
    

        

DEPARTMENT OF INFORMATION ENGINEERING 

MASTER DEGREE IN  

COMPUTER ENGINEERING 

“Real-Time Object Tracking and Pose Prediction for Robotic 
Manipulation using ROS” 

        Supervisor: Prof. Giovanni Boschetti 

Candidate: Michele Zadro 

  
                 

Academic Year 2023 – 2024 

Graduation date 25-11-2024

DIPARTIMENTO 
DI INGEGNERIA 
DELL’INFORMAZIONE 



2



Abstract

This thesis explores the use of an eye-in-hand camera system, where the camera is mounted
on the end-effector of a robotic arm, to perform a pick-and-place routine. The objective is to
develop techniques that enable the robotic arm to pick objects from a conveyor belt efficiently.
The key steps involved in this process include camera calibration, object detection and tracking,
as well as the implementation of an object following and picking algorithm. Each of these steps
is addressed in detail, providing a comprehensive approach to robotic manipulation using this
camera system.

3



4



Dedication

To my family, whose support and belief in my abilities have uplifted me

throughout this journey. Your encouragement has strengthened my confidence

and made this achievement possible.

To all my friends, always there to bring a smile, share a laugh, and walk this
journey with me, making every step more engaging and meaningful.

5



6



Contents

1 Introduction 9
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Objectives of the Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Tools used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 ROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Gazebo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Chapter descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 System Architecture 13
2.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Starting the Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 ROS Project Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Structure of the developed application . . . . . . . . . . . . . . . . . . 17

3 Object Detection and Pose Reconstruction 21
3.1 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 The choice of YOLO approach . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 Training the network . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.3 Performing inferences . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 What is Camera Calibration? . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 Finding Internal parameters . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.3 Finding External parameters . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Pose Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Object Tracking and Pose Prediction 35
4.1 Object Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 General Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.2 Details of the Tracking System . . . . . . . . . . . . . . . . . . . . . . 36

4.1.3 Limitations of this system . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Pose Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 How it works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7



4.2.2 Limitations of this prediction approach . . . . . . . . . . . . . . . . . 43

5 Object Picking 47
5.1 MoveIt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.1 Motion planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.2 MoveIt overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.3 Setup with a custom robot . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 General operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Accuracy of predicted positions . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 Limitations of the gripper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4.1 Alternative approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Results and Discussion 55
6.1 Pick & Place Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Future improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 Possible applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

8



Chapter 1

Introduction

1.1 Problem Statement

The objective of this project was to develop a software system capable of controlling a robotic
arm to pick up random bottles from a moving conveyor belt, using a camera mounted on the
robot’s wrist for guidance.

However, due to challenges in acquiring essential materials, such as the conveyor belt, and
limitations in testing the software on physical hardware, the project was ultimately implemented
using Gazebo, a physics-based simulation software for robotics. This allowed for realistic test-
ing and development despite the lack of physical components.

1.2 Objectives of the Project

For a similar task, a more reliable approach would have been to use a laser distance sensor
mounted perpendicular to the axis of the conveyor belt at a known distance from the robotic arm.
This sensor would measure the distance to the closest object at various points along the line,
providing the positions of the bottles. By integrating this with the conveyor belt encoder (which
tracks both speed and position), the system could obtain the precise positions of the bottles in
the 2D plane. This approach is ideal for systems that must guarantee high accuracy and speed,
though it requires expensive components such as a 2D laser scanner, an infrastructure mounted
with high precision (the laser scanner has to be placed above the conveyor belt at a known
and precise distance with the base of the robot) and a reliable communication link between the
robotic application and the conveyor belt motor encoder.

Given the disadvantages of this setup, such as cost and complexity, it was decided to develop
a robotic application that would not require modifications to the existing system. Instead, with
only minor adjustments, the developed system can be easily configured to operate in various
environments where the conveyor belt is located near the robot platform.

While developing the project, there were several key principles that had to be followed in
order to ensure that the final result could be adapted to real-world systems with the necessary
precautions:

9



• Modularity: the software should be divided into separate components or modules that
can be easily modified or replaced without affecting the entire application.

• Configurability: the software should be easy to configure for different applications or
environments with minimal adjustments.

1.3 Tools used

The system is composed of two main hardware devices: the Universal Robots UR5e (the robotic
arm) and the Robotiq 2f-85 (the gripper). The choice of these components was related to the fact
that their manufacturers provide all the necessary resources, including detailed CAD models and
control libraries to import them into the simulation software.

Figure 1.1: Universal Robots UR5e Figure 1.2: Robotiq 2f-85

In addition to the programming language, IDE, and the version control software employed
for the project, the two primary components were ROS and Gazebo.

1.3.1 ROS

ROS (Robot Operating System) is an open-source framework designed for robot software de-
velopment. It provides a collection of libraries and tools that facilitate the creation of robotic
systems. ROS is organized into modular units called packages, which are the fundamental
blocks of a ROS application. A package can contain various nodes which are executable pro-
grams that perform specific tasks, such as reading from sensors, controlling actuators, or per-
forming different algorithms. Nodes can publish information to a topic or subscribe to topics to
receive data from other nodes. This structure allows for nodes to operate independently but still
communicate effectively. In a way, ROS pushes the user to design modular applications.

There are three main ways ROS nodes can communicate:

10



• Messages: these are the most basic form of communication. Nodes can publish messages
to specific topics, and other nodes can subscribe to these topics to receive the messages.
Each message has a predefined structure and can contain different types of data (integers,
strings, arrays, etc.).

Example: A camera node publishes image data to the topic /camera/image raw, and the
main node subscribes to this topic to retrieve and visualize the images.

• Services: these use a request-response mechanism to communicate in a synchronous way
(the client waits for the server response being blocked). A service client sends a request
and the service server processes it and responds. As in messages, the request-response
structure is predefined.

Example: The main node, using the provided service get poses, sends a request to the
object detection node, passing an image as input, which will respond with the list of pixel
coordinates of the detected objects.

• Actions: these are used for tasks that take time and allow for feedback while they are
executed. Unlike services, actions support asynchronous communication, allowing the
client to receive feedback during the task and cancel it if necessary.

Example: The main node uses the pick action, of the node in charge to perform the pickup
movement, passing in the request field the position where to pick the object and the time-
stamp when to close the gripper to grasp that object. While performing the motion, the
pick node sends feedback to the main node (moving, grasping etc.).

1.3.2 Gazebo

Gazebo is an open-source robotics simulation software that integrates with ROS, providing a
rich environment for testing and developing robotic applications in a virtual space. It allows
developers to create complex 3D worlds and simulate there the physical behavior of robots,
including their interactions with objects and the environment. Gazebo supports advanced fea-
tures like a physics engine for realistic motion, sensor simulation (e.g. cameras, LiDAR), and
customizable plugins for extending functionality (e.g. conveyor belt plugin).

In this project, Gazebo played a crucial role by allowing the simulation of several key com-
ponents, including:

• the UR5e robotic arm from Universal Robots, to test movement and pick-up operations

• the camera mounted in the wrist of the robot, to simulate what a real camera would
observe and thus perform object detection and pose reconstruction

• the platform on which the robot was placed, to verify proper positioning and workspace

• the conveyor belt, to simulate real-world scenarios where objects are transported

11



• the bottles that were spawned on the conveyor belt, to test the robot’s interaction with
objects, including detecting, tracking, and manipulating them

Through Gazebo, various scenarios can be simulated to evaluate the robot’s performance and
accuracy, which significantly reduced development time and removed the risks of real-world
testing.

1.4 Chapter descriptions

• Chapter 2 will explain which are the main components of the application, how they work
from a general point of view and how they are connected to form the system chain. Also,
this chapter will illustrate how all these components are distributed across the nodes in
the ROS project.

• Chapters 3, 4 and 5 will explore deeply the components discussed in Chapter 2, showing
how they work in detail, their limitations and their advantages.

• Chapter 6 will conclude with the final analysis of the system as a whole, summarizing
the key findings from the previous chapters. It also presents discussions on potential
improvements and future directions for development, offering a conclusive reflection on
the project outcomes.

12



Chapter 2

System Architecture

This chapter will address the following questions:

• How should the system work in general?

• What are the main components of the system?

• How are these components imported into the simulation?

• How is the ROS project structured?

2.1 System Overview

There are two main components that are part of the system:

• The conveyor belt with the objects (bottles) that slide on top of it

• The robotic arm, with the camera and the gripper mounted on top of it, used to pick up
the objects

The robot should be able to catch the desired object (or a random one) without using any external
information such as conveyor speed, distance of bottles from a known point etc. Therefore, it
has to retrieve all the necessary information to grasp the object using only the camera mounted
on the robot’s wrist.

The main steps to reach the goal are the following:

1. Camera calibration. The camera plays a crucial role in this type of systems, as it is
used to reconstruct the pose of an object using only its pixel coordinates. In order to
reconstruct the 3D poses (written with respect to a fixed base frame), the camera needs to
be calibrated, which means to evaluate the extrinsic and intrinsic parameters.

2. Object detection. Before converting pixel coordinates into 3D poses, the objects visible
to the camera must first be identified and their pixel coordinates extracted. Object de-
tection is the process by which, given an image of the observed scene, it outputs a list

13



of pixel coordinates representing the locations in the image where the target objects are
situated. In the proposed solution, this process makes use of a famous deep convolutional
neural network: YOLO v8.

