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Abstract

With GW150914, the �rst detection of gravitational waves by LIGO interferometers in
2015, we had the direct proof that binary compact objects exist and merge within an
Hubble time. Since then, many e�orts have been made to study the formation pathways
of binary compact objects. In this thesis I present the main steps that preceded this dis-
covery, then I highlight the most important results obtained in this �eld. At �rst I review
the e�ects of gravitational waves on binary systems, �rst predicted (Peters, 1964[5]) and
later proved indirectly (Hulse & Taylor, 1975[6]); afterwards I discuss the main processes
that drive the last phases of stellar evolution and how they a�ect the �nal fate of a bi-
nary system. In particular, I focus on natal kicks, discussing the most important studies
and models about its statistical distribution and the way natal kicks a�ect the physical
parameters of a binary. In this framework, I have analysed a population-synthesis sim-
ulation of 5 isolated binary systems. Each system was simulated twice, by changing the
natal kicks. In this way there are two possible scenarios for each system. In one case the
system reaches the merger, in the other the system splits. Systems with similar starting
characteristics resulted to evolve in completely di�erent ways after receiving di�erent
kicks. I discuss the main di�erences between the systems in the evolution of physical
parameters (stellar masses, orbital separation and orbital eccentricity over time) and the
way they play a key role in the fate of the systems, particularly the coalescence time.
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Introduction

On September 14, 2015, the LIGO interferometers captured the event GW150914, later
con�rmed to be a gravitational wave (GW) signal from two merging black holes[1]. This
observation paved the ground for a whole new branch of astrophysics, the GW astro-
physics.
Nonetheless, the �rst observational evidence GWs from compact object binaries comes
from Hulse & Taylor (1975)[2] and their studies on a pulsar-neutron star (NS) bi-
nary, while the prediction comes even earlier, with general relativity by Albert Einstein,
1916[3].
The latest observations via GW interferometers give crucial information on binary com-
pact objects and open new questions. Firstly, most GW detections are associated with
binary black holes (BBHs) (see �gure 1.4), systems whose existence was not proved before
GW150914. Moreover, the mass of BHs involved in mergers exceeds every expectation,
both from observational data (known BHs, mainly from X-ray binaries, have mass under
20M� ) and from most theoretical models (only few models predicted the existence of
BHs with mass > 30M�).
It is clear that we do not currently have a good enough comprehension of the processes
which stars are subject to in the last phases of their evolution, processes that have dra-
matic consequences on binaries. The challenge of this new era of astrophysical research,
hence, is to understand the processes that drive the creation of a compact object binary
system, de�ne its �nal fate (merger or destruction of the binary) and the way gravita-
tional waves a�ect the dynamics of this system.
The aim of this thesis is to focus on a particular phenomenon of stellar evolution: the
natal kick(NK). Studying natal kicks in neutron stars is important to obtain a valid es-
timation for the merger on binary neutron stars (BNS).
My work begins summarizing the study by Hulse and Taylor [2] on BNS as well as the
latest observations made by the LIGO-Virgo collaboration until Run 2. Then I move
on to natal kicks, considering the stellar evolution processes involved and the statistical
distribution of NK's magnitude. The second section consists of data analysis of BNS and
black hole-neutron star (BH-NS) simulations. Such data have been taken from a pop-
ulation synthesis code, MOBSE (Giacobbo et al. 2018)[4], elaborated and commented
taking into account previous results reported. The purpose is to understand the way
even slightly di�erent natal kicks can lead to totally di�erent binary evolutions.
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Chapter 1

Binary Neutron Stars and

Gravitational Waves

In 1975, Hulse and Taylor [2] wrote an article that turned out to be game changing in
our knowledge of binary neuron stars. Their work is a data analysis of a binary system
composed of a neuron star and a millisecond pulsar. Before talking about the results, it
is important to introduce some theoretical concepts and equations.

1.1 The Predictions and the First Evidence

In this thesis I used some results from general relativity without focusing on demonstra-
tions. We know from general relativity (GR) that the emission of gravitational waves
implies a loss of orbital energy

Eorb = −Gm1m2

2a
(1.1)

Where m1 and m2 are the masses of the two objects that compose the binary and a is
the semi-major axis. The loss of energy causes the shrinking of the orbit until the binary
merges. While shrinking, the orbital frequency (ωorb) becomes higher

2ωorb = ωGW = 2

√
G(m1 +m2)

a3
(1.2)

and the amplitude of the gravitational waves increases (h ∝ 1
a).

