
UNIVERSITÀ DEGLI STUDI DI PADOVA
AND

AARHUS UNIVERSITY

DEPARTMENT OF INDUSTRIAL ENGINEERING
AND

DEPARTMENT OF CIVIL AND ARCHITECTURAL ENGINEERING

MASTER DEGREE IN MECHANICAL ENGINEERING

Fatigue design of welded joints in
as-welded and HFMI treated conditions

Supervisor: Candidate:
PROF. GIOVANNI MENEGHETTI MARCO SOLIGO

1233975

Co-Supervisor:
PROF. HALID CAN YILDIRIM
PROF. ALBERTO CAMPAGNOLO

Academic Year 2021-2022



Marco Soligo:
Fatigue design of welded joints in as-welded and HFMI treated conditions

Master Degree in Mechanical Engineering,©4th March 2022



Dedicated to my family

for their support and love.





Abstract(English)

In the design of the welded joints, the fatigue endurance is evaluated with the application of the global ap-
proach of nominal stress, based on recommended S-N curves, available in different codes and guidelines [1].
However, this approach presents some disadvantages: indeed, there is the necessity to define several fatigue
classes to account for different geometries and sizes. Furthermore, in some cases, the detection of the nominal
stress is very tough due to the complexity of the geometry of welded joint. Along with this, the experimental
reality shows that the failure predominantly originate from the region with material discontinuity, as the welds
themselves. Thus, the fatigue strength reveals to be a local phenomenon.
To consider the size and shape effect of the different welded joints, the local approach can be used that they are
developed thanks to the increasing use of the Finite Element analysis software in the industry. In this work, the
extrapolation of hot-spot stress and the Effective Notch Stress method [1] [2], both available in the IIW guide-
line, are cited. Despite the great reliability offered by these methods, some of them are not able to consider some
important effects that can decrease the fatigue strength of the welded joint, such as the size effect. To overcome
this problem, the concepts of the Linear Elastic Fracture Mechanics has been non-conventionally extended to
structural design of welded joints, with the definition of the V-notch concept (i.e. weld toe, root). To define
and quantify the linear elastic distribution occurring in the V-notch region, the Notch Stress Intensity Factors
(NSIFs) approach has been proposed by Lazzarin and Tovo [6] at the University of Padua, aiming to build a
correlation between the asymptotic local stress field at the V-notch and the crack initiation. Recently, other
two Finite Elements approaches have been introduced, capable of defining reliable results in terms of fatigue
life with a decreasing of the computational and modellation time: the Strain Enegry Density (SED), proposed
by Lazzarin and Zambardi in 2001 [25] [26], and the Peak Stress Method (PSM) defined by Meneghetti and
Lazzarin in 2007 [5]. There are several advantages of these approaches: first of all, these methods require a
coarse meshes, so this characteristic makes these approaches easily applicable to the industry; furthermore,
these methods are characterized by only one fatigue design curve, independently of the geometry of the welded
joint. Over the years, these approaches have been calibrated and extended for 2D and 3D, for several Finite
Elements software and for different element typologies. Furthermore, these methods have been recently used,
beyond in the case of traction residual stress state post-welded (as-welded) or in stress relived condition, also
for joints that are characterized by a compression residual stress state due to a post-welded treatment, such as
High Frequency Mechanical Impact (HFMI) [33]. This treatment is a post-welded technique for the fatigue
strength enhancement of welded joints thanks to a plastic deformation at the weld toe, consequently inducing
beneficial compressive residual stress near to the treated areas and at the same time improving the local geom-
etry.
The fatigue behavior of the structures characterized by the presence of welded joints is complex because it can
be influenced by several intrinsic factor due to the nature of the welded joint. Indeed, the fatigue strength of
some welded joints can be reduced by the presence of welding defects, such as slag inclusion, gas pores, un-
dercut at the weld toe or misalignment. These defects can increase the degree of stress and strain concentration
at the geometrical profile of the joint.
In this thesis, the effects that will be analyzed is the misalignment effect inside the welded joints. The mis-
alignment of the welded joints is a result of the thermal-input during welding and also its mechanical restraints.
In many cases, the misalignment effect can not be completely avoided during the fatigue test because they have
a influence on the fatigue life of the welded joints due to the introduction of additional tensile stress due to the
presence of a secondary bending.

Chapter 1 aims to introduce the reader to the basis and principles of the local approaches which are going
to be employed in this thesis. Two methods have been extracted from the IIW guideline, while the remaining
three have been developed in the University of Padua, as describe before. For each methods the advantage and
disadvantage are reported.

Chapter 2 is the description of the training for the thesis student for the application of NSIFs method, SED
and PSM approaches for the fatigue assessment of 2D and 3D welded joints. The data are collected to do a
statistical analysis and comparison with the reference design fatigue curves proposed in the literature.

Chapter 3 describes the fatigue assessment of specific geometry in as-welded condition in term s of nominal
stress, hot-spot stress, equivalent peak stress (PSM) and strain energy density (SED). As in the chapter 2, the
data are inserted in their respective design fatigue curve obtained from the literature, in order to define the grade



of effectiveness and conservativeness provided by each method.

Initially, Chapter 4 introduces the reader to the basis, the principles and the benefits of the post-welded
treatment HFMI on welded joints. Subsequently, the fatigue assessment of HFMI treatment welded joints are
described, applying the hot-spot method and the PSM combined with the SET for blunt notches [ref]. The
re-elaborated data are inserted in their respective design curves in order to define the grade of effectiveness and
conservativeness provided by each method.

Chapter 5, after a briefly introduction about the misalignment effect on the welded joints, describes the
procedure to define the factor kmis to consider the misalignment effect on the fatigue life of the welded joints.
Furthermore, in this chapter the misalignment effect is studied on the joints subjected to CAL and VAL condi-
tion. A new fatigue design curve is proposed for the welded joints characterized by the presence of axial and
angular misalignment.

Chapter 6 describes the experimental procedure used for the detection of the membrane stress value and
mostly, the bending stress due to the misalignment of the welded joint. In this chapter, the procedure for the
calculation of the kmis factor through the experimental data, the formulas obtained from Chapter 5 and the for-
mula from IIW guideline [1], are described.

Chapter 7 defined the conclusion of this work, describing also the future improvement.



Abstract(Italiano)

Nella progettazione strutturale delle giunzioni saldate, la resistenza a fatica viene valutata mediante l’approccio
globale delle tensioni nominali, basato sulle curve di progettazione a fatica S-N, reperibili nei codici o in nor-
mativa. Tale approccio però, presenta diversi svantaggi: vi è infatti la necessita di definire diverse classi di
fatica che tengano conto delle diverse geometrie e dimensioni dei giunti. Inoltre, in alcuni casi, il rilevamento
e il calcolo della tensione nominale risulta difficoltoso poiché la geometria dei giunti è particolarmente comp-
lessa. In parallelo a quanto esposto precedentemente, la realtà sperimentale evidenzia che la rottura mediante
l’innesco di una cricca, avviene prevalentemente nelle regioni in cui è presente una discontinuità di materiale,
ovvero in corrispondenza della saldatura. La vita a fatica quindi, si rivela essere un fenomeno locale.
Per tener in considerazione l’effetto delle dimensioni e delle forme dei diversi giunti saldati, si possono uti-
lizzare gli approcci locali, sviluppati grazie all’impiego sempre maggiore di software di analisi agli elementi
finiti. All’interno del suddetto elaborato, vengono citati l’estrapolazione della tensione di hot-spot, reperibile
nella guida IIW, e l’Effective Notch Stress method, anch’esso reperibile nella guida IIW. Nonostante la grande
affidabilità di tali approcci, alcuni di essi non considerano importanti parametri ed effetti che abbattono la
resistenza a fatica dei componenti saldati, per esempio l’effetto scala. Per ovviare tale problema, i concetti
della Meccanica della Frattura Lineare Elastica sono stati estesi per lo studio a fatica delle giunzioni saldate,
con la definizione del concetto di V-notch (piede cordone, radice). Per definire e quantificare la distribuzione
del campo tensione che si sviluppa in corrispondenza del V-notch, è stato proposto da Lazzarin e Tovo presso
l’Università degli Studi di Padova, il metodo chiamato Notch Stress Intensity Factor, che prevede di instau-
rare una correlazione tra il campo di tensione locale asintotico e l’innesco della cricca. Recentemente, sono
stati introdotti altri due metodi agli Elementi Finiti, in grado di definire risultati affidabili in termine di vita a
fatica con una riduzione dei tempi di simulazione e modellazione: lo Strain Energy Density (SED), proposto
da Lazzarin e Zambardi nel 2001, e il Peak Stress Method, definito da Meneghetti e Lazzarin nel 2007. I
vantaggi di questi approcci sono molteplici: innanzitutto richiedono delle mesh grossolane, quindi è possibile
applicarli anche in ambito industriale; inoltre, a differenza dell’approccio globale con le tensioni nominali,
prevedono l’utilizzo di un’unica curva a fatica indipendentemente dalla geometria del giunto analizzato. Negli
ultimi anni tali approcci sono stati calibrati ed estesi per geometrie 2D e 3D, per diversi software agli elementi
finiti e per tipologie di elementi differenti. Inoltre, questi approcci sono stati utilizzati recentemente, oltre
che nei casi di tensioni residue post-saldatura di forte trazione (as-welded) o nulle (stress-relived), anche per
i giunti soggetti ad uno stato di tensione di forte compressione dovuto a trattamenti post-saldatura come High
Frequency Mechanical Impact (HFMI). Tale trattamento prevede un incremento della vita a fatica dei giunti
as-welded mediante una deformazione plastica del materiale saldato, eseguita tramite l’utilizzo di appositi in-
dentatori. Tale deformazione porta ad avere delle elevate tensioni residue di compressione in corrispondenza
del piede cordone della saldatura, migliorando inoltre la geometria locale.
Il comportamento a fatica delle strutture caratterizzate da giunti saldati è complicato poiché influenzato da
diversi fattori intriseci dovuti alla natura del giunto saldato. Infatti, difetti come porosità, undercuts a piede
cordone o disallineamenti portano a un aumento della concentrazione di tensione in corrispondenza del profilo
geometrico. L’effetto che si considererà all’interno di questo elaborato è quello dei disallineamenti che possono
essere presenti nei giunti. Tali difetti sono dovuti inevitabilmente alla lavorazione e deformazione cha avviene
durante il processo di saldatura. In molti casi i disallineamenti non possono essere ignorati nelle verifiche a
fatica poiché inducono un momento flettente aggiuntivo che può avere un importante effetto nella vita a fatica.

