
UNIVERSITÀ DI PADOVA

TESI DI LAUREA SPECIALISTICA

AUTOMATIC EXECUTION OF EXPRESSIVE
MUSIC PERFORMANCE

Laureando:
Jehu Procore
NJIKONGA NGUEJIP

Matricola: 588522-IF

Relatore:
Prof. Antonio RODÀ

Corso di Laurea Specialistica in Ingegneria Informatica

8 luglio 2014

2 Automatic execution of expressive music performance

Anno Accademico 2013-2014

Abstract

The definition of computer models to represent the expressiveness of a musical performance,
is useful to try to understand how and what way anyone can express expressive intentions in
a music performance. The CaRo 2.0 is a computer model or software system that allows
automatic computation in interactive way for rendering expressive musical scores. Initially, the
CaRo 2.0 was implemented using the borland Developer1 compiler destiny to run only and
exclusively on Microsoft environment, which limits the interest of the product; and the rendering
in CaRo 2.0 application is done through a MIDI synthesizer. MIDI is a wonderful format for
performance applications like sequencers, but it is not so wonderful for other applications like
music notation. For example, MIDI does not represent stem direction, beams, repeats, slurs,
measures, and many other aspects of notation. And sharing music between computer music
programs in the world used to be difficult. Herein lies the power of MusicXML. Write a song
for any instrumentation group, export to MusicXML, and import into any other notation app,
maintaining all of your original score elements. This thesis relates to the porting of the older
CaRo 2.0 into a cross platform ant the integration into the new software implemented of the
MusicXML library.

Since 2002, a scientific initiative brings together scientists from all over the world for a
competition of artificially created performances (RENCON, contest for performance rendering
systems2). Their aim is to construct computational systems that are able to pass a kind of expres-
sive performance Turing Test (that is, an artificial performance sounds indistinguishable from a
human performance, Hiraga et al.,2004 [31]). The very ambitious goal proclaimed by the REN-
CON initiative is for a computer to win the Chopin competition by 2050 (Hiraga et al., 2004
[31]). It is hard to imagine that this will ever be possible, not only because the organisers of such
a competition will probably not permit a computer to participate, but also because a computatio-
nal model would have to take into account the complex social and cognitive contexts in which,
like any human intellectual and artistic activity, a music performance is situated. But even if
complete predictive models of such phenomena are strictly impossible, they advance our under-
standing and appreciation of the complexity of artistic behaviour, and it remains an intellectual
and scientific challenge to probe the limits of formal modelling and rational characterisation.

In view of the conference on July 6, 2011 SMC Rencon, it was considered very important
the improvement of the CaRo software from a point of view of its efficiency in terms of ability
to infuse expressive intentions with a song music, so that the application was able to compete

1c++ Builder version 6
2http://renconmusic.org/

i

with the other competitors participating in the workshop. Furthermore, the choice to improve the
efficiency of the program, would have made him more attractive to possible future developments.

ii

Thanks: My goal has been achieved
My goal has been achieved after many vicissitudes. The University of Padua opened me the
doors in 2004, and three years after I get my Bachelor’s degree in Computer Engineering, the
next year I sign up for the Master Degree in Computer Engineering, the year is marked with
the beginning of the financial crisis that hit the world, anxious to integrate the world of work,
beginning a growth business, and in the meantime I can give missing exams.

I thank Italy, and the University of Padua, who gave me the possibility to realize myself, if
I could go back, I would do the same experience (maybe finishing the master degree in time)
without any doubt.

A sincere thank you goes to the family Fabris (Montegalda, VI) for everything with heart and
so much love has given me and still continue to do.

Thanks to Professor Antonio Rodà who gave me the opportunity to finish my student’s career,
who has been patient with me, and took into account all the discontinuities that have been in this
modest thesis work.

During the thesis work, I got married, and I also wanted to thank my wife for moral support,
emotional, and its presence near to me while traveling from Milan to Padova for the various
discussions with my supervisor to complete this thesis.

Finally, thanks to Mom Hélène Tankoua and Dad André Nguéjip, this Master degree is for
you.

iii

Indice

Abstract i

Thanks: My goal has been achieved iii

1 Expressive Music Performance: The State of the Art 1
1.1 Introduction . 1
1.2 Music performance parameter’s . 3
1.3 How do humans make their performances? . 4

1.3.1 Extracting expression from performers’ movements 5
1.3.2 Can a computer take advantage of this knowledge and become capable

to substitute a human performer? . 5

2 Modelling strategies 7
2.1 Purpose . 7
2.2 Strategies to develop the structures of model . 7

2.2.1 Analysis by measurements . 8
2.2.2 Analysis by synthesis . 8
2.2.3 The machine learning model . 9
2.2.4 Case based reasoning . 10
2.2.5 Mathematical theory approach . 10
2.2.6 Perpectives . 10

2.2.6.1 Comparing performances and models 11
2.2.6.2 Common principles vs. differences 11

2.3 Conclusions . 11

3 Computational Models of expressive music 13
3.1 The KTH model . 13

3.1.1 The basic model . 13
3.1.2 Empirical evaluation . 14

3.2 The Todd model . 14
3.2.1 The basic model . 14

3.3 The Mazzola model . 15

v

3.3.1 The basic model . 15

4 The CaRo software music performance: what’s new? 17
4.1 The Integration into CaRo software of MusicXML library 18

4.1.1 What is MusicXML? . 18
4.1.2 The MusicXML format . 18
4.1.3 How to install and use the library MusicXML 22

4.2 Parsing of MusicXML file . 22
4.3 MusicXML and MIDI . 23
4.4 Extracting MIDI’s informations from MusicXML file 24
4.5 CaRo software: overview of new Features . 26

4.5.1 The main interface . 27
4.5.2 Drivers connection between the MidiShare and the Player 32
4.5.3 The Options frame . 32
4.5.4 The Tools frame . 39

4.6 Mecchanical Execution of a MIDI file: Loading and Playing 43
4.7 Mecchanical Execution of MIDI’s informations extracting from MusicXML file . 44

5 The Porting of CaRo in cross platform environment 49
5.1 The Choice: wxWidget . 49
5.2 Why use wxWidgets? . 50
5.3 Installing wxWidgets for Windows . 50

5.3.1 Installation . 50
5.3.2 Building wxWidgets . 51

5.3.2.1 Cygwin/MinGW Compilation 51
5.4 Configuration/Build options . 52

5.4.1 Release versus Debug: . 52
5.4.2 Static versus Shared . 52
5.4.3 Multi-lib versus Monolithic: . 52

6 Conclusions and future trends 55

vi

Elenco delle figure

4.1 Conceptual model of MidiShare(MIDI) . 24
4.2 New version of CaRo 2.1 . 26
4.3 Save the MusicXML file or MIDI file. 28
4.4 Parse the MusicXML file Involved the libmusicxml libraries. 28
4.5 Extracted the main information from MusicXML file Involved the libmusicxml

libraries. 28
4.6 Play the current song MidiShare Player is Play 28
4.7 Pause the current song MidiShare Player is Pause 28
4.8 Stop the current song MidiShare Player is Stop 28
4.9 Opening the MusicXML file by clicking button on toolbar 29
4.10 Opening the MusicXML file by opening menu file 30
4.11 Message dialog the MusicXML file readed and the number of count notes 31
4.12 Save the MusicXML file or MIDI file. 32
4.13 Parse the MusicXML file Involved the libmusicxml libraries. 32
4.14 Driver managers . 32
4.15 The options frames to load parameters of the MusicXML file. 33
4.16 The options frames to set parameters of the MIDI file, MidiShare. 34
4.17 The options frames to set parameters of the MusicXML file, MidiShare. 35
4.18 The options frames to set MIDI parameters, MidiShare. 36
4.19 The options frames to set MIDI parameters, MidiShare. 37
4.20 The options frames to set MIDI parameters, MidiShare. 38
4.21 Configure tools Involved the Change of the static image. 39
4.22 Window who allow the choose of background image Choose the new static image. 40
4.23 Window with the choosing background image The new static image is choosed. . 41
4.24 Main Window of CaRo with the new background image The new static image. . . 42
4.25 Message dialog for extractiong MidiShare main information. 46

6.1 Background image The static image of expressivity. 56
6.2 Background image The static image of expressivity. 56

vii

Capitolo 1

Expressive Music Performance: The State
of the Art

1.1 Introduction

Like any human intellectual activity, music performance is a complex social and cognitive phe-
nomenon with a rich context. This chapter has tried to give a comprehensive overview of the
state of the art of computational modeling of expressive music performance. Four models and
their approaches were presented, practical evaluations of the models on real performance data
were showed. Music performance as the act of structuring and physically realizing a piece of
music is a complex human activity with different aspects. This study will focus on one specific
aspect which is expressive music performance.

Computational modeling is an attempt at formulating hypotheses concerning expressive per-
formance in such a way that they can be verified on real measured performance data. Four speci-
fic models discussed in this study as: the rule- based performance model developed at KTH, the
structure level models of timing and dynamics, the mathematical model of musical structure and
expression by Guerino Mazzola, Machine learning model. These models focus on commonalities
between performances and performers.

Scientific model defines as a familiar structure used as an analogy to interpret a natural phe-
nomenon. Computational modeling involves embodying mathematical models in computer pro-
grams that can immediately be applied to given data for testing and prediction purposes. A
mathematical or computational model is predictive in the sense that, assuming a specific fixed
setting of all parameters, the model predicts the values of a specific set of variables from the va-
lues of other variables. The purpose of computational models of expressive music performance
is to specify the physical parameters defining a performance, and to quantify systematic rela-
tionships between certain properties of the musical score, and an actual performance of a given
piece. Models in human domain can not be expected to be correct as their predictions will always
correspond to the behavior observed in humans. There are some implicit computational models
that base their predictions on case-based reasoning.

The KTH model consists of a set of performance rules that predict aspects of timing, dy-

1

2 Automatic execution of expressive music performance

namics, and articulation, based on local musical context. The rule refers to a limited class of
musical situations. Most of the rules operate at a rather low level, looking only at very local
contexts and affecting individual notes, but there are rules that refer to entire phrases. The rules
are parameterized with a varying number of parameters. The KTH model involves a professional
musician directly evaluating any tentative rule brought by researcher. Musician and researcher
are in a constant feed-back loop trying to find the best formulation and parameter settings for
each rule. The important aspect of the model is that it is additive. This additivity is a particular
problem when trying to fit the parameters to collections of real recordings. The model is a usea-
ble description language for expressive performance. In the experiment, the different emotional
intentions as represented in the performances were differentiated by particular rules. The KTH
model has been used to model certain emotional colorings that might not be immediately seen
in the music structure. The extension to emotionality has led to a more comprehensive compu-
tational model of expressive performances (the GERM model). There is evidence that KTH rule
model is a viable representation language for describing expressive performance.

The Todd model in contrast to the KTH model may be summarized under the notion of ana-
lysis by measurement, because they obtain their empirical evidence directly from measurements
of human expressive performances. The essence of these models is the assumption that there
is a direct link between certain aspects of the musical structure and the performance. Also this
relation can be modeled by one single, simple rule. The simplistic nature of Todds model has
the potential advantage that its theoretical assumptions can be tested relatively easily. Todd com-
pared the models output with the tempo and dynamics curves from one or two performances
of selected pieces by Haydn, Mozart, and Chopin. Todd model was used as an analysis tool to
access the idiosyncrasies of human performance.

