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Riassunto  

L’obiettivo di questa tesi è l’analisi delle fasi di design e operation di un sistema energetico con incertezze. 

Nel dettaglio, i risultati devono spiegare in quale misura la modellazione dell’incertezza associata 

all’irradianza solare e alla temperatura ambiente possa consentire il miglioramento delle scelte di design, 

come ad esempio una maggiore precisione riguardo la taglia di un’unità. 

L’introduzione delle incertezze risulta importante a causa di diversi fattori, quali il cambiamento climatico, 

condizioni di mercato inaspettate, evoluzione della richiesta energetica o pianificazioni interattive. Molti 

studi hanno evidenziato i vantaggi legati all’analisi delle incertezze rispetto ad un tradizionale approccio 

deterministico. Per le fasi di design e operation di un sistema energetico, le condizioni climatiche, il prezzo 

dei vettori energetici e la domanda energetica sono i principali parametri incerti da tenere in considerazione. 

In questo lavoro, solo le condizioni climatiche sono considerate fonti di incertezza, in modo da vedere quanto 

esse possano influenzare le soluzioni di design. Per affrontare il problema, si è analizzato un sistema multi-

energy residenziale: l’idea è di essere nell’anno 2010, con l’obiettivo di trovare la miglior soluzione per il 

“futuro”, corrispondente al periodo 2010-2020, usando dati storici inerenti al periodo 2005-2009. Diversi 

modelli deterministici e stocastici a due stadi, con riferimento a tale sistema, sono stati sviluppati per 

comparare le soluzioni ottimizzate con quella di riferimento per il periodo 2010-2020.  

Per prima cosa, viene discusso il peso della temperatura ambiente nel processo di clustering: questo 

parametro è raramente considerato nella Letteratura, ma consente di migliorare la qualità della 

rappresentazione del dataset iniziale. Infatti, la considerazione della sola irradianza solare presenta, in media, 

il 10% in meno di elementi ben posizionati rispetto al processo che utilizza sia irradianza che temperatura 

come attributi. 

In seguito, l’attenzione è posta sui diversi metodi per la generazione di giornate rappresentative, 

corrispondenti al periodo di ottimizzazione, per vedere qual è il più adatto ad essere utilizzato per la fase di 

design di un sistema energetico. Tecniche di clustering sono comparate con profili stagionali o mensili medi. 

La generazione di cluster stagionali è altresì discussa. I profili medi sono dimostrati essere i peggiori, 

presentando errori relativi fino al 13% per la funzione obiettivo, paragonata alla soluzione di riferimento. I 

cluster annuali performano meglio se il numero di giorni rappresentativi è basso, uguale a 4 o 8, o alto, pari 

a 28. 

Infine, è presentata una procedura innovativa di clustering a due stadi per la generazione di scenari stocastici 

per i diversi giorni rappresentativi. L’idea è quella di assegnare un set di scenari di irradianza e temperatura 

a ciascun giorno rappresentativo. In ogni caso, le soluzioni ottenute sono troppo conservative, il che è 

coerente con la teoria dello stochastic programming, ma comporta costi totali elevati. 

 

  



4 
 

  



5 
 

Abstract 

The aim of this thesis is to study the design and operation phases of an energy system under uncertainty. In 

particular, results should explain whether modelling the uncertainty associated with global solar irradiance 

and air temperature helps improving design choices, such as components sizes.  

The importance of introducing uncertainty is related to many aspects, such as climate change, unexpected 

market conditions, evolution of energy demand, interactive planning. Many studies highlight the advantages 

of uncertainty analysis with respect to traditional deterministic approaches. For the design and operation of 

an energy system, climate conditions, price of energy carriers and energy demand are the main uncertain 

parameters.  

In the following work, only climate conditions are considered as a source of uncertainty, to see how much 

they can affect design solutions. To address the problem, a residential multi-energy system is considered: 

the idea is to be in the year 2010, trying to find the best solution for the “future”, the period 2010-2020, 

using historical data from the period 2005-2009. Deterministic and two-stage stochastic models are 

developed, with respect to such system, to compare the optimised solutions with the reference one for the 

period 2010-2020. 

First, the relevance of the air temperature in the clustering process is discussed: this parameter is rarely 

considered in the Literature, but it allows to improve the quality of the dataset representation. In fact, the 

clustering process with just global solar irradiance presents, as average, 10% fewer well-positioned elements 

than the process using irradiance and air temperature. 

Then, attention is put on different methods for generating representative days as optimisation period, to see 

which is the most suitable to use for the design phase of an energy system. Clustering techniques are 

compared with average seasonal and monthly profiles. Generation of seasonal clusters is also discussed. 

Average profiles are proved the worst ones, presenting relative errors up to 13% for the objective function, 

with respect to the reference solution. Annual clusters are better than seasonal ones when the number of 

representative days is low, equal to 4 or 8, or high, equal to 28. 

Finally, an innovative two-step clustering procedure to generate scenarios for representative days is 

presented. The idea is to assign a set of scenarios to each representative day. However, obtained solutions 

are too conservative, which is consistent with stochastic programming theory, but entails higher total costs. 
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Nomenclature 
Acronyms 

APC Announced pledges case 

ASV Average silhouette value 

BPS Building Performance Simulation 

CHP Cogeneration system 

COP Coefficient of performance 

CPU Climate policy uncertainty 

DES Distributed energy system 

DSM Demand side management 

DBA Dynamic time warping barycentre averaging 

DTW Dynamic time warping 

ED Euclidean distance 

EES Electric energy storage 

EPF Electricity price forecast 

MAE Mean absolute error 

MES Multi-energy system 

NOCT Nominal operating cell temperature 

NPV Net present value 

NZE Net-zero emission by 2050 scenario 

O&M Operation and maintenance 

PDF probability distribution function 

PV Photovoltaic system 

RCP Representative concentration pathway 

RMSD Root mean square difference 

SBD Shape based distance 

SOC State of charge 

SOP State of power 

SSD Within cluster sum of square difference 

STEPS Stated Policies Scenario 

TES Thermal energy storage 

TSAM Time series aggregation module 

 
Greek letters 

𝛼 Amortization factor 

𝛿𝑖𝑛𝑣 Binary variable associated with the inclusion of a given energy conversion unit 

𝛿𝑢𝑛𝑖𝑡,𝑡 Binary variable associated with ON/OFF status of a given energy conversion unit at time t 

𝜗𝑢𝑛𝑖𝑡,𝑡 Additional variable to avoid bilinear constraints for a given component at time t 

𝜂𝐵𝑂𝑆 Efficiency for the balance of system 

𝜂𝑢𝑛𝑖𝑡 Efficiency of a given energy conversion unit 

𝜇𝑘 Centroid of a cluster k 

 
Symbols 

𝐴𝑃𝑉 Area of the photovoltaic system [𝑚2] 
𝑎𝑠𝑖𝑚(i) Average similarity of element i with respect to the all other elements of the cluster it belongs 

[-] 

𝑏0 Correction factor for the efficiency of a PV system [1/°C] 

𝑏𝑑𝑖𝑠(𝑖) Average similarity of element i with respect to the elements of the closest cluster it does not 

belong to [-] 

𝐶𝑢𝑛𝑖𝑡 Size of a component of the energy system [kW] 
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𝑐𝑢𝑛𝑖𝑡 Specific cost for a given unit [€/kW] 

𝑐𝑓 Correction factor [-] 

𝐸𝐸𝐸𝑆,𝑡 Energy level for the electric energy storage [kWh] 

𝔼 Expected value 

𝐹𝑢𝑛𝑖𝑡,𝑡 Fuel required by a given component at time t [sm3/h] 

𝑓 Objective function, minimization of the total cost [k€] 

𝐺𝑡𝑜𝑡  Global solar irradiance for the tilted plane [W/m2] 

M Number of scenarios [-] 

𝑀𝐵𝐼𝐺 Parameter required for the big M method [-] 

N Number of representative days [-] 

𝑃𝑢𝑛𝑖𝑡,𝑡 Power produced by a given energy conversion unit, or required by the load, at time t [kW] 

𝑃𝑡
+, 𝑃𝑡

− Power charged to or discharged from the electric energy storage, at time t [kW] 

𝑝𝑠 Probability of a given scenario [-] 

𝑄𝑢𝑛𝑖𝑡,𝑡 Heat flow produced by a given energy conversion unit, or required by the load at time t [kW] 

𝑄𝑡
+, 𝑄𝑡

− Heat flow charged to or discharged from the thermal energy storage, at time t [kW] 

𝑄𝑇𝐸𝑆,𝑡 Level of energy for the thermal energy storage at time t [kWh] 

ℝ𝑛
+  N-dimensional space with all non-negative real numbers 

𝑟 Interest rate 

𝑠𝑖𝑙(𝑖) Silhouette value for a given element [-] 

𝑇𝑎𝑖𝑟 Air temperature [°C] 

𝑇𝑐𝑒𝑙𝑙 Cell temperature [°C] 

𝑣 Wind speed [m/s] 

𝑣𝑐𝑢𝑡−𝑖𝑛 Cut-in velocity [m/s] 

𝑣𝑐𝑢𝑡−𝑜𝑢𝑡 Cut-out velocity [m/s] 

𝑣𝑛𝑜𝑚 Nominal velocity [m/s] 

𝑤𝑑 Weight of a given representative day [-] 

 ℤ𝑝
+ P-dimensional space of non-negative integer numbers 

 
Subscripts 

a Attribute for the clustering process 

d Day of the year 

des Design 

fix Fixed 

HN Here and now 

h Hour of a day 

i Row of a given matrix 

j Column of a given matrix 

k Cluster 

op Operation 

s Scenario 

t Total time 

var Variable 

y Year 
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1. Introduction 

1.1 Impact of uncertain parameters in the optimization of design and 

operation of energy systems 

The goal of this work is to study the design and operation phases of an energy system under uncertainty. In 

particular, results should explain whether the modelling of uncertainty associated with some parameters 

helps improving design choices, such as components sizes.  

Uncertainty can be defined as “any deviation from the unachievable ideal of completely deterministic 
knowledge of the relevant system” [1]. Clearly, several aspects of an energy system are affected by 
uncertainty but, first, motivations for studying it have to be discussed. Indeed, the measure of changes in 
performances associated with variations of parameters is more relevant than uncertainty itself. According to 
[2], four reasons are crucial for this study: 

1. In free market conditions, unexpected energy price changes, energy carrier substitution or energy 
demand change cause increases in uncertainty. As reported from [3], “the difference between the 
summer peak demand in 1983 and that projected for 1983 a decade earlier was equivalent to the 
output of 300 large nuclear plants, representing an investment of about $750 billion at 1984 prices”. 

2. Different natural, technological, social and institutional processes and their interactions have to be 
considered in planning for the long term, which makes planning and modelling very complex and 
their output uncertain. 

3. Climate change, increasing environmental restrictions and the resulting high share of intermittent 
energy resources imply the use of uncertainty analysis. 

4. Interactive planning involves different planning participants with different worldview, interests and 
uncertainty perception. 

Additionally, several works focus on the necessity of modelling uncertainties. For instance, [4] underlines 
how adopting a deterministic approach in an uncertain environment forces the designer to take precise 
assumptions to get accurate data, which is often hard to do. 

Consequently, it is necessary to take into account what are the relevant uncertain parameters, how they vary 
(Section 1.2) and the interactions among them (Section 1.2.4). First, according to [4,5], a distinction must be 
done about nature of uncertainties: 

1. Uncertainty due to variability (aleatory uncertainty). Even if increased knowledge may help on 
defining a scheme, it will not reduce its complexity. 

2. Uncertainty due to a lack of knowledge (epistemic uncertainty), due to, for instance, lack of 
observations/measurements, conflicting evidence, reducible ignorance, etc. 

Another distinction is done in [5], between subjective uncertain parameters, related to the experience of the 
designer, and objective ones, as natural gas price or load demand. 

In an energy system, main uncertainty parameters can be included in: 

 Climate conditions.  

 Price of energy carriers. 

 Energy demand curves. 

 Investment costs. 

 Technical performances, such as efficiencies or COPs. 
In order to get an optimal solution, all these aspects should be analysed. However, it is hard to consider all 

of them simultaneously, mainly because of computational burdens. Therefore, the Literature helps 

understanding which of them can be assumed as deterministic, in order to simplify the problem without 

losing too much quality of the solution.  

Even if most of the papers choose some of these parameters as uncertainty sources without explaining why 
other ones are not relevant, some works, such as [5,6], analyse in detail the importance of all of them. Zhang 
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et al. [5] study impact of twelve uncertain parameters, such as generators and grid efficiencies, COPs, prices 
of energy carriers, design capacities, to assess the convenience of a Distributed Energy system (DES) with 
respect to a traditional one (CES).  Despite this, in the base case they proceed with the design starting from 
deterministic curves. Therefore, what they are doing is a sensitivity analysis (including the design 
components), examining which parameters are the main drivers for variations in output results, instead of 
adopting uncertainty analysis, whose aim is to see variations in output given by uncertain input parameters. 
Clearly, under these assumptions, an increase of grid efficiency entails a higher use of it, as well as an increase 
in the size of absorption chillers implies a lower total cost up to a certain value. 

On the contrary, Mavromatidis et al. [6] try to understand which uncertainty parameters are the most 
relevant for design and operation of Distributed Energy Systems (DES). Differently from [5], they perform 
global sensitivity analysis, by using Morris Sobol methods, showing that variations in investment costs and 
technical performances are not relevant for the final result. 

If technical performances are investigated, it is crucial to distinguish between uncertainty related to their 

present or future values. Indeed, as indicated in [5], many authors present works with different values for 

efficiencies or COPs. By the way, it is not worth to consider them as uncertain because, once a component is 

chosen, its technical performances are set too. Then, if a “better” component is found, it will be sufficient to 

correct these values. Moreover, future technical performances are complex to be evaluated, because future 

trends are difficult to be forecasted. Hence, because of these considerations, technical performances 

evaluation can be neglected. 

A similar discussion can be done for design costs. In fact, present values are strictly related to the specific 
component, while future trends are unsuitable to be predicted, causing inaccurate solutions. Furthermore, 
if the design occurs just at time zero, there is no interest in a future evolution of components costs, unless 
another design phase is taken into account, as done in Dominguez et al. [7]. If there is not a change in 
information, there is not advantage in considering more than two stages for the optimization (Section 1.2.6). 

Consequently, just weather conditions, prices of energy carriers and demand curves are analysed as sources 

of uncertainty. 

 

Figure 1.1.1: Uncertainty sources in an energy system. 
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1.2 State of the art 

This section describes how uncertain parameter are modelled in the Literature. In particular, the relevant 

ones, according to Section 1.1, are treated: weather conditions in Section 1.2.1, prices of energy carriers in 

Section 1.2.2 and energy demand in Section 1.2.3. Then, interactions among uncertain parameters is 

discussed in Section 1.2.4. Furthermore, Section 1.2.5, about clustering techniques, and Section 1.2.6, 

deepening theory about stochastic programming, introduce relevant topics for the thesis. 

1.2.1 Weather conditions 

These are the most spread analysed uncertainty sources in the Literature. For example, [12-22] take into 

account them, even though they do it in different ways. 

Plaga et al. [8] present an interesting and complete review about climate uncertainty in energy system 
models, including both deterministic and stochastic optimization problems as references. In particular, 
climate conditions affect many parameters. 

First, wind power, sensible to wind velocity. To see the influence of wind velocity in wind turbines power 
production, the first step is to convert wind velocity measured at a reference height to the one obtainable at 
the desired weight. Then, a correction factor cf is evaluated as a function of the velocity v. 

cf { 

0  
v3-vcut-in

3

vnom
3 -vcut-in

3  

1    

if v<vcut-in or v>vcut-out

 if vcut-in<v<vnom

if vnom<v<vcut-out

 

( 1 .  1 ) 

The term cf is multiplied by the nominal power to get the power production. v is the wind speed at time t, 
vcut-in is the cut-in velocity, vnom the nominal velocity and vcut-out the cut-out one. 
Anyway, this equation is not always precise, because it entails a pitch control system, which is usually adopted 
just for large size wind turbines because of its relevant cost. The use of curves given by manufacturers would 
be better. Reference [9] collects databases, studies temporal variability assessment and presents forecasting 
models for wind speed; [10] reviews probability distribution functions (PDF) for wind data collection; [11] 
compares statistical approaches for wind speed fitting. Discussion should deal with wind direction too. 

Then, global solar irradiance and air temperature are crucial parameters too. Photovoltaic plants (PV) power 

production depends on both these parameters, through equations (1.2-1.4): 

𝑃𝑃𝑉 = 𝐴𝑃𝑉 ∗ 𝜂𝐵𝑂𝑆 ∗ 𝜂𝑃𝑉 ∗ 𝐺𝑡𝑜𝑡 
( 1 .  2 ) 

𝜂𝑃𝑉 = 𝜂𝑃𝑉
∗ (1 − 𝑏0(𝑇𝑐𝑒𝑙𝑙 − 25°𝐶)) 

( 1 .  3 ) 

𝑇𝑐𝑒𝑙𝑙 = 𝑇𝑎𝑖𝑟 +
𝑁𝑂𝐶𝑇 − 20

800
∗ 𝐺𝑡𝑜𝑡 

( 1 .  4 ) 

Equation (1.4) finds the cell temperature as a function of the air temperature, the global solar irradiance on 

the tilted plane and the NOCT, a parameter related to the specific panel. (1.3) finds the efficiency of the PV 

system as a function of the standard one, the cell temperature and a factor b0. Finally, the power production 

is obtained through equation (1.2). 
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Additionally, other parameters are influenced by weather condition: 

1. Energy demand, especially heating and cooling requirements. They can change a lot depending on 
the temperature. 

2. Hydropower generation. Actually, instead of dealing just with technical constraints, the feasible 
stream flow has always to be calculated. This means that the upstream flow rate is not constant, as 
well as the evaporation flow. These differences are particularly relevant with a run-of-river 
hydropower plant, compared to a large system with a dam. Stream flow can be evaluated by using 
hydrological models. 

3. Thermal power plants use cooling water so, if the air temperature increases, the water one will do it 
as well, implying a lower power plant efficiency. Moreover, water scarcity, linked to the evaporation 
rate, should be considered as a possible problem for the cooling system.  

 
Therefore, climate data collection and analysis is crucial. Unfortunately, design problems deal with lots of 

years and, especially if stochastic programming (Section 1.2.6) is used, computational effort is enormous, 

due to the high number of scenarios. 

Several techniques are presented in the Literature to deal with weather conditions. 

 Creation of probability distribution functions. For example, in [12] solar irradiance has a beta 
distribution. All uncertain parameters are considered independent from each other and Montecarlo 
simulation is used to get final scenarios. In [13], PDFs are created for the solar irradiance, for then 
using discrete approximation. 

 In [14], the design of the PV and off-shore wind turbine system is based on the electricity balance 
between their production and the electric demand. Then, production at 2050 is forecasted with 
machine learning techniques, obtaining PDFs, which are approximated through Markov chains 
Monte Carlo method.  

 Han et al. [15] develop a model, using regression and Markov chains Monte Carlo method, to capture 
the intra and inter day variations. 

 Perera et al. [16] take curves from historical data for 30 years, using Simulink. Then, they are 
modelled to obtain a one year probability distribution for the renewable energy generation. 

 In [17], authors use clustering techniques to generate a discrete number of scenarios, starting from 
historical data. In particular, it is normalized and divided for winter and summer block. Then, number 
of representative periods is defined, as required by k-means, to generate a limited number of 
clusters, whose centroid is the representative day. The probability of each scenario is equal to the 
number of elements in each cluster divided for the total number of elements. 

 Zheng et al. [18] use clustering techniques too. k-means is the adopted one to generate clusters, 
whose number is chosen according to the elbow method. 

 In [19], authors use power curve point forecast with historical forecast errors. They create, as 
suggested by [20], more than 500 scenarios. To reduce computational effort, scenario reduction 
techniques are used. 

Therefore, raw data is taken from historical databases, or evaluated through machine learning techniques. 
After that, a possibility is to create probability distribution functions: the main issue is the computational 
effort by using continuous distribution [21], forcing to simplify it through techniques as discrete 
approximation or Monte Carlo method. Alternatively, data series reduction is possible by generating clusters: 
several techniques, as k-means or k-medoids, can be used to generate proper scenarios, whose 
representative element is the centroid (or the medoid). Clearly, the Literature presents combinations of these 
two possibilities too. For example, Mavromatidis et al. [21] generate multiple weather files and, by using 
Monte Carlo method, 1440 scenarios, related just to weather condition, are considered. Thus, a k-medoids 
clustering process follows to reduce them. Finally, scenarios about extreme weather conditions are added. 
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Another crucial feature is whether to introduce climate changes. Liu et al. [14] do it by adopting different 

machine learning regression learners based on the historical weather data of the typical meteorological year. 

For instance, they use linear regression or regression trees. The basic data is taken from a local observatory.  

