *%ds = lim 11 (e7 T _1)=0
Finally on has
1T
lim — [ e %ds = oy .
Jim o /0 e "ds = dq 0 (5.3)

Reprising the last example,

alalam = a,];alam O, — oy —tm 0+

Thus, for each term of the perturbation we will see if the relative combination of the
frequencies, according to the conservation laws given by the selectors, vanishes. If
such a combination can be null, the term will be added to 5’1, otherwise it averages
to zero.

Let us introduce now the idea of resonances, which has the uttermost importance in
Hamiltonian perturbation theory.

Definition 5.1 (Resonance). Let Q = (wq,...,wn_1) € RV71. A resonance of order
r € N for Q is a vector v € ZV¥~! such that

N-1 N-1

Z%‘Qizoy Z\Vz‘\ =T

i=1 i=1

Thus, we can state that the only terms with a non-vanishing average are the res-
onant ones, while the non-resonant averages to zero. More precisely, let f be a normal
ordered polynomial of annihilation and creation operators (aq, .. .,an_1, aL cee a;\,_l)7
thus f can be written in a multi-index notation

F= > fasla)(a)

a,BeENN-1

where we denote (af)* = Hi(a;f)ai and equivalently for (a)?. We will call such an

operator a second quantization operator (or simply operator).
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Definition 5.2 (Harmonic, spectrum). Given f, we define its v-th harmonic the
quantity

(flo="D_  fasla)™(a)’
e

and the spectrum of f the set
Sp(f) = {veZ""': (f), #0}.

The integer
D(f)= max {D |al+> |G}
2 2

is called the degree of f . It is easy to check that if f has degree d, its spectrum
contains only vectors v such that >, |v;| < d. We can also define the so-called
resonant lattice relative to the frequency vector € RNV™1

Definition 5.3 (Resonant lattice). We define the resonant lattice relative to the
frequency vector Q € RV~ the set

Ro={veZV-1:Q.v=0},
i.e. the set containing all the resonances (of any order) for €.

From the statements above we can give the following proposition, which formalize
the relations between averages and resonances.

Proposition 5.1. The average along the flow of ), wkalak of an operator f 18

f= > fap(a")*(a)’.
o,BeNN-1 .
a—BeZaNSP(f)

For example, if f is cubic or quartic, one must check the resonances up to the
third or fourth order and so on.

5.1.1 First order normal form

Here we will show the construction of the first order Birkhoff normal form, i.e.
the computation of

D Y SN
Sy :T@;OT/O Ul () H3Up(s)ds,

where Hs = ﬁéS) + ﬁél),

N-1 3
77(3) -
HY = —— > [] vor sk, ko, ks)
12v.N k1,ko,k3=1s=1

(ak, Oy ARy + 3a£1ak2 akq + 3a£1a22ak3 + a£1a22 azg)
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B(N) N1 - ,
. =5— if N is odd
H?E 4\/» Z Vwak(wy — wy—k)(azk + a;k), B(N) = {N2_2

== if N is even

where A3(klv ko, k3) = 5k1+k27/€3 + 5k3+k1,k’2 + 6k2+k3,k’1 - 5k1+/€2+/€372N' Being wy, > 0

Vk one can easily notice that H él) = 0, while the terms of H §3) containing all creation
or annihilation operators do not contribute. The terms that might contribute to the
average are

N-1 3
(0%
N Z H VWi, Az (k1 ko, k3)(a21ak2ak3 + allaLQakB).
kot ki kg =1 s=1

At this point all we have to do is find the solutions of the equation wy, —wg, —wk, = 0,
according to the relations between k1, ks, k3 given by As, i.e.

Wiy — Why — Why+ky =0
Wiy — Wy ks — Why = 0
Whytks — Why — Why = 0

Wy — Wky — WoN—k;—ky = 0.
Being won_p = wg, we only need to find solutions of the equations

Whtq — Wk —wg =0
Wi — Wq — Witq = 0.

We will solve this type of equations with a simple trick. Being wj = 2sin gjl\“, =

i Ik 7rk
iIN —e 1IN ok
% by setting z = e’2~ and y = €' 2N we have

1 1
Witqg —Wk —wg =0 ¢ (acy—:c—y)—(ajf;)—(y—g)zo

1 1 1
Wk —Wg = Wrtq = 0. (HTy—;y)—(ﬂ?—;)“‘(y—;):O

Consider the first equation, which can be written in the form

(z -1y —1)(zy—1)
Ty

=0, < z=1lLy=1,2zy=1 <+ k=0,¢q=0, k+q=0,

which is impossible, being 1 < k,q < N — 1. The second equation can be written in
the form

(z+1)(y—1(zy+ 1)
Ty

=0 < z=-1l,y=1zy=-1 <+ k=2N,q=0, k=—q,

which is also impossible. In this way we have seen that the equation wy, —wg, —wg, =0
has no solution, and so Hs averages to zero:

S1=0.
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The first generatrix G1 can be calculated using the equation (4.12). Being 1‘73 =0,
we need to compute the quantity

~

1 [T ko
Gi= lim — [ (s—T)U](s)HsUp(s)ds.
1= Jim 7 [ 6= DO )
Repeating the same argument as in the previous section, it is clear that we must
learn to compute expressions of the form

11m T . S € S.

A direct computations shows that, if {2 # 0 this limit is % On the other hand, if
Q2 =0, it diverges to infinity, while this fact does not worry us, because as we have
seen in the previous section, every combination of the frequencies is non-zero.
With this is mind one can find that the expression of the generatrix is G = ng) —|—G’§1),
where

N-1 oot T
R a a ag G,
G® = Vo As (ki ko, ks) | - 1 ke ks
! 12VN ;; 11_‘[ b Balk, ez, ) i(Why + Why + Wey)
1,k2,k3=1s=1
o7 T
+ 3 ' aklak2ak3 + 3 : aklak2ak3 _ aklak2ak3 (5'4)
Z(wlﬁ + Wy — wk‘g) Z(wkl — Wky — wk3) Z(wkl + Wiy + ka)

and

Gt Z ay_ _ _ax (5.5)
1 i ik '

Wak

5.1.2 Second order normal form

We now proceed in the computation of the second order Birkhoff normal form,
using equation (4.13). Now we show the computation of Hy, with Hy = H(4) +H( )

H (©) With the procedure used in the previous section. Trivially, H 7O — =H io). The
quadratlc term is

N—-1
A (2 38
Hi )(a,aT) 6N Z Wiy /W Why
k1,ks,kqa=1

(202K, +hs, ks + 021 ksths — 202k, +ks kat2N — 021 +hsthg,2N)

(agqar, + 2‘1;3%4 + aLSaL).