Il Capitolo 1 ha lo scopo di introdurre il lettore alle basi e principi degli approcci locali che sono stati utiliz-
zati in questa tesi. Due metodi sono stati estratti dalla normativa IIW, mentre i restanti tre sono stati sviluppati
presso l’Università degli Studi di Padova, come descritto precedentemente. Per ciascun metodo sono riportati
anche i vantaggi e svantaggi.

Il Capitolo 2 è la descrizione dell’addestramento per il tesista per l’applicazione dei metodi NSIFs, SED e
PSM per la verifica a fatica di strutture 2D e 3D. I dati ottenuti vengono successivamente raccolti per eseguire
una nuova analisi statistica e comparare i risultati ottenuti con le curve proposte nella letteratura di riferimento.

Il Capitolo 3 descrive la verifica a fatica di specifiche geometrie di giunti as-welded in termini di ten-
sione nominale, tensione di hot-spot, tensione equivalente di picco (PSM) e densità di energia di deformazione
(SED). Come nel Capitolo 2, i dati vengono inseriti nelle curve di riferimento ricavate dalla letteratura per poter
effettuare una comparazione in termini di numero di cicli per poter capire il grado di efficacia e sicurezza di



ciascun metodo applicato.

Il Capitolo 4 inizialmente introduce il lettore alle basi, ai principi e ai benefici del trattamento post-saldature
HFMI sui giunti saldati. Successivamente, si descrive la verifica a fatica di specifiche geometrie di giunti trattati
HFMI, applicando l’hot-spot method e il PSM combinato al SED per intagli smussati. Anche in questo caso
i dati vengono inseriti nelle curve di riferimento per poter capire il grado di efficacia e sicurezza di ciascun
metodo applicato.

Il Capitolo 5, dopo una breve introduzione degli effetti dovuti ai disallineamenti nei giunti saldati, descrive
la metodologia utilizzata per poter definire il fattore kmis che tiene conto degli effetti che i disallineamenti
hanno sulla vita a fatica dei giunti saldati. In questo capitolo si studia l’effetto dei disallineamenti nei giunti
saldati sia in condizioni CAL che VAL e si propone una nuova curva per il design a fatica dei giunti saldati con
disallineamenti sia assiali che angolari.

Il Capitolo 6 descrive la procedura sperimentale che è stata seguita per poter ottenere il valore delle tensioni
membranali e soprattutto di flessione dovuti ai disallineamenti. In questo capitolo si descrive la procedura di
calcolo eseguita per poter ricavare il fattore kmis attraverso i dati ottenuti sperimentalmente, le formule ricavate
dal Capitolo 5 e le formula prese da normativa.

Il Capitolo 7 definisce le conclusioni di questo lavoro descrivendo anche i futuri miglioramenti da poter
eseguire.
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Chapter 1

Description of global and local

approaches for fatigue assessment of

welded joints

The objective of this elaborate is to execute fatigue assessment on welded joint in as-welded and HFMI-treated
conditions and evaluated the effect of misalignment (axial and angular) on the joints’ fatigue life. The assess-
ment are performed with the application of global and local approaches through the use of the finite element
software Ansys ®Mechanical APDL with the license of the University of Padua. The aim of this first chapter is
to present the principles, methodologies, advantages and disadvantages of each method used. All approaches
assume the linear elastic behaviour of the material.

1.1 Global approaches of the IIW guideline

The most common method for the fatigue assessment of welded joints is the nominal stress approach. This
method is based on the calculation of the nominal stress range in a sectional area under consideration dis-
regarding the local stress raising effects of welded joint, but at the same time including the effects of the
macro-geometric shape near to the joints.
The nominal approach is called Global because it proceeds directly from the external load, with the hypothesis
of linear or constants stress distribution through the area considered.
The fatigue strength of the welded joints is defined in terms of a several double logarithmic design curves called
S-N curves where:

• S is the applied nominal stress range ∆σnom defined in MPa;

• N or N f is the number of cycles to failure of the component under investigation. There are different
definition of N: Hobbacher [1] defined the fatigue life as:

The number of stress cycles of a particular magnitude required to cause fatigue failure of the compo-

nent.

Hobbacher adds also that small welded specimen failures refer to complete fracture, instead of for the
large structural details, N is related to the observation of a through-the-thickness crack.

The IIW recommendations describe the S-N curves with the following equation:

N =
C

∆σm
(1.1)

where:

• m is the inverse slope of the curve and may adopt different values over the range of possible fatigue lives,
from the low cycles to the high cycles regime;

• C is a constant.
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Chapter 1: Description of global and local approaches for fatigue assessment of welded joints

Generally, the S-N curves are refered to joint in as-welded condition and their fatigue life is principally
dependent on the external applied stress range ∆σ and these joints are independent on the stress ratio R = σmin

σmax

and material yield strength. For this reason, from each specimens, the maximum principal stress range ∆σ11 is
extracted from the section where the crack is more likely to develop. Of course, if the structure is characterised
by a maximum shear stress range ∆τ11 , different S-N curves are available.One example of S-N curves are
available in Figure 1.1 and Figure 1.2. This curves represent the fatigue resistance in terms of nominal stress
∆σnom, subjected to CAL (Constant Amplitude Loading) for steel and aluminium alloys.

Figure 1.1: Fatigue resistance S-N curves for steel, normal stress, CAL [1]

Figure 1.2: Fatigue resistance S-N curves for aluminium alloys, normal stress, CAL [1]
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1.2 Local approaches of the IIW guideline

This curves are defined thanks to experimental investigations and so include the effects of:

• Structural hot spot stress concentration due to the detail shown;

• Local stress due to the weld geometry;

• Weld imperfection consistent with normal fabrication standards;

• Direction of loading;

• High residual stresses;

• Metallurgical conditions;

• Welding process (fusion welding, unless otherwise stated);

• Inspection procedure (NDT), if specified;

• Post weld treatment, if specified.

Each S-N curve are identified by the characteristic fatigue strength of the component in MPa at 2 milion
cycles. This value is called the Fatigue Class (FAT).
The slope of the fatigue strength S-N curves in terms of ∆σnom is equal to m = 3, while in terms of ∆τnom is
equal to m = 5. The constant amplitude knee point is placed for N = 107 cycles for normal stresses, while
for shear stresses is place for N = 108. The knee point is called Constant Amplitude Fatigue Limit CAFL and
below it, the fatigue life is assumed inifite. Indeed, from the CAFL the curve should be horizontally.
However, some recently studies defined that the CAFL does not exist and for this reason, the slope after the
knee point could be equal to m = 22.
As above-mentioned, this method is the most common approach but nevertheless, it is characterised by several
disadvantages:

• The fatigue assessment in terms of nominal stress approach does not include the effects of the shape and
the size, that they have a strong impact on the service life. For this reason, there are different fatigue
design curves S-N in based on the geometry of the components.

• In some cases, the detection of the nominal stress ∆σnom is very complex, indeed there is the need to
satisfy the engineering state of art in those areas related to VAL (Variable Amplitude Loading) or where
the nominal stress is not immediately obtainable.

1.2 Local approaches of the IIW guideline

Local fatigue assessment methods like Structural Hot Spot Stress and Effective Notch Stress as defined by the
International Institute of Welding are widely used by design engineers and researchers to asses the fatigue
strength of welded components.
The objective of the local approaches is to focus on the stress growth due to the geometric changes and the
weld profile itself.
The IIW recommendations [1] proposes two different local method that are applied in this thesis: the first one is
the Structural Hot Spot Stress, the second is the Effective Notch Stress. These two approaches are characterized
that in FE environment and linear elastic hypothesis, the stress increment due to the presence of weld profile is
dependent on the mesh size. The idea is to consider only the raise stress effects due to the joint geometry, so
the element size is considered as a secondary effect.

1.2.1 SHSS (Structural Hot Spot Stress) approach

The structural stress σhs at the hot spot considers all stress raising effects of structural detail but it does not
include the non-linear peak stress due to the local notch, i.e. the weld toe is excluded from the structural stress.
The Structural Hot Spot Stress value depends on the global dimension of the joint and on the loading parame-
ters in proximity of the welded joint. This value is defined on the surface at the hot spot of the joint which is to
be assessed.
The SHSS approach is suitable for the structures that are characterized by structural discontinuities and geo-
metric complexity. Indeed, in this case is tough to detect a nominal stress comparable to a classified structural
details.
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Chapter 1: Description of global and local approaches for fatigue assessment of welded joints

The SHSS approach is applied on the exterior surface, where the non-linear peak is deleted by the linearization
of the stress through the plate’s thickness or also by extrapolation of stresses at reference points, place on the
weld toe’s surface.
The system to calculate the SHSS value is described in IIW recommendations [1]. The first step is to establish
the reference points and after to define the structural hot spot stress by extrapolation of the stresses from those
reference points. The number of the points depends on the employed hot spot typology; indeed two types of
hot spots are define according to their orientationin respect to weld toe like Figure 1.3 and Table 1.1 shows.

Figure 1.3: Types of hot spots [1]

Types Description Determination

a Weld toe on plate surface
FEA or measurement and

extrapolation

b Weld toe on plate edge
FEA or measurement and

extrapolation

Table 1.1: Types of hot spots [1]

As above-mentioned, the number of reference points depends on the typology of hot spot as shows the
following figure:

Figure 1.4: Reference points at different types of meshing [1]
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1.2 Local approaches of the IIW guideline

The reference point closest to weld toe must be chosen to avoid any non-linear effect due to the weld profile
itself. For this reason, the minimum distance recommended from weld toe is equal to 0.4 · t, where t is the main
thickness of the plate. Once the stresses at the reference points are obtained, a linear extrapolation with two
reference points, or quadratic one with three points is applied to define the Hot Spot Stress value at the weld to
(Figure 1.5).