3. Pose reconstruction. This is the process of converting pixel coordinates into 3D poses
using previously extracted intrinsic and extrinsic parameters. Knowing the 3D pose of
the objects, rather than just their position in the image, is beneficial in many ways. For
instance, calculating the velocities of the objects becomes straightforward by using con-
secutive poses and the time interval between them.

4. Object tracking. Having a list of detected object poses for each image is not sufficient for
this application; it is necessary to have a system that matches each pose to a unique object,
for example, by assigning an integer ID. Without doing so, it would not be possible to
answer many useful questions, such as: ”Given two images and the time interval between
them, what is the average velocity of bottle X?” There would be only two lists of poses,
with no information about how they correspond to each other.

To achieve this, the application includes a module that continuously reads the list of de-
tected object poses and attempts to find the best match with the previously observed poses.
This task is called object tracking.

5. Pose prediction. To successfully pick up a continuously moving object, it is not enough
to know only its current and past positions. Instead, it is necessary to predict where the
object will be after x seconds. This allows the robot to begin moving towards the predicted
position and arrive there before the time limit has passed, so it can grab the object when
it is directly under the gripper.

The pose prediction module has been implemented using a custom algorithm that ana-
lyzes the trajectories of past bottles to estimate where the target bottle will be.

6. Object picking. This part of the application is responsible for moving the robot to the
predicted position and waiting there until the object is under the gripper. To determine
when to close the gripper, the system needs to calculate the time stamp when the object
is expected to reach the predicted position subtracted by the time required for the gripper
to close. Once the current time stamp matches the previously calculated one, the gripper
is activated to close. Afterwards, the arm should lift and return to its designated position,
where it can open the gripper and release the object.

2.2 Starting the Simulation

To develop the application effectively, it is beneficial to have a method for testing the func-
tionality of each component. This is where the simulation software becomes valuable. With
such a software, it is possible to simulate the bottles sliding along a conveyor belt, allowing the
emulation of what the camera would capture in real-world conditions.

14



Even though modern simulation softwares can achieve graphics that closely resemble real-
ity, they will never fully replicate real-world conditions. Therefore, it is important to keep in
mind that the object detection module may need to be adapted when transitioning the applica-
tion to a real-world system.

To start a simulation, ROS launch files are highly useful because they allow you to launch
multiple nodes and configure parameters simultaneously. By using a launch file, ROS can
automatically initialize Gazebo with the specified settings, simplifying the setup and saving
time.

Before writing the launch file, it is necessary to define the description files of the robotic
station and the conveyor belt. A description file, called URDF (Unified Robot Description
Format), is a text file that describes the system’s physical design in terms of its links, joints,
and properties like shape, size, and movement constraints. This type of file can include other
URDF files and thus be composed of several stand alone components that can be interconnected
through joints of various types (fixed, prismatic, revolute). In this application, these components
were:

• The Universal Robots UR5e description file, provided by the manufacturer (as URDF).

• The Robotiq 2f-85 URDF which provides the description of the gripper that will be
mounted on the robot’s wrist.

• The camera description file, composed of a simple invisible link where the camera sensor
(provided by Gazebo) is attached.

• The base station description file, in which the visual and collision components are de-
signed using a 3D CAD software and simple links are then specified for the base and
surface frames.

• The conveyor belt description file, composed of a simple rectangular box in which a
gazebo plugin is imported to allow the sliding motion of any object placed on top.

At this point the necessary components can be included in the launch file that runs the simula-
tion. These components include:

• The empty world launch file. This is responsible for launching a Gazebo simulation with
no objects or models inside. (Note that any launch file can include other launch files).

• The final customized robot description file (still in URDF format) in which almost all the
previous description files are included and their links are joined in a meaningful way:

– The base link of the base station is attached with a fixed joint to the world frame.

– The base link of the robot is attached with a fixed joint to the surface link of the
base station.

– The camera link is attached to the tool0 link of the robot (its last link) at a distance
of 10cm along the z-axis.

15



– The base link of the gripper is attached to the tool0 link of the robot.

• The controller manager node: responsible for setting up the controllers for the robot.
These controllers include the one for the robotic arm and the one for the gripper, both
are provided by the manufacturer and are needed to simulate the real behavior of these
components.

• The robot state publisher node: responsible for publishing the state of each link in the
robot based on its joint positions. This includes creating the TF tree that defines the spatial
relationships between all parts of the robot, which is essential for visualizing the robot’s
current pose and enabling accurate motion planning.

• The MoveIt components: responsible for the motion planning of both the manipulator
and the gripper, ensuring smooth and efficient movement without collisions with the sur-
rounding environment.

• The conveyor belt description file, used to spawn the object (in front of the robot) where
elements slide from right to left.

2.3 ROS Project Structure

2.3.1 Overview

A ROS project is organized into packages: folders that hold everything that is needed for a
specific part of the robot’s application. A package typically contains:

• Code (nodes) (Python or C++) for specific tasks (like controlling the robot or reading
from the camera sensor), placed in the src or script folder (depending on the programming
language).

• Launch files to start parts of the robot system, placed in the launch folder.

• Dependencies on other packages it relies on to work, specified in the CMakeLists.txt file
of the package.

If the package defines its own custom communication formats for its nodes, it may contain also:

• msg folder which contains custom message definition files using a predefined format.
Considering the example of a node that has to publish information about the position of
an object, there will be a message file in the path: package name/msg/Position.msg with
the following content:

float64 x # X-coordinate in meters

float64 y # Y-coordinate in meters

float64 z # Z-coordinate in meters

16



• srv folder which contains service definition files, allowing nodes to request a task and
wait for a response. For example, a robot node may need to perform a rotation. The
service file located at package name/srv/Rotate.srv could have the following structure:

# Request

float64 angle # angle in radians to rotate

---

# Response

bool success # true if rotation was completed

successfully

• action folder which defines action files for tasks that take time and may require ongoing
feedback. For instance, a robot may need to move to a specific location with feedback pro-
vided along the way. The action file could be stored in package name/action/MoveTo.action

and would contain:

# Goal

float64 x # target x-coordinate

float64 y # target y-coordinate

---

# Result

bool success # true if the robot reached the target

---

# Feedback

float64 distance_remaining # distance left to reach

target

Sometimes ROS packages are used to describe models to be used in gazebo, like the robot
station, the bottles, the gripper etc. In this case, it is uncommon to have nodes in the package,
instead, there are the following folders:

• meshes: where the 3D models of the object are stored. Typically, these are in the .stl or
.dae format.

• urdf: where the URDF files that describe the model (with extension .xacro) are stored.

2.3.2 Structure of the developed application

Overview

The developed project consists of 11 packages where:

• six of these are just for describing the components of the system to be imported in the
simulation (the packages containing the URDF files): camera, Robotiq gripper, robot base

17



station, Universal Robots model (ur5e), final description file (containing all the previous
description packages), conveyor belt.

• model spawner package: used to spawn regularly the bottles on top of the conveyor belt.
This package contains both the urdf folder with the bottle.urdf description file, and the
python script spawn model.py for spawning the objects.

• moveit calibration package: used to calibrate the precise relationship between the camera
and the robot’s end effector.

• moveit config package: used to store the parameters that MoveIt requires to ensure the
movement of the arm and the gripper without collisions.

• ur5e gazebo package: responsible for launching the gazebo simulator, including all the
previously defined packages components to load the simulation.

• ur5e controller package: this is the core part of the application. In this package there are
the following essential nodes:

– object detect node: responsible for performing the inference on the camera images
returning the pixel positions of the detected objects.

– ur5e controller node: the main part of the system. This node has to provide to
the user a panel where the images of the robot’s camera can be seen, the bottles are
marked (as detected), and, by clicking on the desired one, the application predicts
where it will be after x seconds and performs the pick & place routine.

– movement action server: the node that acts as a server in the communication with
the previously defined node and, by using MoveIt libraries, performs all the motions
required to perform the pick & place routine.

Details of ur5e controller

While the other packages are mainly used only to start the simulation environment, this package
is responsible for performing all the operations that were described in the system overview
section (2.1), therefore it will be explored deeply. As previously explained, this package is
composed of three major components and their functionality is explained as follows:

• ur5e controller node has an infinite loop where at each iteration:

1. Evaluates the perpendicular distance between the camera and the conveyor belt.

2. Subscribes to the /ur5e/camera/image raw to retrieve the image of the robot camera
at that precise moment.

3. Saves the current time stamp (the one the image is referred to).

18



4. Acts as a client in the communication with object detect node using a service, pass-
ing to it the image captured and receiving back the array of pixel coordinates of the
bottles detected in that image.

5. Using the camera parameters, converts the pixel coordinates into 3D coordinates
with respect to a fixed frame (the base link of the robot base station).

6. Uses the tracking algorithms, which will be explained in section 4.1, to assign the
correct ID number to each detected bottle so that the same one, located in consecu-
tive frames, keeps the same ID.

7. Creates and displays a new image, starting from the one retrieved before, where the
bottles detected are marked with colored circles.

8. If the user clicks on one of those detected bottles:

(a) Using the prediction algorithm (explained in section 4.2), it predicts where the
bottle will be after x seconds (where x is a parameter of the program).