A different model based mainly on mathematical consideration is the Mazzola model. The
Mazzola model builds on mathematical music theory that not only covers various aspects of
music theory and analysis through a highly complex mathematical approach, but also involves
all sorts of philosophical, semiotic, and aesthetic considerations. The Mazzola model consists
of an analysis part and a performance part. The analysis part involves computer-aided analysis
tools for various aspects of the music structure, as meter, melody, or harmony. Each of these
is implemented in RUBBETTEs that assign particular weights to each note in a symbolic score.
The performance part transforms structural features into an artificial performance is theoretically
anchored in Stemma Theory and Operator Theory. There is a linear mapping between metrical
weight and tone intensity to generate artificial performances.The metrical, harmonic, and melo-
dic weights as provided by the RUBATO software served as independent variables. The overall
model could explain 84% of the average tempo curve of the 28 performances, each of the three
analytical components contributing equally to the model.

An alternative way of building computational models of expressive performance is to start
from large amounts of empirical data and to have the computer autonomously discover signifi-
cant regularities in the data by inductive machine learning and data mining techniques. These
learning algorithms produce general performance rules that can be interpreted and used directly
as predictive computational models. The machine learning can predict local, note-level expressi-
ve deviations and higher level phrasing patterns. These two types of models can be combined to
yield an integrated multi-level model of expressive timing and dynamics. Musicians understand

Capitolo 1. Expressive Music Performance: The State of the Art 3

the music in terms of a multitude of more abstract structures, and they use tempo, dynamics
and articulation to shape these structures. Music performance is a multi-level phenomenon with
musical structure and performance patterns at various levels embedded within each other. The-
re is a natural way of combining the phrase-level prediction model wit the rule- based learning
model. After fitting quadratic approximation polynomials to given tempo or dynamics curve and
subtracting from the original curve, what is left is residuals. Residuals are those low-level, local
timing and dynamics deviations that can not be explained by phrases. The learning algorithm
can be used to learn a rule based model of these local effects. Both the note- level rule model
and the multi-level model have been tested on real performances. The machine processes the
performance data and it produce reasonable performance pattern.

The study showed the quantification of individual styles. Predictive models like those descri-
bed above generally focused on fundamental, common performance principles. The study shows
the differences between artists that is aspects of personal artistic performance style. A statistical
analysis revealed a number of characteristics and distinctive phrasing behaviors, some of which
could be associated with certain pianists. The resulting performance data can be represented in an
integrated way as trajectories in a tempo-loudness space that show the joint development of tem-
po and dynamics over time. Various ways toward the characterization of individual performance
style are performance alphabet, and automatic identification of performers. The performance
trajectories must first be converted into a form that is accessible to the automated date analysis
machinery provided by data mining. The trajectories are cut into short segments. The resulting
segments can be grouped into classes of similar patterns via clustering. They can see as a simple
alphabet of performance, restricted to tempo and dynamics. Such performance alphabets support
a variety of quantitative analysis. Another way to trying to quantify individual performance style
is to develop computer programs that attempt to identify artists on the basis of their performance
characteristics.

The result of this study shows that there is ample room for further research, and the field of
computational performance modeling continues to be active. The new research could be finding
the new control spaces and devices to control emotional aspects of music performance. The
person and personality of the artist should be considered as one of the main factors in the models
described in the study. There are some others aspects to be considered in predictive models, like
listener expectations, performance context, artistic intentions, and personal experience.

1.2 Music performance parameter’s
The same piece of music played by different musicians will not be the same as ever , in fact this
is what distinguishes a good musician to another. The attributes of the musical notes : pitch ,
timbre , tempo, dynamics or changes in sound intensities are not specified in the musical sco-
re and the performer must know how to use it properly. These attributes are called parameters
and vary during the performance of music. A good musician is distinguished from another by
his way of interpreting a song. Music performance as the act of interpreting, structuring, and
physically realising a piece of music is a complex human activity with many facets: physical,
acoustic, physiological, psychological, social, artistic. To express their musical intention, musi-

4 Automatic execution of expressive music performance

cians often make gestures and moves their bodies. Body movement is an important non-verbal
means of communication between humans. Body movements can help observers extract infor-
mation about the course of action, or the intent of a person. This visual information provides a
channel of communication to the listener of its own, separated from the auditory signal. In order
to explore to what extent emotional intentions can be conveyed through musicians’ movements,
subjects watched and rated silent video clips of musicians performing four different emotional
intentions, Happy, Sad, Angry, and Fearful. Some of this information is very robust and can be
perceived even when certain parts of the moving body are occluded. It has been shown that by
viewing a motion patterns, subject are able to extract a number of non-trivial features such as the
sex of a person, the weight of the boxes she is carrying. It also possible to identify the emotional
expression in dance and music performance, as well as the emotional expression in every-day
arm movements such as drinking and lifting. Music has an intimate relationship with movement
in several aspects. The most obvious relation is that all sounds from traditional acoustic instru-
ments are produced by human movements. Some characteristics of this motion will inevitably be
rejected in the resulting tones. For example, the sound level, amplitude envelope, and spectrum
change during a tone on a violin has a direct relationship to the velocity and pressure during the
bow gesture. Also, the striking velocity in drumming is strongly related to the height to which
the drumstick is lifted in preparation for the stroke [10] [11]. Musicians also move their bodies in
a way that is not directly related to the production of tones. Head shakes or bodysway are exam-
ples of movements that, although not actually producing sound, still can serve a communicative
purpose of their own. In this respect the movements and the spoken words are co-expressive, not
subordinate to each other. Bearing in mind that music also is a form of communication and that
speech and music have many properties in common it is plausible that a similar concept applies
to musical communication as well.

We prefer to think of these performer movements as a body language since, as we will see
below, they serve several important functions in music performance. It seems reasonable to
assume that some of the expressivity in the music is rejected in these movements.

The body movments may also be used for more explicit communications. Davidson and Cor-
reia (2002) [14] suggest four aspects that influence the body language in musical performances:

1. Communication with co-performers,

2. Individual interpretations of the narrative or expressive/emotional elements of the music

3. The performer’s own expreriences and behaviors,

4. the aim to interact with and entertain and audience

Separating the influence of each of these aspects on the specific movement may not be possible
in general.

1.3 How do humans make their performances?
This section is devoted to expression as represented in all kinds of movements that occur when
performers interact with their instruments during performance (for an overview, see Davidson

Capitolo 1. Expressive Music Performance: The State of the Art 5

and Correia, 2002; Clarke, 2004) [14] [8]. Performers movements are a powerful communica-
tion channel of expression to the audience, sometimes even overriding the acoustic information
(Davidson, 1994) [13].

1.3.1 Extracting expression from performers’ movements
There are several ways to monitor performers’ movements. One possibility is to connect me-
chanical devices to the playing apparatus of the performer (Ortmann, 1929) [40], but that has
the disadvantage of inhibiting the free execution of the movements. More common are optical
tracking systems that either simply video-tape a performer’s movements or record special passi-
ve or active markers placed on particular joints of the performer’s body. Berstein and Poppova,
introduced an active photographical tracking system (Kay et al., 2003) [32]. Such systems use
light-emitting markers placed on the various limbs and body parts of the performer. They are
recorded by video cameras and tracked by software that extracts the position of the markers (e.g.
the Selspot System, as used by Dahl, 2004, 2005) [10] [11]. The disadvantage of these systems
is that the participants need to be cabled, which is a time-consuming process. Also, the cables
might inhibit the participants to move as they would normally move. Passive systems use reflec-
tive markers that are illuminated by external lamps. In order to create a three-dimensional picture
of movement, the data from several cameras are coupled by software (Palmer and Dalla Bella,
2004) [38]. Even less intrusive are video systems that simply record performance movements
without any particular marking of the performer’s limbs. Elaborated software systems(e.g. Eye-
sWeb1, see Camurri et al., 2004, 2005) [5] [7] are able to track defined body joints directly from
the plain video signal (see Camurri and Volpe, 2004, for an overview on gesture-related research)
[6]. Perception studies on communication of expression through performers’ gestures use sim-
pler point-light video recordings (reflective markers on body joints recorded in a darkened room)
to present them to participants for ratings (Davidson, 1993) [12].

1.3.2 Can a computer take advantage of this knowledge and become capa-
ble to substitute a human performer?

Let’us consider in this section five ways in which a computer can learn from human performnan-
ces

1. Investigating human expressive performance by developing computational models. For
experimentation with human performers, models can be built which attempt to simulate
elements of human expressive performance. As in all mathematical and computational
modeling, the model itself can give the researcher greater insight into the mechanisms
inherent in that which is being modeled.

2. Realistic playback on a music typesetting or composing tool. There are many computer
tools available now for music typesetting and for composing. If these tools play back the
compositions with expression on the computer, the composer will have a better idea of

1http://www.megaproject.org

6 Automatic execution of expressive music performance

what the final piece will sound like. For example, Sibelius2, Notion3, and Finale4 have
some ability for expressive playback.

3. Playing computer-generated music expressively. There are a number of algorithmic com-
position systems that output music without expressive performance but which audiences
would normally expect to hear played expressively. These compositions in their raw form
will play on a computer in a robotic way. A CSEMP to generate novel and original
performances as opposed to simulating human strategies.

4. Playing data files. A large number of nonexpressive data files in formats like MIDI and
MusicXML [Good 2001] are available on the Internet, and they are used by many mu-
sicians as a standard communication tool for ideas and pieces. Without CSEMPs, most
of these files will play back on a computer in an unattractive way, whereas the use of a
CSEMP would make such files much more useful.

5. Computer accompaniment tasks. It can be costly for a musician to play in ensemble.
Musicians can practice by playing along with recordings with their solo parts stripped out.
But some may find it too restrictive since such recordings cannot dynamically follow the
expressiveness in the soloists performance. These soloists may prefer to play along with an
interactive accompaniment system that not only tracks their expression but also generates
its own expression.

2http://www.sibelius.com/
3Compose, playback, and edit music with a quality and ease of use that must be experienced. No endless level

of menus to find what you need. Notion is the most efficient notation product, making it simple to write and edit
your ideas quickly. http://www.notionmusic.com/

4Whether youre creating a simple lead sheet, making worksheets for your students, or composing your magnum
opus, Finale helps you easily capture your musical ideas, produce beautiful notation, and quickly share the results.
http://www.finalemusic.com/

Capitolo 2

Modelling strategies

2.1 Purpose
The purpose of computational models of expressive music performance is thus to specify pre-
cisely the physical parameters defining a performance (e.g., onset timing, inter-onset intervals,
loudness levels, note durations, etc.), and to quantify (quasi-)systematic relationships between
certain properties of the musical score, the performance context, and an actual performance of a
given piece. Of course, models in human or artistic domains cannot be expected to be correct in
the sense that their predictions will always correspond to the behaviour observed in humans.

The goal of this section is to arrive at an understanding of the relationships between the
various factors involved in performance that can be formulated in a general model. Models de-
scribe relations among different kinds of observable (and often measurable) information about a
phenomenon, discarding details that are felt to be irrelevant. They serve to generalise empirical
findings and have both a descriptive and predictive value. Often the information is quantitative
and we can distinguish input data, supposedly known, and output data, which are inferred by
the model. In this case, inputs can be considered as the causes, and outputs the effects of the
phenomenon. Computational models models that are implemented on a computer can compute
the values of output data corresponding to the provided values of inputs. This process is called
simulation and is widely used to predict the behaviour of the phenomenon in different circum-
stances. This can be used to validate the model, by comparing the predicted results with actual
observations.

