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Abstract

Buildings are among the largest consumers of energy in the world. A signif-

icant part of this energy can be attributed to Heating, Ventilation and Air

Conditioning (HVAC) systems, which play an important role in maintaining

acceptable thermal and air quality conditions in common building. For this

reason, improving energy efficiency in buildings is today a primary objective

for the building industry, as well as for the society in general.

However, in order to successfully control buildings, control systems must

continuously adapt the operation of the building to various uncertainties (exter-

nal air temperature, occupants’ activities, etc.) while making sure that energy

efficiency does not compromise occupant’s comfort and well-being. Several

promising approaches have been proposed; among them, Model Predictive Con-

trol has received particular attention, since it can naturally achieve systematic

integration of several factors, such as weather forecasts, occupancy predictions,

comfort ranges and actuation constraints. This advanced technique has been

shown to bring significant improvements in energy savings.

Model Predictive Control employs a model of the system and solves an

on-line optimization problem to obtain optimal control inputs. The on-line

computation, as well as the modelling effort, can lead to difficulties in the

practical integration into a building management system.

To cope with this problem, another possibility is to obtain off-line the optimal

control profile as a piecewise affine and continuous function of the initial state.

By doing so, the computation associated with Model Predictive Control becomes

a simple function evaluation, which can be performed efficiently on a simple

and cheap hardware.

In this thesis, an implicit and an explicit formulation of Model Predictive

Control for HVAC systems are developed and compared, showing the practical

advantages of the explicit formulation.
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1
Introduction

A major issue of our times is that of energy consumption, due to both the

depletion of fossil fuel energy sources and the environmental impact that comes

from the associated energy waste. Within Europe, the total energy consumption

is increasing at a rate of 1.5% per year, due to several factors like economic

growth, expansion of building sector, and spread of building services. As a

direct consequence, the scientific community worldwide is making many efforts

to improve the overall energy efficiency of mankind activities. In particular,

European energy consumption presents the following energy distribution: 34.6%

in transport, 24.6% in management of households, 27.9% in industry and 14.9%

in commercial and others [1]. Summarizing, these statistics show how buildings,

both residential and commercial, account for a total amount of approximatively

40% of the total energy consumption.

Given these figures, it is no surprising that academic and industrial research

groups have been working on achieving improvements in energy savings for

buildings. A special attention is then reserved to the so-called Heating, Venting

and Air Conditioning (HVAC) systems, i.e., the set of equipments that condition

and distribute the indoor air of a building, and that are dedicated to the

maintenance of its quality. In this context, it is worth knowing that HVAC
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systems account for 50% of buildings energy consumption and approximately

20% of total consumption [1].

Moreover, it is well known that HVAC systems use more energy than

expected or desired, and it has been estimated that there is a potential energy

savings that ranges between 5% and 30% [2]. Out of this need the concept of

intelligent buildings is becoming more common nowadays. The current trend is

indeed to equip buildings with instruments and sensors that collect data that

are then used by complex control techniques to improve energetic performances

while maintaining comfort levels.

Model Predictive Control has gained a lot of attention over the last years,

especially for the control of buildings [3]. This is due to its ability to use a

model-based control technique that integrates a mathematical representation of

the building with the most important factors which affect the building dynamics.

For instance with this scheme it is possible to integrate physical constraints on

actuators, forecasts of disturbances acting on the building, and predictions on

future weather and occupancy conditions.

But while all these properties make MPC extremely powerful and attractive

when it comes to building control, at the same time designing a proper controller

is a challenging task. Indeed, it requires an extensive knowledge of the physical

properties of the building, as well as data processing, and computational efforts.

1.1 Review of technologies and control

techniques in HVAC systems

This section presents the current state of the art on the control of HVACs

systems. In particular, we provide a description of the technologies and method-

ologies currently applied on modern HVACs system.

We then start clarifying what is actually an HVAC system: an HVAC

system is a set of mechanical devices that are designed and coupled to condition

and distribute the air inside a building, so that this air satisfies certain quality

conditions (for an indoor environment). This quality control is usually achieved

by conditioning the temperature, humidity, cleanliness and motion of the air.

A basic system often includes an outside-air intake, a chiller pre-heater, a

dehumidifier, some fans, some ducts, air outlets, and air terminals.
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General technologies used in HVAC systems

As mentioned in the introduction, advanced control techniques also require

knowledge, under the form of data describing the current status of the indoor

environment. To this aim, a common practice is to provide HVACs systems with

dedicated measurement systems, like WSNs. The aim is to monitor physical or

environment conditions like temperature, CO2, humidity, and occupancy levels.

In particular, WSNs are currently widely used because they are cost-effective:

indeed they are easy to retrofit in existing buildings, and besides they require

minimal maintenance and supervision. We incidentally notice that another

important aspect to be considered is that of privacy: since the main aim of an

HVAC system is to assure comfort conditions to the users, it is crucial to use

sensors which do not affect users’ behaviors and do not raise privacy concerns.

For all these reasons, WSNs represent an interesting choice.

The most used sensors among those that are currently exploited can be

summarized as:

• temperature, humidity, light and CO2 sensors;

• acoustic sensors (also microphones);

• Passive Infrared (PIR) sensors (for motion detection or people counting);

• switch-door sensors (magnetic);

• cameras;

• Radio Frequency Identification (RFID) tags.

PIR sensors, in particular, represent the most used alternative to obtain

information about the state of the environment. They are often used to

perceive the movements of people within a certain area. For instance, PIR

based sensors are often used (especially with lighting system) for occupancy

detection. A first example of how PIR sensors have been used is the AIM

Project [4], where authors used sensors to get some physical parameters, like

temperature and light, as well as PIR to infer user’s presence in each room of a

house. The authors of [5] uses a deployment of PIR and door sensors to obtain

a binary indication of occupancy. They exploit this information to adapt the

temperature through a reactive strategy. Moreover they estimate the potential
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savings using EnergyPlus. The problem related to PIRs is that they do not

give any information regarding how many people occupy the room.

Hence, others technologies can be applied to indoor activity recognition.

For instance, in [6], Erickson et. all use a 16 node sensor network of cam-

eras (SCOPES) in order to capture occupancy changes among areas with

approximately 80% accuracy in real time.

In [7] the authors use a sonar system in order to sense the environment.

Relying on the characteristics of the echoes, they deduce a rough map of the

focused area. Their system emits a continuous high frequency (ultrasonic) sine

wave and records the resulting echoes by using a microphone.

In [8], Lam et al conduct their experiments on an extensive testbed that in-

cludes distributed sensors for a variety of environment parameters. In particular,

the test bed is equipped with CO2, carbon-monoxide (CO), total volatile or-

ganic compounds (TVOC), small particulates (PM2.5), acoustics, illumination,

motion, temperature, and humidity sensors.

An even more complete testbed has been constructed in ARIMA [9]. Here,

to gather data related to total building occupancy, wireless sensors are installed

in a three-storey building in eastern Ontario (Canada) comprising laboratories

and 81 individual work spaces. Contact closure sensors are placed on various

doors, PIR motion sensors are placed in the main corridor on each floor, and

a carbon-dioxide sensor is positioned in a circulation area. In addition, the

authors collect data on the number of people who log into the network each

day. This gives the managers of the building the possibility of being aware of

the air quality and of having CO2 levels indications.

In [10], Calis et al. study two ILS (indoor location sensing) built on

radio frequency identification (RFID) and on wireless sensor network. They

developed two possible algorithms to retrieve pieces of information about the

indoor activity of six occupants simultaneously tracked.

We notice that occupancy levels can be inferred also without using PIR

or dedicated sensors, by applying system identification and deconvolution

techniques on temperature, CO2and actuation levels [11]. These techniques

tend to have the convenient property of not requiring dedicated hardware (and

thus additional costs).

Summarizing, it is of fundamental importance to provide buildings with

monitoring systems dedicated to data acquisition. In fact, a greater knowledge

of the controlled environment can be exploited by more advanced control
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techniques, that eventually may ensure better comfort conditions without

additional energy consumptions.

Methodologies applied on HVAC systems

After discussing the current technologies used in HVAC systems, we overview

the methodologies that, exploiting collected data, allow to improve performance

of controlling and monitoring systems of buildings. As previously mentioned,

occupancy and weather forecasts can be two main conditioning factors to

be considered in HVAC control strategies. In the following section we thus

summarize the approaches that are used to retrieve pieces of information about

occupancy and environment prevision.

Management of information on occupancy patterns As in [12], a first

approach is simply to base the control strategies on historical data. Providing

the to-be-controlled space with several sensors (motion, temperature, etc.) the

authors collected data, and exploited them afterwards to perform occupancy

prediction. Depending on the current occupancy state and on previous real-

ization of occupancy pattern, the system decides whether it is convenient to

activate a preheating cycle or not. Despite its simplicity, this approach is shown

to be more convenient compared to normal thermostat programs.

Another intuitive and simple approach to manage occupancy is to schedule

some techniques based both on occupancy and outside temperature knowl-

edge. Several possibilities have been investigated, leading to results that can

be satisfactory in many circumstances. Some of the most used scheduling

techniques are Interruption, Early Switch Off (ESO), Demand Reduction (DR)

and Alternative Switch-On/Off (ASOO). More details on these kind of control

strategies can be found in [13].

In [8], an analysis of the correlation between measured environmental

parameters and the occupancy level is firstly conducted in order to identify the

most significant equipment to get occupancy detection. Moreover Lam et al.

study the comparison between several approaches for the estimation of indoor

activity. In particular they investigate an approach based on Support Vector

Machine (SVM), Neural Networks (NN), and Hidden Markov Models (HMM).

In the AIM project [4], Barbato et al. build user profiles by using a learning

algorithm that extracts characteristics from the user habits in the form of
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probability distributions. A sensor network continuously collects information

about users presence/absence in each room of the house in a given monitoring

period. At the end of this monitoring time the cross-correlation between each

couple of 24 hour data presence patterns is computed for each room of the

house in order to cluster similar daily profiles.

In OBSERVE [6], based on data collected by SCOPES system, and the

knowledge of room, Erickson et al. developed a Markov Chain model in which,

the states of the chain consist of the occupancy numbers at each room and

transitions can occur according to a time-depending transition matrix.

Management of weather forecasts predictions: Another important in-

formation in smart HVAC control is the predicted weather conditions.

In general, predictive strategies (in the sense that account for weather

predictions and their uncertainty) turn out to be more efficient and promising

compared to conventional, non predictive strategies in thermal control of

buildings [14],[15].

In [14] authors have developed both certainty-equivalence controllers using

weather predictions and a controller based on stochastic dynamic programming

for a solar domestic hot water system. These strategies are based on probability

distributions that are derived from available weather data. The simulation

results show that these predictive control strategies can achieve lower energy

consumptions compared to non-predictive strategies.

In [16] the authors study several methodologies to obtain the correlation

between environment scenario and energy needed for HVAC buildings. The

approach is based on a detailed analysis of weather sequences and it leads to a

classification of climatic situations that can be applied on the site.

Another common strategy is to consider all the uncertain variables acting

on the system as the realization of a random process. This approach can be

found, for instance, in [17, 18, 15, 19].

In [17] authors exploit predicted future disturbances while maintaining

comfort bounds for the room temperature. Both conventional, non-predictive

strategies and predictive control strategies are then assessed using a performance

bound as a benchmark.

In [18], instead, Bemporad et. al. propose a stochastic predictive building

temperature regulator where weather and load disturbances are modelled as

Gaussian processes. [15] also uses a stochastic MPC and weather predictions.
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Firstly it solves a non-convex optimization problem and then it applies a

disturbances feedback. [19] finally considers a stochastic approach on the

uncertainty of the forecast disturbances (the outside temperature, the occupancy

and the solar radiation) solving the problem considering a scenario-based

approach and a statistical learning procedure to learn these statistics from real

and local data.

1.2 Statement of contributions

This thesis is part of an on-going research project that is developing, imple-

menting and testing MPC techniques on a real test bed. The specific goal of

this thesis is to investigate two MPC formulations: the implicit formulation

and the explicit one.

This comparison “Implicit MPC- vs. Explicit-MPC” is motivated by eco-

nomic and application reasons: indeed the Explicit approach tend to be, at

least intuitively, more attractive for a possible implementation on real buildings.

The main contributions of this thesis are to:

• obtain simpler models of the building dynamics;

• implement the implicit MPC ;

• develop and implement an explicit formulation for HVAC control that uses

the simplified model for the thermal dynamic and that takes uncertainty

into account;

• investigate the performance of the implicit and explicit MPC through

numerical experiments and discuss the results.