(b) It acts as a client in the communication with movement action server (using
actions), sending to that node the goal position to be reached before the time x
(previously defined), the time stamp when the object is expected to be under the
gripper, and the boolean variable pick set to true. The server node will provide
feedback messages during the execution, in order to alert the main node if there
are problems or not, and, if the motion performed correctly, will return a success
boolean value.

(c) It communicates (again) with movement action server, sending to that node the
goal position to be reached and the boolean variable pick to false. This way the
server node will know that it has to perform the place routine (and not the pick
one), thus, the gripper will be opened only when the target position is reached.

• object detect node is a simple server node that loads the trained weights of the detection
for the YOLO network, performs the inference on the image passed using service com-
munication and returns in output the list of pixel coordinates of the detected objects. The
structure of its Request & Response method is the following:

# Request

sensor_msgs/Image image # The input image

---

# Response

geometry_msgs/PoseArray pixel_points # The array of pixel

coordinates

• movement action server is the action server node that, using MoveIt libraries (discussed
in section 5.1), performs the pick & place routines. It uses actions as a communication
method with the following structure:

19



# Goal

string frame_id # the reference frame for the

following coordinates

float64 x # target x-coordinate

float64 y # target y-coordinate

float64 z # target z-coordinate

bool pick # true for pick motion , false for

place motion

float64 max_duration # the maximum time the motion can

take to arrive to the goal position

float64 close_gripper_time # the time stamp when to

close the gripper

---

# Result

bool success # true if the robot completed the routine

---

# Feedback

int32 progress # progress code of the execution: 1:

motion planned , 2: motion is executing , 3: target

position reached , 4: gripper closed / opened , 5:

moving to home position

The next chapters provide an in-depth explanation of how the ur5e controller package
components work.

20



Chapter 3

Object Detection and Pose Reconstruction

3.1 Object Detection

Object detection is the process that, given an image of a scene, outputs a list of pixel coordinates
indicating where the target objects are located. Typically, object detection identifies the smallest
bounding box that contains each target object, with the box defined by its four corner points.
However, in our system, where the objects of interest are the bottle lips, it is sufficient to return
the central point of the bounding box as the detection result. By definition, object detection
also involves classifying each bounding box with a label corresponding to the identified object.
However, this aspect is not relevant for our application since there is no need to distinguish
between different types of objects (our only targets are the bottles).

Figure 3.1: General usage of Object Detection Figure 3.2: Custom usage of Object Detection

3.1.1 The choice of YOLO approach

YOLO (You Only Look Once) is an open-source algorithm that revolutionized the way objects
are detected in images and videos by using a single neural network to predict bounding boxes

21



and class probabilities simultaneously. It was first introduced in 2016 and gained popularity due
to its speed and accuracy, enabling object detection in real-time applications like the current one.

Since this application was developed in a simulation environment, the images provided
by the virtual camera are relatively simple, repetitive, and not very realistic. It would have
been easy to create an algorithm optimized for these conditions using standard machine vision
techniques. However, this approach would not have been successful in practice, as the algorithm
would only work in the simulated environment. When applied to a real system with entirely
different and more complex images, modifying the solution would be extremely difficult, if not
impossible.

A neural network system, like YOLO, must be trained on images captured by the robot cam-
era. In our case, these are still images with poor realism due to the simulation environment. As
a result, when transitioning to a real-world setup, the neural network will likely fail to detect ob-
jects accurately. However, this issue can be resolved by retraining the network using a sufficient
number of images from the actual environment. This approach enhances configurability, since
the core algorithm remains unchanged and only needs to be adjusted for the new conditions,
thus requiring minimal effort.

These considerations were the key reasons behind the decision to implement the YOLO
algorithm (a neural network) in the system rather than relying on a traditional machine vision
approach.

3.1.2 Training the network

Training YOLO involves feeding the neural network with a large dataset of labeled images,
where each image contains objects of interest with corresponding bounding boxes and class
labels. The network uses this data to learn to predict the location and class of objects in new,
unseen images.

This process can take some time as all the following steps need to be implemented with the
right amount of precision:

Acquiring the images

The first step involves obtaining a huge number of images from the robot camera of the scene
viewed. In this case the camera was pointing to the conveyor belt where the bottles were sliding.

To acquire images, a simple ROS node was created that continuously reads from the topic
where the image data is published (in this case /ur5e/camera/image raw). Upon user input, the
node captures the current image and saves it to a designated folder.

To achieve higher precision from the neural network, it is important to follow these tips
when acquiring images:

• Capture images from different angles.

• Vary the lighting conditions.

22



• Change the distance between the camera and the plane.

• Use the same camera settings that will be applied during actual usage.

Labeling the images

To train the neural network, each image must be accompanied by a text file containing the
bounding boxes of the target objects and their class ID. For the YOLOv8 model, this information
follows a specific format.
Each line in the label file corresponds to one object in the image and follows this structure:

<class_id> <x_center> <y_center> <width> <height>

Where:

• <class id>: Integer representing the class of the object.

• <x center>: X coordinate of the center of the bounding box (normalized between 0 and
1).

• <y center>: Y coordinate of the center of the bounding box (normalized between 0 and
1).

• <width>: Width of the bounding box (normalized between 0 and 1).

• <height>: Height of the bounding box (normalized between 0 and 1).

Note that all coordinates and dimensions are normalized relative to the image size.
Obtaining all these .txt files manually can be very time-consuming, but there are tools that make
the process easier. The one used for this project was Roboflow: a web-based platform (or web
application) that provides tools for image labeling, data augmentation, and exporting in various
formats for training machine learning models (including YOLOv8). It runs entirely online,
allowing users to upload, process and download datasets directly through its website.

In the end, the user will obtain two separate folders:

• images: containing all the images captured in the previous step, each with a unique name.

• labels: containing all the text files representing the annotations, formatted according to
the specified structure.

Performing the training

Before proceeding in the training it is necessary to create the data.yaml file: a configuration
file used in YOLOv8 to define the structure and paths of the dataset that the model will be
trained on. It provides essential information such as class names, dataset paths, and dataset
splits (train/validation/test).

In order to train the YOLO neural network, it is only necessary to run the script provided by
Ultralytics dedicated for this purpose. The command has the following structure:

23



yolo train model=<model> data=<data> epochs=<epochs> imgsz=<imgsz>

Where

• <model> specifies the model architecture. YOLOv8 comes with various pre-trained
weights such as yolov8n.pt (Nano), yolov8s.pt (Small), yolov8m.pt (Medium) etc. Larger
models tend to have more layers and parameters, which allows them to learn more com-
plex patterns but increases their resource requirements.

• <data> is the path to the dataset configuration file defined above.

• <epochs> is the number of training cycles. A higher number of epochs typically leads to
a more accurate network on the training data, but it also increases the time required for
training.

• <imgsz> is the image size used for training. YOLOv8 commonly uses 640x640.

When launching the command, the training process can take a long time depending on:

• the number of training images

• the size of the images

• the performance of the machine

• the number of epochs.

A factor that significantly impacts performance, and thus the time required for training, is
whether the machine has a GPU or not. GPUs are designed for parallel processing, allowing
them to handle the large-scale matrix operations and computations required for training neural
networks much more efficiently than CPUs.

3.1.3 Performing inferences

Training a YOLO neural network results in a PyTorch file, which contains the weights of the
trained model and can be accessed using Python modules. This file can be loaded into a ROS
service node that acts as a server, receiving an input image for inference and returning a list of
points (normalized to the image size) as output.

Again, the performance of inferences is significantly influenced by the presence of a GPU.
In the case of the machine used, equipped with an Nvidia GTX 1060 6GB GPU, each image
was processed in approximately 130 ms.

Performance analysis

Having measured the inference time on more than 100 consecutive images, these were the result
in term of milliseconds:

24



0

50

100

150

200

250

300

350

Inferences time (ms)

Figure 3.3: Time measures of the inference of 100 images

• mean value of inference time: 130ms.

• minimum value of inference time: 69ms.

• maximum value of inference time: 300ms.

3.2 Camera Calibration

Before diving into what camera calibration is, it is important to understand how a simple pinhole
camera is modeled and thus how 3D points are projected into 2D pixels.

Pinhole Camera Model

A pinhole camera is a simple camera with a small aperture where light rays can pass through
and project an inverted image on the opposite side of the camera as shown in Figure 3.4. In
order to understand the math behind this projection, it is helpful to work on the virtual image
plane, placed at focal length distance from the focal point.

