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The aim of science is not to open the
door to infinite wisdom, but to set a limit
to infinite error.

B. Brecht
Life of Galileo
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Introduction

The discovery of the cosmic microwave background (CMB) by Penzias and Wilson [44] con-
firmed the Hot Big Bang paradigm and established the CMB as a central tool. In recent years,
observations of its temperature anisotropies have helped establish and refine the ”standard” cos-
mological model now known as ΛCDM, under which our universe is understood to be spatially
flat, dominated by cold dark matter, and with a cosmological constant (Λ) driving accelerated
expansion at late times.

Inflationary cosmology extends the standard model by postulating an early period of nearly
exponential expansion which sets the initial conditions for the subsequent Hot Big Bang. It was
proposed and developed in the early 1980s to resolve mysteries for which the standard model
offered no solution, including the flatness, smoothness, entropy and monopole problems (e.g. [2,
29, 37]; see [13] for a review). Inflation also explains the universe’s primordial perturbations as
originating in quantum fluctuations strechted by exponential expansion into seeds that eventually
cause the formation of galaxies and clusters of galaxies [6, 42, 58], and thus to be correlated
on superhorizon scales. The simplest models further predict these perturbations to be highly
adiabatic and Gaussian and nearly scale-invariant (though typically slightly stronger on large
scales). These qualities, though not necessarily unique to the inflationary paradigm, have all been
confirmed by subsequent observations (e.g. [55,60]). Although highly successful, the inflationary
paradigm represents a vast extrapolation from well-tested regimes in physics. It invokes quantum
effects in highly curved spacetime at energies near 1016 GeV and timescales less tha 10−32 s. A
definitive test of this paradigm would be of fundamental importance.

Gravitational waves (tensor perturbations) generated by inflation have the potential to pro-
vide such a definitive test. Inflation predicts that the quantizion of the gravitational field coupled
to exponential expansion produces a primordial background of stochastic gravitational waves
with a characteristic spectral shape, i.e., they have a nearly scale invariant primordial power
spectrum [27,57]. Though unlikely to be detectable in modern instruments, these gravitational
waves would have imprinted an unique signature upon CMB. Gravitational waves induce local
quadrupole anisotropies in the radiation field within the last-scattering surface, inducing polar-
ization in the scattered light [48]. This polarization pattern will include a ”curl” or B-mode
component at degree angular scales that cannot be generated primordially by density perturba-
tions. The amplitude of this signal depends upon the tensor-to-scalar ratio r, which itself is a
function of the energy scale of inflation. The detection of B-mode polarization of the CMB at
large angular scales would provide an unique confirmation of inflation and a probe of its energy
scale [33,52].

The gravitational wave background (GWB) also persists as a sea of relic gravitational radi-
ation filling the universe today [51, 54, 62]. Direct detection of this relic radiation has received
considerable attention over the past year or so, since it has been realized that space-based laser
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interfereometers operating in the frequency range 0.1 Hz < f < 1 Hz might achieve the necessary
sensitivity and foreground subtraction [53,61].

The gravitational-wave spectrum generated by inflation carries important information about
the conditions during inflation. But the spectrum also receives corrections, both large and small,
from the subsequent evolution and matter content of the universe after inflation. In this thesis
we identify various postinflationary physical effects, which modify the GWB, and show how
they may be encoded in the gravitational-wave transfer function that relates the primordial
tensor power spectrum to the gravitational-wave spectrum at a later point in cosmic history.
It is necessary to properly understand and disentangle the postinflationary effects in order to
optimally extract the inflationary information in the GWB. But these modifications are also
interesting in their own right, since they offer a rare window onto the physical properties of
the high-energy universe during the ”primordial dark age” between the end of inflation and the
electroweak phase transition.

The same features that make the inflationary GWB difficult to detect—namely its small
amplitude and gravitational-strength coupling to matter—also make it a clean cosmological
probe. First, because of their tiny amplitude, the gravitational waves obey linear equation
of motion, so that their evolution may be predicted analytically with high precision. Second,
because of their ultraweak interactions with matter, the gravitational waves have been free
streaming since the end of inflation—in contrast to neutrinos (which began streming roughly
a second later) and photons (which began streaming several hundred thousand year later).
The gravitational waves carry unsullied information from the early universe, and subsequent
modifications of the gravitational-wave spectrum are not washed out by thermal effects (since
the gravitons are thermally decoupled).

The gravitational-wave spectrum near a given wave number k is primarly sensitive to two
”moments” in cosmic history: (1) the moment when the mode ”left the horizon” (i.e., became
longer than the instantaneous Hubble radius during inflation), and (2) the moment when the
moment ”re-entered the horizon” (i.e., became shorter that the instantaneous Hubble radius
once again, after the end of inflation). The first moment imprints information about inflation
itself, while the second moment imprints information about postinflationary conditions. The
CMB is sensitive to long-length modes that re-entered at relatively low tempertures (well after
the Big Bang Nucleosynthesis (BBN)), corresponding to relatively well-understood physics. By
contrast, laser interferometers are sensitive to shorter wavelengths that entered the horizon at
high temperatures (T ∼ 107 GeV), well above the electroweak phase transition. The physical
conditions at such high energies, which are considerably beyond the reach of particle accelerators,
are a mystery, so that any information about this epoch from the GWB would be very valuable.

In the usual model of inflation, the initial state is assumed to be the empty vacuum in the
infinite past when all scales that have a finite linear size today have a size infinitely smaller
than the Planck scale. Even though this does not make too much sense—after all, we have
no idea of how the physics at these scales work—it is interesting that this naive approach
seems to give sensible results. But if I fill spacetime entirely with a spacetime homogeneous
source (energy density), I cannot have Minkowski not even asymptotically because there is a
medium everywhere. A de Sitter source, no matter how small its strength is, will destabilize the
spacetime.

How does the choice of vacuum reflect to the background metric? You stick to the original
Minkowski definition of a perturbative vacuum and try to lift it to non-trivial geometries. The
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usual argument goes as follows: if you go to high-frequency limit, then you’re which is arbitrary
small and you expect that morally you’re still in the tangent space, which would be Minkowski
anyhow. If you think in a real world what is the true ground state of nature on a curved geometry
(you take gravity with you), you have to deal with a difficult question.

Let’s describe our path of line. We want to investigate if there is some physics hidden in a
non-perturbative vacuum proposal that could boost the power spectrum (maybe in the B-mode
polarization). There are two logical possibilities: either spacetime geometry, as well as Quantum
Mechanics is fundamental, or it is not fundamental. We have no reason to know that spacetime
geometry is fundamental: Minkowski geometry is already granted by special relativity (I don’t
need general relativity for Minkowski). Let’s take one of these logical possibilities: spacetime
geometry is not fundamental. Pseudo-Riemannian geometry is not as fundamental
as Hilbert geometry. Nobody can prove that this point of view is wrong, it’s not even
unattractive by the way. Anything that is not fundamental has to have somehow a reflection
in a Hilbert space because Quantum Mechanics is fundamental. We now set it as the only
fundamental framework we have in physics and if that is true, everything we encounter in
nature has to fit in this framework. Then the notion of spacetime geometry has to emerge and
has to be anchored fundamentally in a Hilbert space. In other words, spacetime itself should
have a quantum mechanical description.

What does it mean? First of all, it means that I need a quantum mechanical state for what I
want to describe, which will be the non-perturbative vacuum state. That would mean also that
to a given geometry would correspond a quantum mechanical state and in this state I want to
evaluate my autocorrelation function, i.e., the power spectrum. This path might be unorthodox,
but we’re exploring a logical possibility. How could the state look like that corresponds to a
certain geometry? The answer is the Auxiliary Current Description (ACD).

It’s difficult to imagine how these macroscopic objects (like a table) fit in a Hilbert space.
The table for instance should live in the bound state sector of the Hilbert space. What is the
state of the table? I would give up because it has too many particles, but then I can think of
what is essential for the state description. Usually in Quantum Mechanics the state description
comes with two sort of lists: you can picture a state as a measuring device where you can
write in and read out information. What would you want to write in and read out? There
are the quantum numbers and the identifiers of the state that are connected to the spacetime
isometries, e.g., electrical charge, spin, etc. But I can assign to it a momentum if I want. Why
the momentum? Because out of the momentum I build a Casimir operator which gives the mass
of the our object. For a free object the momentum doesn’t change so it’s a smart thing to use it.
To sum up there are the two type of lists that you can store in a quantum state: the quantum
numbers and the spacetime isometries. Then a very complicated object from that point of view
is not so complicated: we just have to write a state with all the quantum numbers and the
correct isometries.

This state needs not to be the true state in nature, it could be a trial state. Why? Because,
first of all, there could be quantum numbers we didn’t know about and the other thing is, that
this description is purely kinematical. Of course there should be a dynamics and the true state in
nature should be solution of the dynamical equation of motion. But the equation of motion for
a bound state we don’t know: we only know the equation of motion for the constituents (free or
interacting). We construct now a kinematical state which is not yet a solution of the dynamical
equation, but it has the right quantum numbers. Now we claim that this kinematical state has a
non-trivial projection on the true physical state. But the true physical state could be extremely
complicated and since there is a non-vanishing overlap, we can work with the kinematical state
to learn something about the true state. The kinematical state is fully under our control and if
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we follow that path of line, then it’s also clear that there is also a chance to describe geometry.
We play the same game with the quantum numbers.

We want something like an empty (i.e., no stored intrinsic quantum numbers) memory con-
figuration which we usually call a ground state. Then we want to create the kinematical state
by operating with certain ”read-in” devices on that ground state. The ”read-in” device is like
a current J (x). It’s like a computer works: the current stores information into the memory
and the memory configuration, the current generates, is what you’re interested in. Now you’ve
operation definition which is useful because we can relate any kinematical state to this specific
ground state configuration.

The amazing thing is that is not so hard to think about currents: if it’s really true that
we anchor geometry in Hilbert space, we fix spacetime symmetries beforehand to avoid any
problem. If isometries specify the quantum state of the geometry, then we try to construct a
current that transforms invariantly under the appropriate Killing vectors. It’s using a quantum
operator J which isolates the right quantum numbers that we identify the spacetime. J has to
be a composite operator, composite of the degrees of freedom you’re investigating in the theory.

Suppose now we can do that with geometry: we build our theory on a kinematical description.
How an observable (e.g. the power spectrum) looks in a geometry? This question becomes
encoded in a quantum mechanical framework. I formulate the problem as a quantum one
because fundamentally the geometry plays no role in this description. Based on that, we want
to calculate the power spectrum and compare it to what we observe. We take the operator that
measures the power spectrum and sandwich it with a state that is the kinematical representation
of the geometry in which you want to evaluate that operator.

This can give rise to a radical different power spectrum. It changes the vacuum energy
density in de Sitter.
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Chapter 1

Cosmological perturbation theory

In this chapter, we first summarize basic facts of cosmological perturbation theory. [38, 43, 45]
Then we concentrate on quantum fluctuations during inflation. [19,36,41]

The reason why inflation inevitably produces fluctuations is simple: the inflaton evolution
φ(t) governs the energy density of the early universe ρ(t) and hence controls the end of inflation.
Essentially, φ plays the role of a local ”clock” reading off the amount of inflationary expansion
remaining. By uncertainity principle, arbitrarly precise timing is not possible in quantum me-
chanics. Instead, quantum-mechanical clocks necessarily have some variance, so the inflaton will
have spatially varying fluctuations δφ(t,x) ≡ φ(t,x)− φ̄(t). There will hence be local differences
in the time when inflation ends, δt(x), so that different regions of space inflate by different
amounts. Moreover, these differences in the local expansion histories lead to differences in the
local densities after inflation. In quantum theory, local fluctuations in δρ(t,x) are therefore
unavoidable. The main purpose of this chapter is to compute this effect.

1.1 The perturbed universe

We consider perturbations to the homogeneous background and the stress-energy of the universe.

1.1.1 Metric perturbations

The most general first-order perturbation to a spatially flat Friedmann-Robertson-Walker (FRW)
metric is

ds2
= −(1 + 2Φ)dt2 + 2a(t)Bi dx

i dt + a2
(t) [(1 − 2Ψ)δij + 2Eij]dxi dxj (1.1.1)

where Φ is a 3-scalar called the lapse, Bi is a 3-vector called the shift, Ψ is a 3-scalar called
the spatial curvature perturbation, and Eij is a spatial shear 3-tensor which is symmetric and
traceless, Eii slices and curves of constant spatial coordinates xi but varying time t are called
threads.

1.1.2 Matter perturbations

The energy-momentum tensor may be described by a density ρ, a pressure p, a 4-velocity uµ (of
the frame in which the 3-momentum density vanishes) and an anisotropic stress Πµν .

Density and pressure perturbations are defined in an obvious way

δρ(t, xi) ≡ ρ(t, xi) − ρ̄(t), and δp(t, xi) ≡ p(t, xi) − p̄(t). (1.1.2)
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1. Cosmological perturbation theory

Here, the background values have been denoted by overbars. The 4-velocity has only three
indipendent components (after the metric is fixed) since it has to satisfy the constraint gµνu

µuν =
−1. In the perturbed metric (1.1.1) the perturbed 4-velocity is

uµ ≡ (−1 −Φ, vi), or uµ ≡ (1 −Φ, vi +Bi
). (1.1.3)

Here, u0 is chosen so that the constraint uµu
µ = −1 is satisfied to first order in all perturba-

tions. Anisotropic stress vanishes in the unperturbed FRW universe, so Πµν is a first-order
perturbation. Furthermore, Πµν is constrained by

Πµνuν = Πµ
µ = 0. (1.1.4)

The orthogonality with uµ implies Π00 = Π0j = 0, i.e. only the spatial components Πij are
non-zero. The trace condition then implies Πi

i = 0. Anisotropic stress is therefore a traceless
symmetric 3-tensor.

Finally, with these definitions the perturbed stress-tensor

T 0
0 = −(ρ̄ + δρ), (1.1.5)

T 0
i = (ρ̄ + p̄)vi, (1.1.6)

T i0 = −(ρ̄ + p̄) (v
i
+Bi

) , (1.1.7)

T ij = δ
i
j(p̄ + δp) +Πi

j . (1.1.8)

If there are several contributions to the energy-momentum tensor (e.g. photons, baryons, dark
matter, etc.), they are added: Tµν = ∑I T

I
µν . This implies

δρ =∑
I

δρI (1.1.9)

δp =∑
I

δpI , (1.1.10)

(ρ̄ + p̄)vi =∑
I

(ρ̄I + p̄I)v
i
I , (1.1.11)

Πij
=∑

I

Πij
I . (1.1.12)

Density, pressure and anisotropic stress perturbations simply add. However, velocities do not
add, which motivates defining the 3-momentum density

δqi ≡ (ρ̄ + p̄)vi, (1.1.13)

such that
δqi =∑

I

δqiI . (1.1.14)

1.2 Scalars

1.2.1 Metric perturbations

Four scalar metric perturbations Φ, B,i, Ψδij and E,ij may be constructed from 3-scalars, their
derivatives and the background spatial metric, i.e.

ds2
= −(1 + 2Φ)dt2 + 2a(t)B,i dx

i dt + a2
(t) [(1 − 2Ψ)δij + 2E,ij ]dxi dxj , (1.2.1)
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1.2. Scalars

Here, we have absorbed the ∇2Eδij part of the helicity scalar ESij
1 in Ψδij .

The intrinsic Ricci scalar curvature of constant time hypersurfaces is

R(3) =
4

a2
∇

2Ψ. (1.2.2)

This explains why Ψ is often referred to as the curvature perturbation.

There are two scalar gauge transformations

t→ t + α, (1.2.3)

xi → xi + δijβ,j . (1.2.4)

Under these coordinate transformations the scalar metric perturbations transform as

Φ→ Φ − α̇, (1.2.5)

B → B + a−1α − aβ̇, (1.2.6)

E → E − β, (1.2.7)

Ψ→ Ψ +Hα. (1.2.8)

Note that the combination Ė − B/a is indipendent of the spatial gauge and only depends on
the temporal gauge. It is called the scalar potential for the anisotropic shear of the world
lines orthogonal to constant time hypersurfaces. To extract physical results it is useful to define
gauge-invariant combinations of the scalar metric perturbations. Two important gauge-invariant
quantities were introduced by Bardeen [5]

ΦB ≡ Φ −
d

dt
[a2

(Ė −B/a)] , (1.2.9)

ΨB ≡ Ψ + a2H (Ė −B/a) (1.2.10)

1.2.2 Matter perturbations

Matter perturbations are also gauge-dependent, e.g. density and pressure perturbations trans-
form as follows under temporal gauge transformations

δρ→ − ˙̄ρα, δp→ δp − ˙̄pα. (1.2.11)

Adiabatic pressure perturbations are defined as

δpad ≡
˙̄p
˙̄ρ
δρ. (1.2.12)

The non-adiabatic, or entropic, part pf the pressure perturbations is then gauge-invariant

δpen ≡ δp −
˙̄p
˙̄ρ
δρ. (1.2.13)

The scalar part of the 3-momentum density, (δq),i, transforms as

δq → δq + ( ˙̄ρ + ˙̄p)α. (1.2.14)

1See SVT decompositon or Helmholtz’s theorem [38]
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1. Cosmological perturbation theory

We may then define the gauge-invariant comoving density perturbation

δρm ≡ −3Hδq (1.2.15)

Finally, two important gauge-invarinat quantities are formed from combinations of matter
and metric perturbations. The curvature perturbation on uniform density hypersurfaces is

− ζ ≡ Ψ +
H
˙̄ρ
δρ. (1.2.16)

The comoving curvature perturbation is

R = Ψ −
H

ρ̄ + p̄
δq. (1.2.17)

We will show that ζ andR are equal on superhorizon scales, where they become time-independent.
The computation of the inflationary perturbation is most clearly phrased in terms of ζ and R.

1.2.3 Einstein equations

To relate the metric and stress-energy perturbations [41,43], we consider the perturbed Einstein
equations

δGµν = 8πGδTµν (1.2.18)

We work at linear order. This leads to the energy and momentum constraint equations

3H (Ψ̇ +HΦ) +
k2

a2
[Ψ +H (a2Ė − aB)] = −4πδρ (1.2.19)

Ψ̇ +HΨ = −4πGδq. (1.2.20)

These can be combined into the gauge-invariant Poisson equation

k2

a2
ΨB = −4πGδρm. (1.2.21)

The Einstein equation also yield two evolution equations

Ψ̈ + 3HΨ̇ +HΦ̇ + (3H2
+ 2Ḣ)Φ = 4πG(δp −

2

3
k2δΠ) (1.2.22)

(∂t + 3H) (Ė −B/a) +
Ψ −Φ

a2
= 8πGδΠ. (1.2.23)

The last equation may be written as

ΨB −ΦB = 8πGa2δΠ. (1.2.24)

In the absence of anisotropic stress this implies, ΨB = ΦB. Energy-momentum conservation,
∇µT

µν = 0, gives the continuity equation and the Euler equation

δ̇ρ + 3H(δρ + δp) =
k2

a2
δq + (ρ̄ + p̄) [3Ψ̇ + k2

(Ė +B/a)] , (1.2.25)

δ̇q + 3Hδq = −δp +
2

3
k2δΠ − (ρ̄ + p̄)Φ. (1.2.26)
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1.2. Scalars

Expressed in terms of the curvature perturbation on uniform density hypersurfaces, ζ, (1.2.26)
reads

ζ̇ = −H
δpen
ρ̄ + p̄

−Π, (1.2.27)

where δpen is the non-adiabatic component of the pressure, and Π is the scalar shear along
comoving worldlines

Π

H
≡ −

k2

3H
[Ė −

B

a
+

δq

a2(ρ̄ + p̄)
] =

= −
k2

3a2H2

⎡
⎢
⎢
⎢
⎣
ζ −ΨB (1 −

2ρ̄

9(ρ̄ + p̄)

k2

a2H2
)
⎤
⎥
⎥
⎥
⎦
.

(1.2.28)

For adiabatic perturbations, δpen = 0 on superhorizon scales, k/(aH) << 1 (i.e. Π/H → 0 for
finite ζ and ΨB), the curvature perturbation ζ is constant.

1.2.4 Popular gauges

For reference we now give the Einstein equations and the conservation equations in various
popular gauges [38]:

Synchronous gauge A popular gauge, especially for numerical implementation of the per-
turbation equations, is synchronous gauge. It is defined by

Φ = B = 0. (1.2.29)

The Einstein equations become

3HΨ̇ +
k2

a2
[Ψ +Ha2Ė] = −4πGδρ, (1.2.30)

Ψ̇ = −4πGδq, (1.2.31)

Ψ̈ + 3Hψ̇ = 4πG(δp −
2

3
k2δΠ) , (1.2.32)

(∂t + 3H) Ė +
Ψ

a2
= 8πGδΠ (1.2.33)

The conservation equations are

δ̇ρ + 3H(δρ + δp) =
k2

a2
δq + (ρ̄ + p̄) [3Ψ̇ + k2Ė] , (1.2.34)

δ̇q + 3Hδq = −δp +
2

3
k2δΠ (1.2.35)

Newtonian gauge The Newtonian gauge has its name because it reduces to Newtonian grav-
ity in the samll-scale limit. It is popular for analytic work since it leads to algebraic relations
between metric and stress-energy perturbations.

Newtonian gauge is defined by

B = E = 0, (1.2.36)

and

ds2
− (1 + 2Φ)dt2 + a2

(t)(1 − 2Ψ)δij dxi dxj . (1.2.37)

9



1. Cosmological perturbation theory

The Einstein equations are

3H(ψ̇ +HΦ) +
k2

a2
Ψ = −4πGδρ, (1.2.38)

Ψ̇ +HΦ = −4πGδq, (1.2.39)

Ψ̈ + 3HΦ̇ + (3H2
+ 2Ḣ)Φ = 4πG(δp −

2

3
k2δΠ) , (1.2.40)

Ψ −Φ

a2
= 8πGδΠ. (1.2.41)

The continuity equations are

δ̇ρ + 3H(δρ + δp) =
k2

a2
δq + 3(ρ̄ + p̄)Ψ̇, (1.2.42)

δ̇q + 3Hδq = −δp +
2

3
k2δΠ − (ρ̄ + p̄)Φ. (1.2.43)

Uniform density gauge The uniform density gauge is useful for describing the evolutions of
perturbations on superhorizon scales. As its name suggests it is defined by

δρ = 0. (1.2.44)

In addition, it is convenient to take

E = 0, −ψ ≡ ζ. (1.2.45)

The Einstein equations are

3H (−ζ̇ +HΦ) −
k2

a2
[ζ + aHB] = 0 (1.2.46)

−ζ̇ +HΦ = −4πGδq, (1.2.47)

−ζ̈ − 3Hζ̇ +HΦ̇ + (3H2
+ 2Ḣ)Φ = 4πG(δp −

2

3
k2δΠ) , (1.2.48)

(∂t + 3H)
B

a
+
ζ +Φ

a2
= −8πGδΠ. (1.2.49)

The continuity equations are

3Hδp =
k2

a2
δq + (ρ̄ + p̄) [−3ζ̇ + k2B/a] , (1.2.50)

δ̇q + 3Hδq = −δp +
2

3
k2δΠ − (ρ̄ + p̄)Φ. (1.2.51)

Comoving gauge Comoving gauge is defined by the vanishing of the scalar momentum den-
sity,

δq = 0, E = 0. (1.2.52)

It is also conventional to set −Ψ ≡R in this gauge.

10



1.3. Vectors

The Einstein equations are

3H (−Ṙ +HΦ) −
k2

a2
[R + aHB] = −4πGδρ, (1.2.53)

−Ṙ +HΦ = 0, (1.2.54)

−R̈ − 3HṘ +HΦ̇ + (3h2
+ 2Ḣ)Φ = 4πG(δp −

2

3
k2δΠ) , (1.2.55)

(∂t + 3H)
B

a
+
R +Φ

a2
= −8πGδΠ. (1.2.56)

The continuity equations are

δ̇ρ + 3H(δρ + δp) = (ρ̄ + p̄) [−3Ṙ + k2B/a] , (1.2.57)

0 = −δp +
2

3
k2δΠ − (ρ̄ + p̄)Φ. (1.2.58)

Equations (1.2.58) and (1.2.55) may be combined into

Φ =
−δp + 2

3Π

ρ̄ + p̄
, kB =

4πGa2δρ − k2R

aH
. (1.2.59)

Spatially-flat gauge A convenient gauge for computing inflatioanry perturbation is spatially-
flat gauge

Ψ = E = 0. (1.2.60)

During inflayion all scalar perturbations are then described by δφ.
The Einstein equations are

3H2Π +
k2

a2
[−aHB] = −4πGδρ, (1.2.61)

HΦ = −4πGδq, (1.2.62)

HΦ̇ + (3H2
+ 2Ḣ)Φ = 4πG(δp −

2

3
k2δΠ) , (1.2.63)

(∂t + 3H)
B

a
+

Φ

a2
= −8πGδΠ. (1.2.64)

The continuity equations are

δ̇ρ + 3H(δρ + δp) =
k2

a2
δq + (ρ̄ + p̄) [k2B/a], (1.2.65)

δ̇q + 3Hδq = −δp +
2

3
k2δΠ − (ρ̄ + p̄)Φ. (1.2.66)

1.3 Vectors

1.3.1 Metric perturbations

Vector type metric perturbations are defined as

ds2
= −dt2 + 2a(t)Si dx

i dt + a2
(t) [δij + 2F(i,j)]dxi dxj , (1.3.1)

11



1. Cosmological perturbation theory

where Si,i = Fi,i = 0. The vector gauge transformation is

xi → xi + βi, βi,i = 0. (1.3.2)

They lead to the transformations

Si → Si + aβ̇i (1.3.3)

Fi → Fi − βi. (1.3.4)

The combination Ḟi + Si/a is called the gauge-invariant vector shear perturbation.

1.3.2 Matter perturbations

We define the vector part of the anisotropic stress by

δΠij = ∂(iΠj), (1.3.5)

where Πi is divergence-free, Πi,i = 0.

1.3.3 Einstein equations

For vector perturbations there are only two Einstein equations,

δ̇qi + 3Hδqi = k
2δΠi, (1.3.6)

k2
(Ḟi + Si/a) = 16πGδqi. (1.3.7)

In the absence of anisotropic stress (δΠi = 0) the divergence-free momentum δqi decays with
the expansion of the universe; see Eq. (1.3.7). The shear perturbation Ḟi + Si/a then vanishes
by Eq. (1.3.7). Under most circumstances vector perturbations are therefore subdominant. In
particular, vector perturbations aren’t created by inflation.

1.4 Tensors

1.4.1 Metric perturbations

Tensor metric perturbations are defined as

ds2
= −dt2 + a2

(t) [δij + hij]dxi dxj , (1.4.1)

where hij,i = h
i
i = 0. Tensor perturbations are automatically gauge-invariant (at linear order).

It is conventional to decompose tensor perturbations into eigenmodes of the spatial Laplacian,
∇2eij = −k

2eij , with comoving wavenumber k and scalar amplitude h(t),

hij = h(t)e
(+,×)
ij (x). (1.4.2)

Here, + and × denote the two possible polarization states.

1.4.2 Matter perturbations

Tensor perturbations are sourced by anisotropic stress Πij , with Πij,i = Πi
i = 0. It is typically

a good approximation to assume that the anisotropic stress is negligible, although a small
amplitude is induced by neutrino free-streaming.
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1.5. Classical perturbations

1.4.3 Einstein equations

For tensor perturbations there is only one Einstein equation. In the absence stress this is

ḧ + 3Hḣ +
k2

a2
h = 0. (1.4.3)

This is a wave equation describing the evolution of gravitational waves in an expanding universe.
Gravitational waves are produced by inflation, but then decay with the expansion of the uni-
verse. However, at recombination their amplitude may still be large enough to leave distinctive
signatures in B-modes of CMB polarization. We will analyze the tensor perturbations in more
detail in the next chapter.

1.5 Classical perturbations

For concreteness, we will consider single-field slow-roll models of inflation

S = ∫ d4 x
√
−g

⎡
⎢
⎢
⎢
⎢
⎣

M2
Pl

2
R − gµν∂µφ∂νφ − V (φ)

⎤
⎥
⎥
⎥
⎥
⎦

. (1.5.1)

In this chapter we will study scalar fluctuations. For the scalar modes we have to be careful
to identify the true physical degrees of freedom. A priori, we have 5 scalar modes: 4 metric
perturbations— δg00, δgii, δg0i ∼ ∂iB and δgij ∼ ∂i∂jH— and 1 scalar field perturbation δφ.
Gauge invariances associated with the invariance of (1.5.1) under scalar coordinate transfor-
mations —t → t + ε0 and xi → xi + ∂iε— remove two modes. The Einstein constraint equations
remove two more modes, so that we are left with 1 physical scalar mode. Deriving the quadratic
action for this mode is the aim of this section.

1.5.1 Comoving gauge

We will work in a fixed gauge throughout. For a number of reasons it will be convenient to work
in comoving gauge, defined by the vanishing of the momentum density, δT0i ≡ 0, as we saw in
(1.2.52). For slow-roll inflation this becomes

δφ = 0. (1.5.2)

In this gauge, perturbations are characterized purely by fluctations in the metric,

δgij = a
2
(1 − 2R) δij + a

2hij (1.5.3)

where R is the comoving curvature perturbation.

1.5.2 Quadratic action

From now on we set MPl ≡ 1. Substituting δg00 and δg0i into (1.5.1) and expanding in powers
of R, we find

S =
1

2
∫ dtdxa3 φ̇

H2
[Ṙ

2
−

1

a2
(∇R)

2
] + . . . (1.5.4)

The ellipses in (1.5.4) refer to terms that are higher order in R. Being interested only in the
quadratic action of R we will now drop these terms. We define the canonically-normalized
Mukhanov variable

v ≡ zR, (1.5.5)
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1. Cosmological perturbation theory

Figure 1.1: Curvature perturbations during and after inflation: The comoving horizon (aH)−1 shrinks during
inflation and grows in the subsequent FRW evolution. This implies that comoving scales k−1 exit the horizon at
early times and re-enter the horizon at late times. While the curvature perturbations R are outside of the horizon
they don’t evolve, so our computation for the correlation function ⟨RkRk′⟩ at horizon exit during the early de
Sitter phase can be related directly to CMB observables at late times.

where

z2
≡ a2 φ̇

2

H2
= 2a2ε (1.5.6)

where ε ≡ − Ḣ
H2 =

φ̇2

2MPlH2 . Switching to conformal time, we get

S =
1

2
∫ dτ dx [(v′)2

− (∇v)2
+
z′′

z
v2

] . (1.5.7)

We recognize this as the action of an harmonic oscillator with time-dependent mass

S = ∫ dτ dx [−
1

2
ηµν∂µv∂νv −

1

2
m2

eff(τ)v
2
] , (1.5.8)

where

meff(τ) ≡ −
z′′

z
= −

h

aφ̇

∂2

∂τ2

⎛

⎝

aφ̇

H

⎞

⎠
. (1.5.9)

Given a solution for the homogeneous background a(t) and φ(t) one obtains meff(τ). The
time-dependence of the effective mass accounts for the interaction of the scalar field R with the
gravitational background.