Combining the equation for the power radiated by GWs

PGW =
35

5

G4

c5
1

a5
m2

1m
2
2(m1 +m2) (1.3)

with the derivative of orbital energy over time
(dEorb

dt

)
in Newtonian limit

dEorb

dt
= PGW =

Gm1m2

2a2
da

dt
(1.4)

1
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we can obtain the merger time scale

tGW =
5

256

c5

G3

a4

m1m2(m1 +m2)
(1.5)

When eccentricity is included, the eq. (1.5) becomes

tGW =
5

256

c5

G3

a4(1− e2)7/2

m1m2(m1 +m2)
. (1.6)

the equation (1.5, 1.6) is the equation derived by Peter (1964)[5] for the merger time scale
for a binary system. This equation highlights some important informations. The merger
timescale depends on semi-major axis, eccentricity and object masses. In addition, from
eq (1.3) and (1.4) we can also derive orbital period (P) variation over time

dP
dt

= −
(2πG(m1 +m2)

P

)−5/3 1

c5
96

5
41/3 (1.7)

Results from Hulse and Taylor

The �rst observational evidence that matches the GR predictions comes from the study
by Hulse and Taylor (1975)[2]. The presence of a pulsar in a binary provides a nearly
ideal general relativity laboratory. Indeed, we do have an accurate "clock" (the pulsar)
moving at high speed in a strong gravitational �eld. This peculiar condition allowed
Hulse and Taylor to identify the �rst binary neutron star due to period variation in PSR
1913+16 (as shown in �gure 1.1, left panel). Then, after decades of measurements, they
managed to prove the perfect match of the observations with the theoretical predictions
(see �gure 1.1, right panel). This was the �rst indirect proof of gravitational waves
existence. Hulse and Taylor in 1993 received the Nobel prize for their discovery.

1.2 LIGO-Virgo

Research in gravitational waves changed completely with the construction of LIGO and
Virgo interferometers. These revolutionary observatories form a net of 3 interferometers
(two LIGO in the USA and one Virgo in Italy) capable of detecting space perturbations
brought by GWs passing trough earth.
Both LIGO and Virgo are Michelson interferometers. In the following, I want to schema-
tise their basic working principle. The interferometers are composed of two arms (4 km
long for LIGO, 3 km for Virgo) perpendicular to each other. The laser beam, coming
from a laser source, is split in the two arms by a beam splitter. At the end of each
arm, there is a mirror that re�ects the beam. The two beams are �nally recombined
by the splitter and directed into a photodetector producing an interference pattern. An
incoming gravitational wave changes the optical path of the laser beams in the arms,
which then changes the interference pattern recorded by the photodetector. The actual
engineering on LIGO and Virgo is extremely more complicated to minimize noise (e.g.
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Figure 1.1: (left panel)Velocity cure of PSR 1913+16 observed by Hulse and Taylor from
pulsations variation over time.[2] (right panel)Orbital decay of PSR B1913+16. The
data points indicate the observed change in the epoch of periastron with date while
the parabola illustrates the theoretically expected change in epoch according to general
relativity[6].

seismic stabilization, beam power ampli�cation, bring the vacuum in arms to avoid parti-
cle scattering). Several updates had been done since their �rst light (2007 for LIGO) that
highly improved sensitivity. At the current state, the frequency range of sensitivity goes
from ∼ 10 to 10000 Hz. More updates have already been planned to improve sensitivity
even further in future runs. Figure 1,2 shows the current sensitivity curve of the three
detectors of LVC.

This frequency range allows the LIGO-Virgo collaboration (LVC) to detect gravita-
tional events only when a compact binary merges. The event duration can be of the
order of tenth of seconds (for more massive BBHs) to hundreds of seconds (for binary
neuron stars) but carries a great amount of information (e.g. the masses of the two ob-
jects involved, their spins, the polarization of the GW, the inclination of the system, the
signal redshift, the sky location from the time delay between detections, the reference
time). The �gure 1.3 shows the shape of the signal in event GW150914 from both the
detectors of LIGO.
In my thesis I will mainly use the information about the masses of the objects. This
value can be derived analysing the shape of the detection, in particular the change of
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Figure 1.2: Amplitude spectral density of the total strain noise of the Virgo
(violet),LIGO-Henford(LHO) (red) and LIGO-Livingston(LLO) (blue) detectors.[1]

frequency during inspiral scales with chirp mass as

ω̇GW ∝ ω11/3
GW m

5/3
chirp , mchirp =

(m1m2)
3/5

(m1 +m2)1/5
(1.8)

and the frequency at merger scales with the total mass.

ωGW,merger ∝ (m1 +m2)
−1. (1.9)

These two measures provide m1 and m2. Observational Run 3 (O3) is currently going on.

Figure 1.3: The gravitational-wave event GW150914 observed by the LIGO Hanford
(left) and Livingston (right) detectors. [7]

The two past observational runs (O1 and O2) detected 11 con�dent GW events and a
larger number of signals under the marginal triggers threshold (false alarm or high noise
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signals). In the following, I report a table of the con�dent signals detected in run O1
and O2.