Figure 3.5 shows the side view of the pinhole camera scheme, which can be used to derive
the transformation between a point P in the 3D space and its projection p onto the virtual image
plane. The scheme in 3.5 shows the relation between yp and YP, but the same reasoning is valid

25



Figure 3.4: Pinhole camera scheme

also for xp and XP, therefore:
YP

yp
=

ZP

f
,

XP

xp
=

ZP

f
(3.1)

yp =
YP · f

ZP
, xp =

XP · f
ZP

(3.2)

Once the coordinates in the image plane are obtained, they can be converted into pixel coordi-
nates. The parameters needed are: the pixel width (w) and height (h) and the coordinates of the
principal point: (cx,cy). The origin of the pixel coordinates is at the top left corner, thus the
resulting equations are:

u = cx +
xp

w
= cx +

f
w
· XP

ZP
= cx + fx ·

XP

ZP
(3.3)

v = cy +
yp

w
= cy +

f
h
· YP

ZP
= cy + fy ·

YP

ZP
(3.4)

In the end the whole projection can be expressed as:

Z

⎡⎢⎣u

v

1

⎤⎥⎦=

⎡⎢⎣ fx 0 cx 0
0 fy cy 0
0 0 1 0

⎤⎥⎦
⎡⎢⎢⎢⎢⎣

X

Y

Z

1

⎤⎥⎥⎥⎥⎦ (3.5)

Since then, it was assumed that the point P = (XP,YP,ZP) was written with respect to the
camera frame (with the origin in the focal point), but if it were given with respect to a different
frame, then it would have been necessary to apply to P a rototranslation using the following

26



ZO

Y

P = (XP, YP, ZP)

ZP

YP

yp p = (xp, yp, zp)

zp

ff

αFocal point

Image plane Virtual image 
plane

Figure 3.5: Pinhole scheme side view

matrix: [︄
R t

0 1

]︄
=

⎡⎢⎢⎢⎢⎣
r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1

⎤⎥⎥⎥⎥⎦ (3.6)

In the end, the mapping between the 3D world scene and the image pixel coordinates is
given by the following equation (composed of both the intrinsic and extrinsic parameters).

Z

⎡⎢⎣u

v

1

⎤⎥⎦=

⎡⎢⎣ fx 0 cx 0
0 fy cy 0
0 0 1 0

⎤⎥⎦[︄
R t

0 1

]︄⎡⎢⎢⎢⎢⎣
X

Y

Z

1

⎤⎥⎥⎥⎥⎦ (3.7)

Thus: ⎡⎢⎣u

v

1

⎤⎥⎦=
1
Z

⎡⎢⎣ fx 0 cx 0
0 fy cy 0
0 0 1 0

⎤⎥⎦[︄
R t

0 1

]︄⎡⎢⎢⎢⎢⎣
X

Y

Z

1

⎤⎥⎥⎥⎥⎦ (3.8)

The points w.r.t. (with respect to) the world frame (or another object) are transformed into co-
ordinates w.r.t. the camera frame using the extrinsic parameters. Then, the camera coordinates
are mapped into the image plane using the intrinsic parameters.

27



Real model

In reality, cameras are not just pinhole cameras, they mount lenses to acquire more light. This
can cause some unwanted lens distortion effects such as:

• Radial distortion where, due to the lens shape, straight lines appear curved, especially
near the edges. They are mainly classified into:

– barrel distortion

– pincushion distortion.

Radial distortion is often corrected considering the polynomial approximation:

xcorrected = x ·
(︂

1+ k1r2 + k2r4 + k3r6
)︂

(3.9)

ycorrected = y ·
(︂

1+ k1r2 + k2r4 + k3r6
)︂

(3.10)

where r is the radial distance from the image center.

• Tangential distortion where, due to the lens not perfectly aligned with the image sensor,
the image appears skewed or shifted. The tangential distortion correction is applied as
follows:

xcorrected = x+
[︁
2p1xy+ p2(r2 +2x2)

]︁
(3.11)

ycorrected = y+
[︁
p1(r2 +2y2)+2p2xy

]︁
(3.12)

All the necessary distortion coefficients (k1,k2,k3, p1, p2) are evaluated through the camera cal-
ibration process.

3.2.1 What is Camera Calibration?

Camera calibration is referred to as the process of finding both internal and external parameters
of the camera. More precisely:

• internal parameters, typically composed of:

– intrinsic parameters: focal length ( f ), pixel width (w), pixel height (h), principal
point coordinates (cx,cy).

– distortion coefficients: (k1,k2,k3) for radial distortion; (p1, p2) for tangential dis-
tortion.

Internal parameters help to understand how the camera captures the real world and trans-
lates it into a digital image.

• external parameters, also called extrinsic parameters, describe the camera’s position
and orientation (its ”pose”) relative to the external world or an object. These extrinsic

28



parameters are essential for mapping the 3D world to the camera’s coordinate system,
allowing for spatial understanding.

3.2.2 Finding Internal parameters

In order to obtain the internal parameters, the most used approach involves capturing multi-
ple images of a known calibration pattern, such as a checkerboard, from different angles and
positions. The steps required are:

1. Produce a calibration pattern. A common approach is to print a checkerboard pattern
with known dimensions. A useful tool for this is the website calib.io, which allows users
to generate a calibration pattern while also specifying the final dimensions.

2. Capture multiple images. Take several images (from 10 to 20) of the calibration pattern
from different viewpoints. Move the camera to capture the pattern at different angles and
covering various parts of the image.

3. Detect the Pattern in Each Image. Using computer vision functions in OpenCV (such
as cv::findChessboardCorners), detect the points of interest on the pattern (the corners
of the checkerboard). These points will be used as reference locations for the calibration
process.

4. Estimate Internal Parameters. OpenCV provides libraries and methods that, given the
previously obtained information, calculate the camera internal parameters. All the code
that is needed to perform the calibration is well explained in the OpenCV camera calibra-
tion tutorial web page.

3.2.3 Finding External parameters

Determining external parameters is slightly more complex than finding internal ones, as it de-
pends on the specific application. In this scenario, where the camera is mounted on the robot
gripper (eye-in-hand configuration), the external parameters are used to define the camera pose
relative to the gripper reference frame. This process is known as eye-in-hand calibration, and
its step are:

1. Produce a calibration pattern. Again, like when finding internal parameters, a calibra-
tion pattern is required. This time, a better approach is to print a ChArUco board pattern.
ChArUco is the combination of a chessboard and an ArUco board:

• ArUco markers and boards are very useful due to their fast detection and their ver-
satility. However, the accuracy of their corner positions is not too high.

• Chessboard corners can be identified more accurately. However, using a chessboard
pattern is not as versatile as using an ArUco board: it has to be completely visible
and occlusions are not permitted.

29

https://calib.io/pages/camera-calibration-pattern-generator
https://docs.opencv.org/4.x/d4/d94/tutorial_camera_calibration.html
https://docs.opencv.org/4.x/d4/d94/tutorial_camera_calibration.html


ChArUco boards try to combine the benefits of these two approaches.

Figure 3.6: ChArUco board

2. Capture multiple images and correlate them with poses. With the calibration pattern
fixed to the work environment, which ensures that its pose relative to the robot base is
constant during the calibration process, the next step is to acquire multiple images of the
target and, for each one, associate the end-effector pose (relative to the base frame) to that
image.

3. Find the camera pose relative to the end-effector frame. The calibration object (of
known geometry) can be detected from the camera image and, knowing the internal pa-
rameters, it is possible to obtain its pose relative to the camera (HCAM

OBJ ). The goal is to
find the transformation between the camera and the end-effector (HEE

CAM); to do that, it
is necessary to close the chain of transformations. The transformation between the end-
effector and the base frame (HROB

EE ) is given (knowing the kinematics of the robot). The
only remaining transformation is the one between the target and the base frame (HROB

OBJ )
which is known to be constant.

By acquiring enough images (10 to 20), it is possible to solve the optimization problem
with high accuracy to obtain HEE

CAM. OpenCV provides the function calibrateHandEye()

that can be used for this purpose, but for the application, the ROS package moveit calibration

has been used, which receives the following basic information as input:

• camera image topic name (where the image data flows)

• camera parameters topic (where the internal properties of the camera flows)

• calibration target properties (size, ArUco dictionary, etc.)

• end-effector frame

• base frame

• list of robot poses (desired poses where to move the end-effector where the target is
visible)

and automates the process of:

30



(a) moving the robot to the desired position

(b) acquiring the image and all the necessary poses

(c) solving the optimization problem.

Figure 3.7: Scheme of the homogeneous transformations.

3.3 Pose Reconstruction

The goal of pose reconstruction is to determine the 3D positions of objects detected with re-
spect to the robot’s base frame. Pixel coordinates and camera calibration parameters alone are
not enough to evaluate the final pose. In a single-camera system, depth information is lost be-
cause the camera captures only a 2D projection of the scene. As a result, given only the pixel
coordinates (u,v), there are infinitely many possible 3D positions (X ,Y,Z) that could lie along
the same line extending from the camera’s focal point through the image plane as shown in
Figure 3.8.

The solution to this problem is to evaluate the perpendicular distance between the camera
and the objects observed in the vertical axis. During all the detection process, it is assumed that
the camera points perfectly perpendicular to the conveyor belt where the bottles slide and that
the heights of the bottles, the conveyor belt and the platform where the robot is fixed are known.
Assuming that, finding the depth becomes straightforward. It is sufficient to find the height
of the camera with respect to the robot base frame (hrobot

camera), using the extrinsic parameters
(evaluated during camera calibration). Then the height of the bottles with respect to the robot
base frame is: hrobot

bottle = (hbottle +hconveyor −hrobot). Finally the depth can be calculated as:
ZC = hrobot

camera −hrobot
bottle.