Wild et al. [22] show on their paper forecasts of climate conditions, such as global solar radiation, beam solar 
radiation, temperature and cloudiness, up to 2050. They base on 39 models from the state of the art. In 
addition, they explain the influence these parameters will have on photovoltaic production. The model takes 
into account just RCP8.5, with 8.5 indicating the radiative forcing reached at the end of 21st century 
compared to preindustrial state. Clearly, this would depend on socio economical and policy decisions, but 
differences are not too large because divergence among models starts becoming important after 2050. 

Hence, climate conditions are crucial parameters to analyse, in order to face non-dispatchability of renewable 

sources. Clearly, uncertainty affects them, forcing the use of different techniques to model them properly. 

Additionally, climate change intensifies the problem, because of difficulties in predicting data in an accurate 

way. Moreover, the “weight” of weather conditions has to be evaluated for each specific case. Indeed, a net 

zero energy systems will be strongly influenced by them, because the renewable production does, while a 

fossil fuel based system can be studied without their introduction. 

 

1.2.2 Price of energy carriers 

These parameters are fundamental to understand the economic advantage of a solution. Of course, as 

explained in the previous section, the necessity of introducing them is strictly related to the energy system 

itself, depending on the components.  

However, price evolution is difficult to be forecasted with accuracy: because of this, many researchers 

assume them as constant, such as [14, 16-19].  

Focusing on natural gas, many ways are used by researchers to introduce its uncertainty nature: 

 In [5], as already explained, design is based on deterministic curves, thus uncertainty is not 
introduced. In a second step, natural gas price is varied through local sensitivity analysis, to see if its 
variation implies relevant variations in results. 

 Authors in [6] use Swiss Energy Strategy 2050 [23] to get natural gas values. Unfortunately, only two 
scenarios are presented, implying a limited variation in future prices. To solve the problem, a “cone” 
of variability is used, increasing it year by year (±2% on first year, ±4% on second year, ±40% for last 
year). Finally, a uniform distribution is generated, in order to get the scenarios with an equal 
probability. 

 Mavromatidis et al. [21] and Wang et al. [24] generate a uniform distribution with a set variance 
around a deterministic base value. 

The previous discussion underlines two fundamental points when dealing with natural gas prices (analogue 

for biomass). First, the necessity of choosing reliable sources to get future scenarios, because of the strong 

uncertainty associated with the parameter. However, these sources can give just deterministic values, forcing 

to associate probability distribution functions. The second issue is a consequence of the first, because the 

probability associated with each scenario has to be calculated: in the state of art, uniform distributions are 

usually adopted, giving equal probability to each possible value.  

To deal with the first problem, the only possible solution is to refer to reliable documents. If local forecasts 
are not available, a possibility is to use IEA World Energy Outlook 2022 [25] or [26] as references. They present 
three possible scenarios: 

1. The Stated Policies Scenario (STEPS), taking into account only specific policies announced or in place 
by governments. 

2. The Announced Pledges Case (APC), which assumes that “all announced national net zero pledges 
are achieved in full and on time, whether or not they are currently underpinned by specific policies”. 
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3. The Net-Zero Emissions by 2050 Scenario (NZE). This shows how the global sector should act to reach 
decarbonisation in 2050. Note that this is one way to reach it, not the only way. 

 
Assuming to work with this reference, some tricky points have to be marked: 

1. Predictions show just final prices, for each scenario, for 2030 and 2050. Therefore, they do not show 
the evolution of them, avoiding any discussion about price volatility, which is too hard to be included. 

2. Focusing on NZE, this scenario shows one possible solution for decarbonisation, which is not the only 
possible one, as well as it will not probably be the adopted one. Therefore, a set of possible scenarios, 
as done in [6], should be considered. 

3. No information about scenarios probability is done. Clearly, the common solution is to give equal 
probability to each scenario, through a uniform distribution. Differently, an interesting decision 
would be to ask the customer which scenario is the most probable, modelling probabilities on that 
base. For instance, if he does not think decarbonisation is possible, probability of STEPS has to be 
increased, as well as the one for NZE must decrease. 

 

Further problems are related to electricity prices. Solutions may be the ones found in the Literature: 

 In [5], as already explained for natural gas, it is not treated as uncertain parameter in the design 
phase. In a second step, it is varied through sensitivity analysis 

 In [6], the “cone” of variability is still used, with a lower variability with respect to natural gas (±1% 
instead of ±2% for the first year and so on). 

 In [18], electricity price increases with a set inflation rate. This means that every year its price 
increases by 3%. 

 In [21], a uniform distribution around a deterministic value is used. 

 Wang et al. [24] use Gini index to convert the continuous variation to a discrete number of points 
with their probability. 

 In [27], each day of the previous year is taken as a possible scenario. The first solution is obtained 
with equal probability for each scenario, while the second one through sensitivity analysis, thus 
increasing the probability of scenarios with higher volatility.  

As for natural gas, many researchers [14, 16, 17, 19] consider electricity price as constant. 

Differently from fossil fuels, electricity price is even more difficult to be forecasted. Indeed, it depends on the 
structure of the market, which is going to vary significantly in the future. Based on this consideration, 
Domìnguez et al. [7] present a multi-stage stochastic model to analyse the day-ahead market and the 
balancing one, once the configuration of the first model is set. Note that electricity price is not assumed, but 
is calculated, starting from the European energy production structure. Golombek et al. [28], to assess the 
role of transmission and energy storage at 2050, use LIBEMOD [29], a specific deterministic model, which is 
able to find prices by taking policies as inputs. These two papers are indicated to show how complicated 
models should be to get optimum forecast results. 

In order to find a coherent way to assess future electricity price, Weron [30] reviews forecasting models, 
dividing them in three categories: 

1. Short-term electricity price forecast (EPF), involving forecast from a few minutes up to a few days 
ahead, of primary importance for day-to-day market operations. 

2. Medium-term horizons, from a few days to a few months ahead, generally preferable for balance 
sheet calculations, risk management and derivatives pricing. 

3. Long-term EPF, concerning months, quarters or even years. Their goal is to evaluate investment 
profitability, analysis and planning, such as determining the future sites or fuel sources of a power 
plant. They usually deal with capacity-investment decisions, avoiding unit-commitment ones. 

Design and operation problems normally deal with a long-term optimization period, usually matched with 

the system lifetime. Therefore, they should refer to long-term electricity price forecast, which are not 

indicated in the paper. However, some models could refer to shorter periods: for instance, the one to get a 

net present value (NPV) equal to zero. Additionally, to reduce computational effort, a choice could be to find 
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a solution for one year as operation, to test it in a second moment for a longer period (Section 4.4). Hence, 

examined methods are reported for these problems: 

1. Multi-agent models (Nash-Cournot framework, supply function equilibrium, strategic production-
cost, agent-based). Cost-based models are capable to forecast hour by hour and bus-by-bus, ignoring 
strategic bidding prices, while equilibrium approaches take into account them too. However, both of 
them work by matching demand and supply curves in the market. Author distinguishes among 
optimization models, which are not interesting for EPF because of their intrinsic goal, equilibrium 
models and simulation ones. 

2. Fundamental models (parameter rich fundamental, parsimonious structural), trying to deal with 
physical and economic relationships present in the production and trading of electricity, such as 
loads, fuel prices, wind power and temperature.  

3. Reduced-form models (jump-diffusions, Markov regime-switching), developed not to provide 
accurate hourly price forecast, but to give main characteristics of daily prices. They could easily 
become inaccurate or too complex to be solved. 

4. Statistical (Similar-day, exponential smoothing, regression models, AR-type, ARX-type, threshold AR, 
GARCH-type), good for derivatives valuation and risk analysis, but not too precise for forecasting 
electricity prices. They are based on a combination of previous prices or current values of exogenous 
variables. For example, similar day consists in searching in history days with similar defined 
characteristics in order to compare their price trend. 

5. Computational intelligence (Feed-forward neural networks, recurrent neural networks, fuzzy neural 
networks, support vector machines), combining elements of machine learning, evolution and 
fuzziness, wants to adapt to complex dynamic systems. 

In any case, these are complex models, created to adapt to specific market conditions. For example, [31] 
refers to Nordic market, developing a framework difficult to use in another context. Furthermore, the 
creation of such models would require a big effort, impossible to match with the topic of the thesis. Precision 
is not guaranteed, because, working on twenty years long periods, possible mistakes will propagate, entailing 
unfeasible solutions. 

Gabrielli et al. [32] specifically focus on long-term electricity price forecast. First, they distinguish between: 

 Data-driven models, which are very accurate about hourly prices. Unfortunately, they lack in long-
term precision because of price volatility. 

 Market-based models, whose goal is to comprehend the underlying mechanisms of the electricity 
market. They are not good for hour-to-hour results and they are not easy to adapt to markets 
different from the initial one. 

To analyse price evolution, authors decide to adopt a data-driven model based on Fourier analysis. The price 

is thus descripted by its main characteristics (main frequencies) and fluctuations (other frequencies), while 

Fourier coefficients are calculated from historical and predicted values of several price drivers. To account 

out-of-sample issues, the model is coupled with a market-based one.  

Results show that this model is able to follow prices in the UK market with a mean absolute percentage error 

equal to 10% on yearly basis. Therefore, to use such a complex model is not useful for this work, because 

effort is not justified by accuracy. 

Therefore, prices of energy carriers are fundamental parameters to be modelled, because their values 

strongly influence the solution of the problem. However, their evaluation is complicated, because of the 

uncertainty in future values. Regarding fossil fuels, reliable future scenarios are required to obtain 

deterministic values, even if results are consequently linked to these assumptions. Furthermore, there is a 

lack of variability in results, as well as probability associated with each scenario is arbitrary. Indeed, uniform 

distributions can be adopted, while other solutions are associated with choices of the researcher. Instead, 

electricity price is over-technical, because its evolution depends on aspects as market structure. If the model 

considers a big system, such as a nation, electricity price can be calculated precisely. Alternatively, in the 

Literature forecasting models are presented. 
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Another solution would be to set a value of energy carriers for a simulation and then to vary it, like sensitivity 

analysis, to see how design choices are linked to them. In particular, it could help finding solid technologies, 

used in many scenarios. Note that this procedure is different from the one indicated in [5], because these 

parameters cannot be varied just after the design, whose convenience strongly depends on their values. 

 

 

1.2.3 Energy demand 

Energy demand includes electricity, thermal and cooling demand. Their evaluation is crucial, because 

satisfaction of loads is usually the main requirement. However, some aspects make it complicated: 

1. It is hard to forecast energy demand, considering the “quantity”. Indeed, according to the presented 
scenario, it could increase or decrease. For instance, in [25] STEPS and APC scenarios bring to an 
increase in demand, whereas one of the NZE key topics is to avoid it. Additionally, the trend for 
industrial or civil users may be different. 

2. Even harder is the “structure” of the energy demand. As already indicated, electric, thermal and 
cooling demand are taken into account. Assuming to work with a civil user, according to APC scenario 
demand will increase. In any case, electrification influences it, thus electric demand is going to 
increase, while thermal demand is going to decrease because of substitution of boilers with heat 
pumps. Technical performances will influence it as well. 

3. Possibility of demand side management (DSM). Zheng et al. [11] developed a model for the design 
and optimization of a microgrid focusing on this aspect. They distinguish between dispatchable (or 
capable of being shifter) and non-dispatchable loads, entailing a flexibility in the system 
management. Then, they use the sliding time window method for DSM [33]. 

4. Occupants’ behaviour. This aspect is usually neglected, but it could influence analysis, especially 
nowadays, where users start being more responsible. 

In the Literature, many ways are used to consider uncertainty for demand curves: 

 In [6], a Monte Carlo Building Performance Simulation (BPS) is adopted. First, a probability 
description is associated with input of the BPS. Then, several profiles are generated to have different 
scenarios. 

 In [7], authors generate three scenarios by following IEA predictions about increasing in demand. 

 In [12], demand side management is performed. Therefore, starting from deterministic curves, these 
are varied hour by hour following the method described in the article. 

 In [15], simulations in Simulink are done with respect to 40 different buildings with their own 
characteristics, to collect then results in a one-year curve. 

 In [16], they collect historical data and normalize them. Then, they distinguish between winter and 
summer case to proceed with a k-means clustering process. Probabilities are evaluated as cluster 
frequencies. 

 In [17], a uniform distribution around a deterministic profile is used to describe electricity demand. 

 In [34], bootstrap simulation is used to get demand distribution. 
In many works, such as [5, 14, 15] demand curves are assumed as deterministic ones. 

Following previous examples, there are different ways to model uncertainty regarding demand curves. 

According to Mavromatidis et al. [6], however, probability distribution functions are inadequate to do that. 

Indeed, this does not take into account autocorrelation of these time series, as well as relations with other 

parameters such as climate conditions or occupant behaviours. 
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1.2.4 Interactions among uncertainty elements 

Most of the papers in the Literature assume each uncertainty parameter as independent from each other. 

For example, in [12], authors do it using probability distribution functions. Unless only one uncertain 

parameter is taken into account, this solution is not accurate, as explained in previous section [6]. Indeed, 

some relations occur between parameters. For instance, if the temperature increases, heat requirement is 

going to decrease, as well as cooling requirement is going to increase. Another example is the relation 

between electricity and natural gas prices, which can be very complex to evaluate.  

However, some papers try to correlate uncertainty parameters. In [5], building performance simulation is 
repeated many times, coupled with Monte Carlo method, to correlate energy demand and renewable 
production. In [35], a time-varying parameter vector autoregressive model with stochastic volatility model is 
implemented to study dynamic relationships among oil price, renewable energy consumption and climate 
policy uncertainty (CPU). This last parameter is represented by the respective index introduced in [36], based 
on “the number of articles including inherent topics”. Results show that the increase in CPU causes an 
increase in the oil price in the short and medium term, while it tends to converge in a long term: this is in 
contrast with other studies mentioned by the authors, resulting in a low reliability. They continue explaining 
that, in general, impact of CPU increase is positive on short and long term to renewable energy consumption, 
but negative on the medium one, even though the answer of five different types of renewable sources is 
“heterogeneous”. 
These last papers [35, 36] are reported to underline both the difficulties in relating parameters and finding 

reliable results. In fact, the risk is to force the work, as done in [35], basing on an ambiguous index and finding 

results in contrast with other sources.  

Olanipekun [37] et al. investigate the relation between the global use of renewable energy sources and oil 
price uncertainty, by the use of advanced econometric techniques (Wavelet Coherence and Quantile-On-
Quantile Regression). Results prove that an increase in the use of renewable energy entails a lower oil price 
uncertainty and that the impact of renewable energy on geopolitical oil price uncertainty is greater than the 
opposite influence. This is reported to show how complex could be to relate such parameters, which is out 
of scope for this work and, furthermore, is out of scope for optimization problems. Please note that data 
reduction is required to reduce complexity and these models would require an incredible computational 
effort to be implemented. 

As already explained, the goal is not to find a perfect relation among uncertainty sources, but to analyse their 

influence on design phase. Hence, if many uncertain parameters are introduced, flexibility, defined as “the 

capacity of a system to resist performance degradation due to changes in the external environment”, could 

be evaluated to understand the quality of the results. Perera et al. [16] propose a procedure to evaluate it. 

1. Formulation of scenarios for the stochastic optimization. 
2. Values of indicators are evaluated for each scenario based on the time series simulation. 
3. Degradation, defined as the variation of a parameter with respect to a reference value, which can be 

the expected value of the indicator, is calculated. 
4. Some ranges are introduced in order to normalize the different parameters, obtaining an S*P matrix 

(S=number of scenarios, P=criteria). Clearly, a set variation can give a different indication depending 
on the parameter. For example, a decrease of 15% of renewable generation could be accepted, while 
an increase of 15% of the NPV is more serious.  

5. A weight is introduced for each parameter in order to underline the importance it has. Finally, 
 

𝔼(𝐼𝑃𝐷) = ∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ∑ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

𝑝∈𝑃𝑠∈𝑆

 

𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =
1

1 + 𝔼(𝐼𝑃𝐷)
 

( 1 .  5 ) 
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1.2.5 Clustering techniques for data series reduction 

Computational optimization for the design and operation of energy systems is not a trivial issue. Indeed, the 

state of the art include complex mixed linear or non-linear programming models: clearly, the solution has to 

be as precise as possible, without entailing an unaffordable computational time to get it. Time-series 

aggregation is thus a fundamental topic, whose relevance is proved by its use in the Literature. 

Clustering techniques allow reducing computational effort. The idea is to obtain representative periods by 

aggregating similar elements. A perfect clustering process should reduce the computational time by orders 

of magnitude while representing the whole information of the original dataset. However, this is impossible, 

because data reduction implies persistent or random errors [38]. 

As suggested by [38], some passages are required for the whole process. Let us consider a dataset with I 
rows, corresponding to the candidates as representative elements (𝑖 ∈ {0, … , 𝐼}) and J*A columns, with J 
corresponding to the daily time steps for each i element (𝑗 ∈ {0, … , 𝐽}) and A indicating the number of 
attributes (𝑎 ∈ {0, … , 𝐴}). For example, collecting one year of data for solar irradiance, wind speed and air 
temperature, with hourly resolution, the matrix will have I=365 rows and J*A=24*3=72 columns, as shown 
in figure 1.2.1.  

Figure 1.2.1: Organization of dataset for data series reduction. 

The first step is data normalization. In particular, this is crucial if there are elements of different nature in the 
initial dataset. For instance, if global solar irradiance [W/m2] and air temperature [°C] are considered, 
differences in their magnitude do not allow a proper clustering process. Normalization can be referred to the 
maximum element, bringing back each data to [0,1] interval, or a z-normalization, with a mean value equal 
to 0 and a standard deviation equal to 1. Moreover, three types of process are possible, assuming a 0-1 
normalization: full normalization, comparing all elements to the maximum one, which is not good if the 
number of attributes is higher than 1; element-based normalization, working on each daily time step; 
sequence-based normalization, working on single days. 

For instance, assuming to work with a dataset with only global solar irradiance, with 365 candidate days and 
24 hours as daily time step, full normalization will assign 1 to the maximum value of irradiance in the whole 
year, scaling the others with respect to that. On the contrary, element-based normalization scales with 
respect to the maximum element of each column, thus the maximum value of each hour: this procedure is 
usually adopted for k-means, k-medoids or hierarchical [38]. Last, sequence-based normalization works day 
per day: this is used for k-shape method or Dynamic time warping barycentre averaging (DBA) [38]. 
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Kotzur et al. [39] suggest the adopted technique for this work, working with a 0-1 element based 
normalization  

𝑥𝑎,𝑖,𝑗
′ =

𝑥𝑎,𝑖,𝑗 − 𝑚𝑖𝑛 𝑥𝑎,𝑗  

𝑚𝑎𝑥 𝑥𝑎,𝑗 − 𝑚𝑖𝑛 𝑥𝑎,𝑗
 

( 1 .  6 ) 

Second aspect is related to the considered distance measure. In this thesis, Euclidean distance (ED), which is 

the most common for “classic” techniques as k-means, k-medoids or hierarchical, is used 

𝑑𝑖𝑠𝑡(𝑋, 𝑌) = 𝐸𝐷(𝑋, 𝑌) = √∑ 𝑥𝑗 − 𝑦𝑗

𝐽

𝑗=0

 

( 1 .  7 ) 

Therefore, the distance is evaluated for each daily time step for the respective candidates. Clearly, the 

following equation considers just J columns because the assumption is to work with A=1, thus only one 

attribute. 

Alternatively, instead of using ED, Dynamic Time Warping (DTW) is an option, usually adopted with DBA 
techniques. ED is a particular case of DTW with a warping window equal to zero. More information can be 
found in [40]. Last, shape based distance (SBD) is another distance measure introduced by Paparrizos and 
Gravano [41]. 

As already explained, many clustering algorithms are possible. Averaging periods is a possibility, as done by 
[42]. However, as proved by [39], this method is the worst one in terms of representing the variability of the 
dataset. Hierarchical clustering method allows obtaining representative periods by merging in the same 
cluster the two closest elements (in terms of distance) for each iteration. Applications can be found in [43] 
and [44]. 

k-means generates the clusters to minimize the squared error between the mean of a cluster and all possible 

candidates. The problem can be defined as 

𝑚𝑖𝑛 ∑ ∑ [∑ ∑(𝑥𝑎,𝑖,𝑗 − 𝜇𝑎,𝑗,𝑘)
2

𝐴

𝑎=1

𝐽

𝑗=1

] × 𝛿𝑖,𝑘

𝐼

𝑖=1

𝐾

𝑘=1

 

( 1 .  8 ) 

In the previous expression, 𝜇𝑎,𝑗,𝑘 indicates the centroid of the cluster k for daily time step j and attribute a. 

𝑥𝑎,𝑖,𝑗  is the element of the candidate day i, time step j and attribute a. 𝛿𝑖,𝑘 is a binary variable equal to 1 if 

the candidate belongs to the cluster k, 0 otherwise. To be sure that every candidate belongs to a cluster, 

equation (1.9) is required 

∑ 𝛿𝑖,𝑘 = 1

𝐾

𝑘=1

   ∀𝑖 

( 1 .  9 ) 

The problem is a mixed integer non-linear problem (MINLP), difficult to solve. Therefore, a simplified 

algorithm is adopted, which converges by the way to a local minimum. 