• investigate the performance of the explicit MPC with respect to the

current practice through experiments on a real test bed

1.3 Thesis Outline

The manuscript is organized as follows. In Chapter 2 we introduce the standard

methodologies and tools for the MPC controller. In particular, we describe

both the two versions, the explicit MPC and the implicit one. In Chapter 3 we
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model the real test bed with two different linear models that couple the two

quantities of main interest: the quality of air (in terms of CO2 concentrations),

and the room temperature. Moreover, we obtain a simplified model for the

thermal dynamic and we simulate it. In Chapter 4, we introduce our case

study and we describe in details the test bed. In Chapter 5 we present actual

implemented controllers, the procedures and the necessary control architecture

related to the KTH HVAC system. We then present and analyze some results

obtained both in simulations and in real experiments in Chapter 6. Finally in

Chapters 7 and 8, we draw some conclusions and give some possible suggestions

for future investigations.



2
Background on MPC

Model Predictive Control (MPC) has become a standard control method in

a wide range of areas. The popularity linked to this approach is due to its

flexibility and powerful ability to take into account several constraints and

external dynamics that would be hard to include with other approaches.

The basis for this approach can be summarized in a dynamic model as, for

instance:

x(k + 1) = g(x(k), u(k)), x(0) = x0 (2.1)

and a cost function to be minimized:

min
UN

N−1∑
k=0

q(x(k), u(k)) + p(xN) (2.2)

Through dynamic programming algorithm, this problem can be solved giving a

solution UN = [u(0)T , . . . , uN−1]. The problem is that, in general, the model can

be non linear and it describes the dynamic of the plant to control starting from

an initial measured state x0. This is often obtained exploiting identification

methods and it is inherently affected by errors with respect to the real process.

This is mainly due to either, external disturbances and inaccuracies in the model
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construction. To enforce the control strategy the state system is measured after

a certain amount of time (e.g a time step), and the dynamic problem solved

once again. This procedure endows the system of the required robustness [21].

Hence, this is exactly the main idea behind MPC control that is often called

Open Loop Optimal Feedback controller or Reactive Scheduling.

Preliminaries on mathematical optimization problems

In this section,a general introduction to optimization problem is given. The

intent, is to give the reader just the necessary background to understand the

following part of the thesis.

A general optimization problem is formulated as:

z∗ = arg inf
z

f(z)

subj. to z ∈ S ⊂ Z
(2.3)

where z collects the decision variables, Z represents the domain of the opti-

mization problem, S ⊆ Z is the set of feasible or admissible decision variables,

and z∗ is the value of z that solves (2.3). We remark that the optimizer x∗

might not be unique.

If we define:

f ∗ := inf
z∈S

f(z), (2.4)

that is the optimal value of the cost function. In particular the problem (2.3), is

said to be unbounded below if f ∗ = −∞, infeasible is S = ∅, and unconstrained

if S = Z.

Among all the possible optimization problems, we are interested just on a

specific subclass.

Continuous optimization problems: in these kind of problems, the do-

main Z, is a subset of the Euclidian vector-space Rs and the feasible set S, can

be defined through a series of inequality and equality constraints.

inf
z

f(z)

subject to gi(z) ≤ 0 for i = 1, . . . ,m

hi(z) = 0 for i = 1, . . . , p

z ∈ Z

(2.5)
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where f , g1, . . . , gm, h1, . . . , hp are functions defined over Rs. In this case Z, the

domain of the optimization problem, is simply given by the intersection between

the domain of the cost function, f(z), and the domain of the inequalities and

equalities. Moreover, the feasible set, S is made by all the z ∈ Z such that

all the constraints in 2.5 are satisfied. In particular, we say that z̄ ∈ Z, is a

feasible vector if gi(z̄)≤0 and hj z̄ = 0 ∀j, i. Finally, z∗, the optimizer vector, is a

feasible vector, with f(z∗) = f ∗.

Here are two important definitions concerning the constraints.

Definition 1 (Active Constraints). Consider a feasible vector z̄ ∈ S, the i-th

equality is said to be active if:

gi(z̄) = 0 (2.6)

Definition 2 (Inactive Constraints). Consider a feasible vector z̄ ∈ S, the i-th

equality is said to be inactive if:

gi(z̄) < 0 (2.7)

Other important definitions are those of a convex set, convex function and,

finally, convex optimization problem.

Definition 3 (Convex set). A set S ∈ Rs is convex if

λz1 + (1− λ)z2 ∈ S for all z1, z2 ∈ S, λ ∈ [0, 1] (2.8)

Definition 4 (Convex function). A function f : S → R is convex if S is convex

and
f(λz1 + (1− λ)z2) ≤ λf(z1) + (1− λ)f(z2)

for all z1, z2 ∈ S, λ ∈ [0, 1]
(2.9)

Definition 5 (Convex Optimization Problem). The standard optimization

problem as in 2.5 is said to be convex if the cost function f is convex on the

domain Z and the feasible set S is convex.
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The importance of having a convex problem is due either to computational

reasons and precision in the solution. In particular, this is due to the following

basic theorem which attests that it is sufficient that, in a convex problem, it

is sufficient to compute a local minimum to determine the global minimum.

Hence, convexity plays an important role in optimization problems and it is

exploited also in nonconvex that are approximated by convex sub-problems.

Theorem 6 (Solution of a convex problem). Consider a convex optimization

problem and let z̄ ∈ S be a local optimizer. Then z̄ is global optimizer.

The last concept to be introduced in this section is that of Dual Problem.

This concept will be of paramount importance when will be described the

different control methodologies used in this thesis. In particular, the definition

of the Dual Problem, with respect to the Primal problem 2.5, allows to determine

a lower bound for the optimal cost f ∗.

Definition 7 (Lagrange Dual Function). Consider the non-linear optimization

problem 2.5, we define L(z,u,v), the Lagrange dual function, in the following

way:

L(z, u, v) = f(z) + u1g1(z) + . . .+ umgm(z) + v1h1(z) + . . .+ vphp(z), (2.10)

The equation can be re-written in a compact way as follow:

L(z, u, v) = f(z) + uTg(z) + vTh(z) (2.11)

If we define the dual cost Θ(u, v) as:

Θ(u, v) = inf
z∈Z

L(u, v, z) (2.12)

Then, it is possible to introduce, the Lagrange Dual problem:

d∗ = sup
(u,v),u≥0

Θ(u, v) (2.13)

Moreover this Dual problem shows several interesting properties that we give

without the proof.

• Θ(u, v) is always a concave function, that implies that the dual problem

is always convex (maximum of a concave function over a convex set)
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• The solution of the dual problem represents a lower bound of the primal

problem

sup
(u,v),u≥0

Θ(u, v) ≤ inf
z∈S

f(z)

. Hence, the difference f ∗− d∗ ≥ 0 is called optimal dual gap. It is always

positive and if f ∗ − d∗ = 0 we say that strong duality holds and we have

zero dual gap.

where the scalars u1, . . . , um, v1, . . . , vp are called dual variables and are all real

variables.

Karush-Khun-Tucker Conditions We now introduce a set of necessary

conditions for any primal-dual optimal pair if strong duality holds and con-

straints are differentiable, i.e. any z∗, (u∗, v∗) must satisfy these conditions.

Theorem 8 (KKT Conditions). Given a general optimization problem 2.5 and

its dual 2.19, the primal and dual optimal pair z∗, (u∗, v∗) of an optimization

problem with differentiable constraints and cost and zero duality gap, has to

satisfy:

∇f(z∗) +
∑m

i=1 u
∗
i∇gi(z∗) +

∑p
j=1 v

∗
j∇hj(z∗) = 0

u∗i gi(z
∗) = 0 i = 1, . . . ,m

u∗i ≤ 0 i = 1, . . . ,m

gi(z
∗) ≥ 0 i = 1, . . . ,m

hj(z
∗) = 0 j = 1, . . . , p

(2.14)

Moreover, if the primal problem is convex (i.e. linear programming), the

KKT conditions are also sufficient, i.e., a primal and dual pair z∗, (u∗, v∗)

which satisfies 2.14 is a primal dual optimal pair with zero dual gap.

Linear Programming: One of the most important subclasses of convex

optimization problems, is that of Linear optimization. The main reason for this,

is that it is possible to model and solve efficiently a large amount of different

problems. In particular, there exist various commercial and non-commercial

software available that allow to obtain a solution for these kind of problem in a

reasonable range of time.

Definition 9. The intersection P ∈ Rn of a finite set of closed halfspaces in
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Rn is called Polyhedron.

P = {x ∈ Rn : Ax ≤ b} (2.15)

If the polyhedron is bounded it said to be a Polytope.

Definition 10. The general form of a linear programming problem is:

infz c′z

subj.to Gz ≤ w
(2.16)

where G ∈ Rm×s.

We remark that a linear programming problem is always convex.

Dual of Linear Programming problem Consider a linear programming

problem as in (2.16), we aim to determine the respective dual problem proceed-

ing as explained in the previous paragraph.

First of all we determine the Lagrange function:

L(u, z) = c′z + u′(Gz − w) (2.17)

and the associated dual cost:

Θ(u) = inf
z
L(z, u) = inf

z
c′z + u′(Gz − w) (2.18)

and with simple passages we obtain the dual problem:

infu w′u

subj.to G′u = −c
u ≥ 0

(2.19)

This concept will be useful when we will introduce the Explicit version of MPC

controller that is strongly linked to duality and multi parametric programming.

Preliminaries on Model Predictive Control (MPC)

MPC [20, 21] is a powerful approach to complex and constrained control. How

outlined in the introduction to this section, the main idea behind MPC is quite

simple. The standard scheme, often called Implicit MPC, requires that, at
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every fixed amount of time, an optimization problem is formulated and solved

on-line over a determined future window. The outputs of this problem are

optimal inputs and theoretical behaviours of the studied plant with respect to

an identified model. Basically, an open loop control is set at each sampling

time and applied to the system just until the next step. The whole procedure

is, hence, repeated basing on the new measurements ans shifting the considered

window. This Receding horizon approach is what introduces feedback into the

system.

For our proposes, the inputs of the optimal problem at each step, would

be the heating, cooling, and ventilation commands over the future window.

In particular, for slow dynamic system (buildings), this future horizon may

coincide with several hours or even days. Moreover, it is quite common in this

approach, to include also predictions about upcoming weather, internal gains,

control costs or comfort range.

The following Figure 2.1 summarizes the precious discussion giving a global

idea of the effective functioning of the MPC controller. A general optimization

Figure 2.1: Basic description of the main functioning of a Model Predictive Control (MPC)
scheme [20].
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problem for an MPC approach could be of the form:

min
u0,...,uN−1

p(xN) +
∑N−1

i=0 q(x(k), u(k), r(k)) (1) Cost function

subject to x0 = x(0) (2) Current state

xk+1 = f(x(k), u(k)) (3) Dynamics

(x(k), u(k)) ∈ Xk × Uk (4) Constraints

(2.20)

Cost functions

The cost function is of paramount important for two different aspects:

• Stablity : it is a common practice to choose the cost function in order

to assure stability of the whole system. In the specific case of building,

nevertheless, this is not highly required and it is possible to focus just on

performances in terms of energy saving.

• Energy target : usually the cost function is used to guarantee the maximum

in terms of energy performances or in terms of comfort.

Examples are:

Quadratic costs, q(xi, ui) = x′iQxi + u′iRui

Integral costs, q(xi, ui) = ‖ui‖1

Probabilistic costs, q(xi, ui) = E
[
g (xi, ui)

]
.

(2.21)

The differences between the cost functions lies in what they actually affect.

Quadratic regulators are mainly used when a trade-off between energy perfor-

mances and comfort performances is required. Integral costs are used when it

is more important the energy aspect of the problem. Finally, Probabilistic costs

can be used to consider the stochastic nature of a real problem.

Dynamics

The Model Predictive Control is a model-based approach. Essentially, based on

the current measurement of the state system, a future prediction is obtained

through a dynamic model of the real system. This prediction in necessary to

compute the optimal solution with respect to a cost function.

It is straightforward to understand that the goodness of the selected model

heavily affects the control plans that may eventually lead to poor control
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performances. Hence, it is of fundamental importance to choose carefully the

predictor model.

Many types of models have been used in this approach, for instance:

Linear xk+1 = Ax(k) +Bu(k)

Input-Affine xk+1 = f(x(k)) + g(x(k))u(k)

Hybrid xk+1 =


A1x(k) +B1u(k) if x(k) ∈ P1

...

Anx(k) +Bnu(k) if x(k) ∈ Pn

Non-Linear xk+1 = f(x(k), u(k))

(2.22)

Among the aforementioned models, the linear model are surely the most

widely used. This is due to the fact that they lead to a convex and, hence, easily

manageable optimization problem. Both hybrid models and non-linear models

pay in terms of computational complexity the capability to model more complex

and general dynamics. Finally, Input-Affine models, can cover a large number

of very complex systems but are, in general difficult to handle. Nevertheless,

it is possible under specific hypothesis, to use mathematical tools in order to

make this model easier to handle.