Figure 1.5: Definition of structural hot spot stress at weld toe [1]

The Hot Spot method can be limited to the assessment of the weld toe crack, some examples are illustrated
in the Figure 1.6:

Figure 1.6: Different locations of crack propagation in welded joints: a-e represents weld toe cracks, where SHSS

approach can be applied; f-i represents weld root cracks, where SHSS approach can not be applied [1]

According to Figure 1.4, for hot spot type a, two different extrapolation formulae are possible:

1. Linear extrapolation with two reference points:

σhs = 1,67 ·σ0.4·t −0.67 ·σ1.0·t (1.2)

2. Quadratic extrapolation with three reference points in cases of important non-linear stress effect on the
hot spot:

σhs = 2.52 ·σ0.4·t −2.24 ·σ0.9·t +0.72 ·σ1.4·t (1.3)
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For the Hot Spot method, the different nominal FAT classes are collapsed in only two FAT classes, as Figure

1.7 shows: FAT 90 and FAT 100. These curve present the following characteristics:

• The curve are referred to as-welded condition unless stated otherwise;

• The effects of high tensile residual stress are included;

• Only small effects of misalignment are included. In the presence of a consistent misalignment, a stress
magnification factor Km, defined by IIW guideline [1], must be included;

• The design value of the structural hot spot stress range ∆σhs must be minor to 2 · fy to avoid plastic
yielding.

Figure 1.7: SHSS FAT classes [1]
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1.2 Local approaches of the IIW guideline

The thickness correction factor, used for nominal approach and defined in IIW recommendations [1], can
be accounted for SHSS method because thise method does not include and predict the effect of the thickness.

In the article of 2004 [36], Potiainen, Tanskanen and Marquis give some advises for the modelling:

• The extrapolation of the hot spot stress value can be executed with the using of both fine and coarse
meshes;

• The first principal stress and the stress along x-axis can be detected in the reference points;

• For 2D models,the mapped-mesh algorithm can be used to create the mesh with four-node linear plane
elements (PLANE 182 in ANSYS®);

• For 3D structures, eight-node or twenty-node linear hexahedral elements can be adopted for the mesh
(SOLID185 and SOLID 186 in ANSYS®). In the case of 8-node element, several elements layers are
allowed along the main plate thickness; instead for the 20-node hexahedral elements, only one elements
is allowed to avoid any influence of the singularity.

1.2.2 Effective Notch Stress (ESN) approach

In 2008, the IIW approved the guideline concerning fatigue design of welded components based on the Effective
notch stress (ESN) approach to fatigue assessment [1].
Effective notch stress is the total stress at the root of a notch and in this method the maximum principal stress
or von Mises stress at the notch, e.g. weld toe or root, can be idealized by considering a linear-elastic material
behaviour through the finite element analysis.
To consider the non-linear material behaviour at the notch root and also to include shape effects of the weld,
the weld profle at weld toe or root is replaced by a fictitious notch radius as Figure 1.8 shows. This method is
applicable for plates that are characterized by a thickness t ≥ 5 and for these welds, it is proposed that:

ρ f = ρ +1mm (1.4)

where:

• ρ is the actual radius of the weld toe;

• ρ f is the effective radius which is implemented to the finite element model. For the worst case and
practical applications, the actual radius ρ is assumed equal to zero. Thus, the ENS approach for fatigue
assessment is reduced to ρ f = 1mm at weld toe or root.

Figure 1.8: Fictitious rounding of weld toes and roots [1]
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Chapter 1: Description of global and local approaches for fatigue assessment of welded joints

The ENS approach is suitable to assessment of welded joints characterized by potential crack initiation
from weld toe or root (Figure 1.9). Furthermore, the fatigue assessment has to additionally executed at weld
toe for parent material with SHSS and the related fatigue class FAT for the base material.

Figure 1.9: Recommended rounding of weld toes and roots [1]

This approach is restricted to assessment of as-welded weld toe and roots.
Effective notch stresses or stress concentration factors can be obtained by parametric formulae, diagrams or
finite element model. In this case the IIW recommendations gives some rules for the global element size and
mesh pattern as Figure 1.10. The rules for size are expressed in Table 1.2 and have to be observed in the curved
part and straight part of the notch surfaces in normal and tangential direction.

Figure 1.10: Recommended meshing at weld toes and roots [1]

Element type
Relative

size

Absolute size

[mm]

No. of elements in

45°arc

No. of elements in

360°arc

Quadratic with
mid-side nodes

≤ r/4 ≤ 0.25 ≥ 3 ≥ 24

Linear ≤ r/6 ≤ 0.15 ≥ 5 ≥ 40

Table 1.2: Recommended size of elements on surface [1]

For the Effective Notch Stress Method, the different nominal FAT classes for the steel are collapsed in only
one FAT classes, as Table 1.3 shows: FAT 225. These curve present the following characteristics:

• The curve are referred to as-welded condition;

• The effects of high tensile residual stress are included;

• The effect of possible misalignment is not included;
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1.3 Local approaches of University of Padua

• The fatigue resistance of weld toe is additionally limited by fatigue resistance of the parent material that
is determined by the use of SHSS approach and the FAT classes of non-welded parent material.

No. Quality of weld notch Description FAT

1
Effective notch radius equal to 1mm

replacing weld toe and weld root
Notch as-welded, normal

welding quality m=3
225

Table 1.3: Effective Notch fatigue resistance for steel [1]

1.3 Local approaches of University of Padua

In the classical mechanics, during a verification of structural resistance, the resistance of the structure under
analysis is determined by a point value approach. This type of analysis is characterised by a comparison be-
tween the stress calculated at the most stress point of the structure and a reference value, the yield strength fy is
generally used. This approach can not be used for the cracks or sharp notches because a linear elastic analysis
would show that the stress value at the tip of the defect tends to infinite.
On the other hand, the experimental reality illustrates that, due to the local material yielding near to the tip of
the crack, this event is avoided. Thanks to the development of the linear elastic fracture mechanics (LEFM)
theory, the structural resistance is determined by a field approach rather than a point value criterion.

The LEFM theory was extended also for the fatigue study of welded joints. This extension is called non-

conventional extension of the linear elastic fracture mechanics. Indeed, the case of a V-notch with fillet radius
different from zero (ρ ̸= 0) is characterised by the same behaviour of a sharp notch with fillet radius equal
to zero (ρ = 0), as evidenced by Smith and Miller (1978). In conclusion the notch that has a fillet radius
0 ≤ ρ ≤ 4 ·a0 can be consider like a sharp notch.
Thanks to the LEFM extension, the fatigue assessment of the welded joints is treated like a notch effect prob-
lem: the theory of the notch stress intensity factors NSIFs, elaborated by Gross and Mendelson (1972) [21].
Indeed, the weld toe profile is considered as a sharp V-notch having a tip radius equal to zero (ρ = 0) and the
weld root is considered like a pre-crack in the welded structure.
The V-notch can be solicited in three different modes, like the Figure 1.11 shows:

1. Mode I: tensile opening;

2. Mode II: in-plane shear;

3. Mode III: out-of-plane shear.

Figure 1.11: Description of the three solicitation mode for a V-notch [22]
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Chapter 1: Description of global and local approaches for fatigue assessment of welded joints

1.3.1 NSIFs (Notch Stress Intensity Factors) approach

In plane problems, a V-notch is considered and it is subjected to only mode I and mode II of solicitation; the
expression of the stress field for mode I and II is described by the equation (1.5):







σθθ

σrr

τrθ







=
K1

r1−λ1
·







˜σθθ (θ)
σ̃rr(θ)
˜σrθ (θ)







I

+
K2

r1−λ2
·







˜σθθ (θ)
σ̃rr(θ)
˜σrθ (θ)







II

(1.5)

Figure 1.12: V-notch with a cylindrical local reference system [23]

where:

• σθθ ,σrr,τrθ are the plane stress that are described in the cylindrical local reference system as shows in
Figure 1.12;

• ˜σθθ (θ), σ̃rr(θ), ˜σrθ (θ) are the trigonometric functions that depend on θ and also on the mode of solici-
tation

• λ1,λ2 are the Williams’ eigenvalues that depend on the opening angle 2α of the V-notch. They express
the grade of singularity of the stress field. The Table 1.4 shows the typical values of λ1,λ2 in function of
the opening angle 2α and also the Figure 1.13 shows the trend of them:

2α [°] λ1 (Mode I) λ2 (Mode II)

0 0.5 0.5
30 0.501 0.598
45 0.505 0.660
60 0.512 0.731
90 0.544 0.909
120 0.616 1.149
135 0.674 1.302
150 0.752 1.486

Table 1.4: Value of λ1 and λ2 in function of the opening angle 2α
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1.3 Local approaches of University of Padua

Figure 1.13: Trend of Williams’ eigenvalues for Mode I and II in function of opening angle 2α . For 2α>102.5° mode II is

not singular [23]

.

• K1 and K2 are the Notch Stress Intensity Factors (NSIFs) associated to Mode I and II. These factors
described the intensity of the local stress field components in the V-notch region.

Williams studied two-dimensional notch problems under mode I and II; subsequently, Qian and Hasebe
studied the notch problem under mode III loading and defined K3 and λ3 for asymmetric structures. The three
different NSIFs are defined in equation (1.6)-(1.8) with reference to Figure 1.14a and Figure 1.14b for the
coordinates system:

K1 =
√

2π lim
r→0+

r1−λ1 ·σθθ(r,θ=0)
(1.6)

K2 =
√

2π lim
r→0+

r1−λ2 · τrθ(r,θ=0)
(1.7)

K3 =
√

2π lim
r→0+

r1−λ3 · τθz(r,θ=0)
(1.8)

(a)
(b)

Figure 1.14: Different example of polar reference system centred at weld toe and definition of stress components [24].