Figure 1.4: Table of the eleven con�dent gravitational waves signals revealed by the
LIGO-Virgo collaboration in O1 and O2 (GW170817 is the neutron stars merger). The
�rst two columns shows the initial mass of each compact object, M is the chirp mass,
dL the luminosity distance of the source and z its Redshift. [1]





Chapter 2

The Birth of a Compact Remnant

Massive stars (M>8M�) are destined to undergo supernova explosion and eject their
envelope, to give birth to a compact object. The mechanisms involved are extremely
complex and barely understood. The mass of compact remnants, hence, is highly uncer-
tain and the presence of a companion adds even more complexity to this problem. Below
I brie�y present the major steps that a star takes trough the end of its life.

2.1 Stellar Winds and Supernovae

The mass of a star can change during his life. Estimating the pre-SN mass is tremendously
important for the study of compact objects.
The out�ow of gas from stellar atmospheres is called stellar winds. This out�ow can
have di�erent sources. In cold stars (e.g. AGB stars), the main driver of stellar winds is
radiation pressure on cold dusty layers in outer regions. In hot massive stars, the out�ow
is induced by the coupling between the momentum of photons and the momentum of
metal ions present in the stellar photosphere. Understanding the mass loss of a star
during its lifetime is not a trivial issue. Advanced work made by Vink et al. (2001)[8],
accounting for multiple scattering, de�ne ṁ∝Z0.85vp∞ 1 for stars with Teff >̃25000K.
The situation is even more uncertain for post-main sequence stars such as Wolf-Rayet.
Other aspects of massive star evolution play a considerable role in de�ning the pre-
SN mass of a star. The magnetic �eld can be one of these aspects. On the surface,
the magnetic �eld can con�ne and strongly quench stellar winds. Another important
ingredient is the rotation. On the one hand, rotation acts by increasing stellar luminosity,
on the other, it induces chemical mixing. This leads to lager helium and carbon-oxygen
core which have strong implications in the following phase.
As the mass of the central degenerate iron-core reaches the Chandrasekhar mass (Mch ≈
1, 44M�), core-collapse is triggered. The mechanisms involved are still highly uncertain.
The main actors are:

1vp∞ is called terminal velocity and is the maximum velocity of stellar winds, reached at theoretically

in�nite distance, when acceleration is equal to zero.

7
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• the degeneracy pressure of relativistic electrons becomes insu�cient to support the
equilibrium;

• protons capture electrons producing neutrinos and decreasing the degeneracy pres-
sure .

The core rapidly falls into a new state where equilibrium can be carried by degener-
acy pressure of neutrons. In less than a second the core shrinks from thousands of
Km to a few ten. This shock liberates an incredible amount of Gravitational energy:

W ≈ 5 × 1053erg
(mPNS

1.4M�

)2
×
( 10km

RPNS

)
where mPNS and RPNS are the mass and ra-

dius of the proto-neutron star (PNS). Astrophysicists are trying to explain the way this
gravitational energy can be converted into kinetic and other forms of energy triggering
the SN explosion. The convective supernova engine is the best investigated model. The
main steps of this mechanism are:

• The collapsing core drives a bouncing shock.

• This shock reverses the infall of matter from the outer layers.

• The source of energy in the shock is provided by neutrinos; once the shock is di�use
enough, neutrinos leak out and the shock stalls.

• The region between the proto-neutron star surface and the stalling radius becomes
connectively unstable because of cooling.

• Such convective instability can convert the energy escaping from the proto-neutron
star to kinetic energy pushing the convective region outward

• If the convective region overcomes the ram pressure -Pram is the pressure exerted by
the outer layer that works against the inner layer motion- of the infalling material,
the shock is revived and the explosion is launched. If not, the SN fails.

2.2 Compact Remnants

All the uncertainties introduced previously suggest that it is impossible to have an ac-
curate estimation of the remnant mass. However, few robust features can be drawn.
Stellar winds are the most in�uential e�ect for stars with Zero Main Sequence mass
mZAMS ≥ 30M�. Stellar winds depend on metallicity. For metal-poor stars (0.1Z�)
mass loss is almost negligible and the total �nal mass, as well as the Carbon-Oxygen
�nal mass may be su�ciently large to avoid core collapse. In this case the star may form
a massive BH by direct collapse unless a pair-instability or a pulsational-pair instability
SN occurs. At high metallicity (≈ Z�) stellar winds lead to an e�cient mass loss. It may
bring to a small �nal mass (mfin) and carbon-oxygen mass (mCO). In this condition
core-collapse can be triggered, resulting in a relatively small remnant. Considering stars
with relatively low ZAMS mass (7 < mZAMS < 30M�), stellar winds lose importance,
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regardless of the metallicity. In this scenario, the characteristics of SN explosion are
crucial to de�ne the �nal mass of the remnant.