1. The number of clusters is decided a priori. Randomly select an initial partition of clusters. 

2. Assign each element to the closest cluster. 

3. Calculate the new centroid. 

4. Repeat until convergence. 
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More information about theory of k-means can be found in [45]. Adhau et al. [46] use k-means to study 

availability of a micro hydro power plant, Fazlollahi et al. [47] use it studying multi-objective optimization of 

distributed energy systems. [17, 18] use k-means to generate scenario for two-stage stochastic problems. 

The choice of the representative period for each cluster is interesting. Indeed, instead of the centroid, the 
medoid or the closest element to the centroid can be used too [48]. Centroids are calculated by averaging 
terms: this reduces peak conditions, which are useful for design of energy systems.  

k-medoids is similar to k-means, but the representative element is the medoid instead of the centroid. As 
explained in [49], the problem is stated as a MILP, thus a global optimum can be found. However, a high 
computational effort is required, so the algorithm will not be used for this work. However, Domínguez-Munoz 
et al. [50] adopt it to find typical days for demand, while Mavromatidis [21] uses it to reduce scenarios for 
the two-stage stochastic optimization dealing with distributed energy systems. Graphical comparison 
between k-means and k-medoids is presented in figure 1.2.2. 

Other methods, such as k-shape [41] or Dynamic time warping barycenter averaging (DBA) clustering 

technique [40] are possible, but out of scope for the paper. The best clustering technique does not exist: 

depending on the application, one of them will perform better and it is difficult to predict which one before 

trying it. 

Another crucial aspect is the addition of extreme scenarios, such as peak of thermal demand or electricity 

price. In fact, these elements are not representative of a period, so they are far both from centroids or 

medoids. Nevertheless, they are very important for the design of energy systems, because energy availability 

could not be guaranteed without them. Some alternatives are possible for this issue: 

1. No introduction of extreme periods. 

2. Adding these periods as representative ones, in addition to the ones obtained through the clustering 

process. Note that, however, the difficulty here is the calculation of weight (or probability) for these 

new clusters. 

3. Forcing them to be new clusters centres, repeating the clustering process for another iteration, to 

re-assign candidates. Note that the influence will be low, because only few candidates will be 

assigned to these new clusters, implying a lower weight (or probability). 

4. The extreme periods become the new cluster centres for the clusters they are assigned to. This 

solution usually overestimates their weight on the total problem. 

Figure 1.2.2: Difference between k-means (left) and k-medoids (right). The centroid is calculated as the average value 

and it may not exist, while the medoid is a real element of the cluster. 
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In this thesis, k-means is used to obtain representative days (Section 4.3) and scenarios (Section 4.4). 

Nevertheless, because of the obtained average profiles, the solution could not be too precise. Hence, instead 

of the centroid the closest element to it is taken as representative element for the cluster. k-medoids is not 

adopted because of the unaffordable computational effort, due to the heavy dataset. Actually, according to 

[38] k-means tends to underestimate the objective function, reducing the error while increasing the number 

of clusters, while k-medoids goes closer to the real value, but represents worse the entire dataset, because 

the medoid is taken instead of the centroid. The introduction of extreme scenarios, by the way, changes a 

little these trends. 

Another point is the number of clusters. As already explained, for k-means it has to be decided a priori, which 

means there is no sureness about the quality of the chosen number. Normally, heuristic methods are used 

and quality of the optimized solution is not proportional to the quality of clusters. 

In [38] authors use the within-cluster sum of square distance to evaluate the quality of the clustering process. 

Related to that, they find that it increases, with k-means, if the number of clusters increases. Anyway, this is 

not actually true. Indeed, if number of clusters increases, the distance of the elements belonging to a single 

cluster surely decreases, but there the possibility of having bad-positioned elements increases as well. 

A coherent way to evaluate the quality of clusters is to create a profile of Average Silhouette Value (ASV) and 
keep the number of clusters equal to the one that maximizes this parameter. According to Roussew [51], the 
silhouette value for a single element can be defined as 

𝑠𝑖𝑙(𝑖) =
𝑎𝑠𝑖𝑚(𝑖) − 𝑏𝑑𝑖𝑠(𝑖)

𝑚𝑎𝑥 (𝑎𝑠𝑖𝑚(𝑖) − 𝑏𝑠𝑖𝑚(𝑖))
 

( 1 .  10 ) 

In which asim(i) is the average similarity the element has with respect to the all other elements in the cluster 

it belongs, while bdis(i) is the average similarity with respect to the most similar cluster it does not belong to. 

The silhouette value, for cluster k, is given by the average of the value of sil(i). It seems obvius that  

−1 ≤ 𝑠𝑖𝑙(𝑖) ≤ 1 

Therefore, a coherent solution is to choose the number of clusters K that maximizes the ASV. In fact, if K is 

too low, the ASV will be low, because asim(i) cannot be high, due to differences of elements in the same 

cluster. On the contrary, if the number of clusters is too high, ASV is low, because asim(i)-bdis(i) will be, due to 

the fact that an element can stay both in cluster A or B. Note that, for each element, a value of ASV equal to 

zero means it could stay in another cluster as well, while a negative value means it is bad-assigned. 

Returning to [38], the highest SSD does not correspond to the highest quality for clusters and does not 

correspond as a good quality for the solution too, as proved in this thesis. The best solution should be to 

choose the number of clusters equal to the one corresponding to the “elbow” of the curve representing the 

SSD. 

Figure 4.3.1: Scheme of the two-stage stochastic problem 
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1.2.6 Theory of stochastic programming 

In this work, the adopted method for modelling uncertainties is stochastic programming. The general 

formulation of a two-stage stochastic problem, as stated by Infanger [52], is 

min
𝑥,𝑦

𝑐𝑇𝑥 + ∑ 𝑣𝑠
𝑇𝑦𝑠

𝑠∈𝑆

 

                                                                          s.t        𝐴𝑥 = 𝑏 

                 −𝐵𝑠𝑥 + 𝐷𝑠𝑦𝑠 = 𝑑𝑠 

                    

𝑥, 𝑦𝑠 ≥ 0 
( 1 .  11 ) 

Where c are the first-stage coefficients, v the second-stage ones. A and b are coefficients related to the first-

stage constraints, while D and d are the ones related to the second-stage. B is called transition matrix and 

couples the two different stages. 

The idea is that at time 0 a decision, whose convenience depends on the outcome at time 1, has to be made. 

On an ideal point of view, the best choice is to wait for time 1 to decide, in order to see which scenario occurs: 

this is the wait and see approach. Obviously, it is not implementable in practice, but it allows understanding 

how good the proposed stochastic solution is. For each scenario s, an optimal solution zs, which is a lower 

bound of the objective function, is found. 

𝑧𝑠 = 𝑚𝑖𝑛
𝑥

𝑓(𝑥, 𝑠) 

( 1 .  12 ) 

Unfortunately, in a real situation the decision must be done at time 0, before knowing which possible 

scenario realizes. This is the here and now approach, which bases on the minimization of the expected value 

of the objective function. 

𝑧𝐻𝑁 = 𝑚𝑖𝑛
𝑥

𝔼𝑓(𝑥, 𝑠) 

( 1 .  13 ) 

This approach is applicable to a design/operation problem, because design decisions, affected by what 

happens in the operation phase, must be done before the operation starts. For instance, assuming to install 

a PV system at time 0, its convenience depends on the global solar irradiance for its whole lifetime: if weather 

is rainy for the following twenty years, there is no convenience in installing it; on the contrary, with only 

sunny days the chosen size should be high. Hence, the ideal decision should be to wait for the following days 

(or years) and see what happens. Unfortunately, this is not possible, forcing to make a decision here and 

now, basing on the expected value of the uncertain parameter. 

Note that the number of stages is not a trivial aspect. Indeed, if it is equal to two, it means the first stage is 
for the design (time 0), whereas all the operation is included in the second stage (time 1). Hence, if the 
optimization period is one year, everything is included into a single stage, which means there is not possibility 
of correcting it throughout the period. The alternative is to use more than two stages, which is by the way 
interesting only if there is a change in information. For instance, Dominguez et al. [7] consider more stages 
because design is done many times, to substitute or add components. Another example is the electricity 
market, which should be a three stage stochastic problem [53], with the first stage for the design, the second 
stage for the day ahead market and the third one for the balancing market.  

Nevertheless, most of works in literature deal with just two stages. For example, Gomes et al. [54] develop a 
model for management and operation planning of a microgrid, modelling it as a two-stage stochastic 
problem. Similarly, De et al. [55] focus on strategic bidding for a generation company, always with a two-
stage stochastic model. Ghaemi et al. [13] work to perform two-stage stochastic programming in a district 
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energy system. In particular, uncertain parameters are solar irradiance, wind speed, electricity demand and 
CO2 emissions. They model them correcting the collected data, generating scenarios, reducing them to limit 
computational effort and, finally, preserving important scenarios, as extreme electrical requirements day is. 
Zheng et al. [18] develop a multi-year model for the design and operation of residential photovoltaic-battery 
systems. This is framed as a two-stage stochastic problem, with energy demand and solar irradiance as 
uncertain parameters. Scenarios are created with k-means clustering technique. Golombek et al. [28], to see 
the role of transmission and energy storage in Europe at 2050, build a model with investment at 2020, 2030, 
2040 and 2050, implying a multi-stage stochastic problem. 

In [18] authors develop a model for the convenience of a residential battery-PV (photovoltaic) system under 
uncertainty. They use stochastic programming to solve the problem, underlying the advantages compared to 
a deterministic solution. In [19] authors try to compare deterministic and stochastic solutions working on 
multi-objective optimization for a distributed energy system under uncertainty, finding that stochastic 
solutions are more robust.  

However, according to Zhou et al. [56] stochastic programming does not entail significant improvements, so 
deterministic model for the design is preferred due to the computational efficiency. As indicated by 
Mavromatidis [21], stochastic programming requires huge computational efforts, because of the number of 
scenarios considered (in that case, 1215), compared to a deterministic model, whose solution can be found 
with a common laptop. Most of researchers, indeed, still work on design of energy systems with deterministic 
models. For instance, [57] assesses a method to evaluate long-time uncertainties for a photovoltaic system: 
even if the model considers relations among external factors and internal factors are included as well, it is a 
deterministic one. 

Clearly, other methods are possible and can be found in the Literature. For instance, robust optimization is a 
possibility. Reference [58] is a paper about optimization of an energy hub including uncertainties, which are 
renewable energy production, multi-load demands and electricity/gas prices. Authors model the problem as 
a two-stage robust optimization one, with the first stage for the design and the second one for the operation. 
The formulation of the objective function is thus (1.14): 

𝑚𝑖𝑛 𝐶𝑜𝑠𝑡𝐷𝐸𝑆 + 𝑚𝑎𝑥 (𝑚𝑖𝑛 𝐶𝑜𝑠𝑡𝑂𝑃) 
( 1 .  14 ) 

With 𝐶𝑜𝑠𝑡𝐷𝐸𝑆 design cost and 𝐶𝑜𝑠𝑡𝑂𝑃 the operation one. The idea is to find an upper bound for the operation 

cost, to be sure the every possible outcome entails a lower cost solution. Clearly, precision is required not to 

overestimate that. 

To solve an optimization problem, the objective function is one of the first things to decide. In particular, it 
could focus on economic aspects, such as the minimization of the total cost, environmental aspects, such as 
minimization of CO2 emissions, as well as social ones, such as customers’ satisfaction. Clearly, if in the first 
case the cost is easy to be evaluated, in the other ones some parameters should be introduced to relate the 
use of a component to its impact on the function. In the Literature, some works, such as Da Lima et al. [17] 
or Liu et al. [59], deal with multi-objective optimization, creating Pareto frontiers to find the best solution 
regarding total costs and emissions. However, other works, as [21], just consider economic aspect, while 
environmental issues are included through a constraint that limits CO2 emissions. 
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1.3 Goals and contributions 

The general goal of this work is to study the design and operation phases of an energy system under 

uncertainty. Results should explain whether the modelling of uncertainty associated with some parameters 

helps improving design choices, such as components sizes. Specifically, the uncertain parameter under 

consideration are the global solar irradiance and the air temperature. 

To understand that, a residential multi-energy system (MES) is taken into consideration. The idea is to be in 

2010, with the necessity of satisfying electrical and thermal requirements: historical data about global solar 

irradiance and air temperature are available just for the past, specifically for the period 2005-2009, but 

convenience in design choices depends on the future. Therefore, deterministic (Section 4.3) and stochastic 

models (Section 4.4) of such system are developed, to compare design solutions and total costs to the ones 

obtained with a perfect model for the “future” (Section 4.1), hence for the period 2010-2020. 

The scheme for the residential MES is presented in Section 2; input data, except for the uncertain parameters, 

are introduced in Section 3; Section 4 describes the different models; results are presented and discussed in 

Section 5; Section 6 concludes the work. 

The following points are deepened throughout the thesis: 

1. Critical analysis about the introduction of air temperature as attribute for the clustering process. 

Indeed, in the Literature global solar irradiance is rarely coupled with this parameter, whose 

relevance for the representation of the initial dataset is strong (Section 5.1). 

2. Comparison among different methods to generate representative days for a residential MES, to see 

which is the most suitable to use for the design phase of an energy system. In particular, in the state 

of art different methods are used, as indicated in the previous Sections, usually without explaining 

the advantages. Clustering techniques are compared with average seasonal and monthly profiles. 

Generation of seasonal clusters is discussed as well. 

3. Introduction of an innovative two-step clustering process to generate scenarios for representative 

days. In fact, some works consider deterministic models as stochastic ones, just generating typical 

days for few uncertain parameters. The idea is to generate scenarios for each representative day, to 

see if it could help obtaining precise solutions. 
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2. Object: Residential multi-energy system (MES) scheme 

The goal of this work is to study the design and operation phases of an energy system under uncertainty. In 

particular, results should explain whether the modelling of uncertainty associated with global solar irradiance 

and air temperature helps improving design choices, such as sizes of the energy conversion units.  

To answer to the previous question, a residential multi-energy (MES) system is taken into consideration. 

Deterministic models, with N representative days as optimization period, and two-stage stochastic model, 

with N representative days and M different scenarios for each day, of this system are developed, in order to 

understand which method allows obtaining “better” solutions, thus closer to the reference one (Section 4.1).  

In particular, the assumption is to be in 2010, with an electric and a thermal load to satisfy: the aim is to 

minimize the total cost for the users for the entire period 2010-2020, which is the “future”.  Indeed, historical 

data about global solar irradiance and air temperature, the uncertain parameters, are available just for the 

past, specifically for the period 2005-2009. Therefore, historical data must be used to forecast the future, to 

discuss the convenience in installing components, their sizes and to optimize the operation. In order to test 

the quality of the given solutions, obtained solving the different models, a comparison is done with a 

reference model for the period 2010-2020, which has perfect knowledge about the “future”. 

Therefore, the period of study is divided in training dataset, for the period 2005-2009, and testing dataset, 

for the period 2010-2020. The training dataset allows doing an “in-sample analysis”, because scenarios are 

obtained through clustering techniques from its data; testing dataset, on the contrary, entails an “out-sample 

analysis”, testing the solution on a larger set of scenarios.  

 

 

 

Figure 2.1: Schematic energy system scheme. The electric side consists in a photovoltaic system (PV), an electric storage (EES), the 

national grid and an electric load. The cogeneration system (CHP) is included both in the electric and thermal side, which considers 

a boiler, a thermal energy storage (TES) and a thermal load. If a component can give energy to the system or take energy from it, a 

bidirectional arrow is connected to it. 

Figure 2.1 shows the scheme under analysis. Suppose to have a group of residential loads, which have to be 

satisfied hour per hour, both on the electric and thermal side. Note that, because of the hourly resolution, 

concepts of energy and power coincide. They would spend in any case a given amount of money for their 

energy requirements, so the study focuses on which energy conversion units allow them to minimize the 

total cost for that time period. This cost [k€] is seen as sum between the design and the operation one. 

PV 

EES 

 Electrical Load 

Grid 

Boiler 

TES 

CHP 

Thermal Load 
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Furthermore, the auto-consumption of energy is not considered a revenue, while the excess in electric energy 

sold to the grid is seen as a negative cost for the objective function, presented in Section 4. 

To fulfil load requirements, the following components are taken into account.  

On the electric side components are: 

 A photovoltaic system (PV) [60], producing energy according to equations shown in Section 4.2.1. 

 An electric energy storage (EES) analysed in Section 4.2.2. 

 A cogeneration (CHP) system, with reference to catalogue [61], Section 4.2.3. 

 The national grid, purchasing energy to the system or buying from it. Purchasing and selling prices 

are indicated in Section 3.2, while equations in Section 4.2.6. 

On the thermal side: 

 The CHP system, as already indicated. 

 A natural gas fuelled boiler, with respect to reference [62], presented in Section 4.2.4. 

 A thermal energy storage (TES), with respect to reference [62]. Equations in Section 4.2.5. 

Techno-economical characteristics for these components are introduced in Section 3. 

The system is supposed to be installed in Padova, Italy (45,406°N, 11,877°E). The models, explained in Section 

4, have to evaluate the convenience in installing such components and, if so, their size. The number of the 

energy conversion systems can be zero, if they are not included, or one. Hence, two cogeneration systems, 

for instance, cannot be used. 
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3. Techno-economic data 

This section includes information about deterministic input data for the models, excluding air temperature 

and global solar irradiance, which are the uncertain parameters. In particular, Section 3.1 considers 

characteristics of the involved technologies, such as efficiencies or prices; Section 3.2 considers profiles of 

energy carriers, thus electricity and natural gas; Section 3.3 presents energy demand profiles for this group 

of residential users. 

3.1 Technologies characteristics 

Technology Quantity Unit 2020 

PV InvestmentCost_var €/kWp 1250 

InvestmentCost_fix € 0 

Space Requirement m2/kWp 9,7 

efficiency Standard - 0,136 

efficiencyBalanceofsystem - 0,85 

NOCT °C 43,2 

b0 1/°C  0,454/100 

CHP InvestmentCost_var €/kWel 1738,26 

InvestmentCost_fix € 32046 

MinLoad %MaxLoad 0,3 

F(P)_var . 0,2722 

F(P)_fix . 3,7125 

Q(P)_var . 1,7246 

Q(P)_fix . 9,3109 

Boiler InvestmentCost_var €/kWth 64,86 

InvestmentCost_fix € 1622 

MinLoad %MaxLoad 0,3 

EfficiencyTh . 0,97 

EES InvestmentCost_var €/kWh 880,28 

InvestmentCost_fix € 3494,44 

ηEES . 0,87 

Self Discharge %Size/hour 0,04 

Output Capacity kW/kWh 0,3 

Input Capacity kW/kWh 0,3 

SOCmin %Size 0 

TES InvestmentCost_var €/kWh 244,05 

InvestmentCost_fix € 968,52 

ηtES . 0,7 

Self Discharge %Size/hour 2,1 

Output Capacity kW/kWh 0,7 

Input Capacity kW/kWh 0,7 
Table 3.1.1: technical and economic characteristics of each energy conversion unit.  

Table 3.1.1 shows the characteristics of the elements of the energy system. Economical parameters refer to 
a fixed and a variable costs, respectively 𝑐𝑓𝑖𝑥𝑒𝑑  and 𝑐𝑣𝑎𝑟. The general expression for the design cost for a 

component, deepened in Section 4, is 𝐶𝑜𝑠𝑡𝑑𝑒𝑠 = 𝑐𝑓𝑖𝑥𝑒𝑑 ∗ 𝛿𝑖𝑛𝑣 + 𝑐𝑣𝑎𝑟 ∗ 𝐶𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡, where 𝛿𝑖𝑛𝑣 is a binary 

variable describing the presence of a given unit and 𝐶𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 is the size of the unit. Then, technical 
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parameters, such as efficiencies or self-discharge capacities, represent each technology. This information is 
taken from references [62] and [63]. The assumption is to have O&M costs equal to zero.  

Since the design is done at time 0, it does not have sense the consideration of evolution in energy 

components prices or performances, as explained in Section 1.1. Therefore, these parameters are 

deterministic, so nu uncertainty is considered for them. 

 

3.2 Energy carriers 

Figure 3.2.1: Average monthly electricity purchasing price [€/kWh]. 

Figure 3.2.1 indicates the average price of the electricity purchased by the system for each month. It varies 
hour by hour according to PUN [64], which means 365*24=8760 values are the historical data and can be 
used as input for the models. On the contrary, the selling electricity price is set equal to 4c€/kWh, constant 
all along the optimization period. 

Natural gas price, required by the boiler and by the CHP system, is set too, with a value equal to 0,480€/sm3. 
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3.3 Demand curves  

Figure 3.3.1: Average monthly electric load profiles [kWh] for the group of residential buildings. 

 

 Figure 3.3.2: Average monthly thermal load profiles [kWh] for the group of residential buildings. Please note 

that it strongly depends on the season. 

Figures 3.3.1 and 3.3.2 show the average monthly electric and thermal load for the group of civil users. 

Specifically, these values vary hour per hour, implying arrays of 24 elements per day. 