As explained later, the model used in this thesis falls on the last category.

Constraints

The last ingredient of an MPC controller is also the most powerful element of

this approach. Indeed, the capability of taking into account several complex

constraints is the main reason of MPC success over the years. A generic list of

possible implementable constraints is given:

Linear constraints, Axi ≤ b

Convex quadratic constraints, (xi − x)>P (xi − x) ≤ 1

Chance constraints, P (Axi ≤ b) ≤ α , E [Axi] ≤ b.

(2.23)

As well as for the models, also in this case, the most used constraints are the
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linear constraints. They allow in particular to specify simple upper and lower

bounds on actuation. Convex quadratic constraints may arise when bounding

total input energy among several actuators. Finally, Chance constraints, can

be used to bound in a probabilistic sense the behaviour of the inputs as well as

the state dynamic. The latter are widely used in this thesis when it comes to

stochastic approach to building comfort control.

Another possible approach for MPC: Explicit MPC

The main limitation related with the standard implicit MPC technique is that

running the computation algorithm on line at each sample, usually requires

substantial computational time. Moreover, keeping in mind the application

field of our controllers, the explained procedure might be not attractive for a

company. Mainly, this is due to the fact that is often prohibitive to implement

an Implicit MPC on a cheap process hardware as a PLC.

One possibility, is to exploit a procedure called Explicit MPC [25, 21]. The

main idea of this approach is to solve the optimization problem off-line as a

function of the initial state of the system. Hence, we pre-compute the control

plan for each x of interest and we store in form of a look-up table or as an

algebraic function u(x) = f(x(k)). The advantage related with this version of

the MPC control is that of reducing the on-line computational effort to a mere

function evaluation that can be carried also on cheap hardware. Furthermore,

since this new approach provides an insight into the effective control action,

it can be advantageous in such circumstances in which high reliability of the

controller is required.

To this aim we exploit a mathematical tool called multiparametric program-

ming(MP).

Basic Concepts on MP

Firstly we consider a general multiparametric programs of the form:

J∗(x) = infz c
T z

subj. to g(z, x) ≤ 0
(2.24)

where z is the optimization vector and x is a vector of parameters. The aim is

to minimize the cost function that is a function of the parameter x.
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We denote as R(x) the set of feasible variables z ∈ Z that is:

R(x) = {z ∈ Z : g(z, x) ≤ 0} (2.25)

while K∗ is the set of feasible parameters:

K∗ = {x ∈ X : R(x) 6= ∅} (2.26)

Linear mp-Programming Since in our formulation all the constraints are

linear we can just focus on a specific class of MP-problems:

J∗(x) = infz J(z, x)

subj. to Gz ≤ w + Sx
(2.27)

Given K ⊂ Rn a bounded polyhedral of parameters, following the previous

statement (2.26) we can re-write:

K∗ = {x ∈ X : ∃z Gz ≤ w + Sx} (2.28)

Now the aim is to determine the feasible region K∗ ⊆ K, the expression of the

value function J∗(x) and the expression of the optimizer z∗(x) ∈ Z∗(x).

We will use a geometric approach that iteratively divides the parameter space

in the so-called Critical Regions using KKT conditions [18]

Critical Regions, Dual Problem, KKT conditions Consider the Linear

multiparametric program (2.27). Let I be the set of constraints indices (i.e.

I = {1, 2, . . .m}) we define the critical region CRA as the set of parameters x

for which the subset A ⊂ I is active at optimum, that is:

CRA := {x ∈ K∗ : A(x) = A} (2.29)

where we have defined:

A(x) := {j ∈ I : Gjz
∗(x)− Sjx = wj ∀z∗(x) ∈ Z∗(x)}

NA(x) := {j ∈ I : ∃z∗(x) ∈ Z∗(x) : Gjz
∗(x)− Sjx < wj}

(2.30)
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Considering the problem (2.27) and the basic procedure explained in (2.18),

we can define the associated dual problem [21]

minu (w + Sx)Tu

subj. to GuT = −c
Gz ≤ w + Sx

(2.31)

Firstly we write the primal and dual feasibility conditions and the slackness

conditions for the primal and dual problem:

(P.F.) Gz ≤ w + Sx

(D.F.) GTu = −c, u ≥ 0

(S.C.) (Gjz − wj − Sjx)uj = 0 ∀j ∈ I
(2.32)

Then we choose arbitrarily a specific parameter x∗ ∈ X ∗ and we determine the

optimal partition (A,NA) := (A(x∗), NA(x∗)).

Hence we can rewrite the primal feasibility as follow:

GAz
∗ − SAx = wA

GNAz
∗ − SNAx < wNA

(2.33)

Consider the simplest case of a full-column-rank matrix GA, we obtain the

explicit expression of the optimizer z∗(x∗), that is:

z∗(x∗) = G−1
A (SAx

∗ + wA) (2.34)

We can also obtain a direct expression of the critical region substituting the

previous expression:

GNAG
−1
A (SAx

∗ + wA)− SNAx
∗ < wNA (2.35)

Moreover we can evaluate the value function in CRA(x∗). In fact since u∗, that

is the optimizer of the dual problem, corresponding to x∗, remains optimal, we

have:

J∗(x∗) = (w + Sx∗)Tu∗ (2.36)

Now that the critical region has been determined, the next step is to continue

exploring the parameter space Rrest := K∗ \CRA(x∗). To this aim we introduce

the following theorem:
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Theorem 11. Let X ⊆ Rn be a polyhedron, and R0 := {x ∈ X : Tx ≤ b} a

polyhedral subset of X, R0 6= ∅. Also let:

Ri =

{
x ∈ X :

T ix > bi

T jx ≤ bj, ∀j < i

}
, i = 1, . . . ,m (2.37)

where b ∈ Rm×1 and let Rrest := ∪mi=1R
i.

Then:

1. Rrest ∪R0 = X

2. R0 ∩Ri = ∅ ∀i

3. Ri ∩Rj = ∅, ∀i 6= j

Hence, basing on the results of the previous theorem, it is possible to explore

iteratively the parameter space in the semplified case of absence of degeneracy.

Algorithm 1 Parameter Space Exploration

1: Execute Partition (K∗)
2: for all regions where z∗(x) is the same and whose union is convex set,

compute such a union
3: end

Procedure 2 Partition(Y)

1: if 6= x0 ∈ Y : (2.27) is feasible then
2: Exit
3: else
4: Solve the LP problem with x∗ = x0 obtaining z∗ and u∗

5: Determine A(x∗) as in Definition (2.30)
6: Obtain CRA(x∗) and J(x∗)
7: Partition the rest of the parameter space as stated in Theorem (11)
8: For each non-empty sub-region Ri, execute Partition(Ri)

Remark : in this section we obtained an algorithm that iteratively explores

the state space obtaining the optimal solution for a given linear program. We

notice that the solution can be written as a PWA function of the parameter

(i.e. the initial state of the system at each step). Once the computation is done
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for all the possible interesting states, we obtain an efficient way to compute the

solution of the linear program with respect to a fixed value of the parameter.

The explicit solution obtained in (2.34) can be re written as:

z∗(x∗) = G−1
A SAx

∗ +G−1
A wA

= Ex∗ +Q
(2.38)

where x∗ is the considered parameter and the value of E and Q can be easily

deduced from (2.38).

Off-Line Complexity and Tractability : we have shown how it is possible

to obtain an explicit solution for a programming problem as a function of a

parameter.

The main advantage of this approach is to simplify the online computation

for a MPC implementation. Nevertheless, this procedure suffers the so-called

curse of dimensionality [25]. The number of region, computed by the algorithm,

increases exponentially with the number of the constraints and is highly sensitive

to the dimension of the parameter space. In particular, by considering high

dimensional-models may lead to obtain a number of thousands critical region

which is not practical in real contest, especially if we aim to achieve a fast and

cheap implementation on embedded hardware.
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Building model and System

identification

3.1 Physical modelling

The Model Predictive Control approach inherently requires an appropriate

model of the plant to control . Furthermore, this model the model must ensure

the right trade-off between precision and simplicity. Precision is required to

obtain accurate predictions of the relevant variables, while simplicity, is required

in order to ensure computational tractability. Indeed, using a complex model

might yield to prohibitive computational procedures or to numerical instability.

Nowadays it is pretty common in the scientific HVAC community to use

Building Energy Performance Simulation tools. These tools are extremely

sophisticated and precise but they contain complex calculation , non linearities

and they can not be used in a building control on line contest. Usually the

aim is to find a linear time model that has the major advantage to yield to a

convex optimization problem that can be easily solved by one of the current

solvers. Hence, it is necessary to our aim to find a simple linear model which

describes the plant in the best way.
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To cope this problem there are three possible choices

• Black box identification. This first technique has the advantage not

to assume any knowledge about the plant itself. It relies only on a

appropriate input, output data set. Then the parameters of the model are

identified in a statistical way thanks to the most common identification

methods. If, on one side, this method is conceptually simple, it depends

crucially on the availability of an appropriate set of data that is not easy

to obtain with real building.

• Grey box modelling. This approach use an equivalent Resistance Ca-

pacitance model to describe the plant. The topology of the network is

determined a priori thanks to the knowledge of the plant. Then the

parameters are obtained through identification techniques or using BEPS

tools. Compared to the previous method, the latter is to reduce the

importance of the data set without assuming a perfect knowledge of the

building.

• White box modelling. The last method also relies on RC network but this

time all the parameters of the network are derived directly from geometry

and construction data. It requires availability and processing of building

specific information.

Hence, in this chapter, we shall deal with the derivation of a proper model

which describes the dynamics of the all the interesting variables involved in the

system. Our aim is to obtain two models in order to describe both CO2and

Temperature dynamic .

We shall not focus on humidity, due to the fact that in the testbed there is

no device capable of modifying its evolution (i.e. there is no dehumidifier or

similar devices).

The approach we use is that of white box modelling following the steps of

previous works as in [19].

The models are built under the following assumptions:

• no infiltrations are considered, so that the inlet airflow in the zone equals

the outlet airflow;

• the zone is well mixed, i.e. the temperature and the concentration of CO2

are constant with respect to the space and do not depend on the place

they are measured;
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• the thermal effects of the vapor production are neglected.

Room temperature models

The temperature of the room is calculated via the energy balance of the zone.

In particular, the room is modelled as a lumped node and the obtained model is

exploitable either in cooling and heating state. The explicit expression follows:

maircpa
δTroom
δt

= Qvent +Qint +Qheat +Qcool +
∑

j

Qwall,j +
∑

j

Qwind,j (3.1)

The equation (3.1) relates the heat exchanges that take place between

the various internal and external sources. The left-hand term represents the

heat stored in the in the room. Considering the right-hand term, there are

all the other heat sources acting on the system. Qvent is the heat flow due to

ventilation, Qcooling is the term representing the cooling flows, while Qheat is the

heating one. With regard to Qint it contains all the internal heat contributions

(number of people, devices, equipment, lightning). Finally, Qwall,j and Qwind,j

model the heat contributions due to, respectively, the walls and the windows.

The various contributions in (3.1) can be made explicit:

Qvent = ṁventcpa∆Tvent = ṁventcpa(Tai − Troom)

Qint = CNpeople

Qheat = Aradhrad∆Th,rad = Aradhrad(Tmr − Troom)

Qcool = ṁcoolcpa∆Tcool = ṁcoolcpa(Tsa − Troom)

Qwall,j = hiA
j
wall(T

j
wall,i − Troom)

Qwin,j = (Tamb−Troom)

Rj
win

+GjAj
winI

j

(3.2)

Combining the equation (3.1) with the expression of the terms, we obtain

the complete balance equation:
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dTroom

dt
=

ṁvent

(
Tai − Troom

)
mair,zone

+
Aradhrad

(
Tmr − Troom

)
mair,zonecpa

+
cNpeople

mair,zonecpa

+
∑

j

hiA
j
wall

(
T j

wall,i − Troom

)
mair,zonecpa

+
∑

j

(
Tamb − Troom

)
Rj

winmair,zonecpa

+

∑
jG

jAj
winI

j

mair,zonecpa

(3.3)

The definition of each parameters in (3.3) and their numerical number is shown

in the table Table 3.1.