2.3 Binaries: Mass Transfer and Common Envelope

If we consider binary stars, even more complications add on. Only if the system is su�-
ciently wide for its entire evolution, then the evolution of the two stars can be considered
separately. The most important binary-evolution processes -when their orbit are nar-
row enough to interact with each other- are mass transfer and common envelope. Mass
transfer is an exchange of matter between the two objects in the binary. The principle
that drives this phenomenon can be stellar winds or Roche-lobe �lling. When the stellar
winds occur, the mass lost by the star can be captured by its companion. The mean mass
accretion rate by stellar winds can be described, according to Hurley et al.(2002)[9], as:

ṁ2 =
1√

1− e2
(Gm2

v2w

)2 1[
1 +

(vorb
vw

)2]3/2 ṁ1. (2.1)

Where G is the gravitational costant, m2 represents the mass of the accreting star, vw
represents the velocity of the wind, αw ≈ 3/2 is an e�ciency constant, a represents the
semi major axis of the binary, vorb =

√
G(m1 +m2)/a represents the orbital velocity

of the binary and ṁ represents the mass loss Roche lobe over�ow is commonly more
e�cient than stellar winds. The Roche lobe of a star in a binary system is the maximum
equipotential surface around the star within which matter is bounded to the star. See
�gure 2.1 for a representation of the Roche lobe. The approximated shape of the Roche
lobe is given by[10]:

rL,1 = a
0.49q2/3

0.6q2/3 + ln(1 + q1/3)
(2.2)

where a is the semi-major axis of the binary and q = m1/m2 (m1 and m2 are the masses
of the two stars in the binary). The Roche lobe of the other star (rL,2) can be obtained
by swapping the indexes. The Roche lobes of the two stars in a binary are thus connected
by the L1 Lagrangian point. Since the Roche lobes are equipotential surfaces, matter
orbiting at or beyond the Roche lobe can �ow freely from one star to the other. We say
that a star over�lls its Roche lobe when its radius is larger than the Roche lobe. If a
star over�lls its Roche lobe, a part of its mass �ows toward the companion star which
can accrete (a part of) it. The former and the latter are thus called donor and accretor
star, respectively.
If mass transfer is dynamically unstable (the star expands faster than the Roche lobe)
or both stars over�ll their Roche lobe, then the binary is expected to merge, or to enter
common envelope (CE). If two stars enter in CE, their envelopes stop co-rotating with
their cores. The two stellar cores are embedded in the same non-corotating envelope and
start spiraling in as an e�ect of gas drag exerted by the envelope, losing orbital energy
in the meanwhile. Part of this energy goes into heating of the envelope, making it more
loosely bound. This process can lead to di�erent results:
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Figure 2.1: Equipotential surfaces and Lagrangian points of a binary system.

• The heating can lead to the ejection of the envelope. The system survived as a
binary of naked stellar cores (or a compact remnant and a naked stellar cores). The
orbital separation of this two object is considerably smaller than the initial orbital
separation of the binary.

• If the envelope is not ejected, the two cores (or the compact remnant and the core)
spiral in until they eventually merge. This premature merger of a binary during a
CE phase prevents the binary from evolving into a binary compact object.



Chapter 3

Natal Kicks

The most simple stellar evolution models use the approximation of spherical symmetry for
supernovae. However, supernovae are not symmetrical either in neutrino �ux or ejecta
mass. The main consequence of this anisotropy is that supernovae impress a certain
velocity to compact remnants. In addition, if the SN occurs in a binary star, we expect
the so-called Blaauw kick to a�ect the orbital properties of the binary system, even if
mass loss is completely symmetric. The natal kick has serious implications in binary
compact objects because it can either unbind the system or change its orbital properties.
For example, a SN kick can increase the orbital eccentricity or misalign the spins of the
two members of the binary. The estimations of natal kicks magnitude are extremely
uncertain, especially for BHs. As to neuron stars we have some more information to
work on. This information comes from observational surveys and simulation models. In
the following I reported some of the most signi�cant studies on natal kicks statistical
velocity distribution, in order to have a clear picture of the basic observational evidences
as well as the state of art simulation models.

3.1 Statistical Distribution of vk

Most observational estimates of natal kicks come from pulsar proper motions. Hobbs(2005)[11]
analysed the proper motions of 233 Galactic pulsar. The majority of the proper motions
(58 %) are derived from pulsar timing methods, 41 percent using interferometers and the
remaining 1 percent using optical telescopes. Restricting their analysis to the 73 pulsars
younger than ∼ 3Myr they �t a Maxwellian distribution for the natal kick velocity, with
one-dimensional root-mean-square velocity σ = 265kms−1. Figure 3.1 report this work.