As for electricity prices, demand profiles are taken from an internal database. Data refers to one single year, 

with resolution of one hour, entailing 365*24=8760 elements. Note that thermal load strongly depends on 

the considered month: this aspect will be crucial for the generation of representative days with clustering 

techniques, in Section 4. 
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4. Methods: deterministic and two-stage stochastic 

models of the residential MES 

The following Section focuses on models of the residential MES. The goal is to describe input data, with 

special attention to the uncertain parameters, equations for the energy conversion systems, decision 

variables and the objective function. Section 4.1 introduces the reference model for the period 2010-2020; 

Section 4.2 explains in detail equations and inequalities for the components of the energy system; Section 

4.3 describes the deterministic model with N representative days, whose generation procedures are 

explained, as optimization period; Section 4.4 analyses the two-stage stochastic model with N representative 

days and M scenarios; Section 4.5 is about robustness test, to understand the quality of a given solution. 

4.1 Deterministic model of the residential MES for the period 2010-2020: 

decision variables and objective function 

The following is a model describing the residential multi-energy system of Section 2. The assumption is to be 

at year 2010, with perfect knowledge about the future (period 2010-2020). Therefore, this model is the one 

that solves precisely the problem for this period, finding the best solution, according to the objective 

function. 

In order to describe properly a model, focus should be on input data, equations/inequalities included and 

output data. Regarding this reference model, input data is: 

 air temperature; 

 global solar irradiance; 

 electricity price; 

 natural gas price; 

 electricity demand; 

 thermal demand; 

 techno-economic data for energy conversion units. 

Last three groups of parameters are described in Section 3. On the contrary, air temperature and global solar 

irradiance, which are the uncertain parameters under analysis, have to be described separately. 

The global solar irradiance and air temperature, assuming perfect knowledge about “future”, are taken from 
[65], with an hourly resolution, implying a superimposition for the concepts of energy and power. In 
particular, this source gives values of these parameters for each hour of each day for the period 2010-2020. 
The 29th of February is excluded. Hence, 93690 values are taken into account and, due to the hourly 
resolution, the number of time steps is the same. However, this would be too heavy on a computational point 
of view, forcing to use clustering techniques to generate a set of representative days. 

Let us focus on the clustering technique. In order to generate properly the representative days, k-medoids 

[55] should be applied. One of the differences between this method and k-means, as explained in Section 

1.2.5, is the representative element for the clusters: for k-medoids, it is the medoid, while for k-means the 

centroid. Hence, k-means may not evaluate a real element of the dataset as representative one of the cluster, 

while k-medoids does. This is better, because it takes into account actual profiles of irradiance and 

temperature and, even more, it is possible to consider the date of these profiles, in order to couple them 

with their real electricity price and demand curves (data for one single year). 
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In order to generate clusters from a dataset in Python, TSAM [66] or sklearn [67] packs could be used: 

 TSAM (Time Series Aggregation Module) generates clusters with k-means, k-medoids, k-maxoids, 

hierarchical or adjacent periods. It is very simple to use and it allows considering different physical 

quantities in the same process, even introducing extreme condition scenarios. However, some 

information, such as which elements are included in a cluster, are lost. Furthermore, the huge 

problem is due to the computational burdens in using k-medoids, which is the biggest limit in using 

TSAM. In fact, a dataset with 93690 elements implies unacceptable computational times. 

 sklearn pack is less automatic than TSAM, but it gives the possibility of saving more information. 

However, it does not allow using k-medoids, but k-means, which reminds the problem already 

explained. 

Therefore, the following steps explain the adopted data series reduction technique, while figure 4.1.1 

represents it schematically: 

1. sklearn pack is used to generate clusters with k-means algorithm. The process is repeated varying 

the number of days, from 2 to 45. Centroids are the representative elements for the clusters. In order 

to keep seasons as separated as possible, the air temperature is clustered with global solar 

irradiance. Indeed, similar profiles for global solar irradiance, belonging to different seasons, could 

imply large differences in air temperature and, thus, huge differences in thermal demand. A deeper 

discussion about this is presented in Section 5.1. 

2. For each cluster, the closest element (in terms of Euclidian distance) to the centroid is taken as new 

representative day. Therefore, each cluster is not represented anymore by a centroid, but by an 

element belonging to the cluster itself. 

3. Each representative element is associated with its date, which allows coupling them with the 

respective profile of electricity price, electricity demand and thermal demand. 

4. If a cluster includes the element with extreme conditions of thermal demand, that element becomes 

the representative one of the cluster. This passage is necessary, otherwise solutions are infeasible 

because of underestimation of thermal requirements. Clearly, the adopted solution overestimates 

the problem, which means that, especially for a low number of clusters, the solution is strongly 

conservative, as shown in Section 5.2. Indeed, extreme scenarios are not representative so, if N=2, 

instead of weighting one, this day could weight more than one hundred along the optimization 

period.  

5. The number of elements belonging to each cluster gives the weight of each representative day. 

The second crucial aspect is the mathematical formulation. The reference model is a Mixed Integer Linear 

Programming (MILP) problem. In particular, a general MILP can be formulated as: 

min 𝑓 = min
𝑥,𝑦

𝑐𝑇𝑥 + 𝑑𝑇𝑦 

𝑠. 𝑡 𝐴𝑥 + 𝐵𝑦 ≥ 𝑏 

(𝑥, 𝑦) ∈ ℝ𝑛
+ ×  ℤ𝑝

+ 
( 4 .  1 ) 

 

With  

ℝ𝑛
+ = {𝑥 ∈ ℝ𝑛: 𝑥 ≥ 0} 

 ℤ𝑝
+ = {𝑦 ∈ ℤ𝑝: 𝑦 ≥ 0} 

( 4 .  2 ) 
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Figure 4.1.1: Simplified scheme of the clustering technique. k-means is adopted, so the centroid (red) should be the 

representative element. Note that it does not belong to the cluster, so the closest element to it is taken as 

representative element (blue and red). This is valid unless the extreme scenario (green) belongs to a cluster: if so, it 

becomes the representative element. 

 

ℝ𝑛
+  is the n-dimensional space with all non-negative real numbers.  ℤ𝑝

+ is the p-dimensional space of non-

negative integer numbers. Clearly, some variables in a MILP can be binary variables, thus assuming values 

equal to 0 or 1. 

About expressions (4.1), f is the objective function, c and d are cost vectors associated with the design and 

operation decision variables, A and B are constraints matrixes, b is a vector with known terms. 

According to Rech et al. [68], variables in a model can be independent and dependent. In particular, 
independent variables are set as parameters by external condition, such as global solar irradiance or the 
energy demand, while dependent variables are calculated as function of the independent ones.  

In addition, the problem is an optimization one, which means some variables are free to vary to minimize a 

given objective function: these are the decision variables. In this thesis, decision variables can be divided in 

design and operation ones. Design decision variables are the size of the different energy conversion systems 

(the number of them is decided a priori) and binary variables, related to the inclusion of a given component. 

Differently, operation decision variables are energy fluxes for dispatchable components, such as the CHP 

system, and binary variables, indicating the ON/OFF status and additional variables, required to avoid bi-

linear constraints. 

The objective function is the minimization of the total cost. For the period 2010-2020, it can be written as 

𝑚𝑖𝑛 𝑓 = 𝑚𝑖𝑛 (𝐶𝑜𝑠𝑡𝑑𝑒𝑠 + ∑ ∑ ∑ 𝐶𝑜𝑠𝑡𝑜𝑝,𝑡

𝐻

ℎ=0

𝐷

𝑑=0

𝑌

𝑦=𝑦0

) 

( 4 .  3 ) 
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𝐶𝑜𝑠𝑡𝑑𝑒𝑠 =
1

𝛼
[𝑐𝑃𝑉 ∗ 𝐴𝑃𝑉 + (𝑐𝐸𝐸𝑆,𝑣𝑎𝑟 ∗ 𝐸𝐸𝐸𝑆,𝑚𝑎𝑥 + 𝑐𝐸𝐸𝑆,𝑓𝑖𝑥 ∗ 𝛿𝐸𝐸𝑆,𝑖𝑛𝑣)

+ (𝑐𝐶𝐻𝑃,𝑣𝑎𝑟 ∗ 𝐶𝐶𝐻𝑃 +  𝑐𝐶𝐻𝑃,𝑓𝑖𝑥 ∗ 𝛿𝐶𝐻𝑃,𝑖𝑛𝑣)

+ (𝑐𝑏𝑜𝑖𝑙𝑒𝑟,𝑣𝑎𝑟 ∗ 𝐶𝑏𝑜𝑖𝑙𝑒𝑟 +  𝑐𝑏𝑜𝑖𝑙𝑒𝑟,𝑓𝑖𝑥 ∗ 𝛿𝑏𝑜𝑖𝑙𝑒𝑟,𝑖𝑛𝑣)

+  (𝑐𝑇𝐸𝑆,𝑣𝑎𝑟 ∗ 𝑄𝑇𝐸𝑆,𝑚𝑎𝑥 + 𝑐𝑇𝐸𝑆,𝑓𝑖𝑥 ∗ 𝛿𝑇𝐸𝑆,𝑖𝑛𝑣)] 

( 4 .  4 ) 

𝐶𝑜𝑠𝑡𝑜𝑝,𝑡 = 𝐹𝐶𝐻𝑃,𝑡 ∗ 𝑐𝑛𝑎𝑡𝑢𝑟𝑎𝑙𝑔𝑎𝑠 + 𝐹𝑏𝑜𝑖𝑙𝑒𝑟,𝑡 ∗ 𝑐𝑛𝑎𝑡𝑢𝑟𝑎𝑙𝑔𝑎𝑠 + 𝑐𝑔𝑟𝑖𝑑,𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒,𝑡 ∗ 𝑃𝑔𝑟𝑖𝑑,𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒,𝑡 − 𝑐𝑔𝑟𝑖𝑑,𝑠𝑒𝑙𝑙

∗ 𝑃𝑔𝑟𝑖𝑑,𝑠𝑒𝑙𝑙,𝑡  

( 4 .  5 ) 

Index h indicates the hour of the day, thus it goes from 0 to 23, according to the hourly resolution. Index d 

indicates the day and it goes from 0 to 364, covering the entire year. Index y indicates the considered year: 

it goes from the initial one y0 to the final one Y. Therefore, the reference model for the testing dataset has 

y0=2010 and Y=2020. If a variable varies with time, the adopted index is t, indicating the total time, including 

the respective hour, day and year. For example, the fuel required by the boiler is indicated as Fboiler,t instead 

of Fboiler,h,d,y. 

Equation (4.3) shows that the goal is to minimize the sum between design and operating costs. Equation (4.4) 

shows how the design cost is expressed: 

1. cPV ∗ APV is the product between the specific cost per area cPV [€/m2] and the area of the 

photovoltaic system, which is a design decision variable. cPV and all the following costs are taken from 

an internal database, as explained in Section 5. 

2. (cEES,var ∗ EEES,max + cEES,fix ∗ δEES,inv) is the term related to the electric energy storage. In 

particular, there is a variable cost cEES,var, multiplied for the size of the storage EEES,max, which is a 

design decision variable, and a fixed term cEES,fix, related to the inclusion of the component. In fact, 

δEES,inv is a binary decision variable, whose value is 1 if the component is present in the system and 

0 if it is not. 

3. (cCHP,var ∗ CCHP +  cCHP,fix ∗ δCHP,inv) expresses the design cost for the CHP system. Terms are 

analogue to the ones of the EES. Design decision variables are CCHP and δCHP,inv. 

4. (cboiler,var ∗ Cboiler + cboiler,fix ∗ δboiler,inv) is the term for the boiler. Meanings are equal to the 

previous terms, so decision variables are the size Cboiler and the binary variable δboiler,inv. 

5. (cTES,var ∗ QTES,max + cTES,fix ∗ δTES,inv) represents the cost for the thermal energy storage. Design 

decision variables are the size  QTES,max and the investment binary variable δTES,inv. 

 

1/α is the term required to take into account amortization. If the optimization period is 1 year. 

 

1

𝛼
=

𝑟

1 − (1 + 𝑟)−𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒
 

( 4 .  6 ) 
 

 

The system lifetime is assumed to be equal to 20 years. r is the interest rate, equal to 4%. However, if the 

model is the reference one for the testing dataset, due to the consideration of eleven years instead of 20, 

only a part of it should be taken into account. 
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For what concerns the operating costs (4.6): 

1. FCHP,t ∗ cnaturalgas indicates the operation cost for the CHP system, equal to the fuel required for the 

operation FCHP,t multiplied for the price of natural gas cnaturalgas. Note that FCHP,t is a dependent 

variable, because the power and heat produced, PCHP,t and QCHP,t are the operation decision variables. 

2. Fboiler,t ∗ cnaturalgas is the term related to the boiler. A for the CHP system, 𝐹𝑏𝑜𝑖𝑙𝑒𝑟,𝑡 is the dependent 

variable. 

3. cgrid,purchase,t ∗ Pgrid,purchase,t is the cost for purchasing energy from the grid. The cost is set as 

explained in Section 3, while Pgrid,purchase,t is a second-stage decision variable. 

4. cgrid,sell ∗ Pgrid,sell,t is the earning obtained by selling energy to the grid. In fact, it has a negative sign 

in the objective function. Pgrid,sell,tis a decision variable. 

The previous objective function, unfortunately, is valid with 93690 time steps: if N representative days are 

generated and used as optimization period, the objective function has to be changed. Indeed, it becomes 

𝑚𝑖𝑛 𝑓 = 𝑚𝑖𝑛 (𝐶𝑜𝑠𝑡𝑑𝑒𝑠 + ∑ 𝑤𝑑 ∗ ∑ 𝐶𝑜𝑠𝑡𝑜𝑝,𝑡

𝐻

ℎ=0

𝐷

𝑑=0

) 

( 4 .  7 ) 

With wd weight associated to the specific representative day. As explained before, it is equal to the number 

of elements belonging to a given cluster. Now d goes from 0 to D=N, the number of representative days 

obtained through clustering techniques. The index for the variable remains t, the total time. 

In addition, constraints are required to solve the problem. Energy balances are presented for both electrical 

and thermal side. Additionally, for each energy conversion unit, characteristic curves are included, as well as 

inequalities for their operability range. Mass balances are not indicated, to keep the number of equations as 

low as possible, because they are assumed to be verified once energy balances are. All these constraints are 

presented in Section 4.2. 

This model, as already said, is used as reference. The following procedure explains in detail all the passages: 

1. N representative days, with 𝑁 ∈ [2, 45], are obtained through clustering techniques. Consequently, 

44 set of representative days are generated. 

2. For each set of days, the model is solved, obtaining the optimized solution. In particular, one set of 

sizes, the design decision variables, is considered for each set of representative days. 

3. Each set of sizes is tested for the period 2010-2020, as described in Section 4.5 (testing dataset), 

which means the design decision variables are set, thus only operation is optimized. This is a test on 

real data, with 93690 time steps. It is possible because of the lower computational effort, linked with 

the absence of design decision variables. 

4. Figure 5.2.1 shows the graph obtained. For each set of sizes in the x-axis, associated with a solution 

obtained with 𝑁 ∈ [2,45] representative days, a point on the y-axis, indicating the total cost for 

period 2010-2020, is coupled. It represents the real total cost for the entire period if the sizes in the 

design phase are those specific ones. 

5. The minimum for the graph in figure 5.2.1 is chosen as the reference solution. Indeed, the objective 

function is the minimization of the total cost and, because the solutions found in point 2 are tested 

with the real data, there are no problems about loss of information due to data series reduction. 

Clearly, this solution is not the reference one, but a higher bound. 
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Figure 4.1.2. Summary of the different models for the residential MES. The period 2005-2009 represents the training 

dataset, while the period 2010-2020 the testing one. For the training dataset, a deterministic model with N 

representative days and a two-stage stochastic model with N days and M scenarios are developed. They are compared 

on this period and on the testing dataset, with respect to the reference model. 

 

 

4.2 Energy conversion systems 

4.2.1 Photovoltaic system 

The electric power from the photovoltaic system is given by equation (4.8), according to [69]: 

𝑃𝑃𝑉,𝑡 = 𝐴𝑃𝑉 ∗ 𝐺𝑡𝑜𝑡,𝑡 ∗ 𝜂𝑃𝑉,𝑡 ∗ 𝜂𝐵𝑂𝑆 

( 4 .  8 ) 

Here, APV is the area of the PV system, a design decision variable. Gtot,t is the global solar irradiance on the 

tilted plane, assumed to have optimal tilt and azimuth angles: it is the uncertain parameter. ηPV,t is the 

efficiency of the PV system, which depends on the air temperature, as shown in equations (4.9, 4.10). ηBOS 

is the balance of system efficiency, whose value is set. 

𝑇𝑐𝑒𝑙𝑙,𝑡 = 𝑇𝑎𝑖𝑟,𝑡 +
𝑁𝑂𝐶𝑇 − 20

800
∗ 𝐺𝑡𝑜𝑡,𝑡 

( 4 .  9 ) 
 

𝜂𝑃𝑉,𝑡 = 𝜂𝑃𝑉,𝑠𝑡𝑑 ∗ (1 − 𝑏0 ∗ (𝑇𝑐𝑒𝑙𝑙,𝑡 − 25)) 

( 4 .  10 ) 
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4.2.2 Electric energy storage system 

𝐸𝐸𝐸𝑆,𝑡 = 𝐸𝐸𝐸𝑆,𝑡−1 ∗ (1 − 𝐸𝑠𝑒𝑙𝑓𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒) + 𝜂𝐸𝐸𝑆 ∗ 𝑃𝐸𝐸𝑆,𝑡
+ −

1

𝜂𝐸𝐸𝑆
𝑃𝐸𝐸𝑆,𝑡

−  

( 4 .  11 ) 

This equation shows how the energy in the storage at time t is linked to the energy at the previous moment. 

In particular, it is reduced by a term equal to (1 − Eselfdischarge), considering the self-discharge capacity of 

the system, reduced by the energy taken from it and increased of the energy charged. Clearly, ηEES indicates 

the efficiency of the storage. If a quantity of energy PEES,t
−  is required, 

1

ηEES
PEES,t

−  is discharged from the 

battery, to consider losses. Similarly, if a quantity PEES,t
+  could be charged to the storage, only a smaller 

amount ηEES ∗ PEES,t
+  is charged in the end. 

𝑆𝑂𝐶𝑚𝑖𝑛𝐸𝐸𝐸𝑆,𝑚𝑎𝑥 ≤ 𝐸𝐸𝐸𝑆,𝑡 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥𝐸𝐸𝐸𝑆,𝑚𝑎𝑥 

( 4 .  12 ) 

𝐸𝐸𝐸𝑆,0 = 0.5 ∗ 𝐸𝐸𝐸𝑆,𝑚𝑎𝑥  

( 4 .  13 ) 

𝐸𝐸𝐸𝑆,𝑇 = 0.5 ∗ 𝐸𝐸𝐸𝑆,𝑚𝑎𝑥 

( 4 .  14 ) 

0 ≤ 𝑃𝐸𝐸𝑆,𝑡
+ , 𝑃𝐸𝐸𝑆,𝑡

− ≤ 𝑐𝑜𝑛𝑠𝑡 ∗ 𝐸𝑚𝑎𝑥,𝐸𝐸𝑆 

( 4 .  15 ) 
 

Equation (4.12) forces the energy level to be included between the minimum and maximum state of charge 

SOC. (4.13) and (4.14) are boundary layers, indicating the initial and final amount of energy in the storage. 

Equation (4.15) indicates that charge and discharge power cannot be higher than a predefined value, which 

is function of the size of the storage.  

In addition, two equations are required to force the storage to charge OR discharge in a given moment, 

preventing the two processes simultaneously. The big M method is used for this: 

𝑃𝐸𝐸𝑆,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑡 ≤ 𝑀𝐵𝐼𝐺 ∗ 𝛿𝐸𝐸𝑆,𝑡 

( 4 .  16 ) 

𝑃𝐸𝐸𝑆,𝑐ℎ𝑎𝑟𝑔𝑒,𝑡 ≤ (1 − 𝑀𝐵𝐼𝐺) ∗ 𝛿𝐸𝐸𝑆,𝑡 

( 4 .  17 ) 

Here MBIG is a parameter, whose value is set and very big, in order not to reach it. 𝛿𝐸𝐸𝑆 is a binary decision 

variable: if it is equal to one, the EES is in discharge mode, if it is 0 the EES is charging energy. Another 

equation is required, to force 𝛿𝐸𝐸𝑆,𝑡 to be equal to zero at any time if the EES is not included. 

𝛿𝐸𝐸𝑆,𝑡 ≤ 𝛿𝐸𝐸𝑆,𝑖𝑛𝑣   

( 4 .  18 ) 
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4.2.3 CHP system 

CHP characteristic curves are obtained through interpolation from data given by [61] 

𝐹𝐶𝐻𝑃,𝑡 = 0,2722 ∗ 𝑃𝐶𝐻𝑃,𝑡 + 3,7125 ∗ 𝛿𝐶𝐻𝑃,𝑡   

( 4 .  19 ) 

𝑄𝐶𝐻𝑃,𝑡 = 1,7246 ∗ 𝑃𝐶𝐻𝑃,𝑡 + 9,3109 ∗ 𝛿𝐶𝐻𝑃,𝑡  

( 4 .  20 ) 

Equation (4.19) links the fuel consumption at time t FCHP,t to the power generated in the same moment 

PCHP,t, which is a decision variable. Clearly, a binary variable δCHP,t is required to connect them properly: if 

the system is working, δCHP,t is equal to one, otherwise the system is off and δCHP,t is zero. Similarly, equation 

(4.20) links the heat produced by the system to the power produced. 