2.2 Strategies to develop the structures of model
We can distinguish several strategies for developing the structure of the model and finding its
parameters. The most prevalent ones are analysis-by-measurement and analysis-by-synthesis.
Recently also methods from artificial intelligence have been employed: machine learning and
case based reasoning. One can distinguish local models, which operate at the note level and
try to explain the observed facts in a local context, and global models that take into account the
higher level of the musical structure or more abstract expression patterns. The two approaches

7

8 Automatic execution of expressive music performance

often require different modelling strategies and structures. In certain cases, it is possible to devise
a combination of both approaches. The composed models are built by several components, each
one aiming to explain different sources of expression. However, a good combination of the
different parts is still quite a challenging research problem.

2.2.1 Analysis by measurements
The first strategy, analysis-by-measurement, is based on the analysis of deviations from the mu-
sical notation measured in recorded human performances. The goal is to recognise regularities
in the deviation patterns and to describe them by means of a mathematical model, relating score
to expressive values (see Gabrielsson 1999 and Gabrielsson 2003, for an overview of the main
results). [26] [27] The method starts by selecting the performances to be analyzed. Often rather
small sets of carefully selected performances are used. The most relevant variables are selected
and analysed. The analysis assumes an interpretation model that can be confirmed or modified
by the results of the measurements. Often the assumption is made that patterns deriving from
different sources or hierarchical levels can be separated and then added. This assumption helps
the modelling phase, but may be overly simplistic. The whole repertoire of statistical data ana-
lysis techniques is then available to fit descriptive or predictive models onto the empirical data
from regression analysis to linear vector space theory to neural networks or fuzzy logic. Many
models address very specific aspects of expressive performance, for example, the final ritard and
its relation to human motion (Kronman and Sundberg, 1987; [33] Todd, 1995; [50] Friberg and
Sundberg, 1999; [20] Sundberg, 2000;[41] Friberg et al., 2000b); [22] the timing of grace notes
(Timmers et al., 2002); [47] vibrato (Desain and Honing, 1996; [15] Schoonderwaldt and Fri-
berg, 2001); [42] melody lead (Goebl, 2001, 2003); [29], [30] legato (Bresin and Battel, 2000);
[3] or staccato and its relation to local musical context (Bresin and Widmer, 2000; Bresin, 2001).
[2] [4] A global approach was pursued by Todd in his phrasing model (Todd, 1992, 1995)[49]
[50]. This model assumes that the structure of a musical piece can be decomposed into a hie-
rarchy of meaningful segments (phrases), where each phase is in turn composed of a sequence
of sub-phrases. The fundamental assumption of the model is that performers emphasise the hie-
rarchical structure by an accelerando-ritardando pattern and a crescendo-decrescendo pattern for
each phrase, and that these patterns are superimposed (summed) onto each other to give the ac-
tually observed complex performance. It has recently been shown empirically on a substantial
corpus of Mozart performances (Tobudic and Widmer, 2006 [63]) that this model may be appro-
priate to explain (in part, at least) the shaping of dynamics by a performer, but less so as a model
of expressive timing and tempo.

2.2.2 Analysis by synthesis
While analysis by measurement develops models that best fit quantitative data, the analysis-by-
synthesis paradigm takes into account the human perception and subjective factors. First, the
analysis of real performances and the intuition of expert musicians suggest hypotheses that are
formalised as rules. The rules are tested by producing synthetic performances of many pieces
and then evaluated by listeners. As a result the hypotheses are refined, accepted or rejected.

Capitolo 2. Modelling strategies 9

This method avoids the difficult problem of objective comparison of performances, including
subjective and perceptual elements in the development loop. On the other hand, it depends very
much on the personal competence and taste of a few experts.

The most important model developed in this way is the KTH rule system (Friberg, 1991 [16],
1995;[17] Friberg et al., 1998 [18], 2000a[21]; Sundberg et al., 1983 [43], 1989 [44], 1991 [45]).
In the KTH system, a set of rules describe quantitatively the deviations to be applied to a musical
score, in order to produce a more attractive and human-like performance than the mechanical
one that results from a literal playing of the score. Every rule tries to predict (and to explain with
musical or psychoacoustic principles) some deviations that a human performer is likely to apply.
Many rules are based on a low-level structural analysis of the musical score. The KTH rules can
be grouped according to the purposes that they apparently have in music communication. For
instance, differentiation rules appear to facilitate categorisation of pitch and duration, whereas
grouping rules appear to facilitate grouping of notes, both at micro and macro levels.

2.2.3 The machine learning model
In the traditional way of developing models, the researcher normally makes some hypothesis on
the performance aspects he/she wishes to model and then tries to establish the empirical validity
of the model by testing it on real data or on synthetic performances. An alternative approach,
pursued by Widmer and coworkers [Widmer, 1995a [53], b[54], 1996[55], 2000[56], 2002b[58],
Widmer and Tobudic, 2003 [59], Widmer, 2003 [60], Widmer et al., 2003 [61], Widmer, 2005
[62], Tobudic and Widmer, 2006 [63]], tries to extract new and potentially interesting regularities
and performance principles from many performance examples, by using machine learning and
data mining algorithms. The aim of these methods is to search for and discover complex depen-
dencies on very large data sets, without a specific preliminary hypothesis. Apossible advantage is
that machine learning algorithms maydiscover new (and possibly interesting) knowledge, avoi-
ding any musical expectation or assumption. Moreover, some algorithms induce models in the
form of rules that are directly intelligible and can be analysed and discussed with musicologists.
This was demonstrated ina large-scale experiment (Widmer, 2002b [58]), where a machine lear-
ning system analysed a large corpus of performance data (recordings of 13 complete Mozart
piano sonatas by a concert pianist), and autonomously discovered a concise set of predictive ru-
les for note-level timing, dynamics, and articulation. Some of these rules turned out to describe
regularities similar to those incorporated in the KTH performance rule set (see above), but a few
discovered rules actually contradicted some common hypotheses and thus pointed to potential
shortcomings of existing theories. The note-level model represented by these learned rules was
later combined with a machine learning system that learned to expressively shape timing and
dynamics at various higher levels of the phrase hierarchy (in a similar way as described in Todds
1989 [48]; 1992 [49] structure-level models), to yield a multi-level model of expressive phrasing
and articulation (Widmer and Tobudic, 2003 [59]).

A computer performance of a (part of a) Mozart piano sonata generated by this model was
submitted to the International Performance Rendering Contest (RENCON) in Tokyo, 2002, whe-
re it won the Second Prize behind a rule-based rendering system that had been carefully tuned by
hand. The rating was done by a jury of human listeners. This can be taken as a piece of evidence

10 Automatic execution of expressive music performance

of the musical adequacy of the model. However, as an explanatory model, this system has a
serious shortcoming: in contrast to the note-level rules, the phrase-level performance model is
not interpretable, as it is based on a kind of case-based learning (see also below). More research
into learning structured, interpretable models from empirical data will be required.

2.2.4 Case based reasoning

An alternative approach, closer to the observation-imitation-experimentation process observed
in humans, is that of directly using the knowledge implicit in human performances. Case-based
reasoning (CBR) is based on the idea of solving new problems by using (often with some kind of
adaptation) similar previously solved problems. An example in this direction is the SaxEx system
for expressive performance of Jazz ballads [Arcos et al., 1998 [1], which predicts expressive
transformations to recordings of saxophone phrases by looking at how other, similar phrases were
played by a human musician. The success of this approach greatly depends on the availability of
a large amount of well-distributed previously solved problems, which are not easy to collect.

2.2.5 Mathematical theory approach

A rather different model, based mainly on mathematical considerations, is the Mazzola model
(Mazzola, 1990 [?]; Mazzola and Zahorka, 1994 [34]; Mazzola et al., 1995 [35]; Mazzola, 2002
[37]; Mazzola and Goller, 2002 [36]). This model basically consists of a musical structure ana-
lysis part and a performance part. The analysis part involves computer-aided analysis tools, for
various aspects of the music structure, that assign particular weights to each note in a symbolic
score. The performance part, that transforms structural features into an artificial performance,
is theoretically anchored in the so-called Stemma Theory and Operator Theory (a sort of additi-
ve rule-based structure-to-performance mapping). It iteratively modifies the performance vector
fields, each of which controls a single expressive parameter of a synthesised performance. The
Mazzola model has found a number of followers who studied and used the model to generate ar-
tificial performances of various pieces. Unfortunately, there has been little interaction or critical
exchange between this school and other parts of the performance research community, so that
the relation between this model and other performance theories, and also the empirical validity
of the model, are still rather unclear.

2.2.6 Perpectives

Computer-based modelling of expressive performance has shown its promise over the past years
and has established itself as an accepted methodology. However, there are still numerous open
questions related both to the technology, and to the questions that could be studied with it. Two
prototypical ones are briefly discussed here.

Capitolo 2. Modelling strategies 11

2.2.6.1 Comparing performances and models

A problem that naturally arises in quantitative performance research is how performances can be
compared. In subjective comparison often a supposed ideal performance is used as a reference by
the evaluator. In other cases, an actual reference performance can be assumed. Of course subjects
with different background may have dissimilar preferences that are not easily made explicit.

When we consider computational models, objective numerical comparisons would be desi-
rable. In this case, performances are represented by sets of values. Various similarity or distance
measures (e.g. absolute difference, Euclidean distance, etc.) can be defined over these, and it
is not at all clear which of these is most appropriate musically. Likewise, it is not clear how
to weight individual components or aspects (e.g. timing vs. dynamics), or how these objective
differences relate to subjectively perceived differences. Agreed upon methods for performance
comparison would be highly important for further fruitful research in this field.

2.2.6.2 Common principles vs. differences

The models discussed in the previous sections aim at explaining and simulating general princi-
ples that seem to govern expressive performance, that is, those aspects of the relation between
score and performance that seem predictable and more or less common to different performan-
ces and artists. Recently research has also started to pay attention to aspects that differentiate
performances and performers’ styles (Repp, 1992; Widmer, 2003) [39] [60]. The same piece of
music can be performed trying to convey different expressive intentions (Gabrielsson and Lind-
strom, 2001) [28], sometimes changing the character of the performance drastically. The CARO
model (Canazza et al., 2004) [9] is able to modify a neutral performance (i.e. played without
any specific expressive intention) in order to convey different expressive intentions. Bresin and
Friberg (2000) [23] developed some macro rules for selecting appropriate values for the parame-
ters of the KTH rule system in order to convey different emotions. The question of the boundary
between predictability and individuality in performance remains a challenging one.

2.3 Conclusions

Quantitative research on expressive human performance has been developing quickly during the
past decade, and our knowledge of this complex phenomenon has improved considerably. There
is ample room for further investigations, and the field of computational performance research
continues to be active. As the present survey shows, the computer has become a central player
in this kind of research, both in the context of measuring and extracting expression-related in-
formation from performances, and in analysing and modelling the empirical data so obtained.
Intelligent computational methods are thus helping us advance our understanding of a complex
and deeply human ability and phenomenon. In addition, operational computer models of music
performance will also find many applications in music education and entertainment think, for
instance, of expressive music generation or interactive expressive music control in multimedia
applications or games, of quasi-autonomous systems for interactive music performance, of new

12 Automatic execution of expressive music performance

types of musical instruments or interfaces that provide novel means of conveying expressive in-
tentions or emotions, or of intelligent tutoring or teaching support systems in music education.
Still, there are fundamental limits that will probably be very hard to overcome for music per-
formance research, whether computer-based or not. The very idea of a creative activity being
predictable and, more specifically, the notion of a direct quasi-causal relation between the con-
tent of the music and the performance has obvious limitations. The person and personality of
the artist as a mediator between music and listener is totally neglected in basically all models
discussed above. There are some severe general limits to what any predictive model can descri-
be. For instance, very often performers intentionally play the repetition of the same phrase or
section totally differently the second time around. Being able to model and predict this would
presup- pose models of aspects that are outside the music itself, such as performance context,
artistic intentions, personal experiences, listeners expectations, etc.

