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A B S T R A C T

In this thesis we consider an Activity recognition problem for Cross-
Country Skiing; the goal of this work is to recognize different types of
Cross Country techniques from inertial sensors equipped on a wear-
able device.
We want to apply the SAX technique to the acceleration signals, specif-
ically on the Atomic Gestures extracted from them. SAX has been
introduced in 2003 and it has been used in several fields of applica-
tion. Applying SAX we work on time-based features strictly related
to the time series, that imply some advantages; precisely, SAX rep-
resentation allows dimensionality and numerosity reduction and it
also allows distance measures to be defined on symbolic approach.
We want to find some template which are the signals that best repre-
sent the aforementioned main techniques and, using them in the SAX
Distance calculation, being able to recognize which activity an athlete
is performing.

The thesis is organized as follows:
In Chapter 1 we introduce the argument relating to activity recogni-
tion from a scientific and commercial point of view, but in the follow-
ing we focused on Sports Activity. In Chapter 2 and 3 we describe
the SAX technique and the dataset in exam, respectively. In Chapter
4 we provide a recognition algorithm based on SAX that works on
Atomic Gestures and in Chapter 5 we test it evaluating the classifi-
cation accuracy. In Chapter 6 we test the aforementioned algorithm
on a well-known dataset of Normal Day Activity. In Chapter 6.5 the
conclusion of this thesis.
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1
I N T R O D U C T I O N

Gesture recognition refers to the mathematical interpretation of hu-
man motions using a computing device. Gesture recognition, along
with facial recognition, voice recognition, eye tracking and lip move-
ment recognition are components of what developers refer to as a
perceptual user interface (PUI). The goal of PUI is to enhance the ef-
ficiency and ease of use for the underlying logical design of a stored
program, a design discipline known as usability.
Initially, in this thesis we extend the gesture recognition’s concept to a
another more generic: Activity recognition. For this reason, in the fol-
lowing, when we discuss about Activity we use this as a generic term
that can be referred to a set of gestures or a single gesture depending
on the context.

1.1 overview of activity recognition

Activities recognition is a vast topic therefore a first categorization
that simplifies the concepts that will be discussed next, has been in-
troduced in Table 1.

Device Sensor Position Area

Wearable Acc. Untouched Normal Day Activity

Smartphone Gyr. Hand-Wirst Command Gesture

Vision System Mag. Arm Sports/Dance

Dedicated Device GPS Waist Games

Visual Foot-Ankle

Table 1: First simple key-concepts used to categorize the related work.

First of all, it is possible to specify device and sensors used for ev-
ery single gesture recognition problem. The use of gesture as a natu-
ral interface serves as a motivating force for research in modeling,
analyzing and recognition of gestures [10]. Indeed vision systems
are widely used in most of previous work on gesture recognition.
However the performance of such vision-based approaches depends
strongly on the lighting condition and camera facing angles, which
greatly restricts its applications in the smart environments. Smart en-
vironments is still a very important argument because, for example,
smart home make it possible to monitoring the well-being of an oc-

1



2 introduction

cupant in a home [11] [12] [13] and to reduce energy usage [14] [15]
[16]. This category includes also Microsoft Kinect that has been a key
driver for a new form of hands free interaction. As a low-cost and
widely available approach to human motion sensing, the Kinect and
the associated open source libraries have enabled researchers to target
a range of next generation novel multimedia applications, for exam-
ple [17]. Kinect is principally equipped with a vision-sensor but the
other sensors are used to improve the performance also in difficult
conditions such as night vision.
In more recent works reported in literature, the most common de-
vices are smartphones and wearables such as smart-watch or smart-
band. In fact, with the rapid development of the MEMS (Micro Elec-
trical Mechanical System) technology, people can easily wear or carry
on this kind of sensor-equipped devices in daily life [18]. Typically,
these devices are equipped with 3D-accelerometer, gyroscope, mag-
netometer (well-known as "inertial sensors") and GPS. On gesture
recognition, some related works need only accelerometers data [19]
[20] [21] [22] [23] [24] [25] [26] [27], in [28] [29] [30] [31] accelerome-
ters, gyroscope and magnetometer data are combined. In particular
we can conclude that in all the work just cited the accelerometer is
the main sensor while gyroscope and magnetometer are used to im-
prove the gestures recognition. Only few works in literature require
also the GPS data [32]. There is a fourth category of devices which
is "dedicated devices". This category includes all devices developed
for perform only particular tasks. For example Maxxyt[30] which is
an autonomous device that can count repetitive movements during
strength training in real-time or UbiFinger[33] that realizes operations
of real-world devices with gestures of fingers.

The device’s position, and then the sensors’ position, is another im-
portant aspect to take into consideration. A primary distinction has
been made between untouched and Body position. Untouched means
that the device is located near the subject’s body. It isn’t attached to
the body so it doesn’t move with the user. For this reason, the cate-
gory untouched includes the majority of vision systems. In fact, in lit-
erature there are many works on home automation that use external
camera network to recognize gestures [12] [34]. However, there are
few examples where the body gesture input system doesn’t depend
on external cameras, such as Cyclops[35], a single-piece wearable de-
vice that sees its user’s whole body postures.
Body position indicates that the sensors are attached to the user’s
body, in one or more precise locations. This category includes all the
wearable-devices. The most significant positions that can be found
in literature are: arm [31] [36], hand-wrist [19] [37] [38] [39] [22] [40]
[25] [36], waist [41] [35] [26] and foot-ankle [28] [42]. In some cases
we need to recognize a lot of different gestures so it’s necessary to
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place different sensors in different positions; in this way the amount
of data is increased and the recognition task can be more easier. Any
example can be [32] or [29] where continuous user motion is acquired
from a body-worn network of inertial sensors. Obviously, the sensors’
position is closely related to the Activity and Gesture that you want
to recognize. In Figure 1 relationship between Body Position and Area
found in the related work.

Figure 1: Relationship between Area and body position found in the related
work.

Activity recognition can be used on numerous fields of application
then a macro differentiation between different area of application is
shown in Table 1.
Normal day activity includes all the activity like walking, sitting, eating
[32] [26] [27], cooking, sleeping [11], cycling, driving [41], writing.
Command Gestures, as the name suggest, are all the gestures that have
the purpose to command something. This kind of gesture is very com-
mon in Home Automation [43]. In this context a specific task can be
assigned to a particular gesture and so, for example, a window can
be opened by an hand-circular movement.
Sport and dance includes all the works that have the purpose to recog-
nize and assess athlete’s activities [44] and in certain case provide
feedback on the quality of movements, such as the swing [45] or
dance steps [28].
The last category is Games. Then, for example, in [17] has been de-
veloped a gesture-based game for deaf/mute people using Microsoft
Kinect. However Kinect is not the only device used in this context.
For example, in [46] has been used a wearable sensors for real-time
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recognition tasks in games of martial arts [21] or with Cyclops [35],
worn at the center of the body, the user can play a racing game on the
mobile phone with hand and foot interactions.

Now, we have to introduce a more precise definition of what kind
of activity we want to analyze. In Table 2 it can be notice that at
different Activity Type we have the possibility to face different prob-
lem stage. Continuos-Repetitive means that there is a continuos data
stream which admits periods of non-activity amidst periods of activ-
ity. In this case the activity is composed by repetitive gestures such
as weight training and calisthenics [44] or other sport activities [47].
Instead, in Continuos-Spot, the Activity in the continuos data stream is
composed by spot gestures. Any example of spot gestures are sitting
or standing up [32]. On the other hand, Isolated means that the data
stream includes only an Activity period and we exactly know when
the Activity starts and when it stops. It’s simple to conclude that this
Activity type includes all command gestures previous cited. Anyway
[43] provides an exhaustive example.
In any cases, the three Possible Problem Stages in Table 2 are not exactly
noticeable; in particular, the first and the second phase can be joined
in an unique phase. However, an idea of what every stage represent
may be the following:

1. Finding Activity amidst periods of non-Activity. This is the
first stage for Activity type with a continuos data stream. In
literature, it’s possible to find some example of segmentation
techniques used for solve this problem [48]. For example, in
[44] is used a 5-second sliding window, for each window, 224

features is computed, and the resulting feature matrix is used to
train an L2 linear support vector machine which predicts either
“exercise” or “non-exercise” for each 5-second window. An Au-
tomatic segmentation technique based on Signal Energy is pro-
vided in [49]. In [50] the "Activity finding" procedure is based
on the observation that humans tend to keep their hands in rest
positions and any gesture starts from one rest position and ter-
minates at another rest position.

2. Recognizing the Activity. This is the main stage for every Ac-
tivity Type and it is necessary for understand which gesture
is being performed. To recognize a gesture from the captured
data, researchers have applied diverse machine learning, pat-
tern recognition techniques:

• Dynamic Time Warping (DTW) [51]

• Hidden Markov Model (HMM) [52]

• Support Vector Machine (SVM) [1] [53] [54] [55]

• Decision Tree (DT) and Random Forest (RF) [1] [53]



1.1 overview of activity recognition 5

A
ct

iv
it

y
Ty

pe
Po

ss
ib

le
Pr

ob
le

m
St

ag
e

Ex
am

pl
e

C
on

ti
nu

os
-R

ep
et

it
iv

e
1
)

Fi
nd

in
g

A
ct

iv
it

y
am

id
st

pe
ri

od
s

of
no

n-
A

ct
iv

it
y.

W
e

co
ns

id
er

a
sw

im
m

er
in

a
po

ol
.F

ir
st

w
e

w
an

t
to

kn
ow

2
)

R
ec

og
ni

zi
ng

th
e

G
es

tu
re

in
th

e
A

ct
iv

it
y.

w
he

n
he

is
sw

im
m

in
g

an
d

w
he

n
he

is
st

op
pe

d
in

re
st

3
)

C
ou

nt
in

g
th

e
re

pe
ti

ti
on

s.
po

si
ti

on
.S

ec
on

d,
fo

r
ea

ch
A

ct
iv

it
y

pe
ri

od
,w

e
w

an
t

to

re
co

gn
iz

e
w

ha
t

st
yl

e
he

is
sw

im
m

in
g.

Th
ir

d,
w

e
w

an
t

to

kn
ow

ho
w

m
an

y
st

ro
ke

s
he

do
es

fo
r

ea
ch

A
ct

iv
it

y
pe

ri
od

.

C
on

ti
nu

os
-S

po
t

1
)

Fi
nd

in
g

A
ct

iv
it

y
am

id
st

pe
ri

od
s

of
no

n-
A

ct
iv

it
y.