The system is free to choose the size of the CHP plant. Therefore, to avoid bilinear constraints [70] as  

𝑃𝐶𝐻𝑃,𝑡 ∗ 𝛿𝐶𝐻𝑃,𝑡 ≤ 𝐶𝐶𝐻𝑃 

( 4 .  21 ) 

In which there is a product between two decision variables, increasing exponentially the complexity of the 

code, an additional variable 𝜗𝐶𝐻𝑃,𝑡 is added, as shown in the following equations 

 

𝛿𝐶𝐻𝑃,𝑡 ∗ 𝐶𝐶𝐻𝑃,𝑚𝑖𝑛 ≤  𝜗𝐶𝐻𝑃,𝑡  

( 4 .  22 ) 

𝜗𝐶𝐻𝑃,𝑡 ≤  𝛿𝐶𝐻𝑃,𝑡 ∗ 𝐶𝐶𝐻𝑃𝑚𝑎𝑥 

( 4 .  23 ) 

(1 − 𝛿𝐶𝐻𝑃,𝑡) ∗ 𝐶𝐶𝐻𝑃,𝑚𝑖𝑛 ≤ 𝐶𝐶𝐻𝑃 − 𝜗𝐶𝐻𝑃,𝑡 

( 4 .  24 ) 

𝑆𝑂𝑃𝐶𝐻𝑃,𝑚𝑖𝑛 ∗ 𝜗𝐶𝐻𝑃,𝑡 ≤ 𝑃𝐶𝐻𝑃,𝑡  

( 4 .  25 ) 

𝜗𝐶𝐻𝑃,𝑡 ≤ 𝑃𝐶𝐻𝑃,𝑡  

( 4 .  26 ) 

Note that, in any case, even if the system can decide the optimal size, it is not possible to accept every size. 

In fact, it depends on the catalogue [61], which means the closest one to a possible model must be 

considered. 

The last equation (4.27), as for the EES, links the binary variable 𝛿𝐶𝐻𝑃,𝑡 to the investment one 𝛿𝐶𝐻𝑃,𝑖𝑛𝑣, 

required in the objective function (Section 4.1). In this way, if the component is not included, there is no 

possibility of producing power or heat. 

𝛿𝐶𝐻𝑃,𝑡 ≤ 𝛿𝐶𝐻𝑃,𝑖𝑛𝑣 

( 4 .  27 ) 
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4.2.4 Boiler 

𝐹𝑏𝑜𝑖𝑙𝑒𝑟,𝑡 = 𝑄𝑏𝑜𝑖𝑙𝑒𝑟,𝑡/𝜂𝑏𝑜𝑖𝑙𝑒𝑟 

( 4 .  28 ) 

Equation (4.28) links the fuel consumption 𝐹𝑏𝑜𝑖𝑙𝑒𝑟,𝑡 to the heat produced 𝑄𝑏𝑜𝑖𝑙𝑒𝑟,𝑡 (decision variable) through 

the efficiency of the component 𝜂𝑏𝑜𝑖𝑙𝑒𝑟. As for the CHP system, the size is not set, entailing the introduction 

of the additional variable 𝜗𝑏𝑜𝑖𝑙𝑒𝑟,𝑡, as indicated in equations (4.29-4.34). 

 

𝛿𝑏𝑜𝑖𝑙𝑒𝑟,𝑡 ∗ 𝐶𝑏𝑜𝑖𝑙𝑒𝑟,𝑚𝑖𝑛 ≤  𝜗𝑏𝑜𝑖𝑙𝑒𝑟,𝑡 

( 4 .  29 ) 

𝜗𝑏𝑜𝑖𝑙𝑒𝑟,𝑡 ≤  𝛿𝑏𝑜𝑖𝑙𝑒𝑟,𝑡 ∗ 𝐶𝑏𝑜𝑖𝑙𝑒𝑟,𝑚𝑎𝑥 

( 4 .  30 ) 

(1 − 𝛿𝑏𝑜𝑖𝑙𝑒𝑟,𝑡) ∗ 𝐶𝑏𝑜𝑖𝑙𝑒𝑟,𝑚𝑖𝑛 ≤ 𝐶𝑏𝑜𝑖𝑙𝑒𝑟 − 𝜗𝑏𝑜𝑖𝑙𝑒𝑟,𝑡 

( 4 .  31 ) 

𝑆𝑂𝑃𝑏𝑜𝑖𝑙𝑒𝑟,𝑚𝑖𝑛 ∗ 𝜗𝑏𝑜𝑖𝑙𝑒𝑟,𝑡 ≤ 𝑃𝑏𝑜𝑖𝑙𝑒𝑟,𝑡  

( 4 .  32 ) 

𝜗𝑏𝑜𝑖𝑙𝑒𝑟,𝑡 ≤ 𝑃𝑏𝑜𝑖𝑙𝑒𝑟,𝑡  

( 4 .  33 ) 

𝛿𝑏𝑜𝑖𝑙𝑒𝑟,𝑡 ≤ 𝛿𝑏𝑜𝑖𝑙𝑒𝑟,𝑖𝑛𝑣  

( 4 .  34 ) 

 

 

4.2.5 Thermal energy storage system 

𝑄𝑇𝐸𝑆,𝑡 = 𝑄𝑇𝐸𝑆,𝑡−1 ∗ (1 − 𝐸𝑠𝑒𝑙𝑓𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒) + 𝜂𝑇𝐸𝑆 ∗ 𝑄𝑇𝐸𝑆,𝑡
+ −

1

𝜂𝑇𝐸𝑆
𝑄𝑇𝐸𝑆,𝑡

−  

( 4 .  35 ) 

𝑆𝑂𝐶𝑚𝑖𝑛𝑄𝑇𝐸𝑆,𝑚𝑎𝑥 ≤ 𝑄𝑇𝐸𝑆,𝑡 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥𝑄𝑇𝐸𝑆,𝑚𝑎𝑥 

( 4 .  36 ) 

𝑄𝑇𝐸𝑆,0 = 0.5 ∗ 𝑄𝑇𝐸𝑆,𝑚𝑎𝑥 

( 4 .  37 ) 

𝑄𝑇𝐸𝑆,𝑇 = 0.5 ∗ 𝑄𝑇𝐸𝑆,𝑚𝑎𝑥 

( 4 .  38 ) 

0 ≤ 𝑄𝑇𝐸𝑆,𝑡
+ , 𝑄𝑇𝐸𝑆,𝑡

− ≤ 𝑐𝑜𝑛𝑠𝑡 ∗ 𝑄𝑚𝑎𝑥,𝑇𝐸𝑆 

( 4 .  39 ) 

𝑄𝑇𝐸𝑆,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑡 ≤ 𝑀𝐵𝐼𝐺 ∗ 𝛿𝑇𝐸𝑆,𝑡 

( 4 .  40 ) 

𝑄𝑇𝐸𝑆,𝑐ℎ𝑎𝑟𝑔𝑒,𝑡 ≤ (1 − 𝑀𝐵𝐼𝐺) ∗ 𝛿𝑇𝐸𝑆,𝑡  

( 4 .  41 ) 

𝛿𝑇𝐸𝑆,𝑡 ≤ 𝛿𝑇𝐸𝑆,𝑖𝑛𝑣  
( 4 .  42 ) 
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Equations are analogue to the ones of the EES. Indeed, (4.35) links the energy level in the storage at time t 

to the one at t-1, (4.36) forces the system to stay in the range between minimum and maximum state of 

charge level, (4.37) and (4.38) state the initial and final energy level for the storage. Equation (4.39) indicates 

that the power charged/discharged is a function of the size of the TES. Big M method is applied in equations 

(4.40), (4.41) to avoid a charge/discharge process in the same time step. As for the other components, 

inequality (4.42) is required to connect the binary variable 𝛿𝑇𝐸𝑆,𝑡, used for ON/OFF status, to the design 

decision binary variable 𝛿𝑇𝐸𝑆,𝑖𝑛𝑣. 

 

4.2.6 Grid 

𝑃𝑔𝑟𝑖𝑑,𝑠𝑒𝑙𝑙,𝑡 ≤ 𝛿𝑔𝑟𝑖𝑑,𝑡 ∗ 𝑀𝐵𝐼𝐺  

( 4 .  43 ) 

𝑃𝑔𝑟𝑖𝑑,𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒,𝑡 ≤ (1 − 𝛿𝑔𝑟𝑖𝑑,𝑡) ∗ 𝑀𝐵𝐼𝐺  

( 4 .  44 ) 

Expressions (4.43), (4.44) are provided to prevent the grid to sell to the system and buy from it in the same 

moment, by using the big M method. 

 

 

4.2.7 Energy balances 

The electric energy balance is, for each moment 

𝑃𝑃𝑉,𝑡 + 𝑃𝐶𝐻𝑃,𝑡 + 𝑃𝑔𝑟𝑖𝑑,𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒,𝑡 + 𝑃𝐸𝐸𝑆,𝑡
− = 𝑃𝐸𝐸𝑆,𝑡

+ + 𝑃𝑔𝑟𝑖𝑑,𝑠𝑒𝑙𝑙,𝑡 + 𝑃𝑙𝑜𝑎𝑑,𝑡  

( 4 .  45 ) 

Energy that flows into the system comes from the PV plant or the CHP one, is purchased from the grid or is 

taken from the EES. On the contrary, energy that leaves the system is charged in the EES, sold to the grid or 

required by users. 

The thermal balance states 

𝑄𝐶𝐻𝑃,𝑡 + 𝑄𝑏𝑜𝑖𝑙𝑒𝑟,𝑡 + 𝑄𝑇𝐸𝑆,𝑡
− =  𝑄𝑇𝐸𝑆,𝑡

+ + 𝑄𝑙𝑜𝑎𝑑,𝑡   

( 4 .  46 ) 

Hence, the CHP plant, the boiler and the heat stored in the thermal storage are able to satisfy the thermal 

load. On the contrary, if heat production is too much, it can be stored in the TES. 

Please note that previous equations are referred to the reference model for period 2010-2020. If n 

representative days are used, instead, most of equations are the same. In any case, equations (4.14), (4.28) 

change a little, because these N days are not consecutive and aggregate periods for different months and 

years. Therefore, all of them are independent from each other, forcing the electric and thermal energy 

storages to have the same energy level at the beginning and at the end of every day. 
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4.3 Deterministic model of the residential MES with N representative 

days, for period the 2005-2009 

4.3.1 Decision variables, constraints and objective function 

This model, as the one presented in Section 4.1, is referred to the residential MES introduced in Section 2: 

the goal is to see how close solutions can be with respect to the ones from the reference model with perfect 

knowledge about the future. In particular, it considers as input data global solar irradiance, air temperature, 

price of energy carriers, electrical energy demand, thermal demand and techno-economic characteristics for 

the energy conversion systems. Moreover, constraints for the model, implying characteristic curves for each 

energy conversion unit and inequalities, as well as output variables, are the same. The objective function is 

the one presented at the end of Section 4.1 (equation (4.7)), because of the N days as optimization period. 

Hence, the difference is given by how global solar irradiance and air temperature are obtained. 

In particular, differently from the previous model, even if the global solar irradiance is taken from the same 

source, the period is different (2005-2009): the final goal is to see how close solutions can be with respect to 

the best ones, in terms of total cost. Therefore, once generated the clusters, an optimization process is done, 

in order to get design and operation decision variables. Then, sizes for energy conversion units are set and 

operation can be tested both on the training dataset, thus period 2005-2009 (43800 time steps), or testing 

dataset, period 2010-2020 (93690 time steps). 

 

 Figure 4.3.1: Input data for the deterministic model with N representative days, generated with clustering 

techniques. In this example, N is equal to twelve. 
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4.3.2 Generation of N representative days with clustering techniques 

Clustering techniques are adopted to reduce computational effort and obtain days (clusters) as 

representative as possible of the initial dataset. 

The procedure is similar to the one already presented in the previous Section: 

1. Starting from the global solar irradiance and air temperature for the period 2005-2009, with hourly 

resolution, the clustering process, identical to the one explained in the previous Section, gives 29 sets 

of N representative days, with 𝑁 ∈ [2, 30]. 

2. The optimized solution, implying design and operation decision variables, is found for each set of 

clusters. The optimization period corresponds to 24*N time steps. 

3. If the total cost, obtained in point 2, is plotted as function of the number of representative days, a 

curve is obtained. However, this cost depends on the adopted clustering technique. Indeed, as 

already indicated, the introduction of extreme scenarios force to overestimate the total cost. 

4. Therefore, for each set of sizes the operation is optimized for period 2005-2009. The minimum of the 

curve with actual total cost on the y-axis and set of sizes, linked to the representative days, on the x-

axis, gives the optimal size for the components and the optimal total cost. 

5. The simulation is repeated many times, because results vary depending on the clustering process. 

The chosen number of representative days should be as low as possible, to limit computational time, 

and as close as possible to the minimum of graph described in point 4. 

The alternative is to choose the number of representative days with respect to the yearly reference models, 

always describing the same residential MES. Input data is the same, but values for the air temperature and 

the global solar irradiance are related to the specific year (period 2005-2009). Equations, inequalities and the 

output variables are the same, but the number of time steps, equal to 8760, which means computational 

effort is still acceptable, is the difference. Therefore, the model gives the best solution for the specific year, 

which is surely the reference. 

If the comparison is done in this way, two alternatives are possible. The first one is to do as just explained, 

considering the entire training dataset in a single clustering process to get a limited number of representative 

days. 

The other possibility is to compare solutions year by year. The procedure can be summarized as: 

1. The reference model for each year is solved. Hence, the best solution in terms of design decision 

variables and objective function is found. 

2. For every year of the training dataset, the clustering process used up to now is used, to generate 29 

sets of days for each year, for a total of 29*5=145 sets. Therefore, five sets are made up of 2 

representative days, five sets of 3 days, etc. Considering sets with 2 days, the first one is referred to 

2005, the second to 2006 and so on. 

3. These models with a limited number of days are optimized and their solutions are compared to the 

one of the reference model for the respective year. 

In order to compare these results to the reference one, two types of indicators are taken into account. The 

first one is the Mean Absolute Error (MAE), simply calculated as  

𝑀𝐴𝐸𝑁 =
∑ ∑|𝑦𝑖 − 𝑥𝑖,𝑁|2009

𝑖=2005

𝑌
  

( 4 .  47 ) 

Where xi,N is the value of the objective function (total cost) for the different models with N representative 

days, related to year i, while yi is the objective function for the reference model of year i. Y is the number of 

years, equal to five for the training dataset. 



45 
 

The second indicator is the Root Mean Square Difference (RMSD), evaluated as 

𝑅𝑀𝑆𝐷𝑁 = √∑ (𝑦𝑖 − 𝑥𝑖,𝑁)
22009

𝑖=2005

𝑌
 

( 4 .  48 ) 

The meaning of the different elements of (4.48) is the same as for (4.47). 

Once obtained these values for each year i, the number of days is chosen by considering the minimum values 

of MAE and RMSD. Then, the actual days are the ones of year i, with the lowest values of MAE and RMSD. 

For example, if MAE and RMSD are minimized with k=20, these 20 days are the ones from the closest year 

with respect to the reference model for the same year. 

Please note that the model is the same in terms of mathematical formulation and output variables: the only 

difference is given by how representative days are generated. In particular, this procedure allows obtaining 

data for global solar irradiance and air temperature, with respect to one year, while other input, such as 

electricity price and energy demands, are related to the training dataset or the testing one. As for the 

previous methods, date is obtained for each representative day and this allows coupling the inputs. 

 

4.3.3 Alternative methods to generate representative days based on seasons 

In Section 4.3.2, clustering process considers both global solar irradiance and air temperature. The idea is to 

keep seasons as separated as possible, without rigid distinctions.  

The motivation for separating seasons for clusters is not related to a succession of data. In fact, once obtained 

the set of representative days, there is not an historical progression of elements, which means that all 

scenarios are independent from each other. This forces the system to find a worse solution because, as 

indicated in Sections 4.2.2, 4.2.5, energy storage systems relate their energy level to the one of the previous 

time step, the previous hour. If each scenario is independent, energy level at hour 00:00 cannot be related 

to the one at hour 23:00, but must be set. 

Hence, the consideration of just climate conditions as uncertain parameters is the key: assuming to work just 

with global solar irradiance, if a cluster is represented by a summer element, for instance 18/07, but half of 

its elements are from winter, it will not entail a good solution. Indeed, the global solar irradiance for this 

cluster represents well the elements, but the remaining input data (energy demand, air temperature, 

electricity price) is related just to the representative day, thus 18/07. Therefore, global solar irradiance could 

be similar for summer and winter days, depending on several aspects, but air temperature, for instance, will 

be probably different.  

Global solar irradiance does not change sharply once the season changes, but it depends on several factors. 

Hence, some clusters near the seasonal “border” could be well represented by half elements from a season 

and half from the previous/following one. Because of this, the choice was not to separate into seasons, in 

order to let the system decide how to aggregate elements. Nevertheless, to help the process, air temperature 

is included in the clustering process. 
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In order to have a complete view about the problem, seasonal representative days are obtained. In Section 

5, comparison of results is deepened. Note that the only difference is given by how representative days are 

obtained. 

1. The training dataset is divided per season. Therefore, winter section includes winter elements for 

2005, 2006, 2007, 2008 and 2009. 

2. For each season, a clustering process is carried out. The procedure is always the same, with a number 

N of representative days, with 𝑁 ∈ [1, 7]. Therefore, 4*N representative days are generated, N per 

season. Please note that combinations of different number of days per season are not considered to 

avoid computational complexity. Indeed, the quality of clusters is not a proper indicator for the 

quality of the solution (Section 4.4), so the decision could be done just testing all the sets of days to 

obtain optimized solutions. 

 

 

Another method to generate representative days is to obtain average monthly profiles. In particular, the 

training dataset (2005-2009) is divided per month and, given the hour, the day and the month, the average 

values of these parameters are calculated. For example, if irradiance and temperature of January 2005, 2006, 

…, 2009 are taken into account 

𝐺ℎ,𝑑,𝐽𝑎𝑛𝑢𝑎𝑟𝑦 = ∑ 𝐺ℎ,𝑑,𝑦,𝐽𝑎𝑛𝑢𝑎𝑟𝑦/5

2009

𝑦=2005

 

( 4 .  49 ) 

With ℎ ∈ [0, 23] hour of the day, 𝑑 ∈ [0, 𝐷] day of the specific month, 𝑦 ∈ [2005, 2009] year. 

The clear disadvantage in using this method is the averaging of curves. Indeed, an average profile for global 

solar irradiance and air temperature implies a flatter curve, which avoids extreme hot and cold conditions 

and entails overestimation or underestimation of design variables. In fact, an alternative would be to consider 

average seasonal days, dividing the dataset per season instead of month. However, this solution would imply 

even flatter curves, with a number of representative days equal to four. In addition, the rigid distinction 

linked to seasons is still a problem. 
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4.4 Two-stage stochastic model of the residential MES with N 

representative days and M scenarios, for the period 2005-2009 

4.4.1 Decision variables, constraints and objective function 

The two-stage stochastic model is always related to the same scheme presented in Section 2. The aim is to 

compare its solution, in terms of total cost and design decision variables, with the ones from the reference 

model for the period 2010-2020 (Section 4.1) and from the deterministic one with N representative days 

(Section 4.3). 

The number of representative days is the same as the one for the deterministic model. The difference, 

however, is the generation of M scenarios of global solar irradiance and air temperature for each 

representative day. 

As explained in Section 1.6, the idea is to make a decision, whose convenience depends on an outcome at 

time 1, at time 0. The here and now approach is adopted, minimizing the expected value of the objective 

function, which has elements of both first and second stage. 

𝑧𝐻𝑁 = 𝑚𝑖𝑛
𝑥

𝔼𝑓(𝑥, 𝑠) 

( 4 .  50 ) 

Indeed, the approach is to consider the first stage for the design, which is done at time 0. Then, each 

representative day (time 1) will have a set of scenarios, weighted with its own probability. Therefore, the 

operation is represented by one single stage, even if it occurs for one or more years. The choice is not to add 

other stages unless information about future changes, which is not the case because of the consideration of 

climate conditions as uncertain parameters, avoiding climate change introduction [9]. Because of that, the 

objective function becomes: 

𝑚𝑖𝑛 𝑓 = 𝑚𝑖𝑛 (𝐶𝑜𝑠𝑡𝑑𝑒𝑠 + ∑ 𝑝𝑠 ∗

𝑆

𝑠=0

∑ 𝑤𝑑 ∗ ∑ 𝐶𝑜𝑠𝑡𝑜𝑝,𝑡

𝐻

ℎ=0

𝐷

𝑑=0

) 

( 4 .  51 ) 

In which s indicates the specific scenario, S=M the number of scenarios, ps the probability associated with 

each scenario. As can be noted, the design cost does not depend on the scenario s, but the convenience in 

installing an energy conversion unit depends on that. Therefore, the design decision variables depend on the 

expected value for the operation. 