This result, however, is still under debate. Other works (e.g. Fryer et al. (1998) [12]
and Verbunt et al. (2017) [13]) suggest a double Maxwellian, with the �rst peak at low
velocities and a second peak at high velocities. Figure 3.2 shows the comparison between
those models and the single Maxwellian model.

Moreover, Beniamini et al. (2016)[14] �nd a strong preference for small natal kicks
in binary neutron stars. As to BHs, there are evidence of small natal kicks from X-ray
binaries but also a requirement of high natal kicks to explain the position of BH with

11
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Figure 3.1: The 3D velocity distributions Hobbs obtained from the observed 2D distribu-
tions. The solid curve is the best-�tting Maxwellian distribution to the histogram with
σ = 265kms−1.[11]

Figure 3.2: The comparison between single Maxwellian distribution with σ = 265kms−1

and the double Maxwellian that best �t the youngest pulsars. (The vertical dotted lines
indicates the median velocities)[13]
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Figure 3.3: (Left panels): Probability distribution function (PDF) of natal kicks for all
NSs formed both in single stars (top) and from binary systems (bottom) using di�erent
models (in orange the prediction of the model treated here (vkick ∝ fH05mejm

−1
REM )).

Right-hand panels: cumulative distribution function (CDF) of natal kicks for all NSs.
(Right panels) same but for BHs. [4]

respect to the Galactic plane (Repetto et al. (2012)[15]).
Recently a more comprehensive prescription has been proposed (Giacobbo & Mapelli
(2019)) [4] which can be written in the form

vkick ∝ fH05mejm
−1
REM (3.1)

where fH05 express the singular Maxwellian distribution with σ = 265kms−10, mej

is the mass of the ejecta, mREM is the mass of the remnant and vkick express the kicks'
magnitude distribution. So they took the singular Maxwellian distribution with σ =
265kms−10 from Hobbs[11] and they also take into account the role that the mass of the
ejecta and the mass of the remnant play in kicks' magnitude distribution. Figure 3.3
shows the comparison between models made by Giacobbo & Mapelli.

For the single star evolution, the distribution of vkick has a good match with the
high-velocity peak observed by Hobbs [11] as well as low peak[12][13]. In addition, the
dependence on mej and mREM highlights the physical meaning of those peaks (one com-
ing from core-collapse supernovae and the other one from electron capture supernovae
and direct collapses). On the other hand, this model predicts a totally di�erent distri-
bution of natal kicks in binary systems. According to this model, binary evolution tends
to increase the number of neuron stars with small kicks. The reason behind this trend
is that mass transfer (explained in sec. 2.1.1) reduces mej . Nevertheless, this model
predicts that binary evolution also triggers the formation of few neutron stars with even
larger kicks than in the case of single-star evolution. The merger rate obtained using
these assumptions meets the expectation from state of art studies[1].
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3.2 Dynamics of Natal Kicks

Here I will introduce the formalism used by Hurley(2002)[9] to describe the impact of
natal kicks on angular momentum (and thus, on orbit characteristics).
Consider a frame of reference in which the pre-supernova centre-of-mass is at rest, the
primary star is about to explode and the secondary is at the origin. The initial orbit is
in the XY-plane so that the initial speci�c angular momentum vector is directed along
the positive Z-axis, and the separation vector r = r1 − r2 is directed along the positive
Y-axis, as shown in Figure 3.4. The relative velocity of the star is

v = −vorb(sinβi + cosβj) (3.2)

where β is the angle between r and v and is such that:

sinβ =

[
a2(1− e2)
r(2a− r)

]1/2
(3.3)

cosβ =
e sinE

(1− e2 cos2E)1/2
(3.4)

and E is the eccentric anomaly in Kepler's equation

M = E − e sinE (3.5)

for mean anomalyM which varies uniformly with time between 0 and 2π. The orbital
speed is de�ned by

v2orb = ṙ2 + r2θ̇2 = GMb

(2

r
− 1

a

)
, Mb = M1 +M2 (3.6)

As well as losing an amount of mass ∆M1 the primary star is subject to a kick velocity
vk during the supernova explosion so that:

M1 → M ′1 = M1 −∆M1

Mb → M ′b = Mb −∆Mb

v1 → v′1 = v1 + vk

where

vk = vk(cosω cosφi + sinω cosφj + sinφk) , vk =| v | (3.7)