W
e

co
ns

id
er

a
te

nn
is

pl
ay

er
du

ri
ng

a
m

at
ch

.F
ir

st
w

e
w

an
t

2
)

R
ec

og
ni

zi
ng

th
e

A
ct

iv
it

y.
to

kn
ow

w
he

n
he

is
st

op
pe

d
in

re
st

po
si

ti
on

or
w

he
n

he

is
se

rv
ic

in
g,

he
is

sm
as

hi
ng

,..
.F

or
ea

ch
A

ct
iv

it
y

pe
ri

od
,w

e

w
an

t
to

re
co

gn
iz

e
ex

ac
tl

y
w

ha
t

st
ro

ke
fu

nd
am

en
ta

lh
as

be
en

ex
ec

ut
ed

.

Is
ol

at
ed

1
)

R
ec

og
ni

zi
ng

th
e

G
es

tu
re

in
th

e
A

ct
iv

it
y.

W
e

co
ns

id
er

th
is

si
tu

at
io

n:
an

us
er

is
su

bj
ec

t
to

a
co

m
pu

te
r

qu
es

ti
on

na
ir

e.
Th

e
us

er
ca

n
an

sw
er

to
ea

ch
qu

es
ti

on
on

ly

w
it

h
a

bo
dy

ge
st

ur
es

.S
o,

af
te

r
ea

ch
qu

es
ti

on
s

ap
pe

ar
on

co
m

pu
te

r’
s

sc
re

en
,a

n
us

er
’s

m
ov

em
en

t
w

ill
be

pe
rf

or
m

ed

an
d

th
is

ge
st

ur
e

m
us

t
be

re
co

gn
iz

ed
to

pr
oc

ee
d

w
it

h
ot

he
r

qu
es

ti
on

s.

Ta
bl

e
2
:P

os
si

bl
e

Pr
ob

le
m

St
ag

es
fo

r
di

ff
er

en
t

A
ct

iv
it

y
Ty

pe
.



6 introduction

• Bayesian networks (BN)

• K-Nearest Neighbor (k-NN) [1] [53]

• String Matching (SM) [56] [2] [57]

In Table 3 we present a categorization of related works based
on technique employed. In any case, in this stage, after the ges-
ture recognizing it’s provided a "gesture’s characterization". For
example, we recognize a crawl armful in a swimming Activity
and then we provide a quality report of the movement such as
"overly energetic", "too slow", "too fast", etc.

3. Counting the ripetitions. This stage is needed only if an Activ-
ity involving repetitive movements. In particular, when an activ-
ity is detected and recognized we need to count how many rep-
etitions of this movement there are in this Activity. For example
the Counting challenge has been fronted with "peak detection".
Precisely, in [30], after a comparison of particular smoothing
techniques follow that the smoothed signal’s peaks correspond
to each repetition in the Activity. Also with RecoFit [44] this
stage is well delineated.
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Technique Ref. Year. Sensor

DTW [58] 2015 Kinect

[47] 2014 Acc. Gyr.

[34] 2014 Vision

[22] 2012 Acc.

[24] 2011 Acc.

[23] 2009 Acc.

HMM [59] 2015 Kinect

[31] 2013 Acc. Gyr.

[40] 2010 Acc.

[12] 2009 Vision

[20] 2006 Acc.

SVM [44] 2014 Acc.

[43] 2014 Acc.

[18] 2009 Acc.

[21] 2008 Acc.

[60] 2006 Acc.

DT/RF [50] 2014 Acc. Gyr.

[41] 2009 Acc.

[32] 2008 Acc. Gyr. GPS

BN [60] 2006 Acc.

[19] 2004 Acc.

k-NN [43] 2014 Acc.

[61] 2012 Vision

[46] 2006 Acc. Gyr.

SM [29] 2012 Acc. Gyr.

Table 3: Categorization of related works based on technique employed. Note
that Acc. and Gyr. stand for accelerometer and gyroscope, respec-
tively.
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1.2 main techniques

Before discussing about how each single technique works, it’s impor-
tant to distinguish what algorithm input each technique needs to work
properly. In Figure 2 it’s possible to see that some techniques used
for recognizing data work with time-series data or time-based fea-
tures. In fact, usually, DTW is used directly with the sensor’s output
signal while SAX works with a particular signal representation that
can be intended as feature sequence. Anyway this type of features
is strictly connected with the original signal time sequence. For this
techniques see Section 1.2.2. Instead other techniques work with sig-
nal’s features, like signal’s energy, that lose the time sequence of the
signal. For these reason, techniques like k-NN, SVM, DT/RF firstly
need a setup phase commonly named "feature extraction". For this
techniques see Section 1.2.1. The term Other in Figure 2 includes all
the classification techniques that will be not discussed in the follow-
ing chapters because considered less important in this thesis. For ex-
ample Other includes also Bayesian Network.

Figure 2: Diagram of employed techniques. Red edge: Algorithm input. Blue
edge: Techniques.

1.2.1 Classification Techniques

In gesture recognition context response variables (output variables)
take on values in one of K different classes, or categories. Examples of
qualitative variables may be swimming style (crawl, butterflystroke,
breaststroke, backstroke and medley) or a person activities like walk
or run. We tend to refer to problems with a qualitative response as
classification problems. In that kind of problem we have a set of train-
ing observations (x1, y1), ..., (xn, yn) that we can use to build a clas-
sifier. Where xi = (x1i, x2i, ..., xpi) means that we’re considering p
features while yi is the response associated to the observation xi. Ta-
ble 4 summarizes the major notation used in this section.
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Notation Meaning

K number of different classes

n number of observation

xi i-th observation, taking value in X

x0 query point

p number of features

Xj Generic feature

xji j-th feature of i-th observation

Table 4: Meaning of the major notation used in this section.

1.2.1.1 k-NN: k-Nearest-Neighbor Classifiers

K-NN is a lazy learning method so the generalization beyond the train-
ing data is delayed until a query is made to the system. k-NN classi-
fiers are memory-based, and require no model to be fit. In this way
the classification of a query point x0 is made to the class of the closest
training observations. Precisely, given a query point x0, we find the k
training points closest in distance to x0, and then classify using major-
ity vote among the k neighbors. The concept behind k-NN is shown,
for two different value of k, in the example in Figure 3 Despite its sim-
plicity, k-nearest-neighbors has been successful in a large number of
classification problems, including handwritten digits, satellite image
scenes and EKG patterns.

Figure 3: Two classes (blue and in yellow) and p = 2. It can be seen the
closest point for k = 3 and k = 6. In the first case, x0 will be
classified as blue, in the second case it will be classified as yellow.
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1.2.1.2 DT: Decision Tree/RF: Random Forest Classifiers

Also DT/RF are lazy learning method. Tree-based methods partition
the feature space into a set of rectangles, and then fit a simple model
(like a constant) in each one. In order to make a prediction for a
given observation, we typically use the mean or the mode of the
training observations in the region to which it belongs. Since the set
of splitting rules used to segment the predictor space can be summa-
rized in a tree, these types of approaches are known as decision tree
methods.Tree-based methods are simple and useful for interpretation.
However, they typically are not competitive with the best supervised
learning approaches.
A classification tree is used to predict a qualitative response; we pre-
dict that each observation belongs to the most commonly occurring
class of training observations in the region to which it belongs. It’s
commonly used recursive binary splitting to grow a classification tree.
The classification error rate is used as a criterion for making the binary
splits. Since we plan to assign an observation in a given region to
the most commonly occurring class of training observations in that
region, the classification error rate is simply the fraction of the training
observations in that region that do not belong to the most common
class.
Random forests have been developed by Breiman in 2001 and they
are a large collection of decorrelated trees. Random forests are simple
to train and tune. As a consequence, RF are popular and they are
implemented in a variety of packages. When used for classification, a
Random Forest obtains a class vote from each tree, and then classifies
using majority vote.

Figure 4: Generic scheme that represent the classification
of x0 using Random Forest. Figure adapted from
http://en.likefm.org/artists/images/Random+Forest .
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1.2.1.3 SVM: support vector machine

Support vector machine is an approach for classification that was de-
veloped in the computer science community in the 1990s and that
has grown in popularity since then. SVM is a further extension of
the Support Vector Classifier in order to accommodate non-linear class
boundaries. An overview of the Support Vector Classifier is the fol-
lowing.
In Figure 5 is shown an example in which the observations that be-
long to two classes are not necessarily separable by a hyperplane. In
fact, even if a separating hyperplane does exist, then there are in-
stances in which a classifier based on a separating hyperplane might
not be desirable because this type of classifier will necessarily per-
fectly classify all of the training observations; this can lead to sen-
sitivity to individual observations. In fact, the addition of a single
observation in the right-hand panel of Figure 6 leads to a dramatic
change in the maximal margin hyperplane. The resulting maximal
margin hyperplane is not satisfactory for one thing, it has only a tiny
margin. This is problematic because the distance of an observation
from the hyperplane can be seen as a measure of our confidence that
the observation was correctly classified. Moreover, the fact that the
maximal margin hyperplane is extremely sensitive to a change in a
single observation suggests that it may have overfit the training data.
In this case, we might be willing to consider a classifier based on a
hyperplane that does not perfectly separate the two classes but guar-
antees:

• Greater robustness to individual observations

• Better classification of most of the training observations

Figure 5: Two classes (blue and purple) and p = 2. The two classes are not
separable by a hyperplane. Figure adapted from [1].
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In this way, the support vector classifier could be worthwhile to mis-
classify a few training observations in order to do a better job in clas-
sifying the remaining observations. Rather than seeking the largest
possible margin so that every observation is not only on the correct
side of the hyperplane but also on the correct side of the margin, we
instead allow some observations to be on the incorrect side of the
margin, or even the incorrect side of the hyperplane. An observation
can be not only on the wrong side of the margin, but also on the
wrong side of the hyperplane. In fact, when there is no separating
hyperplane, such a situation is inevitable. Observations on the wrong
side of the hyperplane correspond to training observations that are
misclassified by the support vector classifier.

Figure 6: Left: Two classes (blue and in purple), along with the maximal mar-
gin hyperplane. Right: An additional blue observation has been
added leading to a shift in the maximal margin hyperplane (solid
line). Figure adapted from [1].