11



Chapter 1: Description of global and local approaches for fatigue assessment of welded joints

Thanks to the work of Lazzarin and Tovo in 1998 [6], the NSIFs approach allows the fatigue assessment
of sharp notched components with the using of only one fatigue design curve, in contrast to the nominal stress
approach. This curve expresses the fatigue strength in terms of NSIF K1 for mode I of loading. As show
in Figure 1.15, due to the large variation of the geometrical parameters, the scatter band of nominal stress
approach is larger than NSIFs approach. Indeed, for the nominal stress approach is necessary to adopt different
design curve in based on the geometry of the joint because the fatigue is a local phenomenon which concentrate
on the initiation and propagation of a crack near to the V-notch region. The NSIFs approach propose a unique
fatigue design curve K1-N f for different joint’s geometries because the shape and size effects are accounted
inside the tensional parameter K1.

Figure 1.15: Fatigue strength in terms of nominal stress an NSIF ranges [6]

.

On the other hand,the NSIFs approach presents three relevant disadvantages in engineering applications as
written by Campagnolo in [24]:

1. Very refine meshes are required (element size has to be roughly 10−5) to calculate the NSIFs and so the
computational time increases;

2. A large number of stress distance values are required to calculate Ki and so the post-process operation,
that are necessary, can be complex and can require a lot of time;

3. The unit of measurement of Ki,i=1,2,3 are expressed in [MPa ·m1−λi,i=1,2,3 ], so it changes with the singular-
ity of the stress distribution that depends on the opening angle 2α . Due to this, the comparison of stress
field between V-notch with different opening angle is not possible.

1.3.2 Strain Energy Density (SED) approach

The energetic criterion has been proposed by Lazzarin and Zambarndi [25] in 2001 to overcome the limits of
NSIFs approach.
The proposal of SED considers as critical parameter to evaluate the structural resistance, the averaged strain
energy density inside a circular sector of radius R0, that is a property of the material.
This approach is based on the structural volume, derived from Neuber’s theory. Indeed the materials are sen-
sitive to the average stress state inside a structural volume, characterized by the fact that the dimension is a
material’s property.
The typical values of R0 are 0.28mm for steel structures and 0.12mm for aluminium alloys.

12



1.3 Local approaches of University of Padua

Initially, the method had been calibrated only for Mode I loading [25], but subsequently it was extended
also for Mode II and III.
Under plane strain hypothesis, the averaged strain energy density inside a structural volume of radius Rc is
expressed in function of NSIFs for Mode I and II for a V-notch, characterised by a opening angle 2α (1.9):

ÅW =
1
E
·
(

cw1 · e1 ·
K2

1

R
1−λ1
0

+ cw2 · e2 ·
K2

2

R
1−λ2
0

+ cw3 · e3 ·
K2

3

R
1−λ3
0

)

(1.9)

where:

• Ki,i=1,2,3 are the Notch Stress Intensity Factors (NSIFs) for mode I, II and II of loading;

• R0 is the radius of structural volume;

• E is the Young modulus;

• cwi,i=1,2,3 are the coefficient that they depend on the stress ratio R = σmin
σmax

and are defined by the equation
(1.10) when stress relived SR joints [26]:

cw(R) =







1+R2

(1−R)2 f or−1 ≤ R < 0
1−R2

(1−R)2 f or0 ≤ R ≤ 1
(1.10)

• ei,i=1,2,3 are the parameters to consider the dependence on the opening angle 2α of V-notch and also on
the Poisson’s ratio ν . The value of ei,i=1,2,3 are defined in Table1.5 in function of the opening angle and
for ν = 0.3 (steel):

2α [°] e1 e2 [31] e3 [32]

0 0.133 0.341 0.414
30 0.147 0.273 0.379
45 0.150 0.243 0.362
60 0.151 0.215 0.345
90 0.145 0.168 0.310

120 0.129 0.128 0.276
135 0.117 0.111 0.259
150 0.104 0.096 0.241

Table 1.5: Value of e1,e2 and e3 in function of the opening angle 2α

To calculate the SED in FE software, the averaged strain energy density can be obtained by the summation
of the energy that is contained inside each element, divided by the structural volume(1.11). This approach is
called "direct approach":

∆W FEM =
∑V (R0)WFEM,i

V (R0)
(1.11)

The unit of measure is
[

MJ
m3

]

or
[

J
mm3

]

.

The SED approach is characterized by several advantages:

• The comparison of stress field between V-notch with different opening angle is possible because the
fatigue resistance is expressed in terms of energy, so the unit of measure remain constant;

• As the NSIFs approach, the design fatigue curve is unique and it is showed in Figure 1.16, which express
the fatigue strength in terms of Strain Energy;

• If SED is calculated by FE software, the required mesh doesn’t have to be fine.
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Chapter 1: Description of global and local approaches for fatigue assessment of welded joints

Figure 1.16: Fatigue design curve for SED approach [25]

.

1.3.3 Peak Stress Method (PSM)

The Peak Stress Method is an approach that allows to detect rapidly the value of NSIFs for the fatigue strength
assessment of welded joints. This approach is based on finite element analysis with coarse mesh and it doesn’t
require a refined mesh in correspondence of the V-notch.
As the SED approach, The PSM wants to overcome the limits of NSIFs’ approach. The method is applicable
to steel structures and alluminium alloys.
The PSM gives the correlation between the mode I,II and III NSIFs and the corresponding peak stress compo-
nents (see equations (1.12)-(1.14)):

K1
∼= K∗

FE ·σθθ ,θ=0,peak ·d1−λ1 (1.12)

K2
∼= K∗∗

FE · τrθ ,θ=0,peak ·d1−λ2 (1.13)

K3
∼= K∗∗∗

FE · τθz,θ=0,peak ·d1−λ3 (1.14)

where:

• K∗
FE ,K

∗∗
FE ,K

∗∗∗
FE are the calibration constants related to mode I,II,II and depend on the element type, the

software type, the mesh conformation and the nodal stress evaluation method;

• σθθ ,θ=0,peak,τrθ ,θ=0,peak,τθz,θ=0,peak are the peak nodal stresses detected at the V-notch profiles (see
Figure 1.14a);

• d is the global element size;

• λ1,λ2,λ3 are the Williams’ eigenvalues.

Under plane strain hypothesis, the averaged Strain Energy Density (SED) defined by equation (1.9), can be
rewritten in function of the peak stresses σθθ ,θ=0,peak,τrθ ,θ=0,peak,τθz,θ=0,peak thanks to the using of the equa-
tions (1.12)-(1.14) and the imposing of the following relation:

ÅW = (1−ν2) ·
σ2

eq,peak

2E
(1.15)

where the σeq,peak is defined in function of the peak stresses as follows:

14



1.3 Local approaches of University of Padua

σeq,peak =
√

f 2
w1 ·σ2

θθ ,θ=0,peak + f 2
w2 · τ2

rθ ,θ=0,peak + f 2
w3 · τ2

zθ ,θ=0,peak (1.16)

where:

• fwi,i=1,2,3 are the peak stresses corrective factors and are defined like follows:

fwi = K
j

FE ·
√

2ei

1−ν2 ·
(

d

R0

)1−λi
∣

∣

∣

∣ i=1,2,3
j=∗,∗∗,∗∗∗

(1.17)

where:

± e1,1=1,2,3 are the parameters to consider the dependence on the opening angle 2α of V-notch and
also on the Poisson’s ratio ν . The value of ei,i=1,2,3 are defined in Table 1.5 in function of the
opening angle and for ν = 0.3 (steel);

± R0 is the radius of structural volume;

± K
j

FE are the calibration constants related to mode I,II and III for PSM approach;

± d is the global element size of the mesh

± λi are the Williams’ eigenvalues.

The Peak Stress Method presents several advantages:

• The comparison of stress field between V-notch with different opening angle is possible because the
fatigue resistance is expressed in terms of equivalent peak stress, so the unit of measure remain constant;

• As the NSIFs approach, the design fatigue curve is unique;

• The post-process analysis require only one nodal peak stress instead of a large number of stress distance
values as in NSIFs approach;

• FE analysis require a coarser mesh than the NSIFs and SED approaches. Indeed the global element size
d can be higher than the control radius R0, unlike the "direct approach" to calculate the SED where is
necessary to have d < R0;

• The modeling of the control volume to calculate the averaged SED is not necessary.

PSM for 2D geometries: linear plane elements

Initially,the PSM approach was proposed to 2D geometries subjected to mode I loading by Meneghetti and
Lazzarin [5]. Subsequently, this method was extended also for 2D geometries subjected to mode II and III by
Meneghetti in 2012 [28] and 2013 [29].
Another important thing is that the PSM calibration constants K

j
FE depend on different factors:

• The FE software used: the original one is Ansys ®Mechanical APDL but recently, a new calibration has
been developed for others commercial software like Abaqus,Straus and other four software [7].

• typology of the element: in Ansys®the four-node linear plane element is used with Simple Enhanced

Strain and Plane Strain as Key Options;

• Pattern of mesh: the mesh is generated automatically by the free-mesh algorithm, additionally for V-
notches that are characterised by a opening angle 2α ≤ 90°, four elements have to share the node at the
V-notch tip;instead for V-notches with a opening angle 2α > 90°, two elements must share the node at
V-notch tip as explained in Figure 1.17.
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Chapter 1: Description of global and local approaches for fatigue assessment of welded joints

Figure 1.17: Mesh patterns that have to adopt during a numerical analysis [5]

.

The global element size must respect a ratio with a component’s reference dimension. The value of this
ratio depends on the opening angle 2α and the mode of loading (see Table 1.6):

2α [°] Mode I Mode II Mode III

a/dmin a/dmin a/dmin

0°< 2α < 135° 3 14 /
0° (root)

/ /
12 (root)

135°(weld toe) 3 (weld toe)

Table 1.6: Value of the ratio a/dmin in function of the opening angle 2α that must be respected

The PSM calibration constants assume the values reported in Table 1.7:

K∗

FE K∗∗
FE K∗∗∗

FE

1.38±3% 3.38±3% 1.93±3%

Table 1.7: Value of calibration constant for PSM

As above-mentioned, the PSM is characterised by unique fatigue design curve that expresses the fatigue
strength of welded joints in terms of equivalent peak stress ∆σeq,peak but also in terms of NSIF K1, when the
welded joints is subjected predominantly to mode I.