1.5.3 Mukhanov-Sasaki equation

Varying the action S, we arrive at the classical equation of motion (the Mukhanov-Sasaki equa-
tion)

v′′k + (k2
−
z′′

z
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡ω2

k
(τ)

vk = 0, (1.5.10)
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1.5. Classical perturbations

where we defined the Fourier modes

vk(τ) ≡ ∫
dx

(2π)3/2 e
−ik⋅xv(τ,x). (1.5.11)

In de Sitter space, a = −(Hτ)−1, the effective frequency reduces to

ω2
k(τ) = k

2
−

2

τ2
(de Sitter). (1.5.12)

Let us study the solution of (1.5.10) in special limits:

Subhorizon At sufficiently early times, −kτ >> 1, the comoving Hubble radius was larger than
the wavelengths of all modes of interest. We say that the modes were subhorizon. In that case,
k2 >> ∣z′′/z∣, and we get

v′′k + k
2vk = 0. (1.5.13)

This is the equation of motion of a massless scalar field in Minkowski space which has oscillating
solutions:

vk ∝ e±ikτ (1.5.14)

Superhorizon As the comoving Hubble radius shrinks during inflation (see fig. 1.1), the modes
eventually cross the Hubble radius (at −kτ = 1) and become superhorizon thereafter. Superhori-
zon modes satisfy k2 << ∣z′′/z∣, and we find instead

v′′k
vk

=
z′′

z
≈

2

τ2
. (1.5.15)

This has the growing solution vk ∝ z ∝ τ−1 (and the decaying solution vk ∝ τ2). This implies
that R freezes on superhorizon scales

Rk = z
−1vk ∝ const (1.5.16)

1.5.4 Mode expansion

Since the frequency ωk(τ) in (1.5.10) depends only on k ≡ ∣k∣, the most general solution of (1.5.10)
can be written as 2

vk ≡ a
−
kvk(τ) + a

+
−kv

∗
k(τ). (1.5.17)

Here, vk(τ) and its complex conjugate v∗k(τ) are two linearly indipendent solutions of (1.5.10).
As indicated by dropping the vector notation k on the subscript, vk(τ) and v∗k(τ) are the same
for all Fourier modes with k ≡ ∣k∣. The Wronskian of the mode functions is

W [vk, v
∗
k] ≡ v

′
kv

∗
k − vkv

′∗
k = 2iI(v′kv

∗
k). (1.5.18)

From the equation of motion (1.5.10) it follows thatW [vk, v
∗
k] is time-independent. Furthermore,

by rescaling the mode functions vk → λvk (giving W [vk, v
∗
k] → ∣λ∣2W [vk, v

∗
k]) we can always

normalize vk such that
W [vk, v

∗
k] = v

′
kv

∗
k − vkv

′∗
k ≡ −i. (1.5.19)

The reason for this particular choice of normalization will be clear momentarily.

2The −k on a+−k was chosen for later convenience.
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1. Cosmological perturbation theory

The two time-independent integration constants a±k in (1.5.17) are

a−k =
v′k

∗vk − v
∗
kv

′
k

v′k
∗vk − v∗kv

′
k

=
W [v∗k , vk]

W [v∗k , vk]
and a+k = (a−k)

∗
, (1.5.20)

where the relation between a+k and a−k follows from the reality of v. Note that the constants a±k
may depend on the direction of the vector k.

Finally, Fourier transforming (1.5.17) gives

v(τ,x) = ∫
dk

(2π)3/2 [a−kvk(τ) + a
+
−kv

∗
k(τ)] e

ik⋅x

= ∫
dk

(2π)3/2 [a−kvk(τ)e
ik⋅x

+ a+kv
∗
k(τ)e

−ik⋅x
] ,

(1.5.21)

where the second line is manifestly real, since a+k = (a−k)
∗
.

1.6 Quantum origin of cosmological perturbations

Our task now is to quantize the field v. This is not much more complicated than quantizing
the simple harmonic oscillator in quantum mechanics, except for a small subtelty in the vacuum
choice arising from the time dependence of the oscillator frequencies ωk(τ). [8, 40]

1.6.1 Canonical quantization

The canonical quantization procedure proceeds in the standard way: the field v and its canon-
ically conjugate momentum π ≡ v′ are promoted to quantum operators v̂ and π̂, which satisfy
the standard equal-time commutation relations3

[v̂(τ,x), π̂(τ,y)] = iδ(x − y), (1.6.1)

and

[v̂(τ,x), v̂(τ,y)] = [π̂(τ,x), π̂(τ,y)] = 0. (1.6.2)

It follows from (1.5.10) that the commutation relation (1.6.1) holds at all times if it holds at
any one time. The delta function is a signature of locality : modes at different points in space
commute. The Hamiltonian is

Ĥ(τ) =
1

2
∫ dx [π̂2

+ (∇v̂)2
+meff(τ)v̂

2
] . (1.6.3)

The constants of integration a±k in the mode expansion of v become operators â±k, so that the
field operator v̂ is expanded as

v̂(τ,x) = ∫
dk

(2π)3/2 [â−kvk(τ)e
ik⋅x

+ â+kv
∗
k(τ)e

−ik⋅x
] (1.6.4)

Substituting (1.6.4) into (1.6.1) and (1.6.2) implies

[â−k, â
+
k′] = δ(k − k′) and [â−k, â

−
k′] = [â+k, â

+
k′] = 0. (1.6.5)

3Here, we defined h̵ = 1
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1.6. Quantum origin of cosmological perturbations

We realize that our normalization for the mode functions (1.5.19) was wisely chosen to make (1.6.5).
The operators â+k and â−k may then be interpreted as creation and annihilation operators, respec-
tively. As usual, quantum states in the Hilbert space are constructed by defining the vacuum
state ∣0⟩ via

â−k∣0⟩ = 0, (1.6.6)

and by producing excited states by repeated application of creation operators

∣mk1 , nk2 , . . . ⟩ =
1

√
m!n! . . .

[(âk1
)
m

(âk2
)
n
. . . ] ∣0⟩ (1.6.7)

1.6.2 Non-Uniqueness of the vacuum

An unambiguous physical interpretation of the states in (1.6.6) and (1.6.7) arises only after
the mode function vk(τ) are selected.4 However, the normalization (1.5.19) is not sufficient to
completely fix the solutions vk(τ) to the second-order ODE (1.5.10). An unambiguous definition
of the vacuum still requires additonal physical input.

To illustrate this ambiguity explicitly, consider the following functions

uk(τ) = αkvk(τ) + βkv
∗
k(τ), (1.6.8)

where αk and βk are complex constants. The functions uk(τ) of course also satisfy the equation
of motion (1.5.10). Moreover, they satisfy the normalization (1.5.19), i.e. W [uk, u

∗
k] = −i, if the

coefficients αk and βk obey

∣αk∣
2
− ∣βk∣

2
= 1. (1.6.9)

At this point there is therefore nothing that permits us to favor vk(τ) over uk(τ) in our choice
of mode functions. In terms of uk(τ) the expansion v̂ takes the form

v̂(τ,x) = ∫
dk

(2π)3/2 [b̂−kuk(τ)e
ik⋅x

+ b̂+ku
∗
k(τ)e

−ik⋅x
] (1.6.10)

where b̂±k are alternative creation and annihilation operators satisfying (1.6.5). Comparing (1.6.10)

to (1.6.4) leads to the Bogoliubov transformation [8] between b̂±k operators and â±k operators:

â−k = α
∗
k b̂
−
k + βk b̂

+
−k and â+k = αk b̂

+
k + β

∗
k b̂

−
−k. (1.6.11)

Both sets of operators can be used to construct a basis of states in the Hilbert space:

â−k∣0⟩a = 0 b̂−k∣0⟩b = 0, (1.6.12)

and

∣mk1 , nk2 , . . . ⟩a =
1

√
m!n! . . .

[(âk1
)
m

(âk2
)
n
. . . ] ∣0⟩a, (1.6.13)

∣mk1 , nk2 , . . . ⟩b =
1

√
m!n! . . .

[(b̂k1)
m

(b̂k2)
n
. . . ] ∣0⟩b. (1.6.14)

4Changing vk(τ) while keeping v̂ fixed, changes â±k [cfr. (1.5.20)] and hence changes the vacuum ∣0⟩ and the
excited states ∣m,n, . . . ⟩.
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1. Cosmological perturbation theory

It should be clear that the b-states are in general different form the a-states. In particular, the
b-vacuum contains a-particles:

b⟨0∣N̂
(a)
k ∣0⟩b = b⟨∣â

+
kâ

−
k∣0⟩b =

= b⟨0∣ (αk b̂
+
k + β

∗
k b̂

−
−k) (α∗k b̂

−
k + βk b̂

+
−k) ∣0⟩b =

= ∣βk∣
2 δ(0).

(1.6.15)

The divergent factor δ(0) arises because we are considering an infinite spatial volume, but the
mean density of a-particles in the b-vacuum is finite (and typically not zero):

n ≡ ∫ dknk = ∫ dk ∣βk∣
2 . (1.6.16)

1.6.3 Choice of the physical vacuum

Clearly, we are still missing some essential physical input to define the unique vacuum state.

Vacuum in Minkowski space

How do we usually do this? In a time-indipendent spacetime a preferable set of mode functions
and thus an unambiguous physical vacuum can be defined by requiring that the expectation
value of the Hamiltonian in the vacuum state is minimized. To illustrate this let us consider the
Mukhanov-Sasaki equation in Minkowski space (i.e. the a ≡ 0 limit of (1.5.10)):

v′′k + k
2vk = 0. (1.6.17)

We aim to find the mode functions vk that minimize the expectation value of the Hamiltonian
in the vacuum. We will therefore compute v⟨0∣Ĥ ∣0⟩v for an arbitrary mode function v and then
find the preferred function v that minimizes the result. In terms of our mode expansion, the
Hamiltonian (1.6.3) becomes

Ĥ =
1

2
∫ dk [â−kâ

−
−kF

∗
k + â

+
kâ

+
−kFk + (2â+kâ

−
k + δ(0))Ek] (1.6.18)

where

Ek ≡ ∣v′k∣
2
+ k2

∣vk∣
2 , (1.6.19)

Fk ≡ v
′
k

2
+ k2v2

k. (1.6.20)

Since â−k∣0⟩v = 0, we have

v⟨0∣Ĥ ∣0⟩v =
δ(0)

4
∫ dkEk. (1.6.21)

Dividing out the uninteresting divergence , δ(0), we infer that the energy density in the vacuum
state is

ε =
1

4
∫ dkEk (1.6.22)

It is clear that this is minimized if each k-mode Ek is minimized separately. We therefore need
to determine the vk and v′k that minimize the expression

Ek = ∣v′k∣
2
+ k2

∣vk∣
2 . (1.6.23)
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1.6. Quantum origin of cosmological perturbations

We mustn’t forget that the mode functions vk satisfy the normalization (1.5.19),

v′kv
∗
k − vkv

′∗
k = −i. (1.6.24)

using the parametrization vk = rke
iαk , for real rk and αk, (1.6.24) becomes

r2
kα

′
k = −

1

2
(1.6.25)

and (1.6.23) gives

Ek = r
′
k

2
+ r2

kα
′
k

2
+ k2r2

k =

= r′k
2
+

1

4r2
k

+ k2r2
k.

(1.6.26)

It is easily seen that (1.6.26) is minimized if r′k = 0 and rk = 1√
2k

. Integrating (1.6.25) gives

αk = −kτ (up to an irrilevant constant that doesn’t affect any observables; e.g. this constant
phase factor drops out in the computation of the power spectrum) and hence

vk(τ) =
1

√
2k
e−ikτ . (1.6.27)

This defines the preferred mode functions for fluctuations in Minkowski space. For these mode
functions we find Ek = k ≡ ωk and Fk = 0, so the Hamiltonian is

Ĥ = ∫ dk [â+kâ
−
k +

1

2
δ(0)] . (1.6.28)

Hence, the Hamiltonian is diagonal in the eigenbasis of the occupation number operator N̂k ≡

â+kâ
−
k.

Vacuum in time-dependent spacetimes

The vacuum prescription which we just applied to Minkowski space does not generalize straight-
forwardly to time-dependent spacetimes.

In this case the mode equation (1.5.10) involves time-dependent frequencies ωk(τ) and the
”minimum-energy vacuum” depends on the time τ0 at which it is defined. Repeating the above
argument, one can nevertheless determine the vacuum which instantaneously minimizes the
expectation value of the Hamiltonian at some time τ0. One finds that the initial conditions

vk(τ0) =
1

√
2ωk(τ0)

e−iωk(τ0)τ0 , v′k = −iωk(τ0)vk(τ0) (1.6.29)

select the preferred mode functions which determine the vacuum ∣0⟩τ0 . However, since ωk(τ)
changes with time, the mode functions satisfying (1.6.29) at τ = τ0 will typically be different
from the mode functions that satisfy the same conditions at a different time τ1 ≠ τ0. This implies
that ∣0⟩τ1 ≠ ∣0⟩τ0 and the state ∣0⟩τ0 is not the lowest-energy state at a later time τ1.
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1. Cosmological perturbation theory

Bunch-Davies vacuum

How do we resolve this ambiguity for the inflationary quasi-de Sitter spacetime?
From Fig. 1.1 we note that a sufficiently early times (large negative conformal time τ) all

modes of cosmological interest were deep inside the horizon:

k

aH
∼ ∣kτ ∣ >> 1 (subhorizon). (1.6.30)

This means that in the remote past all observable modes had time-indipendent frequencies; e.g.
in perfect de Sitter space:

ω2
k = k

2
−

2

τ2
→ k2. (1.6.31)

The corresponding modes are therefore not affected by gravity and behave just like in Minkowski
space:

v′′k + k
2vk = 0. (1.6.32)

The two indipendent solutions of (1.6.32) are vk ∝ e±ikτ . As we have seen above only the positive
frequency mode vk ∝ e−ikτ is the the ”minimal excitation state”, cf. Eq. (1.6.27).

Given that at sufficiently early times all modes have time-indipendent frequencies, we can
now avoid the ambiguity in defining the inital conditions for the mode functions that afflicts
the treatment in more general time-dependent spacetimes. In practice, this means solving the
Mukhanov-Sasaki equation with the (Minkowski) initial condition

lim
τ→−∞

vk(τ) =
1

√
2k
e−ikτ . (1.6.33)

This defines a preferable set of mode functions and a unique physical vacuum, the Bunch-Davies
vacuum.

1.6.4 Quantum fluctuations in de Sitter

We are now ready to derive the correlation functions for quantum fluctuations in de Sitter space.

de Sitter mode functions

In de Sitter space the Mukhanov-Sasaki equation is:

v′′k + (k2
−

2

τ2
) vk = 0. (1.6.34)

The exact solution of (1.6.34) is

vk(τ) = α
e−ikτ
√

2k
(1 −

i

kτ
) + β

eikτ
√

2k
(1 +

i

kτ
) . (1.6.35)

The initial condition (1.6.33) fixes β = 0, α = 1. Hence, the unique mode function is

vk(τ) =
e−ikτ
√

2k
(1 −

i

kτ
) . (1.6.36)

Since the mode function is completely fixed, the future evolution of the mode including its
superhorizon dynamics is determined:

lim
kτ→0

vk(τ) =
1

i
√

2
⋅

1

k3/2τ
. (1.6.37)
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1.6. Quantum origin of cosmological perturbations

Zero-point fluctuations

Knowledge of the mode functions for canonically-normalized fields in de Sitter space allows us
to compute the effect due to quantum zero-point fluctuations:

⟨v̂kv̂k′⟩ = ⟨0∣ v̂kv̂k′ ∣0⟩ =

= ⟨0∣ (â−kvk + â
+
−kv

∗
k) (â

−
k′vk′ + â

+
−k′v

∗
k′) ∣0⟩ =

= vkv
∗
k ⟨0∣ â−kâ

+
−k′ ∣0⟩ =

= vkv
∗
k ⟨0∣ [â−k, â

+
−k′] ∣0⟩ =

= ∣vk∣
2 δ(k + k′) =

= Pv(k)δ(k + k′)

(1.6.38)

On superhorizon scales this approaches [cf. Eq. (1.6.37)]

Pv =
1

2k3

1

τ2
=

1

2k3
(aH)

2. (1.6.39)

All power spectra for fields in de Sitter space are simple rescalings of this power spectrum for
the canonically-normalized field.

We define the (dimensionless) power spectrum as

∆2
v(k) =

k3

2π2
Pv(k) (1.6.40)
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Chapter 2

Gravitational waves from inflation

One of the most robust and model-independent predictions of inflation is a stochastic background
of gravitational waves with an amplitude given simply by the Hubble scale H during inflation.
The simplicity of this prediction means that a measurement of primordial gravitational waves
would give clean information about arguably the most important inflationary parameter, namely
the energy scale of inflation. Most excitingly, inflationary gravitational waves lead to a unique
signature in the polarization of the CMB. A large number of ground-based, balloon and satellite
experiments are currently searching for this signal.

Near comoving wave-number k, the gravitational-wave background from inflation carries
information about the physical conditions near two moments in cosmic history: the moment
when k “left the horizon” during inflation, and the moment when it “re-entered the horizon” after
inflation. The discussion about physical effects incorporated in a gravitational-wave transfer
function is mostly based on the work of Steinhardt and Boyle [10].

2.1 Tensor perturbations

Tensor perturbations in a spatially flat FRW universe are described by a line element

ds2
= a2

[−dτ2
+ (δij + hij)dxi dxj] (2.1.1)

where τ is the conformal time, xi are comoving spatial coordinates, and hij is the gauge-invariant
tensor metric perturbation. The perturbation hij is symmetric (hij = hji), traceless (hii = 0),
and transverse (hij,j = 0) and therefore contains 6 − 3 − 1 = 2 indipendent modes (corresponding
to the ”+” and ”×” gravitational-wave polarizations).

One can think of hij(τ,x) as a quantum field in an unperturbed FRW background metric
ḡµν = diag{−a2, a2, a2, a2}. At quadratic order in hij (which is adequate, since hij is tiny),
tensor perturbations are governed by the second-order action, which comes from the expansion
of Einstein-Hilbert action (see [43])

S = ∫ dτ dx
√
−ḡ [

−ḡµν

64πG
∂µhij∂νhij +

1

2
Πijhij] (2.1.2)

where ḡµν and ḡ are the inverse and the determinant of ḡµν , respectively, and G is the New-
ton’s constant. The tensor part of the anisotropic stress Πij is given by Tij = pgij + a

2Πij , or
equivalently

Πij = T
i
j − pδij p = unperturbed pressure (2.1.3)
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2. Gravitational waves from inflation

along with the conditions Πii = 0 and ∂iΠij = 0. It couples to hij like an external source in
(2.1.2). By varying hij in (2.1.2):

δS =∫ dτ dx δ(
√
−ḡ) [

−ḡµν

64πG
∂µhij∂νhij +

1

2
Πij hij]+

+
√
−ḡ [

−δḡµν

64πG
∂µhij∂νhij −

ḡµν

64πG
δ (∂µhij)∂νhij −

ḡµν

64πG
∂µhijδ (∂νhij) +

+
1

2
Πijδhij +

1

2
δΠijhij] =

=∫ dτ dx δ(
√
−ḡ) [

−ḡµν

64πG
∂µhij∂νhij +

1

2
Πijhij]+

−

√
−ḡ δḡµν

64πG
∂µhij∂νhij − ∂µ (

√
−ḡ ḡµν

64πG
∂νhijδhij)+

+
∂µ (

√
−ḡ ḡµν∂νhij)

64πG
δhij − ∂ν (

√
−ḡ ḡµν

64πG
∂µhijδhij)+

+
∂ν (

√
−ḡ ḡµν∂µhij)

64πG
δhij +

√
−ḡ [

1

2
Πij δhij +

1

2
δΠij hij] = 0

(2.1.4)

The boundary terms as always vanish:

δS

δhij
=

1

64πG
[∂µ (

√
−ḡ ḡµν∂νhij) + ∂ν (

√
−ḡ ḡµν∂µhij)] +

√
−ḡ

2
Πij = 0 (2.1.5)

Then,
1

32πG
∂µ (

√
−ḡ ḡµν∂νhij) = −

√
−ḡ

2
Πij (2.1.6)

Since
√
−ḡ = a4 and substituting the inverse metric terms:

∂0 (
√
−ḡ ḡ00∂0hij) = −∂0 (a

2∂0hij) = −a
2h′′ij − 2a′(τ)a(τ)hij (2.1.7)

∂k (
√
−ḡ ḡkl∂lhij) = ∂k (a

2∂lhij) = a
2∂k∂lhij (2.1.8)

Hence we obtain the equation of motion

h′′ij + 2
a′(τ)

a(τ)
h′ij −∇

2hij = 16πGa2
(τ)Πij(τ,x) (2.1.9)

where a (′) indicates a conformal time derivative d/dτ . Next, it is convenient to Fourier trans-
form as follows,

hij(τ,x) =∑
r

√
16πG∫

dk

(2π)3/2 ε
r
ij(k)h

r
k(τ)e

ikx (2.1.10)

Πij(τ,x) =∑
r

√
16πG∫

dk

(2π)3/2 ε
r
ij(k)Π

r
k(τ)e

ikx (2.1.11)

where r = (”+” or ”×”) labels the polarization state, and the polarization tensors are symmetric

[εrij(k) = ε
r
ji(k)], traceless [εrii(k) = 0], and transverse [kiε

r
ij(k) = 0]. We also choose a circular-

polarization basis in which εrij(k) = (εrij(−k))
∗
, and normalize the polarization basis as follows:

∑
i,j

εrij(k) (ε
s
ij(k))

∗
= 2δrs. (2.1.12)
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2.1. Tensor perturbations

Substituting (2.1.10) into (2.1.2):

S =∫ dτ dx a4
{

1

4a2∑
r
∑
s
∫

dk dk′

8π3
εrij(k)ε

s
ij(k

′
)×

× [h′k
r
(τ)h′k′

sτ) + kk′hrk(τ)h
s
k′(τ)] e

ikxeik
′x
+

+∑
r
∑
s

8πG∫
dk dk′

8π3
εrij(k)ε

s
ij(k

′
)Πr

k(τ)h
s
k′(τ)e

ikxeik
′x

}

(2.1.13)

Since the domain of integration is symmetric, kÐ→ −k,

S =∫ dτ dx a2
{∑

r
∑
s
∫

dk d(−k)

3π3
εrij(k)ε

s
ij(−k)×

× [h′k
r
(τ)h′−k

s
(τ) − k2hrk(τ)h

s
−k(τ)]+

+∑
r
∑
s

a2 G

π2 ∫ dk d(−k) εrij(k)ε
s
ij(−k)Πr

k(τ)h
s
−k(τ) }

(2.1.14)

Using (2.1.12) then it yields

S =∑
r
∫ dτ dk

a2

2
[h′k

rh′−k
r
− k2hrkh

r
−k + 32πGa2Πr

kh
r
−k] (2.1.15)

Now we can canonically quantize by promoting hrk and it conjugate momentum

πrk(τ) = a
2
(τ)h′−k

r
(τ) (2.1.16)

to operators, ĥrk and π̂rk, satisfying the equal-time commutation relations

[ĥrk(τ), π̂
s
k′(τ)] = iδ

rsδ(3)(k − k′) (2.1.17)

[ĥrk(τ), ĥ
s
k′(τ)] = [π̂rk(τ), π̂

s
k′(τ)] = 0. (2.1.18)

Since ĥij(τ,x) is Hermitian, its Fourier components satisfy ĥrk = ĥ
r†
−k, and we write them as

ĥrk(τ) = hk(τ)â
r
k + h

∗
k(τ)â

r†
k (2.1.19)

where the creation and annihilation operators, ârk and âr†k , satisfy standard commutation rela-
tions

[ârk(τ), â
s†
k′(τ)] = δ

rsδ(3)(k − k′) (2.1.20)

[ârk(τ), â
s
k′(τ)] = [âr†k (τ), âs†k′(τ)] = 0. (2.1.21)

while the (c-number) mode functions hk(τ) and h∗k(τ) are linearly indipendent solutions of the
Fourier-transformed equation of motion

h′′k + 2
a′(τ)

a(τ)
h′k + k

2hk = 16πGa2
(τ)Πk(τ) (2.1.22)

Equation (2.1.19) makes use of the fact that, by isotropy, the mode functions hk(τ) will depend
on the time (τ) and the wave numer (k = ∣k∣) , but not on the direction (k̂) or the polarization
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2. Gravitational waves from inflation

(r). Note that consistency between the two sets of commutation relations, (2.1.17) and (2.1.20),
requires that the mode functions satisfy the Wronskian normalization condition

hk(τ)h
∗′
k (τ) − h∗k(τ)h

′
k(τ) =

i

a2(τ)
(2.1.23)

in the past. In particular, the standard initial condition for the mode function in the far past
(when the mode k was still far inside the horizon during inflation),

hk(τ)Ð→
exp(−ikτ)

a(τ)
√

2k
(as τ Ð→ −∞) (2.1.24)

satisfies (2.1.23) — but it is not the unique inital condition which does so. This is a manifestation
of the well-known vacuum ambiguity that is responsible for particle production in cosmological
spacetimes (see [8]).

In the early universe, the gravitational-wave background (GWB) is usually characterized by
the tensor power spectrum ∆2

h(k, τ). With the formalism developed thus so far

⟨0∣ĥij(τ,x)ĥij(τ,x)∣0⟩ =∑
r
∑
s

16πG∫
dk dk′

8π3
εrij(k)ε

s
ij(k

′
)×

× ⟨0∣ [ (hk(τ)â
r
k + h

∗
k(τ)â

r†
−k) (hk′(τ)â

s
k′ + h

∗
k′(τ)â

s†
−k′) ] ∣0⟩eikxeik

′x

(2.1.25)

The only non-vanishing term is:

⟨0∣hk(τ)â
r
kh

∗
k′(τ)â

s†
−k′ ∣0⟩ = hk(τ)h

∗
k′(τ)⟨0∣â

r
kâ

s†
k′ ∣0⟩

(2.1.20)
= hk(τ)h

∗
−k(τ)δ

rs (2.1.26)

Then,

⟨0∣ĥij(τ,x)ĥij(τ,x)∣0⟩ =∑
r

4G

π2 ∫ dk εrij(k)ε
r
ij(−k) ∣hk(τ)∣

2
=

=
8G

π2
4π∫

∞

0
dk k2 ∣hk(τ)∣

2
=

= ∫

∞

0
64πG

k3

2π2
∣hk(τ)∣

2 dk

k

(2.1.27)

so that the tensor power spectrum is given by

∆2
h(k, τ) ≡

d⟨0∣ĥ2
ij ∣0⟩

d lnk
= 64πG

k3

2π2
∣hk(τ)∣

2 (2.1.28)

Since (2.1.28) defines the tensor power spectrum in terms of the full tensor perturbation hij ,
the normalization of the power spectrum is indipendent of the normalization (2.1.12) of the
polarization basis.

Next, let us ”derive” the slow-roll expression for the primordial tensor power spectrum. As
long as k remains inside the Hubble horizon (k ≫ aH) during inflation, the mode function

h
(in)
k (τ) is given by (2.1.24) ; and once k is outside the horizon (k ≪ aH), the mode function

h
(out)
k is indipendent of τ . Then, by simply matching ∣h

(in)
k ∣ to ∣h

(out)
k ∣ at the moment of horizon

exit (k = aH), one finds h
(out)
k = 1/(a∗

√
2k), where an (∗) denotes that a quantity is evaluated
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2.1. Tensor perturbations

at horizon (k = a∗H∗). Thus, the primordial tensor power spectrum is given by

∆2
h(k) ≡ 64πG

k3

2π2
∣h

(out)
k ∣

2
≈ 64πG

k3

2π2

1

a2
∗2k

=

a∗ =
k
H∗
=

16G

π

k2

a2
∗
=

16G

π
H2
∗ =

=
2

MPlπ2
H2
∗ = 8(

H∗
2πMPl

)

2

(2.1.29)

where in this equation MPl = (8πG)−1/2 is the ”reduced Planck mass”. Note that the primordial
power spectrum is time indipendent, since (by definition) it is evaluated when the mode k is far
outside the horizon. Although our derivation of (2.1.29) may seem crude, it is well known that
(2.1.29) provides a very good approximation to the inflationary tensor spectrum.

I
The same result can be obtained applying the formalism we introduced for scalar fluctuations

in the previous chapter. In fact, in this case, our job is considerably simpler due to the fact
that first-order tensor perturbations are gauge-invariant and don’t backreact on the inflationary
background. Inserting the metric in Eq. (2.1.2) then yields

S = ∫ dτ dx

⎧⎪⎪
⎨
⎪⎪⎩

M2
Pl

8
a2

[(h′ij)
2
− (∇hij)

2
] +

a4

2
Πijhij

⎫⎪⎪
⎬
⎪⎪⎭

(2.1.30)

Here, we have introduce the explicity factor of M2
Pl to make hij manifestly dimensionless. Up

to the normalization factor of MPl

2 this is the same action for a massless scalar field in an

FRW universe. Substituting (2.1.10) (for convenience let’s forget about the factor
√

16πG)
into (2.1.30), we get again the Fourier representation of the action

S =∑
r
∫ dτ dk{

a2

4
M2
Pl [(h

′
k
r
)

2
− k2

(hrk)
2
] +

a4

2
Πr

kh
r
−k} (2.1.31)

For canonically-normalized fields,

vrk ≡
a

2
MPlh

r
k, (2.1.32)

this reads (forgetting for the moment about the anisotropic stress Πij)

S =∑
r
∫ dτ dk

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(v′k
r
)

2
− (k2

−
a′′

a
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡ω2

k
(τ)

(vrk)
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.1.33)

For a de Sitter background, we have
a′′

a
=

2

τ2
. (2.1.34)

Eq. (2.1.33) should be recognized as essentially two copies of the action (1.5.7). Hence, we can
jump straight to the result in Eq. (1.6.39):

Pv =
1

2k3
(aH)

2. (2.1.35)
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2. Gravitational waves from inflation

Defining the tensor power spectrum Pt as the sum of the power spectra for each polarization
mode of hij , we find

Pt = 2 ⋅ Ph = 2 ⋅ (
2

aMPl
)

2

⋅ Pv =
4

k3

H2

M2
Pl

(2.1.36)

or the dimensionless spectrum

∆2
h(k) =

2

π2

H2

M2
Pl

RRRRRRRRRRRk=aH
. (2.1.37)

2.2 The tensor transfer function

Since cosmological tensor perturbations are tiny, they are well described by linear perturbation
theory, so that each Fourier mode evolves independently. Thus, we see from Eq. (2.1.28) that
the primordial tensor power spectrum — defined at some conformal τi shortly after the end of
inflation, when all modes of interest have already left the horizon, but have not yet re-entered
— is related to the tensor power spectrum at a later time τ by a multiplicative transfer function

∆2
h(k, τ) = Th(k, τ)∆

2
h(k, τi) (2.2.1)

where

Th(k, τ) = ∣
hk(τ)

hk(τi)
∣

2

. (2.2.2)

Note that we will not necessarily want to evaluate Th(k, τ) at the present time (τ = τ0), since
different experiments probe the gravitational-wave spectrum at different redshift. For example,
while laser interferometers measure Th today, CMB experiments measure it near the redshift of
recombination. As long as a mode remains outside the horizon (k ≪ aH), the corresponding
perturbations does not vary with the time [hk(τ) = hk(τi)], so that the transfer function is very
well approximated by Th(k, τ) = 1. 1 So we will focus on Th(k, τ) for modes that have already
re-enterd the horizon prior to time τ .