Here i, j and k are unit vectors in the X, Y and Z directions respectively. We assume
the separation is constant as the explosion is instantaneous. To �nd the separation at
the moment of explosion we randomly choose a mean anomaly m and then solve eq.(3.4)
for the eccentric anomaly E using a Newton-Raphson method. Then

r = a(1− e cosE) , r = |r| (3.8)
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Figure 3.4: The binary and supernova kick geometry.[9]

in terms of the initial semi-major axis and eccentricity. This is necessary because the
binary is evolved using values averaged over an orbital period so that the exact separation
at any one time is not known for an eccentric orbit. After the supernova, the new relative
velocity is

vn = v + vk = (vk cosω cosφ− vorb sinβ)i + (vk sinω cosφ− vorb cosβ)j + vk sinφk

From eq. (3.5) it must be true that

v2n = GM ′b

(2

r
− 1

an

)
(3.9)

for the new orbital parameters, where

v2n = |vn|2 = v2k + v2orb − 2vkvorb(cosω cosφ sinβ + sinω cosφ cosβ). (3.10)

This can be solved for the semi-major axis an of the new orbit. The speci�c angular
momentum of the new system is

h′ = r× rn (3.11)

so it follows from

l = a(1− e2) =
h2

GMb
(3.12)

(where l is the semi-latus rectum) that

GMban(1− e2) = |r× vn|2 (3.13)

where
|r× vn|2 = r2[v2k sin2 φ+ (vk cosω cosφ− vorb sinβ)2] (3.14)



16 CHAPTER 3. NATAL KICKS

With this we can solve for the new eccentricity en of the orbit. If either an ≤ 0 or en > 1
then the binary does not survive the kick. The angle ν between the new and old angular
momentum vectors is given by

cos ν =
vorb sinβ − vk cosω cosφ

[v2k sin2 φ+ (vk cosω cosφ− vorb sinβ)2]1/2
. (3.15)

An amount of mass ∆M1 is ejected from the primary, and hence from the system, so
that the new centre-of-mass has a velocity

vs =
M ′1
M ′b

vk −
∆M1M2

M ′bMb
v (3.16)

relative to the old centre-of-mass frame. To determine the kick velocity it is necessary
to choose vk, the magnitude of vk, φ, the angle between vk and the orbital plane, and
ω, the angle between the projection of vk on to the orbital plane and the X-axis, from
appropriate distribution functions. The kick direction (φ) is uniform over all solid angles
and ω is uniformly distributed between 0 and 2π. However, in my data analysis, I only
take into account kick magnitude vk. The distribution chosen in the MOBSE code follows
the model suggested by Giacobbo & Mapelli[4], as explained in the next chapter.



Chapter 4

Data Analysis

In this chapter, I will analyse and discuss data regarding 5 simulated isolated binaries
of neutron stars. These data come from a population synthesis code (MOBSE)[4]. The
binaries start with di�erent characteristics and follow a di�erent evolution paths. Orig-
inally, all 5 system resulted to merge, but they all were simulated a second time, with
di�erent kicks, to highlight that even binaries that start with the same characteristics
can reach a di�erent end (he second choice of the kick disrupts the systems). The aim is
to understand the way the system reacts to the kicks. First, I want to introduce brie�y
the way the data are generated, then I will show and discuss the plots I made from the
data.

4.1 MOBSE

MOBSE (Massive Object in Binary Stellar Evolution) is a population-synthesis code
developed by Giacobbo and al. (2018)[16]. This code is a customized version of BSE
(Binary Stellar Evolution), Hurley et al. (2000, 2002)[17] [9] which takes into account
the state of art studies on star evolution. Here I summarize the main assumptions that
MOBSE features.

• For the stellar evolution it uses the polynomial �tting formulas developed by Hurley
et al. (2000) [17].

• For stellar winds and mass loss it uses the formalism described in Giacobbo &
Mapelli (2018)[18].

• For the natal kicks it uses the natal kicks distribution described in Giacobbo &
Mapelli (2019)[4].

• For the binary evolution it uses mass transfer, common envelope, tidal evolution
and gravitational wave decay as described in Hurley et al. 2002 [9].

• Fore the supernovae it uses the formalism developed by Fryer and al. (2012)[19]

17
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4.2 Results

To visualize the way the systems evolve, for each binary I plotted its main characteristics
(masses, orbital eccentricity and semi-major axis) over time from the two simulations.