The last thing to do is to model the walls and to describe their dynamic

in order to complete the thermal equation (3.3). To this aim we model each

wall as two capacitance and three resistance (2C3R system) .the indoor wall

temperature T j
wall,i in the j th surface are calculated by means of an energy

balance between the outdoor and indoor surfaces. A representation of such a

model is shown in Figure 3.1; solving the circuit we can find in/out relationships

for wall temperatures. More precisely, such relationships are

dT j
wall,o

dt
=

[
hoA

j
wall

(
T j

ee − T
j
wall,o

)
+

(
T j

wall,i − T
j
wall,o

)
Rj

wall

]
C j/2

(3.4)

dT j
wall,i

dt
=

[
hiA

j
wall

(
Troom − T j

wall,i

)
+

(
T j

wall,o − T
j
wall,i

)
Rj

wall

]
C j/2

(3.5)

The equivalent external temperature T j
ee accounts for the different radiation

heat exchange due to the orientation of the external walls. The outdoor

temperature is modified by the effects of radiation on the j-th wall.

Tee,j = Tamb +
aI j

αe

. (3.6)

The parameters present in (3.3) were obtained from in-depth analysis on the

room structure, its manufacturing materials and geometrical considerations.

The Matlab model has been validated for the Stockholm climate against

results from simulation carried out in IDA with climate data from the Swedish
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T
T T Troomwall,owall,i

ee

1
h0

1
hi

Rwall
j

j
j j

C C
j j

Figure 3.1: Electric scheme of the model of the walls. The three resistances 1/ho, Rj
wall

and 1/hi are placed between the equivalent temperature T j
ee, and the temperatures T j

wall,o,

T j
wall,i and Troom. Rj

wall [°C/W] and Cj [J/°C] are the thermal resistance and the thermal
capacity of the j-th wall respectively

Meteorological and Hydrological Institute (SMHI). In particular to ensure

the validity of the test, the comparison has been performed under the same

conditions of ventilation, solar radiation, internal gains and occupancy. Since

the aim of this model is to capture the thermal behaviour of the room, heating

and cooling processes has been set to zero. In Figure 3.2. the room temperature

calculated with Matlab model and IDA is displayed for two months and it

shows a satisfactory performance of the obtained model.
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Figure 3.2: Validation of the model performed with the software IDA ICE.

Moreover, a comparison between the model in (3.3) and the actual test-bed

was carried out. In this case, it has been considered also the presence of the

cooling and heating system. The results, depicted in Figure 3.3 show how the

model is not able to fit the the measured data. Nevertheless, for the precision
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levels required in this thesis, the model can be considered adequate.
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Figure 3.3: Comparison between the simulated temperatures obtained with the physical
model and the actual measured room temperature.

Two state model for the thermal dynamic

As shown in the previous section, the model for the thermal dynamics shows

trends that can be considered satisfactory. At the same time, however, to

describe the complex dynamics such as temperature dynamics, we opted for a

system with a quite high dimensions (i.e. 13 states). In a model-based approach

control this choice might have repercussions in terms of computation time .

How outlined at page 22, especially for the explicit controller, a model of this

size could lead to intractability of the problem.

Hence, in this section, we aim to obtain a new model for the thermal dynamic

in order to reduce the complexity of the problem. The chosen space state model

is based, once again, on a white-box approach.

We model the water tank lab as thermal network made by two nodes. The first

one represents the fast dynamic of the air within the room, the second one

represents the slow dynamic related to the indoor walls. A schematic of the

model used can be found in Figure 3.4.

Ca
δTair

δt
=
Twall − Tair

Raw

+
Text − Tair

Rae

+ CNp +GAwinI (3.7)

Cw
δTwall

δt
=
Tair − Twall

Raw

+
Taver − Twall

Rwe

(3.8)
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Figure 3.4: Electric scheme for the two state model of thermal dynamic of the room.

where:

• Tair is the temperature of the air inside the room;

• Twall represents the average temperature of the walls in the room;

• Text is the external temperature;

• Taver is the average temperature exciting the system;

• Raw is the thermal resistance between the air and the wall;

• Rae is the thermal resistance between the air and the external temperature

(window);

• Rwe is the thermal resistance between the wall and the external tempera-

ture;

To obtain Taver we start for the definition of the disturbances w:

w :=
[
Text Tr2 Tcorr Tr3 Tceil I Np

]T
hence:

Taver :=
AextText + Ar2Tr2 + AextTcorr + Ar3Tr3 + AceilTceil

Atot

From the previous formulation (3.7, 3.8) we obtain the continuous linear

matrices:
ẋ = Ax+Bu+ Ew

y = Cx
(3.9)
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where we have defined:

x := [Tair Twall]
T y := Tair (3.10)

Hence, the linear matrices are:

A :=

 −
1

RawCa
− 1

RaeCf

1
RawCa

1
RawCw

− 1
RawCw

 C := [1 0]

E :=



1
RaeCa

Aext

Atot
β

0 Ar2

Atot
β

0 Acorr

Atot
β

0 Ar3

Atot
β

0 Aceil

Atot
β

GAwin

Ca
0

c
Ca

0



T

B :=



1
mair

0

− 1
mair

0
1

mair
0

− 1
mair

0
Aradhrad

mair
0



T
(3.11)

where we have defined β = 1/Rwe.

To evaluate the obtained model we simulate it against the model presented

in 5.8 since, the latter has been validated. In particular, we want to determine

and analyse its behaviour under different conditions of actuation, disturbances

and occupancy. As it is described subsequently, we are interested in a specific

horizon for the predictions. So, the comparison between the two models is

calibrated over a period of 24 hours. The results are depicted in Figure 3.5.

The simulations show how the 2-states model is able to capture the dynamic

of the more complex 13-states. Obviously, the two graphs are not perfectly

overlapped and, there are deviations, between the two, that reach peak value

equal to a degree. Despite this, for our purposes, the magnitude of the

temperature difference is small enough to take as valid the simplified model.

CO2 concentration model

For the model of the CO2 dynamic we follow a grey-box approach. Basically,

we describe a physic based model in which all the parameters are identified

through the Prediction Error Method Technique (PEM).

Firstly , the CO2 concentration model has to be specified. In particular,
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Figure 3.5: Comparison of the two models under different conditions.
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the CO2 level is determined by an equation that balances all the flows that

characterize the air inside the room. As previously mentioned, the air within

the room is considered to be well-mixed, that means that we assume that the

air flowing out has the same CO2 concentration of the air inside the room.

Moreover leakages are neglected, this allows not to consider spontaneous air

outflowing.

Hence, from the previous hypothesis, defining CCO2(t) as the CO2 concen-

tration inside the room, Cin and Cout as the CO2 concentration of the inflowing

and outflowing air respectively and, Cocc as the amount of CO2 due to people

in the room, we obtain the following differential equation:

V
dCCO2

dt
= Cin − Cout + Cocc. (3.12)

where

Cin = ṁairCCO2,i,

Cout = ṁairCCO2 ,

Cocc = gCO2Npeople,

(3.13)

Combining (3.12) and (3.13) we obtain:

dCCO2

dt
=
ṁairCCO2,i

V
− ṁairCCO2

V
+
gCO2Npeople

V
. (3.14)

Once the balance equation has been introduced, we aim to discretize it

through the backward Eulero Method. The difference equation obtained this

way is simply:

CCO2(tk+1) = CCO2(tk)+
ṁairhk
V

(CCO2(t)−CCO2,i)+
gCO2hk
V

Npeople(tk). (3.15)

where, in particular, hk = tk+1 − tk, has been defined as the considered time

step. As said in the introduction to this section, model simplicity is one of the

most important aspect to consider when it comes to design an MPC controller

. Hence, we chose an ARX model class, whose general form is:

A(z−1)y(t) = B(z−1)u(t) + w(t), (3.16)
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where y(t) = CCO2(t) − CCO2,i = ∆CO2 represents the difference of the CO2

between the concentration inside and outside the room, u(t) the input, and w(t)

noise accounting fitting inaccuracy and prediction errors. First, we assessed

the predictive ability of these models when only occupancy is considered. The

considered orders are one regression coefficient on the output, one on the input

and one delay. This has be chosen in order to respect the grey-box approach

previously introduced. Furthermore, for control reasons, we considered a time

step equal to hk = 30 min.

Moreover, we aim to control the Indoor Air Quality (IAQ) regulating the

valve opening percentage both of input and output duct. Hence, it has to be

taken into account also a term related to the input control. In particular, we

define u(t) = ṁair(CCO2(t)− CCO2,i). The resulting model turned out to be:

(1 + az−1)y(t) = b1z
−1u(t) + b2z

−1Npeople(t) + w(t) (3.17)

In the following Figures are depicted the behaviours of the model obtained

through the PEM identification. The results can be considered satisfactory. It

has to be noticed, tough, that the assumption of leakages might be a strong

hypothesis with respect to the real test bed. Indeed, if we consider the behaviour

of the CO2 concentration within the room, in absence of people and control

input, it shows how the air tends to set its CO2 concentration value to that

of the fresh air. Nevertheless, for our purposes, the model is precise enough.

Other models have been considered following this approach but they all showed

lower performances with respect to the ARX model.

Hence, our adopted model is

∆CO2(t) = +0.8943·∆CO2(t−1)−0.4255·u(t−1)+17.9129·Npeople(t−1)+w(t)

(3.18)
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Figure 3.6: Fitting of the CO2 models with the validation set of data.
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Figure 3.7: Validation of the CO2 models.
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Variable U.M. Description

αe [W/m2°C] external heat transfer coefficient
a [−] absorption factor for shortwave radiation

Arad [m2] emission area of the radiators

Aj
wall [m2] wall area on the j-th surface

Aj
win [m2] area of the window on the j-th surface
c [W ] constant related to equipment and occupants activity

CCO2,i [ppmV] inlet air CO2 concentration
CCO2 [ppmV] concentration of CO2 within the room
cpa [J/kg°C] specific heat of the dry air
gCO2 [m3

CO2
/pers.] generation rate of CO2 per person

Gj [−] G-value (SHGC) of the window on the j-th surface
hi [W/m2°C] indoor heat transfer coefficient
ho [W/m2°C] outdoor heat transfer coefficient
hrad [W/m2°C] heat transfer coefficient of the radiators
I j [W/m2] solar radiation on the j-th surface

mair,zone [kg] air mass in the room
ṁcool [kg/s] mass flow through the cooling branch
ṁvent [kg/s] mass flow through the ventilation branch
Npeople [−] number of occupants in the room

Rj
win [°C/W] thermal resistance of the window on the j-th surface
Tai [°C] air inlet temperature, from the venting outlet
Tsa [°C] supply air temperature, from the cooling outlet
Tamb [°C] outdoor temperature

T j
wall,i [°C] indoor surface temperature of the wall on the j-th surface

Tmr [°C] mean radiant temperature of the radiators
V [m3] volume of the air inside the room

Table 3.1: Summary of the parameters involved in the building model.
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4
KTH HVAC TestBed

Description of the system

As underlined in the introduction, it is meaningful to describe and analyze all

the characteristics of the actual examined testbed . This is mainly due to the

fact that the technologies, environment aspects and peculiarities of the testbed

may heavily affect the control strategies and the obtainable results.

The KTH testbed is located in the ground floor of the Q-building of the

KTH Royal Institute of Technology campus in Stockholm.

The considered testbed, depicted in 4.2, consists of a main corridor, a

conference room, four laboratories, one storage room and the master thesis

room. The main goal of the KTH-HVAC project is to monitor the thermal

comfort and the Indoor Air Quality (IAQ) of the whole ground floor of the

aforementioned building. To this aim, the system is equipped with several

sensors on the walls surfaces. In particular, our attention is focused on the

temperature and CO2 levels in each room except the storage room and the

PCB lab. Considering Figure 4.2, the server retrieves, through HDH sensors,

information on the temperature and CO2 levels of rooms A:213, A:225, A:235

and A:230. Thanks to this data, the implemented controllers can actuate in
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Figure 4.1: External view of the Q building in Stockholm, Sweden.

Figure 4.2: Map of the second floor of the Q building. The floor is underground.
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order to assure predetermined conditions of thermal condition and air quality.

The Q building is equipped with three separate ventilation units. For the

cooling and heating process it relies on a zone-based system. As typical of

office areas, the fresh air injected in the building is constant over the period

from Monday to Friday and from 7 am to 4 pm.

The processes related to ventilation unit, data acquisition, cooling and

heating processes are handled thanks to 3 different Soft PLCs.1 The product

used in the KTH testbed is a Fidelix Soft PLC. This machine can access the

Internet and is able to communicate, as an OPC client, to OPC servers, so

retrieving all the needed data and communicating also the actuation commands.

In particular, the Soft PLCs are programmed to assure a constant temperature

of 22oC with a range of ±1oC and an upper bound for the CO2 levels (850

ppm). These specifications are given by the KTH environment and building

department.

The soft PLCs can be manually controlled using a dedicated Supervisory

Control and Data Acquisition (SCADA) system run by Akademiska Hus,

a public Swedish company managing academic buildings throughout whole

Sweden. This SCADA-based approach is an example of a typical Industrial

Control System (ICS) used to monitor and control physical plant. Most of

control actions are performed automatically by the PLCs, but the SCADA

system allows operators to change set points, enable alarm conditions, and

monitor the overall performance of the control loop.