Although it may sound quaint, there are concrete attempts at elaborating computational mo-
dels of expressive performance to a level of complexity where they are able to compete with
human performers.

Capitolo 3

Computational Models of expressive music

3.1 The KTH model

This well-known rule system has been developed at the Royal Institute of Technology in Stoc-
kholm in more than 20 years of research, starting with (Sundberg et al., 1983 [43]). In the
meantime it has been extended and analysed in many ways (e.g., Sundberg et al., 1989 [44];
Friberg, 1991[16]; Friberg et al., 1998 [18]) and applied also to contemporary music (Friberg et
al., 1991 [16]). A comprehensive description is given in Friberg (1995a)[17].

3.1.1 The basic model

The KTH model consists of a set of performance rules that predict aspects of timing, dynamics,
and articulation, based on local musical context. The rule refers to a limited class of musical
situations. Most of the rules operate at a rather low level, looking only at very local contex-
ts and affecting individual notes, but there are rules that refer to entire phrases. The rules are
parameterized with a varying number of parameters. The KTH model involves a professional
musician directly evaluating any tentative rule brought by researcher. Musician and researcher
are in a constant feed-back loop trying to find the best formulation and parameter settings for
each rule. The important aspect of the model is that it is additive. This additivity is a particular
problem when trying to fit the parameters to collections of real recordings. The model is a usea-
ble description language for expressive performance. In the experiment, the different emotional
intentions as represented in the performances were differentiated by particular rules. The KTH
model has been used to model certain emotional colorings that might not be immediately seen
in the music structure. The extension to emotionality has led to a more comprehensive compu-
tational model of expressive performances (the GERM model). There is evidence that KTH rule
model is a viable representation language for describing expressive performance.

The KTH model was developed using the so-called analysis-by-synthesis approach (Sund-
berg et al., 1983 [43]; Friberg & Sundberg, 1987 [19]; Sundberg et al., 1991a [46]) that involves
a professional musician directly evaluating any tentative rule brought forward by the researcher.
Musician and researcher are in a constant feed-back loop trying to find the best formulation and

13

14 Automatic execution of expressive music performance

parameter settings for each rule. This method has the advantage of modelling a kind of perfor-
mer listener interaction (as the authors argue, see Friberg, 1995a), but falls potentially short by
placing high demands on the evaluating expert musician(s) and by not permitting reliable eva-
luations due to the small number of judgements. The analysis-by-synthesis method was inspired
by and adapted from speech synthesis methods (Friberg, 1995a [17]).

3.1.2 Empirical evaluation
The KTH Model features a large number of free parameters that govern the relative strengths of
the individual notes and a number of other aspects. To turn the rule set into a truly predictive
model, these parameters must be set to fixed values. Several attempts have been made to find
appropriate parameter settings. Although the analysis-by-synthesis approach involves perceptual
judgements from highly skilled individual musicians as a basic method, it still needs independent
empirical evaluation on real performances (Gabrielsson, 1985 [25]).

3.2 The Todd model
The Todd model in contrast to the KTH model may be summarized under the notion of analysis
by measurement , because they obtain their empirical evidence directly from measurements of
human expressive performances. The essence of these models is the assumption that there is
a direct link between certain aspects of the musical structure and the performance. Also this
relation can be modeled by one single, simple rule. The simplistic nature of Todds model has
the potential advantage that its theoretical assumptions can be tested relatively easily. Todd
compared the models output with the tempo and dynamics curves from one or two performances
of selected pieces by Haydn, Mozart, and Chopin. Todd model was used as an analysis tool to
access the idiosyncrasies of human performance.

3.2.1 The basic model
The essence of these models is the assumption that there is a direct link between certain aspects
of the musical structure (i.e., grouping structure) and the performance and, secondly, that this
relation can be modeled by one single, simple rule. The first approaches modelled production
(Todd, 1985 [?], 1989a [?]) and perception (Todd, 1989b [?]) of expressive timing exclusively.
Todds last contribution included the interaction of timing and dynamics as well (Todd, 1992
[49]). In Todd (1989a [?]), a recursive look-ahead procedure was introduced that reduced the
(theoretically) high demands on working memory introduced by the first model (Todd, 1985 [?]).
The interaction between timing and dynamics was modelled by the simple relation the faster, the
louder, where intensity is proportional to the squared tempo (Todd, 1992 [49], p. 3544). Thus,
the hierarchical grouping structure of the music directly controls the instantaneous tempo (the
more closure and thus, the more important the phrase boundary, the slower the performed tempo)
as well as the expressive dynamics (in terms of hammer velocity at a computer-controlled piano).
At each level of the hierarchy, the model increases tempo and dynamics towards the middle of

Capitolo 3. Computational Models of expressive music 15

phrases and vice versa. A basic assumption in these models is the analogy to physical motion
(see also Kronman & Sundberg, 1987 [33]; Todd, 1992 [49], 1995 [50]) that may even have a
(neuro-)physiological basis in the vestibular system (Todd, 1992 [49], p. 3549).

3.3 The Mazzola model

A rather different model based mainly on mathematical considerations is the Mazzola model.
The Swiss mathematician and Jazz pianist Guerino Mazzola developed his mathematical music
theory and performance model from the 1980s up to the present (Mazzola, 1990; Mazzola &
Zahorka, 1994a; Mazzola et al., 1995; Mazzola & Gller, 2002). His most recent book (Mazzola,
2002) extends over more than 1300 pages and gives a supposedly comprehensive survey of the
vast theoretical background as well as its computational implementation. A different model
based mainly on mathematical consideration is the Mazzola model. The Mazzola model builds
on mathematical music theory that not only covers various aspects of music theory and analysis
through a highly complex mathematical approach, but also involves all sorts of philosophical,
semiotic, and aesthetic considerations. The Mazzola model consists of an analysis part and a
performance part. The analysis part involves computer-aided analysis tools for various aspects of
the music structure, as meter, melody, or harmony. Each of these is implemented in RUBBETTEs
that assign particular weights to each note in a symbolic score. The performance part transforms
structural features into an artificial performance is theoretically anchored in Stemma Theory
and Operator Theory. There is a linear mapping between metrical weight and tone intensity to
generate artificial performances.The metrical, harmonic, and melodic weights as provided by
the RUBATO software served as independent variables. The overall model could explain 84%
of the average tempo curve of the 28 performances, each of the three analytical components
contributing equally to the model.

3.3.1 The basic model

The Mazzola model builds on an enormous theoretical background, namely, the mathematical
music theory (Mazzola, 1990) that not only covers various aspects of music theory and ana-
lysis through a highly complex mathematical approach, but involves all sorts of philosophical,
semiotic, and aesthetic considerations as well. Every step of the theory is explained in specifi-
cally mathematical terms and with a special terminology that is greatly different from what is
commonly used in performance research. The whole theory is rather hermetic, if one may say
so. Therefore, we restrict ourselves here to the more concrete computational facets as they have
been reported in the literature. The Mazzola model basically consists of an analysis part and a
performance part. The analysis part involves computer-aided analysis tools for various aspects
of the music structure as, e.g., meter, melody, or harmony. Each of these is implemented in parti-
cular plugins, the so-called RUBETTEs, that assign particular weights to each note in a symbolic
score. The performance part that transforms structural features into an artificial performance is
theoretically anchored in the so-called Stemma Theory and Operator Theory (a sort of additi-

16 Automatic execution of expressive music performance

ve rule-based structure-toperformance mapping). It iteratively modifies the performance vector
fields, each of which controls a single expressive parameter of a synthesised performance.

Capitolo 4

The CaRo software music performance:
what’s new?

The improvement give to the original CaRo was to be able to give additional information to the
Player, in addition to the MIDI file in input, in order to be able to give greater expressiveness
executive to the audio file. The most immediate way to do this was to take the corrsipondent
musical score to incoming MIDI file, add the information to the notes of the score, save this
information in a file, and use this information in the appropriate time. With the software FINAL,
the MIDI file was open, which the user added the additional information, in the next time ex-
ported the file into MusicXML format containing all the information of the original MIDI file as
well as additional ones.

The project in the past was implemented using the compiler Borland Builder C + + and
is based on library MidiShare for the communication and management of MIDI files. In the
past to use the CaRo the user is forced to load a MIDI file and then optionally can upload the
corresponding MusicXML file or not; with the work carried out in this thesis, this requirement
has been removed. i.e to this work, these improvements have been made:

• The porting of the CaRo into cross platform who will be discuss in the next chapter.

• Loading only the MIDI file, in this case, the MIDI file may contain in place of a mecha-
nical performance, a performance neutral recorded by a human pianist or obtained by an
automatic system.

• Loading the only MusicXML files, in this case the notes and the melody of the song,
which were previously taken from a MIDI file, are taken directly from the MusicXML
files; Indeed, this file contains all the information necessary to perform the song.

17

18 Automatic execution of expressive music performance

4.1 The Integration into CaRo software of MusicXML library

4.1.1 What is MusicXML?
MusicXML was developed by Recordare LLC1, deriving several key concepts from existing aca-
demic formats. MusicXML development is currently managed by MakeMusic following the
company’s acquisition of Recordare in 2011. Like all XML-based formats, MusicXML is in-
tended to be easy for automated tools to parse and manipulate. Though it is possible to create
MusicXML by hand, interactive score writing programs like Finale and MuseScore greatly sim-
plify the reading, writing, and modifying of MusicXML files. MusicXML, as XML encoding,
offers all the potential of this tool:

• structuring data

• modularity

• extensibility

• exchange data back-office

• ability to query and interaction through the family of technologies related to XML

MusicXML is a music interchange format designed for notation, analysis, retrieval, and per-
formance applications. The MusicXML library is a portable C++ library designed close to the
MusicXML format and intended to facilitate MusicXML support. The MusicXML format repre-
sents common Western musical notation from the 17th century onwards. It is an xml format that
organizes the music into a header followed by the core music data. The core music data may be
organized as partwise or timewise data:

• Partwise data are organized into parts containing measures,

• Timewise data are organized into measures containing parts.

4.1.2 The MusicXML format
Writing Western music can be considered either horizontally or vertically, depending on whether
the reference factor are the main parts or the measures

MusicXML has two different top-level DTDs, each with its own root element. If you use
the partwise DTD, the root element is <score-partwise>. The musical part is primary,
and measures are contained within each part. If you use the timewise DTD, the root element is
<score-timewise>. The measure is primary, and musical parts are contained within each
measure. An application reading MusicXML can choose which format is primary, and check
for that document type. If it is your root element, just proceed. If not, check to see if it is the
other MusicXML root element. If so, apply the appropriate XSLT stylesheet to create a new

1http://www.recordare.com/

Capitolo 4. The CaRo software music performance: what’s new? 19

MusicXML document in your preferred format, and then proceed. If it is neither of the two top-
level document types, you do not have a MusicXML score, and can return an appropriate error
message.