It is very convenient to split the transfer function (2.2.2) into three factors as follows:

Th(k, τ) =
RRRRRRRRRRR

h̄k(τ)

hk(τi)

h̃k(τ)

h̄k(τ)

hk(τ)

h̃k(τ)

RRRRRRRRRRR

2

= C1C2C3 (2.2.3)

Here hk(τ), h̃k(τ), and h̄k(τ) represent three different solutions of the tensor mode equation
(2.1.22). In particular, hk(τ) is the true (exact) solution of (2.1.22); h̃k(τ) is an approxi-
mate solution obtained by ignoring the tensor anisotropic stress Πk on the right-hand side of
(2.1.22); h̄k(τ) is an even cruder approximation obtained by first ignoring Πk and then using
the ”thin-horizon” approximation to solve (2.1.22). (Briefly, the thin-horizon approximation
treats horizon re-entry as a ”sudden” or instantaneous event. In this approximation, h̄k(τ) is
frozen outside the Hubble horizon, redshifts as 1/a(τ) inside the Hubble horizon, and has a sharp
transition between these two behaviours at the moment when the mode re-enters the Hubble
horizon (k = aH). We will describe this approximation in more detail later.)

These three factors each represent a different physical effect. The first factor,

C1 = ∣
h̄k(τ)

hk(τi)
∣

2

(2.2.4)

1For a general proof, even in presence of anisotropic stress, see Appendix A.
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2.2. The tensor transfer function

represents the redshift suppression of the gravitational-wave amplitude after the mode k re-enters
the horizon. The second factor,

C2 =

RRRRRRRRRRR

h̃k(τ)

h̄k(τ)

RRRRRRRRRRR

2

(2.2.5)

captures the behaviour of the background equation-of-state parameter w(τ) = p(τ)/ρ(τ) around
the time horizon re-entry. The third factor,

C3 =

RRRRRRRRRRR

hk(τ)

h̃k(τ)

RRRRRRRRRRR

2

(2.2.6)

measures the damping of the gravitational-wave spectrum due to tensor anisotropic stress. Note
that C1 by itself is ≪ 1 and provides a rough approximation to the full transfer function Th.
The two other factors, C2 and C3, are typically of order unity, and are primarly sensitive to the
physical condition near the time that the mode k re-entered the Hubble horizon.

2.2.1 The redshift-suppression factor, C1

The mode function hk(τ) behaves simply in two regimes: far outside the horizon (k ≪ aH), and
far inside the horizon (k ≫ aH). Far outside, hk(τ) is τ -indipendent (as we have seen). Far
inside, after horizon re-entry, hk(τ) oscillates with a decaying envelope

hk(τ) =
Ak
a(τ)

cos[k(τ − τk) + φk], (2.2.7)

as we shall see in the next two subsections, where Ak and φk are constants representing the
amplitude and phase shift of the oscillation, and τk is the conformal time at the horizon re-entry
(k = aH). These two simple regimes are separated by an intermediate period (horizon crossing)
when k ∼ aH.

In the thin-horizon approximation, we neglect this intermediate regime. That is, we assume
that h̄k(τ) = hk(τi) when k < aH; and that h̄k(τ) is given by Eq. (2.2.7) for k > aH; and that
the outside amplitude is connected to the inside envelope via the matching condition hk(τi) =
Ak/a(τk). Ignoring the phase shift φk, which is really an asymptotic quantity, this matching
condition simply imposes continuity of the inside and outside amplitudes at k = aH. Combining
the matching condition with Eq. (2.2.4), we see that

C1 =

RRRRRRRRRRRRRR

Ak
a(τ) cos[k(τ − τk) + φk]

Ak
a(τk)

RRRRRRRRRRRRRR

2

=

= ∣
a(τk)

a(τ)
cos[k(τ − τk) + φk]∣

2

=

= (
1 + z

1 + zk
)

2

cos2
[k(τ − τk) + φk]

(2.2.8)

where 1 + z = a0/a(τ) is the redshift at which the spectrum is to be probed, and 1 + zk = a0/ak
is the redshift at which the mode re-entered the Hubble horizon (k = aH).

The relic GWB from inflation is often treated as ”quasistationary” process (which means
that its statistical properties only vary on cosmological time scales—much longer than the time
scales in a terrestrial experiment). But the cos2[. . . ] factor in Eq. (2.2.8) implies that the
background is actually highly nonstationary—its power spectrum oscillates as a function of
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2. Gravitational waves from inflation

both wave number k and time τ . This cos2[. . . ] factor represents a genuine feature, and is not
a spurious by-product of our thin-horizon approximation. It was found by Grishchuk [28] that
the expectation values of operators which measure the amplitude of gravitational radiation have
a non trivial time dependance. A state which initially has a vacuum-state occupation numbers,
at later times corresponds to a squeezed state with occupation numbers which differ from those
of the later-time vacuum state. Thus, in an expanding universe gravitons can be produced.
Physically the gravitational GWB consists of gravitational standing waves with random spatial
phases, and coherent temporal phases. All modes k⃗ at fixed wave number k = ∣k⃗∣ re-enter the
Hubble horizon simultaneously, and subsequently oscillate in phase with one another—even until
the present day. In other words, the modes are synchronized by inflation [28]. Thus, at a fixed
wave number, Th(k, τ) is sinusoidal in τ , with oscillation frequency k, and a phase shift φk
(computed in the next subsection). Alternatively, at fixed time, Th(k, τ) oscillates rapidly in
wave number.

In the remainder of this subsection, we derive an accurate expression for (1+zk), the horizon-
crossing redshift. To start, let us write the background energy density ρ as a sum of several
components. The ith component has energy density ρi, pressure pi, equation-of-state parameter
wi ≡ pi/ρi, and obeys the continuity equation

dρi = −3ρi(1 +
pi
ρi

)dlna ⇒
dρi
ρi

= 3 (1 +wi(z))
dz

1 + z
(2.2.9)

since

dlna =
da(τ)

a(τ)
=

a0

a2(τ) da(τ)

a0

a(τ)
= −

d( a0

a(τ) − 1)

a0

a(τ)
= −

dz

1 + z
. (2.2.10)

Integrating this equation yields

ρi(z)/ρ
(0)
i = (1 + z)3 exp [3∫

z

0

wi(z̃)

1 + z̃
dz̃] , (2.2.11)

where ρ
(0)
i is the present value. Then the Friedmann equation

H2
(z) =

8πG

3
∑
i

ρi(z) (2.2.12)

may be rewritten as (using a2

a2
0
= (1 + z)−2)

a2H2

a2
0H

2
0

=
8πG

3H2
0

∑
i

⎧⎪⎪
⎨
⎪⎪⎩

ρ
(0)
i (1 + z) exp [3∫

z

0

wi(z̃)

1 + z̃
dz̃]

⎫⎪⎪
⎬
⎪⎪⎭

=∑
i

Ω
(0)
i (1 + z) exp [3∫

z

0

wi(z̃)

1 + z̃
dz̃]

(2.2.13)

where H0 is the present Hubble rate, and the density parameter Ω
(0)
i ≡ ρ

(0)
i /ρ

(0)
cr represents the

ith component’s present energy density in units of the present critical density ρ
(0)
cr = 3H2

0 /8πG.
Hence zk is obtained by solving the equation

(
k

k0
)

2

= F (zk), (2.2.14)
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2.2. The tensor transfer function

where

F (zk) =∑
i

Ω
(0)
i (1 + zk) exp [3∫

zk

0

wi(z)

1 + z
dz] (2.2.15)

ans k0 = a0H0 = h × 3.24 × 10−18 Hz is today’s horizon wave number.
Before solving this equation properly, let us pause to extract a few familiar approximate

scalings from our formalism. Since the primordial inflationary power spectrum ∆2
h(k, τi) is

roughly scale invariant [∝ (k/k0)
0], the current power spectrum ∆2

h(k, τ0) is roughly ∝ C1, and
hence ∝ (1 + zk)

−2. For modes that re-enter the horizon during radiation domination, when
wr = 1/3 term dominates the sum (2.2.15), we solve (2.2.14) to find (1 + zk) ∝ (k/k0). For
modes that re-enter during matter domination, when wm = 0 term dominates the sum (2.2.15),
we find (1 + zk)∝ (k/k0)

2.
For a more proper analysis, consider a universe with 4 components: matter (wm = 0),

curvature (wK = −1/3), dark energy (wde(z)), and radiation (wr(z) = 1/3 + δwr(z)). Note
that, although one often assumes wr = 1/3 during radiation domination, we have allowed for
corrections δwr(z) due to early universe effects discussed later. Then we can write

F (z) = F̂ (z) + δF (z) (2.2.16)

where
F̂ (z) = Ω(0)

r (1 + z)2
+Ω(0)

m (1 + z) +Ω
(0)
K (2.2.17)

and

δF (z) =Ω
(0)
de (1 + z) exp [3∫

z

0

wde(z̃)

1 + z̃
dz̃]+

+Ω(0)
r (1 + z)2

⎧⎪⎪
⎨
⎪⎪⎩

exp [3∫
z

0

δwr(z̃)

1 + z̃
dz̃] − 1

⎫⎪⎪
⎬
⎪⎪⎭

.

(2.2.18)

Here F̂ represents an universe with spatial curvature, matter and ”standard” (wr = 1/3) ra-
diation; and δF contains the modifications due to dark energy (wde) and equation-of-state
corrections (δwr).

If we neglect these modifications [by setting Ω
(0)
de = 0 = δwr(z) so that δF = 0], Eq. (2.2.14)

Ω(0)
r (1 + ẑk)

2
+Ω(0)

m (1 + ẑk) +

⎡
⎢
⎢
⎢
⎢
⎣

Ω
(0)
K − (

k

k0
)

2⎤
⎥
⎥
⎥
⎥
⎦

= 0 (2.2.19)

has the exact solution

1 + ẑk ≡
1 + zeq

2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 +

¿
Á
Á
ÁÀ1 +

4 [(k/k0)
2 −Ω

(0)
K ]

(1 + zeq)Ω
(0)
m

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.2.20)

where 1 + zeq ≡ Ω
(0)
m /Ω

(0)
r is the redshift of matter-radiation equality. Then, including both

modifications, the solution becomes

(1 + zk) = (1 + ẑk) + δzk, (2.2.21)

where ẑk is defined by (2.2.20). By Taylor expanding F (zk) around ẑk (to 2nd order in δzk)

F (zk) ≅F (ẑk) + F
′
(ẑk)δzk +

F ′′(ẑk)

2
δz2
k = F̂ (ẑk)

⇒
F ′′(ẑk)

2
δz2
k + F

′
(ẑk)δzk + [F (ẑk) − F̂ (ẑk)] = 0

(2.2.22)
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and then solving the equation F (ẑk) = F̂ (ẑk) for δzk

δzk =
F ′(ẑk)

F ′′(ẑk)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−1 +

¿
Á
ÁÀ1 − 2

F ′′(ẑk)δF (ẑk)

[F ′(ẑk)]2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(2.2.23)

where δF (ẑk) = F (ẑk) − F̂ (ẑk). It is extremely accurate for a wide range of Ω
(0)
de , wde(z), and

δwr(z). Indeed the simpler 1st-order expression

δzk = −
δF (ẑk)

F ′(ẑk)
(2.2.24)

is often sufficiently accurate.

2.2.2 The horizon-crossing factor, C2

In the previous subsection, we treated horizon re-entry as a sudden event that occurs when
k = aH. In reality, the ”outside” behaviour (hk = constant) only holds when k ≪ aH, and
the ”inside” behaviour (hk ∝ a−1 cos[kτ + phase]) only holds when k ≫ aH. In between, when
k ∼ aH, neither behaviour holds—i.e., the horizon has a non-zero ”thickness”.

The behaviour of the background equation of state w(τ) = p(τ)/ρ(τ) during the period of
horizon re-entry is imprinted in the factor C2. For example, let us compute C2 for a mode k that
re-enters the Hubble horizon when w(τ) is varying slowly relative to the instantaneous Hubble
rate. Then we can write

a = a0 (
τ

τ0
)

α

with α =
2

1 + 3w
(2.2.25)

so that the equation of motion for h̃k

h̃′′k + 2(
a′

a
) h̃′k + k

2h̃k = 0 (2.2.26)

has the general solution

h̃k(τ) = c1τ
1
2
−αJα− 1

2
(kτ) + c2τ

1
2
−αYα− 1

2
(kτ) (2.2.27)

where we have absorbed the constant τ0 in α. Since we are interested in kτi ≪ 1, Yα− 1
2
→ −∞

and we set c2 = 0. If we evaluate h̃k(τ) at the time τi, we get

h̃k(τi) = c1τ
1
2
−α

i

1

Γ (α + 1/2)
(
kτi
2

)

α− 1
2

=

= c1
1

Γ (α + 1/2)
(
k

2
)

α− 1
2

(2.2.28)

where we have used the asymptotic form of the Bessel function of first kind: Jm(z) ∼ 1
Γ(m+1/2) (

z
2
)
m

.
Hence,

h̃k = h̃k(τi)Γ(α +
1

2
)[
kτ

2
]

1/2−α
Jα−1/2(kτ) (2.2.29)

where we have used h̃′k = 0. (Early in the radiation era, the relevant modes were far outside
the horizon, and the corresponding mode functions were τ -indipendent). We have neglected the
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2.2. The tensor transfer function

spatial curvature, K, because the two conditions K ≪ a2
0H

2
0 (current observations indicate that

the spatial curvature is small) and k > a0H0 (we are only interested in modes that are already
inside the horizon) imply that K produces a negligible correction to the equation of motion for
hk. Once the modes are well inside the horizon (kτ ≫ 1), we can use the asymptotic Bessel
formula

Jα−1/2(kτ)→

√
2

πkτ
cos(kτ − α

π

2
) (2.2.30)

to find
h̃2
k(τ)

h2
k(τi)

=
Γ2(α + 1/2)

π
[
kτ

2
]

−2α

cos2
(kτ − α

π

2
) . (2.2.31)

On the other hand, since a mode k re-enters the horizon (k = aH = a′) at time τk = α/k, we can
rewrite Eq. (2.2.8) for C1 as

C1 = [
τ

τk
]

−2α

cos2
[k(τ − τk) + φk]

= [
kτ

α
]

−2α

cos2
(kτ − α + φk)

(2.2.32)

which comes from

(
1 + z

1 + zk
)

2

= (
ak
a(τ)

)

2
(2.2.25)
= (

τk
τ
)

2α
τk = α

k
= (

kτ

α
)

−2α

(2.2.33)

Comparing Eqs. (2.2.4), (2.2.5), (2.2.31), and (2.2.32), we see that the phase shift φk in Eq.
(2.2.8) is given by

φk = [1 −
π

2
]α, (2.2.34)

and that C2, dividing (2.2.31) by (2.2.32), is given by

C2(k) =
Γ2(α + 1/2)

π
[

2

α
]

2α

(2.2.35)

where α should be evaluated at horizon re-entry (k = aH). In particular, note that

w = 0⇒ C2(k) =
9

16
and φk = 2 − π (2.2.36)

w =
1

3
⇒ C2(k) = 1 and φk = 1 −

π

2
. (2.2.37)

2.2.3 The anisotropic-stress damping factor, C3

In this subsection, we will include the effects of the anistropic-stress term Πk on the right-hand
side of the tensor mode equation (2.1.22). A non-negligible tensor anisotropic stress Πk is most
naturally generated by relativistic particles free-streaming along geodesics that are perturbed by
the presence of the tensor metric perturbations hk. In this situation, Weinberg [64] has shown
that the tensor mode equation (2.1.22) may be rewritten as a fairly simple integrodifferential
equation for hk—see Eq. (18) in [64].

Let us focus on a particularly interesting case: a radiation-dominated universe in which
the free-streaming particles constitute a nearly constant fraction f of the background (critical)
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2. Gravitational waves from inflation

energy density. (Physically, if the free-streaming particles are stable, or long-lived relative to
the instantaneous Hubble time at re-entry, then f will indeed be nearly constant, as required).
In this case, following an approach that is essentially identical to the one outlined in [18] (see
the appendix B for the explicit calculation), we write the solution in the form

hk(τ) = hk(τi)
∞
∑
n=0

anjn(kτ) (2.2.38)

where jn(kτ) are spherical Bessel functions, and find the first five non vanishing coefficients to
be given by

a0 = 1, (2.2.39)

a2 =
10f

(15 + 4f)
, (2.2.40)

a4 =
18f(3f + 5)

(15 + 4f)(50 + 4f)
, (2.2.41)

a6 =

130
7 f(14f2 + 92f + 35)

(15 + 4f)(50 + 4f)(105 + 4f)
, (2.2.42)

a8 =

85
343f(4802f3 + 78266f2 + 161525f − 29400)

(15 + 4f)(50 + 4f)(105 + 4f)(180 + 4f)
. (2.2.43)

The odd coefficients all vanish: a2n+1 = 0. Keeping these first five nonvanishing terms yields a
solution for hk(τ) that is accurate to within 0.1% for all values 0 < f < 1. Next, as observed in
[18], we can use the asymptotic expression

j2n(kτ)→ (−1)n
sin(kτ)

kτ
as kτ →∞ (2.2.44)

along with the f = 0 solution h̃k(τ) = hk(τi)j0(kτ) to infere that the tensor anisotropic stress
Πk induces no additional phase shift in hk, so that our earlier expression (2.2.34) for φk is un-
changed.2 In this way, one also see that Πk damps the tensor power spectrum by the asymptotic
factor

C3 = ∣A∣
2 (2.2.45)

where

A =
∞
∑
n=0

(−1)na2n. (2.2.46)

For example, keeping the first 4 terms in this sum, we find an approximate expression for A:

A =
−10

7 (98f3 − 589f2 + 9380f − 55125)

(15 + 4f)(50 + 4f)(105 + 4f)
, (2.2.47)

which is accurate to within 1% for all values 0 < f < 1. If we keep the first 5 terms in the sum,
we find an even better approximation for A:

A =
15(14406f4 − 55770f3 + 3152975f2 − 48118000f + 34135000)

343(15 + 4f)(50 + 4f)(105 + 4f)(180 + 4f)
(2.2.48)

which is accurate to within 0.1% for all values 0 < f < 1. These calculations improve on the
accuracy of previous calculations [7] [49]

2See [7] for a complementary explanation of this null result, based on causality.
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2.2. The tensor transfer function

Figure 2.1: C3 is the transfer function factor that accounts for the damping of the tensor power spectrum due
to the tensor anisotropic stress. The factor depends on the fraction f of the background (critical) energy density
contained in the free-streaming relativistic particles. The figure plots this dependence for 0 < f < 1

The exact dependance of C3 on f is shown in Fig. 2.1. Note that, as f varies between
0 and 1, the damping factor C3 varies between 1.0 and 0.35. In particular, if we substitute
f = 0.4052, corresponding to 3 standard neutrino species, the damping factor agrees with the
results of the numerical integrations [49, 64]. When the modes probed by the CMB re-enter
the horizon, the temperature is relatively low (corresponding to atomic-physics energies), so we
are fairly confident that neutrinos are the only free-streaming relativistic particles. But when
the modes probed by laser interferometers re-enter the horizon, the temperature is much-higher
(above the electroweak phase transition, T ∼ 107 GeV) so that the physics (and, in particular,
the instantaneous free-streaming fraction f) is much more uncertain. Thus, laser interferometers
offer the possibility of learning about the free-streaming fraction f in the very early universe at
temperatures between the inflationary and electroweak symmetry breaking scales.

Finally, although Weinberg and subsequent authors have concentrated on the tensor anisotropic
stress due to single fermionic species (the neutrino), it is straightforward to generalize the anal-
ysis to include a combination of species which (i) may each decouple at a different time and
temperature, and (ii) may be an arbitrary mixture of bosons and fermions. We find that, as
long as all of these free-streaming species decouple well before the modes of interest re-enter
the horizon, then all of the results presented in this section are completely unchanged. In other
words, in order to determine the behaviour of the tensor mode function, one only needs to
know one number—the total fraction f of the critical density contained in the free-streaming
particles—even if the particles are a mixture of fermionic and bosonic species with different
temperature and decoupling times.

2.2.4 Equation-of-state corrections, δwr

In this subsection, we consider various physical effects that cause the equation of state wr(z)
to deviate from 1/3 during the radiation-dominated epoch, and the corresponding modifications
that these effects induce in the GWB transfer function. The deviations

δwr(z) = wr(z) − 1/3 (2.2.49)

primarly modify the transfer function through the redshift factor (1 + zk) that appears C1 [see
Eqs. (2.2.23) and (2.2.24)]; through the horizon-crossing factor C2(k) [see Eq. (2.2.35)]; and
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through the phase shift φk [see Eq. (2.2.34)]. We consider here six physical effects which can
produce these kinds of modifications of the transfer function.

First, deviations can be caused by mass thresholds in the early universe. Suppose that all
particle species are described by equilibrium distribution functions. Then we can write ρ and p
as

ρ =
1

2π2∑
i

giT
4
i ∫

∞

xi

(u2 − x2
i )

1/2

exp[u − yi] ± 1
u2 du, (2.2.50)

p =
1

6π2∑
i

giT
4
i ∫

∞

xi

(u2 − x2
i )

3/2

exp[u − yi] ± 1
du, (2.2.51)

where the ith species (with mass mi, and gi internal degrees of freedom) is described by temper-
ature Ti and chemical potential µi, and we have defined the dimensionless quantities xi ≡mi/Ti
and yi ≡ µi/Ti [35]. In the denominator, the + and − signs are for fermions and bosons,
respectively. Then the deviation is given by the exact expression

δwr =∑
i

δw(i)
r (2.2.52)

where

δw(i)
r =

p(i)

ρ(i)
−

1

3
=

=
1

3

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫
∞
xi

(u2 − x2
i )

3/2

exp[u − yi] ± 1
du

∫
∞
xi

(u2 − x2
i )

1/2

exp[u − yi] ± 1
u2 du

− 1

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

(integrating by parts) = −
1

3

x2
i ∫

∞
xi

(u2 − x2
i )

1/2

exp[u − yi] ± 1
du

∫
∞
xi

(u2 − x2
i )

1/2

exp[u − yi] ± 1
u2 du

= −
5

π4

gi
g∗ρ

T 4
i

T 4
f(xi, yi)

(2.2.53)

represents the contribution from the ith species,

g∗ρ ≡∑
i

gi
T 4
i

T 4

15

π4 ∫

∞

xi

(u2 − x2
i )

1/2u2

exp[u − yi] ± 1
du (2.2.54)

represents the effective number of relativistic degrees of freedom, T is conventionally chosen to
be the photon temperature, and we have defined the function

f(x, y) ≡ x2
∫

∞

x

(u2 − x2)1/2

exp[u − y] ± 1
du. (2.2.55)

For fixed yi, note that f(xi, yi) vanishes as xi goes to 0 or ∞; and inbetween it has fairly broad
peak, with maximum located at xpeaki , and a peak value fpeaki = f(xpeaki , yi). In particular,

when yi = 0, then the ordered pair (xpeaki , fpeaki ) is (2.303,1.196) for bosons and (2.454,1.125)

for fermions. This makes sense: we expect δw
(i)
r to vanish when xi ≪ 1 (since the species

36



2.2. The tensor transfer function

is relativistic) and when xi ≫ 1 (since the species is nonrelativistic, and makes a negligible
contribution to the energy density). In between, when xi ∼ xi,peak, the ith species is cold enough
to exhibit nonrelativistic behaviour, yet hot enough to contribute non-negligibly to the energy
density.

Using the above equations, we can compute δwr(z) once we know Ti(z) and µi(z). But let
us estimate the size of the effect. As a species becomes nonrelativistic, it produces maximum
equation-of-state deviation

δw(i)
r = −

5fpeaki

π4

gi
g∗ρ

T 4
i

T 4
(2.2.56)

in the background equation of state. Furthermore, if NS different species (with the same tem-
perature and similar masses) become nonrelativistic at the same time, then (roughly speaking)

the effect is multiplied by NS (since their δw
(i)
r ’s add). Ultimately, the fractional correction

δwr/wr is model dependent, but it can conceivably be as large as a few percent.
Second, deviations can be produced by a trace anomaly in the early universe. During the

radiation-dominated epoch, the universe is dominated by highly relativistic particles whose
masses may be neglected. Thus, each species is governed by a classical action that is conformally
invariant at the classical level, leading to the usual conclusion that the stress-energy tensor is
traceless and wr = 1/3. But conformal invariance is broken at the quantum level by interactions
among the particles, so that Tµµ ≠ 0. For example, for a quark-gluon plasma governed by SU(Nc)
gauge theory, with Nf flavours, and gauge-coupling g, the equation-of-state correction is given
[up to O(g5) corrections] by [17,31]

δwr =
5

18π2

g4

(4π)2

(Nc +
5
4Nf)(

2
3Nf −

11
3 Nc)

2 + 7
2[NcNf /(N2

c − 1)]
(2.2.57)

Note that this effects can be non-negligible: for large gauge groups (i.e large Nc) in the early
universe (prior to the electroweak phase transition), the equation of state wr may easily be
reduced from 1/3 by several percent, or more.

Third, deviations can be produced if the early universe behaves like a slightly imperfect
fluid. The stress-energy tensor for an imperfect fluid contains (in addition to the usual perfect-
fluid terms) three extra terms whose coefficients (χ, η and ζ) represent heat conduction, shear
viscosity, and bulk viscosity (see [63], Chapter 2.11). Of these dissipative effects, only the bulk
viscosity term

∆Tµν = −ζ(gµν + uµuν)uλ;λ (2.2.58)

can contribute to the background evolution in an FRW universe (see [63], Chapters 15.10-15.11).
This term modifies the continuity equation

ρ̇ = −3H(ρ + p) + 9ζH2
= −3Hρ [1 +w −

8πGζ

H
] (2.2.59)

so that, as far as gravitational waves are concerned, the effective equation is corrected by

δwr = −
8πGζ

H
. (2.2.60)

Whereas the three effects discussed thus far produce small corrections to the equation of
state, it is worth mentioning three other effects that can produce much larger deviations. The
first example is a massive particle species that decouples from the thermal plasma before its
abundance becomes negligible. Since its energy density falls as a−3 (more slowly than the ra-
diation density, which falls as a−4), it can come to dominate the energy density of the universe
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before it decays (if uts lifetime τdecay is sufficiently long). In this case, w drops to zero when
the particle becomes dominant, and rises back to w = 1/3 over a time scale given by the decay
lifetime τdecay. Second, extra-dimensional physics typically modifies the effective 4-dimensional
Friedmann equation. Such modifications which, from the standpoint of the GWB, can in some
case look like corrections to the effective radiation equation of state, are primarly constrained
by the requirement that the Friedmann equation becomes sufficiently similar to the ordinary
4-dimensional Friedmann equation (with ordinary matter) by the time of Big Bang Nucleosyn-
thesis. Third, due to the weak coupling of the inflaton, the temperature at the start of the
radiation-dominted epoch (the reheat temperature) can be much lower than the energy scale at
the end of inflation. In this case, laser-interferometer scales might actually re-enter the horizon
during the reheating epoch (before the start of radiation domination), when the equation of
state was probably quite different from w = 1/3. The actual equation of state depends on the
details of the reheating process, but a commonly discussed vakue is w = 0, or some value in the
range 0 < w < 1/3 [46]. If w = 0 during reheating, the corresponding modification of the GWB
might be similar to the modification due to the long-lived massive relic discussed above.

Note that the first of these six processes can be expressed as a modification of g∗, and
the effect on the transfer function can be computed using the methods discussed in Ref. [54].
However, the other five cannot.

2.2.5 Results

Figure 2.2 illustrates some of the effects discussed in the previous subsections. In this figure,
the solid black curve represents the present-day energy spectrum, Ωgw(f, τ0)

3, generated by a
particular inflationary model—namely, a quandratic potential V (φ) = (1/2)m2φ2. The red dot-
ted curve illustrates the damping due to tensor anisotropic stress from free-streaming neutrinos.
Boyle and Steinhardt have assumed that the free-streaming fraction is f = 0.4052, which is
the f value for three standard neutrino species which decouple around the time of Big Bang
Nucleosynthesis. The green dot-dashed curve represents the damping due to tensor anisotropic
stress from various particle species (X particles) which begin free-streaming before the scales
detected by NASA’s ”Big Bang Observer” (BBO) and the Japanese ”Deci-hertz Interferome-
ter Gravitational Wave Observatory” (DECIGO) re-enter the horizon and then decay after the
scales re-enter, but prior to the electroweak phase transition. As an example, Boyle and Stein-
hardt have assumed that the free-streaming fraction f = 0.5. Finally the blue dashed curve
represents damping due to a trace anomaly that is present above the electroweak scale. For
illustration, they have assumed that this anomaly, through Eq. (2.2.57), reduces the equation of
state wr = 1/3 by δwr = −0.02. This reduction may be achieved by various combinations of the
number of colours Nc, the number of flavours Nf , and the gauge coupling g; but the point is
that Boyle and Steinhardt have not chosen an unreasonable large value for δwr, given the large
gauge groups that are often theorized to be present at high energies.

The key point conveyed by Fig. 2.2 is that there a variety of plausible postinflationary
effects that can produce rather large modifications of the gravitational-wave spectrum on laser-
interferometer scales, without modifying the spectrum on CMB scales. This is tantalizing, since
the modifications on laser-interferometer scales reflect the primordial dark age between the end
of inflation and the electroweak phase transition, at energies beyond the reach of terrestrial
accelerators.

3The energy spectrum is related to the tensor power spectrum via: Ωgw(k, τ) = 1
12

k2∆2
h(k, τ)

a2(τ)H2(τ)
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2.2. The tensor transfer function

Figure 2.2: The black solid curve represents the present-day gravitational wave-energy spectrum, Ωgw(f, τ0),
for the inflationary model V (φ) = (1/2)m2φ2. The red dotted curve shows the damping due to (three ordinary
massless species of) free-streaming neutrinos. The green dotted dashed curve shows the damoing effect which
arises if free-streaming particles make up 50% of the background energy density at the time τBBO when the
modes probed by BBO/DECIGO re-enter the horizon. As shown in the figure, the particles begin free-streaming
sometime before before τBBO, and decay sometime after τBBO, but prior to the electroweak symmetry breaking.
FInally, the blue dashed curve shows the effect of a conformal anomaly in the early universe that slightly reduces
the equation of state from w = 0.33 to w = 0.31 above the electroweak phase transition. The spectrum will also be
modified on comoving scales that re-enter the horizon during the reheating epoch after inflation; but the range
of scales affected by reheating is unknown. Finally, note that the correlated BBO interferometer proposal claims
a sensitivity that extends beyond the botton of the figure (down to roughly Ωgw ∼ 10−17) in the frequency range
from 10−1 Hz to 100 Hz.
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Chapter 3

Beyond Bunch-Davies vacuum

In the standard inflationary scenario the modes of the inflaton field can be carried back in time
to eras when they start out with a linear size much smaller than the Planck scale. For small
scales the expansion of the universe can be ignored and an unique vacuum can be chosen for the
inflaton quantum fluctuations. This is the Bunch-Davies vacuum. But the construction ignores
the Planck scale and the natural expectation physics beyond is very different from physics at
low energies, and not possible to describe using a quantum field theory.