Sub Test Area

As previously mentioned, the KTH HVAC testbed comprises the whole ground

floor of the Q building. All the rooms are operationally similar; we thus focus

just on the room A:225, informally called water tank lab. This room is a

laboratory of approximatively 80 m2 with limited glass surface and one external

wall, facing South-East, which is partially shaded by a parking lot.

The room is equipped with an actuation system that is essentially composed

of:

• a ventilation system;

1Basically, a Soft PLC is a software package which emulates on a normal PC the function-
alities of a normal PLC. This brings all the advantages of a normal PC on which is mounted,
i.e., flexibility, scalability, and computational power.
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• a cooling system;

• a heating system.

Thanks to these systems it is possible to change indoor parameters as tempera-

ture, humidity, and CO2 levels.

Figure 4.3: Photos of one of the radiators, the fresh air inlet, the exhausted air outlet and
the air conditioning outlet present in the water tank lab.

The following Figure 4.4 shows the schematic of the WTL room in the

SCADA system. In addition to Figure 4.5, this schematics allows to understand

how the testbed actually works.

• ST901 is the fresh air inlet valve, while ST902 is the exhaust air flow

outlet valve. These two valves can control the ventilation system setting

the opening percentage.

• SV401 is the valve for the cooling system. Cold water may be imported

into the heater exchanger while opening SV401.

• SV201 is the radiator valve. It allows water to circulate through radiators

pipes.

• GN501 is the occupancy sensor with a boolean output. Green light repre-

sents an ”occupied” state while white light represents a ”not occupied”

state.



41

Figure 4.4: Schematic of the Water Tank Lab in the SCADA system.

Figure 4.5: Diagram of the actuation systems present in the water tank lab. This scheme
shows the degrees of freedom and the constraints that must be faced when designing air

quality control schemes for the considered testbed.
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• GQ101/GT101 represent CO2 and temperature sensors respectively.

• Lokal/fjarr are Swedish words that mean Local/Remote. Switching to

Fjarr mode the operator can actually control the room while in the Lokal

mode a default controller (Akademiska Hus’s) is set.

The heating subsystem

The heating system is implemented through the use of common radiators. In

particular, in the A:225 room, four double-pipe radiators are installed. As it

is normal for this kind of heat exchangers, hot water (generated separately)

is made circulating through radiators by means of a pump. One aspect to be

noticed is that the hot water exploited in this heating process comes from a

district heating system, a system for distributing heat generated in a centralized

location for residential and commercial heating requirements.

Notice that this is a quite common practice in the Nordic countries, since it

allows to divide the generation of heat from its usage, and this overall allows

energy efficiency. The sources used to achieve heating generation are usually

burning fossil, biomass, nuclear power but also renewable energy sources.

The fact that the hot water circulating the radiators pipes is provided by an

external heating system is meaningful because it has an important consequence

in the control process. The actual temperature of the flowing water is indeed

given by the district heating as a static map of the outside temperature. The

controller can access only a valve placed before the first radiator and whose

opening percentage affects the amount of actual water circulating through the

pipes.

This map is shown in Figure 4.6.

The venting and cooling subsystem

As previously mentioned, in the Q building fresh air is supplied by means of

three separated ventilation units. The provided fresh air is normally between 20

and 21 degrees and it supplies both to the venting and cooling system. Another

time, it is crucial to notice that the air flowing the Q building is regulated by

an external system and the period of activity is limited between 7.00 am and 4

pm. This is fundamental when considering the actual possibilities of control.
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Figure 4.6: Map showing the temperature of the water flowing through the radiators as a
function of the external temperature.

The ventilation system The ventilation system can be divided into two

fundamental parts: the first regulating the fresh air coming into the room, and

the second determining the air going out of the room. The amount of fresh air,

coming from one of the ventilation units, is regulated by a dumper as depicted

in Figure 4.7 while the exhaust air can simply flows through a hole in the wall

in which another dumper can determine the opening percentage.

Figure 4.7: Scheme of the air inlets present in the water tank lab.

The cooling system With reference to the Figure 4.8, in this paragraph it

is described the functioning of cooling system. Basically, the cooling process

is based on the induction principle. The fresh air provided by one of the
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ventilation units is injected into a plenum, a housing where it is created and

stored air with a greater pressure than the atmospheric one. In this plenum

nozzles of various sizes are deployed; these allow the system to discharge the

air. Thanks to the high pressure in the plenum, the air comes out through

the nozzles at a high speed and it creates a zone with lower pressure. This

depression causes the room air to be aspired through the heat exchanger. In

particular, in the heat exchanger, chilled water flowing into the coil allows to

cool the air previously aspired. The cooled air is eventually mixed with the

primary air and discharged into the room from the sides of the devices.

Figure 4.8: Scheme of the air conditioning system of the water tank lab.

Moreover, the AC unit can be used to heat the room. In this case, the

water circulating the coil, is warm. This heating process is, however, more

costly with respect to the heating given by the radiators. Another aspect to

consider is that, as for the radiators system, the water circulating in the coil

is not directly modifiable. Its temperature depends statically on the outside

temperature. The average temperature of the water measured in the water

tank lab corresponds at 16℃.

Continuing the analogy with the heating system, actuation of the cooling

subsystem is performed through a valve that is placed before the chilled water

circuit and whose opening percentage can be set using the SCADA web interface.

Another aspect to be noticed is the close link between ventilation and

cooling system. Even in the case in which the cooling process is not required,

fresh air is injected into the room through cooling unit nozzles. In particular,

the amount of fresh air circulating corresponds to 30% of the total available

air.
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The main consequence of this peculiarity is that: the cooling system to

be active needs the ventilation system to be active; this means that when the

ventilation system is deactivated it is not possible to perform cooling in the

room.

Effects of the ventilation on the cooling/heating As described before,

the ventilation system affects both the heating and cooling processes. Figure 4.9

shows the entire air process in the schematic version that the user finds on the

SCADA web interface.

Figure 4.9: SCADA interface of the system that provides the fresh air to the venting and
cooling system

The previous processes can be summarized as follows:

1. the fresh air from outside is imported through a valve (denoted with the

code ST201);

2. the air is then filtered by appropriate filters;

3. after that the air is processed by a heater exchanger which exploits the

heat of exhaust air flow. As shown in the Figure 4.9 the imported fresh

air is warmed up to 19.4℃;
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4. the pump TF001 then pushes the warmed air to the heating and cooling

system sequentially; due to this the temperature of the fresh air that

flows through the ducts is around 20℃ in each room;

5. the fresh air is eventually discharged into the rooms at a temperature

that is always around 20℃.

Summarizing, when the temperature of the room is below 20℃ the air from

the ventilation helps the heating system to increase the indoor temperature.

Otherwise, if the temperature is greater then 20℃the ventilation system helps

to lower the room temperature.

Sensors and Forecast

WSN

In a control system is of paramount relevance to obtain the current state of

the controlled plant. To this aim, besides the data gathered through the HDH

sensors, in our testbed is implemented a wireless sensors network using motes.

These Tmote Sky devices include a number of on-board sensors to measure

light, temperature and humidity. In addition of that, other external sensors

may be connected to the motes (i.e CO2 sensor), using the dedicated ADC

channel on the opportune expansion area.

An example of T-Mote is reported in Figure 4.10.

Figure 4.10: A Tmote Sky with highlighted the various measurements systems.
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In Figure 4.10 all the sensors currently used are depicted. The red ones are

placed inside the room, the blue one is put outside building and the green one

is in the corridor. All them follow star network topology to send data to root

mote which is marked as black in the Figure 4.11.
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Figure 4.11: Map of the sensors deployed in the KTH testbed

Figure 4.12: Tipical star network topology, it is used also in our network

The motes forwards the sensed data to the main server every 30 seconds.

The list of the nodes and of their main features are summarized in Table 4.1.
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Mote Id Spot T H C L Description

1002 WTL
√ √

- - Environment
1003 Corridor

√ √
- - Corridor

1005 WTL
√ √

- - Indoor wall temperature
1006 Outside

√ √
- - Outdoor wall temperature

1007 WTL
√ √

- - Room wall temperature
1008 WTL

√
- - - Attached to the radiator inlet

1009 WTL
√

- - - Attached to the radiator outlet
1011 WTL

√ √
- - Room wall temperature

1012 WTL
√ √

- - Air conditioning outlet
1020 WTL - - -

√
Environment

1033 WTL
√ √

- - Environment, attached to the floor
1036 WTL

√ √
- - Room wall temperature

1037 WTL
√ √

- - Ceiling
1042 WTL

√ √ √ √
Near exhaust air outlet

1043 WTL
√ √ √ √

Environment
1047 WTL

√ √ √ √
Near fresh air inlet

1110 PCB Lab
√ √

- - Attached to wall
1213 Storage room

√ √
- - Attached to wall

Table 4.1: Summary of the mote of the WSN (T, H, C, L stand for temperature, humidity,
CO2 and light respectively)

People counter

In order to measure occupancy the testbed is provided with a photoelectric

based people counter. This kind of device represents a valid alternative to this

aim because of its low cost and high privacy level respect other technologies.

The device consists of three sensors. In particular, there are two photoelec-

tric sensors and a magnetic sensor.

The photoelectric sensor, showed in the Figure 4.13 , is a retro-reflective

sensor ML 100-55/102/115 with polarization filter, plastic housing and 5m

detection range. The magnetic sensor, Figure 4.14 is the 1108 Hall-Effect sensor

that provides a voltage output that is proportional to the magnetic field.

The two photoelectric sensors are mounted on the outside of the entrance

door. They output low level when people pass through the door. the magnetic

sensor is used to determine whether the door is opening or closing. Eventually

all the sensor are connected to the expansion connectors of TmoteSky through

cables. This node stores acquired data in a circular buffer and sends it to the

Base Station node.
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Figure 4.13: Photoelectric device used in the people counter system.

Figure 4.14: Magnetic device used in the people counter system.
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Weather forecasts

As highlighted in our literature review, the knowledge of the future outdoor

conditions is crucial for achieving good control performance in terms of energy

savings. To this aim the testbed server fetches and stores information the web

site www.wunderground.com. More precisely, the available data are:

• temperature (current and the hourly forecasts for the next 72 hours);

• wind speed (current and the hourly forecasts for the next 72 hours);

• wind direction (current and the hourly forecasts for the next 72 hours);

• wind gusts (only the current status);

• precipitation (current and the hourly forecasts for the next 72 hours);

• external air pressure (only the current status).

Central PC and LabVIEW

The pulsing heart of the testbed is located in a dedicated server running in the

water tank lab (WTL). This server implements all the logic that allows the

user to perform all the possible communications with the various devices. The

instruments that make these communications possible have been designed and

developed in LabVIEW. The server is connected through Ethernet cables to the

KTH network and to the external Programmable Logic Controller (PLC), and is

reachable through dedicated TCP-IP Internet ports. A schematic representation

of the whole communication system is shown in Figure 4.15.
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Figure 4.15: A scheme representing the whole testbed system; LabVIEW is the tool that
allow the user to communicate with the whole network by a collection of virtual instruments.
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5
Control strategies

In this chapter the various types of control applied to the system are introduced

and described. Firstly, the default controller is briefly analyzed. This controller,

developed by an external entity, is basically a PID controller. Afterwards, a

more advanced control scheme, Model Predictive Control, is presented in both

the versions implemented in this thesis.

5.1 The current practice Proportional

Integrative (PI) controller

The current practice is to apply a simple PI control. In particular the system

operator, Akademiska Hus, implemented two different PI controllers, one of

them supervising the IAQ, i.e. the CO2 concentration of the air, the other one

supervising the indoor room temperature. A brief description of the actual

operation process is given in the following. It has to be noticed that a precise

documentation of the implemented controllers is still missing and just general

descriptions can be given.

Temperature controller: the temperature controller uses the actuation present
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in the lab in this way: during winter season it uses the heating system,

while during the summer season it exploits the cooling system. The

control actuation can be activated just when the temperature of the

room does not lay in a comfort band that represents the desired tem-

perature range. Basically, the controller is programmed not to assure

the temperature to follow a temperature reference but rather to assure

the temperature to be inside a band of comfort. This is season-changing

and it is set to be [21− 23] ℃during the summer and [20− 22]℃during

the winter. The working frequency for the controller is equal to one

command per second. We notice that this control strategy does not take

into account neither energy efficiency nor actuators wear indexes;

CO2 levels controller: this controller actuates only the ventilation system.

The control strategy is similar to the previous one, with the CO2 ppm

levels dead zone that ranges from 0 to 850.

In Figure 5.1 is depicted the behaviour of the aforementioned controller.