The support vector machine classifier is an extension of this idea,
where the dimension of the enlarged space is allowed to get very
large, infinite in some cases. So far, our discussion has been limited
to the case of binary classification: that is, classification in the two-
class setting. However we can extend SVMs to the more general case
where we have some arbitrary number of classes. The two most popu-
lar proposal for extending SVMs to the K-class are the one-versus-one
and one-versus-all approaches.
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1.2.2 Time-dependent Techniques

Contrary to techniques previously discussed, DTW and SAX have
not been developed for classification problem. In the same way aren’t
born for solve gesture recognition’s problem. However they were
used often in pattern recognition problems because they don’t need
feature extraction or other special setup for work properly.

1.2.2.1 DTW: Dynamic Time Warping

Dynamic time warping is a well-known technique to find an opti-
mal alignment between two given time-dependent sequences under
certain restrictions. Intuitively, the sequences are warped in a non-
linear fashion to match each other. Originally, DTW has been used to
compare different speech patterns in automatic speech recognition. In
fields such as data mining and information retrieval, DTW has been
successfully applied to automatically cope with time deformations
and different speeds associated with time-dependent data.
The objective of DTW is to compare two time-dependent sequences.
These sequences are discrete signals (time-series) or, more generally,
continues signals sampled at equidistant points in time. To compare
two different signals DTW make use of a local cost measure, some-
times named as local distance measure. Typically, this is "low cost"
(small value) if the signals are similar to each other and else is "high
cost" (large value). Then DTW search the optimal warping path be-
tween the two sequences (signals) which is a warping path having
minimal total cost among all possible warping paths. The DTW dis-
tance between the two sequences is then defined as the total cost of
the optimal warping path. Figure 7 shows a comparison between Eu-
clidean distance and DTW distance.

Figure 7: Left: Euclidean distance between Signal A and Signal B. Right:
DTW distance between Signal A and Signal B. Figure adapted
from http://www.stanford.edu .
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1.2.2.2 SAX: Symbolic Aggregate approXimation

In 2003, has been introduced a new symbolic representation of time
series. SAX representation allows dimensionality and numerosity re-
duction, and it also allows distance measures to be defined on the
symbolic approach that lower bound corresponding distance mea-
sures defined on the original series. SAX allows a time series of ar-
bitrary length n to be reduced to a string of arbitrary length w with
w < n, typically w � n. The alphabet size is also an arbitrary inte-
ger α, where α > 2.The discretization procedure is unique in that it
uses an intermediate representation between the raw time series and
the symbolic strings. We first transform the data into the Piecewise
Aggregate Approximation (PAA) representation and then symbolize the
PAA representation into a discrete string. There are two important
advantages to doing this [2]:

• Dimensionality Reduction: We can use the well-defined and
well-documented dimensionality reduction power of PAA, and
the reduction is automatically carried over to the symbolic rep-
resentation.

• Lower Bounding: Proving that a distance measure between two
symbolic strings lower bounds the true distance between the
original time series is non-trivial. The key observation that al-
lows to prove lower bounds is to concentrate on proving that
the symbolic distance measure bounded from below the PAA
distance measure.

The distance between two SAX representations of a time series re-
quires looking up the distances between each pair of symbols, squar-
ing them, summing them, taking the square root and finally multiply-
ing by the square root of the compression rate (nw ). Figure 8 synthesizes
the method to obtain a string from a signal.

Figure 8: In the example, with n = 128, w = 8 and a = 3. The time series
is discretized by obtaining a PAA approximation and then using
predetermined breakpoints is mapped map into SAX symbols. In
this way, the time series is mapped to the word baabccbc. Figure
adapted from [2].
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1.3 commercial products

As already said, recent advancements in microelectronics and other
technologies mean that inertial sensors are gaining popularity to mon-
itor human movements in a number of sporting and everyday ac-
tivities. MEMS sensing technology is already integrated by default
into many consumer devices. Virtually every smartphone, smartband
and smartwatch are equipped with them. In Table 5 and in Figure 9

and 11, some example of well-known commercial products which use
MEMS inertial sensing technology in Sports and Normal Day Activity
Area.
MEMS inertial sensors are being widely used in motion capture re-
search due to the following reasons [62]:

• They are miniaturized and lightweight so they can be placed
on any part or segment of a human body without hindering
performance.

• The cost of such sensors is falling dramatically as they start to
persuade mass market consumer devices.

• They can be utilized to capture human movement/actions in
real unconstrained environments (e.g. outdoor environments
with variable lighting conditions) to obtain accurate results.

• They can be used to provide real time or near real time feed-
back.

Figure 9: From left to right: Suunto Ambit3 Peak, Garmin VivoActive, Polar
V800, Fitbit Surge. Adapted respectively from [3] [4] [5] [6].

Suunto [3], Garmin [4], Polar [5] and Fitbit [6] are examples of brand of
smartwatches and smartbands known in activity tracking, precisely
in Normal Day Activity/Sport Area. The most of product reported in
Table 5 are equipped with few sensors which are not sufficient to
perform excellently all the recognition functions in Table 5. For this
reason, other sensors is sold separately. For example, Suunto Ambit3
Peak®, Garmin VivoActive® and Polar V800® need a strap with Heart
rate monitor to measure the heart rate. For the Activity like Swim-
ming are needed some accessories that permit to recognize the style
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and measure the cadence of strokes. In the same way, for Cycling Po-
lar V800® needs Cadence Sensor Bluetooth Smart for pedaling cadence
measurement. All this external accessories interact with the main de-
vice with Bluetooth technology. More generally, all the device are
pedometer-equipped useful for a non-accurate 24-hours recognition
of Activity like walking and running with calories consumed reports.
In the other hand, Fitbit® aims for selling a product already equipped
with the sensors useful for recognize the activities reported in Table 5

at the expense of accuracy in some specific function like step cadence.
In fact, it can be seen that there aren’t sensors labeled as external.

Figure 10: Left: Brain one. Right: Example of Brain one on a motorcycle. Fig-
ure adapted from [7].

Nowadays, Brain One [7] is a dedicated device for Sport like Gokart-
ing and Motorcycling, but in general it is useful in the majority of
action sports. It’s compact and easy to attach for example on the mo-
torcycle and all its sensors are embedded. Obviously, the heart rate
monitor must be attached to the athlete, also the vision system (such
as an action camera) is external but both interact with Brain One with
wireless technology. Also Woo [9] and Qlipp [8] are dedicated devices
but only for Kite-surfing and Tennis, respectively. Attached to the
kite-surf board, Woo tracks every jump, including jump height and
airtime in a Kite-surf session. At the same way, Qlipp attached to the
tennis racket, detect and analyze every stroke. All the products afore-
mentioned provide software for post-training characterization useful
to improve the training quality.

Figure 11: Left: Example of Qlipp attached on a Tennis racket. Right: Exam-
ple of Woo attached on a Kite-surf board. Adapted from [8] and
[9].
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2
S A X : S Y M B O L I C A G G R E G AT E A P P R O X I M AT I O N

In this chapter we describe in detail SAX, a symbolic representation
of time series that has been introduced in 2003.
Since 2003, SAX has been used in several fields of application, such as
classification and clustering problems applied on telemedicine time
series [63] or entomological problems [64], financial data mining [65]
or anomaly detection [66] [67].
Recently, two follow-ups of SAX has been introduced, that are iSAX,
used to index massive datasets encountered in science, engineering,
and business domains [57] and HOT SAX, used to find unusual time
series subsequence [68]. These variants has been introduced princi-
pally for indexing and anomaly detection problems.
With this technique we work on time-based features that imply some
advantages compared to the other techniques that works with time
series, such as DTW. Precisely, SAX representation allows dimension-
ality and numerosity reduction [2], and it also allows distance mea-
sures to be defined on the symbolic approach. Specifically, SAX al-
lows a time series of arbitrary length n to be reduced to a string of
arbitrary length w, with w < n, typically w � n; the ratio of n to
w is known as compression rate. The string of length w is composed
by w characters from the alphabet set. The alphabet size is also an
arbitrary integer α, where α > 2. For example, if α = 2 then the al-
phabet is the set

{
a, b
}

and an example of string with length 4 can be
abaa. The discretization procedure is unique: in order to transform the
raw time series in the symbolic strings we need an intermediate rep-
resentation; first, the data is transformed into the Piecewise Aggregate
Approximation (PAA) representation and then the PAA representation
is symbolized into a discrete string; the procedure will be detailed in
the following Sections. There are two important advantages to doing
this [2]:

• Dimensionality Reduction: the dimensionality reduction power
of PAA is the well-defined and well-documented [69] [70], and
the reduction is automatically carried over to the symbolic rep-
resentation.

• Lower Bounding: Proving that a distance measure between two
symbolic strings is lower bound for the true distance between
the original time series. The key observation that allows to prove
lower bounds is to concentrate on proving that the symbolic dis-
tance measure bounded from below the PAA distance measure.

19
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In order to simplify the thesis reading, Table 6 summarizes the major
notation used in this section.

Notation Meaning

n Time-series length

C Time-series C = c1, ..., cn
w Number of PAA segments representing C

C̄ PAA of the time-series C: C̄ = c̄1, ..., c̄w
α Alphabet cardinality (size)

Ĉ Symbolic representation of C: Ĉ = ĉ1, ..., ĉw

Table 6: Meaning of the major notation used in this section.

2.1 paa dimensionality reduction

The concept behind the Piecewise Aggregate Approximation is that
a time series C of length n can be represented in a w-dimensional
space by a vector C̄ = c̄1, ..., c̄w. In order to do this, the original data
is divided into w equal sized frames and the mean value of the data,
c̄i falling within the i-th frame is calculated. A visual example of PAA
signal’s approximation is illustrated in Figure 12.

Figure 12: An example of PAA approximation of a signal. C is the original
signal while C̄ is its PAA approximation. Figure adapted from [2].

2.2 discretization

To obtain a discrete representation a further transformation must be
applied to the PAA signal. It is desirable to have a discretization tech-
nique that will produce symbols with equiprobability. This is easily
achieved if we supposed that the time series in exam have a Gaussian
distribution; in [2] is demonstrated that the aforementioned assump-
tion is reasonable. For this reason, given an alphabet cardinality α, the
breakpoints for the discretization can be simply determined by finding
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the α+ 1 points that will produce α equal-sized areas under the Gaus-
sian curve.
Formally, the breakpoints are a sorted list of numbers B = β0, ..., βα
such that the area under the Gaussian curve from βi to βi+1 is equal
to 1
α . Obviously, β0 and βα are defined as −∞ and +∞, respectively.