Our ignorance of the high energy physics is encoded in a cut-off imposed on the theory at
the Planck scale, i.e. in the choice of the initial conditions for the field modes when that start
out at planckian size. Contrary to the standard scenario, since the Planck scale is not infinitely
smaller than the inflationary Hubble scale, the initial conditions are imposed in a situation where
the time dependence of the background can’t be ignored. There is no unique natural vacuum:
various ways of choosing the vacuum (minimal uncertainity, adiabatic to all orders, etc.) now
give different results. A conservative approach is then to investigate the span of possibilities and
its effects.

In [15] (and more recently in [22]) initial conditions (for a particular mode) were imposed
when the wavelength was comparable to some fundamental length scale in the theory.

3.1 Inflation and trans-Planckian physics

Let us consider a real massless scalar field φ. It is described by the action S

S =
1

2
∫ d4 x

√
−g ∂µφ∂µφ (3.1.1)

on an inflating (de Sitter) background with metric

ds2
= dt2 − a(t)2 dx2, (3.1.2)

where the scale factor is given by a(t) = eHt. The equation for a scalar field φ(t,x) 1 in this
background is given by

φ̈ + 3Hφ̇ −∇2φ = 0. (3.1.3)

In terms of the conformal time τ = − 1
aH , and the rescaled field f = aφ, we find

y′′k + (k2
−
a′′

a
) yk = 0 (3.1.4)

1Considering FRW spacetime, consistency with its symmetries requires that the background value of the
inflaton only depends on time, φ = φ(t)
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3. Beyond Bunch-Davies vacuum

in Fourier space (this is the Mukhanov-Sasaki equation (1.5.10) derived in Chapter 1, where we’ve
chosen a different variable f). Note that we have k = ap, where p is the physical momentum
which is redshifting away with the expansion (k is fixed). We will also need the conjugate
momentum to fk which is given by

πk = y
′
k −

a′

a
yk. (3.1.5)

When quantizing the system it turns out that the Heisenberg picture is the most convenient one
to use. [47] In terms of time dependent oscillators we can write

yk(τ) =
1

√
2k

(ak(τ) + a
†
−k(τ)) (3.1.6)

πk(τ) = −i

√
k

2
(ak(τ) − a

†
−k(τ)) . (3.1.7)

The oscillators can be conveniently expressed in terms of their values at some fixed time τ0,

ak(τ) = uk(τ)ak(τ0) + vk(τ)a
†
−k (3.1.8)

a†
−k(τ) = u

∗
k(τ)a−k(τ0)

†
+ v∗k(τ)ak, (3.1.9)

which is nothing but the Bogoliubov transformations which describe the mixing of the creation
and annihilation operators as time goes by. Plugging this back into the expressions for yk(τ)
(see Eq. (1.5.17)) and πk(τ) we find

yk(τ) = fk(τ)ak(τ0) + f
∗
k (τ)a−k(τ0)

† (3.1.10)

πk(τ) = −i (gk(τ)ak(τ0) − g
∗
k(τ)a−k(τ0)

†
) (3.1.11)

where

fk(τ) =
1

√
2k

(uk(τ) + v
∗
k(τ)) (3.1.12)

gk(τ) =

√
k

2
(uk(τ) − v

∗
k(τ)) . (3.1.13)

fk(τ) is a solution of the mode equation (3.1.4). We are now in the position to start discussing
the choice of the vacuum. A reasonable candidate for a vacuum is

ak(τ0) ∣0, τ0⟩ = 0. (3.1.14)

In general this corresponds to a class of different vacua depending on the parameter τ0. At this
initial time it follows from Eq. (3.1.9) that vk(τ0) = 0, and the relation between the field and its
conjugate momentum is particularly simple:

πk(τ0) = ikyk(τ0). (3.1.15)

The choice of the vacuum has a simple physical interpretation. Following [47] it is easy to show
that it corresponds to a state which minimizes the uncertainty at τ = τ0. Using ⟨yk⟩ = ⟨πk⟩ = 0
it follows from the definiton ∆Φ ≡ Φ − ⟨Φ⟩ that

⟨∆yk∆yk′⟩ = ⟨ykyk′⟩ =

= ⟨0∣ [fk(τ)ak(τ0) + f
∗
k (τ)a−k(τ0)

†
] [fk′(τ)ak′(τ0) + f

∗
k′(τ)a−k′(τ0)

†
] ∣0⟩ =

(3.1.14)
= fk(τ)f

∗
k′(τ) ⟨0∣ak(τ0)a−k′(τ0)

†
∣0⟩ =

= fk(τ)f
∗
k′(τ) ⟨0∣ [ak(τ0), a−k′(τ0)

†
] ∣0⟩ =

= ∣fk∣
2 δ(3)(k − k′)

(3.1.16)
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3.1. Inflation and trans-Planckian physics

thus,

⟨∆yk∆yk′⟩ = ∣fk∣
2 δ(3)(k − k′) (3.1.17)

⟨∆πk∆πk′⟩ = ∣gk∣
2 δ(3)(k − k′) (3.1.18)

where

∣fk∣
2
∣gk∣

2
=

1

4
(1 + ∣uv − u∗v∗∣

2
) (3.1.19)

and we have further adopted the notation ⟨Φ(k, τ)Φ†(k′, τ)⟩ ≡ Φ2(k)δ(3)(k − k′), where the
quantity Φ2(k), the power spectrum of the quantity Φ, depends only on k if the state is invariant
under spatial translations and rotations. The latter expression is indeed minimized at τ = τ0

where vk(τ0) = 0.
We will now show that the vacuum defined in this way can be referred to as the zeroth order

adiabatic vacuum.

3.1.1 The role of the adiabatic vacuum

As discussed in Chapter 1, in a time-dependent background the notion of a vacuum is a tricky
issue. One possibility is to use the adiabatic vacuum, where the solution of the wave equation
is, formally, assumed to be of WKB form. Often the exact solution is expanded to some finite
order in the adiabatic parameter that determines the slowness of the process. The idea is to ap-
proximate the field equation, at some moment in time, with their time indipendent counterparts
(possibly with some corrections to some finite order) and define positive and negative energy
using solutions to these approximative equations.

The adiabatic vacuum prescription relies on the WKB approximation for the solution of the
Mukhanov-Sasaki equation for the Fourier modes

v′′k + ω
2
k(τ)vk = 0, ωk(τ) ≡

√
k2 +m2

eff(τ) (3.1.20)

in the case of slowly varying ω2
k(τ). Substituting the Ansatz

vk(τ) =
1

√
Wk(τ)

exp [i∫
τ

τ0
Wk(τ)dτ] (3.1.21)

into (3.1.20) we find that the function Wk(τ) must obey the nonlinear equation

W 2
k = ω2

k −
1

2

⎡
⎢
⎢
⎢
⎢
⎣

W ′′
k

Wk
−

3

2
(
W ′′
k

Wk
)

2⎤
⎥
⎥
⎥
⎥
⎦

. (3.1.22)

Let us consider the case when ωk is a slowly varying function of time. More precisely, we assume
that ωk and all its derivatives change substantially, i.e. ∆ωk

ωk
∼ O(1), only during time intervals

T ≫ 1
ωk

. In this case, Eq. (3.1.22) can be used as a recurrence relation which allows us to find
a particular solution for Wk in the form of asymptotic series in the powers of small parameter
(ωkT )−1. For example, to zeroth order in (ωkT )−1 we have

(0)Wk = ωk, (3.1.23)

while to second order

(2)Wk = ωk
⎛

⎝
1 −

1

4

ω′′k
ω3
k

+
3

8

ω′k
2

ω4
k

⎞

⎠
. (3.1.24)
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3. Beyond Bunch-Davies vacuum

In principle one could find (N)Wk to an arbitrary order N . However the series obtained is
asymptotic, and so the accuracy of the approximation reaches at a particular N and subsequently
becomes worse as N grows. Substituting (N)Wk in (3.1.21) we obtain an approximate WKB

solution v
(N)
k (τ) of the mode equation (3.1.20) to adiabatic order N .Then the mode function

vk(τ) determining the adiabatic vacuum of order N at a particular time τ0 are definied by
the requirement that the exact solution vk(τ) of equation (3.1.20) satisfies the following initial
conditions,

vk(τ0) = v
(N)
k (τ0), v′k(τ0) = v

′
k
(N)

(τ0). (3.1.25)

What one should remember is that the adiabatic vacuum (to some finite order in the adiabatic
parameter) is not unique but depends on what moment in time one uses for its definition. In de
Sitter space, however, it happens that the finite order adiabatic vacuum obtained in the infinite
past actually corresponds to an exact solution of the exact field equations, and therefore in some
sense is distinguished. After all, when the modes are small enough they do not care about the
expansion of the universe.

Which vacuum should we choose? There is no unique choice: one viable alternative is the
minimum uncertainty vacuum and we will argue that it agrees with the adiabatic vacuum only
to zeroth order. In fact, it is only at zeroth order, where the expansion of the universe can
be ignored , that ambiguities in the definition of the vacuum are removed. It is important to
observe that these distinctions between various vacua only become important since we insist on
imposing the choice of vacua at a finite time corresponding to some specific finite wavelength
because we don’t have any knowlwdge of physics beyond the Planck scale.

In the zeroth order adiabatc approximation, the solution of a mode equation of the form

yk + (k2
−C(τ)) yk = 0, (3.1.26)

is given by

yk =
1

√
2ω
e±iωτ , (3.1.27)

where
ω =

√
k2 −C(τ). (3.1.28)

For the approximation to make sense we must have an ω that varies slowly enough (i.e., adia-
batically). A necessary condition for this to be the case is that

d

dτ
lnC ≪ ω, (3.1.29)

which for us [where C(τ) = 2/τ2] typically leads to

kτ ≫ 1. (3.1.30)

With the help of this the zeroth order solution simply degenerates into

yk =
1

√
2k
e±ikτ , (3.1.31)

and one finds a conjugate momentum given by

πk = ikyk. (3.1.32)

This is precisely what our choice in the previous subsection led to, and we can therefore refer to
the vacuum that we will analyze as the zeroth order adiabatic vacuum. A finite order adiabatic
mode is in general not an exact solution, but the vacuum that it corresponds to is nevertheless
an honest proposal for a vacuum. One should view Eq. (3.1.32) as initial conditions with a
subsequent time evolution given by the exact solution.
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3.1. Inflation and trans-Planckian physics

3.1.2 Gaussianity of zeroth order adiabatic vacuum

We defined our vacuum at some time τ0 as

∀k ∶ ak(τ0)∣0, τ0⟩ = 0. (3.1.33)

We want to show that this state corresponds to a Gaussian state and time evolution preserves
its Gaussianity. Indeed, it follows from (3.1.11) that in the Heisenberg representation, the
time-indipendent state ∣0, τ0⟩H is an eigenstate of the operator yk + iγ

−1
k (τ)πk, namely

{yk(τ) + iγ
−1
k (τ)πk(τ)} ∣0, τ0⟩H = 0, (3.1.34)

where the operators yk(τ), πk(τ) as well as the function γk depend on time,

γk = k
u∗k − vk
u∗k + vk

=
1

2∣fk∣2
− i

Fk
∣fk∣2

(3.1.35)

F (k) = Iukvk = If∗k gk (3.1.36)

On the other hand, in the Schrödinger representation the time-evolved state ∣0, τ⟩S ≡ S∣0, τ0⟩,
where S is the S-matrix, satisfies the equation

Sak(τ0)S
−1

∣0, τ⟩S = 0. (3.1.37)

or, equivalently,

{yk(τ0) + iγ
−1
k (τ)πk(τ0)} ∣0, τ⟩S = 0. (3.1.38)

Note the similar structure of Eq. (3.1.34) and (3.1.38). In the coordinate Schrödinger represen-
tation, πk(τ0) = −i

∂
∂y−k(τ0) . Then

{yk(τ0) + γ
−1
k (τ)

∂

∂y−k(τ0)
}Ψ = 0 (3.1.39)

γ−1
k (τ) ∂Ψ

∂y−k(τ0)
Ψ

= −yk(τ0) (3.1.40)

Solving the differential equation, we get

Ψ = exp
⎛

⎝
−
yk(τ0)

2 +C

2γ−1
k (τ)

⎞

⎠
(3.1.41)

The costant C can be set to zero. Hence the state ∣0, τ0⟩S has a Gaussian wave functional in
this representation, consisting of the product of

Ψ [yk(τ0), y−k(τ0)] = Nk exp(−
yk(τ0)y−k(τ0)

2∣fk∣2
{1 − i2F (k)}) =

= Nk exp
⎛
⎜
⎝
−
∣yk(τ0)∣

2

2∣fk∣2
{1 − i2F (k)}

⎞
⎟
⎠

(3.1.42)

for each pair k, −k where Nk is the normalization coefficient.
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3.1.3 Imposing the initial conditions

Let us now consider the standard treatement of fluctuations in inflation. In this case we
have (1.6.36)

fk =
1

√
2k
e−ikτ (1 −

i

kτ
) (3.1.43)

and

gk =

√
k

2
e−ikτ . (3.1.44)

The logic behind the choice is that the mode at early times (when τ → −∞) is of positive fre-
quency and corresponds to what one would naturally think of as the vacuum. It is nothing but
the state obeying (3.1.14) for τ0 → −∞ and is therefore the zeroth order adiabatic vacuum of
the infinite past. Note that the zeroth order adiabatic vacuum in this case is actually an exact
solution (for τ → −∞). For later times (when τ → 0 and the second term of fk becomes impor-
tant) we see how the initial vacuum leads to particle creation thereby providing the fluctuation
spectrum.

But what if the initial conditions are chosen differently? As we’ve seen in Chapter 1,
Eq. (1.6.35), in general we could have

fk = Ak
e−ikτ
√

2k
(1 −

i

kτ
) +Bk

eikτ
√

2k
(1 +

i

kτ
) (3.1.45)

gk = Ak

√
k

2
e−ikτ −Bk

√
k

2
eikτ , (3.1.46)

with a nonzero Bk. If we then work backwards, we can calculate what this corresponds to in
terms of uk and vk.

uk =
1

2

⎛
⎜
⎝

√
2kfk(τ) +

√
2

k
gk(τ)

⎞
⎟
⎠

(3.1.47)

v∗k =
1

2

⎛
⎜
⎝

√
2kfk(τ) −

√
2

k
gk(τ)

⎞
⎟
⎠

(3.1.48)

Substituting (3.1.46),

uk =

√
2k

2

⎛

⎝
Ak

e−ikτ
√

2k
(1 −

i

kτ
) +Bk

eikτ
√

2k
(1 +

i

kτ
)
⎞

⎠
+

1

2

√
2

k

⎛
⎜
⎝
Ak

√
k

2
e−ikτ −Bk

√
k

2
eikτ

⎞
⎟
⎠
=

=
1

2

⎛

⎝
Ake

−ikτ
(1 −

i

kτ
) +Bke

ikτ
(1 +

i

kτ
) +Ake

−ikτ
−Bke

ikτ⎞

⎠

(3.1.49)

and similarly for v∗k . The result is

uk =
1

2

⎛

⎝
Ake

−ikτ
(2 −

i

kτ
) +Bke

ikτ i

kτ

⎞

⎠
(3.1.50)

v∗k =
1

2

⎛

⎝
Bke

ikτ
(2 +

i

kτ
) −Ake

−ikτ i

kτ

⎞

⎠
. (3.1.51)
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At this point we should also remember that

∣uk∣
2
− ∣vk∣

2
= 1 (3.1.52)

from which we find
∣Ak∣

2
− ∣Bk∣

2
= 1. (3.1.53)

As we have seen, the choice of the vacuum that we make requires that we put v∗k(τ0) = 0 at some
initial moment τ0. This implies that

Bk =
ie−2ikτ0

2kτ0 + i
Ak (3.1.54)

from which we conclude that

∣Ak∣
2
= 1 + ∣Bk∣

2
=

= 1 +
ie−2ikτ0

2kτ0 + i

−ie−2ikτ0

2kτ0 − i
∣Ak∣

2
=

= 1 +
1

4k2τ2
0 + 1

∣Ak∣
2

⇒ ∣Ak∣
2 ⎛

⎝
1 −

1

4k2τ2
0 + 1

⎞

⎠
= 1

∣Ak∣
2
=

1

1 − 1
4k2τ2

0+1

(3.1.55)

Hence,

∣Ak∣
2
=

1

1 − ∣αk∣
2
, (3.1.56)

where

αk =
i

2kτ0 + i
. (3.1.57)

We next move to the calculation of the dimensionless power spectrum, i.e., the variance of
inflaton fluctuations due to quantum zero-point fluctuations, given by

∆2
φ(k, τ) = a

−2∆2
f(k, τ) =

k3

2π2a2
∣fk(τ)∣

2
=

=
k3

2π2a2

RRRRRRRRRRR

Ak
e−ikτ
√

2k
(1 −

i

kτ
) +Bk

eikτ
√

2k
(1 +

i

kτ
)

RRRRRRRRRRR

2

=

=
k2

4π2a2

⎡
⎢
⎢
⎢
⎢
⎣

∣Ak∣
2
(1 +

1

k2τ2
) + ∣Bk∣

2
(1 +

1

k2τ2
) +AkB

∗
ke

−2ikτ
(1 −

i

kτ
)

2

+

+BkA
∗
ke

2ikτ
(1 +

i

kτ
)

2⎤
⎥
⎥
⎥
⎥
⎦

(3.1.58)

For τ → 0, e±2ikτ → 1 and we can neglect the terms ∼ 1
k2τ2 coming from the square of the

parenthesis

(1 −
i

kτ
)

2

= 1 −
2i

kτ
+ . . . (3.1.59)

(1 +
i

kτ
)

2

= 1 +
2i

kτ
+ . . . (3.1.60)
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Then,

∆2
φ(k, τ) ∼

1

4π2τ2a2
(∣Ak∣

2
+ ∣Bk∣

2
−A∗

kBk −AkB
∗
k) =

= (
H

2π
)

2
⎛

⎝

1

1 − ∣αk∣
2
+

1

4k2τ2
0 + 1

1

1 − ∣αk∣
2
−
ie−2ikτ0

2hτ0 + i

1

1 − ∣αk∣
2
+
ie2ikτ0

2hτ0 − i

1

1 − ∣αk∣
2

⎞

⎠
=

= (
H

2π
)

2

(1 + ∣αk∣
2
− αke

−2ikτ0 − α∗ke
2ikτ0)

1

1 − ∣αk∣
2
,

(3.1.61)

where we have used τ = −1/aH in the prefactor and considered the leading term at late times
when τ → 0. If we impose the initial condition at τ0 → −∞ we get α = 0 and recover the standard

result ∆2
φ(k, τ) = ( H2π)

2
.

Now, for a given k we choose a finite τ0 such that the physical momentum corresponding to
k is given by some fixed scale Λ. Λ is the energy scale of new physics, e.g., the Planck scale or
the string scale. From

k = ap = −
p

τH
(3.1.62)

with p = Λ we find

τ0 = −
Λ

Hk
. (3.1.63)

it is important to note that τ0 depends on k. Using (3.1.57)

αk =
i

i − 2 Λ
H

(3.1.64)

and then
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=
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(3.1.65)

If we assume Λ/H ≫ 1 we get

∆2
φ(k, τ) = (

H

2π
)

2
⎛

⎝
1 −

H

Λ
sin(

2Λ

H
)
⎞

⎠
. (3.1.66)

In conclusion, the size of the correction (∼ H/Λ = ∣1/(kτ0)∣) is precisely what is to be expected
from a higher order correction to the zeroth order adiabatic vacuum. If the vacuum is imposed
in the infinite past, the vacuum is exact, but if it is imposed at a later time it is natural to
expect nonvanishing corrections.
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From Chapter 2 we know that the tensor power spectrum is just a rescaling of the scalar
field power spectrum:

∆2
h(k, τ) =

8

M2
Pl

∆2
φ(k, τ) =

= 2(
H

πMPl
)

2
⎛

⎝
1 −

H

Λ
sin(

2Λ

H
)
⎞

⎠
.

(3.1.67)

So far no real consensus has been reached in the literature, and there are at least two
competing estimates of the size of the corrections to the standard scale invariant spectrum. In,
e.g., Refs. [34] the corrections are argued to be of size (H/Λ)2, while in, e.g., Refs. [21, 23], one
is dealing with substantially larger corrections of our order of magnitude (as we have seen this
can be expected on quite general grounds). In [32] it was argued, using a low energy effective
field theory, that local physics imply that the effects cannot be larger than (H/Λ)2. This
conclusion has been criticized in [11] , where it was pointed out that trans-Planckian physics
can be effectively provide the low energy theory with an excited vacuum, therby circumventing
the arguments of [32].

3.2 On the consistency of de Sitter α-vacua

The vacua selected in [15] and used in the section above correspond to an one-parameter sub-
family of the two-parameter family of de Sitter invariant vacua, also called α-vacua , introduced
in [3, 12, 25, 39] and more recently discussed in [9, 56] in the context of de Sitter holography.
Formally, the α-vacua are realized as squeezed states over the Bunch-Davies vacuum. This is
only a formal correspondence because ∣α⟩ is a non-normalizable excitation in the Fock space con-
structed over ∣0⟩, i.e., each of the α-vacua is the de Sitter invariant ground state of a different
Hilbert space. α is a superselection parameter. The simplified approach discussed in [15] and
above essentialy amounts to an investigation of the physics of α-vacua and the main purpose
of [14] is to translate some of the observations made in [15] into a language appropriate for
holographic studies.

Understanding whether interacting field theory in any of the ∣α ≠ 0⟩-vacua physics makes
sense as a consistent theory of physics is still a matter of debate. [16].

In [4,24] non renormalization problems were pointed out: the loop amplitudes seem to be ill
defined, but none of these problems seems to be relevant to the issue of transplanckian physics in
cosmology. In [14] it’s suggested that a planckian input/cutoff would give well defined answers.

Another issue that has been brought up in the same articles is the long distance behaviour
of the theory, e.g., casuality problems. Vacuum-dependent Green functions are expected to be
non-zero outside the light cone, as for the Bunch-Davies vacuum. In [14] it’s stressed that an
unorthodox behaviour of these Green functions doesn’t imply that the theory is inconsistent.
The Green functions which are important for causality are the commutator and the retarded
Green function, which are indipendent of the choice of the vacuum and always vanish outside
the light cone.

In [32] it is argued that α can’t vary with a changing H because local physics can’t know
how H changes ad consequently α must remain constant. But even the Bunch-Davies modes
have a dependence on H, which is generated through the expansion of the universe while the
mode is in the trans-Planckian regime. A further dependence on H through α isn’t qualitatively
much different [14].

Even if the α-vacua are not thermal, in [32] they presented an argument based on holography
and complementarity to show that all perturbations will be inevitably thermalized. But taking
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3. Beyond Bunch-Davies vacuum

a point of view based on Robertson-Walker coordinates, Danielsson claimed that we can follow
the modes through the de Sitter horizon and this is the appropriate way to discuss fluctuations
generated from inflation.
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Chapter 4

A new approach

In this chapter, we will follow the proposal of Dvali and Gomez [20] and Hofmann and Rug [30]
that black holes are graviton bound states and a Fock vacuum does not support a bound state.
So we will need to construct a new state basis for a Black Hole (BH). We will use the results
of Appendix C to express operators and the Fock basis in terms of fields. The advantage will
be that we can use fields on any kind of vacuum state. Since we can’t hope to know the real
BH state at this point we will borrow the idea of non-zero overlaps with it from QCD. In this
way we will be able to model a state from our fields using a new type of current J = φN . With
the help of this tool we will be able to calculate expectation value of observables using Wick’s
theorem. We will just focus on one of the two observable considered in [30] since we need it
as an example to introduce the new language: the particle density operator n(k) and its d3 k
integral to produce a constituent number NC to count the effective number of particles inside
the BH.

We are not going to deal with gravitons, which would have to be rank 2 tensors. This would
be technically much more demanding, but should be possible. For the present work we will
indeed work with scalar fields. Harmonic (or de Donder) gauge, Γαβγg

βγ = 0, which one uses
frequently when calculating Einstein field equations’s solutions in the first order approximation,
gµν = ηµν+hµν leads, up to constant factors, to the same field equations and propagator structure
as the one for scalar fields: ◻hµµ = 0 and ⟨0∣T [hµµ(x)h

α
α(y)] ∣0⟩ ∼

1
◻δ

(4)(x−y). So we can consider
our scalar field to be the trace of the graviton. Clearly, this means that we are not taking
into account vector and tensor degrees of freedom. Nonetheless, we gain a technically far less
challenging analysis of large bound states in return.

4.1 Auxiliary current description: introduction

In standard QFT we deal with Fock states. However, we are set out to consider BH as bound
state. This kind of state cannot be created just by free particles. Therefore, we will now work
with a quantum state ∣ψ⟩ that is a bound state. Sadly, we do not know the full quantum theory
of gravity that would allow us to write down a state that describes the real world BH. What we
can do, though, is construct a state from a theory we know ad let it have a non-vanishing overlap
with the real world BH state ∣B⟩. Overlap constants are a common tools in QCD [50]. Here we
shall also introduce a type of current that will allow us to create a state from the vacuum, as
well as choose the overlap to be a, so far unknown, (dimensionful) constant which will encode
the structural information for gravity, that allows us to have a bound state. Thereby, we will
have a way of writing down the BH state in terms of the known scalar field.

We start with the BH state and expand it in terms of a basis {∣L⟩ ∶= ∣K,Q⟩} for the BH’s total
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4. A new approach

momentum K and a set of quantum numbers Q ∶= {Q} that identifies the bound state’s various
internal symmetries — e.g., total spin, total angular momentum, mass, etc. Additionally, let
us assume that the BH is in a specific state with respect to the internal symmetry operators,
Q = QB, but it is not necessarily in a momentum eigenstate. So the expansion reads

∣B⟩ = ∫ d4K B̃(LB)∣LB⟩ =

= ∫ d3K B(LB)∣LB⟩,
(4.1.1)

where the second step consisted of taking the BH state to be on-shell, i.e. such that K2 =M2,
with M the BH’s mass. In the above expression, then, B̃(K,QB) = δ(K0 −E)B(K,QB) (useful
also in the next chapter). With these results, though, we have no way of making uselful QFT
calculations with the bound state. To relate the state to something we can work with, we shall
introduce the auxiliary current description for the BH state.

Let J be a source that creates a state in the non-perturbative vacuum ∣Ω⟩ that has the exact
same quantum numbers as the BH state—from hereon we shall call it Auxiliary Current, or AC.
We can fix this statement with the following expression:

⟨L∣J (0)∣Ω⟩ ≡ ΓBδ(Q,QB). (4.1.2)

The independence of the RHS from the momentum K means that AC is compatible with any
total momentum for the BH and, by defining ΓB over the basis, this statement is more general
and applies to the BH state which can be seen inserting a 1:

⟨B∣J (x)∣Ω⟩ =∑
Q
∫ d4K B̃∗(L)⟨L∣J (x)∣Ω⟩ =

=∑
Q
∫ d4K B̃∗(L)e−iKx⟨L∣J (0)∣Ω⟩ =

= ΓB∑
Q
∫ d4K e−iKxB̃∗(LB).

(4.1.3)

What we can do with (4.1.2) now is to express the basis kets {∣L⟩} in terms of the AC. So we
write down the state that is created from the current at spacetime point x and insert a 1 again:

J (x)∣Ω⟩ =∑
Q
∫ d4K ∣L⟩⟨L∣J (x)∣Ω⟩ =

=∑
Q
∫ d4K e−iKx⟨L∣J (0)∣Ω⟩∣L⟩ =

= ΓB∑
Q
∫ d4K e−iKx∣LB⟩,

(4.1.4)

and to solve for the momentum kets we transform the above result into momentum space:

∫
d4 x

(2π)4
eiPxJ (x)∣Ω⟩ = ΓB ∫

d4 x

(2π)4 ∫ d4K ei(P−K)x
∣K,QB⟩ =

= ΓB ∣P,QB⟩,

(4.1.5)

so that

∣P,QB⟩ = Γ̃−1
B ∫ d4 xeiPxJ (x)∣Ω⟩ (4.1.6)
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where the modified overlap constant absorbs the (2π)4 factor. We now insert it in (4.1.1) and
get the final result for the BH state:

∣B⟩ = Γ̃−1
B ∫ d3 P B(P,QB)∫ d4 xeiPxJ (x)∣Ω⟩. (4.1.7)

This is the expansion for the BH state we are going to work with for the rest of the chapter. Note
that the BH’s wavefunction dependence on the momentum is reduced to the 3-momentum P
because we took it to be on-shell right from the beginning—this also means that the Minkowski
product in the exponential has the momentum’s zero component the on-shell dispersion relation.
But one is, of course, also free to use the full d4 P measure and use the B̃(P,QB) as it was in
the inital expansion instead.

Now, as mentioned above, J is supposed to create a state which has the same quantum num-
bers as the BH. Let’s consider the free scalar field case in Appendix C, where the momentum
basis states are created by products of the scalar field operator. But now we will take all fields to
be at the same spacetime point. This doesn’t come unmotivated at all: first of all, it resembles
the treatment of hadrons [50]. Furthermore, it’s also physically intuitive: we want to spawn a
bound state of particles at a given spacetime point. However due to quantum fluctuations, espe-
cially the ones resulting from non-perturbative effects, the position of the individual constituents
is never fixed over time. Introducing an extra distribution of each individual constituent would
complicate our initial problem a lot; especially because our goal is finding a bound state de-
scription for a BH that takes its macroscopic attributes from input parameters, like mass and
Schwarzschild radius. So we reduce the problem to work with centre-of-mass quantities, e.g., the
momentum P which represents the overall momentum of the BH, so in that expansion x would
be the position the bound state is created at. But, what is important to remember, is that the
AC creates a state on the right vacuum and with the right quantum numbers (ant thus right
symmetries) necessary for a non-vanishing overlap with ∣LB⟩. As this gives us a certain amount
of freedom for the form of the current, we choose it such that it is the simplest to work with.
The vacuum expectation value of observables, e.g., the particle number density, should not be
affected by the exact expression of the AC. Therefore, let us use the current

J (x) = φN(x), (4.1.8)

where N ∈ N. It creates a state from N field operators.