Constraints are equal to the one already presented for the deterministic model (Section 4.2), so with respect 

to equations (4.8-4.46), except for equations (4.14), (4.28) because each day (and each scenario for the day) 

have to be independent from each other. In addition, decision variables are the same as indicated in Section 

4.1. In addition, input data presented in Section 3 does not vary. 

Therefore, the focus should be on irradiance and temperature. Following sub-Sections describe: 

1. Evaluation of representative days. 

2. Evaluation of scenarios for each day. 
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4.4.2 Proposed method to generate representative days and stochastic scenarios 

As explained in Section 4.3.2, the number of days for the deterministic model, considering computational 

burdens and error with the best solution. According to results in Section 5.3, it can be set as N=9 or 11. Let 

us suppose to work with 11 day, to get a number of days closer to the ones obtained with other methods 

and to have a fair comparison. A real day represents each cluster: its belonging season is found. Indeed, to 

compare solutions it is required to have the same days for each season, for both the deterministic solution 

and the two-stage stochastic one. If it is not checked, an explicative case can be taken as example: from the 

deterministic model, 6 days are from summer, while in the stochastic one 6 days are from winter. Even if 

profiles are just for solar irradiance and air temperature, representative elements of each cluster are coupled 

with profiles of electricity price, electricity demand and thermal demand. Therefore, under these 

assumptions the deterministic model will overestimate the PV production, while underestimating CHP, TES 

and boiler sizes, while the stochastic one will do the opposite.  

This aspect is not trivial, because every time the clustering process is done clustering results are different, 

implying changes in representative days and in days per season. In fact, table 4.4.1 shows the representative 

days for 10 simulations: 25th of February, for instance, is used as representative day just four times out of ten 

simulations. Table 4.4.2 indicates that number of representative days per month vary for each simulation. In 

the same way, the number of elements per season may vary, even if it tends to be more constant. 

Because of this, the dataset is divided for the different seasons. Then, a first clustering process is done, as 

explained in Section 4, using k-means method with sklearn pack. To be precise, four clustering processes are 

done, one per season: for example, focusing on winter, if the deterministic model has three representative 

days in that period, k-means is carried out with number of clusters equal to three. Then, the centroid is 

substituted with its closest element. The same is done for the other seasons, obtaining N=11 representative 

days. 

 

Table 4.4.1: Typical days for the deterministic model repeating the clustering process ten times. Every time it is 

repeated, representative days vary, implying differences in the solution. 
 

After this first step, for each typical day, another clustering process is done, in order to get its different 

scenarios, whose number is set arbitrarily equal to 𝑀 ∈ [2,7]. Therefore, N clustering processes are done for 

the second step, one per representative day, plus four in the first step, one per season.  

 

Representative days deterministic model 
Simulation 

1 
Simulation 

2 
Simulation 

3 
Simulation 

4 
Simulation 

5 
Simulation 

6 
Simulation 

7 
Simulation 

8 
Simulation 

9 
Simulation 

10 

25 2 18 7 23 1 28 8 18 7 20 5 14 2 24 10 18 7 10 3 

28 9 28 8 6 5 29 8 14 1 20 11 28 9 29 8 20 11 23 1 

20 11 10 3 10 3 15 2 6 5 24 10 19 11 20 11 9 10 20 8 

20 8 23 1 29 10 19 11 28 9 22 4 10 7 25 2 23 1 14 1 

24 10 20 11 28 9 10 3 28 8 29 10 26 12 18 7 6 5 25 5 

10 7 29 8 28 8 30 4 23 1 10 3 23 1 10 3 25 2 10 7 

23 1 6 5 30 4 23 1 20 8 23 1 15 3 16 8 20 5 29 10 

20 5 14 1 20 11 18 7 20 11 20 8 20 5 9 10 29 8 22 4 

16 8 25 5 18 7 20 5 29 10 16 8 29 10 20 5 12 3 28 8 

10 3 19 11 19 11 9 12 24 10 28 9 22 8 23 1 29 10 20 11 

29 10 28 9 29 8 6 5 10 3 10 7 22 4 29 10 24 10 28 9 

22 4 29 10 20 5 28 9 20 5 25 2 20 8 6 5 16 8 19 11 
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 Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 Sim 6 Sim 7 Sim 8 Sim 9 Sim 10 

Jan 1 2 1 1 2 1 1 1 1 2 

Feb 1 0 0 1 0 1 1 1 1 0 

Mar 1 1 1 1 1 1 1 1 1 1 

Apr 1 0 1 1 0 1 1 0 0 1 

May 1 2 2 2 2 1 1 2 2 1 

Jun 0 0 0 0 0 0 0 0 0 0 

Jul 1 1 1 1 1 1 1 1 1 1 

Aug 2 2 2 2 2 2 2 2 2 2 

Sep 1 1 1 1 1 1 1 0 0 1 

Oct 2 1 1 0 2 2 1 3 3 1 

Nov 1 2 2 1 1 1 1 1 1 2 

Dic 0 0 0 1 0 0 1 0 0 0 

Table 4.4.2: Number of representative days per month, repeating the clustering process ten times. 

 

Please note that these processes are done just for the global solar irradiance and air temperature: once 

known the representative days, their date is found, in order to couple them with respective demand and 

electricity price curves. However, instead of the respective profiles for climate conditions, four scenarios, 

corresponding to different days, indicate them. On the contrary, if electricity price and energy demand curves 

were coupled with global solar irradiance (and temperature) of different scenarios, the uncertain parameters 

would not be just climate conditions anymore, because demand and electricity price would change as well. 

Let us stress this point. If number of scenarios M is equal to 4 and number of representative days N is equal 

to 11, the comparison cannot be done between the deterministic with 11*4=44 representative days and the 

stochastic one with 11 days and 4 scenarios. In fact, the deterministic with 44 days has 44 profiles of global 

solar irradiance, of electricity price and of demand as input. Hence, these are “rigid” scenarios, differently 

from the stochastic model, where 44 profiles of solar irradiance are adopted, but just 11 profiles for the other 

parameters (assumed certain) are considered. This concept is represented in figure 4.4.3. 

Figure 4.4.3: Association of input parameters for the deterministic and the stochastic model. 

From figure 4.4.3, let us suppose one of the eleven days is the 1st of January, because it is the closest element 

to the centroid of the respective cluster. Now, a second clustering process, involving the same uncertain 

parameters, is accomplished and gives as four scenarios 1st, 2nd, 3rd and 4th of January: each of them will have 

its own irradiance and temperature profile, but the same electricity price (and demand curves), 

corresponding to the 1st of January. The two-step clustering process is indicated in figure 4.4.4.  
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The weight of each typical day is the number of elements in the respective cluster divided per five, because 

the total cost is taken back to one year, while the historical data refers to five years in a row. Then, the 

probability for each scenario is equal to the ratio between the number of elements belonging to that specific 

scenario and the total number of elements for the typical day. Note that the sum of probabilities for each 

day (M scenarios) has to be equal to one. 

𝑤𝑒𝑖𝑔𝑡ℎ𝑑 =
𝑛𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 ∈ 𝑑 

5
   ∀𝑑 ∈ [0, 𝑁] 

( 4 .  52 ) 

𝑝𝑑,𝑠 =
𝑛𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 ∈ 𝑠

𝑛𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 ∈ 𝑑
 ∀𝑠 ∈ [0, 𝑀] ∀𝑑 ∈ [0, 𝑁] 

( 4 .  53 ) 

 

 

Figure 4.4.4: Generation of representative days and scenarios for the two-stage stochastic model. 

 

 

 

4.4.3 Alternative method based on quality of clusters 

Up to now, the number of clusters, required a priori by k-means algorithm, is chosen by considering the 

quality of the solution. Indeed, in Section 4.1 and 4.3 a variable number of representative days N is tried in 

order to obtain the best possible solution. However, no discussion is done about quality of clusters. 

The opposite method would be to choose the number of clusters basing on the clusters quality, thus still a 

priori, but obtained before solving the respective model. The presented method considers four typical days 

instead of twelve and a variable number of scenarios: instead of starting from the deterministic method to 

Seasons
ss 

2 winter 
2 spring 

3 summer 
4 autumn 

Winter Spring 

Summer 

Autumn 

Typical days 

Scenarios for the typical day 
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get the clusters numbers, the two-stage stochastic model gives the number of clusters to be used in the 

deterministic model. 

The idea is still to divide the dataset in the four different seasons to obtain seasonal clusters with k-means 

method and, then, to consider all possible combinations from seasonal days. Finally, another k-means 

process is done in order to reduce final clusters, corresponding to typical years, made up of four typical days. 

Because of the necessity of deciding the number of clusters a priori, several tentatives have to be done in 

order to choose high quality clusters. In order to evaluate it, for each season the process is repeated to create 

a profile of average silhouette value (ASV), as can be seen, for instance, for winter season. 

Figure 4.4.5. Average silhouette value for winter season. The value is obtained for a number of clusters from 2 to 13. 

 

As already exaplined in Section 1.2.6, if the number of clusters k is too low, the ASV will be low, because asim(i) 

cannot be high, due to differences of elements in the same cluster. On the contrary, if the number of clusters 

is too high, ASV is low, because asim(i)-bdis(i) will be low, due to the fact that an element can stay both in 

cluster A or B.  

Returning to figure 4.4.5, it seems clear the best choice is to have k=2. Another confirmation is given by figure 

4.4.6, which represents the value of sil(i) for the elements in each cluster for k=2, 6 or 12 for winter case. 

As just explained, the ASV is the highest for k=2. Additionally, considering single elements, the number of 

them with sil(i) lower than 0 strongly increases with the increase of k. In any case, solutions with k=6 or 12 

are considered, because they allows having a higher variability of scenarios 

Please note that this process allows obtaining clusters for a specific season, but the operation must consider 

all the year, which means that combinations among seasonal typical days have to be done. In particular, if 

k=2, the number of combinations is equal to 16: these will simply be the final scenarios, as indicated in figure 

4.4.6. On the contrary, with k=6 or k=12, the number of combinations is respectively equal to 1296 or 20736, 

forcing a second k-means step, in which the number of elements is arbitrary chosen, due to the inconsistency 

of the ASV profile (figure 5.5.7), which is always very low and does not have a “elbow” curve. In this case, 

number of clusters is set equal to 12, because the ASV range is very low and, in this way, a higher number of 

scenarios is taken into account. 
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Figure 4.4.6. Silhouette plot, winter case, for number of clusters k=2, 6 or 12. 

 

Figure 4.4.7. ASV curve for typical years. Please note that, even with k=2, the value remains under 0.2 
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Figure 4.4.8. Scenarios, indicating a typical year, starting from seasonal k=2, with their probabilities indicated 

 

Another crucial aspect is the determination of probabilities for each typical year. In fact, for seasonal clusters, 

it is sufficient to calculate cluster frequencies, defined as the ratio between the number of elements in a 

cluster and the total number of elements. In case of k=2, combinations are 16 and there is no need of a 

second clustering process, which implyes a probability for each cluster equal to the product among all 

seasonal probabilities (equation (4.54)). 

Probability evaluation for k=6, 12 is more complex, because it has to take into account seasonal clusters 

probability pseasonal,tot,k and yearly clusters one, pyearly,k. Hence, yearly clusters probability is calculated as 

cluster frequency (4.55), thus number of elements in a cluster on total number of elements, while seasonal 

probability (4.54) is calculated as already described for each typical day of the centroids. Then, yearly 

probability is multiplied for seasonal one and divided for the sum of all obtained probabilities, in order to get 

one once summed all of them (4.56). 

𝑝𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙,𝑡𝑜𝑡,𝑘 = 𝑝𝑑𝑎𝑦,𝑤𝑖𝑛𝑡𝑒𝑟,𝑘 ∗ 𝑝𝑑𝑎𝑦,𝑠𝑝𝑟𝑖𝑛𝑔,𝑘 ∗ 𝑝𝑑𝑎𝑦,𝑠𝑢𝑚𝑚𝑒𝑟,𝑘 ∗ 𝑝𝑑𝑎𝑦,𝑎𝑢𝑡𝑢𝑚𝑛,𝑘     ∀𝑘 ∈ 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠 

( 4 .  54 ) 

𝑝𝑦𝑒𝑎𝑟𝑙𝑦,𝑘 =
𝑛𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠,𝑘

𝑛𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠,𝑡𝑜𝑡
   ∀𝑘 ∈ 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠 

( 4 .  55 ) 

𝑝𝑓𝑖𝑛𝑎𝑙,𝑘 = 𝑝𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙,𝑡𝑜𝑡,𝑘 ∗ 𝑝𝑦𝑒𝑎𝑟𝑙𝑦,𝑘/ ∑ 𝑝𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙,𝑡𝑜𝑡,𝑘 ∗ 𝑝𝑦𝑒𝑎𝑟𝑙𝑦,𝑘  ∀𝑘 ∈ 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠  

( 4 .  56 ) 

Even if this process is presented for transparency, its solutions are not presented in this work. Indeed, results 

are very unprecise, especially with k=2, which gives strongly unrealistic ones, even though it should be the 

best case, with the highest ASV. The point is that a high quality of clusters does not entail a high quality 

solution. Hence, it is necessary to start from the solution to decide the appropriate number of clusters. 
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4.5 Robustness test 

4.5.1 Operation of the residential MES tested on years from 2010 to 2020 in a row 

This test provides indications about the quality of a given solution. Indeed, the deterministic (or stochastic) 

model for the residential MES, described in Section 4.1 (Section 4.3), gives the optimized decision variables 

for the first-stage (design) and the second-stage (operation). However, the optimization period is of just few 

time steps and, in addition, representative days are generated starting from the period 2005-2009. The idea 

is to be at 2010 and try to “predict” how solutions, obtained with data from the past, will work in future, with 

respect to the reference model for that period (Section 4.1). 

Hence, the robustness test allows seeing that: differently from the previous models, the design decision 

variables are set as input data. Other inputs, such as global solar irradiance, air temperature, electricity price 

and energy demand are taken from historical data, implying 11*365*24=93690 time steps. There is no 

necessity of generating representative days, because of the reduced computational complexity given by the 

set design variables. In fact, this test is an optimization for the operation, all along the testing dataset. 

Some changes are done in the objective function and in constraints for the energy conversion system. 

𝑚𝑖𝑛 𝑓 = 𝑚𝑖𝑛 (𝐶𝑜𝑠𝑡𝑑𝑒𝑠 + ∑ ∑ ∑ 𝐶𝑜𝑠𝑡𝑜𝑝,𝑡

𝐻

ℎ=0

𝐷

𝑑=0

𝑌

𝑦=𝑦0

) 

( 4 .  57 ) 

The total cost has the same expression as the one indicated in Section 4.1, but the design part is a parameter, 

because all the sizes are already set. 

For what concerns the PV system, from equation (4.8), the design decision variable is the area of the system. 

Now, this value is set, as well as the other parameters are. Consequently, the energy flux PPV is now a 

parameter too, instead of being a dependent variable. 

Equations for the EES are the same as the one already presented, (4.11-18). Same for the thermal energy 

storage (equations 4.35-42), the grid (equations 4.43, 4.44) and the energy balances (4.45, 4.46). 

Regarding CHP, equations (4.19), (4.20) and (4.27) are still valid. However, the additional variable ϑCHP,t is 

not required anymore, because size of the system is set, avoiding bilinear constraints. To simplify the model, 

equations (4.22-26) become: 

𝑃𝐶𝐻𝑃,𝑡 ≤  𝛿𝐶𝐻𝑃,𝑡 ∗ 𝐶𝐶𝐻𝑃 

( 4 .  58 ) 

Which is possible because 𝐶𝐶𝐻𝑃 is not a decision variable anymore. Additionally, in equation (4.27) 𝛿𝐶𝐻𝑃,𝑖𝑛𝑣 is 

a parameter. 

Similarly, the boiler is managed as the CHP. Indeed, the additional variable ϑboiler,t is not required anymore 

and equations (4.29-33) become: 

 

𝑃𝑏𝑜𝑖𝑙𝑒𝑟,𝑡 ≤  𝛿𝑏𝑜𝑖𝑙𝑒𝑟,𝑡 ∗ 𝐶𝑏𝑜𝑖𝑙𝑒𝑟  

( 4 .  59 ) 
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4.5.2 Operation of the residential MES optimized separately on each year from 2010 

to 2020  
This test is done to see how good a solution is with respect to a single yearly reference one. Equations, 

constraints, input parameters and output variables are the same as for the other test in Section 4.4.1, but 

operation lasts just one year. Hence, 11 models, because of the length of the testing dataset, are developed, 

with 8760 time steps per model. The computational effort is not too high because the design variables are 

set. Note that the design cost has to be taken back to a single year. 
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5. Results and discussion 

The following Section collects the results for the different optimization processes. In particular, Section 5.1 

studies the influence of the air temperature on the clustering process, comparing generation of 

representative days considering just the global solar irradiance as uncertain parameter or considering air 

temperature too; Section 5.2 presents results, concerning total cost and design decision variables, for the 

reference model of the residential MES for the period 2010-2020 and for reference annual models; Section 

5.3 analyses optimised solutions for the deterministic model with N representative days, comparing the 

methods to generate them with respect to the training dataset; Section 5.4 presents results for the two-stage 

stochastic model with N representative days and M scenarios, regarding the training dataset; Section 5.5 

compares objective functions of the previous models, to understand which one is closer to the reference 

solution for the testing dataset. 

5.1 Influence of air temperature on clustering process 

As already explained in Section 4.3, global solar irradiance and air temperature are the two attributes for the 

clustering process. The idea is to keep seasons as separated as possible, without rigid distinctions, to 

represent the initial dataset in the best possible way. In particular: 

1. The introduction of air temperature should allow to assign elements in a better way. Indeed, with 

only global solar irradiance as uncertain parameter, a cluster with a representative day from summer 

could include an element from winter. In this case, it would be represented by the irradiance, but 

other parameters, such as thermal demand, would not be representative for it. 

2. The division of the dataset into seasons should decrease the quality of the solution. In fact, if a 

representative element of a cluster is “between” two seasons, it would be well represented by half 

elements from one season and half from the following one.  

To demonstrate these two points, let us focus on a single simulation. Please note that every time the 

clustering process is repeated, results change. In particular, as seen in Section 4.4.2, representative days are 

not the same, as well as number of days per seasons are not. Table 5.1.2 shows that, if air temperature is 

considered as attribute, number of representative days per season are different with respect to the case with 

only global solar irradiance. In that case, N is set arbitrarily equal to 12. This result is useful to validate the 

methodology for the two-stage stochastic model for the residential MES, presented in Section 4.4. 

In any case, table 5.1.1 presents results for a single clustering process, repeated with air temperature and 

global solar irradiance as attributes for the k-means process (left side) or with just global solar irradiance 

(right side). For each side, the series of representative days is presented. In particular, focusing on a single 

day, the “title” is its date and, knowing it, the corresponding season can be considered. For instance, the first 

representative day of the left side is the 10th of March 2007, which is a winter day. Then, the season of each 

element of the cluster is found, to understand which is the percentage of well-positioned elements, meaning 

an element belonging to the same season of the representative element of its belonging cluster. For the 

previous example, 112 elements belong to that cluster: 59 of them are winter days, 47 are spring days, 1 is a 

summer day and 5 are autumn days. Considering the average value of well-positioned elements for all 

clusters, the inclusion of air temperature implies a better assignment of the elements, with 59,65% of well-

positioned ones, instead of 50,39% with only global solar irradiance. Additionally, “border” clusters should 

not be considered in this analysis. For instance, the 10th of March is formally winter, but has irradiance and 

temperature profiles similar to spring days too. Hence, avoiding these clusters, the percentage passes from 

51,11%, without considering air temperature, to 62,18% including it. 



58 
 

To deepen point 1, let us consider a representative day strongly linked to climate conditions of a season. For 

instance, figure 5.1.1 represents profiles for the 3rd of February 2007. Considering table 5.1.2, this day is a 

representative one just without air temperature as uncertain parameter. It shows that 12 elements are from 

summer season, which is reliable focusing on the irradiance, possibly related to a cloudy day. However, if the 

air temperature is included in the analysis, it appears obvious that such elements are bad-positioned, because 

the temperature profile is not coherent with a summer day in Padova. Same consideration could be done 

with the thermal energy demand, which strongly depends on the external temperature. Therefore, air 

temperature seems necessary to get high quality solutions. 

In addition, it is possible to compare results for the 20th of May 2006 (figure 5.1.3), which is a representative 

day in both simulations. Comparing left and right side of the table, the improvement of introducing air 

temperature as uncertain parameter is evident, because a higher number of elements belongs to the correct 

season, spring, passing from 60,49 to 65,17%. In both cases autumn and winter days are not included in this 

cluster, but there is an improvement of the seasonal assigment, which means a better representation of the 

dataset. 

With respect to point 2, let us consider the case of 28th of September, as shown in figure 5.1.2, common for 

both sides of table 5.1.1. If temperature is included in the clustering process, most of the days belonging to 

that cluster are summer or autumn ones, which is coherent to the profile indicated in figure 5.1.2. Note that 

no elements are from winter, which is a great result, because it is improbable to 25°C in winter season. On 

the contrary, if the air temperature is not included, 33,88% of elements do not belong to summer or autumn. 