The curves that are represented in Figure 1.18 and Figure 1.19, are valid for the joints with the following
characteristics:

• As-welded joints

• 360 < fy < 670MPa where fy is the yield strength

• The main plate thickness is ranged between 6 and 100mm

• V-notch opening angle 2α is range from 0° to 135°

• Stress ratio R = σmin
σmax

∼= 0
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1.3 Local approaches of University of Padua

Figure 1.18: PSM Fatigue design curve in terms of equivalent peak stress, steel structures, weld toe and root failures [5]

.

Figure 1.19: PSM Fatigue design curve in terms of NSIF K1 mode I obtained from peak stress, steel structures, weld toe

and root failures [5]

.

PSM for 3D geometries: linear hexahedral elements

In 2014, the Peak Stress Method was extended to 3D model,that can be characterized by a complex geometry
and both by toe and root cracking [10]. For this type of analysis, a linear hexahedral elements has been chosen
and is necessary to adopt the Submodeling technique.
This method is characterised by different step:

1. The Main model of the structure is created;

2. The main model is meshed with ten-node quadratic elements (SOLID 187 in ANSYS ®);

3. The cut boundary is defined with a convergence analysis and the sub model is extracted from the main
model;

4. The nodal displacements belonging to the cut boundary are extracted from the main model and inserted
in the sub model as boundary condition;

5. The sub model is meshed with eight-node linear elements (SOLID 185 in ANSYS ®).
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Chapter 1: Description of global and local approaches for fatigue assessment of welded joints

The advantage of this technique is that allows to extract accurate results in a restricted region like the
fracture area.
As in 2D PSM analysis, the 3D PSM calibration constants depend on different factors:

• The FE software used: the original one is Ansys ®Mechanical APDL;

• typology of the element: in Ansys®the eight-node linear hexahedral element is used with Simple En-

hanced Strain as Key Options 1;

• Pattern of mesh: same rule of 2D geometries.

So, the PSM calibration constants assume the values reported in Table 1.8:

K∗

FE K∗∗
FE

1.38±3% 3.38±3%

Table 1.8: Value of calibration constant for PSM (3D)

Meneghetti, Atzori and Guzzella proposed a fatigue design curve in terms of ∆σeq, peak for 3D structures.
The curve that is represented in Figure 1.20, is valid for the joints with the following characteristics:

• As-welded joints

• 360 < fy < 670MPa where fy is the yield strength

• The main plate thickness is ranged between 6 and 100mm

• V-notch opening angle 2α is range from 0° to 135°

• Stress ratio R = σmin
σmax

is ranged between -0.36 and 0.7, for weld toe and root failures.

Figure 1.20: PSM Fatigue design curve in terms of equivalent peak stress, steel structures, weld toe and root failures [10]

.
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PSM for 3D geometries: quadratic tetrahedral elements

The PSM was extended to the ten-node tetra elements (SOLID 187 in ANSYS®) by Meneghetti and Campag-
nolo in 2018 [24], with the aim of reducing the modelling and computational time for the simulation.
Subsequently, the calibration costants for ten-node tetra elements has been improved in 2019 [30].
As in 2D PSM analysis, the 3D PSM calibration constants depend on different factors:

• The FE software used: the original one is Ansys ®Mechanical APDL;

• typology of the element: in Ansys®(SOLID 187) the ten-node quadratic tetrahedral element is used with
Pure Displacement as Key Options 1;

• Pattern of mesh: the mesh is generate automatically by the free-mesh algorithm and it is intrinsically ir-
regular,that is the node of the notch tip could be shared by different elements having a important different
shape and size. For this reason, the peak stress could vary along the notch tip profile even in the case of
a constant applied NSIF. This problem can be solved by introducing an average peak stress value,which
has been defined as the moving average on three adjacent vertex nodes, starting from the generic node
n=k:

Åσi, j,peak,n=k =
σi, j,peak,n=k−1 +σi, j,peak,n=kσi, j,peak,n=k+1

3

∣

∣

∣

n=node
(1.18)

Another important thing related to equation (1.18) is that only peak stresses calculated at vertex nodes of
tetra elements have be introduced in this equation, thus the stresses at mid-side nodes must be neglected
[30].

The PSM calibration constants assume the values reported in Figure 1.21:

Figure 1.21: Summary of calibration constants K∗
FE ,K

∗∗
FE and K∗∗∗

FE for tetra elements of Ansys®element library [30]

.

The advantages of the PSM with ten-node tetrahedral elements respect to eight-node are:

• The calibration constants are valid for mode I, II and III;

• This method allows the analysis of complex 3D structures without the submodeling technique;

• The mesh is generate automatically by free-mesh algorithm;

• The FE meshes are coarse and the calculation of peak stresses is relatively rapid and simple
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On the other hand, this method presents also some disadvantages as:

• The PSM calibration constants for ten-node are more dependent on the V-notch opening angle 2α than
the eight-node;

• The error of the calibration constants are ±10−15%, higher than the eight-node’s error (±3%).

1.3.4 Attentions on the PSM

Concerning the PSM, is important to underline some precautions:

• The PSM calibration constants are not calibrated for V-notch opening angle higher than 135°, but recently
for ten-node tetra elements the PSM constants has been calibrated up to 180°;

• The PSM is validate for stress ratio R between -0.36 and 0.7 but in as-welded condition the influence of
R does not affect the fatigue life of the structures, so the PSM can be extended up to stress ratio equals
to -1;

• An important consideration is relative to the weld toe radius ρ:

± ρ < 1.5−1.8mm, the weld toe radius can be considered equal to 0mm, so to have the worst possible
case: V-notch;

± 1.8 < ρ < 4mm, this is the case of blunt notch, so the PSM is applied in combination with SED
approach;

± ρ > 4mm, the classical mechanical point criterion is used for fatigue assessment

• If the Peak Stress method detects a crack initiation in a singularity region which is different from the
experimental one, the ∆σeq,peak related to effective area must be calculated.



Chapter 2

Numerical analysis of experimental data

to detect the NSIFs, SED and PSM

parameters

The objective of this chapter is to perform a fatigue assessment of four different experimental data of welded
joint in terms of nominal stress, Notch Stress Intensity Factor K1 for mode I of loading, averaged Strain Energy
Density SED and Equivalent Peak Stress. The aim of this re-elaboration is to re-plot the experimental data in
a double logarithm graph, where on the abscissa is placed the fatigue life N f and the ordinate is expressed in
terms of:

• Nominal Stress ∆σ [MPa];

• ∆K1[MPA ·mm1−λ1 ];

• ∆W (SED) [MJ/m3];

• ∆σeq,peak[MPa].

Subsequently, the results are collected together to be compared in terms of statistical scatter band with re-
spect to the design fatigue curve defined in literature.
The analysed data consist in four transverse attachments that Maddox in 1987 [37] and Gurney in 1991 [38]
modelled in 2D. In this chapter, another transverse attachments is studied: a square chord with circular brace
that was elaborated by Gandhi in 1998 [39] in 3D.

The assessment are performed with the application of global and local approaches above-mentioned through
the use of the finite element software Ansys®Mechanical APDL with the license of the University of Padua.
For the modelling and study of 2D geometries, the four-node linear element PLANE 182 is adopted with Sim-

ple Enhanced Strain as Key Options 1 and Plane Strain as Key Options 3; on the other hand, in the case of
3D structure, the eight-node linear element SOLID 185 (also called Brick 185) is used with Simple Enhanced

Strain as Key Options 1, the four-node linear elements SOLID 285 (also called Tetra 285) and also the ten-
node quadratic element SOLID 187 (also called Tetra 187) is adopted with Pure displacement as Key Options 1.

All geometries are created directly in Ansys®, thanks to the use of the Ansys®CAD environment.
All the following joints are studied in as-welded conditions. According to the non-conventional LEFM exten-
sion to welded joints, the weld toe profile is considered as a V-notch with tip radius equal to zero (worst case)
and the root is assumed as pre-crack in the structure.

2.1 Description of transverse attachments geometries

The first four typology of welded joint that are studied, are transverse stiffeners characterized by a fatigue class
FAT 80 and tested by Maddox in 1987 [37] and Gurney in 1991 [38] under costant amplitude loading CAL.
The principal informations and the mechanical properties about these four welded joints are summarized in the
Table 2.1 and Table 2.2:
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Chapter 2: Numerical analysis of experimental data to detect the NSIFs, SED and PSM parameters

Weld condition
Fracture

location
Load application

V-notch opening

angle 2α

As-welded, non-load carrying (NLC),
full penetration

Weld toe
Main plate, parent

material
135°

Table 2.1: Information about the specimens

Material model
Yield strength fy

[MPa]

Young modulus

[MPa]

Poisson’s ratio

ν

Linear elastic,
isotropic

360-672 206000 0.3

Table 2.2: Information about mechanical properties

The transverse attachments are defined with a transverse NLC geometry as Figure 2.1 shows for cruciform
joints and Figure 2.2 for T-shape profile.

Figure 2.1: General scheme of a transverse NLC joint, subjected to axial and bending load [40]

.

Figure 2.2: General scheme of a transverse T-joint, subjected to axial and bending load [40]

.

where:

• 2a is the main plate thickness;

• t is the stiffener thickness;

• b is the weld leg;

• 2α is the V-notch opening angle.

The sketches of the joints’ geometry don’t give any informations about the main plate and also about the
attachment length. Indeed, they has to be sufficiently long and distant from weld toe to guarantee that they
represent the stress flowing from the "infinite".

2.1.1 Maddox 1987, 1st specimen

The first joint analysed is a transverse NLC joint and initially studied by Maddox in 1987. The dimensions of
it are defined in the following table and figure:
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2a [mm] t [mm] b [mm]

13 10 8

Table 2.3: Dimension of the 1st joint

Figure 2.3: Maddox 1st joint, the quotes are expressed in [mm].