4.2 Application: constituent number of a black hole

The goal of this section is to calculate the constituent number for a BH state (4.1.7). We make
the following assumptions about the BH:

• its mass MB is much larger than the energy of the individual constituent fields

• N is large

The large M makes sense if we consider the BHs we have ”observed” so far in the universe com-
pared to gravitons. The large N assumption doesn’t necessarily mean N →∞. The forthcoming
calculations will be valid for all N ≥ 3. The details of N = 2 can be looked up in [30]. Anything
larger, but finite, will produce 1

N corrections that are vital for getting rid of the famous BH
information paradox.

As we’ve already said, unlike in the case of free particles created on a perturbative vacuum
∣0⟩, the current J creates a bound state on a non-perturbative vacuum ∣Ω⟩. In the light of purely
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4. A new approach

non-perturbative effects and interactions, one can expect the number of physical bound state
constituents to end up being different form N .

So to properly distinguish the number of measured constituents and the number of graviton
fields, let us denote the integrated number density as the constituent number

NC ≡ ∫
d3 k

(2π)32Ek
⟨B∣n(k)∣B⟩, (4.2.1)

while N remains the number describing the fields building up the AC (4.1.8). It would then
mean: for the non-perturbative case we do not necessarily expect NC ∼ N anymore.

Now let’s start calculating the particle density of ∣B⟩, where we first insert the expan-
sion (4.1.7):

⟨B∣n(k)∣B⟩ = Γ̃−2
B ∫ d3 P ′ d3 P B∗(P′,QB)B(P,QB)∫ d4 z d4 ueiP

′z−iPu
⟨Ω∣J (z)n(k)J (u)∣Ω⟩.

(4.2.2)
Plugging in for the density operator (C.0.23), we get for the expectation value on the RHS:

⟨Ω∣J (z)n(k)J (u)∣Ω⟩ =
(2Ek)

2

2
∫ d3 xd3 y eik(x−y)⟨Ω∣T [J (z)φ(0,x)φ(0,y)J (u)] ∣Ω⟩. (4.2.3)

The operator product can be made time ordered because, just as in the Fock case, all involved
operators are commuting. Our job now is making use of the Wick’s theorem to solve time
ordered product. The expectation value has a few important features, though, which aren’t
present in the case of the perturbative vacuum expectation value (C.0.14):

• since the currents’ fields are at one spacetime point, we can’t exclude diagrams like (C.0.18)
on the basis of disconnectedness from the measurement device. But there will be disco-
nencted diagrams that we can skip.

• The vacuum expectation value is evaluated on a non-perturbative vacuum. We will have
to consider all normal ordered terms from Wick’s theorem, i.e., not only then ones where
all operators are contracted.

For the last point, let’s keep in mind that for general operators subjected to normal ordering we
have:

⟨0∣ ∶ AB ∶ ∣0⟩ = 0, (4.2.4)

⟨Ω∣ ∶ AB ∶ ∣Ω⟩ ≠ 0 (4.2.5)

and since the last term does not vanish in our present case, and it’s in fact the vital one for our
results, we shall denote it simply as:

⟨Ω∣ ∶ AB ∶ ∣Ω⟩ ≡ ⟨AB⟩ (4.2.6)

There will be three types of diagrams resulting from the time ordered product according to
Wick’s theorem:

• purely perturbative diagrams

• mixed diagrams

• purely non-perturbative diagrams

Now, one would naturally think that it will be necessary to take into account every single
diagram type listed above, but in the case of a heavy bound state most of the diagrams will turn
out to have a vanishing contribution and only one type will contribute. We shall now discuss
and show what types of diagrams will vanish and which will survive.
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4.2. Application: constituent number of a black hole

(a) (b) (c)

Figure 4.1: Purely perturbative diagrams for N = 3 number density measurement.

4.2.1 Purely perturbative diagrams

Purely perturbative terms are Wick terms with the maximum number of contractions, that is
with all fields contracted. For simplicity, let us start with a particular value of fields: N = 3, so
that for us the object of interst will be

⟨Ω∣T [φ3
(z)φ(x)φ(y)φ3

(u)]∣Ω⟩pp. (4.2.7)

The diagrams resulting from all possible contractions are shown in Fig. 4.1 —modulo the di-
agrams with the same structure at the ACs spacetime points but with x and y interchanged;
but in order to better focus on the techniques and important qualitative results of the purely
perturbative diagrams, we disregard the alternative diagrams for now. What’s special about the
first two diagrams in Fig. 4.1 is that they contain 1-point loops from the contraction

φ(z)φ(z) = φ(u)φ(u) = S(0). (4.2.8)

Expressions like

S(0) = ∫
d4 p

(2π)4 1
p2−m2

(4.2.9)

need to be renormalized for physicality, but prior to this one needs to regularize this loop integral.
At this point, let us make the following claim: we can take the mass m, which would be the mass
of the constituent fields in the propagator, to be negligible in presence of the BH’s overall mass
MB. 1 As a result of the claim we will get that such 1-point loops will have zero contribution to
the amplitude. We can see it if we explicitly write out the regularization process. Let’s consider
a 4 → D = 4 − 2ε (ε > 0) spacetime and keep mass in the integral. Now we apply dimensional
regularization to the integral:

lim
m→0
∫

dD p

(2π)D
1

p2 −m2
. (4.2.10)

The result for the loop integral with dimensional regularization is:

∫
dD p

(2π)D
1

p2 −m2
= −

im2

16π2
(

1

πm2
)

ε

Γ(ε − 1) ≈
im2

16π2
(

1

ε
+ 1 − γ − ln(πm2

) +O(ε)) , (4.2.11)

1Since we consider our constituents to be gravitons, we get anyway 1-loop diagrams for massless particles.
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where the integration was performed via Wick rotation in the p0 coordinate and the result is
approximated for a small, non-zero ε. The result for m→ 0 is therefore

lim
m→0
∫

dD p

(2π)D
1

p2 −m2

RRRRRRRRRRRε>0

= 0. (4.2.12)

So all diagrams involving 1-point loops S(0) for approximately massless constitutents vanish.
This means that the first two diagrams in Fig. 4.1 don’t contribute to the overall particle number.

It’s important to note that this result is neither limited to the N = 3 case nor to the purely
perturbative diagrams. It applies to all diagrams containing 1-point loops, i.e., for all N and
will extremely reduce the number of non-vanishing diagrams in the case of mixed diagrams. We
should remember this result also for the next chapter.

What’s left now is the last diagram in Fig. 4.1. The contractions give

⟨Ω∣T [φ(z)φ(z)φ(z)φ(x)φ(y)φ(u)φ(u)φ(u)]∣Ω⟩pp + permutations =

= fN iS(z − x)iS(y − u)iS(z − u)iS(z − u) =

= fN ∫
σ(q1, q2, q3, q4)

q2
1q

2
2q

2
3q

2
4

e−iq1(z−x)e−iq2(y−u)e−iq3(z−u)e−iq4(z−u) =

= fN ∫
σ(q1, q2, q3, q4)

q2
1q

2
2q

2
3q

2
4

e−i(q1+q3+q4)zei(q2+q3+q4)ueiq1xe−iq2y

(4.2.13)

where fN stands for a dimensionless permutational factor, taking into account contractions that
lead to the same expression and we expanded the free scalar propagator S in the Fourier scalar
modes.

For the next step, we shall introduce a trick where we make use of our assumption that
the BH’s mass MB is large: we insert the P momentum exponentials from (4.2.2) in the above
expression and then substitute q1 and q2 in such a way that it will get the BH momenta into
the denominators and, using the large MB limit, get rid of some q-momenta squares in the
denominator:

fN ∫
σ(q1, q2, q3, q4)

q2
1q

2
2q

2
3q

2
4

eiq1xe−iq2yei(P
′−q1−q3−q4)ze−i(P−q2+q3+q4)u. (4.2.14)

So, introducing the variables

q̃1 ∶= P
′
− q1 − q3 − q4, (4.2.15)

q̃2 ∶= P − q2 − q3 − q4 (4.2.16)

and substitute q1 and q2 everywhere by the new variables:

fN ∫
σ(q̃1, q̃2, q3, q4)

(P ′ − q̃1 − q3 − q4)
2(P − q̃2 − q3 − q4)

2q2
3q

2
4

ei(P
′−q̃1−q3−q4)xe−i(P−q̃2−q3−q4)yeiq̃1ze−iq̃2u.

(4.2.17)
The reason why we would like this is: we can use our first assumption for the BH, i.e., its mass is
much larger than the individual energies of the consitutents. The result for Minkowski squares
is then:

(P − q)2
= P 2

− 2Pq + q2
≈M2

B +O(Pq, q2
). (4.2.18)

This should also hold for P ′. Therefore, we can approximate the above integral with:

(4.2.17) ≈
fN
M4
B
∫

σ(q̃1, q̃2, q3, q4)

q2
3q

2
4

ei(P
′−q̃1−q3−q4)xe−i(P−q̃2−q3−q4)yeiq̃1ze−iq̃2u. (4.2.19)
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Figure 4.2: A general N diagram for J = φN containing perturbative lines only, with l 1-point loops at each
current’s spacetime point and N − 2l − 2 2-point loops at the centre (N − 2l − 1 propagators five N − 2l − 2 loops).

So far we managed to simplify the momentum integrals for q1 and q2 to the point where the
momentum variables appear only in the exponentials, we can reorder the exponentials and get
Dirac deltas for spacetime coordinates:

(4.2.17) ≈
fN
M4
B
∫

σ(q3, q4)

q2
3q

2
4

ei(P
′−q3−q4)xe−i(P−q3−q4)yδ(4)(z − u)δ(4)(u − y). (4.2.20)

If we perform the trick a second time for, e.g., q3 we are going to be left with a 1-point loop
again. So shift

q̃3 ∶= P − q3 − q4 (4.2.21)

and get:

(4.2.17) ≈
fN
M6
B
∫

σ(q̃3, q4)

q2
4

ei(P
′−P+q̃3)xe−iq̃3yδ(4)(z − u)δ(4)(u − y) =

=
fN
M6
B
∫ σ(q̃3)S(0)e

i(P ′−P+q̃3)xe−iq̃3yδ(4)(z − u)δ(4)(u − y) =

=0

(4.2.22)

the last equation follows from our analysis of S(0), which vanishes when regularized, as we have
seen (4.2.12). Therefore, these diagrams do not contribute to (4.2.2). The two important results
for N = 3 are: 1-point loops and 2-point loops give a factor of 0. These diagrams in fact vanish
for any N > 3. Let us show this statement for the case of an arbitrary number of 1-loops and
2-loops. So let’s take our current J = φN and evaluate diagrams with l 1-point loops at each side
and (N −2l−2) 2-point loops (this is the number so that the diagrams only involve perturbative
lines; the number means the point z and u are connected via (N − 2l − 1) lines)—see Fig. 4.2.
However, any l > 0 will instantly produce a factor S(0), so any diagrams involving 1-point loops
instantly drop out. So let’s consider the case l = 0, as depicted in Fig. 4.3, (4.2.14) for general
N is

fN ∫
σ(q1, q2, . . . , qN+1)

q2
1q

2
2 . . .

2 q2
N+1

eiq1xe−iq2yei(P
′−q1−∑N+1

k=3 qk)ze−i(P−q2−∑
N+1
k=3 qk)u. (4.2.23)

A substitution of q1 and q2 just as before

q̃1 ∶= P
′
− q1 −

N+1

∑
k=3

qk, (4.2.24)

q̃2 ∶= P − q2 −
N+1

∑
k=3

qk (4.2.25)
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Figure 4.3: The purely perturbative diagram for N − 2 central loops only.

allows us to approximate the integral to

(4.2.23) ≈
fN
M4
B
∫

σ(q3, . . . , qN+1)

q2
3 . . . q

2
N+1

ei(P
′−∑N+1

k=3 qk)xe−i(P−∑
N+1
k=3 qk)yδ(4)(z − x)δ(4)(u − y). (4.2.26)

Finally substituing q3 as before

q̃3 ∶= P −
N+1

∑
k=3

qk, (4.2.27)

yields

(4.2.23) ≈
fN
M6
B
∫

σ(q̃3, . . . , qN+1)

q2
4 . . . q

2
N+1

ei(P
′−P+q̃3)xe−iq̃3yδ(4)(z − x)δ(4)(u − y) =

= 0.

(4.2.28)

This includes a product of several S(0) and thus gives 0. So our result for purely perturbative
diagrams with current content of N ≥ 3 is that they simply all vanish in the large MB limit:
P 2 = P ′2 =M2

B ≫ Pq, q2.
In [30] it is shown that N = 2 case does have a non-vanishing perturbative contribution.

However, as we have shown, this contribution is really limited to the small N case.

4.2.2 Mixed diagrams

Once again, before we deal with general N case, let us do a concrete calculation for the case
of N = 3 to focus on the tricks that have to be used in order to produce concrete results for
otherwise complicated diagrams

⟨Ω∣T [φ3
(z)φ(x)φ(y)φ3

(u)] ∣Ω⟩mix. (4.2.29)

There are of course a lot of possible diagrams we can construct from the time ordered product
that contain both perturbative and non-perturbative factors, but taking into account what we
found out in the previous analysis of purely perturbative diagrams, we know that 1-point loops
and 2-point loops give 0 contribution in our large MB approximation. So we already know that
the diagram in Fig 4.3, for N = 3, gives no contribution to the expectation value. Another
constraint is given by perturbative connectedness of the points x to u, y to z and u to z, i.e.,
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4.2. Application: constituent number of a black hole

Figure 4.4: The only physical diagram contributing to N = 3 BH state particle number density measurement.

these points need to have at least one propagator connecting them. This is not so clear at this
point, but we will see from the previous result about purely non-perturbative diagrams and the
next one that the mixed diagrams with three perturbative lines will give, on the light cone,
the dominating contribution of all possible mixed diagrams. This leaves us with the following
non-vanishing, dominating diagrams:

⟨Ω∣T [φ(z)φ(z)φ(z)φ(x)φ(y)φ(u)φ(u)φ(u)]∣Ω⟩mix, (4.2.30)

which is shown in Fig. 4.4. The number of possible contraction like this are [32 ⋅ (3 − 1)2] for
each of them. As in the free case, though, there are also the diagrams of the type

⟨Ω∣T [φ(z)φ(z)φ(z)φ(x)φ(y)φ(u)φ(u)φ(u)]∣Ω⟩mix, (4.2.31)

and here we shall consider them, because we will get a non-vanishing result, which will be of
interest for us quantitavely. The calculation will show, though, that these two expressions above
are actually the same, so the latter contractions don’t lead to different diagrams, but just give
an additional factor of 2 for the amplitude. But for sake of accuracy, we shall treat these two
diagrams separately until we know for sure that they lead to the same result. Because they
will appear in the general N case as well, we shall now introduce a shorthand notation for the
two-fold contribution so that we don’t have to write everything twice. The result of the above
contractions is (including the combinatorial factor for the number of equal diagrams):

32
⋅ (3 − 1)2 {iS(z − x) iS(y − u) iS(z − u) + iS(z − y) iS(x − u) iS(z − u)} ⟨φ(z)φ(u)⟩ ≡

≡ 32
⋅ (3 − 1)2iS(z − {

x
y }) iS({

y
x} − u) iS(z − u)⟨φ(z)φ(u)⟩.

(4.2.32)

As next step, let us expand the free scalar propagator S in the Fourier modes and plug in
the P -momentum exponentials of (4.2.2):

36i3eiP
′z−iPuS(z − {

x
y })S({

y
x} − u)S(z − u)⟨φ(z)φ(u)⟩ =

= 36i3∫
σ(q1, q2, q3)

q2
1q

2
2q

2
3

ei(P
′−q1−q3)ze−i(P−q2−q3)ueiq1{

x
y }e−iq2{

y
x}

⟨φ(z)φ(u)⟩.
(4.2.33)
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Here we will perform the previous trick again: substituting the momenta q1 and q2 such that
they are shifted by the total BH momenta P and P ′:

q̃1 ∶= P
′
− q1 − q3, (4.2.34)

q̃2 ∶= P − q2 − q3 (4.2.35)

Just as before, this momentum translation of the two q will have the effect of bringing the
momenta P into the Minkowski square in the denominator:

(4.2.33) = 36i3∫
σ(q̃1, q̃2, q3)

(P ′ − q̃1 − q3)
2(P − q̃2 − q3)

2q2
3

eiq̃1ze−iq̃2uei(P
′−q̃1−q3){xy }e−i(P−q̃2−q3){

y
x}

⟨φ(z)φ(u)⟩.

(4.2.36)
Here we apply again the large BH mass approximation (4.2.18) and thus get rid of q̃1 and q̃2

in the denominator. Consequently, we rearrange the exponentials again and can replace the
integrals with tilde variables with Dirac deltas:

(4.2.33) =
36i3

M4
B
∫

σ(q3)

q2
3

e
i(P ′−q3){xy }e−i(P−q3){

y
x}δ(4)(z − {

x
y })δ

(4)
(u − { yx})⟨φ(z)φ(u)⟩ =

=
36i3

M4
B

e
iP ′{xy }−iP{ yx}

S({ yx} − {
x
y })δ

(4)
(z − {

x
y })δ

(4)
(u − { yx})⟨φ(z)φ(u)⟩

(4.2.37)

Having the delta functions there, we can now easily perform the z and u integration from (4.2.2)
and get:

(4.2.33) =
36i3

M4
B

e
iP ′{xy }−iP{ yx}

S({ yx} − {
x
y })⟨φ({

x
y })φ({

y
x})⟩ =

=
36i3

M4
B

e
iP ′{xy }−iP{ yx}

S(x − y)⟨φ({ xy })φ({
y
x})⟩.

(4.2.38)

There we used for the last line that the free scalar propagator is symmetric in its argument.
The overall expression for the density (4.2.2) modulo the constant overlap, P and P ′ integration
and wavefunctions is then:

∫ d4 z d4 ueiP
′z−iPu (2Ek)

2

2
∫ d3 xd3 y e−ik(x−y)⟨Ω∣J (z)φ(x)φ(y)J (u)∣Ω⟩ ≈

36i3

M4
B

(2E2
k)

2
∫ d3 xd3 ye−ik(x−y)eiP

′{xy }−iP{ yx}
S(x − y)⟨φ({ xy })φ({

y
x})⟩.

(4.2.39)

Now before we proceed, let us shift coordinates of the condenstate on the RHS using Poincaré
transformations (like in Appendix C, Eq. (C.0.29)) and also rewrite the exponential involving
the BH momenta:

(4.2.39) =
36i3

M4
B

(2E2
k)

2
∫ d3 xd3 ye−ik(x−y)ei{

P ′

−P }x−i{ P
−P ′ }yS(x − y)⟨φ({ x−yy−x})φ(0)⟩. (4.2.40)

The integrand has a dominating contribution for light-like distances, 2 which allows us to

2The Green function in configuration space is

S(x − y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

m

8π
√
(x−y)2−iε

H
(2)
1 (m

√
(x − y)2 − iε) if m ≠ 0

i
4π2

1
(x−y)2−iε

if m = 0

where H
(2)
1 is an Hankel function. [26,65]
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Figure 4.5: The only physical diagram contributing to N , J = φN , particle number density measurement.

approximate the condensate with

⟨φ(±r)φ(0)⟩ =
∞
∑
n=0

cnr
2n

⟨∂2nφ(0)φ(0)⟩ ≈ ⟨φ(0)φ(0)⟩ +O(r2
) =∶ ⟨φ2

⟩ +O(r2
); (4.2.41)

the reason the first equality stems from the request that the vacuum is Lorentz invariant (more
details on the Taylor expansion and the factor cn see [50]. For convenience we can also rewrite
it substituting x and y to one variable by defining the distance r ∶= x − y. Hence

(4.2.39) ≈
36i3

M4
B

(2E2
k)

2
⟨φ2

⟩∫ d3 r d3 y e−ikrei{
P ′

−P }r
e
i({ P ′−P }−{ P

−P ′ })yS(r), (4.2.42)

which gives us a Dirac delta for the BH momenta:

(4.2.39) =
36i3

M4
B

(2E2
k(2π)

3)

2
⟨φ2

⟩∫ d3 r e−ikrei{
P ′

−P }r
δ(3)(P′

−P)S(r). (4.2.43)

With the only assumption that we are dealing with a large mass P 0 ≈ P ′0 ≈ MB, we managed
to reduce the expectation value (4.2.2) to

⟨B∣n(k)∣B⟩mix ≈
36i3(2Ek)

2(2π)3

2Γ̃2
BM

4
B

⟨φ2
⟩∫ d3 P ∣B(P,QB)∣

2
∫ d3 r e−ikrei{

P ′

−P }r
S(r). (4.2.44)

Notice that our x and y integration was still over a 3-volume, while the expressions in the
exponentials remain 4-products. This means we aren’t necessarily considering y0 = x0 = 0. In
the Fock case we could fix the time variable to our convenience because our choice wouldn’t alter
the result of the number density (see Appendix C). We shall specify later which values for the
time variables we choose, for now let them just be non-zero. This will help us to calculate the
consitutent number in a rather short way. For N constituent fields all combinatorial elements,
i.e., any expressions involving N , are only constant factors in front of the integrals, and thus, do
not affect the dependence on the 3-momentum variable k in the density expectation value (4.2.2).

Let’s deal with the case for general N

⟨Ω∣T [φN(z)φ(x)φ(y)φN(u)] ∣Ω⟩mix. (4.2.45)
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Just as before we can exclude a great deal of diagrams involving perturbative loops that will give
vanishing contribution in the large MB limit. One can see from the calculation of the amplitude
of the diagrams involving central loops, Fig. 4.3 , that, even in the presence of condensate terms,
⟨φn(z)φn(u)⟩, one will still end up with an integral of the form (4.2.28)—the only difference will
be the number of q momenta we integrate over, but as long as there are four or more qs, there
will be factors of S(0) which give vanishing contribution. Since ”four or more qs” means four or
more propagators in the diagrams, the only non-vanishing diagrams will be the ones with three
propagators, i.e., the type of diagrams shown in Fig. 4.5. The non-vanishing diagrams will be
akin to (4.2.30),

⟨Ω∣T [φ(z) . . . φ(z) . . . φ(z) . . . φ(z)φ(x)φ(y)φ(u) . . . φ(u) . . . φ(u) . . . φ(u)]∣Ω⟩mix (4.2.46)

and akin to (4.2.31),

⟨Ω∣T [φ(z) . . . φ(z) . . . φ(z) . . . φ(z)φ(x)φ(y)φ(u) . . . φ(u) . . . φ(u) . . . φ(u)]∣Ω⟩mix. (4.2.47)

The number of possible contractions like that are, in both cases, N2(N − 1)2: N for each
contraction with a field operator from the measurement device, this leaves us with N−1 operators
at point z and N − 1 operators at point u; now pick one φ(z) out and contract it with one of
the N − 1 φ(u), but since we have N − 1 φ(z) this contraction has multiplicity (N − 1)2. The
Wick term resulting from these 2N2(N − 1)2 is

N2
(N − 1)2iS(z − {

x
y }) iS({

y
x} − u) iS(z − u)⟨φ

N−2
(z)φN−2

(u)⟩. (4.2.48)

The way to proceed from here is the same as for N = 3: expand the propagators in Fourier modes,
shift (i.e., substitute) two of their momenta by the BH momenta P , use the assumption that the
BH’s mass is much larger than the individual constituent energies and work in the rest-frame.
Then we manage to reduce the three propagators to one propagator and two 4-deltas:

N2(N − 1)2i3

M4
B

e
iP ′{xy }−iP{ yx}

iS({ yx} − {
x
y })δ

(4)
(z − {

x
y }))δ

(4)
(u − { yx})⟨φ

N−2
(z)φN−2

(u)⟩.

(4.2.49)
Now we can perform the z and u integrations and an expression equivalent to (4.2.40),

N2(N − 1)2i3

M4
B

(2Ek)
2

2
∫ d3 xd3 y e−ik(x−y)ei{

P ′

−P }x−i{ P
−P ′ }yS(x − y)⟨φN−2

({
x−y
y−x})φ

N−2
(0)⟩.

(4.2.50)
The condensate can now be ”Taylored” just as before around the light cone, where we can neglect
the higher order O2 terms due to the remaining propagator giving the main contribution near the
light cone. The contribution from the condensate is then a constant number, ⟨φN−2(0)φN−2(0)⟩,
which we can move in front of the integral so that the density as a function of k only depends
on N via constant pre-factors:

⟨B∣n(k)∣B⟩mix ≈
N2(N − 1)2i3(2π)3

2Γ̃2
BM

2
B

⟨φ2(N−2)
⟩(2Ek)

2
×

× ∫ d3 P ∣B(P,QB)∣
2
∫ d3 r e−ikrei{

P
−P }r

S(r).

(4.2.51)

This is the non-vanishing contribution to the number density of ∣B⟩ coming from the diagrams
incorporating both perturbative and non-perturbative lines between spacetime locations of the
ACs.
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4.2.3 Purely non-perturbative diagrams

Only the final terms from Wick’s theorem are left: the ones that involve no contractions between
the J ’s individual fields, i.e., produce no S(z − u), and consist of a condensate only. For the
N = 3 case it would be:

⟨Ω∣T [φ(z)φ(z)φ(z)φ(x)φ(y)φ(u)φ(u)φ(u)]∣Ω⟩pnp (4.2.52)

and the one with the roles of x and y switched. The result here is, after performing q1 and
q2 substitutions and approximating the propagators with 1/M2

B each, and going on with the
calculation to the point of (4.2.40),

32i2

M4
B

(2Ek)
2

2
∫ d3 xd3 y e−ik(x−y)ei{

P ′

−P }x−i{ P
−P ′ }y⟨φ({ x−yy−x})φ(0)⟩. (4.2.53)

But notice that, compared to Eq. (4.2.40), a propagator S(x−y) is missing. This is because our
contractions gave us a propagator less, so its absence is not going to be changed by considering
higher Ns. Therefore it is missing for all N ,

≈
N2i2

M4
B

(2Ek)
2

2
∫ d3 xd3 y e−ik(x−y)ei{

P ′

−P }x−i{ P
−P ′ }y⟨φN−1

({
x−y
y−x})φ

N−1
(0)⟩ (4.2.54)

This contribution, on its own, is non-vanishing, but when taking into account the other non-
vanishing contribution to the number density, (4.2.50), we notice that the latter contributes with
a light cone singularity at (x − y)2 = 0 (at the lowest order expansion of the field condensate).
Therefore, when we sum up all the non-vanishing contributions,

⟨B∣n(k)∣B⟩ ≈ ⟨B∣n(k)∣B⟩mix + ⟨B∣n(k)∣B⟩pnp, (4.2.55)

we see that the largest contribution will come at the light cone, which is only present in the
mixed part. Contributions from (x − y)2 ≠ 0 will be much smaller compared to that. So if we
neglect them, only the mixed part matters. Therefore,

⟨B∣n(k)∣B⟩ ≈ ⟨B∣n(k)∣B⟩mix (4.2.56)

4.2.4 Constituent number

To calculate the actual constituent number from the density expectation value, we use our
definition (4.2.1)

NC =∫
d3 k

(2π)32Ek
⟨B∣n(k)∣B⟩ =

=
N2(N − 1)2i3(2π)3

2Γ̃2
BM

2
B

⟨φ2(N−2)
⟩∫ d3 P ∣B(P,QB)∣

2
×

× ∫
d3 k

(2π)3
2Ek ∫ d3 r e−ikrei{

P
−P }r

S(r).

(4.2.57)

Before solving these integrals let us give first a couple of comments about d3 r integral: recalling
that the behaviour of the free, massless, scalar propagator is S(r) ∼ 1/r2, we can notice that
the r integral looks almost like the Fourier transform of the scalar propagator: 1

(k±P )2−m2 . In

that case the integration measure would be d4 r. To make up for our measure, let us rewrite
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4. A new approach

the above expression in the following way: we first insert a 1 with a 4-dimensional Dirac delta
replacing the momentum k with another 4-momentum variable

NC = AN ∫ d3 P ∣B(P,QB)∣
2
∫

d3 k

(2π)3
(1)2Ek ∫ d3 r e−ikrei{

P
−P }r

S(r) =

= AN ∫ d3 P ∣B(P,QB)∣
2
∫

d3 k

(2π)3 ∫ d4 q δ(4)(q − k)2Eq ∫ d3 r e−ikrei{
P
−P }r

S(r) =

= AN ∫ d3 P ∣B(P,QB)∣
2
∫

d3 k

(2π)3 ∫ d4 q∫ σ(ρ)e−iqρ2Eq ∫ d3 r e−ik(r−ρ)ei{
P
−P }r

S(r) =

= AN ∫ d3 P ∣B(P,QB)∣
2
∫

d3 k

(2π)3 ∫ d4 q∫ σ(ρ)e−iqρ2Eq ∫ d3 r e−ik(r−ρ)ei{
P
−P }r

S(r)∣
r0=ρ0

(4.2.58)

where AN ∶=
N2(N−1)2i3(2π)3

2Γ̃2
BM

4
B

⟨φ2(N−2)⟩ is just a shorthand for all constant factors to shorten the

expression, and the third equality was just writing the delta in the Fourier representation.
Let’s have a closer look at what happened in the last line. As was remarked below (4.2.51),

the particle is time indipendent in the Fock case and so we are free to evaluate its r0 variable
at any time we want. For our present problem we want to get rid of the d3 k integral, which,
by the state of the expression in third line, is only present in the second exponential function.
But there it is a Minkowski product, not the usual R3 scalar product. We can reduce to it if the
time component is zero, which it is the case if r0 in chosen appropriately

k(r − ρ) = Ek(r
0
− ρ0

) − k(r − ρ)
!
= Ek(ρ

0
− ρ0

) − k(r − ρ) = −k(r − ρ) (4.2.59)

that is r0 = ρ0. Note that, while ρ0 is certainly a running variable inside the d4 ρ integral,
the number density remains invariant under infinitesimal changes of r0 (which was proven by
showing that its derivative with respect to time is 0); so if we think of the integral as a sum,
the individual summands containing the density can all have different r0s without changing the
overall sum.

So now we know that the k integral is a 3-dimensional Dirac delta,

(4.2.58) = AN ∫ d3 P ∣B(P,QB)∣
2
∫ d4 q∫ σ(ρ)e−iqρ2Eq ∫ d3 r δ(3)(k(r−ρ))ei{

P
−P }r

S(r)∣
r0=ρ0

,

(4.2.60)
and we can also now perform the trivial r integration:

(4.2.58) = AN ∫ d3 P ∣B(P,QB)∣
2
∫ d4 q 2Eq ∫ σ(ρ)e

−i(q−{ P
−P })ρ

S(ρ). (4.2.61)

To sum up, we managed to replace all 3-dimensional integrals with 4-dimensional ones thanks
to the constancy of ⟨B∣n(k)∣B⟩ with respect to time.