31



ZO

Y

f

Focal point

Virtual image 
plane

p = (xp, yp, zp)
Different points with same 

pixel coordinates

Figure 3.8: Representation of loss of depth information

Now there is all the necessary information to find the position of a detected bottle w.r.t. the
robot base frame, knowing its pixel coordinates in the captured image. The process is obtained
with the following steps:

1. Pixel coordinates to 3D position w.r.t camera. This transformation is done using the
internal parameters of the camera and its vertical distance with the object (ZC) as follows:

[︄
u

v

]︄
:= pixel coordinates

⎡⎢⎣XC

YC

ZC

⎤⎥⎦ := position w.r.t. camera frame (3.13)

ZC = hrobot
camera −hrobot

bottle (already calculated) (3.14)

XC = xundistorted ∗ZC (3.15)

YC = yundistorted ∗ZC (3.16)

Where:

xundistorted = xdistorted

(︂
1+ k1r2 + k2r4 + k3r6

)︂
+2p1xdistortedydistorted+ p2

(︁
r2 +2x2

distorted
)︁

(3.17)
yundistorted = ydistorted

(︂
1+ k1r2 + k2r4 + k3r6

)︂
+2p2xdistortedydistorted+ p1

(︁
r2 +2y2

distorted
)︁

(3.18)
r2 = x2

distorted + y2
distorted (3.19)

xdistorted =
u− cx

fx
ydistorted =

u− cy

fy
(3.20)

32



hbottle

hconveyor

hrobot

hrobot
camera

Camera

Figure 3.9: Heights scheme

2. 3D position w.r.t. the camera to the robot base frame. Once the transformation ma-
trix HEE

CAM is obtained from the extrinsic calibration, and given the transformation matrix
HROB

EE , the overall transformation HR
C = HROB

EE HEE
CAM can be computed. This matrix can

then be used to convert coordinates from the camera reference frame to the robot base
frame.

PR = HR
C ·PC (3.21)⎡⎢⎢⎢⎢⎣

XR

YR

ZR

1

⎤⎥⎥⎥⎥⎦=

[︄
R3x3 t3x1

0 1

]︄⎡⎢⎢⎢⎢⎣
XC

YC

ZC

1

⎤⎥⎥⎥⎥⎦ (3.22)

33



34



Chapter 4

Object Tracking and Pose Prediction

4.1 Object Tracking

The system is now capable of analyzing camera images, detecting objects (identifying the pixel
locations of bottles within the images), and translating those pixel coordinates into 3D poses us-
ing the camera parameters. However, for each image, the application generates an independent
list of poses, with no correlation with those from previous frames. As a result, it is not possible
to track the movement of the bottles as they slide, making it difficult to predict the position of a
specific bottle at a future time t.

The solution to this problem is to design a system capable of identifying each pose (with
an ID number) in a way that the same bottle, captured in different consecutive poses, keeps the
same ID. The system will maintain the history of all poses for each ID (thus for each unique
bottle).

Figure 4.1: Without object tracking

ID: 0 ID: 0

ID: 1 ID: 1ID: 2 ID: 2ID: 3

Figure 4.2: With object tracking

35



4.1.1 General Overview

At each frame, the system must determine whether to assign the position of each bottle to an
existing ID or generate a new one. As the bottles move in one direction, any bottle that enters
the camera view area is assigned a new ID, and its subsequent positions are tracked and matched
to that ID.

The algorithm that tracks the new detected objects takes as input a list of 3D positions repre-
senting the bottles and outputs for each position an ID number that represents the corresponding
object. This algorithm can be described with the following steps:

• If no objects have been tracked yet, create a new object for each input position, assigning
incrementing ID numbers, and save them.

• Else

1. For each new detected position, find its closest saved object using the Euclidean
distance.

2. If multiple detected objects are associated with the same saved object, keep only the
closest pair.

3. For each unmatched detected object, create a new object with a unique ID number
and save it to begin tracking.

4.1.2 Details of the Tracking System

In details, the object tracking system is composed of two classes:

• Object: the class that represents a single bottle (or a generic object), composed of these
members:

int id;

std::vector <std::tuple <std::tuple <float , float , float >,

int >> history_poses;

where id is the unique integer identifier and history_poses the vector of past posi-
tions of that object. A single history position is expressed with the tuple <position,

time_stamp>. This class facilitates the modularity of the application, making easier its
developing.

• Tracking: the class responsible for storing and maintaining the vector of objects (of type
Object) making possible to keep track of the detected bottles in input. The members of
this class are the following:

std::vector <Object > objects;

int last_time_stamp = 0;

int last_id = 0;

36



ID: 0

ID: 1

ID: 2

Figure 4.3: Frame n captured by the camera
(objects already identified).

ID: 0

ID: 1

ID: 2

Figure 4.4: Frame n+1 captured by the cam-
era (objects have to be identified).

ID: 0

ID: 1

ID: 2

Figure 4.5: Closest pair matching. Green:
closest match from both sides; Red: closest
match only from one side.

ID: 0

ID: 1

ID: 2

ID: 3

Figure 4.6: Final Matching. The new detec-
tions whose closest matches were not from
both sides became a new object.

37



where:

– objects is the vector used to store the bottles information of Object type.

– last_time_stamp is the integer representing the time stamp of the last object in-
serted into objects.

– last_id is the integer value that increases every time a new object is tracked: it is
used to assign a unique id to the objects.

Tracking class implements the following method:

void trackDetections(std::vector <Object > &detections);

which is the one used to solve the tracking problem.

At the beginning of the program a Tracking variable is declared in order to initialize the
tracking class (with empty members) and every time a frame of the camera is analyzed and
a list of positions is obtained, the program prepares the detections vector to be passed to the
trackDetections function. detections is a variable of type vector<Object>, thus, as the
program has not already identified the new positions, the IDs of all its members are initialized
to −1.

trackDetections function operates as follows:

1. After verifying if the input parameter is valid, it updates the member variable last_time_stamp
with the time stamp obtained from an element in the detections vector (it is assumed

that all elements in this vector have the same time stamp as the detections are obtained
from the same image).

2. If the tracking variable is empty (if there are no objects saved in its objects member
variable), then for each element in detections (the input vector):

(a) set its id to last_id

(b) increment last_id

(c) push this detection of type Object into the objects member variable.

3. Create an empty map of type: std::map<int, std::tuple<int, float>> that will
be used to store the matches (saved object - new detected object - distance between them)

4. Scan all new detections (input) and, for each one, compare it with all saved objects (stored
in the member vector) to find the closest pair in terms of Euclidean distance. It is impor-
tant to consider the time difference between these two items: a new detection may have
zero Euclidean distance from the last known position of an older object, but that does not
necessarily mean they represent the same bottle.

If the older object was previously matched with a closer detected object, replace the match
with the new detection. Otherwise just add the new match to the map.

38



5. Update the history_poses of the already saved objects adding the pose of their match
and the corresponding time stamp.

6. Add all the input detections that were not assigned in the mapping as new objects.

4.1.3 Limitations of this system

The tracking system described above works as soon as the whole analysis process doesn’t re-
quire too much time. This process consists of:

1. Object detection

2. 3D reconstruction

3. Object tracking.

3D reconstruction and object tracking do not require much time compared to object detection,
making it the bottleneck of the system. Even cheaper cameras can still achieve a frame rate of
30 FPS (frames per second), but object detection, which in this hardware configuration takes
around 130ms, limits the analysis to 1/0.130 = 7.7 images per second.

With a given frame rate for the analysis, there are three parameters that can be adjusted in
order to have a correct tracking system:

• conveyor belt speed (m/s)

• density of the bottles (minimum distance between two bottles in the conveyor)

• field of view of the camera.

Consider the case of being able to track 7 images per second, obviously the bottle has to be
visible from the camera which (is assumed) is able to capture images of a rectangle portion of
the conveyor belt of (1x1) meters. Considering for simplicity that the trajectory of the bottles
is horizontal, clearly the speed of the bottle cannot be above 7m/s, otherwise it may not be
captured by the camera.

It is less obvious to understand how the distance between bottles (the density) has an impact
on the correct operation of the tracking system. This system assigns to each new detected object
the closest one found in the history of previous poses, this works as long as the gap between the
observed frame and its subsequent one is low, like in Figure 4.5. When the gap increases it may
happen that some bottles are incorrectly assigned, as shown in Figure 4.9.

Bottle density and conveyor speed are correlated by the following equations that depend on
the frames per second that can be analyzed:

1
FPS

· speed = minimum detectable distance (4.1)

which means:
1

FPS
· speed = max density (4.2)

39



ID: 0
ID: 1

ID: 2

ID: 3

Figure 4.7: Frame n analyzed.

ID: 0
ID: 1

ID: 2

ID: 3

Figure 4.8: Frame n+ 1 analyzed where the
gap between the previous frame is too high.

ID: 0

ID: 1

ID: 2

ID: 3

Figure 4.9: Wrong pair matching

ID: 0

ID: 1

ID: 2

ID: 3
ID: 0

ID: 1

ID: 2

ID: 4

Figure 4.10: Wrong assigned ID’s.

40



At this point, two equations can be expressed:

• Given the density of the bottles (their minimum distance), then the maximum speed of
the conveyor belt will be:

max speed = FPS ·max density
[︂m

s

]︂
(4.3)

• Given the speed of the conveyor, the maximum density of the bottles can be:

max density =
max speed

FPS
[m] (4.4)

Figure 4.11 represents a graph of the maximum speed / density that can be achieved at different
analysis speeds (FPS).