In particular, 11,11% of elements belong to winter, which means they are strongly bad-positioned. The 

inclusion of air temperature seems to be relevantly positive. 

 

With temperature 
 

Without temperature 
10/03/2007 

 
03/02/2007 

Winter 59 days 52,68 % 
 

Winter 142 days 42,26 % 
Spring 47 days 41,96 % 

 
Spring 37 days 11,01 % 

Summer 1 day 0,89 % 
 

Summer 12 days 3,57 % 
Autumn 5 days 4,46 % 

 
Autumn 145 days 43,15 %        

02/04/2009 
 

12/04/2009 
Winter 10 days 5,49 % 

 
Winter 31 days 40,26 % 

Spring 54 days 29,67 % 
 

Spring 25 days 32,47 % 
Summer 12 days 6,59 % 

 
Summer 19 days 24,68 % 

Autumn 106 days 58,24 % 
 

Autumn 2 days 2,60 %        

28/08/2006 
 

18/01/2008 
Winter 0 days 0 % 

 
Winter 62 days 36,90 % 

Spring 43 days 43 % 
 

Spring 3 days 1,79 % 
Summer 49 days 49 % 

 
Summer 1 days 0,60 % 

Autumn 8 days 8 % 
 

Autumn 102 days 60,71 %        

29/10/2007 
 

24/06/2008 
Winter 14 days 9,86 % 

 
Winter 0 days 0,00 % 

Spring 34 days 23,94 % 
 

Spring 73 days 52,14 % 
Summer 1 day 0,70 % 

 
Summer 67 days 47,86 % 

Autumn 93 days 65,49 % 
 

Autumn 0 days 0,00 %        

30/08/2008 
 

18/04/2006 
Winter 0 days 0,00 % 

 
Winter 4 days 4,30 % 

Spring 3 days 1,94 % 
 

Spring 37 days 39,78 % 
Summer 152 days 98,06 % 

 
Summer 33 days 35,48 % 

Autumn 0 days 0,00 % 
 

Autumn 19 days 20,43 % 
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13/01/2007 
 

28/04/2009 
Winter 135 days 64,59 % 

 
Winter 5 days 6,85 % 

Spring 6 days 2,87 % 
 

Spring 41 days 56,16 % 
Summer 0 days 0,00 % 

 
Summer 27 days 36,99 % 

Autumn 68 days 32,54 % 
 

Autumn 0 days 0,00 %        

14/01/2007 
 

08/07/2006 
Winter 83 days 64,84 % 

 
Winter 0 days 0,00 % 

Spring 8 days 6,25 % 
 

Spring 34 days 24,46 % 
Summer 0 days 0,00 % 

 
Summer 105 days 75,54 % 

Autumn 37 days 28,91 % 
 

Autumn 0 days 0,00 %        

28/09/2006 
 

28/09/2006 
Winter 0 days 0 % 

 
Winter 20 days 11,11 % 

Spring 9 days 6,25 % 
 

Spring 41 days 22,77 % 
Summer 60 days 41,66 % 

 
Summer 40 days 22,22 % 

Autumn 75 days 52,08 % 
 

Autumn 79 days 43,88 %        

06/05/2006 
 

09/02/2007 
Winter 0 days 0,00 % 

 
Winter 80 days 42,11 % 

Spring 127 days 90,71 % 
 

Spring 31 days 16,32 % 
Summer 13 days 9,29 % 

 
Summer 12 days 6,32 % 

Autumn 0 days 0,00 % 
 

Autumn 67 days 35,26 %        

18/07/2006 
 

21/08/2009 
Winter 0 days 0,00 % 

 
Winter 0 days 0,00 % 

Spring 71 days 31,98 % 
 

Spring 109 days 47,81 % 
Summer 151 days 68,02 % 

 
Summer 119 days 52,19 % 

Autumn 0 days 0,00 % 
 

Autumn 0 days 0,00 %        

20/11/2005 
 

22/02/2009 
Winter 149 days 73,76 % 

 
Winter 93 days 73,2 % 

Spring 0 days 0,00 % 
 

Spring 0 days 0,00 % 
Summer 0 days 0,00 % 

 
Summer 3 days 2,40 % 

Autumn 53 days 26,24 % 
 

Autumn 31 days 24,4 %        

20/05/2006 
 

20/05/2006 
Winter 0 days 0,00 % 

 
Winter 0 days 0,00 % 

Spring 58 days 65,17 % 
 

Spring 49 days 60,49 % 
Summer 31 days 34,83 % 

 
Summer 32 days 39,51 % 

Autumn 0 days 0,00 % 
 

Autumn 0 days 0,00 % 
Table 5.1.1: Days per season belonging to a representative day. In particular, days on the left consider the clustering 

process with air temperature and global solar irradiance as uncertain parameters, while days on the left consider only 

global solar irradiance. For each day, its date is indicated and all the elements belonging to it, divided per season. 

Then, on the right column per cluster, the percentage of days belonging to the correct season is indicated. 
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Figure 5.1.1: Irradiance and temperature profiles for the 3rd of February 2007. 

 

 

Figure 5.1.2: Irradiance and temperature profiles for the 28th of February 2006. 

 

 

Figure 5.1.3: Irradiance and temperature profiles for the 20th of March 2006. 
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  Representative days 

  
With air 

temperature 
Without air temperature 

    

Simulation 1 

Winter 3 5 

Spring 2 3 

Summer 3 3 

Autumn 4 1 
    

Simulation 2 

Winter 4 5 

Spring 2 3 

Summer 3 3 

Autumn 3 1 
    

Simulation 3 

Winter 3 3 

Spring 2 3 

Summer 3 3 

Autumn 4 3 
    

Simulation 4 

Winter 3 3 

Spring 2 3 

Summer 3 3 

Autumn 4 3 
    

Simulation 5 

Winter 3 3 

Spring 2 3 

Summer 3 3 

Autumn 4 3 
    

Simulation 6 

Winter 3 4 

Spring 2 3 

Summer 3 3 

Autumn 4 2 
    

Simulation 7 

Winter 3 4 

Spring 2 3 

Summer 3 4 

Autumn 4 1 
    

Simulation 8 

Winter 3 3 

Spring 2 1 

Summer 3 5 

Autumn 4 3 
    

Simulation 9 

Winter 3 2 

Spring 3 3 

Summer 3 3 

Autumn 3 4 
    

Simulation 10 

Winter 3 2 

Spring 2 3 

Summer 3 3 

Autumn 4 4 

Table 5.1.2: Number of representative days per season by repeating the clustering process. Additionally, the 

comparison is done considering the air temperature and the global solar irradiance as uncertain parameters (on the 

left) or just considering the global solar irradiance (on the right).  
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5.2 Reference models of the residential MES: objective function and 

design decision variables 

5.2.1 Optimization results on a single year 

As already explained in Section 4, all the following models are referred to the residential MES scheme of 

Section 2. In particular, the ones in this sub-Section are solved for the respective year, implying 8760 time 

steps: they do not require time series aggregation. 

Then, the ones referred to years belonging to the training dataset (2005-2009) are used as reference to get 

the best number of representative days, based on MAE and RMSD (Section 4.3.2). On the contrary, the ones 

for the testing dataset (2010-2020) are used as reference to test the quality of the proposed solution and, 

consequently, the method to obtain it, as explained in Section 4.4.2. 

 

 C_TOT C_DES C_OP C_PV C_CHP C_boiler E_EES Q_TES 
 k€ k€ k€ kWp kW kW kWh kWh 

2005 59,85 36,98 22,87 224,52 74,13 73,65 0,00 219,83 

2006 61,72 37,63 24,09 164,90 78,44 67,19 85,99 207,89 

2007 66,64 28,95 37,70 145,44 55,22 106,09 18,54 222,40 

2008 62,15 32,60 29,55 119,29 76,96 70,96 76,82 204,09 

2009 65,89 33,76 32,14 167,45 59,55 101,91 67,63 170,67 

2010 61,41 35,61 25,81 166,73 79,12 68,53 62,69 164,84 

2011 63,12 45,82 17,31 249,64 75,49 73,05 62,22 335,06 

2012 61,54 34,36 27,18 127,86 79,00 64,40 62,92 295,56 

2013 69,84 50,41 19,43 219,58 79,42 66,71 163,52 353,16 

2014 64,59 45,57 19,02 225,62 94,09 43,45 99,61 184,70 

2015 61,93 45,36 16,57 248,47 78,20 72,81 100,37 158,61 

2016 62,69 39,63 23,05 178,18 80,66 72,55 99,59 185,06 

2017 59,62 30,82 28,80 125,27 78,26 68,71 41,73 191,98 

2018 66,43 44,32 22,11 129,48 133,40 49,87 68,12 300,72 

2019 67,40 51,91 15,49 250,19 95,03 42,89 158,44 193,11 

2020 61,65 48,60 13,06 280,85 80,02 65,67 80,91 232,17 
 

Table 5.2.1: Costs and design variables for the yearly reference solutions. With respect to the reference model for 

each year of the training and testing dataset, the first three columns indicate the total cost for the year, the design 

cost and the operation one. The following columns indicate the size of the PV system, the CHP, the boiler, the 

electrical storage and the thermal one. 

With respect to table 5.2.1, it seems clear that sizes for each unit are different year by year, depending on 

the global solar irradiance and the air temperature. In fact, prices of energy carriers, energy demands and 

techno-economic characteristics for the energy system components are the same. In particular, year 2005 

presents the lowest cost, related to the high size of the PV system and the absence of the electric storage. 

This is possible because of good conditions regarding photovoltaic production. However, it is difficult to 

comment how the sizes vary year by year, because of the combination of many decision variables in the 

optimization problem.
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5.2.2 Optimization results for the period 2010-2020 

The reference model for the testing dataset solves the problem for the “future” (2010-2020), setting the 

lower bound for the total cost. Considering eleven years in a row, number of time steps is equal to 96360, 

forcing to use clustering techniques, as already indicated in Sections 4.1. 

The number of representative days N varies from 2 to 45, obtaining N-1 optimized solutions (design and 

operation decision variables) from N-1 sets of representative days. Then, design variables are set and, 

because of the reduction of variables, the operation is optimized on the entire testing dataset. The tested 

solution with the lowest objective function is the closest to the actual solution of the model, even if it is not. 

 

Figure 5.2.1: Total cost for the reference solution with N representative days as optimization period. The total cost 

[k€], on the y-axis, taken back to one single year, is function of the number of representative days used as input for 

the model, on the x-axis. The model finds the minimum cost by evaluating design and operation decision variables. 

Typical days are obtained from dataset 2010-2020. The green point indicates the maximum value, obtained for 2 

representative days, while the red one represents the minimum one, for N=30. 

The idea to test the solution is related to the necessity of obtaining real costs. In fact, by considering just a 

limited number of representative days, the risk is to overestimate (or underestimate) them. To understand 

that, let us consider figure 5.2.1, which represents the profile of the objective function solving the reference 

model with N representative days as optimization period. For N=2 (green point), the objective function is 

strongly higher with respect to the minimum, at N=30 (red point). This aspect is linked to the addition of the 

worst thermal energy demand scenario. As explained in Section 4, it is not representative, but it is necessary 

to size properly the components. Hence, if this scenario is forced to be representative for a cluster, the 

overestimation for the objective function is relevant. 

The trend is coherent, according to clustering theory [54-55]: if the technique was k-means, the trend should 

be monotonic, due to the use of centroids as representative elements, which means there is always an 

underestimation of the total cost. On the contrary, k-medoids [55] does not entail such a trend, but an 

oscillating one. Therefore, the only difference is given by the necessary overestimation, due to the 

introduction of thermal demand extreme scenario. 
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Figure 5.2.2: Total cost for the period 2010-2020 with the respective set of sizes. The objective function, on y-axis, for 

the entire period 2010-2020, is indicated as function of the respective set of sizes. This cost is obtained optimizing the 

operation, which means the design decision variables are set solving the model with N representative days, while here 

only operation variables are free to vary. The minimum corresponds to the set of sizes related to 34 days as 

optimization period. 

 

Figure 5.2.2 indicates the actual cost, obtained testing the set of sizes for the entire testing dataset, 

optimizing the operation. Note that, for set of sizes, it is meant an array as [𝐶𝑃𝑉 , 𝐶𝐶𝐻𝑃 , 𝐶𝑏𝑜𝑖𝑙𝑒𝑟 , 𝐶𝐸𝐸𝑆, 𝐶𝑇𝐸𝑆], as 

indicated in table 6.2.1. The trend of figure 5.2.2 is different from the one of figure 5.2.1, because input data 

are historical one, without data aggregation. 

The minimum in figure 6.2.2 is obtained for the set of sizes corresponding to 34 representative days, while 

in figure 6.2.1 30 days give the lowest cost. Moreover, the maximum cost in figure 6.2.2 is not linked to sizes 

obtained with N=2 representative days, which proves the effect of overestimation of the total cost related 

to the clustering process. Therefore, the reference solution is the set of sizes corresponding to an 

optimization period of N=34 days. 

Table 5.2.1 collects the total cost for the entire period 2010-2020, the one for the optimization period 

corresponding to N representative days and the set of sizes for each set of representative days. Please note 

that, for low values of N, the boiler is absent, while the CHP is overestimated: this is related to the 

independence between the representative days, which becomes less important once the number of clusters 

increases. Furthermore, the use of the EES, as well as an underestimation of the size for the PV system, entails 

the highest values for the total cost. For example, if N=12 or 14, EES is included, so the cost is strongly higher 

than for N=13, when EES is not present in the optimized set of sizes. 
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 C_TOT C_TOT_N C_PV C_CHP C_boiler E_ EES Q_ TES 
 k€ k€ kWp kW kW kWh kWh 

2 630,11 92,84 41,52 123,37 0,00 0,00 101,43 
3 611,15 91,99 98,98 123,05 0,00 0,00 135,01 
4 627,69 76,78 70,09 122,64 0,00 58,00 135,43 
5 608,21 82,49 114,04 122,35 0,00 0,00 149,34 
6 617,63 75,19 88,30 121,69 0,00 0,00 181,03 
7 615,49 75,17 79,83 122,60 0,00 0,00 137,21 
8 635,71 64,63 43,43 122,55 0,00 48,01 139,70 
9 626,23 67,42 60,61 122,20 0,00 34,18 156,28 

10 617,25 64,13 104,86 122,25 0,00 41,60 153,91 
11 623,44 64,53 77,36 121,87 0,00 35,70 172,09 
12 619,03 65,00 100,55 121,81 0,00 37,84 174,96 
13 616,20 65,31 124,54 121,98 0,00 43,72 167,14 
14 607,33 66,54 140,46 121,99 0,00 0,00 166,40 
15 622,12 71,81 73,62 122,02 0,00 29,88 165,27 
16 614,51 67,94 100,22 121,79 0,00 0,00 175,95 
17 615,54 67,35 97,31 121,70 0,00 0,00 180,63 
18 617,94 70,83 77,55 122,29 0,00 0,00 152,27 
19 613,40 67,40 102,85 121,94 0,00 0,00 169,11 
20 617,24 68,81 88,12 121,77 0,00 0,00 177,06 
21 619,73 68,57 84,07 121,48 0,00 0,00 191,05 
22 594,86 66,64 95,14 102,46 35,52 0,00 183,71 
23 609,51 68,35 142,92 121,48 0,00 0,00 191,05 
24 586,26 63,22 140,46 102,69 35,32 0,00 174,72 
25 587,57 67,66 126,26 105,68 37,12 0,00 135,74 
26 583,17 66,02 124,35 97,86 50,17 0,00 162,76 
27 583,87 66,09 149,19 103,10 39,48 0,00 158,59 
28 595,36 66,96 121,46 101,30 36,93 0,00 228,70 
29 580,28 64,53 113,11 95,33 51,80 0,00 130,89 
30 585,09 62,2 131,66 102,28 37,045 0,00 157,57 
31 588,96 67,46 118,17 104,03 36,78 0,00 157,57 
32 593,61 68,30 109,49 102,10 37,03 0,00 197,51 
33 591,02 66,50 111,72 101,20 41,51 0,00 185,50 
34 572,97 66,33 312,00 106,82 33,16 0,00 149,57 
35 594,21 67,48 124,35 100,56 36,26 0,00 228,69 
36 584,93 65,15 131,66 102,07 37,42 0,00 157,10 
37 584,43 66,16 111,72 98,67 46,02 0,00 150,39 
38 588,02 68,36 98,91 99,37 44,53 0,00 157,72 
39 592,40 66,27 112,31 98,53 45,12 0,00 215,49 
40 587,10 64,30 99,56 94,62 50,12 0,00 182,43 
41 584,55 62,36 124,41 97,10 44,97 0,00 181,27 
42 581,78 64,86 173,48 102,84 35,41 0,00 168,62 
43 595,28 67,26 111,72 99,58 42,32 0,00 226,73 
44 591,24 67,03 102,01 98,20 42,85 0,00 196,52 

 

Table 5.2.1: Table including costs and design decision variables for the reference model with N representative days. 

Columns indicate: total cost for the tested solution on the entire period 2010-2020, total cost for the solution with N 

representative days, size of the photovoltaic system, size of the CHP system, size of the boiler, size of the electric 

energy system, size of the thermal energy system. 
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5.3 Deterministic model of the residential MES with N representative 

days, for the period 2005-2009: objective function and decision variables 

5.3.1 Optimization results with representative days from annual dataset 

This section includes results obtained with the deterministic model with N representative days, whose 

generation is carried out through clustering techniques, starting from annual dataset (Section 4.3.2). The 

reference models are the annual ones (results in Section 5.2). The goal is to obtain the number of clusters 

that minimizes the MAE and the RMSD, as explained in Section 4.3.2. 

To summarize, N representative days are generated for each year of the training dataset, with 𝑁 ∈ [2,30]. 

The deterministic model of the residential MES is solved for each set of clusters and the optimized objective 

function is compared to the reference one for the respective year, evaluating the Mean Absolute Error and 

the Root Mean Square Difference. 

Table 5.3.1 collects all this data. The best solution is to adopt a number of representative days equal to 27, 

which minimizes both the MAE and the RMSD. The actual days are taken from year 2007, which presents the 

minimum value of these two indicators: this set of representative days will be used to test the quality of the 

solution for the training and testing dataset. 

Figure 6.3.1: Mean Absolute Error varying the number of representative days. MAE, on the y-axis, calculated for the 

total cost, with respect to the reference yearly solution, for different number of clusters, on the x-axis. 

Figure 6.3.2: Root Mean Square Difference varying the number of representative days. RMSD, on the y-axis, calculated 

for the total cost, with respect to the reference yearly solution, for different number of clusters, on the x-axis 
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Table 5.3.1: MAE and RMSD, varying the number of representative days, for the annual clustering method. Columns 

indicate the objective function obtained as solutions of the deterministic models with N representative days, with 

respect to a specific year of the training dataset. The row “reference” indicates the reference model for the respective 

year. Columns MAE and RMSD indicate the Mean Absolute Error and the Root Mean Square Difference.  

An interesting result is shown in table 5.3.1: the choice is to take the days from year 2007, even if 2008 

presents a lower value for the objective function. This is due to the fact that the solution for 2008 is cheaper 

(65429€) compared to 2007 (67819€), which means that the solution for 2008 with 27 representative days is 

far from the reference value. Indeed, every year can be different, depending on weather condition, entailing 

naturally lower costs.  
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Figure 5.3.3: Area of the photovoltaic system [m2] obtained from the different deterministic models with N 

representative days, for different years. 

As shown in figure 5.3.3, the area of the PV system is usually underestimated with respect to the annual 

reference model. This is linked to the clustering process because, as already deepened, the introduction of 

extreme scenarios causes disequilibrium in the representation of the dataset. The underestimation is 

particularly relevant for a low number of representative days, while it tends to stabilize while increasing N, 

excluding atypical values. In any case, it continues oscillating, as the objective function does. 

Considering now figure 5.3.4, it appears clear the difference in the CHP size for the models, independently 

on the number of days, with respect to the reference yearly one: this is related to the independence of the 

different scenarios, forcing to get a set level of energy in the storage systems at midnight. Therefore, the 

reference model is able to exploit the link among days, differently from these models with N days, whose 

rigidity causes an overestimation of the CHP size, as well as of the total cost. Similarly, because of the high 
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size of the CHP, the boiler is usually not included, unless for high number of representative days and, in any 

case, sporadically. 

 

Figure 5.3.4: Size of the CHP system [kW] obtained from the different deterministic models with N representative 

days, for different years. 
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5.3.2. Optimization results with representative days from the whole training 

dataset 

In this case, the procedure is the same as the one presented in Section 4.3.2: sets of representative days are 

obtained varying the number N of clusters, thus through clustering process for the entire training dataset, 

2005-2009. Then, the deterministic model is solved to obtain optimized design and operation decision 

variables (figure 5.3.5). Finally, design variables are set and the solution is tested for the entire training 

dataset, optimizing the operation for five years (figure 5.3.6). 