(4.2.58) =
iAN
4π2 ∫ d3 P [B(P,QB)]

2
∫ d4 q 2Eq ∫ σ(ρ)e

−i(q−{ P
−P })ρ 1

ρ2 − iε
(4.2.62)

Notice that, indeed, the d4 ρ integral now is the inverse Fourier transform of the massless scalar
Green’s function, which is the Feynman propagator (for vanishing mass) in momentum space
with ε at its position

∫ σ(ρ) e
i(q−{ P

−P })ρ 1

ρ2 − iε
=

1

∣q − { P
−P }∣

2
+ iε

. (4.2.63)
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Recall, however, our large BH mass approximation. With the q just representing the individual
constituents’ momenta, having the BH momenta P in the denominator we can approximante
the previous expression with

1

[q − { P
−P }]

2
+ iε

≈
2

M2
B

, (4.2.64)

where the 2 came from the definition of the curly brackets as a shorthand notation for a sum:
1

[q − { P
−P }]

2
+ iε

≡
1

[q − P ]2 + iε
+

1

[q + P ]2 + iε
.

So, altogether, we managed to reduce the integrals for the consitutent number down to

NC =
iAN

4π2M2
B
∫ d3 P ∣B(P,QB)∣

2
∫ d4 q 2Eq. (4.2.65)

next we will have to deal with the d4 q integal. It obviously diverges like ∣q∣5. As a solution to
this mathematical problem, let us impose a physical constraint to this constituent momentum
variable: let us restrain the integration 4-volume to [0,MB] × [0,MB] × S2(MB). This makes
sense if we model our BH to be a bound state of constituents φ and only these can contribute
to the overall energy, so every constituent should be bounded from above by the overall energy,
which is the BH’s mass in the centre of mass frame. If we actually consider the integral with
those boundaries, we get

∫[0,MB]×[0,MB]×S2(MB)
d4 q 2Eq ≈ 2∫

MB

0
dq0
∫[0,MB]×S2(MB)

d3 q∣q∣ =

= 2MBΩ(S2
)∫

MB

0
d∣q∣∣q∣3 =

= 8πMB ∫

MB

0
∣q∣∣q∣3 =

= 8πMB
1

4
M4
B.

(4.2.66)

This give for the constituent number:

NC =
2πiANM

5
B

4π2M2
B
∫ d3 P ∣B(P,QB)∣

2
=

=
i4N2(N − 1)2(2π)3M3

B

2π2Γ̃2
BM

4
B

⟨φ2(N−2)
⟩∫ d3 P ∣B(P,QB)∣

2
=

= N2
(N − 1)2 (2π)

2⟨φ2(N−2)⟩

2Γ̃2
BMB

∫ d3 P ∣B(P,QB)∣
2
.

(4.2.67)

Let’s give a few comments about this result.
Firstly, a thorough dimensional analysis of all quantities involved reveals that NC has mass

dimension m0, just as one would expect from a particle number.
Secondly, it scales with N ; combining the definition of the overlap ΓB (4.1.2), plugging

it in the expression of the momentum eigenstates (4.1.6) and performing the calculations in-
volving Wick’s theorem will reveal how the overlap constant scales with N . The result is
Γ̃B ∼ (N/MB)2⟨φ2(N−1)⟩ so that

NC ∼ N2
(N − 1)2 N ≫ 1

≈ N4
+O(N3

). (4.2.68)
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This result is different from the one for free, non-interacting particles, where it scaled linear
with N (see Appendix C, Eq. (C.0.5)). In that case we act with a ”current” ∼ φN(x) on a
perturbative vacuum ∣0⟩ and get NC = N . The different scaling here stems from the fact that
our auxiliary currents are acting on a non-perturbative vacuum. This setting leads to extra
non-vanishing terms in Wick’s theorem because the normal ordered terms don’t have to vanish
anymore and result in field condensates.

For N > 2 and with fields assumed to be on the light-cone, we received neither purely
perturbative nor purely non-perturbative contributions and, in fact, only the mixed case with
a minimal number of perturbative lines contribute so that the diagrams remained effectively
connected.

Thirdly, the constant factors O(m0,N0), numbers like 2, 2π, etc., depend on the conven-
tions one uses. For example, for the Lorentz invariant momentum integration measure we used

d3 k
(2π)32Ek

. However, there exists also the convention d3 k√
(2π)32Ek

, which Hofmann and Rug use

in [30]. So, their slightly different result for NC , which differs namely in those factors, can be
assigned to different conventions. The relevant N and MB scaling is identical.

Fourthly, when we compare our calculation process to that in [30] we see that they worked
with the constituent distribution, which in essence is a Fourier transform of the particle density
expectation value (4.2.51),

D(r) ∶= ∫ d3 keikr(2Ek)
−2

⟨B∣n(k)∣B⟩; (4.2.69)

r represents an external scale of the observable—compare to Appendix C, Eq. (C.0.29) This
is the alternative density one can work with. To get the constituent number one then has to
integrate over the scale r over all spacetime. In the the double scaling limit N/MB = const, this
distribution is constant. So the graviton constituent of a quantum BH bound state are evenly
distributed.
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Chapter 5

The primordial power spectrum

5.1 Auxiliary current description: generalization

In this section we want to generalize the auxiliary current description originally developed for
black holes to arbitrary solutions of Einstein’s field equations. In particular, it should be possible
to describe classical backgrounds with small fluctuations in terms of quantum bound states in
an appropriate Hilbert space.

Knowing the exact quantum state ∣G⟩ is definitely not possible. It is possible, however,
to store kinematical data in a quantum state, in such a way that its overlap with ∣G⟩ is non-
vanishing. This can only be the case if this state has the same quantum numbers as ∣G⟩. One
can achieve this by acting with an appropriate auxiliary current, J (x), on a non-perturbative
vacuum ∣Ω⟩ supporting the creation of quantum bound states and possible fluctuations. As we
will discuss in detail below, inclusion of fluctuations effectively leads to a factorization of ∣Ω⟩

into a purely perturbative (∣0⟩) and non-perturbative (∣Ω̃⟩) ground state.
Since in our picture the ”would-be” classical geometry should be understood as bound state

of the (weakly interacting) elementary degrees of freedom of the underlying quantum field theory,
J (x) must provide the correct field content.

Furthermore J (x) has to respect the isometries of a given background. In general the as-
sociated symmetries will be broken softly by small fluctuations. In order to have a complete
quantum description we also need to incorporate these fluctuations in the construction of J (x).
This implies that the state J (x)∣Ω⟩ is no longer invariant under the action of the symmetry
group of the background. The isometries, however, must be recovered in the case of vanishing
fluctuations. Since we consider only small fluctuations which should not destabilize the back-
ground, this idea can be understood as a realization of the mean-field idea within the auxiliary
current description.

Any degree of freedom we want in the universe we should include in principle, but this
is too much. The advantage of ACD is: we have a true state in nature (horrific complex
with all Standard Model fields), but we have a toy/model state which has the right isometries.
Any current that can create a state with the right isometries is a nice current because we
assume that the state we produce, by the operation of the current, has a non-trivial overlap
with the true state. We have a quantum mechanical treament: we can never switch Quantum
Mechanics off (that’s what tells us harmonic oscillator: we cannot think of any regime where
the oscillator doesn’t give rise to fluctuations unless the mass of the degree of freedom that is
oscillating becomes infinite) and then fluctuations are always there. We never think of classical
GR solutions as being realized perfectly in nature.

The quantum bound states are everywhere so, e.g., in de Sitter spacetime, which is a perfect
symmetry group, we have no more notion of asymptotic Minkowski as in the case of Bunch-
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5. The primordial power spectrum

Davies vacuum definition. Since we are working with bound states, we don’t have a concept of
momentum (or mass) either. We cannot make any measurement that would globally define a
mass for our background field. Incorporating fluctuations we can define again a good Casimir
operator, the momentum.

Let us now explain how ∣G⟩ can be expressed in terms of J (x)∣Ω⟩ and how to compute
variables in this state. First of all, we can think of ∣G⟩ as a quantum superposition of states
representing classical geometries:

∣G⟩ =∑
i

αi∣Gi⟩. (5.1.1)

Here ∣G0⟩ corresponds to the classical background solution (e.g., pure de Sitter) and the other ∣Gi⟩

correspond to fluctuations around where i counts the order of fluctuation. The different basis
states are weighted with coefficients αi. Notice that in order to realize a mean-field description
in this framework, we should assume that ∣α0∣ ≃ 1 while all the other αi are close to zero.
Furthermore, we will see, that ⟨Gi∣GJ ⟩ = δiJ .

Let us now explain how ∣G⟩ can be expressed in terms of J (x). Let us define ∣L(G)⟩ =

∫ d4 xFL(x)J (x)∣Ω⟩, where L(G) is a state of quantum numbers compatible with G and FL is a
weight function. Inserting a complete set of such states we can write

∣G⟩ = ⨋L(G)
G(L)∫ d4 xFL(x)J (x)∣Ω⟩. (5.1.2)

Here G(L) is the wavefunction of ∣L(G)⟩ in the basis ∣L⟩, which then represents the geometry
and carries the quantum numbers provided by the current J (x). Decomposing the current in
terms of a background and fluctuations,

J (x) = J0(x) + δJ (x) ≡
max(j)
∑
j=0

δ(j)J (x) (5.1.3)

leads to

∣G⟩ =

max(j)
∑
j=0

⨋L(G)
G(L)∫ d4 xFLj(x)δ(j)J (x)∣Ω⟩. (5.1.4)

A few comments concerning this equation are in order. As we already discussed, ∣G⟩ should be
understood as quantum superposition. Equation (5.1.4) gives an explicit realization of this idea.
The different basis states are represented by different wavefunctions G(L) and currents δ(i)J (x).
For the zeroth order holds δ(0)J (x) = J0(x) where J0(x) only consists of background fields.
Therefore, J0(x) should be invariant under background isometries. This induces J0(x) = J0(x̃).
The δ(i)J (x) correspond to geometries containing i fluctuating fields while all other fields provide
an effective background geometry for these fluctuations. Furthermore, the functions FLj(x)
display the realtive weights of different quantum geometries constituting ∣G⟩.

Notice that the background ∣G0⟩ can be interpreted as a non-perturbative condensation pro-
cess of fields with proper quantum numbers in the current J0(x) on Minkowski spacetime. The
fluctuations, however, are perturbative in nature. Thus they can be classified according to the
Casimir operator on flat spacetime. Effectively, this tells us that all background fields create
states in the bound state spectrum of the theory, i.e., they act on a non-perturbative vacuum
state while fluctuations act on the perturbative vacuum. This explicitly realizes the factorization
idea of QCD in the quantum description of general relativity.

Now one can make an Ansatz for current consisting of M different types of fields. Therefore,
we split δ(j)J (x) in a background and a fluctuating part where the index represents the number
of fields in the current.

δ(j)J (x) = J b∑Ml=1Nl−jl
δ(j)J̃ . (5.1.5)
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Here Nl − jl is the number of background fields of type l and Jl the corresponding number of
fluctuations with j = ∑Ml=1 jl. Now it is easy to see that ⟨Gi∣Gj⟩ = δij . Using the auxiliary current
representation, terms of the form

⟨Ω∣δ(i)J (x)δ(J )J (x)∣Ω⟩ = ⟨Ω ∣J
b
∑Ml=1Nl−il

δ(i)J̃ J
b
∑Ml=1Nl−Jl

δ(J )J̃ ∣Ω⟩ (5.1.6)

contribute. If il ≠ jl, because of the factorization property, we need to evaluate the overlap of
two different effective backgrounds. Since the quantum numbers of these two states are differ-
ent, their overlap must vanish. Thus il = jl ∀l has to hold. From this follows automatically
j = i. Notice that this argument can also be applied for any observable O(x1, x2, . . . , xL) con-
sisting of fluctuations only. In practice this tells us that only ”diagonal” elements contribute to
⟨G∣O(x1, x2, . . . , xL)∣G⟩. Schematically, ⟨G∣O(x1, x2, . . . , xL)∣G⟩ = ∑i ∣αi∣

2⟨Gi∣O(x1, x2, . . . , xL)∣Gi⟩.

5.1.1 De Sitter spacetime

What are the isometries of the de Sitter? What are the generators of those isometries? I
would strict to the intrisic description in 4 dimensions (SO(1,3)). I first try with one species
(a scalar field) current: J (x) = φN(x). We just demand that the isometries of de Sitter would
be implemented in that current in an algebraic fashion. But this algebraic fashion traslate to
a statement about the spacetime dependence of the fields which constitue the current. We will
see that this form reduces to a differential equation for a single φ(x) and that will tell us on
what the background field could possibly depend. The solution of this differential equation, the
condition we get for every Killing vector, we’ll tell us something. Because the Schwarzschild’s
metric is static (SO(3)), the background field can only depend on the distance r. The intersting
thing with de Sitter: if I have a de Sitter spacetime, distances between points vary in time but
we still have a timelike Killing vector; it just tells you a priori that the timelike KV can’t be
just ∂t (in the Schwarzschild case, locally you can check e.g. energy conservation). In addition
we have a Killing vector which tells us that we have homogeneity in space that combines to
a state description which is effectively time-indipendent. One of de Sitter isometry is spatial
homogeneity, which will tell us that ∂x acting on the state woud be zero as well, which means
effectively that this KV collapses to ∂t. Then, in principle, φ is not allowed to depend on
anything: isometries force us to say that φ is spacetime-indipendent. What can I do then? This
gives us an idea how the current construction needs to look like.

Let G be a Lie group (e.g., SO(1,3)). If we want our state ∣G⟩ to be invariant under the
action of G

g ∈ G⇒ g∣G⟩ = ∣G⟩ (5.1.7)

we have to require that the variation of the state vanishes

δg ∣G⟩ = 0⇒ δgJ (x) = 0 (5.1.8)

since ⟨G∣J (x)∣Ω⟩ ≠ 0. Differential geometry tells us that the derivative in the direction of the
vector field g is given by

δgJ (x) = [g,J ]. (5.1.9)

From the commutator [g,J ] = 0 we get the differential equation our current J (x) has to satisfy.
For convenience we will consider as g the generators of G.

De Sitter spacetime is the maximally symmetric so it has
D(D+1)

2 Killing vectors (in the
gruop theory language, the generators of SO(1,3)) where D is the dimension of the space. So
we have 6 Killing vectors of the form

Tµν = xµ
∂

∂xν
− xν

∂

∂xµ
. (5.1.10)
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5. The primordial power spectrum

Considering x0 = ct, the de Sitter Killing vectors are

T01 = ct∂x +
x

c
∂t = −T10 (5.1.11)

T02 = ct∂y +
y

c
∂t = −T20 (5.1.12)

T03 = ct∂z +
z

c
∂t = −T30 (5.1.13)

T12 = −x∂y + y∂x = −T21 (5.1.14)

T13 = −x∂z + z∂x = −T31 (5.1.15)

T23 = −y∂z + z∂y = −T32 (5.1.16)

We have to solve the commutator [Tµν ,J (x)] = 0 where J (x) = φN(x) (x is a 4-dimensional
coordinate). We get a set of differential equations

NφN−1
(x)(ct

∂φ

∂x
+
x

c

∂φ

∂t
) = 0

NφN−1
(x)(ct

∂φ

∂y
+
y

c

∂φ

∂t
) = 0

NφN−1
(x)(ct

∂φ

∂z
+
z

c

∂φ

∂t
) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(ct
∂

∂xi
−
xi
c

∂

∂t
)φ(x) = 0 i = 1,2,3 (5.1.17)

and

NφN−1
(x)(y

∂φ

∂x
− x

∂φ

∂x
) = 0

NφN−1
(x)(x

∂φ

∂z
− z

∂φ

∂x
) = 0

NφN−1
(x)(z

∂φ

∂y
− y

∂φ

∂z
) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(xi
∂

∂xJ
− xJ

∂

∂xi
)φ(x) = 0 i ≠ J , i,J = 1,2,3 (5.1.18)

Because of spatial homogeneity ∂xφ = ∂yφ = ∂zφ = 0 so from the first set of differtial equations
above we ∂tφ = 0. Then J0(x) = J0, i.e., our background current is a constant.

The spacetime we’r working with is effectively static, this means it’s not made up of dynam-
ical degrees of freedom. How can you resolve that with an ACD? From the quantum mechanical
point of view, there is nothing like exact de Sitter because having no classical solution is re-
alized in nature (you cannot freeze the quantum fluctuations). We have to allow for quantum
flucutations. What does it mean to be approximately close to de Sitter? We need a criteria. We
can take the conditions we have for the current construction right now (namely commutation
with de Sitter generators). Now we perturbe this equation to a certain order. The current now
consists of a lot of fields such that they respect de Sitter isometries and we add a certain amount
of fields that don’t obey the isometries. But we demand that the equation [J , g] = 0 still holds
and this gives us a backreaction relation for how δφ and δψ are connected. That would be the
qualification what means to be close. [δJ , g] ≈ 0 would be even fulfilled at the perturbative
level.

5.2 The de Sitter power spectrum

I want to calculate the power spectrum of the inflaton field. In our new language two ways are
possible:
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5.2. The de Sitter power spectrum

1. we try to come up with a bi-local operator which is associated with the power spectrum

2. I consider the bi-local fluctuations already emerging from the auxiliary currents.

Shall we then assign to the power spectrum an operator and view it as a measurement of that
operator or should we say that the power spectrum arises because of the fluctuations in the
currents? To some extent the power spectrum is very well measured from an operator φ(x)φ(y)
which I evaluate in the Bunch-Davies vacuum. In the first option I insert a measurement device
in an approximate de Sitter background. The first order calculation should give the standard
result. In the second one it seems that, contrary to the original calculation, the result doesn’t
depend on any scale because we integrate over 2 out of the 4 coordinate we have in the diagram
(see below).

5.2.1 A first attempt

We have an operator, Pδφ(x, y) = δφ(x)δφ(y) where δφ is the inflaton fluctuation, and we can
think of it as a measuring device. What does this operator do? At the first order, it connects
two endpsoint, x and y. But after the first term is done, the only thing it can do is connecting
to other stuff. The minimal connection to other stuff is via at least two additional points like
an open square diagram. The other diagrams just enhance the connection between z and u.
Basically, what is measuring the power spectrum is the open square and the rest is just quanta
that don’t directly partecipate in the power spectrum: they just correct it.

We have a measurement device operator that when applied to a state gives us the power
spectrum of a certain fluctuation type in that state. The measurement device is at two spacetime
points and it consists of two fields, which means you can connect it to two other fluctuations.

⟨G∣Pδφ ∣G⟩ = (⟨G0∣ + δ ⟨G∣)Pδφ(x, y) (∣G0⟩ + δ ∣G⟩) (5.2.1)

We have an observable, we put it in the universe so you have your measurement device: you
measure 2 quanta in the universe but there are loads of other quanta floating around. Now
suppose we would have many more fluctuations: they would not display in our measurement
process. As we proceed, we cannot have an inflaton fluctuation without causing the background,
i.e. the scalar graviton fluctuation δψ, to fluctuate as well. Even if we couldn’t forget about
backreaction in nature, let’s ignore the graviton contributions to the auxiliary current (D.0.2):
(ψ + δψ)Nψ Ð→ 1. Now let’s expand the interpolating current to the second order in the fluctu-
ations:

J (x) = J0 + δJ (x) = (φ + δφ)Nφ =

≈ φNφ +Nφφ
Nφ−1δφ +Nφ(Nφ − 1)φNφ−2δφ2

+ ⋅ ⋅ ⋅ =

= J0 + δ(1)J (x) + δ(2)J (x).

(5.2.2)

Using the definition (5.1.4), the state we work with is

∣G⟩ = ⨋L0

G0(L0)∫ σ(z)FL0(z)φ
Nφ ∣Ω⟩+

+Nφ⨋L1

G1(L1)∫ σ(z)FL1(z)φ
Nφ−1δφ ∣Ω⟩+

+Nφ(Nφ − 1)⨋L2

G2(L2)∫ σ(z)FL2(z)φ
Nφ−2δφ2

∣Ω⟩ .

(5.2.3)
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We know that for ⟨Ω∣φNφ−kφNφ−m ∣Ω⟩ ≠ 0 we need k =m, so we get

⟨G∣Pδφ(x, y) ∣G⟩2 = N
2
φ(N

2
φ − 1)2

⨋L′2
⨋L2

G
∗
2 (L

′
2)G2(L2)

× ∫ σ(z)σ(u)F ∗
L′2(u)FL2(z)C(2,2)×

× ⟨0∣ δφ2
(u)Pδφ(x, y)δφ

2
(z) ∣0⟩

(5.2.4)

where C(2,2) = ⟨Ω̃∣φNφ−2(u)φNφ−2(z) ∣Ω̃⟩. The other three contributions would give discon-

nected diagrams so we don’t consider them.
There is a hierarchy: those terms which have the least amount of fluctuations should be the

dominant contributions. The open square (Fig. 5.1) is leading. But in what sense? We have
no coupling constant here! Which term would be more important? If we let Nφ Ð→ ∞, the
background becomes arbitrary important and the system becomes more and more classical in a
sense. The background field opertors are going to end up in the condensates and the condensates
are the classicalized version of our background, i.e., the higher the condensates are populated
the more classical our background is. We are penalized by something out of the condensate
promoting it to fluctuation and letting it propagate. On one hand, it’s a physical input, on the
other hand, it’s a technicality.

Naively speaking, you start out with a fixed number of fields operator Nφ and then you
split the field φ(x) in a background operator plus fluctuation. We have a general fields operator
and we split it up in two pieces: J (x) = φ(0)(x) + φ(1)(x). φ(0)(x) respects the isometries and
it is a good background because φ(1)(x) is only a small violation of the isometries (but the
quantum fluctuations don’t destabilize the spacetime). If it’s not small, we can’t sit in de Sitter.
Now we have the split meaning that in every term of our expansion we get a certain number of
background field operators and a certain number of fluctuations such that the total number of
fields will be always the same. Let’s call φ(0) ≡ φ(x) and φ(1) ≡ δφ. From the computational
point of view: we have a mean field split

(φ + δφ)Nφ = φNφ +Nφδφφ
Nφ−1

+ ⋅ ⋅ ⋅ =

≈ φNφ (1 +
Nφδφ

⟨φ⟩
) .

(5.2.5)

In the mean-field split, you want the background to be the dominant part and just have small
perturbations. But the Nφ appears here. We want the second term to be small compared to
1. Then ⟨φ⟩ ≫ Nφδφ (δφ is a typical energy). In the physical point of view: ⟨φ⟩ is fixed to
have a mean-field approximation. In the limit Nφ Ð→ ∞ (semiclassical limit) the background
must become rigid so we can neglect the backreaction. The background contribution becomes
completely dominant and this tells us that all the fluctuations decouple in that limit: δφÐ→ 0.
Whatever you put Nφ Ð→∞, also the importance of the background increases infinitely and we
have a rescaling δφ ∼ 1

Nφ
.

Furthermore, we demand ∣G⟩ ≈ ∣G0⟩ = ∑
N
i=0 αi ∣Gi⟩ (Eq. (5.1.1)). Thus ∣α0∣ >> ∣α1∣ >> ⋅ ⋅ ⋅ >>

∣αN ∣.

∫ σ(x)F ∗
Lm(x)FL0(x)

m,n ≠ 0

<< ∫ σ(x) ∣FL0(x)∣
2

(5.2.6)

∫ σ(x) ∣FLm(x)∣
2 m,n ≠ 0

<< ∫ σ(x) ∣FL0(x)∣
2

(5.2.7)

Let’s compute ⟨0∣ δφ2(u)Pδφ(x, y)δφ
2(z) ∣0⟩ ≡ ξδφ(u,x, y, z), which explicitly is

ξδφ = 2 ⟨δφ(u)δφ(z)⟩ [⟨δφ(u)δφ(x)⟩ ⟨δφ(y)δφ(z)⟩ + ⟨δφ(u)δφ(y)⟩ ⟨δφ(x)δφ(z)⟩] (5.2.8)
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5.2. The de Sitter power spectrum

(a) (b)

Figure 5.1: The only physical diagrams where all the lines are inflatons since we neglected backreaction

From the results in the Appendix D:

⟨0 ∣δφ(u)δφ(z)∣0⟩ = ∫
d3 k

(2π)32
√

∣k∣2 +m2
φ

eik(u−z)∣
os

(5.2.9)

where ”os” means on shell, i.e., the dispersion relations are fixed p0 = ω(p) and q0 = ω(q). Then
we get

ξδφ(u,x, y, z) =∫
d3 k

(2π)3 2
√

∣k∣2 +m2
φ

eik(u−z)∣
os

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∫
d3 p

(2π)3 2
√

∣p∣2 +m2
φ

eip(u−x) ×

× ∫
d3 p′

(2π)3 2
√

∣p′∣2 +m2
φ

eip
′(y−z)

+ ∫
d3 p

(2π)3 2
√

∣p∣2 +m2
φ

eip(u−y)×

× ∫
d3 p′

(2π)3 2
√

∣p′∣2 +m2
φ

eip
′(x−z)

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

RRRRRRRRRRRRRRRRRos

(5.2.10)

The whole expression gives

×

× {eiu(k+p) e−iz(k+p
′) [e−ipxeip

′y + e−ipyeip
′x]}∣

os

(5.2.11)

We can apply the Operator Product Expansion (OPE) to C(2,2) then, by equations of motion,
higher order is suppressed: we have the fields at one point and we can shift them by unitary
translation (see previous chapter). The lowest order term is dominant and we can think at
C(2,2) as local. Suppose we can write

FLk = F̄Lke
iPkx ⇒ ⨋Lk

→ ∫ σ̄(Pk) and Gk(Lk)→ Gk(Pk)
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thus

⟨G∣Pδφ(x, y) ∣G⟩2 =N
2
φ(Nφ − 1)2C(2,2)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∫
d3 k

(2π)3 2
√

∣k∣2 +m2
φ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∫ σ̄(P ′
2)σ̄(P2)G

∗
2 (P

′
2)G2(P2)×

× ∫
d3 p

(2π)3 2
√

∣p∣2 +m2
φ

d3 p′

(2π)3 2
√

∣p′∣2 +m2
φ

(e−ixpeiyp
′

+ e−iypeixp
′

)∣
os
×

× ∫ σ(z)σ(u)F̄ ∗
L′2F̄L2 e

iu(−P ′2+k+p)e−iz(−P2+k+p′)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=F̃ ∗

P ′
2
(k+p−P ′2)F̃P2

(k+p′−P2)
os

.

(5.2.12)

Now our unknown quantities are the functions F̄L2 and the wavefunctions G2(P2). The
wavefunction should be able to modify the power spectrum. If F̄L2 were 1, then the wavefunctions
would give any statistical weight on the actual observable we calculated. To have a non-trivial
dependence we should keep F̄L2 general.

Why did we introduce FLk(x)? The current is an operator. In some sense I can understand
the functional J (x) depending on FLk(x), like in QFT we have creation and annihilation oper-
ators: usually in physics they depend on p, but they is not really good because their algebra is

defined as [âp, â
†
p′] = δ(p − p′). But we can also introduce creation and annihilation operators

which depend on functions and those are clean objects because they don’t give the Dirac delta.
Then you introduce an operator a†(f), which is basically a†(f) = ∫ d3 pa†(p)f(p). The meaning
is that you create a particle in a state described by the function f : the process of creation does
not only move the counter up, but it also tells you what the wavefunction of the state which
has been created. This is the idea we had in mind when we introduced FLk(x), i.e., creation of
a state represented by the wavefunction FLk(x).

For pure perturbations the exponential in FL2(x) makes sense because this would be the
momentum of the particle. As soon as I have some fluctuations in my current, then I can
associate a plane wave with it and I would assume that I can write it as eiP2x. It’s basically
a measure of the frequency of the particle with respect to Minkowski spacetime (even though
you have bound state) and you can define the Casimir operator of the particle which is P 2. In
a pure de Sitter state without any perturbations the notion of P 2 is gone. We associate P2 to
perturbations δφ in de Sitter within the current. The plane waves have mass dimension if they
are a function of P2: we need to compensate with a mass scale (see the next subsection for more
details). This is encoded in the F̄L2 . 1 In the end F̄ ∗

L′2 and F̄L2 are constant functions of

∫ σ(z)σ(u)eiu(−P
′
2+k+p)e−iz(−P2+k+p′) = δ4

(−P ′
2 + k + p)δ

4
(P2 − k − p

′
) (5.2.13)

Suppose we wouldn’t have the wavefunction G2, then the result we might get is the power
spectrum in Minkowski spacetime and we have to see how the wavefunctions, that are actually
telling us that we are in the de Sitter, transform the power spectrum in Minkowski spacetime

1Even if we set it to 1, we can reabsorb this dependence in the definition of the condensate.
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to the one in de Sitter. Inserting the previous result in (5.2.12):

⟨G∣Pδφ(x, y) ∣G⟩2 = N
2
φ(Nφ − 1)2C(2,2)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∫
d3 k

(2π)3 2
√

∣k∣2 +m2
φ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∫ σ̄(P ′
2)σ̄(P2)G

∗
2 (P

′
2)G2(P2)×

× ∫
d3 p

(2π)3 2
√

∣p∣2 +m2
φ

d3 p′

(2π)3 2
√

∣p′∣2 +m2
φ

(e−ixpeiyp
′

+ e−iypeixp
′

)∣
os
×

× δ4
(−P ′

2 + k + p)δ
4
(P2 − k − p

′
)∣
os

.

(5.2.14)

Now let’s trasform the d3 p and d3 p′ integrals in 4-integrals:

∫ d3 p = ∫ d4 p θ(p0
)δ(p2

= p2
0 − p2

) (5.2.15)

and the same for p′. Then we can get rid of these two integrals:

∫
d4 p

(2π)3 2
√

∣p∣2 +m2
φ

θ(p0
)δ(p2

)∫
d4 p′

(2π)3 2
√

∣p′∣2 +m2
φ

θ(p′0)δ(p′2)×

× left.δ4
(−P ′

2 + k + p)δ
4
(P2 − k − p

′
) (e−ixpeiyp

′

+ e−iypeixp
′

)
os
=

=
θ(P ′0

2 − k0)δ((P ′
2 − k

0)2)

(2π)3 2

√

∣P′
2 − k∣

2
+m2

φ

θ(P 0
2 − k

0)δ((P2 − k
0)2)

(2π)3 2
√

∣P2 − k∣2 +m2
φ

(e−ix(P
′
2−k)eiy(P2−k) + e−iy(P

′
2−k)eix(P

′
2−k))∣

os

(5.2.16)

Thus

⟨G∣Pδφ(x, y) ∣G⟩2 =N
2
φ(Nφ − 1)2C(2,2)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∫
d3 k

(2π)3 2
√

∣k∣2 +m2
φ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∫ σ̄(P ′
2)σ̄(P2) G

∗
2 (P

′
2)G2(P2)∣os ×

×
θ(P ′0

2 − k0)δ((P ′
2 − k

0)2)

(2π)3 2

√

∣P′
2 − k∣

2
+m2

φ

θ(P 0
2 − k

0)δ((P2 − k
0)2)

(2π)3 2
√

∣P2 − k∣2 +m2
φ

×

× (e−ix(P
′
2−k)eiy(P2−k) + e−iy(P

′
2−k)eix(P

′
2−k))∣

os
=

=N2
φ(Nφ − 1)2C(2,2)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∫
d3 k

(2π)3 2
√

∣k∣2 +m2
φ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∫ d3 P ′
2 d3 P2G

∗
2 (P

′
2)G2(P2)×

×
1

(2π)3 2

√

∣P′
2 − k∣

2
+m2

φ

1

(2π)3 2
√

∣P2 − k∣2 +m2
φ

×

× (e−ix(P
′
2−k)eiy(P2−k) + e−iy(P

′
2−k)eix(P

′
2−k))∣

os

(5.2.17)
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Let’s rearrange this expression

⟨G∣Pδφ(x, y) ∣G⟩2 =N
2
φ(Nφ − 1)2C(2,2)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∫
dΩ dk k3

(2π)3 2k
√

∣k∣2 +m2
φ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∫
d3 P ′

2

(2π)3

d3 P2

(2π)3
G
∗
2 (P

′
2)G2(P2)×

×
1

(2π)3 2

√

∣P′
2 − k∣

2
+m2

φ

1

(2π)3 2
√

∣P2 − k∣2 +m2
φ

×

× (eik(x−y)e−ixP
′
2eiyP2 + e−ik(x−y)e−iyP

′
2eixP2)∣

os
.