We can notice that the controller do not respect the indications given in

Academiska Hus’ documentation and that the controller suffers from actuation

peak problems as well as out of bound temperature values.
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Figure 5.1: Example of the actuation signals induced by the Akademiska Hus PI controller:
heating action.
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5.2 The MPC implemented in the testbed

With respect to the general introduction given in the chapter 2, we want now

to present the specific peculiarities of our MPC controller. Initially, an on-line

implementation of the MPC controlled is followed [22]. Subsequently, another

possibility is explored, that is an off-line implementation of the controller.

General aspects

• we chose an integral cost function in order to focus on energy performances;

• a linear dynamic is assumed to achieve computational efficiency;

• just linear constraints are considered. In particular, we want to restrict

actuation values as well as satisfy comfort requirements on IAQ and room

temperature.

To improve tractability of the whole control problem we exploit the inde-

pendence of the CO2 concentration from the thermal one. Hence, we split

the problem in two different sub-problems that work in cascade: CO2 -MPC

problem which aims to keep the concentration within comfort bounds while

minimizing energy consumption; T-MPC problem which focuses on the room

temperature.

The models (3.3) and (3.18) described in Section 3.1 contain non-linearities

that can lead to intractable problems. To address this issue we derive linear

equivalent formulations of the CO2 concentration model (in Section 3.1) and of

the room thermal model (in Section 3.1) [22].

CO2 Linear Model The aim of this paragraph, is to obtain a linear model for

the CO2 concentration starting from the non linear model (3.15). As already

considered in (3.18) , we replace the non-linear term ṁair · (CCO2 − CCO2,i)

with uCO2 , where CCO2,i is the concentration of the air that is flowing inside.

Moreover we assume it as a constant set to an average value of 450 ppm.

Since CCO2,i is the minimum level that the indoor air may have, CCO2 −CCO2,i

is a non-negative variable. Hence, the CO2 concentration dynamics can be

described by the discrete LTI system:

xCO2(k + 1) = axCO2(k) + buCO2(k) + ewCO2(k)

yCO2(k) = xCO2(k),
(5.1)
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where

xCO2(k) = CCO2(k)− CCO2,i = ∆CO2

is the state, and

wCO2(k) = Npeople(k)

is the disturbance at time step k. The values of the parameters present in (5.1)

can be found in (3.18).

Temperature Linear Model Also in this case, we aim to obtain a linear

model. Considering the model presented in Section-3.1, we want to hide

the bilinear term of the indoor dynamics Qvent, Qcool and also, model the

contribution due to requirements CO2 concentration levels 1.

Starting form the definition of Qvent and Qcool:

Qvent = ṁventcpa∆Tvent = ṁventcpa(Tai − Troom)

Qcool = ṁcoolcpa∆Tcool = ṁcoolcpa(Tsa − Troom)
(5.2)

we define:
Qair = Qvent +Qcool = ṁaircpa∆Tair

= ṁaircpa(Tair − Troom)
(5.3)

where, in particular, Tair represents the result of the interaction between the

temperature of the air from the venting outlet, Tai, and the air coming from

the cooling outlet, Tsa.

Once modelled the total heat due to the ventilation system, we want to

take into account the lower bound of the CO2 problem.

Qair = ṁCO2
air cpa(∆Th −∆Tc) + cpa(∆uh −∆uc) (5.4)

In this way, we have decoupled the two problems. This approach leads, never-

theless, to add a greater number of inputs with respect to the original problem.

It is crucial to understand the meaning of the non-negative variables ∆Th ∆Tc

1We remark that the problem are solved in cascade. Hence, the output of the C-MPC
represents an input for the T-MPC.
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∆uh ∆uc that are subjected to:

∆Th −∆Tc = Tair − Troom

∆Th + ∆Tc = |Tair − Troom|
∆uh −∆uc = ∆ṁair(Tair − Troom)

∆uh + ∆uc = ∆ṁair|Tair − Troom|

(5.5)

with:

∆ṁair = ṁair − ṁCO2
air (5.6)

that models the additional air flow rate required from the T-MPC problem to

satisfy thermal bounds.

The LTI system describing the thermal dynamic of the room can be defined.:

ẋ(t) = Acx(t) +Bcu(t) + Ecw(t)

y(t) = Ccx(t),
(5.7)

where all the matrices in 5.8 can be found in the Appendix.

x(k) ∈ R13 is the state vector containing the room temperature and the

inner and outer temperatures of all the walls,

x(t) =
[
Troom T 1

wall,o T 1
wall,i . . . T 6

wall,o T 6
wall,i

]>
u(k) and w(k) ∈ R3 are the vector of our inputs and the vector of random

disturbances at time k respectively

u(t) = [∆Th(t) ∆Tc(t) ∆uh(t) ∆uc(t) ∆Th,rad(t)]

w(k) = [Tamb(t) I1(t) Npeople(t)]

According to the C-MPC we use the Backward Euler Method to obtain a

discretized model with a sampling time equal to 30’.

x(k + 1) = Ax(k) +Bu(k) + Ew(k)

y(k) = Cx(k).
(5.8)

Implicit MPC

The first considered approach is that of the Implicit MPC controller.

The working process of this first version of the MPC can be summarized as
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follow:

Algorithm 3 Implicit-MPC

1: build the model for the C-MPC problem;
2: get local measurement (i.e initial state);
3: build weather, occupancy, solar radiation prediction based on a specific

criteria;
4: build the constraints and the cost function for the C-MPC over the whole

prediction horizon;
5: manage the optimal solution of the C-MPC problem as an input for the

T-MPC problem;
6: build the model for the T-MPC problem;
7: construct the constraints and cost function over the whole prediction

horizon;;
8: process the optimal solution and actuate them;
9: repeat the whole procedure at the next sampling time.

Certain Equivalence MPC

This is a common practice MPC that simple neglects the uncertainties in the

forecast. It takes the imperfect but realistic weather environment prediction

and finds its control decision by assuming that this predictions are correct (i.e

equal to certain). With respect to this assumption it is possible to formulate the

problems associated to the temperature dynamic and the CO2 concentration.

The CO2 MPC

The C-MPC problem, at time step t, can then be formulated as:

Problem 12 (Formulation of the MPC for the CO2 concentration).

min
uCO2

(t),...,uCO2
(t+N−1)

∑t+N−1
k=t uCO2(k)

subject to umin
CO2

(k) ≤ uCO2(k) ≤ umax
CO2

(k) k = t, . . . , t+N − 1

0 ≤ yCO2(k) ≤ ymax
CO2

(k) k = t, . . . , t+N − 1

where
umin
CO2

(k) = ṁmin
air · xCO2(k)

umax
CO2

(k) = ṁmax
air · xCO2(k)

ymax
CO2

(k) = Cmax
CO2
− CCO2,i
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with N the prediction horizon and Cmax
CO2

is equal to the desired upper bound of

the CO2 concentration (e.g. 850ppm).

In Problem 12, at each sampling time, the constraints can be written as:

gu,CO2u(k) + gx,CO2x(k) ≤ bCO2

gy,CO2yCO2(k) ≤ bCO2 .
(5.9)

where:

gu,CO2 =

[
−1

1

]
gy,CO2 =

[
−1

1

]

gx,CO2 =

[
−1 1

1 −1

]
bu,CO2 =

[
−umin

umax

]

by =

[
−ymin

ymax

]
The MPC approach, inherently requires to construct the system dynamic over

the whole prediction horizon. This is exploited to obtain at each time step the

desired behaviour for the system in an open loop control.

Hence, from the LTI model obtained in the previous section, the state of the

system xCO2(k) after k step is:

xCO2(k) = yCO2(k) = akxCO20 +
k−1∑
i=0

ak−i−1buCO2(i) +
k−1∑
i=0

ak−i−1ewCO2(i).

We can also explicitly define the constraints and the cost function over the

whole prediction horizon.

UCO2 = [uCO2(0), . . . , uCO2(N − 1)]T

Thus, the Problem 12 can be rewritten compactly:

min
UCO2

||UCO2||1

subject to Gu,CO2UCO2 + Gx,CO2 ≤ gCO2

(5.10)

Thanks to the previous model we can derive the matrices to be given to the

subsequent CO2-MPC problem. For the sake of brevity and exposition clarity
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we omit to write all the passages in detail. Eventually, the control variable ṁair

can be computed by means of the inverse formula:

ṁair(k) =
uCO2(k)

CCO2(k)− CCO2,i

.

The Temperature MPC

The T-MPC problem for the room temperature can be formulated as:

Problem 13 (Formulation of the MPC for the room temperature).

min
u(t),...,u(t+N−1)

∑t+N−1
k=t cTu(t)

subject to umax ≤ u(k) ≤ umin k = t, . . . , t+N − 1

ymin ≤ y(k) ≤ ymax k = t+ 1, . . . , t+N

Tmin
air − Troom(k) ≤ ∆Th(k)−∆Tc(k) ≤ Tmax

air − Troom(k) k = t, . . . , t+N − 1

|∆uh(k)−∆uc(k)| ≤ ∆ṁmax
air (k)|∆Th(k)−∆Tc(k)| k = t, . . . , t+N − 1

where ∆ṁmax
air = ṁmax

air − ṁ
CO2
air

Let x0 denote the current state. It then follows from the linear model (5.8),

that the room temperature dynamics over the prediction horizon N can be

written as:

x(k) = Akx0 +
k−1∑
i=0

Ak−i−1Bu(i) +
k−1∑
i=0

Ak−i−1Ew(i).

Operating as for the C-MPC problem, we firstly obtain the description of all

the constraints for a fixed time step. Subsequently, we extend the constraints

over the whole prediction horizon.
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We define:

gu =

[
−I5

I5

]
gy =

[
−I2

I2

]

gu,mixed =

[
−1 1 0 0 0

1 −1 0 0 0

]
gx,mixed =

[
−C
C

]

bu,mixed =

[
−ymin

ymax

]
bu =

[
−umin

umax

]

bmixed =

[
−Tmin

air

Tmax
air

]

Hence, the constraints can be written:

guu(k) ≤ bu

gyu(k) ≤ by

gu,mixedu(k) + gx,mixedx(k) ≤ bmixed

Finally, the whole problem is summarized as follow:

min
U

LU

subject to GuU ≤ b

(5.11)

All the matrices can be found in the Appendix.

Remark : in the C.E approach, the disturbances are treated as a known

quantity. This allow, in practice, to obtain linear constraints just on the inputs

simply manipulating the constraints with respect to the system dynamic model

and the initial state.

Chance Constraints Stochastic MPC (SMPC)

The uncertain nature of environment predictions leads naturally to a probabilis-

tic approach on building control [23]. In particular, this affects the constraints

of the problem turning them in the so-called chance constraints. This con-

straints are in general intractable unless the disturbances follow a specific

distribution (e.g Gaussian). This assumption might be rather restrictive hence,
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one possibility is to apply a radomized method [24]. This approach is briefly

described below and it doesn’t require to assume a specific distribution for the

uncertainties. The method relies just on the capability of randomly extract

these uncertainties.

General Chance-constraints formulation : considering the definition

given in the previous section, we aim to describe a methodology to tackle a

MPC problem in his chance-constraints formulation. Once the approach on a

generic linear model has been described, the usage in the C-MPC problem or

in the T-MPC can be easily derived.

Hence, we consider a generic linear model as:

x(k + 1) = Ax(k) +Bu(k) + Ew(k)

and we obtain the prediction dynamic over the whole prediction horizon. The

term x0 represents, as usual the current measured value of the state and it is

thus a known variable.

xN = Ax0 + BuN + EwN

yN = CxN

(5.12)

Regarding the constraints, they can be written in general as:

Vx,mixxN + Vu,mixuN ≤ Vmix

VuuN ≤ Vu

(5.13)

Exploiting the (5.12) and substituting in (5.13), it is possible to express all the

constraints just as a function of the inputs vector, uN , and the disturbances

vector, wN .

GwwN + GuuN ≤ g (5.14)

We remark that the disturbances vector, over the prediction horizon, can be

thought as a generic uncertain vector that, depending on the circumstance, can

incorporate either just the occupancy (C-MPC), that also weather and solar

radiation prediction (T-MPC).

The chanche constraints method relax the constraints in (5.14) contem-

plating a possible violation with a probability that is less of a predefined
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level.

P [GuuN + GwwN ≤ g] ≥ 1− α (5.15)

with α ∈ [0, 1] being the violation probability level. In this approach, the

parameter α represents the trade-off between energy performances and comfort.

Control designer’s task is to calibrate its value in order to achieve the best

results.

As previously said, chance constraints are not easy to handle since they

require multi-dimensional integrations and can lead to non-convex admissible

set. A possible conservative solution is to build a scenario-based 2 approximation

approach.

Scenario-based approach We aim to substitute the constraints in (5.14)

with a set of deterministic constraints.