The terms proportional to ay,ar, and to azs a£4 do not contribute, while aLS ar, has

a non-zero average only if k3 = k4. Evaluating the sum one obtains

N-1

~2) _ 3B
Hi ) = = 3N - wkwN_k)aLak.
k:l
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We now show the average of the quartic term

N-1 4

A B

Ao = o ST T VR Atk ko, ks, ka)(a), af, af af, +
k1,k2,k3,ka=1 s=1

oot T T
+ 4ak1ak2ak3ak4 + 6ak1ak2ak3ak4 + 4aklak2ak3ak4 + Ay Aoy Ay Oy )

where Ay(ky, ka, ks, kq) is the selector (3.14), that is

W _ 38

(4

Hy =IN Z wklwba};la};abakl.
kl,k’Q:l

In fact, surely the terms containing all annihilation or creation operators averages
to zero. Let us consider the term proportional to aLlakQ k0L, , which lead to the
equation

Why — Wgy — Wiy — WEy = 0

where ki, ko, k3 and k4 are linked together by A4. The term proportional to

aLlazza};SaM lead to the same equation. Considering all the relations given by the

selector, one finds that the equations that must be solved are four
Wtl4m Wk +wp —wm =0
Wktl+m T Wk —wp —wm,m =0
Whtl+m — Wk — W) —wm =0

Whtlem — Wk — W) — wm,m =0

which, for k,I,m = 1,...,N — 1, have no solution. The term proportional to

allazzaksah instead lead to the equation

Why + Why — Wy — Wiy = 0

where ki, ko, k3 and k4 are linked together by A4. The only terms that lead to a
contribute in the average are

5k1+k27k3+k4 = Whythy—ky T Why — Why — Wky =0
which has the solutions ko = k3 and ko = k4, and thus gives a contribute g, ., 0k, &, +
Oky k3 Oks ky; the other terms are
Okithskotks =  Whatha—ks T Who — Whs — Wy =0 == Ok ks Ok ks
6k1+k47k2+k3 = Whyths—ky T Why — Why — Why =0 = 6k2,/€45k1,k3

so finally one has

N-1 4
~a 65
Hi - 32N Z H V@i, (2005 14 Ok oy + 261627’%5761,/64)@;1 a]TcQak:sakn

k1,k2,k3,ka=1s=1

5 V-l
_ 36 Wy Wiy () al apyar, + al al ag, ar,)
~ 8N k1 Who \Up, Qo Wheo Chy kg Yo Wh1 Ok

k1,ka=1

N-1
:% Z Wi WE. aT (IT QLo Al
4N 1 2 kl k;2 2 1°
k1,k2=1
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The computation of the quantity
1 ———=—
—|Hs, G1].

must be done as follows. First one must compute the sixteen commutators between
cubic terms (which lead to quartic terms), the sixteen commutators between cubic
and linear terms (which lead to quadratic terms), and the four commutators between
linear terms (which give a constant term)

L A4®) 40 AB) A0 L ~3) AG 4(3) Al 1) A 3
il A+, G+ G = (Y 6P Y, G Y, G (Y, )
then, for each contribution, compute the normal ordering (so quartic terms give
quartic, quadratic and constant normal ordered terms, and quadratic terms give
quadratic and constant normal ordered terms) and the average as done previously.
We report the computation in the appendices. The result is

~ from £ [H. ?E ) é‘g )] (excluding constant terms)
2
a
IN Z wklkawkgAg(kl,kg,k‘g)aLlaLQakQakl

k1,k2,ks

9 1 1 1
Why — Wky — Wk Wiy + Why + Why  Why — Wky — Wiy

CV2

8 Z wklwkgwkgA:S(kla k?) k3)ak Afeq

k1,k2,k3

1 1
-2
(wkl + wkg + wk‘3 wk‘3 - wk‘z - wk1 )

«
8N Z Z (6k,q o 5k+q7N)(wq - WN—q)wkaLak;

W

~ from & [Hy Gg )] (excluding constant terms)

o2 N—1B(N)
T
v (Ok,q = Okq,N ) (Wg — WN—q)WEGak;
1 g=

b
I
—

Q%[Iflél), Ggl)] is a constant.

The second order Birkhoff normal form is then h + S; + 5'2, where, removing the

constant terms
N-1

h = wkakak,
k=1
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S =0,
and, denoting Qk —wk WEWN —Fk,
35 NI
Sy(al,a) = < - > Z QZalay + = N Z wklkaaLaLakzakl
k1, ka=1
o’ -
N Z Wy Wy Wy A3 (K1, k2, k3)ay, ay, ag, ag,
k1,k2,k3

1 1 1
2 — —
wk‘Q - wkg - wkl wkl + wkz + wkg wk‘g - wk‘Q - wkl
2

3N D" Wiy Wi, As (e, ko, ks)a), ax,

k1,k2,ks

1 1
-2 (5.6)
Wiy + Wy + Wi, Wiy — Wky — Wiy

We don’t need to compute Go.