In brief, a time-series can be discretized in the following manner. First,
a PAA is obtained from the original time series and then all PAA co-
efficients that are below the smallest breakpoint are mapped to the
symbol a, all coefficients greater than or equal to the smallest break-
point and less than the second smallest breakpoint are mapped to the
symbol b etc. The concatenation of these subsequent symbols that rep-
resent the signal is called word. In Figure 13 an explanatory example
of the discretization step is provided.

Figure 13: In the example, with n = 128, w = 8 and a = 3, the time series
is discretized by obtaining a PAA approximation and then using
predetermined breakpoints is mapped map into SAX symbols. In
this way, the time series is mapped to the word baabccbc. Figure
adapted from [2].

The SAX representation procedure can be summarized as follows.
Starting from a subsequence C = c1, ..., cn let C̄ = c̄1, ..., c̄w and let αi
denote the ith element of the alphabet. The mapping from the PAA
approximation to the correspondent word Ĉ = ĉ1, ..., ĉw of length w
is obtained as follow:

ĉi = αj iif βj−1 6 c̄i < βj (1)

2.3 distance measure

After introducing the SAX representation, a new distance measure can
be defined on it. The most common distance measure for time series
is the Euclidean distance, but is not the only one. For the subsequent
considerations, let Q = q1, ..., qn and C be two time-series of same
length n. Let C̄ and Q̄ represent the PAA approximation of C and Q,
respectively and Ĉ and Q̂ be their SAX symbolic representation. In the
following, we detail three distances between the time series in exam.
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• Euclidean Distance:

D(Q,C) =

√√√√ n∑
i=1

(qi − ci)2 (2)

• PAA Distance:

DPAA(Q̄, C̄) =

√
n

w

√√√√ w∑
i=1

(q̄i − c̄i)2 (3)

• SAX Distance:

DSAX(Q̂, Ĉ) =

√
n

w

√√√√ w∑
i=1

dist(q̂i, ĉi)2 (4)

A visual intuition of these measures is provided in Figure 14 and 15.

Figure 14: A visual intuition of Euclidean Distance (left) and PAA Distance
(right). Figure adapted from [2].

Figure 15: A visual intuition of SAX Distance. Figure adapted from [2].

The Equation (3) represent a proved lower bounding approximation
of the Euclidean distance between the original subsequencesQ and C.
The Equation (4) resembles Equation (3) except for the fact that the
distance between the two PAA coefficients has been replaced with
the sub-function dist(· , ·) that weights the distance between couple
of symbols. The dist(· , ·) function can be implemented using a lookup
table like the one in Figure 16; it can be noticed that the distance
between two adjacent symbols is equal to 0 and the lookup table is
symmetric. Formally, the value in cell(r,c), with r row index and c

column index, for any lookup table can be calculated by the following
expression:

cell(r,c) =

{
0 if |r− c| 6 1

βmax(r,c)−1 −βmin(r,c) otherwise
(5)
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The distance between two SAX representations of a time series re-
quires looking up the distances between each pair of symbols, squar-
ing them, summing them, taking the square root and finally multiply-
ing by the square root of the compression rate. For example, using the
lookup table in Figure 16, the SAX Distance between the two string
in Figure 15 is

DSAX(Q̂, Ĉ) =

√
n

w

√
0+ 0+ 0+ 0+ 0.672 + 0+ 0+ 0.672

In conclusion it can be noticed that there is a clear tradeoff between
the parameter w controlling the number of approximating elements,
and the value α controlling the granularity of each approximating
element. The SAX technique is highly data dependent thus it’s diffi-
cult to determine a tradeoff analytically, but it must be found ad hoc
empirically.

Figure 16: An example of lookup table used for determinate the SAX Dis-
tance. In the example the alphabet cardinality is equal to 4, α = 4.
The distance between two symbols can be read off by examin-
ing the corresponding row and column. Then, for this example,
dist(a,b)=0 and dist(a,c)=0.67.





3
C L A S S I C C R O S S - C O U N T RY S K I I N G D ATA S E T

The activity recognition problem considered in this thesis is com-
posed by 8 athletes that perform 3 particular techniques of Cross-
Country Skiing. We want to create an activity recognition algorithm
that allow to discriminate between these three techniques. In this
chapter we provide a brief description of Cross-Country Skiing and
its techniques.

3.1 cross-country skiing

Skiing started as a technique for traveling cross-country over snow on
skis, starting almost five millennia ago in Scandinavia. Cross-country
skiing evolved from a utilitarian means of transportation to being a
world-wide recreational activity and sport, which branched out into
other forms of skiing starting in the mid-1800s. Early skiers used one
long pole or spear in addition to the skis.
Cross-country skiing has two basic propulsion techniques, which ap-
ply to different surfaces:

• Classic, with surface as undisturbed snow and tracked snow.

• Skate Skiing, with firm and smooth snow surfaces.

The classic technique relies on wax or texture on the ski bottom under
the foot for traction on the snow to allow the skier to slide the other
ski forward in virgin or tracked snow. With the skate skiing technique
a skier slides on alternating skis on a firm snow surface at an angle
from each other in a manner similar to ice skating. Both techniques
employ poles with baskets that allow the arms to participate in the
propulsion. Specialized equipment is adapted to each technique and
each type of terrain.

In this thesis work it has been considered only the classic technique of
Cross-Country Skiing. The classic style is often used on prepared trails
that have pairs of parallel tracks cut into the snow, but it is also the
most usual technique where no tracks have been prepared. Following
this technique, each ski is pushed forward from the other stationary
ski in a striding and gliding motion, alternating foot to foot. With
the diagonal stride variant the poles are planted alternately on the op-
posite side of the forward-striding foot; with the kick-double-pole vari-
ant the poles are planted simultaneously with every other stride. At
times, especially with gentle descents, double poling is the sole means

25
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of propulsion. On uphill terrain, techniques include the side step for
steep slopes, moving the skis perpendicular to the fall line, the her-
ringbone for moderate slopes, where the skier takes alternating steps
with the skis splayed outwards, and, for gentle slopes, the skier uses
the diagonal technique with shorter strides and greater arm force on
the poles.
In brief the variant of classic technique considered in the following
are double poling (DP), kick-double-pole (KDP) and diagonal stride (DS)
which are illustrated in Figure 17, 18 and 19, respectively.

Figure 17: From left to right, the representative steps of Double Poling tech-
nique. Figure adapted from http://skixc.com.

Figure 18: From left to right, the representative steps of Kick-Double-Pole
technique. Figure adapted from http://skixc.com.

Figure 19: From left to right, the representative steps of Diagonal Stride tech-
nique. Figure adapted from http://skixc.com.

Given that Cross-Country Skiing is a world-wide recreational activ-
ity and sport, this technique can be performed at different skill levels.
Thus for the 8 athletes considered, in Table 7, is reported the corre-
spondent skill level in addition to the athletes’ gender. Precisely there
are two skill levels: recreational (R) and achiever (A) and so the dataset
consist in four athletes A and four R. From Table 8 it can be noticed
that Athlete 3 performs only the DP variant and this aspect will be dis-
cussed more deeply at the end of this Chapter. All the other athletes
perform DP, KDP and also DS. These informations permit to develop
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some hypotheses on the final results. For example, it is reasonable to
think that an achiever athlete performs the different variants of the
technique (DP, KDP, DS) better and more consistently than a recre-
ational one.

Athlete Gender Skill Level

1 Male R

2 Female A

3 Male A

4 Female A

5 Female A

6 Male R

7 Female R

8 Male R

Table 7: Informations about athletes considered in the dataset. Notice that A
and R stand for Achiever and Recreational, respectively.

Athlete

Technique 1 2 3 4 5 6 7 8

DP Yes Yes Yes Yes Yes Yes Yes Yes

KDP Yes Yes No Yes Yes Yes Yes Yes

DS Yes Yes No Yes Yes Yes Yes Yes

Table 8: Cross-Country skiing variants with the athletes that adopt each dif-
ferent technique. Notice that DP, KDP and DS stand for Double Pol-
ing, Kick-Double-Pole and Diagonal Stride, respectively.
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3.2 classic cross-country skiing activity

Referring to the Activity Categorization introduced in Section 1.1 in
this paragraph we want to describe the Classic Cross-Country Skiing
intended as Activity that we want to recognize.
Following the guideline concepts in Table 1, in this work, the Classic
Cross-Country Skiing activity can be described as reported in Table 9.

Device Sensor Position Area

Wearable Accelerometer Hand-Wirst Sport Activity

Table 9: Categorization of Classic Cross-Country Skiing activity according
to the key-concepts introduced in Section 1.1.

Specifically the device used is a smartwatch that permit to collect
accelerometer, gyroscope and magnetometer data at sampling fre-
quency 100Hz while an Athlete is performing Classic Cross-Country
Skii. For simplicity, this thesis work we consider only the 3-axial ac-
celerometer data. As Section 1.1 suggests, other activity categoriza-
tion can be evaluated. Classic Cross-Country Skiing can be classified
as Continuos-Repetitive Activity given that this Activity turns in con-
tinuos data streams which admits periods of non-activity amidst pe-
riods of activity. Furthermore the activity is composed by repetitive
gestures: DP gestures, KDP gestures and DS gestures.

Now, a definition of Atomic Gesture must be introduced:

• Atomic Gesture: In this situation we consider Atomic Gesture,
one single gesture of type DP, KDP or DS whose phases are re-
spectively illustrated in Figure 17, 18 and 19. So the data stream,
apart from non-activity periods, is a succession of Atomic Ges-
ture.

The first aspect analyzed with the Atomic Gesture is the Period.

• Period: We consider period of the Atomic Gesture, the durate of
a single gesture of type DP, KDP or DS; usually it is measured
in seconds.

Analyzing the athletes period we can get some conclusions on each
athlete and we can notice some difference between DP, KDP and DS.
In Figure 20 we can easily see the mean period of each Athlete for
the three different gestures. In this way, we can identify which athlete
perform the specific technique faster or slower than the others. For
example, Athlete 6 is the fastest DP performer while Athlete 7 is the
slowest. A general conclusion can be that Athlete 6 is the fastest in per-
forming all the techniques and the average value calculated in each
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Atomic Gesture Class Reference Period Samples Number (n)

DP 1.50 s 150

KDP 1.60 s 160

DS 1.42 s 142

Table 10: Reference period for DP, KDP and DS Atomic Gesture Class mea-
sured in seconds and Samples Number, n, that represent the
Atomic Gesture length.

class represent the class reference period obtained from the average be-
tween the mean period of all the athletes. In table 10 is reported the
reference period for DP, KDP and DS techniques.
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Figure 20: Mean period for all the athletes divided for class. The last bar of
each class is the reference period for the particular Gesture. Notice
that Athlete 3 haven’t data for class KDP and DS.
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Figure 21: Mean period of each type of gesture divided for athletes. Notice
that we don’t have KDP and DS data for Athlete 3.