The algorithm can be summarized as follow:

1. create a set of S i.i.d. disturbances samples, w1, . . . ,wS. Each of them is a

reasonable disturbance for the studied problem over the whole prediction

horizon.

2. replace the chance constraints with S deterministic constraints

GuuN + Gwwi
N ≤ g i = 1, . . . , S

3. reduce the complexity of the problem cutting redundant constraints.

Hence, among the S constraints, just one really affects the feasible set.

GuuN ≤ g − max
i=1,...,S

Gwwi
N

4. soften the obtained constraints in order to guarantee feasibility 3

GuuN ≤ g + ε− max
i=1,...,S

Gwwi
N

where ε is a vector of N elements (MISO system) often called the slack

variables vector.

2Scenarios are defined as i.i.d. samples of a random vector.
3It has to be noticed that this approach may be highly conservative and lead to infeasible

problem since it requires to satisfy the constraints in the most disadvantageous case.
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We can finally formulate the general problem for the SMPC.

Problem 14 (General SMPC formulation).

minuN
cTuN + ρ1T ε

subj.to GuuN ≤ g + ε−maxi=1,...,S Gwwi

where :

• cT is the linear cost matrix accounting for the energy use over the whole

prediction horizon;

• 1 is a matrix containing ones with appropriate dimensions.

,

The number of Scenarios in 14 has to be chosen in order to assure a feasible

solution for the SMPC problem. A sufficient condition guarantee this and it is

given by the following expression [24]:

S ≥ 2

α

(
ln

1

β
+ d

)
(5.16)

with d the number of decision variables in the formulated problem 4, and β a

parameter called, confident parameter that has to be set by the user. If, for

instance, we consider α = 0.1 and β = 0.001 which means that we choose a

confident level of 99% and a constraint satisfaction probability level of 90%.

With respect to these values we obtain a required minimum number of scenarios

equal to 5500. We now want to study the actual sensitivity on the number of

extracted samples of the performance of the SMPC (in terms of energy use

and violations of the thermal comfort levels). To this aim we simulate the

energy use and the energy use and the amount of violations of thermal comfort

corresponding to a number of scenarios varying from 10 to 5500.

In these simulations we use historical data, and thus consider a specific day

in March 2014, for which we measured an occupancy pattern of 3-5 people

always present in the room, except during early morning and lunch time. We

can notice that all the simulated T-SMPC controllers yield to similar violation

frequencies, although the energy use for the cases of 4000 and 5500 is higher,

4If we consider a problem with u(k) ∈ Rm, ε(k) ∈ Rp, and N as the prediction horizon,
then d = (p+m)N
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Figure 5.2: Temperature violations vs energy use for T-SMPC for various number of
scenarios.

due to the fact that these high numbers introduce greater conservatism. In

terms of violation probability, the unique T-SMPC controller that does not fulfil

the probability constraints is the one with 10 scenarios, since the corresponding

violation probability is greater than 10%. In this specific simulation case,

250 scenarios are enough to keep the desired violation probability. With this

simulation study we thus confirm the general finding that the theoretical bound

in 5.16 tends to be over pessimistic. This is mainly due to the conservatism

introduced by the scenario-based approach and due to the feedback mechanism,

which yields less violations compared to open-loop approaches.

The last thing to specify is the extracting scenarios process. This is con-

ducted exploiting a probabilistic tool known as copulas. Copula is a function

C : [0, 1]N 7→ [0, 1] that allow to re-write the Cumulative Distribution Function

(CDF) of of any S-uple of random vector w1, . . . , wS in terms of the marginal

distribution. In this way, it is possible to reconstruct the CDF simply recon-

structing a marginal distribution and this function C(·).
The learning of the copula from real data and the actual implementation of

this tool is beyond the scope of this thesis. For further details the reader is

referred to [23].

Explicit MPC

In this section we present the explicit formulation of our specific case study.

With respect to the simplified model for the thermal dynamic 3.9, we now aim
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to compute the partition of the state space, as well as the PWA function, to

evaluate the control inputs.

Since the main goal of this new approach is to reduce the on-line computational

time, we just focus on the scenario-based approach that is the most time

demanding scheme. We remark that the formulation for the problem in the

explicit version is entirely equivalent to the one explained in the previous

section, the sole difference relies on the fact that the explicit MPC uses the

simplified model for the thermal dynamic.

the results we present have been obtained exploiting the Matlab toolbox MPT.

We remind that the problem formulation of the specific case study requires

to solve firstly the problem related to the IAQ (5.10). The obtained optimal

input (i.e mair), is passed to the problem for the indoor temperature as a lower

bound to the ventilation. This assumption reflects the fact that, in general, the

quality of air (i.e the concentration of the CO2) is a more important parameter

with respect to the thermal comfort.

Thus, from the previous discussion, we firstly obtain the partition of the

state space and the PWA map for CO2 problem.

In particular, we focus on the chance constraints stochastic approach explained

in Section 5.2. Since the computation is performed off-line, we decided to focus

on the period of time between 8.00 am and 8.00 pm. This choice affects both

the generation of the scenarios, and also the considered bounds for actuation 5.

The obtained results are depicted in Figure 5.3.

The different colours refer to different regions of the state space. Every

region is associated with a different piecewise affine function of the initial state.

In the CO2 problem, since the state space is mono-dimensional, the PWA

functions are simply straight lines with different slopes.

We now need to traduce the value of uCO2 in the correspondent value for ṁair(k).

That can be done as previously explained as follows:

ṁair(k) =
uCO2(k)

CCO2(k)− CCO2,i

(5.17)

The next step is to traduce the information coming from the CO2 problem

in a lower bound for the temperature problem. We remark that, since the

computation is performed off-line, the lower bound, ṁCO2 , for the temperature

5We remind that the ventilation and the cooling processes can be actually performed
when the central fan is running.
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Figure 5.3: Inputs for the CO2 problem.

problem has to be set in the problem formulation. Thus, for each value of

ṁCO2 a different problem for the thermal dynamics is associated.

The problem we have to face is how to partition the values of ṁCO2 in order to

obtain a finite, not too large, numbers of possible temperature problem.

First of all, considering the slopes in Figure 5.3 we notice that, among all

the computed regions, just three of them are actually significant. Given that

Region xCO2 uCO2(xCO2) ṁair Av

R1 [0, 513] 0.099xCO2 [0, 0.099] [0 %, 18.78%]
R2 [513, 1022] 0.443xCO2 − 176.379 [0.099, 0.27] [18.78 %, 100%]
R3 [1022, 1200] 276.367 [0.23, 0.27] [98 %, 100%]

Table 5.1: Reduction of the partition for the state space.

relationship between ṁair and Av, and then to consider increments of less than

5% would result in negligible changes in practice ventilation for the ventilation.

In particular, we divide the possible values for the lower bound ṁair in intervals

which correspond to increments of 5 % on the opening valve, Av. From the

Figure 5.4, we notice that actually not all the values of Av are acceptable since

they require a value for ṁair that is inferior with respect to the minimum one 6.

Eventually we obtained 16 different lower bound for the temperature problem.

6In the analysis of the ventilations system it has been identified how the values of ˙mair

can actually ranges in [0.1002, 0.278]
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Figure 5.4: Map for the conversion between the valve opening percentage and the mass air
flowing into the room.

By setting, for instance, ṁair = 0.1001 an instance for the problem of

temperature is obtained. The parametric inputs related to this particular

problem are depicted in Figures (5.5, 5.6, 5.7, 5.8). We notice that the heating

process related to the ventilation unit is identically equal to zero since it

requires more energy with respect to the heating related to radiators. Moreover,

the heating additional power ∆uh is not reported since, from the problem

formulation 13, having ∆Th identically equals to zero forces ∆uh to be zero as

well.

We finally introduce the procedure related to the Explicit MPC in our

specific case study.

Algorithm 4 Explicit-MPC

1: get local measurement (i.e initial state);
2: evaluate the PWA function for the CO2 problem obtaining ṁair;
3: identify the membership of ṁair to one of the possible clustered regions;
4: select the corresponding PWA function for the temperature problem;
5: evaluate the PWA function with respect to the current state obtaining the

inputs;
6: process the optimal solution and actuate them;
7: repeat the whole procedure at the next sampling time.
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5.3 Post processing

The values obtained from one of the previous MPC at each sampling time can

not be directly used to command the actuators. Indeed the assumptions made

in Section 5.2, stating that the problems can be reduced to linear optimization

problems, must be modified to account for the peculiarities of the hardware in

the testbed. Our choice is to exploit a post-processing phase that transforms

the information coming from the two problems, T-MPC and C-MPC, into

signals that correspond to how much the various valves of the plant should be

open.

Consider then that the information coming from the T-MPC is composed

by ∆Th ∆Tc ∆uh, ∆uc, ∆Tmr. From the CO2 - MPC instead provides ṁCO2
air ,

the lower bound on the air flow rate. The following Algorithm 5 reports this

transformation procedure. We now comment Algorithm 5. The first part of the

algorithm performs an analysis on the validity of the solution. In particular it

takes care of removing non-optimal solutions in which both cooling and heating

system are activated. This condition can arise, for instance, to assure feasibility

to the problem in absence of the soft constraints.

Afterwards the procedure examines the optimal and valid solution obtaining

the values of the actuations by means of simple arithmetic operations. All

these operations derive directly from the definitions of the models used to set

the MPC-problems.

The formula at row 23 is an heuristic identified formula that is used to obtain

the temperature required to the air conditioning, Tsa system in order to assure

a total temperature flowing the ventilation system equal to Tair. That is:

∆Tc = ṁair

(
Troom − Tair

)
= ṁair

(
Troom − 0.68Tai − 0.32Tsa

)
, (5.18)

The set points obtained through the high-level MPC controller, and the post-

processing phase, are then actuated via low-level PI controllers that regulate

valve opening percentage of the ventilation, cooling, and heating system.

Eventually, the overall functioning of the KTH-HVAC system is depicted in

Figure 5.9 for the Implicit MPC, and in Figure 5.10.
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Algorithm 5 Post-processing

Require: ∆Th, ∆Tc, ∆uh, ∆uc, ∆Tmr, ṁ
CO2
air

Ensure: Tsa, Tmr, ṁair

1: if ∆Th ≥ 0 and ∆Tc ≥ 0 then

2: if ∆Tc ≥ ∆Th then

3: ∆Tc = ∆Tc −∆Th
4: ∆Th = 0

5: else

6: ∆Th = ∆Th −∆Tc
7: ∆Tc = 0

8: if ∆uh ≥ 0 and ∆uc ≥ 0 then

9: if ∆uc ≥ ∆uh then

10: ∆uc = ∆uc −∆uh
11: ∆uh = 0

12: else

13: ∆uh = ∆uh −∆uc
14: ∆uc = 0

15: Tsa = 0
16: Tmr = 0
17: ṁair = ṁCO2

air

18: if ∆Th > 0 then
19: if ∆uh > 0 then
20: ṁair = ṁair + ∆uh

∆Th

21: if ∆Tc > 0 then
22: Tair = Troom −∆Tcool

23: Tsa = Tair−0.68Tai

0.32

24: if ∆uc > 0 then
25: ṁair = ṁair + ∆uc

∆Tc

26: if ∆Trad > 0 then
27: Tmr = Troom + ∆Trad
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Figure 5.9: Schematic of the whole KTH-HVAC system with Implicit MPC.
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Figure 5.10: Schematic of the whole KTH-HVAC system with Explicit MPC.
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5.4 Energy Indices

A crucial aspect to consider, when it comes to analyze and study the behaviours

of a controller, is that of the performance indices. The aim of this section is

that of introducing simple parameters in order to evaluate the implemented

controllers.

We remind that our goal is to assure thermal comfort and quality of air, while

minimizing the energy consumed to meet these requirements. Hence, the chosen

indices are:

• total energy usage for actuations. We obtained numerical values that

quantify approximately the actual energy spent by the heating, cooling

and venting systems.

• levels of violations of thermal comfort bound expressed in degree/hours.

The trade off between the two goals can be tuned adjusting the control param-

eters that characterize the different controllers. In the following, we present

the procedure to evaluate the aforementioned indices.