5.2 Shift of the energy levels

It is now interesting to calculate the shift in the energy levels of the harmonic
Hamiltonian due to the anharmonic interaction. All the calculation will be done
neglecting the constant terms. The harmonic Hamiltonian is given by the unperturbed
part

N—-1 -
P T
h = Wraag, wr = 2sin N
k=1
As it is known from elementary quantum mechanics, the quantum harmonic oscillator
can be written in function of the number operator ny := aLak, as h = Y, wihy,
which admits a basis of eigenstates |n) := |ni,ng,...,ny_1),

ng |n) = ng |n) Vk=1,...,N—1,

so that the energy levels of the unperturbed Hamiltonian in the eigenstate |n) are

n| h|n =
=1

The new terms of the perturbation S, introduced with the second step of perturbation
theory admit the same eigenstates, thanks to [ﬁ, 5’2] = 0. The difference between the
energy levels of the harmonic system and the energy levels of the perturbed system
will be .

(n| Sa |n)

AE{nk} = (n|n)
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So contains quadratic terms and quartic terms. These terms contain a}azakaj =

fgfj — 017 so will bring quartic and quadratic corrections. The quartic corrections
are

1 38
AEEn)k} =N Z Wy Wy kg Moy
k1,ka=1
o2
+ iy > kWi As (ke a, k), ng,
k1,k2,ks

5 1 1 1
wkg - wkg - wkl wk‘l + wkg + wkg wk3 - wkg - wkl
while the quadratic corrections (caused by the quadratic and quartic terms of 5’2) are

N-1

5 N-1
) 3B« 9 38 2
By = ( N 4N> > ime = g > win
k=1 k=1
o? 1 1
@ A3k, ko k —2
+ SN Z Wiy Why Wiy g (K1, K2, ig)n Wiy + Wy + Wiy Wkg — Wky — Wiy

k1,k2,ks
B(N
a? Z) 1 + 1 N 1
UL) wWorLmn
k2T 2w + wor,  Wop — 2w

5.3 Classical non-resonant normal form

In this section we will calculate the second order Birkhoff normal form of the
previous section for the classical case, using the complex variables 2z and z;, with
the Poisson structure {zy, 25} = —idy 4, starting from the Hamiltonian (3.17). The

Hamilton equations for the unperturbed part h =), w| 2|
Zp = {Zk, h} = —IWLZk - zk(t) = e_iwktZ()

are easily solved: the complex coordinates have the same evolution law under the
unperturbed Hamiltonian as the creation and annihilation operators. The only (and
crucial) difference is that zj € C are commuting numbers, while ay, is a non-commuting
operator in an Hilbert space. This fact cause the normal ordering in complex variables
to be trivial: while in the quantum case N[Hs](a,a') = fIéS)(a, al) + ﬁél)(a, al), the
normal ordering of fIg(z, z*) brings only cubic terms, corresponding to fIéS)
the z, z* are in place of a,al. The same fact is obviously true also for Hy and Gj.
Beside this difference, the calculation of the normal form is, algebraically speaking,
exactly the same.

One finds that the second order non-resonant Birkhoff normal form for (3.17) is,

where



58 Second order non-resonant Birkhoff normal form

neglecting the remainder,

N—-1 36 N—-1
ZWklzk\Qer D Wk Wy L2k, L2k P+
k=1 k1,ka=1
o? 2 2
t v Y Wnwrwi Mgk, ko, ks)|zk, ¥ 21|
k1,k2,ks

1 1 1
2 — _
< wkg - wkg - wk‘l wkl + wk‘g + wkg wkg - wkg - wkl >
(5.7)

The difference between the classical and the quantum normal form thus is only in
the normal ordering, although this creates several terms which are purely quantum
contributions to the energy of the system. It is interesting to notice that these purely
quantum contributions are visible only in the second order normal form.
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Acoustic modes and quantum Korteweg-de Vries
equation

6.1 The small divisors problem for the acoustic modes

The above construction works fine, at least symbolically, for N > 0. Let us recall
the expression for the frequency

. mk 7k k3
Wk ZQSII’Iﬁ ~ W—FO(W)

l

for k/N small enough. Since the frequencies for such momenta are linear in k, we
will denote acoustic modes the normal modes of oscillation for k£ < N. This simple
fact causes quasi-resonance of the form

wl R wy/2 R ws/3x...

with a decreasing level of approximation, which leads to the well known (at least
classically) problem of small divisors in the second order Birkhoff normal form. To
understand the entity of the problem, let us consider the contribution to the Birkhoff
normal form constructed in the previous chapter given by

N-1 3

@ o t ot
m . Z H Whs 5k1+k27k3ak1 Ay P

ko,ks=1s=1

(3)

which is of course contained in ﬁgg . Its average under the time evolution of

h=> wkazak, as we have seen, is zero because
wk1+wk2—wk1+k27é0 Vki,ko=1,...,N — 1.

For the acoustic modes this quantity, although non-zero, is small O(N -3/ 2): it is
a quasi-resonance. In the computation of the first generatrix (and so in S), this
small quantity goes in the denominator, so becomes "big", also comparable with the

99
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Figure 6.1: The approximation wy, & wk/N for the acoustic modes. In this picture we put
N =100.

unperturbed part ﬁ, which is precisely the problem of small divisors. For acoustic
modes, then, the time evolution operator Uy yields a unitary transformation which
is no more close to the identity, and S, is no more a small perturbation, which
makes the whole perturbation theory collapse. The normal form computed in the
last chapter is then useless to describe the lattice acoustic vibrations for our system:
we need to construct a new normal form, approximating the dispersion law to be a
linear one and thus treating the quasi-resonances in the old normal form like exact
ones.

Remark 6.1. This problem is well known in classical Hamiltonian perturbation theory,
and date back to studies of celestial mechanics by Charles-Eugéne Delaunay, who
lived in the 19th century.

Of course this is also true for the classical case, but it is interesting to notice that
while in the classical case the choice of acoustic modes as initial data may sound
exotic (at least in a thermodynamic sense) in the quantum environment such a choice
is way more plausible. Let us recall the numerical density for the mode k& in a boson
gas at temperature T = S~}

1

n(k) = oBe(k) _ 1

where e(k) is the energy related to the mode k. If T' is small enough we have
n(k) ~ e k)

so, being (k) an increasing function of k, at low temperature the optical modes
(short wavelength) are suppressed and the acoustic modes (long wavelength) are the
only modes excited.