0 0.2 0.4 0.6 0.8 1 1.2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Max speed / Max density ratio at different FPS

Densities (FPS=30)

Densities (FPS=7)

Densities (FPS=60)

m/s

m Maximum conveyor speed / Minimum bottle distance required

Figure 4.11: Plot of different maximum speed/minimum distance ratios based on the speed of
the analysis (FPS)

In order to obtain a reliable system, it is important to select the density of the bottles and the
conveyor speed in a way that keeps some tolerance in the tracking system. Otherwise, as soon
as the computation time required by the object detection process takes more than expected, the
tracking system will fail. In this application the maximum time measured for object detection
was: 300ms, so considering FPS= 2 for deciding the values of speed and density will guarantee
that the system will not fail easily. With FPS= 2, speed = 0.1m/s, then max density= 0.05m=

5cm.

41



4.2 Pose Prediction

At this point the system is capable of storing the poses with relative time stamps of all the
objects that passed in the camera view. The goal of the whole application was to use the robotic
arm to pick one of the bottles that are sliding on the conveyor belt. In order to do that, the
system has to know in advance where the bottle will be after a period of time before starting the
movement, otherwise it would not be able to reach the object in time.

Pose prediction is the task in charge of solving this problem: it receives as input the ID of
the bottle of interest and a time x, analyzes the stored object poses to understand the motion
path, and produces in output the time x′ and the guessed position of the object at time x′ ≈ x.

TargetPrediction

Figure 4.12: The system predicts where the
bottles will be at time x.

TargetPrediction

Figure 4.13: Image captured at time x, the tar-
get bottle actually passed through the predicted
position.

4.2.1 How it works

The pose prediction process is based on using the trajectories of the previously observed objects
to estimate the path of the target one. The whole process is described as follows:

1. Once the target bottle is selected (by its ID), find its last pose saved and the corresponding
time stamp.

2. Select from the saved bottles the one which matches these conditions:

• Its last pose saved has not a time stamp that is much distant from the target one,
otherwise it may represent a bottle whose trajectory is not the same as the current
one.

42



• In its history of poses, there should be one close to the target pose of the object. In
this way the bottle used to make prediction is known to have been passed near the
new one, which should increase the precision.

• The difference of the time stamp of its last pose saved with the time stamp of the
pose closest to the target bottle should be greater or equal than the time x required to
perform the motion. Otherwise this would mean that there is not enough information
to estimate the final position.

3. Save its last pose and the closest one to the target bottle with the corresponding time
stamps.

4. Calculate the translation vector obtained by the difference of the target last pose (obtained
in step 1) with its closest one (obtained in step 3).

5. Sum the translation vector just calculated to the last pose of the nearest object (the one
saved in step 3).

6. Find the time interval (difference of time stamps) that passed between the two poses from
step 3 and sum it to the time stamp of the last pose of the target.

At this point the prediction is finished: with the last two steps, the predicted pose of the target
bottle and and its time stamp when it will arrive there are calculated.

4.2.2 Limitations of this prediction approach

An alternative solution could have been that of observing the trajectories of the bottles over time
and estimating the mean velocities (vx,vy) of the bottles in x and y directions. Then, using the
uniform rectilinear motion formulas, calculating the pose of the target bottle at time t:

xp(t) = xp0 + vx · (t − t0) (4.5)

yp(t) = yp0 + vy · (t − t0) (4.6)

Both solutions work only in the case of a straight-line trajectory. Even though the approach
proposed before may seem to translate well for any trajectory case, this is not the case for
curved trajectories: figure 4.18 shows the problem that can be encountered.

A possible solution to this problem could be to use the poses history to estimate the center
point (xc,yc) of the circle of motion and, knowing that the angular velocity ω between all objects
is equivalent, the following equations of motion can be used:

x(t) = x0 + r cos(θ0 +ωt) (4.7)

x(t) = x0 + r cos(θ0 +ωt) (4.8)

Where:

43



Target bottle

Last pose

Old bottle

Closest pose

Old bottle

Last pose

Old bottle path

Figure 4.14: Scene containing both the tar-
get bottle and the older one satisfying the re-
quired conditions.

Target bottle

Last pose

Old bottle

Closest pose

Old bottle

Last pose

Old bottle path

Time stamp:

Time stamp:Time stamp:

Time passed: Δx′ 

m − Δx′ m = n − ϵ

n

Figure 4.15: The current time stamp is n, the
last pose of the saved bottle has time stamp
n−ε , indicating that the time passed is small.

Target bottle

Last pose

Old bottle

Closest pose

Old bottle

Last pose

Old bottle path

Time stamp:

Time stamp:Time stamp:

Time passed: Δx′ 

m − Δx′ m = n − ϵ

n

Translation vector

Figure 4.16: Representation of the translation
vector that will be used to translate the final
pose of the older bottle to predict the final
pose of the target one.

Target bottle

Last pose

Old bottle

Closest pose

Old bottle

Last pose

Old bottle path

Time stamp:

Time stamp:Time stamp:

Time passed: Δx′ 

m − Δx′ m = n − ϵ

n

Translation vector

Predicted pose

Figure 4.17: Prediction of the target bottle
pose after ∆x′ time.

44



Predicted path

Older path

Figure 4.18: Scheme of the prediction that
would be obtained with the system used.

Predicted path

Older path

Figure 4.19: Scheme of the prediction that
should be obtained instead.

• r is the radius obtained from (xc,yc) and (x0,y0).

• θ0 is the initial angle corresponding to the position of the object at: (x0 + r,y0).

• ω is the angular velocity.

45



46



Chapter 5

Object Picking

At this point, there is all the necessary information to perform the motion routines: grasp the
object and place it in a predefined location in the workspace. Since the second part of the
movement (the place routine) is very similar to the first one, this chapter will focus more on the
pick routine.

Before exploring the main logic of the algorithm that performs the motion, it is necessary to
explain what is MoveIt and how it was used in this application.

5.1 MoveIt

5.1.1 Motion planning

When the robot has to grasp something with its arm, it is necessary to move all its joints so
that the final part (the end effector) can be at the proper location to pick the object. Moving the
arm to achieve that position is a non-trivial task because it is necessary to produce the sequence
of values that every joint must follow (in coordination with the other joints). This task, called
motion planning, can be easily solved using the planners provided by MoveIt, then executed by
sending the obtained trajectory to the robot controllers.

Figure 5.1: Trajectory example

47



Figure 5.2: Robot’s current and planned (in orange) states in RViz

5.1.2 MoveIt overview

MoveIt is an open-source motion planning framework that integrates with ROS to simplify
complex robot control tasks such as the ones described before. MoveIt planners can avoid
obstacles and optimize the planned path to generate smoother and more efficient collision-free
trajectories between the initial position and the target object. This is critical in pick-and-place
applications where the robot has to move within confined spaces without colliding with objects
or itself.

MoveIt integrates with RViz (the ROS visualization tool) to provide a powerful visual in-
terface for robot motion planning, making it easier to simulate, and debug complex robotic
tasks. Through RViz, MoveIt displays the robot’s current and planned states as shown in Figure
5.2. The current state represents the actual joint configuration from sensor feedback, while the
planned state shows the predicted positions of the joints based on the goal.

RViz allows users to interact with the robot in real-time using the interactive marker or
setting manually the joint states as shown in Figures 5.3 and 5.4. The marker allows the users to
move and rotate the robot end-effector, then the values of the joints are evaluated automatically.
This way it is possible to set new goal positions and test reachability.

5.1.3 Setup with a custom robot

In order to work, MoveIt has to be configured for the specific robot description. Some manu-
facturers may provide already configured MoveIt packages that work properly on their robots.
Even though this is the case (Universal Robots provides moveit config packages for its robots:
UR3, UR3e, UR5, UR5e, etc.), the configuration had to be done from scratch due to the fact
that, in this application, the robot description URDF does not include only the UR5e, but also
the platform where it is located, the gripper mounted on its last frame, and the camera mounted
near the base of the gripper. All these elements added to the robot must be taken into account

48



Figure 5.3: Interactive marker Figure 5.4: Joint states

to avoid collisions during motion planning.

Another reason why it is needed to re-configure MoveIt is that the configuration provided by
the manufacturer is able to control only the robotic arm, not the gripper, as this latter component
varies depending on the application.

To perform the setup, MoveIt provides the package moveit setup assistant that facilitates
the configuration of a custom system starting from the URDF robot description file (defined in
section 2.2). During this process, the self-collision matrix is generated: a matrix where pairs of
links that will never collide during the motion are identified to optimize the collision avoidance
process.

Setting joint limits

Once the setup is done, a MoveIt configuration package is created, where it is possible to modify
the joint limits.yaml file to specify the minimum and maximum positions (in radians) of the
joints. This is useful to avoid that a desired pose is reached with an unwanted arm configuration
as shown in Figure 5.6.

5.2 General operation

Once MoveIt is setup, it is possible to move the robot in the reachable workspace using the C++
moveit::planning interface::MoveGroupInterface class. By using that class, it is possible to:

• Get the state of the current joint values.

• Set the speed of the robot motions (a float value from 0 to 1).

• Plan the motion, both of the manipulator and the gripper, using a target pose.