The consideration that KDP atomic gesture is slower than the DP and
DS is better observable in Figure 21 where is reported the mean pe-
riod of each type of gesture divided for athletes. It is clear that despite
the velocity between the athletes is different, each athlete takes longer
to perform a KDP gesture rather than his DP gesture. On the other
hand, each athlete takes less time to perform a DS gesture rather than
his DP or KDP gesture. However this first analysis don’t permit to un-
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derstand which athlete performs the techniques with a better quality
of movement.

In the previous analysis it can be noticed that Athlete 3 hasn’t data
associated to KDP and DS techniques. This is a problem for the fol-
lowing consideration. For this person a comparison between gestures
can’t be provided and thus, also the DP class data, must be consid-
erated inconsistent. For this reason Athlete 3 data are not included in
future discussion. With this dataset restriction the Athletes included
in the dataset remain 7, all with consistent data for the three class of
Gesture: DP, KDP and DS.



4
S A X T E C H N I Q U E A P P L I C AT I O N

4.1 introduction

In the previous chapter we have discuss the dataset. The goal of this
thesis is to apply the SAX technique, widely described in Chapter 2,
on the Classic Cross-Country Skiing dataset and to be able to classify
the technique performed by the Athletes. In order to use SAX Dis-
tance for classification only one acceleration data has to be used. SAX
Distance must be calculated on two strings for which the comparison
makes sense. For example, it would not be reasonable to compare a
string obtained from x-acceleration data with a string obtained from
y or z-acceleration data. Specifically, we consider only the x-axis accel-
eration data because is the most informative signal in the dataset in
exam. In fact, the axes y and z data stream represent a signal with an
high noise level. For this reason we chose to not considerate y and
z acceleration. In Figure 22 an example of DP atomic gesture where
it is apparent the higher informative content in the x-axis than the
other accelerometer signal. In Figure 23 we show a diagram of the
proposed algorithm.
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Figure 22: Example of typical DP Atomic Gesture. The highest part of the
informative content of the Gesture seems to be contained in the
x-axis.
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Original Signal

Gaussian
Filter

Atomic Gesture

Setting w

PAA Signal

Setting α

SAX String

Central
Characters
Extraction

SAX Subtring

Calculating
SAX

Distance
Templates

Classification Result

Figure 23: Algorithm diagram. Three color indicate the different phase of
the algorithm: in red, Gesture Identification (Section 4.2), in blue,
SAX (Section 4.3, 4.4 and 4.5) and, in green, Classification (Chapter
5).
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4.2 gesture identification

Starting from the x-acceleration data stream we extract the Atomic
Gestures of each Athlete using a Gaussian Filter created ad hoc [71].
In Figure 24 is illustrated how the Gaussian Filter allows to isolate
each single gesture amidst the data stream.
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Figure 24: The original signal represent the data stream. Filtering the signal
with a Gaussian Filter we can individuate the Atomic Gestures. In
Figure a dotted line separates two consecutive Atomic Gestures.

In brief, we want to apply the SAX technique on all this Atomic Ges-
tures and then find the most representative Atomic Gesture for each
class (DP, KDP and DS). These most representative Atomic Gesture
are called templates and they will be useful to solve the classification
problem with SAX Distance. SAX needs a setting phase in which find
optimal values for the parameters w (word lenght) and α (alphabet size).
For this reason Section 4.3 and Section 4.4 details the steps taken to
search, respectively, w and α optimal values. While in Chapter 5 are
reported some considerations on the templates choice with the corre-
spondent classification results.

4.3 setting the word length

The Word Length w is closely connected to the signal PAA. For this
reason, we search w in such a way that a trade-off between the two
following objectives is achieved:

1. The PAA approximated signal well represents the original sig-
nal trend.

2. The PAA approximated signal reduces the noise effect on the
signal.

It is clear that increasing w the PAA approximated signal represent
more precisely the original signal movement. But we want to main-
tainwmuch lower than the Atomic Gesture signal length (n). In Table
11 are summarized some examples obtained varying the value of w;
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the signal in the example, depicted in Figure 25, 26 and 27, represent
a DP Atomic Gesture so the reference period is 1.5 s corresponding to
150 samples (n=150).

Atomic Gesture Word Length Compression Rate Figure Ref.

10 ∼ 15 Figure 25

DP 20 ∼ 8 Figure 26

30 ∼ 5 Figure 27

Table 11: DP Atomic Gesture with reference period 1.5 s (n = 150). Different
compression rate are considered. In Figure Ref. is visible the PAA
signal for different w values.

The signal shows high noise at the beginning and at the end of the
Atomic Gesture. Figure 25, 26 and 27 prove that higher compression
rate values imply more noise filtered. On the other hand, the PAA
signal results less adherent to the than the original signal. These con-
clusions can be easily appreciated in Figure 25. In this application
we retain more important that the PAA signal evolution follow at the
best the original signal evolution thus we chose a length word w = 30.
A value of w high enough to follow the original signal, but with a rea-
sonable dimensionality reduction effect.

In this paragraph we have considered the reference period 1.5 s to
simplify the argument. Actually, as in Section 3.2, the period is dif-
ferent between different Atomic Gestures also if they are in the same
Gesture class and executed by the same Athlete. For example, it’s not
strange find DP Atomic gesture with period 1.3 s even though the
reference period for DP Atomic Gesture is 1.5 s.

4.3.1 SAX on variable period

Working on Atomic Gestures it is necessary to consider the period in-
formation. For this reason, even if the word length is fixed, the number
of samples considered in each PAA frame vary with the signal period.
For example, with w = 30, if the Atomic Gesture signal length is 150

(period=1.5 s) then the number of samples in each PAA frame is about
5 else if the Atomic Gesture signal length is 120, in each PAA frame
there are 4 samples. This is not a problem in the proposed framework
because we may think if an Athlete performs a Gesture faster then
the signal maintains the same shape but proportionally scaling it.

So the length of each PAA frame is proportional to the Atomic
Gesture period, but usually differs from one gesture to another. For
this reason we calculate the number of samples in each PAA frame
as n

w rounded down to the nearest integer. In most cases n is not
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Figure 25: A DP Atomic Gesture. Word length:w=10, Atomic gesture period:
1.6 s (n = 160).
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Figure 26: A DP Atomic Gesture. Word length:w=20, Atomic gesture period:
1.6 s (n = 160).
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Figure 27: A DP Atomic Gesture. Word length:w=30, Atomic gesture period:
1.6 s (n = 160). Notice that n is not divisible for w then the last
PAA frame is longer than the other.
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divisible by w and then the rest of this fraction indicate the number
of samples not considered in the PAA approximation. With w = 30

the rest could be an integer in the interval between 0 and 29. At this
point, two options have been evaluated :

1. Not to consider the excess samples.

2. To include the samples in excess in the last PAA frames calcula-
tion.

With the first solution we have an uncontrollable information loss; in
fact we eliminate a signal’s portion of length variable from an Atomic
Gesture to another. Also the second option has some problems; in this
case the last PAA frame includes a variable number of samples, for
this reason is different from the other PAA frame in the same Atomic
Gesture. By increasing the word length the aforementioned problems
are accentuated.
To avoid information loss and last PAA frames too different from the
others, we use the period information as follow.

1. We calculate the PAA frame length (`) as n
w rounded down to

the nearest integer.

2. We calculate the rest of nw , r, that is an integer between 0 and
w− 1.

3. We calculate how many other PAA frames could be created with
the r excess samples as r` rounded down to the nearest integer.

4. We calculate the rest of r` , that is an integer between 0 and `− 1.

The last rest represents the real number of samples neglected that, at
worst, is still significantly less than w− 1. In fact, with this method
it’s obvious that increasing w then the final number of excess samples
tends to 0. In this way we get that all of the Atomic Gesture signals
could be approximated with a PAA signal formed by w+ br`c frames
of equal size. In this way, however, the number of frames vary from
an Atomic Gesture to another and depends from the period thus lead-
ing to having some Atomic Gestures with word length greater thanw.
This kind of problem will be discuss in Section 4.5 where PAA signal
translation into SAX string will be detailed.

4.4 setting the alphabet size

The first step to choose the alphabet size (α) is fitting the PAA signals
obtained as depicted in Section 4.3.1 with a Gaussian distribution.
This distribution is strictly connected to the word length and to which
Atomic Gestures are considered in the training phase. For example,
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in Figure 28 we consider separately the DP, KDP and DS Atomic Ges-
tures generating three different Gaussian distribution, one for each
Gestures Class. The goal is to have a discretization technique that
will produce symbols with equiprobability. The Gaussian distribu-
tions just described, however, could well represent only one Gestures
Class.
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Figure 28: The three different Gaussian distribution, one for each Gesture
Class. The word length is w = 30 in any case.
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Figure 29: Gaussian distribution of 150 Atomic Gestures (50 for each class).
The word length is w = 30.

It’s reasonable to think the three class having equal probability. For
this reason, in the following, we consider the Gaussian Distribution
generated fitting data from the same number of DP, KDP and DS
Atomic Gestures converted PAA approximated. An example of this
Gaussian Distribution obtain from 150 Atomic Gestures (50 for each
class) is illustrated in Figure 29 and it is characterized by standard de-
viation σ = 8.616 and mean µ = 0.067. Once the reference Gaussian is
fixed the breakpoints B = β1, ..., βα−1 can be calculated such that the
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area under the Gaussian curve from βi to βi+1 is equal to 1
α . In Table

12 B is reported varying the alphabet size obtained from the Gaussian
in Figure 29.

Alphabet size Breakpoints

6 [-8.26 -3.64 0.067 3.77 8.40]

7 [-9.13 -4.80 -1.48 1.61 4.94 9.26]

8 [-9.84 -5.74 -2.67 0.067 2.81 5.87 9.97]

9 [-10.45 -6.52 -3.64 -1.13 1.27 3.77 6.65 10.58]

10 [-10.97 -7.18 -4.45 -2.11 0.067 2.25 4.58 7.31 11.10]

Table 12: Breakpoints (B) values varying the alphabet size α). This values
are obtained from the Gaussian Distribution in Figure 29 with σ =

8.616 and µ = 0.067.