In the following we will construct a Birkhoff normal form adapted to the acoustic
modes, known as quantum resonant normal form. As pointed out by [11], where the
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classical problem is studied, a suitable rescaling transforms the Hamilton equations
for this type of normal form (of the classical FPU problem) into the so-called Fourier-
Galerkin truncation to N — 1 modes of the 2N periodic Korteweg-de Vries equation
(in the following denoted by KdV)

1 a
Ut - ﬂUxmc + ﬁ

with periodic boundary conditions

U, (6.1)

U(x + L,t) =U(z,t), Vo, t € R, L =2N.

Our aim is to study the quantum problem and see the analogous of the KdV equation,
which will be the equivalent of the Heisenberg equations for the creation operator.

6.2 Construction of the quantum resonant normal form

The core of the method resides in the expansion of the dispersion relation

mk

1
szfk_ﬂfg+0<§2)> §p = N

clearly adapted to the acoustic modes. The quadratic part h of the qFPU Hamiltonian
operator is now split

N-1 N-1 N-1 &
oo T k t
Z Wragay = Z §payar + Z (_ﬂ +...)a.ag.
k=1 k=1 k=1
For initial excitation of acoustic modes, the sum
N-1
J(a,a’) == Z §ka2ak
k=1

is regarded as the unperturbed part of the Hamiltonian operator, while the perturba-
tion is given by

N-1 B(N)
1 3 1 o t
o7 ; §pagag + Wi ; V&arbor—n(ak + agy, )+

N-1
«
+12\/]V D V&b Aalk, o, ks)[ag, ar,an, +

k1,k2,k3=1

+ Ba;fcl Ay Oy + BCL};ICL;LQ aks + a,tlazz a;f%].

A step of normalization (in the sense of perturbation theory) will be performed, with
the flow of the unperturbed part given by

ap(t) = e lay, az(t) = eigktal, Vk=1,...,N —1.
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While the quadratic term coincides with its average, and the linear term averages
to zero, the new first order perturbation is no longer zero because of the acoustic
dispersion law. In fact the average along the flow of J is obtained with the same
method above and is given by

N-1

A 1
Sl,res = _ﬂ fiz ag + = Z \V gjglgm a alam 3,l+m + aTazram(quLl m)

k=1 ],l,m 1

Proposition 6.1. The first order resonant Birkhoff normal form for the qFPU
Hamiltonian operator is, neglecting the remainder,

2

-1

R(a, aT) = Skakak Y Z gkakak
1

i

Z VEEEm (@ aamnd;em + afa}amnbiim)  (6.2)

],l,m 1

It is interesting to explicitly verify that [h S res] = 0. Clearly [ ) 54 Z égazak] =
0, so we only have to compute [h ,m Zjlm VE&i&Em ajalam(S],Hm + a}a;ram(SjH,m].

Being [0, aq] = —0k qa, and [ﬁk,ag] = 5k7qa£ one has
[T, a;r-alam] = [Nk, T]alam + at[ﬁk, ajam| = 5k7jaLalam — 5k7ma;alam — 5;€’latalam
[T, a}ajam] = [Ag, aTa}]am + aTa; [Tk, ) = 5k7la;ajam + 5k7ja}azram — 5k,maTajam

So we have

\F Z §k/ §g§l§m[akazam5g I+m Ok, j0km — Ok1) + aTalTam5g+l m (01 + Ok — Ok.m)]

kjlm

- fz [a a1 (6 €Em — €2V/EE — €7\ /EiEm)

Jlm

+ alaand;im (& VEEm + €V aEn - G VE )]
R [al+malam (67 V&Em — V&€& — &V Ermm)

Jlm

3/2
a6V + 6V - €1/ |
Now, being &1, = & + &, it is easy to verify that

&2 €Em = &2 Gomb + € EmEm  Vom=1,...,N 1

so that [il, SLres] =0.
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6.3 Towards the quantum KdV equation

The Heisenberg equation for the creation operator ax, k =1,..., N — 1, evolving
in time with the dynamics given by R is

A

dk = —i[ak, R]

= —ipax + ﬂé}?ak Z VEi&iEm(lay, al 301Am] 051 +m + ak, a;alTam]%H m)

j,l,m 1

, ?
= —szak + ff,?;ak—k

Z V f]flfm alamék,](sj I+m T @, amfsk ]6j+l m T a; amék l(sj-i-l m)

7, l;m=1

\F

so finally one has

(10
4\\; Z V&Em (1m0 + 20] 0O 1,m).

ap = —ifkak + *ﬁkak -

The Heisenberg equations for the creation operators are

. . 1 i
af, = i¢gal, ﬁfi’az 4\/\C Z VaEm(alal 0 iim + 2a) amdksim)-

We wish now to polish this equation up and put it in a suitable form. Our first step
is to introduce the so-called co-rotating coordinates, which are

ap = e Skt a% = eigktz;g, VeE=1,...,N — 1.
The new coordinates z; and z}; do not commute, in fact
I:Zkﬁz}{l;/:l _ [ei&tak,e_igk’ta;,] _ ei(§k—§k/)t[ak’aT] = Opp

which makes the transformation canonical. Being a, = —ifpar + e k'3, the
Heisenberg equations for aj and aL become

) i

= 274613216 - \/> Z \/@ 21 2m Ok J4m T 22[ zm5k+l m)
za

= —*5 Ve Z \/&ﬂ Zl Zm5k I+m + 221 zm5k+1m)

4\F

The second and final step is a non-canonical rescaling together with an exchange of
the creation and annihilation operators

up = \/gkz;i, vVk=1,...,N —1, [uk,u;rc,] = —&10k

which leads us to the following result.
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Proposition 6.2. The Heisenberg equation for the creation operator aL for the
acoustic modes of the gFPU problem is equivalent to

iy

4N

—1
Z (ulumék,l—‘rm + 2u2rum5k+l,m) (6'3)

I,m=1

1

with [uk, uk,] = _ékék k! .