The primary definition of the file is contained in these lines:

<![%partwise; [
<!ELEMENT score-partwise (%score-header;, part+)>
<!ELEMENT part (measure+)>
<!ELEMENT measure (%music-data;)>
]]>
<![%timewise; [
<!ELEMENT score-timewise (%score-header;, measure+)>
<!ELEMENT measure (part+)>
<!ELEMENT part (%music-data;)>
]]>

• The %partwise; and %timewise; entities are set in the top-level DTDs partwise.dtd and
timewise.dtd.

20 Automatic execution of expressive music performance

• The <![lines indicate a conditional clause like the #ifdef statement in C. So if partwise.dtd
is used, the <score-partwise> element is defined, while if timewise.dtd is used, the
<score-timewise> element is defined.

You can see that the only difference between the two formats is the way that the part and measure
elements are arranged. A score-partwise document contains one or more part elements, and each
part element contains one or more measure elements. The score-timewise document reverses
this ordering. In either case, the lower-level elements are filled with a music-data entity. This
contains the actual music in the score, and is defined as:

<!ENTITY % music-data
"(note | backup | forward | direction | attributes |

harmony | figured-bass | print | sound | barline |
grouping | link | bookmark)*">

In addition, each MusicXML file contains a %score-header; entity, defined as:

<!ENTITY % score-header
"(work?, movement-number?, movement-title?,

identification?, defaults?, credit*, part-list)">

Sample of Score Header

<work>
<work-number>D. 911</work-number>
<work-title>La bohme</work-title>

</work>
<movement-number>22</movement-number>
<movement-title>Atto I, In soffitta. Parte di Rodolfo.</movement-title>
<identification>

<creator type="composer">Giacomo Puccini</creator>
<creator type="poet">Giuseppe Giacosa</creator>
<creator type="poet">Luigi Illica</creator>
<encoding>

<software>Finale 2005 for Windows</software>
<software>Dolet for Finale 1.4.1</software>
<encoding-date>2006-05-04</encoding-date>

</encoding>
<source>Based on digital edition from CD Sheet music LLC
</source>

</identification>
<part-list>
<score-part id="P1">

<part-name>Rodolfo</part-name>

Capitolo 4. The CaRo software music performance: what’s new? 21

</score-part>
<score-part id="P2">

<part-name>Pianoforte.</part-name>
</score-part>

</part-list>

As You can see the score-header above has all five of the possible top-level elements in the
score-header entity: the work, movement-number, movement-title, identification, and part-list.
Only the part-list is required, all other elements are optional. Lets look at each part in turn: In
MusicXML, individual movements are usually represented as separate files.

The work The work element is used to identify the larger work of which the movement is
a part. The worker’s works are more commonly referred to via D. numbers than opus numbers,
so that is what we use in the work-number element; the work-title is the name of the larger work.

The movement If you have all the movements in a work represented, you can use the opus
element to link to the MusicXML opus file that in turn contains links to all the movements in the
work. Similarly, we use the movement-title element for the title of the individual song. If you
have a single song that is not part of a collection, you will usually put the title of the song in the
movement-title element, and not use either the work or movement-number elements.

The identification It contains basic metadata elements based on the Dublin Core. In this
song, as many others, there are two creators: in this case, the composer and the poet. There-
fore, we use two creator elements, and distinguish their roles with the type attribute. For an
instrumental work with just one composer, there is no need to use the type attribute.

The encoding The encoding element contains information about how the MusicXML file
was created. Here we are using all four of the available sub-elements to describe the encoding.
You can have multiple instances of these elements, and they can appear in any order.

The part-list The part-list is the one part of the score header that is required in all Musi-
cXML scores. It is made up of a series of score-part elements, each with a required id attribute
and part-name element. By convention, our software simply numbers the parts as P1, P2, etc. to
create the id attributes. You may use whatever technique you like as long as it produces unique
names for each score-part. In addition to the part-name, there are many optional elements that
can be included in a score-part. For more information, see at the MusicXML web site 2

2http://www.makemusic.com/musicxml/

22 Automatic execution of expressive music performance

4.1.3 How to install and use the library MusicXML
The first step is to download the library in the repository web site3 or direct link 4. The second
step according to the OS is

• MacOS:
copy the libmusicxml2.framework to /Library/Frameworks

• Windows:
copy the libmusicxml2.dll along with your application; For example, according to the
IDE use in this thesis 5, in the directory that contain the libmusicxml.dll, there is the
libmusicxml.lib to link inside the build properties of the project.

• Linux:
copy the library to /usr/local/lib or to /usr/lib binaries are compiled for 64 bits architectures
on Ubuntu 11.10 you should get the src code (from the package of from git) and compile
on your platform

4.2 Parsing of MusicXML file
The set of five horizontal lines and four spaces that each represent a different musical pitch is
extract with the code below:

cout << "summary for part "<< elt->getAttributeValue("id")<< "\n";
cout << " staves count : "<< countStaves() << "\n";

smartlist<int>::ptr voices;
smartlist<int>::ptr staves = getStaves();
for (vector<int>::const_iterator i = staves->begin(); i != staves->end(); i++){
cout << " staff \"" << *i << "\": " << getStaffNotes(*i) << " notes - "
<< countVoices(*i) << " voices [";

bool sep = false;
voices = getVoices(*i);
for (vector<int>::const_iterator v=voices->begin(); v!=voices->end(); v++) {
if (sep) resStream << ", ";
else sep = true;
cout << *v << ":" << getVoiceNotes(*i, *v);
}
cout << "]" << "\n";
}

3http://libmusicxml.sourceforge.net/
4https://code.google.com/p/libmusicxml/downloads/list
5Code::Blocks 13.12

Capitolo 4. The CaRo software music performance: what’s new? 23

cout << " total voices : "<< countVoices()<< "\n";
voices = getVoices();
for (vector<int>::const_iterator i=voices->begin(); i!=voices->end(); i++)
{
cout << " voice \"" << *i << "\": " <<getVoiceNotes(*i)<< " notes - ";
staves = getStaves(*i);
cout << staves->size() <<(staves->size() > 1 ? " staves" :" staff") << " [";
bool sep = false;
for (vector<int>::const_iterator s=staves->begin(); s!=staves->end(); s++)
{
if (sep) resStream << ", ";
else sep = true;
cout << *s ;
}
cout << "] main staff: " << getMainStaff(*i) << "\n";
}
}

Then, by taken an iterator on the set of Staves, the algorithm print the staff notes, and count
all voice of the staff. After this, it show an open dialog containing all the Stave, voices, and all
notes of the file MusicXML. Also, a file .txt is created cointaining all informations mentioned
above.

4.3 MusicXML and MIDI
The purpose and actual use of MusicXML is the interchange of musical scores on the Internet.
Over the past thirty years there have been numerous systems of representation of Western nota-
tion, but the only used on a large scale is the MIDI: Musical Instrumental Digital Interface. While
the MIDI format was created as a support to musical performances, MusicXML is proposed as
a standard encoding of the musical score in all its facets. Once encoded, the score can be consi-
dered as a semi-structured database and then questioned and revised. This type of approach has
also been suggested, during a series of conferences organized to present the project, by Michael
Good, founder of Recordare LLC. MidiShare is based on a client/server model. It is composed
of six main components : an event memory manager, a time manager and synchronizer, a task
manager, a communication manager, an event and task schedulerand Midi drivers.

24 Automatic execution of expressive music performance

Figura 4.1: Conceptual model of MidiShare(MIDI)

4.4 Extracting MIDI’s informations from MusicXML file
The below code is what use to extract required informations,

class mymidiwriter : public midiwriter {
public:
mymidiwriter() {}
virtual ˜mymidiwriter() {}

virtual void startPart (int instrCount)
{ resStream << "startPart with " << instrCount << " instrument(s)" << "\n";}
virtual void newInstrument (std::string instrName, int chan=-1)
{ resStream << "newInstrument \"" << instrName << "\" on chan " << chan << "\n";}
virtual void endPart (long date)
{ resStream << date << " endPart" << "\n";}

virtual void newNote (long date, int chan, float pitch, int vel, int dur)
{ resStream << date << " newNote [" << chan << "," << pitch << ","

Capitolo 4. The CaRo software music performance: what’s new? 25

<< vel << "," << dur << "]" << "\n";
midiAttribute << chan << "," << pitch << "," << vel << "," << dur << "\n";}
virtual void tempoChange (long date, int bpm)
{ resStream << date << " tempoChange " << bpm << "\n";}
virtual void pedalChange (long date, pedalType t, int value)
{ resStream << date << " pedalChange type " << t << " val " << value << "\n";}

virtual void volChange (long date, int chan, int vol)
{ resStream << date << " volChange chan " << chan << " vol " << vol << "\n";}
virtual void bankChange (long date, int chan, int bank)
{ resStream << date << " bankChange chan " << chan << " bank " << bank << "\n";}

virtual void progChange (long date, int chan, int prog)
{ resStream << date << " progChange chan " << chan << " prog " << prog << "\n";}
};

The above code is more intuitive; inside the tree node, the source is looking about the notes with
main parameters:

<note>
<rest measure="yes"/>
<duration>24</duration>
<voice>1</voice>

</note>
...

<note>
<rest measure="yes"/>
<duration>16</duration>
<voice>1</voice>

</note>
...

<note default-x="59">
<pitch>

<step>B</step>
<octave>5</octave>

</pitch>
<duration>24</duration>
<tie type="start"/>
<voice>1</voice>
<type>half</type>
<dot/>
<stem default-y="-22">down</stem>
<notations>
<tied type="start"/>

26 Automatic execution of expressive music performance

</notations>
</note>

...

All estractions are store in a .txt file, and in the second by perform play mecchanical, the
MidiShare perform the Player song, it will be explain in section 5.7

4.5 CaRo software: overview of new Features
When the application starts, the program looks like in the figure 4.2, which will be the interface
of interaction between the user and the program. All operations that you can perform with the

Figura 4.2: New version of CaRo 2.1

CaRo 2.1 can be divided into 4 main actions:

1. Mecchanical Execution of a MIDI file (MIDI)

2. Parsing of a MusicXML file

Capitolo 4. The CaRo software music performance: what’s new? 27

3. Extraction principal MIDI’s informations from MusicXML file

4. Mecchanical Execution of MIDI’s informations extracting from MusicXML file

Will be analyzed in detail the operation and implementation behind each of these actions.

4.5.1 The main interface
For an application to be able to transmit and receive events, it must first be connected to one or
more source and destination. The CaRo 2.1 firstly check if the MidiShare application is installed
in our OS. Then open the connection with the MidiShare Player and store it to a reference number
who will use to managed the Player, the MidiShare sequences are load on the Player by setting
all the track. The description below is more intuitive:

if (MidiShare()) {
"MidiShare application is installed...";

} else {
"MidiShare application not installed...";

}
//Store refrence number of OpenPlayer
ourRefNum = OpenPlayer(AppliName);
//Connected the Player to Midishared
MidiConnect(ourRefNum, 0, true);

if (!MidiIsConnected(ourRefNum, 0)) {
"CaRo has not been connected to MidiShare application";

} else {
"New connection with the MidiShare application";

}

ourRefNum = MidiOpen(AppliName);
if (ourRefNum == MIDIerrSpace){

"Too much MidiShare client applications";
}

The MidiConnect function allows the switching on or off connections between a source and
destination applications and the MidiIsConnected function gives the state (on or off) of a con-
nection. There are no restrictions in establishing connections, an application can be source or
destination of as many applications as you wish and of course looping is possible. The toolbar
in the figure 4.2 is added to perform quickly some operations; on opening the CaRo 2.1 main
interface, some buttons on the toolbar are disabled like:

28 Automatic execution of expressive music performance

Figura 4.3: Save the MusicXML file or MIDI file., which is action performed by saving the
corripondent MIDI file or MusicXML file

Figura 4.4: Parse the MusicXML file Involved the libmusicxml libraries., which is action per-
formed by reading the corripondent xml file and browse information needing by MidiShare
libraries

Figura 4.5: Extracted the main information from MusicXML file Involved the libmusicxml
libraries., which is extractiong the principal information to send to MidiShare Player.