49



Figure 5.5: Correct arm position Figure 5.6: Alternative (complex) arm position

• Obtain useful planned trajectory information, like the time required to complete the move-
ment.

• Execute the trajectory.

Even though there are many other functionalities of the class that can be explored, the ones
described above are sufficient to perform the pick & place routines. The general pipeline for the
pick motion is the following:

• Read the target position and plan a motion to reach it with maximum speed.

• If the time planned to reach the goal position is higher than the requested one, then abort
the request and respond with a failure. Otherwise, execute the motion.

• Once the position has been reached, wait until the time-stamp corresponds to the predicted
arrival time of the bottle.

• Then close the gripper and move back to the home (predefined) position.

In the target position, the z-coordinate, which essentially represents the distance between the
gripper and the top of the bottle, is constant and can be retrieved once before the startup of the
system by manually moving the end-effector to the correct height where it is able to grasp the
objects.

The pipeline for the place routine is very simple, thus not explored deeply. It is similar to
the pick one, except for the fact that the gripper will be opened (and not closed) when arriving
to the target position, and the time-stamp information, passed in the request, is ignored as it is
not requested to place the object at a precise desired time.

The approach described for the pick routine is valid under the ideal assumption that the
gripper closing time is zero. In section 5.4 the alternative method used to solve this task in the
application will be discussed.

50



5.3 Accuracy of predicted positions

At this point, it can be beneficial to test the accuracy of the predicted position of the bottles
before actually grasping them. For doing that, the adopted approach was to move the robotic
arm with the end-effector in the position where it should pick the object and, at the precise time-
stamp of when the bottle is assumed to be under the gripper (and the camera), take a screenshot
of what the camera is viewing. This way it is straightforward to see if the bottle is centered in
the image, and thus if the predicted position is correct or not.

5.3.1 Results

After testing this approach on some samples, the results were quite convincing: almost all
bottles were near the center, as can be seen in Figure 5.7. Still, there is a small error that is not
easy to avoid, in section 5.4 it will be discussed how the choice of the gripper affects this error
tolerance.

Figure 5.7: Screenshots captured at the time when the bottles were assumed to be under the
gripper.

5.4 Limitations of the gripper

As anticipated in section 5.2, starting the closing motion of the gripper, when the object is
already in the correct position to be grasped, would not work in a real application nor in the
simulated one, as the behavior of the components in the simulation attempts to resemble reality.
Depending on the gripper specifications, its closing time may vary from 0.05s upwards; in this
case, the Robotiq 2f-85 takes 0.85s to close, starting from its maximum extension (85mm). As
shown in Figure 5.8, the gripper reaches its closing position only when the bottle has already
passed.

An immediate solution would be to start the motion with the gripper not fully opened, but
only the minimum necessary for the bottle to pass through. Then, when the bottle is under the

51



end-effector, close the fingers just enough to grasp the object. The problem with this approach is
that it assumes that there is the utmost perfection of the predicted position of the bottle, which,
in this application, is not the case.

Figure 5.8: The gripper starts to close only when the bottle is under it.

5.4.1 Alternative approach

The adopted approach was to start the closing motion before the bottle was under the gripper.
More in detail, MoveIt was used to plan the closing motion, obtaining the whole trajectory
and thus the required time, then the execution was started at time: bottle predicted time−
gripper required time. This way, the moment when the gripper reaches its closing position
corresponds to the time when the bottle is ready to be grasped, as shown in Figure 5.9.

Figure 5.9: The gripper starts to close before the bottle is under it.

The gripper required time depends, besides its technical specifications, on the initial opened
position of the gripper and on the final one, which in turn depends on the section (diameter) of
the bottle lip.

Starting the closing motion before the object is under the gripper may cause another prob-
lem: when the object has to pass through the fingers of the gripper, it may hit one of them due
to the fact that, at that moment, the aperture is tighter than the maximum one. At this point,
whether the grasping system works or not depends on the error of the predicted position of the
bottle. The gap between the maximum aperture and the closed one, the bottle speed (on the con-
veyor belt), the finger width and the gripper speed determine the maximum vertical tolerance
on the prediction error:

• If the gap increases, then it is more likely that the bottle passes through the gripper fingers
without hitting one of them.

52



• If the speed of the bottle increases, then the gripper closing motion has to start earlier than
usual, reducing the distance between the two fingers when the bottle has to pass through.
This reduces the tolerance on the prediction error.

• If the finger width increases, then the closing motion can start later than usual. This way,
the aperture that the bottle has when entering through the gripper fingers is higher, which
increases tolerance.

• If the gripper speed increases, then (as before) the closing motion can start later than
usual, thus increasing tolerance.

Below, different tables represent the margin that can be tolerated by the error of the predicted
positions of the bottles.

Margin of error with Robotiq 2f-85

Speed of the bottle (cm/s) 1 2 3 4 5 10 15 20 30 40

Margin when entering (cm) 6.5 5 3.3 2.5 2 1 0.7 0.5 0.3 0.25

Table 5.1: Margin of error depending on the speed of the bottle. Gripper width (stroke): 85mm,
closing time: 0.85s, finger width: 20mm, bottle diameter: 20mm

Margin of error with OnRobot RG2

Speed of the bottle (cm/s) 1 2 3 4 5 10 15 20 30 40

Margin when entering (cm) 9 9 9 9 9 5.2 3.5 2.6 1.8 1.3

Table 5.2: Margin of error depending on the speed of the bottle. Gripper width: 110mm, closing
time: 0.21s, finger width: 20mm, bottle diameter: 20mm

Margin of error with Robotiq 2f-140

Speed of the bottle (cm/s) 1 2 3 4 5 10 15 20 30 40

Margin when entering (cm) 12 12 8.3 6.3 5 2.5 1.7 1.3 0.8 0.6

Table 5.3: Margin of error depending on the speed of the bottle. Gripper width: 140mm, closing
time: 0.56s finger width: 20mm, bottle diameter: 20mm

Margin of error with Neobotix AG-105-145

Speed of the bottle (cm/s) 1 2 3 4 5 10 15 20 30 40

Margin when entering (cm) 12.5 7 4.7 3.5 2.8 1.4 0.9 0.7 0.5 0.4

Table 5.4: Margin of error depending on the speed of the bottle. Gripper width (stroke): 145mm,
closing time: 0.9s, finger width: 17.5mm, bottle diameter: 20mm

53



In the end, with low bottle speeds (under 10cm/s), the Robotiq 2f-85 gripper is sufficient,
although one with better performance (like the OnRobot RG2) would be a better choice.

54



Chapter 6

Results and Discussion

6.1 Pick & Place Results

In the end the overall pick & place motion can be described by the following sequence of
images:

Figure 6.1: Initial position Figure 6.2: Target position (gripper opened)

Figure 6.3: Target position (gripper closed) Figure 6.4: Lifted position with the grasped
object

55



Figure 6.5: Back to home position Figure 6.6: Approach position for placing the
object

Figure 6.7: Place (final) position Figure 6.8: Opening gripper

Figure 6.9: Lifted from the place position Figure 6.10: Move back to home position to
start the routine again.

56



6.2 Future improvements

There are several points that can be improved to increase the system performance in terms of
accuracy and speed.

Object detection speed

The precision that is given by using the YOLO v8 for detecting the positions of the objects in
real-time applications is more than sufficient, what can be improved is the speed of this process.
As was explained in section 4.1, the time required for the analysis of an image determines the
maximum speed of the bottles that can be handled.

In order to reduce the time for inference, a possible solution could be converting the PyTorch
weights file (.pt) into ONNX and then optimizing it for TensorRT (if using a compatible Nvidia
GPU). TensorRT is a high-performance deep learning inference library developed by NVIDIA,
designed to optimize models for deployment on Nvidia GPUs, improving inference speed and
efficiency. TensorRT models offer a number of key features that contribute to the efficiency in
high-speed inference:

• Precision calibration: TensorRT supports precision calibration, allowing models to be
tuned to specific accuracy requirements. This includes support for reduced precision
formats such as INT8 and FP16, which can further increase the speed of inference while
maintaining acceptable levels of accuracy.

• Layer fusion: The TensorRT optimization process includes layer fusion, where multiple
layers of a neural network are combined into a single operation. This improves inference
speed by minimizing memory access and computation.

Prediction algorithm

The algorithm proposed for this application, to predict where a certain bottle will be after x sec-
onds, is very simple and works under the assumption that the trajectory of the objects is linear.
This may not be the case in certain applications where the robot is placed near a curved conveyor
belt. For these situations, the algorithm has to be redesigned to include curved trajectories, or
more complex ones if necessary.

Alternative pick movement

In this application, the robotic gripper is moved to the predicted position where the bottle will
be and waits there until the object is ready to be grasped. However, this solution introduces
several problems:

• Collision with other objects. If the predicted position intersects with another object, then
the gripper will attempt to move into that position, potentially causing a collision. This
issue is problematic when operating with a conveyor belt full of objects placed closely
together.

57



• Timing misalignment. If the timing for closing the gripper is not perfectly synchronized
with the arrival of the bottle under the gripper, there can be problems. If the gripper closes
too early, the bottle may hit the fingers, and if the gripper closes too late, the bottle may
not be grasped at all.