The experimental data are defined in the following table in terms of nominal stress ∆σnom:

Stress Ratio

R

∆σnom

[MPa]
Nf [cycles]

0

200 192 000
140 507 000
100 2 937 000
80 4 297 000

Table 2.4: Experimental data of the 1st joint

The modelling procedure in Ansys®APDL is briefly described:

• Thanks to the double symmetry of the transverse NLC joint, only 1/4 of the joint is created to reduce the
computational time;

• A root has been created and it is characterized by a initial opening length equal to 0.1mm;

• The first specimen is subjected to an axial load and it is applied on the main plate as a constant pressure
equal to p =−∆σnom on Line 2 (Figure 2.4);

• Symmetry boundary conditions are applied on Line 7, 10 and 1 (Figure 2.4).
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Figure 2.4: Maddox 1st joint inside Ansys®APDL environment. S indicate the symmetry boundary condition, while the

red arrow represents the external pressure

2.1.2 Gurney 1991, 2nd specimen

The second joint analysed is a transverse NLC joint and initially studied by Gurney in 1991. The dimensions
of it are defined in the following table and figure:

2a [mm] t [mm] b [mm]

100 220 15

Table 2.5: Dimension of the 2nd joint

Figure 2.5: Gurney 2nd joint, the quotes are expressed in [mm].

The experimental data are defined in the following table in terms of nominal stress ∆σnom:
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Stress Ratio

R

∆σnom

[MPa]
Nf [cycles]

0

150 109 000
120 224 000
100 322 000
65 1 153 000
55 2 147 000

Table 2.6: Experimental data of the 2nd joint

The modelling procedure in Ansys®APDL is briefly described:

• Thanks to the double symmetry of the transverse NLC joint, only 1/4 of the joint is created to reduce the
computational time;

• A root has been created and it is characterized by a initial opening length equal to 0.5mm;

• The second specimen is subjected to an axial load and it is applied on the main plate as a constant pressure
equal to p =−∆σnom on Line 2 (Figure 2.6);

• Symmetry boundary conditions are applied on Line 7, 10 and 1 (Figure 2.6).

Figure 2.6: Gurney 2nd joint inside Ansys®APDL environment. S indicate the symmetry boundary condition, while the

red arrow represents the external pressure

2.1.3 Gurney 1991, 3rd specimen

The third joint analysed is a transverse NLC joint and initially studied by Gurney in 1991. The dimensions of
it are defined in the following table and figure:

2a [mm] t [mm] b [mm]

100 13 8

Table 2.7: Dimension of the 3rd joint
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Figure 2.7: Gurney 3rd joint, the quotes are expressed in [mm].

The experimental data are defined in the following table in terms of nominal stress ∆σnom:

Stress Ratio

R

∆σnom

[MPa]
Nf [cycles]

0

260 120 000
220 200 000
180 302 000
140 744 000
120 1 180 000
110 2 158 000

Table 2.8: Experimental data of the 3rd joint

The modelling procedure in Ansys®APDL is briefly described:

• Thanks to the double symmetry of the transverse NLC joint, only 1/4 of the joint is created to reduce the
computational time;

• A root has been created and it is characterized by a initial opening length equal to 0.1mm;

• The third specimen is subjected to a bending load and it is applied on the main plate as a linear pressure.
The bending solicitation follows the Navier’s linear stress distribution and so the value of the nominal
stress inside the Table 2.8 represents the maximum stress reached at the top of the main plate. Due to
the double symmetry of the joint, only one half of Navier’s distribution is defined, so the pressure p are
equal to zero on the bottom Keypoint of the line 2 and equal to −∆σnom on the top Keypoint of the Line
2 (Figure 2.8);

• Due to the antimetric loading, a symmetry boundary condition is applied only on the Line 7 and 10,
while a antisymmetry boundary condition is applied on the Line 1 (Figure 2.8). To eliminate any type of
lability, a keypoint belonging to one of the two symmetry axes has to be constrained along the y-direction
(uy = 0).
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2.1 Description of transverse attachments geometries

Figure 2.8: Gurney 3rd joint inside Ansys®APDL environment. S indicate the symmetry boundary condition and A the

antimetric boundary condition, while the red arrow represents the external pressure

2.1.4 Gurney 1991, 4th specimen

The fourth joint analysed is a T-shape joint and initially studied by Gurney in 1991. The dimensions of it are
defined in the following table and figure:

2a [mm] t [mm] b [mm]

6 6 6

Table 2.9: Dimension of the 4th joint

Figure 2.9: Gurney 4th joint, the quotes are expressed in [mm].

The experimental data are defined in the following table in terms of nominal stress ∆σnom:
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Stress Ratio

R

∆σnom

[MPa]
Nf [cycles]

0

300 135 000
260 237 000
200 407 000
190 573 000
180 665 000
160 1 525 000
150 1 534 000
140 2 601 000

Table 2.10: Experimental data of the 4th joint

The modelling procedure in Ansys®APDL is briefly described:

• Thanks to the symmetry of the transverse NLC joint, only 1/2 of the joint is created to reduce the com-
putational time;

• A root has been created and it is characterized by a initial opening length equal to 0.1mm;

• The third specimen is subjected to a bending load and it is applied on the main plate as a linear pressure.
The bending solicitation follows the Navier’s linear stress distribution and so the value of the nominal
stress inside the Table 2.8 represents the maximum stress reached at the top of the main plate. Due to the
symmetry of the joint,the Navier’s distribution is defined as following: the pressure p are equal to ∆σnom

on the bottom Keypoint of the line 2 and equal to −∆σnom on the top Keypoint of the Line 2 (Figure

2.10);

• A symmetry boundary condition is applied only on the Line 7 and 10 (Figure 2.10). To eliminate any
type of lability, a keypoint belonging to the axes of symmetry has to be constrained along the y-direction
(uy = 0).

Figure 2.10: Gurney 4th joint inside Ansys®APDL environment. S indicate the symmetry boundary condition, while the

red arrow represents the external pressure

2.2 NSIFs (Notch Stress Intensity Factors) approach

According to the non-conventional LEFM extension to sharp V-notches, the V-notch area is subjected to a
non-linear stress concentration due to the structural geometry change and weld profile itself. The intensity of
the asymptotic local stress field is expressed by the notch stress intensity factors NSIFs under fracture modes
I, II and III (Figure 1.11). Thanks to the knowledge of the NSIFs value, the fatigue life of the welded joint
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characterized by a sharp V-notches, can be estimate.

The weld toe of each specimens is subjected to pure mode I because it is characterised by a V-notch open-
ing angle 2α equal to 135°. Indeed, referring to graph of the Williams eigenvalues trend in Figure 1.13, mode
II is not singular for V-notch opening angle greater than 102.5°, so λ2 = 0. Due to the absence of out-plane
shear stresses, mode III is null.
On the other hand, the root of each specimens is characterised by a V-notch opening angle 2α equal to 0°, so
it is subjected to mode I and also mode II, indeed on the root is applied a shear stress and the value of λ2 is
different from zero due to the V-notch opening angle lower than 102.5°. For the same consideration of the weld
toe, mode III is null.
According to Gross and Mendelson definition [21] and Figure 2.11, the NSIFs are defined by the following
equations:

K1 =
√

2π lim
r→0+

r1−λ1 ·σθθ(r,θ=0)
(2.1)

K2 =
√

2π lim
r→0+

r1−λ2 · τrθ(r,θ=0)
(2.2)

Figure 2.11: V-notch with a cylindrical local reference system [23]

where:

• r is the radial distance from the V-notch tip;

• σθθ(r,θ=0)
,τrθ(r,θ=0)

are the stress values for θ = 0°(along the V-notch bisector), r tending to 0 mm;

• λ1,λ2 are the Williams’ eigenvalues that depend on the opening angle 2α of the V-notch. They express
the grade of singularity of the stress field.

Each specimen is characterised by a V-notch opening angle 2α equal to 135° and so the corresponding
eigenvalues λ1 and λ2 are reported in the following table:

2α [°] λ1 (Mode I) λ2 (Mode II)

135 0.674 1.302

Table 2.11: Value of λ1 and λ2 in function of the opening angle 2α

2.2.1 Calculation of NSIFs in Ansys®APDL

The following procedure refers to the 1st specimen (Maddox 1991) but it can be similarly extended for the
other joints.
The four-node linear element PLANE 182 is chosen inside Ansys®APDL, with Simple Enhanced Strain as
Key Options 1 and Plane Strain as Key Options 3.
To calculate the NSIFs K1 and K2, the local stress distributions along the V-notch and root bisector are needed.
Due to the non-linear stress increase at V-notch area and root area, the dimension of the finite element has to be
very small (Global Element Size ∼= 10−5mm) to perceive the local stress. For this reason, an right mesh must
be laid on the model with small transition towards notch-tip and root.
To reach this objective, the following procedure is applied:
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1. Three circular areas is created with the center at the weld toe and root tip, with respective diameters
Φ1 = 0.0002mm, Φ2 = 0.56mm and Φ1 = 1.4mm, as indicated in Figure 2.12 and Figure 2.13.This
choice of the diameters allows a smooth element transition and the second one will be useful for SED
approach

Figure 2.12: Three circular areas with the center on the weld tip

Figure 2.13: Three circular areas with the center on the root tip

2. For the mesh of the first circle:

(a) The radial line are divided in five parts, with spacing equal to 1;

(b) The arc of 45° is divided in four parts, with spacing equal to 1 (only for the weld toe);

(c) The arcs of 90° are divided in 8 parts, with unitary spacing ratio. The all arcs of the root are divided
with these options;

(d) To guide the mesh during its creation, a concentration keypoint is created at the weld toe and root
tip:

Meshing→SizeCNTRLS→ConcentratKPS→Create

with the following options:
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2.2 NSIFs (Notch Stress Intensity Factors) approach

• NPT is the keypoint located at weld toe or root tip;

• DELR=0.00002;

• RRat=1, NTHET=4 for 45° arc or 8 for 90°arc

Subsequently, the mesh can be created with free-mesh algorithm;

3. For the mesh of the second circle:

(a) The radial line are divided in fifty parts, with spacing equal to 2000;

(b) The arc of 45° is divided in four parts, with spacing equal to 1 (only for the weld toe);

(c) The arcs of 90° are divided in 8 parts, with unitary spacing ratio. The all arcs of the root are divided
with these options;

(d) The mesh can be created with mapped-mesh algorithm;

4. For the mesh of the third circle:

(a) The radial line are divided in five parts, with spacing equal to 2;

(b) The arc of 45° is divided in four parts, with spacing equal to 1 (only for the weld toe);

(c) The arcs of 90° are divided in 8 parts, with unitary spacing ratio. The all arcs of the root are divided
with these options;

(d) The mesh can be created with mapped-mesh algorithm;

5. A mesh obtained by mapped-mesh algorithm is laid on the remaining area with a global element size
changing according to the welded joint into account.