Figura 4.6: Play the current song MidiShare Player is Play , which is the corrispondent
executive player, maybe the Mecchanical, Neutral or Expressiveness play

Figura 4.7: Pause the current song MidiShare Player is Pause , which is the corrispondent
executive player, maybe the Mecchanical, Neutral or Expressiveness play

Figura 4.8: Stop the current song MidiShare Player is Stop , which is the corrispondent executive
player, maybe the Mecchanical, Neutral or Expressiveness play

As initial toolbar, it look like:

Capitolo 4. The CaRo software music performance: what’s new? 29

Figura 4.9: Opening the MusicXML file by clicking button on toolbar, this operation perform
the count of all notes in the file: it is like a small parse

The possibility of open file is also given by the menu File --> Open MusicXML: as
initial open menu file, this operation are disabled:

• Save

• Parse MusicXML

• Xml2Midi

30 Automatic execution of expressive music performance

Figura 4.10: Opening the MusicXML file by opening menu file, this operation perform the count
of all notes in the file: it is like a small parse

When the file MusicXML is correctly open, a message dialog appear and display the number
of notes containing in the file:

Capitolo 4. The CaRo software music performance: what’s new? 31

Figura 4.11: Message dialog the MusicXML file readed and the number of count notes. After
this dialog, the status bar of the main frame interface tell the correctly or not of the musicXML
file reading

The operation of opening MusicXML file who return the number of notes of the MusicXML
file use a predicate to search inside the node of the MusicXML file all elements which type is
k_note as the sample below:

struct predicate {
bool operator () (const Sxmlelement elt) const {
return elt->getType() == k_note;
}
};

During the perform so-called operation of Open MusicXML file, all the elements is browsed
and stored in a vector, by using and iterator on the vector, and the predicate like the example
below:

Sxmlelement elt = file->elements();
predicate p;
count = count_if(elt->begin(), elt->end(), p);

If the file is opened correctly, this two buttons below are enabled allowing the relative’s opera-
tions:

32 Automatic execution of expressive music performance

Figura 4.12: Save the MusicXML file or MIDI file., which is action performed by saving the
corripondent MIDI file or MusicXML file

Figura 4.13: Parse the MusicXML file Involved the libmusicxml libraries., which is action
performed by reading the corripondent xml file and browse information needing by MidiShare
libraries

4.5.2 Drivers connection between the MidiShare and the Player
In the directory of the project, this application dirver must be present:
msControl32, msDrives, msEcho32 and this configuration files
midishare.ini, msMMSystem.ini. These files are located in directory libraries and
used to set the MidiShare connections port for input/ output of MIDI files. Each dirver has slots
for input/output, which correspond to the input ports and output that is used. To properly set the
instructions contained within the file .INI just use the application msDrivers.exe, a driver
manager that allows you to set the connections between MidiShare ports and driver’s slots.

Figura 4.14: Driver managers: application to set connection port between MidiShare and driver
slot

4.5.3 The Options frame
This frame is the same describe on the thesis of Massimo Barichello6 The only improvement
is reading from multiple text files and save the new informations at the relative text file. At

6http://tesi.cab.unipd.it/35067/1/tesiBarichello.pdf

Capitolo 4. The CaRo software music performance: what’s new? 33

the startup of the options frame, the information is loading from two txt file to fill the MIDI
parameters and the expressive MusicXML parameters.

Figura 4.15: The options frames to load parameters of the MusicXML file. The user can load
prameters from any file, and save it to AdjectiveParameters.txt or MusicXMLparameters.txt

34 Automatic execution of expressive music performance

This tab in figure ?? allow to CaRo the realtime interaction with the interface when the song
is riproduced.

Figura 4.16: The options frames to load parameters of the MIDI file, MidiShare. The user can
load parameters from any file, and save it to AdjectiveParameters.txt

Capitolo 4. The CaRo software music performance: what’s new? 35

In this tab, we find the multiplicative constants related to any kind of information which is
obtain through the MusicXML file, in fact any of this information goes to act in some of the
parameters of the model used by the CaRo, which enables the expressiveness modification of the
MIDI song.

Figura 4.17: The options frames to load parameters of the MusicXML file, MidiShare. The user
can load parameters from any file, and save it to MusicXMLparameters.txt

36 Automatic execution of expressive music performance

This tab contains four text boxes that identify the connection port with the MidiShare, the
value of time(o Beat per Minute o Quarter note per Minute), the latency (parameter in millisecond
used to move the time instants of events), and the resolution (value in millisecond of a timer that
is used during the execution of a song). When loading the MIDI file, the time is instead set by
default to 120bpm.

Figura 4.18: The options frames to set MIDI parameters, MidiShare. The user can set
parameters directly.

Capitolo 4. The CaRo software music performance: what’s new? 37

In this tab, you can select the instrument of execution of the track (the CaRo not currently
charge any modification about), and click through a check button indicated with the play only on
channel if the player must perform all the notes of the MIDI files with the piano.

Figura 4.19: The options frames to set MIDI parameters, MidiShare. The user can set
parameters directly.

38 Automatic execution of expressive music performance

The Player has this setting enabled by default, so it will be added an event that changes the
timbre. At the startup of the CaRo, this check in not enabled.

Figura 4.20: The options frames to set MIDI parameters, MidiShare. The user can set
parameters directly.

Capitolo 4. The CaRo software music performance: what’s new? 39

4.5.4 The Tools frame
This frame allow to change the static image of the main interface:

Figura 4.21: Configure tools Involved the Change of the static image., which action performed
by changing the background image of the main frame of CaRo

40 Automatic execution of expressive music performance

When the action click is perform, a new frame is like this below is opened:

Figura 4.22: Window who allow the choose of bacground image Choose the new static image.,
which action performed by choosing the new background image of the main frame of CaRo

Capitolo 4. The CaRo software music performance: what’s new? 41

After choose the new image the windows mentioned above look like:

Figura 4.23: Window with the choosing background image The new static image is choosed.,
which action is performed by showing the new background image choosed of the main frame of
CaRo

42 Automatic execution of expressive music performance

By perform ok button to choose image, the main frame of CaRo became like this:

Figura 4.24: Main Window of CaRo with the new background image The new static image.,
which action is performed by showing the new background image of the main frame of CaRo

Capitolo 4. The CaRo software music performance: what’s new? 43

4.6 Mecchanical Execution of a MIDI file: Loading and Play-
ing

Connect the application to MidiShare physical I/Os the 3 arguments of MidiConnect are the
reference number of the source, the reference number of the destination and the state of the con-
nection (1=connected, 0=not connected). Each Player is a MidiShare application, has 256 tracks,
four different synchronization mode, events chase and loop markers. A Player use MidiShare se-
quences. Functions are provided to read on write MIDIfiles and convert them to the MidiShare
sequence format. MidiShare sequences will be loaded into a Player using the SetAllTrackPlayer
function. A MidiShare sequence contains usually a tempo-map track which will be used instead
of the default tempo and time signature values. After it’s creation, the Player should be connected
to the MIDI input/output (that is to the MidiShare application), but because the Player is mani-
pulated using it’s MidiShare reference number, it’s possible to use some MidiShare functions to
manipulate it. Two functions, MidifileLoad and MidifileSave allow to read and write MIDIfi-
les and convert them to MidiShare sequence format. When loading a multi-tracks MIDIfile, the
different tracks of the MIDIfile will correspond to different tracks of the MidiShare sequence.

short myRefNum;
MidiseqPtr mySeq;
MidiFileInfos myInfo;
myRefNum = OpenPlayer("CaRo2Main");
MidiConnect(myRefNum,0,1);
mySeq = MidiNewSeq();
MidiFileLoad("HD500:midifile1", mySeq, &myInfo);
SetAllTrackPlayer (myRefnum, mySeq, info.clicks);
printf("(type <ENTER> to start playing)\n");
getc(stdin);
StartPlayer(myRefNum);
printf("(type <ENTER> to stop playing)\n");
getc(stdin);
StopPlayer(myRefNum);
ClosePlayer(myRefNum);

Load a MIDIfile and convert it into a MidiShare sequence. When loading a multi-tracks
MIDIFile (format 1 or 2) the different tracks of the MIDIfile are distinguish by the reference
number which are on them. It means that all events of track 0 have a reference number of 0, all
events on track 1 have a reference number of 1 and so on.

METHOD
long MidiFileLoad (char * filename, MidiSeqPtr s, MidiFileInfosPtr info);
ARGUMENTS
filename : a C string, the filename of the MIDIFile.

44 Automatic execution of expressive music performance

s : a MidiSeqPtr : the sequence to be loaded.
info : a MidiFileInfosPtr: used to record

some information about the MIDIfile.
RESULT
The result is a MIDIfile error code.

4.7 Mecchanical Execution of MIDI’s informations extracting
from MusicXML file

while (getline (infileIn, line))
{

std::string attr_numbers_str = line;
//we’ll put all of the tokens in here
std::vector <std::string> numbers;
while (line.find(",", 0) != std::string::npos)
{ //does the string a comma in it?
//store the position of the delimiter
size_t pos = line.find(",", 0);
//get the token
std::string temp = line.substr(0, pos);
//erase it from the source
line.erase(0, pos + 1);
//and put it into the array
numbers.push_back(temp);

}
//the last token is all alone
numbers.push_back(line);

std::string pitch = numbers.at(1);
char *cpitch = new char[pitch.length() + 1];
strcpy(cpitch, pitch.c_str());

std::string vel = numbers.at(2);
char *cvel = new char[vel.length() + 1];
strcpy(cvel, vel.c_str());

std::string dur = numbers.at(3);
char *cdur = new char[dur.length() + 1];
strcpy(cdur, dur.c_str());

Capitolo 4. The CaRo software music performance: what’s new? 45

std::string chan = numbers.at(0);
char *cchan = new char[chan.length() + 1];
strcpy(cchan, chan.c_str());

midi << "-pitch <" << cpitch << ">" << " -vel <" << cvel << ">"
<< " -dur <" << cdur << ">" << " -chan <" << cchan << ">" << ’\n’;

if (e = MidiNewEv(typeNote)) { // allocate a note event
Pitch(e) = atol(cpitch); // fill its fields
Vel(e) = atol(cvel);
Dur(e) = atol(cdur);
Chan(e) = atol(cchan);
Port(e) = 0;
seq = MidiNewSeq();
MidiSendIm(ourRefNum, MidiCopyEv(e));
// add to the sequence all the received events
MidiAddSeq(seq, e);
// wait the duration of the note
wait(atol(cdur));

}
playSeq(ourRefNum, atol(cpitch), atol(cvel),

atol(cdur), atol(cchan), 0, 1024);

}

46 Automatic execution of expressive music performance

After playing the song, All the main information are store in a .txt file

Figura 4.25: Message dialog for extractiong MidiShare main information.

[How is the playback using MidiShare and Player?]