Remark 6.2. This equation is the one obtained in [11], where instead of commuting
coordinates ug,u;, € C we have non-commuting operators uy, uL

There is a strong connection between this last equation and the so called quantum
KdV equation (in the following qKdV)

e
—= (Vg + Yy 6.4
S W+ ) (6.4
where 9(z,t) is a L-periodic hermitian field operator such that [¢)(x,t), ¥ (2, t)] =
i, (x — ') where 0, is the weak derivative of the delta distributions with respect to
the = variable.

1
¢t = ﬂwmcx +

Definition 6.1 (Fourier-Galerkin truncation). The Fourier-Galerkin truncation to
the first N modes of a L-periodic field operator U(z,t) is

N
27rzka:
D Ul

k=—N

Sl

where Uy (t) = L™/ foL Uz, t)e” T .

Theorem 6.1. The normal form (6.3) coincide with the Fourier-Galerkin truncation
to the first N — 1 modes of the ¢KdV equation (6.4)

Py = wm + ——= )y + Ya1)),

2f

with periodic zero-average initial datum, namely

L
Y(z+ L,0) = (z,0), /0 Y(x,0) de =

where L = 2N.

Proof. Consider the qKdV equation (6.4). The field ¥ (z,t) admits the Fourier

expansion
27'rzkz
W (a Z Uk(t ,
keZ\{O}

_ 2mikx

with Ug(t) = ﬁ fOLw(x,t)e L and U_i(t) = U,I(t), where we impose the com-

mutation rule

[Uk<t)7 U(}L(t)] = _§k5k,q-
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One immediately finds

dl]k 2mikx . ALE,
t vfiji: R ) #%xw‘* \/I/Z%:

as well as

qt+p)x

(Wp Fve) = 3 8azw2 ax 2L Z Ul

1
:\Ezk:

2772]{ 1 2mikax .
T QIZUU&WH}]@’ L.

Thus, the generic Fourier coefficient Uy evolves according to

Z UpUqOk g-+p- (6.5)

dU;, i <27Tk:>3 2tk i
= k
¢,p€Z\{0}

at 24\ L L 2v2L

Let us rewrite in a suitable way the convolution at the right hand side of the last
equation.

> UngUy = ZquU+Zqu

q€Z\{0} q=—00
k—1 400
= Up—gUy + Z U_(q-iyUs + Y UnqU—q
q=1 q=Fk+1 q=1

k—1 400
= Uk—qUyg + Z UUk+q + ) UktqUJ
q=1 q=1 q=1

Being ¢ # 0 UJUkJrq = Uk+qU;r, so the latter becomes

k— 400
> Uiy q_ZUk_qu+2ZUqTUk+q

q€Z\{0} 7=1 g=1
k—1 N—k—1
Un-qUg+2 > UlUkiq+ | 2 Z Ul Ukq
q=1 q=1 qg=N—-k

The Fourier-Galerkin truncation to the first N —1 modes consists exactly in neglecting
the contribution of the last quantity in the convolution above. Recalling that
2L = N and 27k/L = &, and renaming Uy (t) = ug(t), we have exactly (6.3). The
commutation rule [¢(z,t),9(2,t)] = id,(z — 2’) derives directly from the one of
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[uk(t)auz/ (t)] = =&kl With u_y, = uL In fact
1 4 ,
[¢(,1), ¢($’, t)] = L ; uk(t)elgkx’ ; uk/e’fk’x]

- % Z[uk, g ] X ERTHE )
o !

-7 Z EOp, g Gk e )
L )
k,k/

_ _% nge’ifk(m—x’) _ Z(Sx(l’ i x/)
k

where we used 0(z) = £ >, e, O

Remark 6.3. The classical construction is almost equivalent, with the usual difference
that in this work we are dealing with non-commuting operators instead of commuting
complex coordinates. In the end, one finds that the acoustic modes, after an
appropriate rescaling, obey to the Hamilton equations

iaﬁk

4N

N-1
D (W Ghgm + 20 s 1m)

I,m=1

. i .3

where {uy,u},} = €0y 5. In [11] it was found that these equation are the Fourier-
Galerkin truncation of the Korteweg-de Vries equation (6.1), with {U(z),U(y)} =

dz(z —y).

6.4 Integrability of the quantum KdV equation

Thanks to theorem 6.1, we can state that, in first approximation, systems like the
one studied in [3] have dynamics close to the one described by the qKdV equation (6.4).
In order to understand why such systems do not show thermalisation, studying the
integrability property of this equation seems of the uttermost importance. We must
remark, however, that we actually don’t know neither what quantum thermalisation
is, nor how integrability affects the thermalisation properties of our physical system.
On the other hand, we think (guided by semi-classic arguments) that there is some
kind of connection between the presence of an infinite number of conserved quantities
for a quantum system, and thus its integrability, and its lack of thermalisation. The
equation (6.4) is already present in literature, for example in [6], where it is obtained
from the quantization of the classical KdV, and its integrability is studied using the so
called theory of hereditary operators. In the following we will show how integrability
is obtained, but we will not enter in such a vast world as the one of the nonlinear
evolution equations for quantum operators.

In order to provide the quantum KdV equation (6.4) an Hamiltonian formulation,
we must put it in an algebraic environment which is the one of almost-bounded
distributions.
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Definition 6.2 (Almost-bounded distribution). A distribution ¢(z) is said to be
almost-bounded if, for every n € N, its n-th derivative is of the form

¢ () = b(z) + Ax)

where b is locally bounded and where A is a distribution with discrete support such
that the support has no accumulation point.

Consider the algebra fulfilling the commutation rule
[u(), u(T)] = iz (x — 7)

by taking suitable congruence classes in the algebra of the almost-bounded distribu-
tions of degree 3. We will call this algebra QF'.