Algorithm 6 Indices Evaluation

Require: ṁair(k), Tsa(k), Tmr(k), N
Ensure: Etot, Cviol

1: for i=1:N do
2: if ṁair(i) > 0 then
3: if Tsa(i) > 0 then
4: Event = Event + ||1006 · 0.68 · ṁair(Tai(i)− Troom(i))||∆t
5: Ecool = Ecool + ||1006 · 0.32 · ṁair(Tsa(i)− Troom(i))||∆t
6: else
7: Event = Event + ||1006 · ṁair(Tai(i)− Troom(i))||∆t
8: if Tmr > 0 then
9: Eheat = Eheat + Arad · hrad(Tai(i)− Troom(i))∆t

10: if Troom > T max
room then

11: Cviol = Cviol + (T max
room − Troom)∆t

12: else
13: if Troom < T min

room then
14: Cviol = Cviol + (Troom − T min

room )∆t

15: Etot = Event + Ecool + Eheat

The procedure simply evaluate the energy consumption from the registered

actuation values weighing for terms that indicate the related cost. Moreover,

this value is integrated for the length of the time interval.
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6
Results

6.1 Numerical Results

In this section we discuss some numerical experiments. In particular, we aim

to compare the behaviour, with respect to the performances indices introduced

in the previous section, for:

• I-CE: the Certain Equivalence version of the Implicit MPC controller;

• I-SMPC: the Scenario-Based version of the Implicit MPC controller;

• E-SMPC: the Scenario-Based version of the Explicit MPC controller.

Moreover, we take as an ideal reference for the simulation case, the so-called

Performance Bound MPC (PB).

The Performance Bound MPC is a particular controller which has perfect

knowledge of the control system’s dynamic as well as perfect knowledge of

all future disturbances acting upon the system. This controller exploits all

these information to obtain the optimal control profile with respect the defined

cost function. Hence, the PB represents an absolute benchmark for all the

possible controller related to the same optimization target, all performances of
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other controllers will be worse. For the sake of clarity in the visualization of

the results, we only report what has been obtained for (I-CE) only in terms

of performances without showing all the actuations, the thermal dynamic,

and the dynamic of the air inside the room. This allows to focus more just

on the comparison between I-SMPC and E-SMPC and to analyze deeply the

differences between them.

In our simulation we identify the real plant with the identified model in

(3.17) for the CO2 dynamic, and the 13-states model for the thermal dynamic.

This assumption implies, as a direct consequence, that the model error is equal

to zero for the Implicit MPC. The only source of uncertainty for the Implicit

MPC is then represented by random disturbances acting on the system. In

particular, these disturbances are taken from real measured data retrieved in

the testbed throughout the deployed sensors.

We report three simulations corresponding to three different scenarios for

the disturbances:

• Test 1:

– winter scenario for the outside temperature;

– peak for occupancy = 8 people;

– Tair ∈ [20, 22];

– CO2 bounded under 850 ppm;

– Period = 12 h, form 8am to 8pm.

The results are shown in Figure 6.1 at page 78

• Test 2:

– winter scenario for the outside temperature;

– peak for occupancy = 2 people;

– Tair ∈ [20, 22];

– CO2 bounded under 850 ppm;

– Period = 12 h, form 8am to 8pm.

The results are shown in Figure 6.2 at page 79
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• Test 3:

– summer scenario for the outside temperature ;

– peak for occupancy = 6 people;

– Tair ∈ [20, 22];

– CO2 bounded under 850 ppm;

– Period = 12 h, form 8am to 8pm.

The results are shown in Figure 6.2 at page 80

All the simulation we conducted, show the effectiveness of the explicit

controller. In fact, analyzing the figures that show the performance of the three

controllers, and comparing with the trends of temperature and quality of air, it

is clear how the explicit controller is able to ensure compliance with the limits

on the comfort inside the room. Furthermore, its performance is comparable in

term of energy consumption with respect to the implicit MPC controller.

We want to point out that a large quantity of simulations were carried

out trying to investigate how the various parameters involved could afflict the

comparison between the two controllers. The results we obtained have shown

that the overall behavior is qualitatively independent of these parameters. As a

further confirmation of this fact we report the performance evaluations obtained

by varying the disturbances acting on the system (Figure 6.7 at page 82). So

the selected simulations can be taken as significant examples for the comparison

between the two controllers.

Observing the previous figures, we can conclude that, in general, the I-

SMPC slightly outperforms the E-SMPC. This is due to the fact that E-SMPC

exploits a simplified model to obtain the control profile. The approximations

inherently related to the two-states, with respect to the more complex 13-states,

can affect the quality of the predictions for the optimization problem and so

the results in terms of performance.

In all the Figures (6.4, 6.5, 6.6), the performance of the Certain Equivalence

controller are reported. As expected, they show both high levels of energy

spent for the actuations and a high value of thermal violations in the analyzed

time period. This is due to the fact that it does not take into account the

inherent uncertainty related to disturbances acting on the system.
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Figure 6.1: Simulation 1 on the MPCs: cooling action, high occupancy, winter. The
temperature comfort bounds are set to 20 ℃ to 22 ℃ while the upper bound of the CO2

concentration is 850 ppm.
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Figure 6.2: Simulation 2 on the MPCs: heating action, low occupancy, winter. The
temperature comfort bounds are set to 20 ℃ to 22 ℃ while the upper bound of the CO2

concentration is 850 ppm.
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Figure 6.3: Simulation 3 on the MPCs: cooling action, average occupancy, summer. The
temperature comfort bounds are set to 20 ℃ to 22 ℃ while the upper bound of the CO2
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Figure 6.5: Performances for the simulation 2 on the MPCs: heating action, low occupancy,
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We remark that violations for CO2 are not taken into account in the

performances evaluations. This is because of the fact that, in general, thermal

constraints require the activation of the ventilation system ensuring that CO2

never reaches the alert level. So in all the simulations we conducted, we never

detect violations on bound for the quality of air. For instance, Simulation

1 considers a case with very high occupancy, meaning thus an high CO2

production rate. Also in this case the temperature problem, in order to decrease

the temperature, provides an additional boost to ṁair helping to decrease the

CO2.
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Figure 6.7: Comparison between implicit and explicit MPC with respect to different
disturbances acting on the system.

6.2 Experimetal Results

In the previous section we have shown the tractability of the explicit MPC

control approach to HVAC system, at least from the point of view of numerical

simulation. We now aim to present the results that we obtained applying our

controller to the testbed. We just focus on the explicit SMPC controller and we

remind the reader to [22] for experiments on the implicit SMPC controller. In

order to have a reference in the evaluation of the performance of our controller,

we compare two two different controllers:

• AHC: the current practice presented in Chapter 4, a simple control logic

with PIC control loops and switching logic;

• E-SMPC: the Scenario-Based version of the Explicit MPC controller.
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For the E-SMPC we consider a prediction horizon of 9 hours and a sampling

time of 10 minutes, hence that we have a number of prediction steps equal

to N = 54. The optimal control laws have been computed with Matlab on

an Intel(R) Core(TM)i7-2600 CPU,3.40 GHz and 8Gb of RAM. The average

amount of time needed to compute the optimal solutions was 20 minutes,

obtaining a PWA function consisting of 800 polyhedra in the set of admissible

initial conditions. As well as for the numerical results, we aim at testing the

performance of our E-SMPC in terms of energy use and comfort as well as

the effect of a different number of scenarios in real experiments. Hence, we

conducted three different tests in March 2014.

• E-SMPC, 18-3-2014:

– 10 scenarios;

– peak for occupancy = 3 people;

– Tair ∈ [20, 22];

– CO2 bounded under 850 ppm;

– Period = 9 h, form 7.00 to 16.00.

The results are shown in Figure 6.1 at page 85

• AHC, 19-3-2014:

– peak for occupancy = 4 people;

– Tair ∈ [20, 22];

– CO2 bounded under 850 ppm;

– Period = 9 h, form 7.00 to 16.00.

The results are shown in Figure 6.8 at page 85

• E-SMPC, 20-3-2014:

– 1000 scenarios ;

– peak for occupancy = 8 people;
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– Tair ∈ [20, 22];

– CO2 bounded under 850 ppm;

– Period = 9 h, form 7.00 to 16.00.

The results are shown in Figure 6.9 at page 86

We then compare the AHC with E-SMPC with 10 scenarios in Test 1 and with

E-SMPC with 1000 scenarios in Test 2. Each row of Figure 6.8 depicts the

disturbances (i.e., outdoor temperature and occupancy), the control inputs (i.e.,

supply air temperature and massflow) and the controlled indoor temperature

and CO2 levels. The horizontal axis reports the time period of the experiments,

from 7:00 to 16:00. Despite the cold season, both controllers in both tests

require cooling when there is people in the room. The demand for cooling

during the cold season can be explained by the relatively high internal gains,

due to occupancy and equipment, and by the limited and moderately insulated

external walls surface. This implies that the thermal indoor dynamics are

significantly affected by the occupancy patterns.

Notice that on the 18th and on the 20th, the days when the E-SMPC

was applied, both the outdoor temperature and the occupancy was higher

compared to the day when AHC was employed. In particular, the occupancy

was significantly higher on the 20th, after lunch time. Despite these more

challenging disturbances, the temperature profiles resulting from the E-SMPC

are very similar to the ones obtained by AHC. The E-SMPC is capable to keep

the temperature profile close to the upper bound, although the E-SMPC with

10 scenarios violated this bound more often.

Despite the temperature profiles resulting form the two controllers being

indeed close, the E-SMPC achieved this result at a significant lower energy cost.

This is a promising performance, especially considering the higher occupancy

and outdoor temperatures that the E-SMPC needed to compensate. This can

be clearly seen by looking at the required massflow in : the AHC turns on/off

the cooling system quite often, while the E-SMPC uses the cooling system

fewer times, i.e., only when really convenient.

Numerically, for the E-SMPC Etot = 0.77kWh on the 20th, and Etot =

0.79kWh on the 18th, while for the AHC Etot = 1.04kWh, approximatively

31− 33% higher.
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7
Conclusions

In this thesis several types of MPC controllers for a specific HVAC system have

been studied, designed and analyzed.

First of all the simple version of Deterministic MPC has been implemented in

an on-line version. To improve the performances of this controller we have then

investigated the scenario-based model predictive controller. The differences

of the performance between the two approaches emphasize the added value

of taking into account, as an uncertain quantity, the disturbances acting on

the system. In the simulations it has been shown how the stochastic approach

leads to a more robust behaviour with respect to unknown disturbances.

Moreover, in order to reduce the on-line computational time, we have imple-

mented an equivalent stochastic explicit MPC controller. The need to obtain an

optimization problem computationally manageable led us to obtain a simplified

version for the model of the thermal dynamics. Despite its simplicity, this model

had to be able to satisfy the need for accuracy of the predictions not to afflict

the effectiveness of the control profile. We experienced how the task to find a

model with all these properties can be really hard when it comes to complex

thermal dynamic as in our case. Nevertheless the results we have obtained

can be considered satisfactory for our proposes. The explicit strategy has been
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implemented and tested on a real room of a university building, showing that

the resulting actuation laws can be more effective than the current practice.

Hence, the main contributions provided in this thesis are : (I ) models for the

thermal and air quality dynamic of a real test bed; (II )designthe procedures

for the implementation of different kinds of Implicit MPC; (III )the analysis of

the problem related to the implementation of an off-line predictive controller

as, for instance, the computational tractability; (IV ) a novel simplified model

for the thermal dynamic of the room; (V )the design of a new scheme to run

the Explicit MPC on the actual KTH-HVAC system; (VI )a detailed analysis of

the behaviour of the aforementioned controller in terms of energy consumption

vs. occupancy comfort levels through numerical experiments.



8
Further developments

At the end of this path we are conscious that this field could be rich of possible

improvement and possible questions that only a deeper study could show. We

present now a list of prospects that came out working on this thesis.

Improving the two state temperature model We observed how the

simplified model tends to overestimates the temperature within the room. This

fact affects the precision in the prediction that are eventually exploited to

obtain the control plan. Thus, improving the thermal model could lead to even

more satisfactory results in terms of energy consumption with respect to the

implicit approach.

Multi-zone controller It could be interesting to extend the controller we

designed to a multi-zone area.

Improve the performance indices There is still the need of measuring

precisely and extensively the amount of energy savings/ comfort maintaining

performance of the strategy to correctly evaluate the degree of improvements

brought to the current practice.
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Review the problem of the connection between temperature and CO2

for explicit MPC The two problems are strictly related and the output of

the CO2 problem represents a lower bound for the temperature model. Since we

aim to switch to an off-line computation for the control profile, it is necessary

to cluster the possible output of the problem for the air quality. In this thesis a

simple heuristic has been proposed but it would be interesting to study deeper

this aspect trying to understand whether or not such approximation affects the

results of the whole MPC.

Reduce the number of regions The obtained PWA map for the thermal

problem has shown a relevant number of regions to consider. This aspect may

affect the attractiveness of this method for an implementation on a cheap

hardware. A possible development might be to study a way to reduce the

number of significant regions with respect to some indices.

Study new types of MPC controller It would be meaningful to develop

new MPC controllers which weigh differently the violation of the constraints

and hence, to analyze how this affects the performance. Some possibilities

might be, for instance, the so-called Integrated Chanche Constraints MPC or

the Two-Stage MPC.
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