Figure 5.3.6: Total cost for the deterministic model with N representative days as optimization period, obtained from 

the entire training dataset. The objective function is optimized starting from the generated sets of clusters. The red 

point is the minimum value of total cost. 

Figure 5.3.7: Total cost for the period 2005-2009 with the respective set of sizes, from the deterministic model. The 

objective function is obtained optimizing the operation for the training dataset. This means the design decision 

variables are set, once solved the deterministic model with N representative days. Red point is the minimum one, 

while purple ones can be used for the comparison with the two-stage stochastic model. 
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 C_TOT C_TOT_N C_PV C_CHP C_boiler E_EES Q_TES 
 k€ k€ kWp kW kW kWh kWh 

2 301,00 92,29 38,50 123,05 0,00 23,07 129,72 

3 300,70 73,54 55,14 122,13 0,00 26,61 159,74 

4 295,75 71,38 67,59 122,42 0,00 35,31 145,81 

5 290,80 74,74 126,29 121,94 0,00 0,00 169,07 

6 297,08 68,40 205,26 122,44 0,00 59,74 145,08 

7 295,51 66,04 126,08 120,38 0,00 0,00 246,77 

8 295,27 65,62 157,14 121,74 0,00 40,50 178,68 

9 289,51 74,09 157,14 122,06 0,00 0,00 163,32 

10 292,93 72,38 93,79 121,52 0,00 0,00 189,23 

11 289,91 72,43 121,12 122,44 0,00 0,00 145,05 

12 292,56 66,24 118,95 121,33 0,00 0,00 198,59 

13 291,51 68,21 101,36 122,02 0,00 0,00 165,08 

14 290,92 70,63 106,53 121,92 0,00 0,00 169,71 

15 291,75 71,43 98,20 121,92 0,00 0,00 169,71 

16 291,36 69,81 98,34 122,21 0,00 0,00 156,05 

17 293,01 67,24 101,36 121,35 0,00 0,00 197,13 

18 291,24 69,49 98,45 121,95 0,00 0,00 168,42 

19 289,40 67,24 101,36 118,10 9,22 0,00 184,61 

20 292,66 68,78 98,20 121,53 0,00 0,00 188,68 

21 291,87 67,89 119,73 121,53 0,00 0,00 188,68 

22 289,00 67,48 110,59 122,50 0,00 0,00 141,99 

23 298,88 68,72 98,45 119,83 0,00 0,00 276,11 

24 292,39 68,60 103,76 121,54 0,00 0,00 188,03 

25 278,73 66,20 97,77 101,92 39,26 0,00 131,07 

26 292,47 66,47 101,36 121,53 0,00 0,00 188,68 

27 280,33 66,54 98,20 100,80 44,75 0,00 170,92 

28 273,42 65,14 98,20 90,26 63,07 0,00 123,44 

29 276,27 65,39 80,88 94,50 56,12 0,00 118,69 

Table 5.3.2: Table including costs and design decision variables for the deterministic model with N representative 

days. Columns indicate: total cost for the tested solution on the entire period 2010-2020, total cost for the solution 

with N representative days, size of the photovoltaic system, size of the CHP system, size of the boiler, size of the 

electric energy system, size of the thermal energy system. 

Differently from Section 5.2, here the minimum of the two curves coincides, for N=28, which is the best 

optimised solution. Note that, however, this does not imply it will be the best solution for the testing dataset 

too. Furthermore, this superimposition is a coincidence, which means solutions must always be tested, 

optimizing just the operation.  

The trend of figure 5.3.6 is coherent, according to clustering theory, as for Section 5.2. 

Finally, from figure 5.3.7 attention should go on the flatness of the curve up to N=25: one of the goal of data 

series reduction is to reduce computational effort, so a proper solution is to choose a lower number of 

representative days for the following comparisons. Repeating simulations many times, a good solution is 

N=11 days, even if the choice remains arbitrary. 
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5.3.3 Comparison between the two methods 

An interesting point is to see which method between the one presented in Section 5.3.1 and the one in 

Section 5.3.2 is the best. In particular, the aim is to see which one is closer to the yearly reference solutions 

for the training dataset. 

To do that, the first step is to evaluate the MAE and the RMSD for the optimized solutions obtained with 

clustering along all the training dataset. Clearly, for a given number N of days just one model is considered 

(clustering for the period 2005-2009), instead of five (yearly clustering), but the comparison is still done with 

respect to yearly reference models. Table 6.3.2 summarizes these results. 

Figure 5.3.8: Comparison on Mean Absolute Error and Root Mean Square Difference for the deterministic models with 

N representative days, with respect to the yearly reference ones. In red the values from multi-year representative 

days, while blue indicates annual clustering. 

 

As it is possible to see from figure 5.3.8, data series aggregation for the entire training dataset tends to 

minimize both MAE and RMSD, especially for a low number of representative days. In particular, this aspect 

is strongly relevant, because it allows decreasing sharply the computational weight of the problem and, 

consequently, the computational time, which is a great advantage. 

The last advantage in using a single clustering process for the training dataset is given by exploitation of more 

information. In particular, if the adopted method is the yearly clustering one, once found the number of days 
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by minimizing MAE and RMSD, the actual days are taken from the closest year with respect to the yearly 

reference model. Therefore, there is a loss of information about days belonging to the other years of the 

training dataset. On the contrary, considering the complete training dataset for the clustering process, all 

data is used.  

Please note that, as explained in previous Sections, the actual total cost can be found once tested the set of 

sizes obtained with the optimization process for the entire period. Here this comparison is not possible, 

because reference periods have different lengths and, consequently, one specific year could be particularly 

optimal for the PV production, which does not mean the solution obtained with the entire training dataset is 

worse, because it considers “worse” years too. 

 

Table 5.3.3: MAE and RMSD, varying the number of representative days, for the multi-year clustering method. 

Columns indicate the objective function obtained as solutions of the deterministic models with N representative days, 

with respect to a specific year of the training dataset. The row “reference” indicates the reference model for the 

respective year. Columns MAE and RMSD indicate the Mean Absolute Error and the Root Mean Square Difference.  
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5.3.4 Optimization results with alternative ways to obtain representative days 

The following results are referred to Section 4.3.3. Specifically, with “average” the method with average 

profiles of global solar irradiance and air temperature for each season (N=4) or month (N=12) is meant; with 

“season”, the clustering technique to generate representative days is always the same, but the dataset is 

firstly divided per seasons. The comparison will be done with respect to results described in Section 5.3.1, 

focusing on the training dataset. 

 C_TOT C_TOT_N C_PV C_CHP C_boiler E_EES Q_TES 
 k€ k€ kWp kW kW kWh kWh 

Seasonal N=4 296,66 73,57 67,59 122,50 0,00 45,88 141,97 

Seasonal N=8 294,88 68,02 100,09 119,52 7,02 39,42 156,51 

Seasonal N=12 291,29 70,00 123,70 121,70 0,00 0,00 180,28 

Seasonal N=16 289,30 68,34 114,31 122,39 0,00 0,00 147,25 

Seasonal N=20 281,60 68,08 101,31 107,99 35,26 0,00 132,91 

Seasonal N=24 274,73 66,69 99,58 95,37 52,62 0,00 115,29 

Seasonal N=28 276,19 65,90 103,95 95,67 50,39 0,00 139,24 

Average seasonal 306,42 77,21 39,00 122,84 0,00 65,93 156,79 

Average monthly 300,76 66,93 54,71 121,89 0,00 0,00 171,38 
 

Table 5.3.4: Table including costs and design decision variables for the deterministic model with N representative 

days, generated with alternative methods. Columns indicate: total cost for the tested solution on the entire period 

2010-2020, total cost for the solution with N representative days, size of the photovoltaic system, size of the CHP 

system, size of the boiler, size of the electric energy system, size of the thermal energy system. 

 

Figure 5.3.9: Comparison of the objective function for the period 2005-2009, obtained with seasonal and 

multi-year clustering processes. In particular, blue segments indicate use of clustering technique with 

previous division of the dataset in seasons, while the red ones do not divide it. 
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Looking at figure 5.3.9, the division of dataset in seasons before doing the clustering process allows obtaining lower 

costs for an “intermediate” number of representative days, included in the interval 12-24. In fact, for a low number of 

days, the necessity of having at least one day per season could imply a worse representation of the initial dataset, while 

for a higher number of days it reduces the overestimation (or underestimation) associated with clustering. Indeed, it 

forces to have the same number of days per season, which means there is an “equilibrium” in the consideration of other 

uncertain parameters, such as energy demands. For example, if N=12, 4 days are obtained both for summer and autumn; 

on the contrary, with the multi-year clustering process, more days represent summer than autumn. This aspect is good 

for the dataset representation, but it does not consider other input data, whose weight is crucial for the results. 

However, if N increases too much, the possibility of avoiding rigid seasonal distinctions allows a reduction of the total 

cost, which makes the method of Section 5.3.2 to be the best. 

 

Figure 5.3.10: Comparison of the objective function for the period 2005-2009, obtained with clustering techniques and 

average seasonal profiles. Green segments indicate average profiles as input data: if N=4, these are seasonal profiles, 

while if N=12 they are monthly ones. 

According to figure 5.3.10, the use of average profiles entails higher prices, compared to solutions with the 

same number of representative days. Nevertheless, remember that for N=11 or N=9, with multi-year 

clustering method, the solution would have a lower total cost. Many tries should be done with seasonal 

clustering method, to see if a different number of days per season could imply better solutions. 

Let us look at table 5.3.4: if the number of days is lower than 20, the CHP size is always around 120kW, as 

already explained in Section 5.3.1, while it decreases if the boiler is introduced. This step, possible if N is high 

enough, implies a reduction in the total cost, because of the independence of each representative day. 

However, this means that the thermal side is more or less “constant” in terms of component sizes, so the 

difference is given mainly by the PV system. 

If average profiles are adopted, there is an underestimation of the PV size, because the system overestimates 

the production along the day, avoiding peak conditions. In particular, if global solar irradiance is low, the 

production will be lower than the expected one, which means a higher size for PV would be better; if the 

global solar irradiance is high, a higher size (necessary to cover low irradiance conditions) would imply higher 

revenues. 
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5.4 Two-stage stochastic model of the residential MES with N 

representative days and M scenarios, for the period 2005-2009: objective 

function and decision variables 

This Section puts attention on the results of the optimization process for the two-stage stochastic model 

developed in Section 4.3. In particular, the number of representative days is equal to 11, as explained in 

Section 5.3. The number of scenarios M, instead, varies from 2 to 7, to see which one is the best. 

Nevertheless, the limit is that each representative day has the same number of scenarios, independently on 

its weight, linked to the number of elements belonging to the cluster. 

Figure 5.4.1: Total cost for the period 2005-2009 for deterministic and stochastic models. Each segment indicates the 

objective function tested on the entire period. The first one is obtained with the deterministic model with N 

representative days, while the other ones are from the two-stage stochastic model with M scenarios. 

According to figure 5.4.1, even if the difference is not so high, the deterministic solution presents the lowest 

cost. Motivations can be found in table 5.3.4: the stochastic problem, including more scenarios for each 

representative day, tends to be give conservative solutions. For M=2, 3, 5 and 7, it underestimates the size 

of the PV system, preferring an EES to be more flexible if global solar irradiance is low. However, this entails 

higher costs. For M=4 or 6, on the contrary, it does not consider EES, but the overestimation of the TES implies 

a higher cost with respect to the deterministic solution. In any case, these two solutions give the lowest costs, 

because the ones with M=2, 3, 5 or 7 overestimate TES too. This could be related to the independence of 

each representative day and, furthermore, of each scenario. Nevertheless, conservative solutions are 

coherent, according to the literature about stochastic programming. 

The entire set of sizes obtained by different number of scenarios will be used in the following Section, to see 

how good they are in the testing dataset.  
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 C_TOT C_TOT_N C_PV C_CHP C_boiler E _EES Q _TES 
 k€ k€ kWp kW kW kWh kWh 

Deterministic N=11 289,91 72,43 121,12 122,44 0,00 0,00 145,05 

M=2 294,98 69,31 104,19 121,84 0,00 34,42 173,73 

M=3 293,43 69,01 114,50 122,26 0,00 34,42 153,75 

M=4 291,31 69,31 123,10 121,72 0,00 0,00 179,68 

M=5 296,24 69,30 109,45 121,61 0,00 38,42 184,93 

M=6 291,78 69,33 123,10 121,52 0,00 0,00 189,23 

M=7 302,61 70,68 100,77 119,94 0,00 40,94 270,17 
Table 5.3.4: Optimized costs and design decision variables for the two-stage stochastic model with N representative 

days and M scenarios. Columns indicate: total cost for the tested solution on the entire period 2010-2020, total cost 

for the solution with N representative days, size of the photovoltaic system, size of the CHP system, size of the boiler, 

size of the electric energy system, size of the thermal energy system. The first row is for the deterministic solution 

with 11 representative days, whereas the following ones for the stochastic solutions with M scenarios. 
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5.5 Comparison among all deterministic and stochastic models on the 

testing period 2010-2020 

This Section compares results obtained with the deterministic and stochastic models described in Section 4, 

to see which one gives the closest solution to the reference one for the period 2010-2020, found in Section 

5.2 with N=34 representative days. 

Therefore, set of sizes obtained as optimization results for the different models are set, optimizing just the 

operation for the testing dataset, entailing 93690 time steps. 

The first comparison is between the deterministic solution with 11 days as optimization period and the two-

stage stochastic one with 11 days and M scenarios. According to figure 5.5.1, representing the relative error 

between the total cost of the given solution and the reference one, the deterministic solution presents the 

lowest relative error, equal to 5.86% (with N=9, the error would be 5,62%). Stochastic solutions, as for the 

training dataset, entail higher relative errors (higher total costs), for the motivation explained in Section 5.4. 

Among them, the lowest error is obtained for M=4, while the highest is for M=7, which is quite double the 

one obtained with the deterministic model. 

Figure 5.5.1: Relative error of the objective function with respect to the reference one for the period 2010-2020: 

comparison between deterministic and stochastic solutions. The first segment represents the deterministic solution 

with 11 representative days, while the other ones the stochastic solutions with M scenarios. 

  

5,86

7,72
7,07

6,58

8,02

6,79

10,36

0,00

2,00

4,00

6,00

8,00

10,00

12,00

Deterministic
N=11

M=2 M=3 M=4 M=5 M=6 M=7

R
el

at
iv

e 
er

ro
r 

[%
]

Relative error of the objective function with respect to the 
reference one for the period 2010-2020: comparison between 

deterministic and stochastic solutions

5,86

7,72
7,07

6,58

8,02

6,79

10,36

0,00

2,00

4,00

6,00

8,00

10,00

12,00

Deterministic
N=11

M=2 M=3 M=4 M=5 M=6 M=7

R
el

at
iv

e 
er

ro
r 

[%
]

Relative error of the objective function with respect to the 
reference one for the period 2010-2020: comparison between 

deterministic and stochastic solutions



79 
 

The second comparison considers the deterministic solutions obtained with N representative days, generated 

as explained in Section 4.3. In particular, “Multi-year clustering” indicates the use of clustering technique 

without considering seasonal division, for the entire dataset; “Average” indicates the use of monthly average 

profiles for the uncertain parameters; “Seasonal clustering” considers the use of clustering techniques with 

previous division per season of the dataset. 

Figure 5.5.2: Relative error of the objective function with respect to the reference one for the period 2010-2020 (top) 

and values of objective function for the same period. This is a comparison between solutions obtained with seasonal 

and multi-year clustering techniques to generate representative days. In the second graph, the trend is indicated, 

even if values for the blue lines could oscillate: only cases with the same number of days per season are taken into 

account. 

Results are the same as indicated in Section 5.3, according to figure 5.3.9: the seasonal clustering is more 

indicated for an “intermediate” number of representative days, because it forces having enough days per 

season. However, if N is low, equal to 4 or 8, or high, equal to 28, this aspect is a disadvantage. However, the 

necessity of introducing extreme thermal demand scenario entails similar solutions for N=4.  
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Moreover, let us remind that comparison, in the figure 5.5.2, are not in optimal conditions: for the multi-year 

clustering process, N=9 or 11, for instance, would be better than 8 or 12, as well as seasonal clustering could 

perform better with a different number of days per season. 

Figure 5.5.3: Comparison among relative errors, with respect to the reference solution, for the objective 

function of deterministic solutions with N representative days as optimization period. Blue segments 

represent seasonal clustering solutions, red ones multi-year clustering solutions and green ones solutions 

obtained with average seasonal or monthly profiles. 

According to figure 5.5.3, the average profiles present the highest value of relative error, which means they 

are not suitable to be used. Moreover, let us remind that, for N=28, the other two methods involve a low 

error, lower than 2%. The difference in solutions could be even larger, but it is necessary to remind the 

introduction of the extreme scenario, which forces the thermal side to stay in certain ranges of sizes. 

Therefore, the huge difference is given by the PV system and the EES over the entire MES. 
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6. Conclusions 

This thesis investigates the design and operation phases of an energy system under uncertainty. In particular, 

global solar irradiance and air temperature are the considered as uncertain parameters. The case study is of 

a residential multi-energy system, whose electrical and thermal requirement need to be satisfied. In 

particular, historical data for the period 2005-2009 (training dataset) are used to make design decisions and 

see their convenience for the period 2010-2020 (testing dataset). 

Deterministic and two-stage stochastic models of such a system are developed to compare their solutions 

with the reference one for the period 2010-2020. Specifically, this reference solution is obtained under the 

assumption of perfect knowledge of the “future”, which means the model should be solved with real data, 

for a total of 93690 time steps. However, due to computational complexity, clustering techniques are used. 

k-means is applied and the representative elements are those closest to the centroid, in order to avoid unreal 

average profiles, unless the worst case scenario of thermal demand belongs to the cluster. 

The procedure is repeated with a variable number of representative days N, obtaining N-1 sets of sizes as 

results of the optimisation process. Then, the sizes are set and the operation is optimised for the whole 

period: the solution with the minimum total cost is the reference one. The reference value is thus obtained 

for N=34 representative days. 

Emphasis is placed on the role of air temperature in the clustering process. A well-positioned element is a 

day whose season coincides with the season of the representative day of the cluster to which it belongs, 

which is crucial for its coupling with other input data, as thermal demand. If air temperature is included as a 

clustering attribute, the percentage of well-positioned elements increases by an average of 10%. 

Furthermore, comparing the same representative days for the case with only global solar irradiance and the 

one with it and air temperature, badly positioned elements are no longer present. 

A deterministic model with N representative days as optimisation period is developed to compare its 

solutions with the reference ones. The days are generated starting from historical data for the period 2005-

2009. Once the representative days are obtained, the optimisation process provides a set of sizes, which is 

tested for the training and testing datasets, optimising only the operation. Methods for generating 

representative days are: 

 Clustering techniques to generate multi-year clusters. The procedure is the same as the one indicated 

for the reference model. One possibility is to generate annual clusters instead of multi-year ones, but 

this results in a loss of information and less accurate solutions, especially for a low number of 

representative days.  

 Clustering techniques to generate seasonal clusters. The same clustering technique is used, but the 

dataset is first divided into seasons. Hence, the number of representative days is the same for each 

season. This method is found to be worse, with respect to the previous one, for a low number of 

representative days, equal to 4 or 8, or high, equal to 28. In particular, for N=4 or 8, the seasons are 

a constraint that could limit the representation of the dataset, while for N=28 they are not no longer 

interesting because they are a rigid distinction for the elements. For intermediate values of N, this 

method performs better because it reduces the overestimation (or underestimation) of sizes related 

to the imbalance in the dataset representation. 

 Average seasonal (N=4) or monthly (N=12) profiles. It is shown that, optimising the operation, they 

present the worst relative error for the objective function, compared to the reference one. In 

particular, it is equal to 12,86% for the seasonal and 10,28% for the monthly, compared to 8,96% for 

the seasonal clustering and 8,78% for the multiannual, if N=4, or 6,59% and 7,09% if N=12. However, 

it should be noted that the best case for the first two methods is for N=28, with relative errors of 

1,66% and 1,17% respectively. 
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Finally, an innovative two-step clustering process is adopted to generate scenarios for each representative 

day, developing a two-stage stochastic model with N days and M scenarios. First, representative days are 

generated using the same clustering technique, to get the same number of seasonal days as the deterministic 

model with 11 days, to obtain a fair comparison. Then, for each day a second clustering process is performed, 

aggregating elements belonging to such a cluster in order to generate different scenarios. However, once 

optimised the operation for the testing dataset, stochastic solutions prove to be the worst, with an average 

relative error of 7,76%, compared to the value of 5,86% of the deterministic solution. Stochastic solutions 

are more robust, according to stochastic theory, overestimating the TES and including the EES. 

Future work could focus on the following points: 

1. Study of the independence of the representative days. In fact, they are not temporarily linked, so the 

system is forced to let them independent on each other. However, it does not allow exploiting the 

link for the energy storages, implying oversized solutions. 

2. Introduction of worst case scenarios. The adopted method entails oversizing of thermal side energy 

conversion units. 

3. Introduction of prices of energy carriers and energy demand as uncertain parameters. Moreover, 

climate change or evolution of energy demand should also be included.  
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