Since elements of QF may be considered as operators (by multiplication) on QF
itself, we have found the required operator representation of the Poisson structure of
the quantum KdV. Now, we have the prerequisites to define the time evolution for
quantum systems by taking suitable Hamiltonian operators. For example, taking

H= / (w(€)u(&)u(€) — %Ug(f)uﬁ@)) d§

and defining the action of a commutator on an integral, as integral in the convolution
sense over the commutator with its integrand, we find

u(z)y = —ifu(x), H] = tgge(x) + 3ug(z)u(x) + 3u(x)uy(x) (6.6)

which is, up to multiplicative constants, the equation we found in the previous
chapter. This equation is considered in [6] as the quantum version of KdV. The main
problem is to prove that this equation is completely integrable in the usual sense,
i.e. that it has infinitely many commuting symmetry groups (or conserved quantities
in involution). In order to give a recursive description of the symmetries and the
conserved quantities of the quantum KdV (6.6), an alternative representation of its
dynamics is introduced. Define the space of densities to be QF where integrals over
total derivatives are ignored (see [6]). This is exactly our case, since we are dealing
with the quantum Korteweg de Vries equation with periodic boundary conditions,
and u(x + L) = u(x) V.

Let A and B two elements in QF. Define for all A, B € QF an inner product in
QF by
(A, B) :—/ A(z)B(x) dx
Tr

where the integration is performed in T, since we have imposed periodic boundary
conditions.

Remark 6.4. The differential operator D is antisymmetric with respect to that
density-valued inner product.

Let F' = F(u) a density depending in some way on the field variable u. Then
define its directional derivative of F' in the direction of an element B of QF by

0
F'[B] = &F(u + £B)|e=o0.
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These definitions, and the notion of density, provide as simple result that there is a
unique operator V, mapping densities into density-valued linear functionals on QF
such that

F'[B] = (VF,B) for all B e QF.

The quantity VF' is said to be the gradient of F'. For example, one obtains the

gradient of .
H :/T (w(©)u(€)u(§) — Fue(Eug(€)) dé (6.7)

as Uggz () + 3u(x)u(x). The quantum KdV equation (6.6) can now be rewritten as
uy = DV H;

where Hj is given above in (6.7), and D denotes the operator of taking the derivative
with respect to x which is an implectic operator (the equivalent of a Poisson tensor,
in this notation). This equation has a very special property, like the classical case,
which is that it can be endowed with two different Hamiltonian structure, i.e. two
different Poisson tensors J; and Js and two different Hamiltonians H; and Hs such
that the equation can be read as u; = J1VH; = JoVHy. We have just seen the first
Hamiltonian formulation, that is

B=D M= [ (@) - Fuue(e)) de

which is the equivalent of the first Hamiltonian formulation of the classical KAV
equation (see [20] for details).

We are now ready to derive the second Hamiltonian formulation of the quantum
KdV (6.6). Denote by u the field variable and introduce

L(u)A :=uA, R(u)A := Au

where A € QF. These are operators of multiplication with u from the left and from
the right. Then set

© = D? 4+ DL(u) + DR(u) + R(u)D + L(u)D + [L(u) — R(u)|D ' [L(u) — R(u)]

which gives an operator being antisymmetric with respect to the inner product
defined above. It is possible (but arduous) to verify that © is an implectic operator
(i.e. a Poisson tensor), and thus provides the second Hamiltonian formulation of
(6.6), with Hamiltonian

1
= [ u(€u(o) ds (6.8)
TL
then we have VHy = u whence
uy = OVH,

is again the quantum KdV flow. It’s easy to verify that in the commutative case,
where R(u) = L(u), this second implectic operator of the quantum KdV is equivalent
to the second Poisson tensor of the KdV.

Now [6] apply the theory of hereditary operators of [7] and [8] in order to have a
recursive generation of conserved densities and vector fields. It is proven, using
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Bécklund transformations, that the two implectic operators are compatible (i.e. their
sum is again an implectic operator), so

d=0D""

is an hereditary and a strong symmetry. Qualitatively, if K (u) is the quantum KdV
vector field, then

— a symmetry is a vector field S(u) such that [K,S] = K'[S] — S'[K] = 0;

— a strong symmetry is an operator-valued function ® which maps symmetries of
uy = K (u) into symmetries of that equation;

— an hereditary symmetry is an operator-valued function ® such that if it is a
strong symmetry of any equation u; = K (u), then it is a strong symmetry also
for uy = ®(u) K (u).

and generates out of the vector field of the quantum KdV a hierarchy of commuting
flows @"(u)K (u), n € Z, which constitute the symmetry group generators for the
quantum KdV since it is among the members of the hierarchy. For the equivalent
of Noether’s theorem, these commuting symmetries produce an infinite number of
conserved quantities in involution, which cause the integrability of the quantum
Korteweg-de Vries equation in the same way as the classical case.

We want to remark that, although this fact is surely of mathematical and formal
interest, we don’t actually know the physical effects and consequences on the quantum
Fermi-Pasta-Ulam system and its thermalisation. If this was a classical system, then
its integrability should prevent ergodicity and then thermalisation, at least for a
long period of time. However, this is a quantum system, and as we already pointed
out, there isn’t a real and solid theory of quantum thermalisation yet. The fact that
the theory of nonlinear quantum evolution equations is a wide and complex field,
and that there is not a real physical application of it, are the reasons why we didn’t
dedicate much space in this work on the study of this equation’s integrability. The
aim of this section was only to pointing out that the quantum Korteweg-de Vries
equation, which describes the quantum FPU system for a long period of time, was
already studied from a mathematical point of view and its integrability was proven.
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APPENDIX A

Computation of .- [Hg, G4]

In this appendix we report the calculation of the average of the commutator
%[ﬁg, Gl], where H3 and G, are reported above. As pointed before, there are four
main contributions. The first one is given by the average of commutator between

cubic terms %[ﬁé?’), G’f’)] where

1 .
L =L o) Y Y e

k1,k2,ks q1,G2,93 s=1

T oot oot ot
Ag(ky, k2, k3)As(q1, 92, q3) [akzl Aky Ak + 3y, Ak, kg + 3y, Ay kg + ag g a;
Qqy Qqy Qg3 a:gl Qqy Qg3 aj]l af];z Qg Qg Qga Qg3
3 +3 - . (A1)
Wy, + Waso + Wgs Wy + We — Wy Wgs — Wgp — Wqy Wqy + Wao + Wy

There are sixteen commutators to average, which we report below taking into account
the symmetry properties of the exchange of the indices ks and gs. The commutators
were also normal ordered.