Pitch | Velocity | Duration | Chanel

90 | 54 | 512 | 1
90 | 58 | 512 | 1
90 | 56 | 256 | 1
90 | 56 | 512 | 1

MidiEvPtr e; // open a MidiShare session
ourRefNum = MidiOpen("CaRo2.1"); //connect to physical Midi outputs
MidiConnect(ourRefNum, 0, true);
if (e = MidiNewEv(typeNote)) { //allocate a note event

Pitch(e) = atoi(Pitch); //fill its fields
Vel(e) = atoi(Velocity);
Dur(e) = atoi(Duration);
Chan(e) = atoi(Chanel);
Port(e) = 0;
gSequence = MidiNewSeq();
MidiSendIm(ourRefNum, MidiCopyEv(e));

Capitolo 4. The CaRo software music performance: what’s new? 47

MidiAddSeq(gSequence, e); //add to the sequence all the received events
wait(atoi(Duration)); //wait the duration of the note

}
playSeq(ourRefNum, atoi(Pitch), atoi(Velocity),

atoi(Duration), atoi(Chanel), 0, 10);

Capitolo 5

The Porting of CaRo in cross platform
environment

5.1 The Choice: wxWidget
wxWidgets currently supports the following primary platforms:

• Windows 95/98/ME, NT, 2000, XP, Vista, 7(32/64 bits).

• Most Unix variants using the GTK+ toolkit (version 2.6 or newer)

• Mac OS X (10.5 or newer) using Cocoa (32/64 bits) or Carbon (32 only)

There is some support for the following platforms:

• Most Unix variants with X11

• Most Unix variants with Motif/Lesstif

• Most Unix variants with GTK+ 1.2

• OS/2

• Windows CE (Pocket PC)

Most popular C++ compilers are supported;
wxWidgets1 is a programmers toolkit for writing desktop or mobile applications with graphi-

cal user interfaces (GUIs). Its a framework, in the sense that it does a lot of the housekeeping
work and provides default application behavior. The wxWidgets library contains a large number
of classes and methods for the programmer to use and customize. Applications typically show
windows containing standard controls, possibly drawing specialized images and graphics and
responding to input from the mouse, keyboard, or other sources. They may also communicate

1http://www.wxwidgets.org: the wxWidgets home page

49

50 Automatic execution of expressive music performance

with other processes or drive other programs. In other words, wxWidgets makes it relatively easy
for the programmer to write an application that does all the usual things modern applications do.
While wxWidgets is often labeled a GUI development toolkit, it is in fact much more than that
and has features that are useful for many aspects of application development. This has to be the
case because all of a wxWidgets application needs to be portable to different platforms, not just
the GUI part.

5.2 Why use wxWidgets?
One area where wxWidgets differs from many other frameworks, such as MFC or OWL, is its
multi-platform nature. wxWidgets has an Application Programming Interface (API) that is the
same, or very nearly the same, on all supported platforms. This means that you can write an ap-
plication on Windows, for example, and with very few changes (if any) recompile it on Linux or
Mac OS X. This has a huge cost benefit compared with completely rewriting an application for
each platform, and it also means that you do not need to learn a different API for each platform.
Furthermore, it helps to future-proof your applications. As the computing landscape changes,
wxWidgets changes with it, allowing your application to be ported to the latest and greatest sy-
stems supporting the newest features. Another distinguishing feature is that wxWidgets provides
a native look and feel. Some frameworks use the same widget code running on all platforms,
perhaps with a theme makeover to simulate each platforms native appearance. By contrast, wx-
Widgets uses the native widgets wherever possible (and its own widget set in other cases) so that
not only does the application look native on the major platforms, but it actually is native. This
is incredibly important for user acceptance because even small, almost imperceptible differences
in the way an application behaves, compared with the platform standard, can create an alienating
experience for the user.2

5.3 Installing wxWidgets for Windows
This is wxWidgets for Microsoft Windows 9x/ME, Windows NT and later (2000, XP, Vista, 7,
8, etc) including both 32 bit and 64 bit versions.

5.3.1 Installation
If you are using one of the supported compilers, you can download the pre-built in binaries from

• https://sourceforge.net/projects/wxwindows/files/3.0.0/binaries/

• ftp://ftp.wxwidgets.org/pub/3.0.0/binaries/

In this case, just uncompress the binaries archive under any directory and skip to Building
Applications Using wxWidgets part.

2http://wiki.wxwidgets.org: the wxWidgets Wiki

Capitolo 5. The Porting of CaRo in cross platform environment 51

Otherwise, or if you want to build a configuration of the library different from the default
one, you need to build the library from sources before using it.

The first step, which you may have already performed, unless you are reading this file online,
is to download the source archive and uncompress it in any directory. It is strongly advised to
avoid using spaces in the name of this directory, i.e. notably do *not* choose a location under
C:\Program Files, as this risks creating problems with makefiles and other command-line
tools.

After choosing the directory location, please define WXWIN environment variable contai-
ning the full path to this directory. While this is not actually required, this makes using the
library more convenient and this environment variable is used in the examples below.

NB: If you checked your sources from version control repository and didn’t obtain them from
a release file, you also need to copy include/wx/msw/setup0.h to include/wx/msw/setup.h.

5.3.2 Building wxWidgets
The following sections explain how to compile wxWidgets with each supported compiler, see
the

Building Applications

section about the instructions for building your application using wxWidgets.

5.3.2.1 Cygwin/MinGW Compilation

wxWidgets supports Cygwin, MinGW, MinGW-w64 and TDM-GCC tool chains under Windo-
ws. They can be downloaded from:

• http://www.cygwin.com/

• http://www.mingw.org/

• http://mingw-w64.sourceforge.net/

• http://tdm-gcc.tdragon.net/

respectively. Please retrieve and install the latest version of your preferred tool chain by fol-
lowing the instructions provided by these packages. Notice that Cygwin includes both native
Cygwin compiler, which produces binaries that require Cygwin during run-time, and MinGW[-
w64] cross-compilers which can still be used in Cygwin environment themselves but produce
plain Windows binaries without any special run-time requirements. You will probably want to
use the latter for developing your applications.

If using MinGW, you can download the add-on MSYS package to provide Unix-like tools
that you’ll need to build wxWidgets using configure.

C++ 11 note: If you want to compile wxWidgets in C++ 11 mode, you currently have to
use -std=gnu++11 switch as -std=C++ 11 disables some extensions that wxWidgets relies on.
I.e. please use CXXFLAGS=-std=gnu++11.

52 Automatic execution of expressive music performance

5.4 Configuration/Build options
wxWidgets can be built using almost countless permutations of configuration options. However,
four main options are available on all platforms:

5.4.1 Release versus Debug:
Debug builds include debug information and extra checking code, whereas release builds omit
debug information and enable some level of optimization. It is strongly recommended that you
develop your application using a debug version of the library to benefit from the debug assertions
that can help locate bugs and other problems.

5.4.2 Static versus Shared
A static version of the library is linked with the application at compile time, whereas a shared
version is linked at runtime. Using a static library results in a larger application but also relieves
the end user of the need for installing shared libraries on his or her computer. On Linux and
Mac OS X, static libraries end in .a, and on Windows, they end in .lib. On Linux and Mac
OS X, shared libraries end in .so, and on Windows, they end in .dll. Note that there are
certain memory and performance implications of static and shared libraries that are not specific
to wxWidgets; they are beyond the scope of this book.

5.4.3 Multi-lib versus Monolithic:
The entire wxWidgets library is made up of modules that separate the GUI functionality from
the non-GUI functionality as well as separate advanced features that are not frequently needed.
This separation enables you to use wxWidgets modules selectively depending on your specific
needs. Alternatively, you can build wxWidgets into one monolithic library that contains all of
the wxWidgets modules in one library file.

Using configure

1. Open MSYS or Cygwin shell prompt.

2. Create a build directory: it is is strongly recommended to not build the library in the di-
rectory containing the sources ($WXWIN) but to create a separate build directory instead.
The build directory can be placed anywhere (using the fastest available disk may be a good
idea), but in this example we create it as a subdirectory of the source one:

$ cd $WXWIN $ mkdir build-debug

3. Run configure passing it any of the options shown by configure –help. Notice that con-
figure builds shared libraries by default, use –disable-shared to build static ones. For
example:

$../configure --enable-debug

Capitolo 5. The Porting of CaRo in cross platform environment 53

4. Build the library:

$ make

5. Test the library build by building the minimal sample:

$ cd samples/minimal $ make

6. Optionally install the library in a global location

$ make install

Notice that there is not much benefice to installing under Windows so this step can usually be
omitted.

Using plain makefiles NOTE: The makefile.gcc makefiles are for compilation under MinGW
using Windows command interpreter (command.com/cmd.exe), they won’t work if you use Unix
shell, as is the case with MSYS. Follow the instructions for using configure above instead if you
prefer to use Unix shell.

1. Open DOS command line window (cmd.exe, *not* Bash sh.exe).

2. Change directory to

> mingw32-make -f makefile.gcc

to build wxWidgets in the default debug configuration as a static library. Add BUILD=release
and/or SHARED=1 to build the library in release configuration and/or as a shared library
instead of the default static one.

3. To verify your build, change the directory to samples\minimal and run the same
mingw32-make command (with the same parameters there), this should create a working
minimal wxWidgets sample.

4. If you need to rebuild, use clean target first.

Capitolo 6

Conclusions and future trends

Having doing the porting of the CaRo into cross platform, all the functions performed by the
previous version have not been implemented, a very important improvement would be to reim-
plement:

• Playing Neutral

• Playing Expressiveness

• Perform the evaluations of both playing

• Perform the action of the options frame

Another important improvement during the interaction between user and the CaRo is to allow the
change of the expressiveness by clicking in the apposite area on the interface image according to
the expressivity desiderated

55

56 Automatic execution of expressive music performance

Figura 6.1: Background image The static image of expressivity. Click an area to give the desire
expressivity of song

Figura 6.2: Background image The static image of expressivity. Click an area to give the desire
expressivity of song

Capitolo 6. Conclusions and future trends 57

Other very interesting idea would be to make CaRo, an applet downloaded from the Internet,
making it usable for novice users of music creativity, a musically useful tools to edit and create
music to their liking.

Bibliografia

[1] ARCOS, J.L., MANTÀRAS, R., LÒPEZ DE, & SERRA, X. SaxEx: A case-based reasoning
system for generating expressive performances. Journal of New Music Research, 27, 194210.
1998

[2] R. BRESIN AND G. WIDMER. Production of staccato articulation in Mozart sonatas played
on a grand piano. Preliminary results Speech, Music, and Hearing. Quarterly Progress and
Status Report, 2000(4):16, 2000.

[3] R. BRESIN AND G. U. BATTEL Articulation strategies in expressive piano performance.
Journal of New Music Research, 29(3):211224, 2000.

[4] R. BRESIN. Articulation rules for automatic music performance. In A. Schloss and R.
Dannenberg, editors, Proceedings of the 2001 International Computer Music Conference,
Havana, Cuba pages 294297. International Computer Music Association, San Francisco,
2001.

[5] CAMURRI, C. L. KRUMHANSL, B. MAZZARINO, AND G. VOLPE. An exploratory stu-
dy of aniticipation human movement in dance.. In Proceedings of the 2nd International
Symposium on Measurement, Analysis, and Modeling of Human Functions. Genova, Italy,
2004.

[6] CAMURRI AND G. VOLPE, EDITORS. Gesture-Based Communication in Human-Computer
Interaction. Springer, Berlin, 2004. LNAI 2915.

[7] CAMURRI, A., DE POLI, G., LEMAN, M., AND VOLPE, G. (2005). Toward Commu-
nicating Expressiveness and Affect in Multimodal Interactive Systems for Performing Arts
and Cultural Applications. IEEE Multimedia, Vol.12, No.1, (pp.43-53), Jan 2005. IEEE
Computer Society Press.