An alternative solution could be to follow the bottle with the gripper above it by using Visual
Servoing techniques (controlling the robot’s motion based on visual input). While moving
sideways, the robot would approach the object, close the gripper and then move upward to
complete the pick & place routine.

6.3 Possible applications

In the end, the proposed solution can be suitable for systems where there is already a line
with objects sliding, and it is necessary to pick some of them for a random inspection, without
meeting stringent requirements in terms of speed and precision.

High speeds cannot be achieved due to the specifications of the robotic arm and its gripper:
these components are designed primarily for safe and flexible operations in environments that
require interaction with humans.

The precision is limited to the fact that the final pose, where to pick the object, is estimated
once, but that may vary due to some external factors, like changing the conveyor speed while
performing the pick routine, or other external forces that may deflect the trajectory of the object
(like vibrations). In addition, the precision of the predicted position can be affected by changes
in the environment, such as lighting conditions: the vision system used to estimate the object’s
position might misinterpret the object’s location.

Despite the fact that the performances are limited, there are many advantages on using such
a stand-alone system:

• There is no need to interface with existing encoders or other sensors, as the application
can determine the speed of the conveyor and the positions of the bottles just by using the
camera.

• Adapting the robotic system to a new environment involves simply acquiring sufficient
images of the new objects for the neural network and making minor adjustments to the
settings, thus ensuring the system functions properly in the new context.

58



Glossary

Actuators devices that convert energy into motion, enabling the robotic arm to move.

Array a structured collection of elements used for storing data.

Conveyor belt a moving surface that transports items to and from the robotic arm’s workspace.

Encoder a sensor that provides position or speed feedback to ensure precise movements of
robotic components.

End-effector the tool at the end of the robotic arm, used for interacting with objects, such as a
gripper or suction cup.

Eye-in-hand a vision system mounted on the robotic arm to capture images for precise posi-
tioning and guidance.

Fixed joint a type of joint or connection that does not allow movement between linked parts.

Framework a set of tools, libraries, and standards that streamline software development for
specific applications.

Gripper an end-effector designed to grasp and hold objects.

Inference the process of applying a trained model to make predictions, like object detection.

Joint a connection between links that allows movement, such as rotation or sliding.

LiDAR a sensor that uses laser light to measure distances, creating detailed 3D maps of the
robot’s environment.

Link a rigid segment of a robotic arm that connects two joints.

Open-source software or hardware with source code available for modification and distribution
by anyone.

Pick and Place a robotic process of picking up objects from one location and placing them in
another.

59



Pixel coordinates the location of a pixel within an image, often used in vision-based tasks.

Prismatic joint a joint that allows linear sliding motion along an axis.

Revolute joint a joint that allows rotational movement around a fixed axis.

Robotic arm a programmable mechanical device that picks, moves and places objects in pre-
cise locations.

Spawn the process of generating and placing an object in the environment, such as on a con-
veyor belt.

TF tree a hierarchical structure that tracks coordinate frames for various parts of a robot.

Timestamp a recorded time associated with data or events, used for synchronization.

Trained weights parameters learned by a neural network model to make accurate inferences.

Wrist the joint of the robotic arm that controls the rotation and angle of the end effector.

60



Bibliography

[Att] ROS-Industrial Attic. Robotiq ROS Package. URL: https://github.com/ros-
industrial-attic/robotiq.

[Cal] Calib.io. Camera Calibration Pattern Generator. URL: https://calib.io/pages/
camera-calibration-pattern-generator.

[Cona] MoveIt Contributors. MoveIt Calibration Repository on GitHub. URL: https : / /
github.com/moveit/moveit_calibration.

[Conb] MoveIt Contributors. MoveIt Hand-Eye Calibration Tutorial. URL: https://github.
com/moveit/moveit_tutorials/blob/master/doc/hand_eye_calibration/

hand_eye_calibration_tutorial.rst.

[Mat] MathWorks. Camera Calibration. URL: https : / / it . mathworks . com / help /
vision/ug/camera-calibration.html.

[Ope] OpenCV. Camera Calibration Tutorial. URL: https://docs.opencv.org/4.x/
dc/dbb/tutorial_py_calibration.html.

[Roba] Roboflow. Roboflow - Computer Vision Platform. URL: https://roboflow.com/.

[Robb] Open Robotics. Gazebo Sim. URL: https://gazebosim.org/home.

[Robc] Open Robotics. ROS - Robot Operating System. URL: https://www.ros.org/.

[Robd] PAL Robotics. Gazebo ROS Link Attacher. URL: https : / / github . com / pal -
robotics/gazebo_ros_link_attacher.

[Robe] PickNik Robotics. MoveIt. URL: https://moveit.ai/.

[Robf] PickNik Robotics. MoveIt Setup Assistant Tutorial. URL: https://moveit.picknik.
ai/main/doc/examples/setup_assistant/setup_assistant_tutorial.

html.

[Robg] Robotiq. Robotiq - Collaborative Robot Solutions. URL: https://robotiq.com/
it/.

[Robh] Universal Robots. Universal Robots - Collaborative Robots. URL: https://www.
universal-robots.com/it/.

[Rok] Rokokoo. Gazebo Conveyor Plugin. URL: https://github.com/rokokoo/gazebo-
conveyor.

61

https://github.com/ros-industrial-attic/robotiq
https://github.com/ros-industrial-attic/robotiq
https://calib.io/pages/camera-calibration-pattern-generator
https://calib.io/pages/camera-calibration-pattern-generator
https://github.com/moveit/moveit_calibration
https://github.com/moveit/moveit_calibration
https://github.com/moveit/moveit_tutorials/blob/master/doc/hand_eye_calibration/hand_eye_calibration_tutorial.rst
https://github.com/moveit/moveit_tutorials/blob/master/doc/hand_eye_calibration/hand_eye_calibration_tutorial.rst
https://github.com/moveit/moveit_tutorials/blob/master/doc/hand_eye_calibration/hand_eye_calibration_tutorial.rst
https://it.mathworks.com/help/vision/ug/camera-calibration.html
https://it.mathworks.com/help/vision/ug/camera-calibration.html
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://roboflow.com/
https://gazebosim.org/home
https://www.ros.org/
https://github.com/pal-robotics/gazebo_ros_link_attacher
https://github.com/pal-robotics/gazebo_ros_link_attacher
https://moveit.ai/
https://moveit.picknik.ai/main/doc/examples/setup_assistant/setup_assistant_tutorial.html
https://moveit.picknik.ai/main/doc/examples/setup_assistant/setup_assistant_tutorial.html
https://moveit.picknik.ai/main/doc/examples/setup_assistant/setup_assistant_tutorial.html
https://robotiq.com/it/
https://robotiq.com/it/
https://www.universal-robots.com/it/
https://www.universal-robots.com/it/
https://github.com/rokokoo/gazebo-conveyor
https://github.com/rokokoo/gazebo-conveyor


[ROS] ROS-Industrial. Universal Robot ROS Package. URL: https://github.com/ros-
industrial/universal_robot.

[Ult] Ultralytics. YOLOv8 Object Detection Model. URL: https://yolov8.com/.

[Vid] Analytics Vidhya. A Comprehensive Guide for Camera Calibration in Computer Vi-

sion. URL: https://www.analyticsvidhya.com/blog/2021/10/a-comprehensive-
guide-for-camera-calibration-in-computer-vision/.

[Wik] ROS Wiki. URDF Tutorials. URL: http://wiki.ros.org/urdf/Tutorials.

[Ziv] Zivid. Hand-Eye Calibration Solution. URL: https : / / support . zivid . com /

en/latest/academy/applications/hand- eye/hand- eye- calibration-

solution.html.

62

https://github.com/ros-industrial/universal_robot
https://github.com/ros-industrial/universal_robot
https://yolov8.com/
https://www.analyticsvidhya.com/blog/2021/10/a-comprehensive-guide-for-camera-calibration-in-computer-vision/
https://www.analyticsvidhya.com/blog/2021/10/a-comprehensive-guide-for-camera-calibration-in-computer-vision/
http://wiki.ros.org/urdf/Tutorials
https://support.zivid.com/en/latest/academy/applications/hand-eye/hand-eye-calibration-solution.html
https://support.zivid.com/en/latest/academy/applications/hand-eye/hand-eye-calibration-solution.html
https://support.zivid.com/en/latest/academy/applications/hand-eye/hand-eye-calibration-solution.html

	Introduction
	Problem Statement
	Objectives of the Project
	Tools used
	ROS
	Gazebo

	Chapter descriptions

	System Architecture
	System Overview
	Starting the Simulation
	ROS Project Structure
	Overview
	Structure of the developed application


	Object Detection and Pose Reconstruction
	Object Detection
	The choice of YOLO approach
	Training the network
	Performing inferences

	Camera Calibration
	What is Camera Calibration?
	Finding Internal parameters
	Finding External parameters

	Pose Reconstruction

	Object Tracking and Pose Prediction
	Object Tracking
	General Overview
	Details of the Tracking System
	Limitations of this system

	Pose Prediction
	How it works
	Limitations of this prediction approach


	Object Picking
	MoveIt
	Motion planning
	MoveIt overview
	Setup with a custom robot

	General operation
	Accuracy of predicted positions
	Results

	Limitations of the gripper
	Alternative approach


	Results and Discussion
	Pick & Place Results
	Future improvements
	Possible applications