1. [ak1ak2ak3’ aq, atI2aQ3] =0.

2. [ak, Ak, Gk, gy gy ag,] surely contains no creation operators, so its average van-
ishes.

3. [ak, ag, aps, a21a22aq3] = 6a:§1 Qky Oy Qg3 Oky go + 00y Qg3 0ky g, Okz o - While the
quadratic term surely vanishes to zero, the average of the quartic term

(12\F> 2 X 5’“2"’2%; S

— W — W
k1,k2,k3 q1,92,93 g3 q2 q

wks qu

As(k1, ko, k3)As(q1, k2, g3) 6 al ar, aryaq,

is more delicate. With the technique explained above one can verify that the
average of this term is zero.

71
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Computation of % [I:I;;, Gl]

T

Tt ~ QnT AT T
4. Ak, Qhy Qg , Ay Qo Ol | = I0Gy Qg Ay Ay 01, @1 +1804, Ak Oty g0 Ok g5 +60k:1 1 Okngo Okis g5 -

Dropping the constant term, one needs to average the quartic term

[0 2 Wy HS:2 3 Wk Wqs
—9 (7> 5 :
12V N Z Z Fa Wqy T Wey T+ Wy

k1,k2,k3 4192,93

As(k1, ko, k3)As(k1, g2, 43) al,al, ar,ak,

which gives

a 2 Wiy [To=2,3 /Ok. g, tot

12V N E E Oy, q1 o L Lo A gy Ags Uky Aky

k1,k2,k3 q192,93 o 42 3

(51437(13 5k1+k2,k36q1+Q27Q3 + 5k2,q36k1+k2,k3 5q1+q3,q2 + 5k24]3 5k1+k3,k2 5Q1+Q27Q3
+ 5k3,Q35k1+k3,k25Q1+Q37Q2 + (5k2,q3 + 5k3,Q3)5k2+k37k1 5112-**13#11

+ (5q3,k2 + 5613,/?3)5k1+k2+k3,2N5q1+12+13,2N)

Due to the symmetry property in the exchange of the ks and k3 indices, this
sum of Kronocker deltas reduces to

(0 5 5 i Tl

= k1,91 %s3,q3 q2 %q3 ko Yk3
w, w, w,

12vN k1,k2,k3 9192,93 T Wep + Wy

(5k1+k2,k3 5Q1+Q2,qs + 5k1+k3,k’2 5q1+f13,q2

+ 5k2+k3,/€1 5q2+(137Q1 + 5k1+k2+k3,2N5q1 +12+13,2N)

which is equal to

2 Way Waa A/ Wheo W,
8( - > Z Z = k2 = aT aT ak2ak3
12V N Wqy T Wey + Wey s

k2 9192,93
(5ql+k2,q3 5q1+q2,q3 + 6Q1+Q3,k25q1+q3m
+ 5k2+g3#11 5Q2+Q37Q1 + 59‘{1 +k2+fI3,2N5Q1 +12+13,2N)

thus, in the sum one can extract dy, ,, while the remaining deltas together
reform As(q1,q2,q3). So finally, renaming g — k one has

2
o Wy Why W

8N w w w
k1,k2,ks b T Why T Wk

Ag(k‘l, kg, kg)a};l CLL2 Ao A -

The quadratic term instead gives

2

[0 Wy Who W
- E k1 WkoWEk3 Ag(k1’k27k3)a1];:3ak;3'

16N T Wh + Wgy + Wiy
1,k2,k3

1 . . .
[aklak2ak3, g, Gg,Qq,] surely contains no creation operators, so its average van-
ishes.

i T ~ g0 T
[akl ky Ay Ay Agy gg) = 20%1 kg Ogy Ay Oz, q1 — 20qy Ago Uy (i Ok g5 AVETAZES 1O

Zero.
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T Tt ~ AT AT TooT T
7. [akl Ay Q35 Aqy a!I2a£I3] — 4ak1a¢J1ak3atI35k2,tI2_a¢h alJ2ak2ak35k1,q$+2ak3aqs(5k1,q1 5k2,q2'
The average of the first quartic term

() T Y g T
e /o 2,q2 k1 q1 3793
Y% — Wy — W

12vN k1,k2,ks 91,92,93 Was a2 @

is obtained in the usual way and is

6< . )2 > >0 SRV al af aga

P~ k2,q2 k1 q1 k3 tqs
3 UJ — W,

12VN k1,k2,ks 91,92,93 Was a1

(5k37Q1 5!114-(,‘(27(13 5k2+k3,k1 + 5/63,111 6Q1+Q3,QQ 5k1+k37k2

+ 5k3,q1 5Q2+q3,(I1 5/€1+k2,k3 + 5’%#11 5q1+Q2+q3,2N5k1+k2+k3,2N)-

This is equal to

2
(0% Wh Wk, WE
— E 17727 Ag(k‘l,k‘z,kg)aL CL]T€ Afs Ay -
1 k3
4N Wy — Why — Wiy
k1,k2,ks