After this procedure, the size of the element inside the smaller circular sector is equal to 0.00005mm at
weld toe and root as shown Figure 2.14 and Figure 2.15.

Figure 2.14: Mesh pattern for the 1st specimen at the weld toe
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Figure 2.15: Mesh pattern for the 1st specimen at the root

After the creation of the mesh, the system can be solved:

Solution→ Solve → Current LS

To obtain the singular stress field along the V-notch bisector at the weld toe and root, a local reference
coordinate system X-Y-Z is created as shown Figure 2.11. To create it, the following procedure has to be
adopted:

1. The WorkPlane is displayed and placed through a offset at the weld toe Keypoint with the following
commands:

Utility Menu→Offset WorkPlane to→ Keypoint

2. The WorkPlane is rotated by an angle equal to 112.5° clockwise about the z-axis, as shown Figure 2.16.
With this rotation, the x-axis is aligned with the V-notch bisector and represents r in the equation (2.1)
and σyy replaces σθθr,θ=0 . The commands to rotate the WorkPlane are:

Utility Menu→Offset WP by Increments →Degrees

Figure 2.16: Rotation of WorkPlane by 112.5° clockwise about the z-axis

3. Subsequently, the local reference coordinate system is created in the WorkPlane origin with the following
commands:

Utility Menu→Local Coordinate System→Created Local CS→At WP origin
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2.2 NSIFs (Notch Stress Intensity Factors) approach

Figure 2.17: Creation of a local coordinate system at WP origin. As KCN option, a number greater then 10 must be

chosen; so 11 is defined.

4. To plot the results in the new coordinate system, the following commands are executed:

General Postproc →Option for Outp

Figure 2.18: Option for Output window.

5. The node belonging the V-notch bisector are used to create a path as shown Figure 2.19.The commands
to create the path are:

General Postproc → Path Operations → Define Path → By Nodes
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Figure 2.19: Selection of the nodes along the x-axis of the local reference system, from 0 to 0.28 mm.

6. The ∆σyy and x are plotted along the x-axis of the local reference system. In Ansys®, the ∆σyy and x are
defined as SY and S:

General Postproc→Path Operations →Define Path → Map onto Path →S/SY

The results are reported in in a double logarithmic graph with in abscissa the x values and in ordinate the
∆σyy values (Figure 2.20) for an external applied pressure ∆σnom = 1MPa.

Figure 2.20: Singular stress field along the V-notch bisector at the weld toe, in case of Maddox 1st specimen and 1 MPa

as nominal stress.

34



2.2 NSIFs (Notch Stress Intensity Factors) approach

As Figure 2.20 shows, the inverse slope of the asymptotic stress field k is equal to 0.327 and it is in good
agreement with the theoretical value k = 1−λ1 = 0.326.
Subsequently, the K1 value is detected by the averaging of the all points K1 along the path from x = 1.40 ·
10−4mm to x = 0.28mm, excluded the value for x = 0 because the graph is double logarithmic .To calculate the
K1, the equation (2.1) is used and the results are reported in the following graph:

Figure 2.21: K1 constancy in case of Maddox 1st specimen and 1 MPa as nominal stress.

The analytical result of the NSIF K1 for the weld toe when the specimen is subjected to a nominal stress of
1 MPa is:

K1 = 2.684MPa ·mm0.326 (2.3)

This result is in good agreement with the line intercept in Figure 2.21 and with the value found by Maddox
in 1987 [37]:

K1,graph = 2.676MPa ·mm0.326 (2.4)

K1,Maddox = 2.633MPa ·mm0.326 (2.5)

Thus, the relative error expresses in percentage between the analytical NSIF K1 and the K1 calculated by
Maddox is:

∆% =
K1,analytical −K1,Maddox

K1,Maddox

·100 = 1.93% (2.6)
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The same procedure is executed for the calculation of NSIFs K1 and K2 at the root with the following
differences:

1. The local coordinate system is placed at the root tip and the WorkPlane is rotated by 180° clockwise
about the z-axis. The result can be shown in the following figure:

Figure 2.22: Local reference system with the center at root tip

2. The number of the local reference system is 12:

Figure 2.23: Creation of a local coordinate system at WP origin. As KCN option, a number greater then 10 must be

chosen; so 12 is defined.

3. The node belonging the V-notch bisector are used to create a path as shown Figure 2.24:

Figure 2.24: Selection of the nodes along the x-axis of the local reference system, from 0 to 0.28 mm.
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4. The ∆σyy,∆τxy (to calculate K2) and x are plotted along the x-axis of the local reference system. In
Ansys®, the ∆σyy, ∆τxyand x are defined as SY, SXY and S:

General Postproc→Path Operations →Define Path → Map onto Path →S/SY/SXY

The results are reported in in a double logarithmic graph with in abscissa the x values and in ordinate the
∆σyy/∆τxy values (Figure 2.20) for an external applied pressure ∆σnom = 1MPa.

Figure 2.25: Singular stress field (∆σyy) along the V-notch bisector at the weld root, in case of Maddox 1st specimen and

1 MPa as nominal stress.

Figure 2.26: Singular stress field (∆τxy) along the V-notch bisector at the weld root, in case of Maddox 1st specimen and 1

MPa as nominal stress.

As Figure 2.25 and Figure 2.26 show, the inverse slope of the asymptotic stress field k is equal to 0.502 for
∆σyy and 0.472 for ∆τxy.These values are in good agreement with the theoretical value k = 1−λ1 = 0.5 and
k = 1−λ2 = 0.5.
Subsequently, the K1 and K2 values are detected by the averaging of the all points K1 and K2 along the path from
x = 1.40 · 10−4mm to x = 0.28mm, excluded the value for x = 0 because the graph is double logarithmic .To
calculate the K1 and K2, the equations (2.1)-(2.2 are used and the results are reported in the following graphs:
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Figure 2.27: K1 constancy in case of Maddox 1st specimen and 1 MPa as nominal stress.

Figure 2.28: K2 constancy in case of Maddox 1st specimen and 1 MPa as nominal stress.

The analytical results of the NSIFs K1 and K2 for the weld root when the specimen is subjected to a nominal
stress of 1 MPa are:

K1 = 0.485MPa ·mm0.5 (2.7)

K2 = 0.181MPa ·mm0.5 (2.8)

This results are in good agreement with the line intercept in Figure 2.27 and Figure 2.28:

K1 = 0.482MPa ·mm0.5 (2.9)

K2 = 0.198MPa ·mm0.5 (2.10)

The values of K1 and K2 at the root were not calculated by Maddox in 1987;indeed he did not consider the
influence of the weld root.
For this reason the comparison with the literature is not possible.
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2.2.2 NSIFs K1 and K2 results

Thanks to the linear elasticity hypothesis, the K1 and K2 values can be defined for different loading conditions
with the following expression:

K1/2,gen =
∆σgen

∆σre f

·K1/2,re f (2.11)

where:

• K1/2,gen is a generic value of K1 or K2 for a generic loading condition that has to be detected:

• ∆σgen is the respective applied nominal stress;

• K1/2,re f is the reference value of NSIFs that are already detected;

• ∆σre f is the reference nominal stress.

The results obtained by the re-elaboration of each set of experimental data are displayed on the following
tables in terms of NSIFs K1 and K2 for the root and weld toe.

Specimen type and load ∆σnom [MPa]
K1,weld−toe

[MPa·mm0.326]
Nf [cycles]

Maddox 1st specimen

Transverse NLC/axial

200 536.75 192 000
140 375.73 507 000
100 268.38 2 937 000
80 214.70 4 297 000

Gurney 2nd specimen

Transverse NLC/axial

150 913.63 109 000
120 730.91 224 000
100 609.09 322 000
65 395.91 1 153 000
55 335.00 2 147 000

Gurney 3rd specimen

Transverse NLC/bending

260 778.93 120 000
220 659.10 200 000
180 539.26 302 000
140 419.42 744 000
120 359.51 1 180 000
110 329.55 2 158 000

Gurney 4th specimen

T-shape joint/bending

300 578.07 135 000
260 500.99 237 000
200 385.38 407 000
190 366.11 573 000
180 346.84 665 000
160 308.30 1 525 000
150 289.03 1 534 000
140 269.76 2 601 000

Table 2.12: Results of K1 at the weld toe
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Specimen type and load
∆σnom

[MPa]

K1,root

[MPa·mm0.5]
K2,root

[MPa·mm0.5]
Nf [cycles]

Maddox 1st specimen

Transverse NLC/axial

200 97.01 36.29 192 000
140 67.91 25.40 507 000
100 48.50 18.14 2 937 000
80 38.80 14.51 4 297 000

Gurney 2nd specimen

Transverse NLC/axial

150 399.03 352.42 109 000
120 319.22 281.93 224 000
100 266.02 234.94 322 000
65 172.91 152.71 1 153 000
55 146.31 129.22 2 147 000

Gurney 3rd specimen

Transverse NLC/bending

260 144.43 53.96 120 000
220 122.21 45.66 200 000
180 99.99 37.36 302 000
140 77.77 29.06 744 000
120 66.66 24.91 1 180 000
110 61.10 22.83 2 158 000

Gurney 4th specimen

T-shape joint/bending

300 99.12 0.81 135 000
260 85.91 0.70 237 000
200 66.08 0.54 407 000
190 62.78 0.51 573 000
180 59.47 0.49 665 000
160 52.87 0.43 1 525 000
150 49.56 0.40 1 534 000
140 46.26 0.38 2 601 000

Table 2.13: Results of K1 at the root

As the tables show, the weld toe area is characterised by NSIF K1 greater than the root region.
Since the V-notch opening angle 2α at the weld toe is the same for each specimens (135°), the grade of
singularity is the same, so the comparison in terms of NSIF K1 is possible. Indeed the all re-elaborated data are
collected together and subjected to a statistical analysis: the results are reported in the Figure 2.29, where the
inverse slope is set to k = 3, in agreement with the literature and the red line represents the design curve obtained
by statistical analysis with the re-elaborated data. The graph represented in Figure 2.29 is also characterized
by the presence of the K1 design curve proposed by Lazzarin and Tovo [6] (Black lines).