4.3 Discussion

Merger scenario

Systems 1 and 2 (�gure 4.1) follow a very similar path for most of their lives. They are
both composed of a massive primary (above 70 M�) and a smaller companion (≈ 15M�).
The primary evolves faster and the mass loss, due to stellar winds, is e�cient (in all
the other stars considered, mass loss due to stellar winds is negligible). At ≈ 4 Myr
a Roche lobe �lling and, later, a common envelope set in. In this phase the orbital
separation decreases and the eccentricity goes to 0. When the process ends, the primary
has become a naked helium core that will soon become a BH, while the companion is still
in main sequence. The evolution goes on until a second common envelope (≈ 13 Myr)
in secondary's red giant branch. Here the system shrinks again. The result is a binary
composed of a BH and a naked core that will become a neutron star. From this point on
masses and eccentricities will no more be a�ected, while separation decreases gradually
due to GWs until the system merges. Despite all those similarities, the two systems don't
share the same fates. The kick of the primary (at t≈4.3 Myr for both systems) has a
small e�ect on the dynamics in either binary (according to vk distribution used). The
natal kick of the companion (t ≈ 15Myr for both systems), however, is di�erent. In
system 1 (Figure 4.1, left panels) the eccentricity undergoes a negligible change while in
system 2 (Figure 4.1, right panels) the eccentricity becomes close to 1. As we see in sec.
1.1, the merger time strongly depends on eccentricity; this is the reason why the system
1 reaches the coalescence in 4 Gyr and the system 2 merges in 190 Myr.
Systems 3 and 4 (Figure 4.2) have lower masses than systems 1 and 2, and have higher
separation. The two stars in these binaries do not a�ect each other in the early phases
of their lifetimes. In both systems common envelope occurs after the stars enter the red
giant branch (t ≈ 20Myr for system 3, t ≈ 15Myr for system 4). At the end of the
common envelope phase, the systems have lost most of their mass, the remnants are two
naked helium cores that will become neutron stars and �nally merge. Here again, the
natal kicks that occur in the moment of the neutron star formation make the di�erences
in the system's epilogue. In system 3, the kick received by the primary (t ≈ 20Myr,
right after common envelope phase), increases the eccentricity from 0 to 0.72. However,
when the companion reaches the supernova phase (t ≈ 23Myr), it receives a kick that
decreases eccentricity and separation. The result is that the system merges in ≈8 Gyr.
(according to eq.1.6, low eccentricity and low mass contribute to increasing tGW ). The
system 4 starts with high eccentricity, but after CE the orbit is almost circular (e=0)
both the kicks of the two stars, one at t ≈ 16Myr and the other at t ≈ 17Myr decrease
separation and increase eccentricity, leading the system to reach coalescence in a very
short time (≈ 20Myr). The system 5 (Figure 4.3) follows a di�erent path. The starting
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masses are lower than the other systems (10 M� and 7.5 M�) and the orbital separation
is very low (≈ 80R�). The Roche lobe in�lling sets in right after the primary enter
the Hertzsprung gap (t ≈ 24Myr). In this phase, the system undergoes a mass transfer
process that almost doubles the mass of the companion (from 7.5M� to 15M� ) leaving
just the He core to the primary. The �rst kick (that occurs at t ≈ 29Myr) increases
separation and eccentricity. This new equilibrium survives until the companion enters
the asymptotic giant branch (t ≈ 33Myr). Here its radius increases, and a common
envelope process begins and brings once again the eccentricity close to 0. At the end of
CE all the envelope is ejected. The neutron star and the newly formed He core are very
close. The second kick (t ≈ 35Myr) occurs without changing the mass of the primary.
The result of this kick is a highly eccentric and close BNS that will merge 70 Myr after
its formation (t ≈ 108Myr).

Disrupt Scenario

In this scenario, the evolution of the system naturally follows the same steps as the
previous until the �rst kick takes place. The masses and times at which kicks occur, do not
undergo relevant changes, while eccentricity and separation can be modi�ed completely.
When the binary is disrupted. Here I discuss the di�erence the kinks make in each
system.
In system 1 (See �gure 4.1, left, dashed line), the kick received by the black holes in
the moment of its formation has almost no impact on physical parameter. The system
remains a close binary until the companion receives a kick (while becoming a neutron
star) that unbinds the binary (t ≈ 15Myr).
In system 2 (See �gure 4.1, right, dashed line), the kick received by the black hole
(probably a Blaauw kick, as the �rst) strongly increases separation and eccentricity of
the binary, then disrupted by the kick of the companion (t ≈ 14Myr).
In system 3 (See �gure 4.2, left, dashed line), the kick that the primary receives is the
one that splits the binary (t ≈ 20Myr). From there, the evolution continues separately
and the companion receives a kick as soon as the binary does not exist any more.
In system 4 (See �gure 4.2, right, dashed line), the primary becomes a neutron star while
the system is still in common envelope phase, decreasing its separation and increasing
its eccentricity. The second kick stresses even more the system and in a short time, the
binary breaks apart (t ≈ 17Myr).
System 5 (See �gure 4.3, dashed line) does not actually disrupt: the primary becomes
a neutron star while the system is still in common envelope phase like system 4. The
e�ect of this kick, however, is to increase separation without having a big impact on
eccentricity (that slightly increases). The system at t ≈ 33Myr enters common envelope
phase and it collide right after. The companion does not undergo supernova phases and
only the neuron star (whose mass remains virtually unchanged) survives.
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Figure 4.1: Data plot of systems 1 and 2 (respectively left and right panels). Top
panels: evolution of the mass of the primary and the companion as a function of time.
Middle panel: evolution of the orbital separation as a function of time. Bottom panels:
evolution of the eccentricity as a function of time. In all panels, the solid line shows the
simulation in which the binary merges by GW emission, while the dashed line indicates
the simulation in which the binary disrupts.
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Figure 4.2: Data plot of system 3 and 4 (respectively left and right panels), same for-
malism as �gure 4.1
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Figure 4.3: Data plot of system 5, same formalism as �gure 4.1