[8] E. F. CLARKE: Empirical methods in the study of performance.. In Eric F. Clarke and
Nicholas Cook, editors, Empirical Musicology. Aims, Methods, and Prospects, pages 77102.
University Press, Oxford, 2004

[9] S. CANAZZA, G. DE POLI, C. DRIOLI, A. RODA, AND A. VIDOLIN. Modeling and control
of expressiveness in music performance. Proceedings of the IEEE, 92 (4):686701, 2004

59

60 Automatic execution of expressive music performance

[10] S. DAHL. Playing the accent comparing striking velocity and timing in an ostinato rhythm
performed by four drummers.. Acta Acustica, 90(4):762776, 2004.

[11] S. DAHL. Movements and analysis of drumming. In Eckart Altenmuller J. Kesselring, and
M. Wiesendanger, editors, Music, Motor Control and the Brain, page in press. University
Press, Oxford, 2005.

[12] J. W. DAVIDSON. Visual perception of performance manner in the movements of solo
musicians. Psychology of Music, 21(2):103113, 1993

[13] J. W. DAVIDSON. What type of information is conveyed in the body movements of solo
musician performers?. Journal of Human Movement Studies, 26(6): 279301, 1994.

[14] J. W. DAVIDSON AND J. S. CORREIA. BODY MOVEMENT. In Richard Parncutt and Gary
McPherson, editors, The Science and Psychology of Music Performance. Creating Strategies
for Teaching and Learning, pages 237250. University Press, Oxford, 2002.

[15] P. DESAIN AND H. HONING. Modeling continuous aspects of music performance: Vibrato
and Portamento In Bruce Pennycook and Eugenia Costa-Giomi, editors,Proceedings of the
4th International Conference on Music Perception and Cognition (ICMPC96). Faculty of
Music, McGill University, Montreal, Canada, 1996.

[16] A. FRIBERG Generative rules for music performance. Computer Music Journal,
15(2):5671, 1991.

[17] A. FRIBERG. A Quantitative Rule System for Musical Performance.Doctoral dissertation,
Department of Speech, Music and Hearing, Royal Institute of Technology, Stockholm, 1995.

[18] A. FRIBERG, R. BRESIN, L. FRYDÉN AND J. SUNDBERG. Musical punctuation on the
mircolevel: Automatic identification and performance of small melodic units. Journal of
New Music Research, 27(3):271292, 1998.

[19] FRIBERG, A., & SUNDBERG, J. How to terminate a phrase. An analysis-by-synthesis
experiment on a perceptual aspect of music performance. In: A. Gabrielsson (Ed.), Action
and Perception in Rhythm and Music, (Vol. 55, pp. 4955). Stockholm, Sweden: Publications
issued by the Royal Swedish Academy of Music. 1987

[20] A. FRIBERG AND J. SUNDBERG Does music performance allude to locomotion? A model
of final ritardandi derived from measurements of stopping runners. Journal of the Acoustical
Society of America, 105(3):14691484, 1999

[21] A. FRIBERG, V. COLOMBO, L. FRYDÉN AND J. SUNDBERG. Generating musical
performances with Director Musices Computer Music Journal, 24(3):2329, 2000a.

[22] A. FRIBERG, J. SUNDBERG, AND FRYDÉN Music from motion: Sound level envelopes of
tones expressing human locomotion Journal of New Music Research, 29(3):199210, 2000b.

BIBLIOGRAFIA 61

[23] A. FRIBERG, V. COLOMBO, L. FRYDEN, AND J. SUNDBERG. Generating musical
performances with Director Musices. Computer Music Journal, 24(3):2329, 2000a

[24] A. GABRIELSSON. Music performance research at the millenium. Psychology of Music,
31(3):221272, 2003

[25] A. GABRIELSSON. Once again: The Theme from Mozarts Piano Sonata in A Major
(K.331). In Alf Gabrielsson, editor, Action and Perception in Rhythm and Music, volume
55, pages 81103. Publications issued by the Royal Swedish Academy of Music, Stockholm,
Sweden, 1987.

[26] A. GABRIELSSON. Music Performance. In Diana Deutsch, editor, Psychology of Music,
pages 501602. Academic Press, San Diego, 2nd edition, 1999.

[27] A. GABRIELSSON. Music performance research at the millenium. Psychology of Music,
31(3):221272, 2003

[28] A. GABRIELSSON AND E. LINDSTROM. The influence of musical structure on emotional
expression. In Patrik N. Juslin and John A. Sloboda, editors, Music and Emotion: Theory
and Research, pages 223248. Oxford University Press, New York, 2001.

[29] W. GOEBL. Melody lead in piano performance: Expressive device or artifact? Journal of
the Acoustical Society of America, 110(1):563572, 2001.

[30] W. GOEBL. The Role of Timing and Intensity in the Production and Perception of Melody
in Expressive Piano Performance Doctoral thesis, Institut fur Musik- wissenschaft, Karl-
Franzens-Universitat Graz, Graz, Austria, 2003. available online at http://www.ofai.at/music.

[31] R. HIRAGA, R. BRESIN, K. HIRATA, AND H. KATAYOSE. Rencon 2004: Turing Test for
musical expression.In Proceedings of the 2004 Conference on New Interfaces for Musical
Expression (NIME04), pages 120123. Hamamatsu, Japan, 2004.

[32] A. KAY, M. T. TURVEY, AND O. G. MEIJER. An early oscillator model: Studies on the
biodynamics of the piano strike (Bernstein & Popova, 1930). Motor Control, 7(1):145, 2003.

[33] U. KRONMAN AND J. SUNDBERG. Is the musical retard an allusion to physical motion? In
Alf Gabrielsson, editor Action and Perception in Rhythm and Music, volume 55, pages 5768.
Publications issued by the Royal Swedish Academy of Music, Stockholm, Sweden, 1987.

[34] G. MAZZOLA AND O. ZAHORKA. Tempo curves revisited: Hierarchies of performance
fields. Computer Music Journal, 18(1):4052, 1994.

[35] G. MAZZOLA, O. ZAHORKA, AND J. STANGE-ELBE. Analysis and performance of a
dream. In Anders Friberg and Johan Sundberg, editors, Proceedings of the KTH Symposion
on Grammars for Music Performance, pages 5968. Department of Speech Communication
and Music Acoustics, Stockholm, Sweden, 1995.

62 Automatic execution of expressive music performance

[36] G. MAZZOLA AND S. GÖLLER. Performance and interpretation. Journal of New Music
Research, 31(3):221232, 2002.

[37] G. MAZZOLA. editor. The Topos of Music Geometric Logic of Concepts, Theory, and
Performance. Birkhauser Verlag, Basel, 2002.

[38] C. PALMER AND S. DALLA BELLA. Movement amplitude and tempo change in piano
performance. Journal of the Acoustical Society of America, 115(5):2590, 2004.

[39] H. REPP. Diversity and commonality in music performance: An analysis of timing
microstructure in Schumanns Traumerei. Journal of the Acoustical Society of America,
92(5):25462568, 1992

[40] O. ORTMANN. The Physiological Mechanics of Piano Technique. Kegan Paul, Trench,
Trubner, E. P. Dutton, London, New York, 1929.

[41] J. SUNDBERG. . Four years of research on music and motion. Journal of New Music
Research, 29(3):183185, 2000.

[42] E. SCHOONDERWALDT AND A. FRIBERG. Towards a rule-based model for violin vibra-
to. In Claudia Lomeli Buyoli and Ramon Loureiro, editors,MOSART Workshop on Current
Research Directions in Computer Music, November 15-17, 2001, pages 6164. Audiovisual
Institute, Pompeu Fabra University, Barcelona, Spain, 2001.

[43] J. SUNDBERG, A. ASKENFELT, AND L. FRYDÉN Musical performance. A synthesis-by-
rule approach. Computer Music Journal, 7:3743, 1983.

[44] J. SUNDBERG, A. ASKENFELT, AND L. FRYDÉN Rules for automated performance of
ensemble music.Contemporary Music Review, 3:89109, 1989.

[45] J. SUNDBERG, A. ASKENFELT, AND L. FRYDÉN Threshold and preference quantities of
rules for music performance. Music Perception, 9(1):7192, 1991.

[46] J. SUNDBERG, A. ASKENFELT, AND L. FRYDÉN Threshold and preference quantities of
rules for music performance. Music Perception, 9(1):7192, 1991.

[47] R. TIMMERS, R. ASHLEY, P. DESAIN, H. HONING, AND L. W. WINDSOR Timing of
ornaments in the theme of Beethovens Paisello Variations: Empirical data and a model.
Music Perception, 20(1):333, 2002.

[48] N. P. TODD. A computational model of Rubato. Contemporary Music Review, 3: 6988,
1989.

[49] N. P. TODD The dynamics of dynamics: A model of musical expression Journal of the
Acoustical Society of America, 91(6):35403550, 1992.

[50] N. P. TODD The kinematics of musical expression. Journal of the Acoustical Society of
America, 97(3):19401949, 1995.

BIBLIOGRAFIA 63

[51] A. TOBUDIC AND G. WIDMER r. Relational IBL in classical music. Machine Learning,
64:524, 2006.

[52] G. WIDMER. In search of the Horowitz factor: Interim report on a musical discovery
project. In Proceedings of the 5th International Conference on Discovery Science (DS’02),
Lubeck, Germany. Springer, Berlin, 2002a.

[53] G. WIDMER. A machine learning analysis of expressive timing in pianists performances
of Schumann Traumerei. In Anders Friberg and Johan Sundberg, editors, Proceedings of
the KTH Symposion on Grammars for Music Performance, 6981. Department of Speech
Communication and Music Acoustics, Stockholm, Sweden, 1995a.

[54] G. WIDMER. Modeling rational basis for musical expression. Computer Music Journal,
Journal, 19(2):7696, 1995b.

[55] G. WIDMER. Learning expressive performance: The structure-level approach. Journal of
New Music Research, 25(2):179205,

[56] G. WIDMER. Large-scale induction of expressive performance rules: first quantitative re-
sults. In Ioannis Zannos, editor,Proceedings of the 2000 International Computer Music Con-
ference, Berlin, Germany, pages 344347. International Computer Music Association, San
Francisco, 2000.

[57] G. WIDMER. In search of the Horowitz factor: Interim report on a musical discovery
project. In Proceedings of the 5th International Conference on Discovery Science (DS02),
Lübeck, Germany. Springer, Berlin, 2002a

[58] G. WIDMER. Machine discoveries: A few simple, robust local expression principles.
Journal of New Music Research, 31(1):3750, 2002b.

[59] G. WIDMER AND A. TOBUDIC. Playing Mozart by analogy: Learning multi-level timing
and dynamics strategies.Journal of New Music Research, 32(3):259268, 2003

[60] G. WIDMER. Discovering simple rules in complex data: A meta-learning algorithm and
some surprising musical discoveries. Artificial Intelligence, 146(2): 129148, 2003.

[61] G. WIDMER, S. DIXON, W. GOEBL, E. PAMPALK, AND A. TOBUDIC. In search of the
Horowitz factor.AI Magazine, 24(3):111130, 2003.

[62] G. WIDMER. Studying a creative act with computers: Music performance studies with
automated discovery methods.Musicae Scientiae, 9(1):1130, 2005

[63] A. TOBUDIC AND G. WIDMER. Relational IBL in classical music. Machine Learning,
64:524, 2006.