The average of the second quartic term

Z Z 5k1,q3 Hs 1 VWksWqs T ot

ak2 CLkS
— Wy, — Wqy

_9<12\ﬁ)

k1,k2,k3 91,92,93

is

Z Z 5k1,q3 Hs 1 VWksWqs T ot

o Ok Qg
Wez — Wg, — Wqy

_9<12\ﬁ>

(5k2,q2 6k2+k3,k15q1+q27¢13 + 5163412 5k2+k37k15q1+q27q3 + 51?3412 5k1+k2,k3 5q1+q3,q2

k1,k2,k3 41,92,93

+ 5k2,q2 5k‘1+k3,k2 5q1+q37q2 + 5k2,12 5k1+k2,k35q2+q3,q1 + 5’63#12 5k1+k3,k2 5q2+q37q1
—+ 5k2,q2 (5k1+k2+k3,2N5q1+q2+q3,2N + 6163#]2 6k1+k2+k3,2N5q1+q2+q372N>

exchanging where needed ko and k3 one gets

2 3
« 6 6 5 HS:]_ \/ wksqu A
k1,q3%2,q2 ks#h — 3

(Q17 Q2> q3)a(];1 a(‘EQ a’kQ akS

8N W
k1,k2,k3 41,92,93 Was q2 q1
which is
2
o Wy Wiy W

- L2 Ng(ky, ko, ks)al, al ag,ar, .
? ’ k1P ko R2VRL

SN wk3 — Wy — Wg,

k1,k2,k3

The quadratic term instead averages to

2

a Wy Wy W
- Mitha ks As(ky, ke, ks)al ag,.
8N Wy — Why — W T kg "3

k1,ko ks~ ® 2 !
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T P01 ~ 6ol al af Tt
8. [ay, aryry, ag, agyag5] == 60y, agy g, A1y 0ky,q5 + 60y, A, Ok g30ks g, averages to
zero.

T ~ T .
9. [aklakgaksv Qqy aq2aQ3] — _6ak2a<I2aq3ak35k1,q1 - 6aq3ak36k1,th 5’62#12 as the third

contribution averages to zero.

T T ~ T T T T
10. [ak1 g, Oks > Qg1 Qgy aQ3] = g, A, g2 0gs 5k3,q1 _4aTQ1 ar, a%aks(skzﬂz_zalh ak35q2,k2 6161,%'

Its average can be computed in the same way of the seventh contribution, and
gives the exact same contribution

Tt Tt ~ 9q7 4t ol |
11. [ay, ay, Qks, gy Qgo Qg5 == 20y, a5 gy Qq30ks,q) — 20q, Qgy 0y, Ay Ok, g5 averages to
Zero.

12. [a};la;r@ Aoy s ajn aIH a(gg] surely contains no annihilation operators, so its average
vanishes.

13. [aL1 azgal];gvafhatpaqs] = —9a};1a};2aq1 afJ25k37q3_18achlaq1 Oka,q20K1, q1 =604k, g, 0k2, G20k 45 -
Its average can be computed in the same way of the fourth contribution and
gives the exact same contribution.

14. [aLIaLQaLB,agla@a%] ~ —GthaLlaLZa@(SkS,qS — 6a§1a215q2,k2]delmq3,k3 as the
eighth contribution averages to zero.

15. [GLGLQ CLLg: azh azlz agq,] surely contains no annihilation operators, so its average
vanishes.

16. [aLlaLaLB,aZla%a(L} =0.

Finally we get

1723 A a? Wy Why W
7[H§ ),Gg )] = —— Z 177278 A3(k1,k2,k3)a}; (11]; Afo Ay
21 4N Wiy T Wiy + Wiy LR
k1,k2,k3
2
« Wi Wk, Wk
— 172 Ag(k‘l ]{72 kig)aT (IT Qs A
2N Wko — Wk, — WE ’ ’ key ks s L
ki,ka,ks 3 2 !
2
« Wy WhoW
- — k1 ke ks Ag(k?l kiz k‘g)aT CLJr af, A
) K2, Ky Qkg ko Ckq
Why — Wy — Wk o2
ki,ka,ks —? 2 !
2

Q Wey Whey W
+ 87N Z " +1w +5w A3(k;1’ kj27 k3)a1];:3ak3
k1,k2,k3 k1 k2 k3
2

a Wiy Wy Wh-
-2 MRS As(k, ko, ks )al, a,.
AN Wha — Wiy — Wi e kg "
kikgks 3 2 !
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Renaming properly the indices we get the result (modulo constant terms)

O52

7(3) AG)H &

Z Wk WkoWEs Ag(kl, kg, kg)a};l CLL2 ALy ALy
k1,k2,k3

1
27

1 1 1
2 _ _
wkz - wkg - wkl wk'l + wkz + wkg wk3 - wkg - wkl
2

8N Z Wy Wiy Whs A3 (1, k2, ks)akgakg

k1,k2,ks

1 1
-2
(wkl + wk‘g + wkg wkg - wkg - wk‘l )

Now we show how to compute the average of

N-1
Log@® a1 _«a

o Hs™, Gy = ~ > H\/Wk As(ki1, ks, ks)
2i 2Z 12 k‘l,kg,kg 1s=1

ToT T T T
(ak, Aky ks + 3ak1ak2aks + 3ay, ay, ag; + ay g, a;. ),

B(N) ;
—_— Z (Wg — WN—q) Y9 0%
WN ST T ey iy

starting from the commutators
1. [ag, aryary, azq) = 0.
2. [aLlak2 a4, 24| surely contains no creation operators, so it averages to zero.

ot _ t t
3. lag, ay, Ak, Q2q] = =0y 290y, Aky — Oky 240, Oy

4. [a;rﬂaj62 a;rcg, agq| surely contains no annihilation operators, so it averages to zero.

5. |Gk, Oy Qs s agq] surely contains no creation operators, so it averages to zero.

6. [azlabakw agq] = a};labék&gq + aLlak35k272q.

1

7. [akla,t2 Qs s agq] surely contains no annihilation operators, so it averages to zero.
8. [a21a22a23,a£q] = 0.

Remembering that a}ak = a}akéjyk, putting all together and using the symmetry
properties of exchange of the indices k one obtains the result

N—

L@, 60— & Z — ono )Gy + Bsg)a]
H3™, Gy SN N—q)\Ok,q T Ok+q,N )00k
k=1 g=1

21

The quantity %[lﬁfél), G’g?’)] is obtained in a similar way and gives the exact same

contribution. %[.FAI él), Ggl)] instead gives only constant terms.
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