Conclusions

In the �rst part of this thesis, I reviewed the main steps made in gravitational waves
astrophysics. Starting from the theoretical predictions of Peters[5] then the �rst indi-
rect evidence by Hulse & Taylor[2] to reach state of art observation with LIGO-Virgo
collaboration. Afterwards I highlighted the main processes that drive the last phases
of stellar evolution and how they a�ect the �nal fate of a binary system. In the third
part I introduced the phenomenon of natal kick, the most important studies on this
framework and the main issues of this phenomenon. In the last part, I analysed a set of
binary stars simulated by means of a population-synthesis code. For each set of starting
physical parameters (stellar masses, orbital separation and orbital eccentricity) I stud-
ied two evolution pathways, one that ends with the coalescence of the two objects, the
other that ends with the split of the binary. In every simulation, the natal kicks of the
two stars becoming compact objects turned out to play a key role in the de�nitions of
the evolutionary pathways followed by the system. In particular, the equation 1.4 ex-
presses fact that binaries reach coalescence by losing energy through gravitational waves
emission. Equation 1.6 highlights the dependence of merger time from masses of the
object, orbital separation and eccentricity. In sec. 3.2 it is reported a formalism that
explains the way natal kicks a�ect these quantities. Another elements that has to be
considered in order to analyse the results is that the velocity distribution used in the
population-synthesis code depends on masses of ejecta and remnants (as explained in
sec 3.1). For examples a naked core that has lost its envelope after CE phase (system
3, �gure 4.2, left) is more likely to receive a lower kick than a star who has accreted
mass in a mass transfer phenomenon and reaches supernova phase with a large envelope
(system 5, �gure 4.3). We can see that all these phenomena a�ect the system evolution.
The merger time decreases enormously when the kick increases the orbital eccentricity.
Roche lobe �lling and common envelope phase completely change separation and masses.
The kick, however, can end this phase (system 3-5, �gure 4.2, 4.3) leading the ejection of
the envelope or triggering the collision of the cores so that the system becomes a single
star. If the system manages to survive after the two kicks, it slowly shrinks due to GW
emission until it reaches coalescence within an Hubble time. In all the simulations that
lead to the disruption of the system the splits occur soon after the �rst (system 3, �g 4.2,
left) or the second (system 1,2,4,5, �gures 4.1, 4,2 (right) 4.3) kick. System 5 presents a
peculiar situation. In the early stages, its life undergoes mass transfer phenomenon via
Roche lobe in�lling. When it ends, the mass of the primary has become 1.2 M� (from

23
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≈ 10M�) and the mass of the companion has become 15.2 M� (from ≈ 7M�). In the
merger simulation, after the kick of the primary the separation and the eccentricity are
high. After 4 Myr the two stars comes into contact. When this phenomenon happens the
companion loses all its envelope. So, when it reaches the supernova phase, the system
survives (low ejecta mass leads to lower kicks) with low separation and high eccentricity
thus making the two objects collide in 107 My. In disrupt simulation instead, after the
primary undergoes supernova phase and receive a kick, the system is close and and has
low eccentricity. The companion, in this case, does not lose its envelope until a common
envelope sets in. Here the code reports that the primary star does not exist any more.
Probably the core of the companion and the neutron star collided. The code in this
case sees the mass of the companion as mass accreted by the NS. This mass is soon
ejected leaving the neuron star as a single object. This is just a more peculiar example of
how kick can dramatically a�ect the evolution of a system. These results suggest that we
must further investigate the details of natal kick impact on a system, considering a larger
sample of binaries and taking into account directional information about vk in addition
to magnitude information we used here (impact of direction is introduced in sec 3.2).
This could be a further development of this Thesis. Moreover, there are issues that must
be solved. There is no self-consistent model of natal kicks that captures the complex
physics of supernovae. We said that vk distribution is crucial to de�ne the merger rate
of binary compact objects. Unfortunately, the number of GW events detected so far
is still too low to put strong constraints on the models. Only one binary neutron star
merger has been observed and the detection of a black hole-neutron star system is still
missing. Finally, all the equations used in this thesis as well as the formulas included
in MOBSE code su�er from several approximations. In conclusion, we can understand
how important natal kicks are, especially in binary systems, but we do not have the tools
to fully understand the mechanisms behind this phenomenon. For now, this remains a
crucial open issue.
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