(5.2.18)

The previous equation has then the form

⟨G∣Pδφ(x, y) ∣G⟩2 ∼ ∫ d lnk
sin(k∣x − y∣)

k∣x − y∣
PMδφ (k)g(k;x, y) (5.2.19)

where PMδφ is the power spectrum in Minkowski spacetime and

g(k;x, y) =∫
d3 P ′

2

(2π)3

d3 P2

(2π)3
G
∗
2 (P

′
2)G2(P2)

1

(2π)3 2

√

∣P′
2 − k∣

2
+m2

φ

1

(2π)3 2
√

∣P2 − k∣2 +m2
φ

×

× (e−ixP
′
2eiyP2 + e−iyP

′
2eixP

′
2)∣

os
.

Let’s shift the k dependence in the wavefunction:

⟨G∣Pδφ(x, y) ∣G⟩2 =N
2
φ(Nφ − 1)2C(2,2)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∫
dΩ dk k3

(2π)3 2k
√

∣k∣2 +m2
φ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∫
d3Q′

2

(2π)3

d3Q2

(2π)3
G
∗
2 (Q

′
2 + k)G2(Q2 + k)×

×
1

(2π)3 2

√

∣Q2
′∣

2
+m2

φ

1

(2π)3 2
√

∣Q2∣
2
+m2

φ

×

× (e−ixQ
′
2eiyQ2 + e−iyQ

′
2eixQ2)∣

os

(5.2.20)

where Q2 = P2 −k and Q′
2 = P′

2 −k. In this way I decouple those integrals from the one over k.
In my actual calculation I found a modification of the orthodox Minkowski spacetime. From

my calculation we learn that those diagrams we calculate in Minkowski spacetime in our new
language don’t correspond to the diagrams you would calculate in standard QFT, but that
means that even the Minkowski result will get modified and we want to understand how much it
gets modified and how we can reproduce from the modified Minkowski calculation the de Sitter
power spectrum. We have to note the difference between these two results.

Can the modified Minkowski result be converted to another spacetime geometry? A priori
we don’t know how the wavefunctions look like. Due to the construction we made, the power
spectrum in Minkowski spacetime gets convoluted with the wavefunction. Now the question
is: given that the diagramatic is still in Minkowski spacetime, how do the wavefunctions need
to look like such that when we build the convolution with the wavefunction and the modified
Minkowski power spectrum we would get out the de Sitter power spectrum? The wavefunctions
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5.2. The de Sitter power spectrum

have to depend on the curvature scale (on the Hubble radius) and then on H. This result
assumes that we load the information about the geometry at every spacetime point with equal
probability. Can we get an idea about G2(P2) that reproduces a reasonable power spectrum?
The Minkowski power spectrum goes like k3, while the de Sitter power spectrum goes like k2

and then evaluated at the curvature scale. That’s basically what we have to achieve.

5.2.2 A second attempt

As in the previous subsection, we forget about graviton backreaction, but this time we expand
the current until the first order

J (x) = φN(x)ψM(x), φ(x) = φ(0)
(x̂) + φ(1)

(x), ψ(x)
!
= ψ(0)

(x̂) (5.2.21)

where x̂ points out that the background fields don’t depend on any spacetime point since we sit
in a pure de Sitter background.

J (x) = J (0)
(x̂) +J (1)

(x) + . . . , J
(0)

(x̂) = φ(0)N
(x̂)ψ(0)M

(x̂),

J
(1)

(x) = Nφ(0)N−1
(x̂)ψ(0)M

(x̂)φ(1)
(x)

(5.2.22)

Introduce θ(A,B; x̂) ∶= φ(0)N(x̂)ψ(0)M(x̂). Then

J (x) = θ(N,M ; x̂) +Nθ(N − 1,M ; x̂)φ(1)
(x) + . . . (5.2.23)

In de Sitter, θ(x̂) ≠ f(x) we drop the x̂-dependence and ”renormalize”

J (x)→ J (x) + θ(N,M) ∶ J (x) = Nθ(N − 1,M)φ(1)
(x) + . . . (5.2.24)

The approximate G-quantum bound state is given by

∣G, φ(1)
(x)[FL1]⟩ = ⨋L1

G(L1)Nθ(N − 1,M)φ(1)
[FL1]∣Ω⟩ (5.2.25)

where with φ(1)(x)[FL1] I mean φ(1)(x)[FL1] = ∫ σ(x)FL1(x)φ(x). Thus

⟨G, φ(1)
[FL′1]∣G, φ

(1)
[FL1]⟩ =N

2
⨋L1
⨋L′1
G
∗
(L

′
1)G(L1)⟨Ω∣θ2

(N − 1,M)φ(1)2
[FL1]∣Ω⟩ =

= N2
⟨Ω∣θ2

(N − 1,M)∣Ω⟩⨋L1
⨋L′1
G
∗
(L

′
1)G(L1)⟨0∣φ

(1)2
[FL1]∣0⟩

(5.2.26)

where we drop the normal order term in φ(1)2[FL1] ∶= φ
(1)2[FL1] ∶ +⟨0∣φ

(1)2[FL1]∣0⟩. Now we
need to calculate ⟨0∣φ(1)2[FL1]∣0⟩

⟨0∣φ(1)2
[FL1]∣0⟩ = ∫ σ(x, y)F ∗

L′1(x)FL1(y)⟨0∣φ(x)φ(y)∣0⟩ (5.2.27)

where we φ(x) ≡ δφ(x) of the previous is our usual inflaton field.

⟨0∣φ(x)φ(y)∣0⟩ =∫ ω(p,q)eipxe−iqy⟨0∣a(p)a†
(q)∣0⟩ =

= ∫
d3 p

(2π)32p0
eip(x−y) =

= ∫
dΩ d∣p∣∣p∣2

(2π)3

1

2p0(∣p∣)
e−ip0(∣p∣)(x−y)0)ei∣p∣∣x−y∣cos(α) =

= (2π)−2
∫

∞

0
d∣p∣∣p∣

2 e
−ip0(∣p∣)(x−y)0)

2p0(∣p∣)

2i sin(∣p∣∣x − y∣)

i∣p∣∣x − y∣

(5.2.28)
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where ω(p) ∶=
d3 p

(2π)3/2(2p0)1/2 and α is the angle between (p,x − y).

At x0 − y0 = 0,

⟨0∣φ(x)φ(y)∣0⟩ = ∫
∞

0

d∣p∣

∣p∣

sin(∣p∣∣x − y∣)

∣p∣∣x − y∣

∣p∣3

2π2

1

2p0(∣p∣)
(5.2.29)

That is the usual result for the primordial power spectrum in Minkowski spacetime.

A ∶=⟨G, φ(1)
[FL′1]∣G, φ

(1)
[FL1]⟩ =

=N2
⟨Ω∣θ2

(N − 1,M)∣Ω⟩⨋L1,L′1
G
∗
(L

′
1)G(L1)∫ σ(x, y)F ∗

L′1(x)FL1(y)⟨0∣φ(x)φ(y)∣0⟩ =

=N2
⟨Ω∣θ2

(N − 1,M)∣Ω⟩∫ ω(p,q)⟨0∣a(p)a†
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(L
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1)G(L1)×
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L′1(x)FL1(y)∣

os
=

=N2
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(q)∣0⟩ ⨋L1,L′1

G
∗
(L

′
1)G(L1)F̃

∗
L′1(p)F̃L1(q)∣

os

=

=N2
⟨Ω∣θ2

(N − 1,M)∣Ω⟩∫
d3 p

(2π)32p0(∣p∣)
⨋L1,L′1

G
∗
(L

′
1)G(L1)F̃

∗
1 (p)F̃1(p)∣

os

=

=N2
⟨Ω∣θ2

(N − 1,M)∣Ω⟩∫
dΩ

4π
∫

∞

0

d∣p∣

∣p∣
⨋L1,L′1

G
∗
(L

′
1)G(L1)F̃

∗
L′1(p)F̃L1(p)∣

os

∣p∣3

2π2

1

2p0(∣p∣)

(5.2.30)

Now we want to infere the dimensions of our unknown functions. We know that

⟨G∣G⟩ = 1 (5.2.31)

to be a physical state and so [∣G⟩] = 0. The state ∣G⟩ can be expressed as (5.1.2). Let us examine
every component of this expansion. In momentum representation

⟨G∣G⟩ =∫ d4P ⟨G∣P ⟩⟨P ∣G⟩ =

=∫ d4P ∣G(P )∣
2
= 1

(5.2.32)

Then [G(P )] = −2. Since ∣Ω⟩ is normalized, the state is dimensionless as ∣G⟩. If we assume the

current to be J (x) ∼ φN(x), the mass dimension of a scalar (canonically normalized) field is 1.
Then [J (x)] = N . The only unknow dimension is the one of FL(x) (knowing that [d4 x] = −4
and [d4 p] = 4)

[∫ d4 xJ (x)∫ d4 P G(P )] = 2 +N − 4 = N − 2

⇒ [FL(x)] = 2 −N.
(5.2.33)

So we can parametrize FL1(x) as f(H,mφ)e
iP1x where P1 is the momentum of the perturbation

and f(H,mφ) is a constant function, which has dimension 2−N , depending on the characteristic
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scales of our de Sitter space: Hubble scale and the mass of the inflaton. Eq. (5.2.30) becomes

A ∶=⟨G, φ(1)
[FL′1]∣G, φ

(1)
[FL1]⟩ =

=N2
⟨Ω∣θ2

(N − 1,M)∣Ω⟩⨋L1,L′1
G
∗
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′
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=N2f2
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=
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1 G
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1)δ
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os
=

=N2f2
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(N − 1,M)∣Ω⟩∫
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1 G
∗
(P ′

1)G(P1)×

× δ(4)(p − P ′
1)δ

(4)
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=

=N2f2
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G
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∣p∣3

2π2

1

2p0(∣p∣)

(5.2.34)

The wavefunctions G(p) should reproduce the de Sitter power spectrum on superhorizon scales.
We look then for a function which has the right dimensionality and which has an extremely
compact support (peaked around p = H) such in order to get the standard de Sitter power
spectrum:

G(p) =
1

πm2
exp

⎡
⎢
⎢
⎢
⎢
⎣

−
1

2
(
∣p∣ −H

m
)

2⎤
⎥
⎥
⎥
⎥
⎦

(5.2.35)

Hence

A =
N2

π2m4
φ
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(N − 1,M)∣Ω⟩∫
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2π2
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2p0(∣p∣)

(5.2.36)
The Gaussian main contribution selects the values around p =H. We know that mφ ≪H so we

can expand the denominator p0 =
√

∣p∣2 +m2
φ

p0
=H

√

1 + (
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H
)
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=
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⎛

⎝
1 +

1

2
(
mφ

H
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H
)

3
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⎞

⎠

(5.2.37)

Our final result is then

A ≈
N2

π2m4
φ

f2
(H,mφ)⟨Ω∣θ2

(N − 1,M)∣Ω⟩∫
dΩ

4π
∫
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=
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)

(5.2.38)
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Appendix A

Constant tensor mode

This appendix will prove that in all cases there is a tensor mode whose amplitude remains
constant outside the horizon, even where some particles may have mean free times comparable
to the Hubble time. The argument is based on the observation that for zero wave number the
Newtonian gauge field equations and the dynamical equations for matter and radiation as well
as the condition k = 0 are invariant under coordinate transformations that are not symmetries
of the unperturbed metric. The most general such transformations are

x0
→ x0

+ ε(t), (A.0.1)

xi → (δij −
1

2
ωij)x

j , (A.0.2)

where H ≡ ȧ
a , ε(t) is an arbitrary function of time and ωij = ωji is an arbitrary constant matrix.

under this conditions we have such a theorem: since the metric satisfies the field equations both
before and after the transformation, the change in the metric under these transformations must
also satisfy the field equations. The coordinate transformations (A.0.2) give

g̃00(x̃
µ
) =

∂xρ

∂x̃0

∂xσ

∂x̃0
gρσ(x

µ
) =

=
∂x0

∂x̃0

∂x0

∂x̃0
g00(x

µ
) =

≈ g00(x
µ
) (1 − ε̇(t))

2
=

≈ g00(x
µ
) − 2ε̇(t)g00(x

µ
) (linear order)

(A.0.3)

and

g̃ij(x̃
µ
) =

∂xρ

∂x̃i
∂xσ

∂x̃j
gρσ(x

µ
) =

=
∂xk

∂x̃i
∂xl

∂x̃j
gkl(x

µ
) =

≈ (δik +
1

2
ωik)(δjl +

1

2
ωjl)a

2
(t)δkl =

≈ a2
(t)(δikδjl +

1

2
δikωjl +

1

2
δjlωik) δkl = (linear order)

= a2
(t)(δikδjk +

1

2
δikωjk +

1

2
δjkωik) =

= a2
(t)(δij +

1

2
ωji +

1

2
ωij)

ωij = ωji
= a2

(t) (δij + ωij) .

(A.0.4)
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A. Constant tensor mode

We have to expand also the argument of because an infinitesimal transformations is given by
the Lie derivative of gµν :

a2
(t̃) ≡ a2

(x̃0) = a2
(x0

+ ε(t))

≈ a2
(t) + 2a(t)ȧ(t)ε(t) =

= a2
(t) + 2H(t)a2

(t)ε(t).

(A.0.5)

The change is simply

δg00 = ε̇(t), (A.0.6)

δgi0 = 0, (A.0.7)

δgij = a
2
(t) [−H(t)ε(t)δij + ωij] . (A.0.8)

This means that for zero wave number we always have a solution with scalar modes

Ψ =Hε −
ωii
3
, Φ = −ε̇ (A.0.9)

and a tensor mode

hij = ωij −
1

3
δijωkk. (A.0.10)

These are just gauge modes for zero wave number, but if they can be extended to non-zero wave
number, they become physical modes, since (A.0.2) are not symmetries of the field equations
except for zero wave number. For the scalar modes there are field equations that disappear in
the limit of zero wave number, so that the conditions Φ = Ψ−8πGΠS and δu = ε (where Πs is the
scalar part of the anisotropic inertia and δu is the perturbation to the velocity potential) must
be imposed on the solutions (A.0.9) for them to have an extension to non-zero wave number. It
follows then that the zero wave number scalar modes that become physical for non-zero wave
number satisfy

ε̇ = −Hε +
ωkk
3

− 8πGΠS , (A.0.11)

δu = ε. (A.0.12)

Then for zero wave number the quantity R ≡ −Ψ +Hδu has the time-indipendent value

R =
ωkk
3
. (A.0.13)

For tensor modes there are no field equations that disappear for zero wave number, so the
solution hij =const automatically has an extension to a physical mode for a non-zero wave
number. The above theorem shows that this result applies even when some particle’s mean
free time is comparable with the Hubble time, in which case neither the hydrodynamic nor the
free-streaming approximation are applicable.

The solution with ḣij = 0 for zero wave number is not the only solution, but the other
solutions decay rapidly after horizon exit. There is noanisotropic inertia in scalar field theories
and in absence on anisotropic inertia

ḧij + (
3ȧ

a
) ḣij − (

∇2

a2
)hij = 16πGΠij (A.0.14)

for zero wave number has two solutions, one with hij a constant, and the other with hij ∝ a−3,
for which hij rapidly becomes a constant.
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Appendix B

Solution to Weinberg’s gravitational
waves equation

In [64] Weinberg gives an integrodifferential equation for the propagation of cosmological grav-
itational waves. In particular he writes an equation for the perturbation to the metric hij(t,x)
and then defines χ(u) as

hij(u) = hij(0)χ(u), (B.0.1)

where u is the conformal time multiplied by the wvenumber

u = k∫
t dt′

a(t′)
. (B.0.2)

χ(u) satisfies an integrodifferential equation ehich for short wavelengths (wavelengths which
entered the horizon while the universe was still radiation dominated) is given by [64]

u2χ′′(u) + 2uχ′(u) + u2χ(u) = −24fν(0)∫
u

0
dU(u −U)χ′(U). (B.0.3)

The fraction of the energy density in neutrinos is fν(0) = 0.40523 and the kernel K will be
discussed in detail below. The initial conditions are

χ(0) = 1, χ′(0) = 0. (B.0.4)

In the absence of free-streaming neutrinos the right-hand-side of (B.0.3) is zero and χ(u) = sinu
u .

The suppression of these modes is due to the presence of the neutrinos where the solutions
of (B.0.3) approaches, for u >> 1,

χ(u)Ð→ A
sin(u + δ)

u
, (B.0.5)

and the value of A2 is the quantitative measure of that suppression. Our aim is to provide an
analytic solution od (B.0.3) and (B.0.4).

A solution to Eq. (B.0.3) is a series of spherical Bessel functions [59]

χ(u) =
∞
∑
n=0

anjn(u). (B.0.6)

Inserting Eq. (B.0.6) in the left-hand-side of Eq. (B.0.3) and using the differential equation for
spherical Bessel functions leaves

∞
∑
n=0

n(n + 1)anjn(u). (B.0.7)
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B. Solution to Weinberg’s gravitational waves equation

The RHS of Eq. (B.0.3) requires more work. The kernel is itslef a sum of spherical Bessel
functions

K(u) =
1

16
∫

1

−1
dx (1 − x2

) eixu =

= −
sinu

u3
−

3 cosu

u4
+

3 sinu

u5
=

=
1

15
(j0(u) +

10

27
j2(u) +

3

7
j4(u)) ,

(B.0.8)

and the derivative of χ(u) is given by

χ′(u) =
∞
∑
n=0

anj
′
n =

=
∞
∑
n=0

an
[njn−1(u) − (n + 1)jn+1(u)]

(2n + 1)
.

(B.0.9)

So the RHS of Eq. (B.0.3) is −CI(u)0 with C = 24
15fν(0) = 0.648368 and I(u) is given by

I(u) = ∑
m=0,2,4

dm
∞
∑
n=0

an
(2n + 1)

In,m(u) (B.0.10)

where
In,m(u) = ∫

u

0
dUjm(u −U) [njn−1(U) − (n + 1)jn+1(U)] . (B.0.11)

The dm are given by Eq. (B.0.8) where we have factored out a 1/15. Let’s evaluate In,m: first,
use the fact that the Fourier transform of a Legendre polynomial is a spherical Bessel function
(Eq. 10.1.14 in [1])

jn(x) =
(−i)n

2
∫

1

−1
ds eixsPn(s) (B.0.12)

to replace both Bessel functions in Eq. (B.0.11).

Im,n(u) =∫
u

0
dU

⎧⎪⎪
⎨
⎪⎪⎩
∫

1

−1

(−i)m

2
ds ei(u−U)sPm(s) [n∫

1

−1

(−i)n−1

2
dt eiUtPn−1(t) +

−(n + 1)∫
1

−1

(−i)n+1

2
dt eiUtPn+1(t)]

⎫⎪⎪
⎬
⎪⎪⎭

=

=∫

u

0
dU

⎧⎪⎪
⎨
⎪⎪⎩
∫

1

−1

(−i)m

2
ds ei(u−U)sPm(s)∫

1

−1
dt eiUt [

(−i)n−1

2
nPn−1(t) +

−
(−i)n+1

2
(n + 1)Pn+1(t)]

⎫⎪⎪
⎬
⎪⎪⎭

(B.0.13)

This makes the integral over U trivial and we have

∫

u

0
dU e−iUseiUt = ∫

u

0
dU eiU(t−s)

=

=
eiu(t−s) − 1

i(t − s)
= (−i)

eiu(t−s) − 1

t − s
=

= (−i)
eitu − eisu

eisu(t − s)
,

(B.0.14)
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Hence, we get

In,m(u) =
(−i)n+m

4
∫

1

−1
ds∫

1

−1
dt
eitu − eisu

t − s
Pm(s) [nPn−1(t) + (n + 1)Pn+1(t)] . (B.0.15)

Now use the definition od the Legendre function of the second kind (8.8.3 in [1]),

Qn(z) =
1

2
∫

1

−1
dx(z − x)−1Pn(x), (B.0.16)

to evaluate the integral in Eq. (B.0.15) over the variable that does not appear in the exponent
(s in the first term, t in the second) to obtain

In,m(u) =
(−i)n+m

2
∫

1

−1
dt eitu {Qm(t) [nPn−1(t) + (n + 1)Pn+1(t)] + Pm(t) [nQn−1(t) + (n + 1)Qn+1(t)]} .

(B.0.17)
Next, by replacing the remaining exponential with the familiar expression from quantum me-
chanical scattering,

eitu =∑
l

(2l + 1)iljl(u)Pl(t), (B.0.18)

the expressione for In,m(u) becomes

In,m(u) =∑
l

(2l + 1)

2
(−i)n+m−ljl(u)∫

1

−1
dtPl(t) {Qm(t) [nPn−1(t) + (n + 1)Pn+1(t)] +

+ Pm(t) [nQn−1(t) + (n + 1)Qn+1(t)]} .

(B.0.19)

Eq. (B.0.19) can be simplified using (8.6.19 in [1]),

Qm(x) =
1

2
Pm(x) ln

1 + x

1 − x
−Wm−1(x), (B.0.20)

where

Wm−1(x) =

m−1
2

∑
k=0

2m − 4k − 1

(2k + 1)(m − k)
Pm−2k−1(x), (B.0.21)

and the formula

Pl(x)Pm(x) =
l+m
∑

L=∣l−m∣
∣⟨l,0,m,0∣L,0⟩∣

2
PL(x) (B.0.22)

to express Pl(x)Pm(x) in terms of PL(x)’s and, with the aid of Eq. (B.0.20), Pl(x)Qm(x) in
terms of QL(x)’s as

Pl(x)Qm(x) =
l+m
∑

L=∣l−m∣
[∣⟨l,0,m,0∣L,0⟩∣

2
(QL(x) +WL−1(x))] − Pl(x)Wm−1(x). (B.0.23)

Finally, the terms in Eq. (B.0.19) invlving the products of Pn(x)’s and Qm(x)’s cancel using
(8.14.10 in [1]),

∫

1

−1
dx (QL(x)Pm±1(x) + Pl(x)Qm±1) = 0, (B.0.24)
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B. Solution to Weinberg’s gravitational waves equation

and In,m(u) reduces to

In,m(u) =∑
l

(2l + 1)

2
(−i)n+m−ljl(u)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∫

1

−1
dt

⎛
⎜
⎝

l+m
∑

L=∣l−m∣
[∣⟨l,0,m,0∣L,0⟩∣

2
(QL(t) +WL−1(t))]+

− Pl(t)Wm−1(t)) [nPn−1(t) + (n + 1)Pn+1(t)] + ∫
1

−1
dt

⎛
⎜
⎝

l+m
∑

L=∣l−m∣
∣⟨l,0,m,0∣L,0⟩∣

2
PL(x)

⎞
⎟
⎠
×

× [nQn−1(t) + (n + 1)Qn+1(t)]} =

=∑
l

(2l + 1)

2
(−i)n+m−ljl(u)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∫

1

−1
dt

l+m
∑

L=∣l−m∣
∣⟨l,0,m,0∣L,0⟩∣

2
WL−1 [nPn−1(t) + (n + 1)Pn+1(t)] +

−∫

1

−1
dtPl(t)Wm−1(t) [nPn−1(t) + (n + 1)Pn+1(t)]} .

(B.0.25)

The contributions to the coefficient od each jl(u) in Eq. (B.0.25) can be straightforwardly
evaluated; those in the sum by directly using orthogonality and the remaining terms by expresing
the product of two Pl’s as a sum of Pl’s and again using orthogonality. The orthogonality of the
Legendre functions means that the l which is summed over in Eq. (B.0.25) can only take on the
values n + 2k where k = 0,1,2, . . . so we replace

∑
m=0,2,4

dm
2n + 1

In,m(u) (B.0.26)

with
∞
∑
k=0

cn,kjn+2k(u), (B.0.27)

i.e., the sum over l in In,m(u) is replaced by a sum over k and each cn,k is the sum of the
contributions from the three terms in the kernel, m = 0,2,4. Setting Eq. (B.0.7) equal to
−CI(u) we have

sum∞
n=0n(n + 1)anjn(u) = −C

∞
∑
n,k=0

ancn,kjn+2k(u) (B.0.28)

where the cn,kare known numbers and we can find the expansion coefficients, an, recursively bu
equating the coefficients of each rder Bessel function in Eq. (B.0.28).

The coefficients of j1(u)in Eq. (B.0.28) give

2a − 1 = −Cc1,0a1, (B.0.29)

where cn,0 is equal to 1 − δn,0 so c1,0 is 1. The only solution of this equation is a1 = 0. This
ensures that the second of the intali conditions, Eq. (B.0.4), is satisfied. The equality of the
coefficient of j3(u) shows that a3 is proportional to a1. Similarly a5 is a linear combination of
a1 and a3, a7 a linear combination of a1, a3 and a5, . . . . Thus the coefficients of all the odd
order Bessel functions in Eq. (B.0.6) are zero. There is no mixing between the coefficients of
the odd order Bessel functions and those of even order because the Clebsch-Gordan coefficients
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⟨a,0, b,0∣c,0⟩ are zero if a + b + c is an odd number.

n cn,0 cn,2 cn,4 cn,6 cn,8

0 0 −5
2 −3

2 −13
60

17
735

2 1 −3
4 −13

21 − 17
168

1
84

4 1 −143
210 −221

420 − 41
504

425
45738

6 1 −255
392 −17

35 − 93575
1280664

8 1 −19
30 −25

54

Thus the only non-zero an in Eq. (B.0.6) are those with an even n. a0 doesn’t appear in
Eq. (B.0.28) but is determined by the first of the initial consitions of Eq. (B.0.4), which fixes it
to be unity. The cn,k necarry to find a2, . . . , a8 are shown in Table reftab. The equations for
these an can be read off from Eq. (B.0.28). Using a0 = 1, we have

a2 = −C
c0,2

6 +C
(B.0.30)

a4 = −C
c0,4 + a2c2,2

20 +C
(B.0.31)

⋮ (B.0.32)

a2n = −
C∑n−1

k=0 a2kc2k,2n−2k

2n(2n + 1) +C
(B.0.33)

where C = 1.6f , which we used in Chapter 2. For large argument, all of the even order Bessel
functions go as ± sinx

x so the A in Eq. (B.0.5) is

A =
5

∑
n=0

(−1)na2n (B.0.34)

Since there no odd order Bessel functions in the expansion, the hase δ in Eq. (B.0.5) is zero.
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Appendix C

Particle density operator

In this appendix, our goal will be to represent the particle number density operator in terms of
the fields instead of creation and annihilation operators. The next step will be verifying that
the number operator observable is giving the same result both with the fields language and the
creation/annihilation operator language, that is

⟨ψ∣N̂(k)∣ψ⟩ ∼ N ∣ψ(k)∣
2
, for ∣ψ⟩anN -particle state. (C.0.1)

Our object of interest, expressed in terms of creation and annihilation operators, shall be:

n̂(k) = a†
(k)a(k). (C.0.2)

To check that this is indeed a number density operator we can apply it to a simple N - free
particle state ∣ψ⟩. The expectation value gives the number density with respect to the measure

d3 k
(2π)32Ek

. It can be written as

⟨ψ∣a†
(k)a(k)∣ψ⟩ =

N

N !
∫

N−1

∏
j=1

d3 pj

(2π)32Epj
∣ψ(p1, . . . ,pN−1,k)∣

2
, (C.0.3)

which is to be understood as an expansion of the physical state ∣ψ⟩ in terms of the Fock spae
basis {∣p1, . . . ,pN ⟩} and the identity operator

1 =
1

N !
∫

N

∏
j=1

d3 pj

(2π)32Epj
∣p1, . . . ,pN ⟩⟨p1, . . . ,pN ∣, (C.0.4)

so, (C.0.3), integrated with respect to that measure, gives

⟨ψ∣∫
d3 pj

(2π)32Epj
a†

(k)a(k)∣ψ⟩ = N⟨ψ∣ψ⟩. (C.0.5)

The main goal of this appendix is to have both, (C.0.2) and the Fock basis be constructed
out of the corresponding field, like

n(k) ∼ f(k)φφ, ∣p1, . . . ,pN ⟩ ∼ g(p1, . . . ,pN)φN ∣0⟩ (C.0.6)

and have Lorentz invariance intact, density operator remain hermitian, and thus retain its status
of a physical observable.
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C. Particle density operator

We begin by taking (C.0.2) and simply plugging in 1

ap = 2E ∫ d3 xeipxφ(t,x). (C.0.7)

For shortness reasons let us set the time to t = 0 in the previous equation. Thus we obtain

a†
(k)a(k) = (2E ∫ d3 xeipxφ(0,x))

†
2E ∫ d3 y eipyφ(0,y) =

= (2Ek)
2
∫ d3 xd3 y eik(x−y)φ(0,x)φ(0,y),

(C.0.8)

where the hermitian conjugate doesn’t have any effect on φ because we took it as a real scalar
field. Next come the Fock basis states. Here we also just plug in (C.0.7) and taking the hermitian
conjugate:

∣p⟩ = 2E ∫ d3 xeipxφ(0,x∣0⟩. (C.0.9)

Furthermore, in these integrals, Eq. (C.0.8) as well as Eq. (C.0.9), are Lorentz invariant. 2

Now, in order to calculate expectation values we would like to use a method that is the most
efficient if one is dealing with fields. For inspiration, let’s think of standard treatment of product
of fields, namely perturbative S-matrix calculations: Wick’s theorem. But to use it we don not
only need to somehow introduce a time ordering operator T , but also make everything depend
not on 3-vector but on 4-vector spacetime points.