4.5 discretization phase

After establishing the word length and the alphabet size as suggested
in the previous Sections, we have to obtain the SAX string from the
PAA signal; in order to achieve that, all the PAA coefficients that are
below the smallest breakpoint are mapped to the symbol a, all co-
efficients greater than or equal to the smallest breakpoint and less
than the second smallest breakpoint are mapped to the symbol b, etc.
However, as mentioned in Section 4.3.1, the PAA signals have a vari-
able number of coefficients that changes from one Atomic Gesture
to another, but is lower bounded by w. For this reason after the dis-
cretization phase we obtain one SAX string for each Atomic Gesture,
but the length of this word is greater or equal than the word length
desired. In Figure 30 an example of two DP Atomic Gestures with
different period are reported; it can be noticed that, although w is the
same, the number of PAA frames (coefficients) differs between them,
leading to have SAX strings with different lengths. To calculate SAX
distance between two strings we need words of the same length; for
this reason, we need to extract a particular substring from the SAX
string just obtained.

In Section 4.3 we explained that the original signals show a lot of
noise at the beginning and the end of the signal itself. A PAA signal
obtained with an high value of w is preferable but it suffers more this
noise problem because it follow better the original signal trend. For
this reason the first and the last PAA frames and the correspondent
character in the SAX word carry less information than the others. To
find the most important substring we proceed in the following way:
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1. We first consider an Atomic Gesture with period n that is divis-
ible by w and so we obtain the correspondent word with length
w. In this situation we can evaluate how many characters to
consider important and we extract them from the SAX string.
Given the previous consideration, the most important charac-
ters are the central ones. These w1 extracted characters form the
substring that represent the Atomic Gesture.

2. At point 1 we found a substring of length w1. Even if for some
Atomic Gesture n is not divisible by w, and so the word is
longer than w, we can simply extract the w1 central character.
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Figure 30: In both examples w = 30. Top panel, a DP Atomic Gesture with
n = 148 that is approximated with 37 PAA frames. Bottom panel,
a DP Atomic Gesture with n = 170 that is approximated with 34

PAA frames.

In Figure 31 we provide a visual intuition of the aforementioned pro-
cedure with an example of DP Atomic Gesture in which n is not
divisible for w. With this procedure we obtain a SAX string that rep-
resent better the original signal because w is high and we eliminated
the characters correspondent to the portion of original signal more
affected by noise and, therefore, less informative. At this point, the
SAX distance can be calculated between two substring that have the
same length w1. Being w1 < w it is required less memory occupation
if we need to memorize the SAX string.
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Figure 31: In the example w = 30, w1 = 28, α = 7. A DP Atomic Gesture
with n = 148 that is approximated with 37 PAA frames. The word
bacbbabcdegggggfdccdeffgggfedcbbaaaaa is the SAX string that repre-
sent the signal in Figure; from this are extracted the w1 central
characters. These are the characters that correspond to the lighten
portion of the signal.
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AT O M I C G E S T U R E S C L A S S I F I C AT I O N

5.1 introduction

As previously stated, we consider 7 Athletes that perform 3 different
Cross-Country Skiing techniques. Each technique represent a class of
Gestures:

• DP

• KDP

• DS

For all the Atomic Gesture extracted using the Gaussian Filter, we
want to be able to recognize the Atomic Gesture and so classify it in
the correct class of Gesture. In order to do this, each Atomic Gesture
must be converted into SAX Substring as explained in the previous
Sections. Then we have to calculate the SAX Distance between the
Atomic Gesture that we want to classify and some reference strings
(templates). Initially, each template matches one class of Gesture, so
we have a template that represents DP Atomic Gesture, one KDP
Atomic Gesture and another DS Atomic Gesture. Finally, we classify
the Atomic Gesture in the nearest class of Gestures, where the metric
distance is provided by SAX.
We test this procedure on the dataset where the Atomic gestures are
already labeled as DP, KDP or DS. In this way we exactly know in
which class each Atomic Gesture is included and we can calculate
the classification accuracy.

• Percentage of Classification accuracy: The classification accu-
racy represent the number of gestures that results correctly clas-
sified in the class indicated on their label. The percentage will be
calculated as ratio between number of gestures correctly classi-
fied and total number of gestures in exam.

In the following Sections we reported some classification results ob-
tained with w = 30, w1 = 25; these values allow to follow the original
signal evolution, but with a reasonable dimensionality reduction ef-
fect and noise attenuation that is showed at beginning and at the end
of the Atomic Gesture. Initially, α = 7, in this way we can immedi-
ately give some impression on the particular templates choice and
the logic behind the classification. However, in Section 5.3.2, we will
change this value for further evaluations.

41
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5.2 dp and kdp as separated class

The first step for the classification is to find the three templates, one
for each class of Gestures. Initially we are interested to classify the
Atomic Gestures for one Athlete at a time. In fact, the Athletes dif-
fers for gender and skills level and thus it’s thinkable that even if we
consider the same class, but different Athletes, probably the gestures
are still different. Moreover, in this way, it’s possible to verify how
precise and similar are, between them, the gestures of a single class
performed by a single Athlete.
In Figure 32 we reported the classification accuracy for the seven ath-
letes obtained with w = 30, w1 = 25 and α = 7; it can be noticed
that only Athlete 4 reaches an elevated percentage of classification ac-
curacy in all his techniques performed. Many Athletes show an higher
percentage for DS Gestures rather than their DP and KDP Gestures.
This consideration means that many DP or KDP Atomic Gestures
are misclassify as KDP or DP gestures, respectively and thus DP and
KDP are hardly distinguishable. Furthermore, in general, we can’t be
satisfied by these results. For these reasons in Section 5.3 we try other
ways which could improve the results.
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Figure 32: In this experiment: w = 30, w1 = 25 and α = 7. Percentage
of Classification accuracy for the seven Athletes. Each class of
every Athlete is represent by one template. To classify them, each
athlete’s gesture is confronted only with his three templates.

5.3 dp and kdp as single class

With the experiments in Section 5.2 we noticed that a lot of DP Atomic
Gestures are misclassified as KDP and vice versa. Given the device po-
sition, this misclassification seems reasonable and it may be due to a
sensor-placement limitation. In fact, a sensor placed on the ankle may
ensure a more realistic data collection that could represent better the
"kick action", distinguishing better DP from KDP and guaranteeing
also a batter classification. For this reason in the following we try to
consider DP and KDP as a single class. In Section 5.3.1 we reported
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the results obtained with a single template that represent the single
class DP/KDP while in Section 5.3.2 we reported the results obtained
with two template that represent the single class DP/KDP.

5.3.1 One template for DP/KDP

As in Section 5.2 we want to find a number of templates equal to the
number of class considered. Given that we want to consider DP and
KDP as single class, it is necessary to find two templates, one that
represent DP/KDP class and another that represent the DS class. In
this way we classify an Atomic Gesture as DP if the SAX Distance
between it and the DP/KDP template is lower than the SAX Distance
from the DS template and vice versa.
In Figure 33 we report the percentage of Classification accuracy for
the seven Athletes. It can be noticed that the percentages results not
good for the majority of Athletes. With other values of α the situation
doesn’t improve, but we can observe that Athlete 7 is the best Athlete
in terms of Gestures similarity inside each his class.
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Figure 33: In this experiment: w = 30, w1 = 25 and α = 7. Percentage of
Classification accuracy for the seven Athletes. Each class of ev-
ery Athlete is represent by one template. To classify them, each
athlete’s gesture is confronted only with his two templates. No-
tice that DP classification accuracy represent the percentage of
DP Atomic Gesture exactly classify into DP/KDP class, not in
DP class. At the same way for KDP Atomic gesture.

5.3.2 Two templates for DP/KDP

In this section, we want to find three templates, one for DP, one for
KDP and another for DS; only at a later time we consider DP and
KDP as single gesture class. Specifically when we have to classify an
Atomic Gesture, we evaluate which is the nearest class using the three
templates. But whether the nearest class is DP or KDP, the Atomic
Gesture in exam will be classified in the DP/KDP class. In this way
we admit that we are unable to distinguish DP from KDP Atomic
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Gesture but we reduce the misclassification percentage between DP
or KDP and DS gestures. Also in these experiments we individually
evaluate the Athletes so we find three templates for each Athlete.
Now, we discuss about this situation varying α, with w = 30 and
w1 = 25; three examples are summarized in Table 13 and are illus-
trated in Figure 34, 35 and 36.

α w w1 Figure ref.

4 30 25 Figure 34

7 30 25 Figure 35

10 30 25 Figure 36

Table 13: Examples of testing the classification with SAX technique varying
α. At Figure ref. the classification accuracy correspondent results.

In Figure 34 it can be noticed that the percentages of classification
accuracy are not good for the majority of Athletes. It depends from
α that is too small. This consideration confirm that the alphabet size
that allows to obtain the higher percentage of classification accuracy
must be greater or equal than 7.
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Figure 34: In this experiment: w = 30, w1 = 25 and α = 4. Percentage of
Classification accuracy for the seven Athletes. Each class of ev-
ery Athlete is represent by one template. To classify them, each
athlete’s gesture is confronted only with his three templates. No-
tice that DP classification accuracy represent the percentage of
DP Atomic Gesture exactly classify into DP/KDP class, not in
DP class. At the same way for KDP Atomic gesture.

In Figure 35 and 36, it can be noticed that Athlete 4 and Athlete 7 reach
the best classification accuracy. For this reason we think that them exe-
cute the gestures always in the same manner. The skill level is different
between the two athletes because Athlete 4 is an Achiever but Athlete 7
is a Recreational one. We think that the skill level influences more the
movement quality rather than the similarity between Atomic Gesture
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Figure 35: In this experiment: w = 30, w1 = 25 and α = 7. Percentage of
Classification accuracy for the seven Athletes. Each class of ev-
ery Athlete is represent by one template. To classify them, each
athlete’s gesture is confronted only with his three templates. No-
tice that DP classification accuracy represent the percentage of
DP Atomic Gesture exactly classify into DP/KDP class, not in
DP class. At the same way for KDP Atomic gesture.

included in a specific class performed by an athlete. This considera-
tion explains why the other Achiever Athletes don’t reach elevated
accuracy percentage instead of what we could expect. It’s also pos-
sible that a Recreational Athlete execute the Gesture always at the
same manner because he doesn’t personalize the technique instead
an Achiever can afford to be less rigorous on the technique.
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Figure 36: In this experiment: w = 30, w1 = 25 and α = 10. Percentage of
Classification accuracy for the seven Athletes. Each class of ev-
ery Athlete is represent by one template. To classify them, each
athlete’s gesture is confronted only with his three templates. No-
tice that DP classification accuracy represent the percentage of
DP Atomic Gesture exactly classify into DP/KDP class, not in
DP class. At the same way for KDP Atomic gesture.