Let’s insert a 1 using Dirac delta and Heaviside theta functions into (C.0.8):

∫ d3 xd3 y eik(x−y) [∫
∞

−∞
dx0
∫

∞

−∞
dy0 δ(x0

)δ(y0
) (θ(x0

− y0
) + θ(y0

− x0
))]φ(0,x)φ(0,y) =

= ∫ d4 xd4 y δ(x0
)δ(y0

)eik(x−y) [θ(x0
− y0

) + θ(y0
− x0

)]φ(0,x)φ(0,y) =

= ∫ d4 xd4 y δ(x0
)δ(y0

)eik(x−y) [θ(x0
− y0

)φ(0,x)φ(0,y) + θ(y0
− x0

)φ(0,x)φ(0,y)] =

= ∫ d4 xd4 y δ(x0
)δ(y0

)e−ik(x−y) [θ(x0
− y0

)φ(x0,x)φ(y0,y) + θ(y0
− x0

)φ(x0,x)φ(y0,y)] =

= ∫ d4 xd4 y δ(x0
)δ(y0

)e−ik(x−y)T [φ(x)φ(y)].

(C.0.10)

where we used that bosonic fields commute at equal times and the Minkowski product in the
exponent as k(x − y) = Ek(x

0 − y0) − k(x − y). So all in all we have

n(k) = (2Ek)
2
∫ d4 xd4 y δ(x0

)δ(y0
)e−ik(x−y)T [φ(x)φ(y)]. (C.0.11)

Eq. (C.0.7) with a Minkowski measure integral becomes

ap = 2Ep∫ d4 xδ(x0
)eipxφ(x), (C.0.12)

1The expression of the annihilation opertator in terms of the respective scalar field can be obtained with a
bit of manipulation using the conjugate momentun and the equation of motion for a free scalar field and then

introducing the symplectic scalar product: ⟨e−ipx, φ(t,x)⟩ ∶= i ∫ d3 x [(e−ipx)∗
↔

∂ φ(t,x)].
2To show it we just to insert a 1 with 1 = ∫

∞

−∞
dx0δ(x0 − t) together with a timelike 4-vector n ∶= (1,0,0,0)
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(a) (b) (c)

Figure C.1: Disconnected diagrams for the case N = 4; they feature contractions that lead to contributions which
are irrelevant for particle number measurements. Spacetime points assign the field postion for the Fock basis
state: p1,p2,p3,p4⟩ ∼ φ(z1)φ(z2)φ(z3)φ(z4)∣0⟩ (and respectively for ui).

and we can now start calculating expectation values using Wick contractions. Let’s consider a
1-free-particle state ∣ψ⟩1 ∶= ∣ψ⟩ and expand it in the Hilbert space basis

∣ψ⟩ = ∫
d3 p

(2π)32Ep
ψ(p)∣p⟩, (C.0.13)

and calculate the matrix elements of (C.0.11):

⟨p′∣n(k)∣p⟩ =(2Ek)
2
∫ d4 xd4 y δ(x0

)δ(y0
)e−ik(x−y)⟨p′∣T [φ(x)φ(y)]∣p⟩ =

=(2Ek)
2
∫ d4 xd4 y δ(x0

)δ(y0
)e−ik(x−y)⟨0∣ap′T [φ(x)φ(y)]a†

p∣0⟩ =

=(2Ek)
2
∫ d4 xd4 y δ(x0

)δ(y0
)e−ik(x−y)⟨0∣T [ap′φ(x)φ(y)a

†
p] ∣0⟩ =

=(2Ek)
2
(2Ep′)(2Ep)∫ d4 xd4 y d4 z d4 uδ(x0

)δ(y0
)δ(z0

)δ(u0
)e−ik(x−y)e−ipz+ip

′u
⋅

⋅ ⟨0∣T [φ(u)φ(x)φ(y)φ(z)] ∣0⟩.

(C.0.14)

In the vacuum expectation value, we now use Wick’s theorem and perform all physical con-
tractions that give a non-vanishing contribution. Before we continue, let’s point out which
contractions we refer to: since the expectation value of the particle density operator is supposed

to be a measurement of the incoming particle, terms containing φ(x)φ(y) or, if N ≥ 2, con-
tractions between fields that generate the ”to-be-measured” state, would either be interactions
that have nothing to do with density measurement, or would just count internal interactions
of state-particles between each other before or after the measurement, respectively. Picturing
the contractions as Feynman diagrams both would be disconnected diagrams. Therefore, we are
actually interested in

nphys(k) ∶= n(k) − disconnected diagrams, (C.0.15)

we just won’t it as phys from hereon anymore. Practically, this means that the contraction rule
for us is: skip all terms containing contractions of the form

⟨0∣T [φ(uN) . . . φ(u1)φ(x)φ(y)φ(z1) . . . φ(zN)]∣0⟩, (C.0.16)

⟨0∣T [φ(uN) . . . φ(u1)φ(x)φ(y)φ(z1) . . . φ(zl) . . . φ(zm) . . . φ(zN)]∣0⟩, ∀1 ≤ l,m ≤ N, (C.0.17)

⟨0∣T [φ(uN) . . . φ(ui) . . . φ(uj) . . . φ(u1)φ(x)φ(y)φ(z1) . . . φ(zN)]∣0⟩, ∀1 ≤ i, j ≤ N, (C.0.18)
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C. Particle density operator

(a) (b)

Figure C.2: The only physical diagrams contributing to N = 1 state particle number density measurement.

Diagramatically these contractions can be pictures as shown in Fig. C.1 Therefore, excluding
those ones, our case of N = 1 leaves us with

φ(u)φ(x)φ(y)φ(z) + φ(u)φ(x)φ(y)φ(z) (C.0.19)

for the physical ones (see Fig. C.2). Now we go back to the matrix elements: continuing (C.0.14)

⟨p′∣n(k)∣p⟩ =(2Ek)
2
(2Ep′)(2Ep)∫ d4 xd4 y d4 z d4 uδ(x0

)δ(y0
)δ(z0

)δ(u0
)e−ik(x−y)e−ipz+ip

′u
⋅

⋅ [iS(u,x)S(y, z) + iS(u, y)S(x, z)] =

= − (2Ek)
2
(2Ep′)(2Ep)∫ d4 xd4 y d4 z d4 uδ(x0

)δ(y0
)δ(z0

)δ(u0
)e−ik(x−y)e−ipz+ip

′u
⋅

⋅

⎡
⎢
⎢
⎢
⎢
⎣

∫
d4 q

(2π)4

d4 q′

(2π)4

e−iq(u−x)

q2 −m2 + iε

e−iq
′(y−z)

q′2 −m2 + iε
∫

d4 q

(2π)4

d4 q′

(2π)4

e−iq(u−y)

q2 −m2 + iε

e−iq
′(x−z)

q′2 −m2 + iε

⎤
⎥
⎥
⎥
⎥
⎦

=

= − (2Ek)
2
(2Ep′)(2Ep)∫ d3 xd3 y d3 z d3 u

d4 q

(2π)4

d4 q′

(2π)4
⋅

⋅

⎡
⎢
⎢
⎢
⎢
⎣

eik(x−y)eiq(u−x)

q2 −m2 + iε

eipz−ip
′ueiq

′(y−z)

q′2 −m2 + iε
+
eik(x−y)eiq(u−y)

q2 −m2 + iε

eipz−ip
′ueiq

′(y−z)

q′2 −m2 + iε

⎤
⎥
⎥
⎥
⎥
⎦

=
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= − (2Ek)
2
(2Ep′)(2Ep)∫ d3 xd3 y d3 z d3 u

d4 q

(2π)4

d4 q′

(2π)4
⋅

⋅

⎡
⎢
⎢
⎢
⎢
⎣

ei(k−q)xei(q
′−k)y

q2 −m2 + iε

ei(p−q
′zei(q−p

′)u

q′2 −m2 + iε
+
ei(k+q

′)xe−i(k+q)y

q2 −m2 + iε

ei(p−q)
′zei(q−p

′)u

q′2 −m2 + iε

⎤
⎥
⎥
⎥
⎥
⎦

=

= − (2Ek)
2
(2Ep′)(2Ep)∫ d4 q d4 q′

⎡
⎢
⎢
⎢
⎢
⎣

δ(3)(k − q)δ(3)(q′ − k)

(q0)2 − q2 −m2 + iε

δ(3)(p − q′)δ(3)(q − p′)

(q′0)2 − q′2 −m2 + iε
+

+
δ(3)(k + q′)δ(3)(k + q)

(q0)2 − q2 −m2 + iε

δ(3)(p − q′)δ(3)(q − p′)

(q′0)2 − q′2 −m2 + iε

⎤
⎥
⎥
⎥
⎥
⎦

=

= − (2Ek)
2
(2Ep′)(2Ep)(2π)

4
∫ dq0 dq′0

⎡
⎢
⎢
⎢
⎢
⎣

1

(q0)2 − k2 −m2 + iε

δ(3)(p − k)δ(3)(k − p′)

(q′0)2 − k2 −m2 + iε
+

+
1

(q0)2 − (−k)2 −m2 + iε

δ(3)(p + k)δ(3)(−k − p′)

(q′0)2 − (−k)2 −m2 + iε

⎤
⎥
⎥
⎥
⎥
⎦

=

= − (2Ek)
2
(2Ep′)(2Ep)(2π)

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

π
√
−E2

k + iε

πδ(3)(p − k)δ(3)(k − p′)
√
−E2

k + iε
+

+
π

(
√
−E2

k + iε

πδ(3)(p + k)δ(3)(−k − p′)
√
−E2

k + iε

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

ε→ 0
Ð→ (2π)2

(2Ep′)(2Ep)(2π)
4
[δ(3)(p − k)δ(3)(k − p′) + δ(3)(p + k)δ(3)(−k − p′)] ,

where, for the dq0 integration we used

∫

∞

−∞
dq

1

q2 −E2 + iε
=

π
√
−E2 + iε

. (C.0.20)

Finally we can get the expectation value of n(k) for the state (C.0.13):

⟨ψ∣n(k)∣ψ⟩ =∫
d3 p′

(2π)32Ep′

d3 p

(2π)32Ep
ψ∗(p′)ψ(p)⟨p′∣n(k)∣p⟩ =

=∫
d3 p′

(2π)32Ep′

d3 p

(2π)32Ep
ψ∗(p′)ψ(p)⋅

⋅ (2π)2
(2Ep′)(2Ep)(2π)

4
[δ(3)(p − k)δ(3)(k − p′) + δ(3)(p + k)δ(3)(−k − p′)] =

=ψ∗(k)ψ(k) + ψ∗(−k)ψ(−k)

(C.0.21)

Let’s compare this result to (C.0.3) for N = 1. With our field method we got an extra sum-
mand with −k., where this second summand comes from the second possibility of contraction
in (C.0.19). When dealing with the annihilation/creation operator version the second contrac-
tion term would only give a vanishing contribution, as it would involve the commutators of
annihilation-annihilation/creation-creation operators:

ap′a
†
kaka

†
p + ap′a

†
kaka

†
p (C.0.22)
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C. Particle density operator

With fields a contraction is not equal to the commutator, therefore it gives a non-vanishing

contribution. If we integrate the particle number (C.0.21) with measure d3 k
(2π)32Ek

, however, the

second term will give the same contribution of because the measure is invariant under sign-flip
transformations. So our new density counts twice as many particles. Overall, as the possibility
to contract with either φ(x) or φ(y) exists for any number of fields operator that come the
”to-be-measured” particle state, tha same thing will happen for all N , i.e. we will get twice as
many particles for all N . So the proper number density operator in the field form should be
divided by two. Therefore, at the end of our fine tuning for the operator we get:

n(k)↦
(2Ek)

2

2
∫ d3 xd3 y eik(x−y)φ(0,x)φ(0,y). (C.0.23)

We shall give the result for the N -particle-generalized stare ∣ψ⟩ now. Just as in N = 1 in (C.0.13),
we expand the state in its wavefunction

∣ψ⟩ =
1

N !
∫

N

∏
i=1

d3 pi
(2π)32Epi

ψ(p1, . . . ,pN)∣p1, . . . ,pN ⟩. (C.0.24)

Using the contraction rules stated above, performing the calculation exctly as presented for
N = 1 and remembering that wavefunctions for bosons are symmetric, we have

⟨ψ∣n(k)∣ψ⟩ =
N

2N !
∫

N−1

∏
i=1

d3 pi
(2π)32Epi

(∣ψ(p1, . . . ,pN−1,k)∣
2
+ ∣ψ(p1, . . . ,pN−1,−k)∣

2
) (C.0.25)

for a N -particle state. Then, the resulting particle number, i.e., the integrated particle density
expectation expectation value, is indeed equal to the right hand side (RHS) of (C.0.5)

⟨ψ∣n(k)∣ψ⟩ = N⟨ψ∣ψ⟩. (C.0.26)

We have one last remark. One can write the fields’ x, y dependence for the number density

⟨p′∣n(k)∣p⟩ =
(2Ek)

2

2
∫ d3 xd3 y eik(x−y)e−i(p

′−p)y
⟨p′∣φ(0,x − y)φ(0,0)∣p⟩. (C.0.27)

For the proof we will only consider the N = 1 case, as the other cases can be reduced to the
same basic argument. The trick is using Poincaré transformation and inserting a 1:

⟨p′∣φ(0,x)φ(0,y)∣p⟩ = ⟨p′∣e−iPyeiPyφ(0,x)e−iPyφ(0,0)eiPy
∣p⟩ =

= ⟨p′∣e−ip
′yφ(0,x − y)φ(0,0)eipy∣p⟩ =

= e−ip
′yeipy⟨p′∣φ(0,x − y)φ(0,0)∣p⟩ =

= e−i(p
′−p)y

⟨p′∣φ(0,x − y)φ(0,0)∣p⟩

(C.0.28)

where P are the Poincaré generators and p, p′ their eigenvalues. Now we can shift the x
integration variable such that x − y ↦ r, so that the integral (C.0.27) becomes

⟨p′∣n(k)∣p⟩ =
(2Ek)

2

2
∫ d3 r d3 y eikre−i(p

′−p)y
⟨p′∣φ(0, r)φ(0,0)∣p⟩ ∼

∼ δ(3)(p′ − p)
(2Ek)

2

2
∫ d3 r eikr⟨p∣φ(0, r)φ(0,0)∣p⟩.

(C.0.29)

Thus, we have rewritten the bilocal observable n(k) described by two spacetime points to a
bilocal observable described by some scale r.
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Appendix D

General calculation

⟨G∣Pδφ ∣G⟩ = (⟨G0∣ + δ ⟨G∣)Pδφ(x, y) (∣G0⟩ + δ ∣G⟩) (D.0.1)

Interpolating current:

J(x) = J0 + δJ(x) =
Nφ,Nψ

∑
k,l=0

(
Nφ

k
)(
Nψ

l
)φNφ−kψNψ−lδφkδψl (D.0.2)

∣G⟩ =

Nφ,Nψ

∑
k,l=0

(
Nφ

k
)(
Nψ

l
)⨋Lkl

Gkl(Lkl)∫ σ(z)FLkl(z)φ
Nφ−kψNψ−lδφkδψl ∣Ω⟩ (D.0.3)

where σ(z) = ∫ d4 z.

⟨G∣Pδφ(x, y) ∣G⟩ =
Nφ,Nψ

∑
k,l=0

Nφ,Nψ

∑
m,n=0

(
Nφ

k
)(
Nψ

l
)(
Nφ

m
)(
Nψ

n
)⨋Lmn

⨋Lkl
G
∗
mn(Lmn)Gkl(Lkl)

∫ σ(z)σ(u)F ∗
Lmn(u)FLkl(z)C(k, l,m,n)×

× ⟨0∣ δφm(u)δψn(u)Pδφ(x, y)δφ
k
(z)δψl(z) ∣0⟩

(D.0.4)

where C(k, l,m,n) = ⟨Ω∣φNφ−k(z)φNφ−m(u)ψNψ−l(z)ψNψ−n(u) ∣Ω⟩.

Furthermore, we demand ∣G⟩ ≈ ∣G0⟩ = ∑
N
i=0 αi ∣Gi⟩ (⟨G∣ ∣G⟩ = 1 = ∑i=0 ∣αi∣

2
). Thus ∣α0∣ >>

∣α1∣ >> ⋅ ⋅ ⋅ >> ∣αN ∣.

∫ σ(x)F ∗
Lmn(x)FL00(x)

m,n ≠ 0

<< ∫ σ(x) ∣FL00(x)∣
2

(D.0.5)

∫ σ(x) ∣FLmn(x)∣
2 m,n ≠ 0

<< ∫ σ(x) ∣FL00(x)∣
2

(D.0.6)

Let’s compute

⟨0∣ δφm(u)δψn(u)Pδφ(x, y)δφ
k
(z)δψl(z) ∣0⟩ ≡ ξmnklδφ (u,x, y, z) (D.0.7)

where Pδφ(x, y) = δφ(x)δφ(y).
Note: for ⟨Ω∣φNφ−kφNφ−mψNψ−lψNψ−n ∣Ω⟩ ≠ 0 we need k =m, l = n.

ξklδφ(u,x, y, z) = ⟨0∣ (δφmδψn) (u)δφ(x)δφ(y) (δφkδψl) (z) ∣0⟩ (D.0.8)
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D. General calculation

(a) . (b) .

Figure D.1: Diagrams

∆δψ(0) contributions vanish while ∆δφ(0) = m2

(4π)2 log (m
2

µ2 )

Combinatoric factors: assume that there are r δφ self-loops (∆δφ(0)) at x and y, then
(
l−1
2r

)(
l−1
2r

). Furthermore we need to connect one δφ at x and y with the power spectrum operator
which gives

(
l

1
)(
l

1
) [⟨δφ(u)δφ(x)⟩ ⟨δφ(y)δφ(z)⟩ + ⟨δφ(u)δφ(y)⟩ ⟨δφ(x)δφ(z)⟩] .

Then at x and y there are (l − 1 − 2r) δφs and k δψs left.
We need to connect these with each other:

(
[2(l − 1 − 2r)]!

(l − 1 − 2r)! 2l−1−2r
−w(l − 1 − 2r))(

(2k)!

k! 2k
)

l2 [
(l − 1)!

(l − 1 − 2r)!(2r)!
w(2r)]

2

[w(2(l − 1 − 2r)) −w(l − 1 − 2r)]w(2k) ≡ f(k, l, r) (D.0.9)

ξklδφ(u,x, y, z) =

1
2
(l−1)
∑
r=0

f(k, l, r) ⟨δψ(u)δψ(z)⟩
k
⟨T (δφ(x)δφ(x))⟩

2r
⟨δφ(u)δφ(z)⟩

l−1−2r

[⟨δφ(u)δφ(x)⟩ ⟨δφ(y)δφ(z)⟩ + ⟨δφ(u)δφ(y)⟩ ⟨δφ(x)δφ(z)⟩]

(D.0.10)

Thus, we need to evaluate the following correlators:

1. ⟨δψ(u)δψ(z)⟩

2. ⟨δφ(u)δφ(z)⟩

3. ⟨T (δφ(x)δφ(x))⟩ = m2

(4π)2 log (m
2

µ2 )

Expansion:

δψ(x) = ∫ ω(k) {eikxa(k) + e−ikxa†
(k)} = δφ∣m=0 (D.0.11)

where

ω(k) =
d3 k

(2π)3/2
√

2k0(k)
(D.0.12)
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⟨0 ∣δφ(u)δφ(z)∣0⟩ =∫ ω(k,p) ⟨0 ∣eikue−ipza(k)a†
(p)∣0⟩ =

=∫
d3 k

(2π)32k0∣
eik(u−z)

(D.0.13)

ξklδφ(u,x, y, z) =

1
2
(l−1)
∑
r=0

f(k, l, r)

⎧⎪⎪
⎨
⎪⎪⎩

k

∏
n=1
∫

d3 kn
(2π)3 2 ∣kn∣

⎫⎪⎪
⎬
⎪⎪⎭

ei(u−z)∑
k
n=1 kn×

×

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

l−1−2r

∏
m=1

∫
d3 pm

(2π)3 2
√

∣pm∣
2
+m2

φ

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

ei(u−z)∑
l−1−2r
m=1 pm

⎡
⎢
⎢
⎢
⎣

m2

(4π)2
log(

m2

µ2
)
⎤
⎥
⎥
⎥
⎦

2r

×

×

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∫
d3 k

(2π)3 2
√

∣k⃗∣2 +m2
φ

eik(u−x)∫
d3 k′

(2π)3 2
√

∣k⃗′∣2 +m2
φ

eik
′(y−z)

+

+ ∫
d3 k

(2π)3 2
√

∣k⃗∣2 +m2
φ

eik(u−y)∫
d3 k′

(2π)3 2
√

∣k⃗′∣2 +m2
φ

eik(x−z)

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

(D.0.14)

⟨G∣Pδφ(x, y) ∣G⟩ =
Nφ,Nψ

∑
k,l=0

1
2
(l−1)
∑
r=0

(
Nφ

k
)

2

(
Nψ

l
)

2

f(k, l, r)⨋L′
kl

⨋Lkl
G
∗
kl(L

′
kl)Gkl(Lkl)×

× ∫ σ(z)σ(u)F ∗
L′
kl
(u)FLkl(z)C(k, l, k, l)

⎡
⎢
⎢
⎢
⎣

m2

(4π)2
log(

m2

µ2
)
⎤
⎥
⎥
⎥
⎦

2r

×

×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k

∏
n=1

l−1−2r

∏
m=1

∫
d3 kn

(2π)3 2 ∣kn∣

d3 pm

(2π)3 2
√

∣pm∣
2
+m2

φ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

× ∫
d3 k

(2π)3 2
√

∣k⃗∣2 +m2
φ

d3 k′

(2π)3 2
√

∣k⃗′∣2 +m2
φ

×

× [e
iu(∑kn=1 kn+∑l−1−2r

m=1 pm+k) e−iz(∑
k
n=1 kn+∑l−1−2r

m=1 pm+k′)
(e−ixkeiyk

′

+ e−iykeixk
′

)]

(D.0.15)

Suppose you can write FLkl = F̄Lkle
iPklx ⇒ ⨋Lkl → ∫ σ̄(Pkl) and Gkl(Lkl) → Gkl(Pkl) where

σ̄(Pkl) = ∫
d4 Pkl
(2π)4 .
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5. General calculation

⟨G∣Pδφ(x, y) ∣G⟩ =
Nφ,Nψ

∑
k,l=0

1
2
(l−1)
∑
r=0

(
Nφ

k
)

2

(
Nψ

l
)

2

f(k, l, r)C(k, l, k, l)
⎡
⎢
⎢
⎢
⎣

m2

(4π)2
log(

m2

µ2
)
⎤
⎥
⎥
⎥
⎦

2r

×

×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k

∏
n=1

l−1−2r

∏
m=1

∫
d3 kn

(2π)3 2 ∣kn∣

d3 pm

(2π)3 2
√

∣pm∣
2
+m2

φ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∫ σ̄(P ′
kl)σ̄(Pkl)G

∗
kl(P

′
kl)Gkl(Pkl)×

× ∫
d3 k

(2π)3 2
√

∣k⃗∣2 +m2
φ

d3 k′

(2π)3 2
√

∣k⃗′∣2 +m2
φ

(e−ixkeiyk
′

+ e−iykeixk
′

)×

× ∫ σ(z)σ(u)F ∗
P ′
kl
(u)FPkl(z)e

iu(−P ′kl+∑
k
n=1 kn+∑l−1−2r

m=1 pm+k) e−iz(−Pkl+∑
k
n=1 kn+∑l−1−2r

m=1 pm+k′)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
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where in the last line we have precisely the Fourier transform of F ∗
P ′
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Conclusions

In this thesis we presented the calculation of the inflationary power spectrum in an approximate
quantum de Sitter state.

First of all we recall cosmological perturbation theory and quantum fluctuations from infla-
tion. That leads to the definition of the power spectrum, which is the central object in our work.
We discussed the problem of choosing the physical vacuum in a curved spacetime too and we
will try to give a new and general solution in the second part of the thesis. After reviewing the
basics of inflationary gravitational waves, we presented a new calculation of the gravitational
wave-transfer function which includes effects not consider in previous calculations [7,54] and we
separeted the transfer function into three factors, each with a distinct physical meaning.

The first factor accounts for the redshift suppression of the gravitational-wave amplitude after
horizon re-entry. Among other things, this factor accomodates a dark energy component with a
time-varying equation-of-state parameter w(z). The second factor captures the behaviour of the
background equation-of-state parameter w near the time of horizon re-entry. The third factor
accounts for the damping of tensor modes due to tensor anisotropic stress from free-streaming
relativistic particles in the early universe. We stressed that it is also necessary to consider this
damping effect on laser-interferometer scales, which re-entered when free-streaming particles
were an unknown function f . We also observe that Weinberg’s analysis [64], which originally
focused on the damping on CMB scales due to a single fermionic species (the neutrino), extends
in a simple way way to the more general case of a mixture of free-streaming bosons and fermions
with different temperatures and decoupling times.

We identified six physical effects which can modify the relic GWB by causing the equation-of-
state parameter w to deviate from its standard value (w = 1/3) during the radiation-dominated
epoch. Furthermore, although it is often treated as a stationary random process, the inflationary
GWB is actually highly non-stationary (as emphasized in Grishchuk [28]). Thus, our transfer
function keeps track of the coherent phase that it contains.

Starting from Chapter 3 we leave aside postinflationary effects that produce modifications
of the gravitational-wave spectrum and we focus on the choice of the vacuum. At first, we
studied the possible influence of trans-Planckian physics on the fluctuation spectrum predicted
by inflation. We have made use of a natural initial condition: we required that the modes are
created in a state of minimized uncertainity. If this is imposed in the infinite past, there is
no difference between this choice and the usual choice of an adiabatic vacuum. But contrary
to the standard treatment we have imposed the initial condition not in the infinite past, but
at a mode dependent time determined by when a particular mode reaches a size of the order
of the fundamental scale (e.g., the Planck scale). As a consequence our analysis agrees with
the standard choice inly to zeroth order in an adiabatic expansion with corrections at first
order. This should be viewed as a conservative approach appropriate for estimating how well
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5. Conclusions

the fluctuation spectrum can be predicted without any knowledge of high energy physics. We
were indeed working with the α-vacua, which are formally squeezed states over the Bunch-Davies
vacuum, and then they aren’t the most general ground state for de Sitter space.

I have then switched to the presentation of the innovative formalism, which was first in-
troduced in [30]. Since the power spectrum is a bi-local operator, I chose as an example the
calculation that leads to the constituent number of a Black Hole (BH) to explain the conceptual
and technical details of the new framework. We applied the bi-local particle number operator to
the BH state ∣B⟩. Its proposal and construction involved the postulation of a non-perturbative,
gravitational vacuum ∣Ω⟩ and an Auxiliary Current J that, acting on this vacuum, creates a
quantum bound state with a non-vanishing overlap with the above BH state. Taking a specific
current, we were able to perform explicit, quantum theoretical, calculations with it. Namely, we
calculated the expectation value of the above particle number operator.

At this point the original contribution of my work starts. The Auxiliary Current Description
(ACD) is then generalized to arbitrary spacetimes so that I can construct an approximate
quantum de Sitter state too. Finally I had all the necessary tools to calculate the inflationary
power spectrum. I used two different ways to calculate it: first, constructing a power spectrum
operator; second, considering the power spectrum which emerges naturally from the current
expansion. I managed to reproduce the standard behaviuor of the power spectrum present in
the literature. In Chapter 5 I showed the calculation until the second order in the current
expansion, while in Appendix D the general calculation is reported.

The results presented in this thesis are part of an ongoing project. In our opinion the results
coming from the two ways I calculated the power spectrum should match. But then we still
have some problems to solve. In the first case, my calculation seems to give already the second
order correction to the standard power spectrum. So we have still to understand if it’s possible
a contraction within the fluctuations composing the operator. In the second one, I lose the
dependence on the spacetime points, x and y. Then we have to think of a redefinition of our
state in such a way that we still have the spacetime dependence (in the current culculation we
integrated over x and y). Finally, the calculation of the primordial power spectrum gives us an
idea about the wavefunctions G(L) and, if we can reproduce with no doubts the standard result,
would be then a crucial test for this framework.

100



Bibliography

[1] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions. 1964.

[2] A. Albrecht and P.J. Steinhardt. Cosmology for grand unified theories with radiatively
induced symmetry breaking. 1982.

[3] B. Allen. Vacuum states in de sitter space. 1985.

[4] T. Banks and L. Mannelli. De sitter vacua, renormalization and locality. 2003.

[5] J.M. Bardeen. Gauge-invariant cosmological perturbations. 1989.

[6] J.M. Bardeen, P.J. Steinhardt, and M.S. Turner. Spontaneous creation of almost scale-free
density perturbations in an inflationary universe. 1983.

[7] S. Bashinsky. Coupled evolution of primordial gravity waves and gravity neutrinos, 2008.

[8] N.D. Birrell and P.C.W. Davies. Quantum Fields in Curved Space. 1982.

[9] R. Bousso, A. Maloney, and A. Strominger. Conformal vacua and entropy in de sitter space.
2002.

[10] L.A. Boyle and P.J. Steinhardt. Probing the early universe with inflationary gravitational
waves. 2008.

[11] R.H. Brandenberger and J. Martin. On signatures of short distance physics in the cosmic
microwave background. 2002.

[12] N.A. Chernikov and E.A. Tagirov. Quantum theory of scalar field in de sitter space-time.
1968.

[13] Planck Collaboration. Constraints on inflation. 2013.

[14] U.H. Danielsson. Inflation, holography and the choice of vacuum in de sitter. 2002.

[15] U.H. Danielsson. Note on inflation and tras-planckian physics. 2002.

[16] U.H. Danielsson. On the consistency of de sitter vacua. 2002.

[17] H. Davoudiasl, R. Kitano, G.D. Kribs, H. Murayama, and P.J. Steinhardt. Gravitational
baryogenesis. 2004.

[18] D.A. Dicus and W.W. Repko. Comment on ”damping of tensor modes in cosmology”. 2005.

101



5. Bibliography

[19] S. Dodelson. Modern cosmology. 2003.

[20] G. Dvali and C. Gomez. Black hole’s quantum n-portrait, 2011.

[21] R. Easther, B.R. Greene, W.H. Kinney, and G. Shiu. Inflation as a probe of short distance
physics. 2001.

[22] R. Easther, B.R. Greene, W.H. Kinney, and G. Shiu. A generic estimate of trans-planckian
modifications to the primordial power spectrum in inflation. 2002.

[23] R. Easther, B.R. Greene, W.H. Kinney, and G. Shiu. Imprints of short distance physics on
inflationary cosmology. 2003.

[24] M.B. Einhorn and F. Larsen. Interacting quantum field theory in de sitter vacua. 2003.

[25] R. FLoreanini, C.T. Hill, and R. Jackiw. Functional representation for the isometris of de
sitter space. 1987.

[26] W. Greiner and J. Reinhardt. Quantum electrodynamics. 2009.

[27] L. P. Grischuk. Amplification of gravitational waves in an isotropic universe. 1975.

[28] L.P. Grishchuk and Y.V. Sidorov. Squeezed quantum states of relic gravitons and primordial
density fluctuations. 1990.

[29] A.H. Guth. Inflationary universe: a possible solution to the horizon and flatness problems.
1981.

[30] S. Hofmann and T. Rug. A quantum bound state description of a black hole, 2014.

[31] K. Kajantie, M. Laine, K. Rummukainene, and Y. Schröder. Pressure of hot qcd up to
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