Finally, comparing Figure 35 with Figure 33 the hypothesis that with
one template to represent the class DP/KDP a lot of DP Atomic Ges-
tures are misclassified as KDP and vice versa seems correct. In fact,
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in both methods the DS accuracy remains the same while the DP and
KDP accuracy intensely improve. In Table 14 we reported the Sax Dis-
tance calculated between the three templates of each Athlete in the
case of α = 7. From this distance values we can’t deduce interesting
conclusions, but it can be noticed that, for each Athlete, the distance
between DP and KDP templates is the smallest. This fact confirms
that with an accelerometer placed only on the wrist, DP and KDP
gestures seems indistinguishable.

Athlete Skill Level DP vs KDP DP vs DS KDP vs DS

1 R 34.12 27.04 28.62

2 A 16.03 24.75 17.36

4 A 28.80 56.75 35.76

5 A 11.68 30.82 24.70

6 R 27.52 41.98 44.11

7 R 7.78 34.18 34.71

8 R 6.95 29.13 25.43

Table 14: SAX Distance between templates in the case w = 30, w1 = 25 and
α = 7. In the Table DP vs KDP stands for "SAX Distance between
DP and KDP templates". In the same way, the others.

In Appendix A we provide the results of three experiments done with
3 templates in common between subset of Athletes in exam. In the
first experiment we consider only Achiever Athletes, in the second
only the Recreational ones, and in the last we consider all the Ath-
letes. In Table 15 we summarized the results obtained in the different
experiments, introducing a classification rate calculated as average
between the classification accuracy of all the Athletes.

Experiment ref. Classification Rate (%)

Figure 32 67.93

Figure 33 83.36

Figure 34 77.85

Figure 35 86.02

Figure 36 87.47

Table 15: Classification rate for the different Experiments.
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5.4 from gestures to activity recognition

In the previous sections we have detailed the performances achieved
in classifying each atomic gesture. However, it has to be reminded
that we are dealing with an activity recognition problem and not with
a gesture recognition one; even tough in some activity types the users
may be interested in having a detailed description/classification of
each gesture, in cross-country skiing performing a classification on a
gesture level seems to be an excessive and superfluous target. As a
consequence, in the following we will show how the proposed classi-
fication procedure performs in an activity recognition prospective.
In the following, we consider only 2 Athletes:

• An Achiever: Athlete 4

• A Recreational: Athlete 7

We simulated a training session in which, each Athlete, has to per-
form the three techniques DP, KDP and DS, for the same time. We
want to use additional information provided from a group of subse-
quent Atomic gestures for the following reason: considering continuos-
repetitive activities, it’s reasonable to think that if an Athlete performs
a particular techniques, he will perform it continuously for a consid-
erable number of subsequent Atomic Gestures.

In order to consider a group of subsequent gesture, we use a sliding
window approach that allows to evaluate the sequence the Atomic Ges-
tures related to the training session simulation and already classified
as in Section 4. In this way, we consider a sliding window of fixed size
`sw that includes `sw subsequent Atomic Gestures at a time. Calcu-
lating the mode between the class of these `sw Atomic gestures, we
find the the activity that represent the window in exam.; we memorize
that the athlete has performed this activity for the period of the cen-
tral Atomic Gesture of the window. After, we shift the sliding window
of one position, considering other `sw Atomic gestures and so on. In
Figure 37 we illustrated an example of three sliding window shifting,
considering `sw = 3.

Figure 37: Examples of sliding window in three subsequent shifting on the
Atomic Gestures sequence; `sw = 3. Notice that the arrowed lines
point to the central Atomic Gesture of each window.

We tested this approach with different sliding window size: `sw = 3,
`sw = 7 and `sw = 11. Values of `sw greater than 11 seem too ele-
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vated because we consider reasonable that after 11 gestures of one
technique, an athlete change activity. In Table 16, for each Athlete, we
summarized three experiments executed considering the Atomic Ges-
ture classification with the three class DP, KDP and DS, as in Section
5.2. In this way we show how time of Activity is recognized compared
to the total time of Activity. It can be noticed that the Activity recogni-
tion works better increasing `sw. For Athlete 4 the activity recognition
works better than Athlete 7; it means that in order to obtain great
results of activity recognition, we need a classification accuracy of
Atomic Gestures > 50% in each class.
Instead, in Table 17, for each Athlete we summarized three experi-
ments executed considering the Atomic Gesture classification with
the two class DP/KDP and DS, as in Section 5.3.2; it can be noticed
that the total activity time is recognized for `sw > 7 for both the Ath-
lete; in this case in fact, the classification accuracy of Atomic Gestures
> 50% in each class.

Athlete `sw Recognized Activity time/ Total Activity time

3 10’ 41” /11’ 41”

4 7 11’ 15” /11’ 41”

11 11’ 19” /11’ 41”

3 6’ 42"/11’ 36"

7 7 6’ 59"/11’ 36"

11 7’ 06"/11’ 36"

Table 16: Recognized Activity time on Total Activity time varying `sw for
DP, KDP as separated class.

Athlete `sw Recognized Activity time/ Total Activity time

3 11’ 33” /11’ 41”

4 7 11’ 41” /11’ 41”

11 11’ 41” /11’ 41”

3 11’ 29” /11’ 36"

7 7 11’ 36” /11’ 36"

11 11’ 36” /11’ 36"

Table 17: Recognized Activity time on Total Activity time varying `sw for
DP and KDP as single class.
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N O R M A L D AY A C T I V I T Y C L A S S I F I C AT I O N

In this Chapter we want to test the algorithm detailed in the previous
Chapters, with Normal Day Activity. We consider a well-known and
well-documented dataset, a reduced version of the UCI Human Activ-
ity Recognition Using smartphones Dataset [72]. The dataset includes
data from experiments that were carried out with a group of 30 vol-
unteers within an age bracket of 19-48 years. They performed a proto-
col of activities composed of six basic activities: three static postures
(standing, sitting, lying) and three dynamic activities (walking, walk-
ing downstairs and walking upstairs). The experiment also included
postural transitions that occurred between the static postures. These
are: stand-to-sit, sit-to-stand, sit-to-lie, lie-to-sit, stand-to-lie, and lie-
to-stand. All the participants were wearing a smartphone, Samsung
Galaxy S II, on the waist during the experiment execution. In the
experiments 3-axial linear acceleration and 3-axial angular velocity
have been captured at a constant rate of 50Hz using the embedded
accelerometer and gyroscope of the device.

6.1 walking and walking up/down-stairs

We are interested only to Continuos-Repetitive Activity so we consider
only the data that correspond to walking (WLK), walking upstairs (WUS)
and walking downstairs (WDS) disregarding also the postural transi-
tions. Furthermore, each activity is composed by repetitive gestures:
WLK Atomic Gestures, WUS Atomic Gestures and WDS Atomic Ges-
tures. For simplicity, we consider only 3 persons randomly extracted
from the 30 volunteers. We want to test the activity recognition algo-
rithm in order to discriminate between WLK, WUS and WDS using
only the only the 3-axial accelerometer data. However, for the reasons
reported in Section 4.1 we have to choose only one acceleration axis.
In Figure 38 an example of WDS gesture; it can be noticed that all
the axes seems to contain informative content of the Gesture. How-
ever, we think that, given the sensor position, y or z axis can better
discriminate between the Activities thus we test the algorithm firstly
with z-axis acceleration data and then with y-axis acceleration data.

49
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Figure 38: Example of typical WDS Atomic Gesture. The informative con-
tent of the Gesture seems to be subdivided between the three
axes.

6.2 gesture identification

Starting from the x-acceleration data stream we can obtain informa-
tion about the Atomic Gesture periods using a Gaussian Filter created
ad hoc. The x-acceleration data stream show a periodicity more re-
marked than the other axes. For this reason the filter works better on
x-axis and it is easier to find the beginning and the end of the Atomic
Gestures. In Figure 39 is illustrated how the Gaussian Filter allows
to isolate each single gesture amidst the data stream. Each beginning
and end allow to extract one Atomic Gesture signal from z-axis ac-
celeration data stream (in the same way if we consider y-acceleration
data stream).
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Figure 39: Filtering the x-axis signal with a Gaussian Filter we can individ-
uate the Atomic Gestures to extract from the z-axis signal. In Fig-
ure a dotted line separates two consecutive Atomic Gestures.
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6.3 atomic gesture classification

In this Section we test the recognition algorithm, resetting ad hoc the
parametersw,w1 and α. Following the considerations reported in the
previous Chapters, in this situation we consider w as high as possible.
The sampling rate is 50Hz and the minimum period for an Atomic
Gesture is almost 1 s, for this reason it doesn’t seems reasonable to
choose a value of w > 20. Furthermore, the signal doesn’t seems
affected by noise and so we can setw1 = 18. The results showed in the
following are obtained with α = 7. For each person we selected three
template that represent the 3 class of gestures: WLK, WUS, WDS and
we evaluate the classification accuracy. In Section 6.3.1 we consider
Atomic Gestures extracted from z-axis data stream while in Section
6.3.2 we consider Atomic Gestures extracted from y-axis data stream.

6.3.1 z-Axis Atomic Gestures

In this Section we consider the Atomic Gestures extracted from the
z-axis data stream, we test the recognition algorithm evaluating the
classification accuracy for the three persons in exam. In Figure 42 it
can be noticed that only Person 3 reaches an elevated percentage of
classification accuracy, over 70%, in all his activities. The other Persons
show an higher percentage for WLK Gestures rather than their WUS
and WDS Gestures. This consideration can mean that many WUS or
WDS Atomic Gestures are misclassify as WDS or WUS gestures, re-
spectively. This fact is confirmed by the confusion matrix reported in
Figure 40. Trying to solve the misclassification problem we consider
WUS and WDS as single class of Gestures (WUS/DS), but using al-
ways the same three templates. In Figure 43 can be appreciated the
results; it can be noticed that the percentage of classification accuracy
is increased reaching a good level of activity recognition. However, in
this way we can distinguish only between walking and walking up or
down-stairs.

6.3.2 y-Axis Atomic Gestures

In this Section we consider the Atomic Gestures extracted from the
y-axis data stream, we test the recognition algorithm evaluating the
classification accuracy for the three persons in exam. In Figure 44 it
can be noticed that an elevated percentage of WDS gestures of each
Person are misclassified. As in Section 6.3.1, the confusion matrix in
Figure 41 confirms that many WUS Atomic Gestures are misclassify
WDS gestures and vice versa. In Figure 45 can be appreciated the
results obtained considering WUS and WDS as single class. However,
also in this case, we can’t distinguish between walking up-stairs and
walking down-stairs.
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Figure 40: z-Axis Atomic Gestures. From left to right, the confusion matrix
of person 1, 2 and 3, respectively.
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Figure 41: y-Axis Atomic Gestures. From left to right, the confusion matrix
of person 1, 2 and 3, respectively.
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Figure 42: z-Axis Atomic Gestures. In this experiment: w = 20, w1 = 18

and α = 7. Percentage of Classification accuracy for the three
Persons. Each class of every Persons is represent by one template.
To classify them, each person’s gesture is confronted only with
his three templates.
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Figure 43: z-Axis Atomic Gestures. In this experiment: w = 20, w1 = 18 and
α = 7. Percentage of Classification accuracy for the three Persons.
Each class of every Persons is represent by one template. To clas-
sify them, each person’s gesture is confronted only with his three
templates. Notice that WUS classification accuracy represent the
percentage of WUS Atomic Gesture exactly classify into WUS/DS
class, not in WUS class. At the same way for WDS Atomic ges-
ture.
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Figure 44: y-Axis Atomic Gestures. In this experiment: w = 20, w1 = 18

and α = 7. Percentage of Classification accuracy for the three
Persons. Each class of every Persons is represent by one template.
To classify them, each person’s gesture is confronted only with
his three templates.
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Figure 45: y-Axis Atomic Gestures. In this experiment: w = 20, w1 = 18 and
α = 7. Percentage of Classification accuracy for the three Persons.
Each class of every Persons is represent by one template. To clas-
sify them, each person’s gesture is confronted only with his three
templates. Notice that WUS classification accuracy represent the
percentage of WUS Atomic Gesture exactly classify into WUS/DS
class, not in WUS class. At the same way for WDS Atomic ges-
ture.
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6.4 general considerations

It is impossible to choose only one axis-data stream, but for apply the
recognition algorithm and, more in general, the SAX technique, we
had to make a choice. In Sections 6.3.1 and 6.3.2 we notice that we are
not able to well distinguish between WUS and WDS. Person 3 who
shows the best classification accuracy of Atomic Gestures obtained
from z-axis, is that one who obtain the worst accuracy considering y-
axis data. From these results we think that a classification based only
on one axis data stream is too limited.

6.5 from gestures to activity recognition

As in Section 5.4 we used the Gesture classification to solve the activ-
ity recognition problem in exam. In the following, we consider only
the gesture classification based on z-axis acceleration data.
We simulated a session in which, each Person, has to walk, walk up-
stairs and walk down-stairs, for the same time. We tested this ap-
proach with different sliding window size: `sw = 3, `sw = 5 and
`sw = 7. In Table 18, for each Athlete, we summarized three exper-
iments executed considering the Atomic Gesture classification with
the three class WLK, WUS and WDS, as in Section 6.3.1. In this way
we show how time of Activity is recognized compared to the total
time of Activity. Instead, in Table 19, for each Athlete, we summarized
three experiments executed considering the Atomic Gesture classifi-
cation with WUS and WDS as single class.

Person `sw Recognized Activity time/ Total Activity time

3 3’ 30” /4’ 48”

1 5 3’ 42” /4’ 48”

7 3’ 49” /4’ 48”

3 3’ 05" /3’ 42"

2 5 3’ 06" /3’ 42"

7 3’ 09" /3’ 42"

3 3’ 18" /3’ 40"

3 5 3’ 28" /3’ 40"

7 3’ 29" /3’ 40"

Table 18: Recognized Activity time on Total Activity time varying `sw for
WUS, WDS as separated class.
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Person `sw Recognized Activity time/ Total Activity time

3 4’ 07” /4’ 48”

1 5 4’ 15” /4’ 48”

7 4’ 26” /4’ 48”

3 3’ 14" /3’ 42"

2 5 3’ 14" /3’ 42"

7 3’ 15" /3’ 42"

3 3’ 22" /3’ 40"

3 5 3’ 29" /3’ 40"

7 3’ 29" /3’ 40"

Table 19: Recognized Activity time on Total Activity time varying `sw for
WUS and WDS as single class.



C O N C L U S I O N

In this thesis we focused on activity recognition, a vast topic that
is widely discuss in the engineering area of interest. First, we docu-
mented about the main techniques employed in recognition problems
and we retained DTW, HMM, SVM, DT/RF, BN and k-NN the most
diffused. We also provided a general Activity description which in-
troduce some key-concepts that characterize an Activity, such as de-
vice and sensors used to capture the data and theirs positions. View-
ing the related works we understood that the sensors positions are
strictly related to the specific Activities in exam; in some one cases
sensor in one place is not adequate, but we need a sensors network
to guarantee consistent data streams. We provided a new categoriza-
tion of Activity defining three Activity Type: Continuos-Repetitive,
Continuos-Spot and Isolated.
Later, we considered an activity recognition problem that concern the
Cross-Country Skiing. The dataset in exam is a new collection of data
obtained from the smartwatch on the wrist of 8 athletes that perform
3 different techniques of Classic Cross-Country Skiing: DP, KDP and
DS that we considered as Continuos-Repetitive Activities. All the iner-
tial sensors were embedded in the smartwatch and we didn’t receive
data from other devices. In our activity recognition algorithm we con-
sidered only data derived from the 3-axial accelerometer. After giv-
ing a definition of Atomic Gesture and Period, we analyzed the Atomic
Gesture periods for each different techniques in exam, obtaining one
reference period for DP, one for KDP and another for DS. From this
first analysis we found out that KDP Atomic Gesture is slower than
the others while DS Atomic Gesture is the fastest. Furthermore, we
decided to overlook Athlete 3 due to lack of data.
Our activity recognition algorithm is composed by 3 phases: Gesture
Identification, SAX and Classification. In the Gesture Identification
phase we extracted from the x-acceleration data stream the Atomic
Gestures of each Athlete using a Gaussian Filter that allows to iso-
late each single gesture amidst the data stream. The algorithm core is
SAX, a symbolic representation used in several fields of application
that allows dimensionality reduction. We applied SAX to the Atomic
Gestures setting the parameters w and α. We noticed that w = 30 is
a value high enough to follow the original signal evolution and with
a reasonable dimensionality reduction effect. However, working on
Atomic Gesture it was necessary to consider the period information
that differs from one to another. For this reason, we changed the com-
mon SAX technique introducing a new parameter: w1 that represent
the length of the main part of the SAX Sting. The value w1 = 25
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allowed to reduce the noise that is showed at beginning and at the
end of the Atomic Gesture. In the classification phase, we tested the
algorithm on the Atomic Gestures in the dataset in exam fixing α = 7.
We obtained poor recognition results for every Athletes, but this was
reasonable because the device/sensor position don’t allow to distin-
guishing between DP from KDP. For this reason, we considered DP
and KDP as single class. With this consideration and w = 30, w1 = 25
and α = 10 we obtained the best results with percentages of accu-
racy > 70% and for two Athletes > 90%. Then, we showed how the
proposed classification procedure performs in an activity recognition
prospective. We used a sliding window approach; we tested this method
with different window size, obtaining great results also in the case of
DP and KDP considered as separated class. We recognized 11 ′ 19 ′′

of Activities on a total Activity time of 11 ′ 41 ′′ while, if we consider
DP/KDP as single class, all the activities have been correctly recog-
nized.
In the last part, we tested the aforementioned algorithm on a well-
known dataset. We considered 3 continuos-repetitive normal day Ac-
tivities, played by 3 persons: Walking, Walking Up-stairs and Walk-
ing Down-stairs. In this case we had some difficulty to choose the
main accelerometer axial because the informative content of the Ges-
ture seemed to be subdivided between the three axes. For this rea-
son we tested the algorithm firstly with z-axis acceleration data and
then with y-axis acceleration data. In both cases we obtained poor
recognition results. In this situations Walking Up-stairs and Walking
Down-stairs seemed indistinguishable. In fact, considering this two
activity as single class of gesture, with w = 20, w1 = 18 and α = 7 we
obtained results with percentages of accuracy > 70%. Applying the
sliding window approach we obtained good results of Activity recogni-
tion.

A follow-up of this thesis can be the creation of a metrics that allows
to measure the SAX Distance considering more than one accelera-
tion axis. In this way, for example in the second dataset considered,
combining the information obtained from y and z axes we may im-
prove the recognition accuracy. Furthermore, we can can introduce
an improved decision policy based on the classification performed
on different axes.
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A
O T H E R R E S U LT S

In This Appendix we reported other classification results omitted in
the previous chapters. In Figure 46 we illustrate the results obtained
evaluating separately Achiever and Recreational Athletes; we chose
three templates, in common between the Athletes in exam, that repre-
sent DP, KDP and DS, respectively. However we considered DP and
KDP as single class. In Figure 47 we illustrate the results obtained
evaluating all the Athletes; we chose three templates, in common be-
tween all the Athletes, that represent DP, KDP and DS, respectively.
However, also in this experiment, we considered DP and KDP as sin-
gle class.
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Figure 46: In these experiments: w = 30, w1 = 25 and α = 7. Percentage of
Classification accuracy for the Achiever Athletes (top panel) and
Recreation Athletes (bottom panel). Each class is represent by one
template. To classify them, each athlete’s gesture is confronted
only with the same three templates. Notice that DP classification
accuracy represent the percentage of DP Atomic Gesture exactly
classify into DP/KDP class, not in DP class. At the same way for
KDP Atomic gesture.
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Figure 47: In this experiment: w = 30, w1 = 25 and α = 7. Percentage
of Classification accuracy for the seven Athletes. Each class is
represent by one template. To classify them, each athlete’s gesture
is confronted only with the same three templates. Notice that
DP classification accuracy represent the percentage of DP Atomic
Gesture exactly classify into DP/KDP class, not in DP class. At
the same way for KDP Atomic gesture.
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