Figure 2.29: Fatigue strength in terms of K1, calculated at the weld toe.
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2.3 Nominal Stress approach

The following conclusions can be defined:

1. The NSIFs approach has correctly defined that the crack initiation point is the weld toe, according to the
experimental results;

2. The all experimental data fall above the lines that represents the 97.7% of probability of survival. Thus,
the NSIF K1 design curve has demonstrated to be effective and conservative

3. The theoretical scatter band amplitude TK is equal to 1.85 and it is lower than the re-elaborated TK that is
2.63. This is due to that during the re-elaboration only 23 data have been employed.

2.3 Nominal Stress approach

As described in the paragraph 1.1, the Nominal Stress approach is the most common method for the fatigue
assessment of welded joints. According to the IIW recommendations written by Hobbacher [1], the nominal
stress approach evaluate the maximum principal stress in the section where crack is more likely to develop and
propagate.

2.3.1 Results of Nominal Stress approach

The results of the re-elaboration of each set of data are reported in terms of maximum nominal stress calculated
in the main plate of each specimen. The results are displayed on the following table only for the weld toe
region:

Specimen type and load ∆σnom [MPa] Nf [cycles]

Maddox 1st specimen

Transverse NLC/axial

200 192 000
140 507 000
100 2 937 000
80 4 297 000

Gurney 2nd specimen

Transverse NLC/axial

150 109 000
120 3 224 000
100 322 000
65 1 1 153 000
55 2 147 000

Gurney 3rd specimen

Transverse NLC/bending

260 120 000
220 200 000
180 302 000
140 744 000
120 1 180 000
110 2 158 000

Gurney 4th specimen

T-shape joint/bending

300 135 000
260 237 000
200 407 000
190 573 000
180 665 000
160 1 525 000
150 1 534 000
140 2 601 000

Table 2.14: Results in terms of nominal stress at the weld toe
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The results are reported in the Figure 2.30, where the inverse slope is set to k = 3, in agreement with the
literature and the black line represents the design curve obtained by statistical analysis with the re-elaborated
data.

Figure 2.30: Fatigue strength in terms of nominal stress range, calculated at the weld toe.

The following conclusions can be defined:

1. The all experimental data fall above the lines that represents the 97.7% of probability of survival.

2. The scatter band amplitude Tσ is equal to 6.59 and it is very large, due to that during the re-elaboration,
only 23 data have been employed. Furthermore, the fatigue is a local phenomenon , which focuses on
the crack initiation and development in the V-notch area.

3. If each data set is subjected by a singular statistical analysis, the inverse slope k is ranged from 2.9 to
3.73. This is another fact that justify the large scatter band.

2.4 SED (Strain Energy Density) approach

As described in the paragraph 1.3.2, the SED approach is a energetic criterion, proposed by Lazzarin and
Zambarandi [25] in 2001 to overcome the limits of NSIFs approach. This method derive from the Neuber’s idea
of structural volume. Indeed, the Averaged Strain Energy Density (SED) inside a circular sector of radius R0

with the center in the V-notch tip, is the critical parameter to valuate the fatigue strength of welded components.
The typical values of R0 are 0.28mm for steel structures and 0.12mm for aluminium alloys.

2.4.1 Calculation of SED in Ansys®APDL

The following procedure refers to the 1st specimen (Maddox 1991) but it can be similarly extended for the
other joints.
The four-node linear element PLANE 182 is chosen inside Ansys®APDL, with Simple Enhanced Strain as
Key Options 1 and Plane Strain as Key Options 3.
First of all, the circular sector of radius R0 = 0.28mm is created with the center respectively at the weld toe tip
and root tip as Figure 2.31a-2.31b shows:
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(a) (b)

Figure 2.31: Modelling of the structural volume around the weld toe and root tip.

To create the mesh of the model, the following procedure are executed:

1. The element inside the structural volume are characterised by a global element size equal to 0.05mm:

Figure 2.32: Mesh of the structural volume at the weld toe with global element size of 0.05mm

Figure 2.33: Mesh of the structural volume at the root with global element size of 0.05mm

2. Two circular sectors with a radius equal to 0.7 mm, are created around the structural volume, as Figure

2.34 shows, to guarantee a smooth element transition towards the circular sector.
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Figure 2.34: The Circular sector to guarantee a smooth element transition are coloured in blue

3. The element inside circular sector with a radius of 0.7mm, are characterised by a global element size

equal to 0.1mm.

Figure 2.35: Smooth transition towards circular sectors

Figure 2.36: Smooth transition towards circular sectors

4. A mesh obtained by free-mesh algorithm is laid on the remaining area with a global element size changing
according to the welded joint into account.
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After the creation of the mesh, the system can be solved:

Solution→ Solve → Current LS

The averaged Strain Energy Density is defined as the energy contained inside the structural volume. To
define this value, the element belonging the structural volume have to be selected with the following commands:

Utility Menu→ Select → Entities→ Areas→ By Num/Pick→ From Ful

Utility Menu→ Select → Entities→ Elements→ Attached to→ Areas

Subsequently, two Element Table are created :

1. The first one to define the energy inside each element selected. This Element Table is called SENE;

2. The second one to define the volume of each element selected. This Element Table is called VOLU;

The commands to create the Element Table are:

General Postproc→Element Table→Define Element Table →SENE/VOLU

Figure 2.37: Element Table in Ansys®APDL

After the creation of the Element Tables, each single element SENE and VOLU values must be summed
with the following commands:

General Postproc→Element Table→Sum of Each Item

Finally, the averaged Strain Energy Density value can be calculated with the following expression:

∆ ÅWFEM =
∑V (R0)WFEM,i

V (R0)
=

SENE

VOLU
(2.12)

The result of SED for the weld toe when the specimen is subjected to a nominal stress of 1 MPa is:

SENE = 1.44 ·10−6MJ (2.13)

VOLU = 0.153187mm3 (2.14)

SED =
SENE

VOLU
=

1.44 ·10−6

0.153187
= 9.39 ·10−6 MJ

m3 (2.15)

The result of SED for the root when the specimen is subjected to a nominal stress of 1 MPa is:

SENE = 3.43 ·10−7MJ (2.16)

VOLU = 0.244280mm3 (2.17)

SED =
SENE

VOLU
=

3.43 ·10−7

0.24428
= 1.40 ·10−6 MJ

m3 (2.18)

45



Chapter 2: Numerical analysis of experimental data to detect the NSIFs, SED and PSM parameters

2.4.2 SED results

Thanks to the linear elasticity hypothesis, the SED value can be defined for different loading conditions with
the following expression:

SEDgen =

(

∆σgen

∆σre f

)2

·SEDre f (2.19)

where:

• SEDgen is a generic value of the SED for a generic loading condition that has to be detected:

• ∆σgen is the respective applied nominal stress;

• SEDre f is the reference value of SED that are already detected;

• ∆σre f is the reference nominal stress

One important thing to underline is that the comparison of stress field between V-notch with different
opening angle is possible because the fatigue resistance is expressed in terms of energy (SED), so the unit of
measure remain constant.
The results obtained by the re-elaboration of each set of experimental data are displayed on the following tables
in terms of SED for the root and weld toe.

Specimen type and load ∆σnom [MPa] SED [MJ/m3] Nf [cycles]

Maddox 1st specimen

Transverse NLC/axial

200 0.38 192 000
140 0.18 507 000
100 0.09 2 937 000
80 0.06 4 297 000

Gurney 2nd specimen

Transverse NLC/axial

150 1.09 109 000
120 0.70 224 000
100 0.49 322 000
65 0.21 1 153 000
55 0.15 2 147 000

Gurney 3rd specimen

Transverse NLC/bending

260 0.80 120 000
220 0.57 200 000
180 0.39 302 000
140 0.23 744 000
120 0.17 1 180 000
110 0.14 2 158 000

Gurney 4th specimen

T-shape joint/bending

300 0.42 135 000
260 0.32 237 000
200 0.19 407 000
190 0.17 573 000
180 0.15 665 000
160 0.12 1 525 000
150 0.11 1 534 000
140 0.09 2 601 000

Table 2.15: Results of SED at the Weld toe
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2.4 SED (Strain Energy Density) approach

Specimen type and load ∆σnom [MPa] SEDroot [MJ/m3] Nf [cycles]

Maddox 1st specimen

Transverse NLC/axial

200 0.056 192 000
140 0.027 507 000
100 0.014 2 937 000
80 0.009 4 297 000

Gurney 2nd specimen

Transverse NLC/axial

150 1.16 109 000
120 0.74 224 000
100 0.52 322 000
65 0.22 1 153 000
55 0.16 2 147 000

Gurney 3rd specimen

Transverse NLC/bending

260 0.111 120 000
220 0.079 200 000
180 0.053 302 000
140 0.032 744 000
120 0.024 1 180 000
110 0.020 2 158 000

Gurney 4th specimen

T-shape joint/bending

300 0.028 135 000
260 0.021 237 000
200 0.012 407 000
190 0.011 573 000
180 0.010 665 000
160 0.008 1 525 000
150 0.007 1 534 000
140 0.006 2 601 000

Table 2.16: Results of SED at the root

As the tables show, the weld toe area is characterised by a SED value greater than the root region with the
exception of the 2nd specimen Gurney, where SED value of the root are major than the weld toe.
The all re-elaborated data are collected together and subjected to a statistical analysis: the results are reported
in the Figure 2.38, where the inverse slope is set to k = 1.5, in agreement with the literature and the red line
represents the design curve obtained by statistical analysis with the re-elaborated data. The graph represented in
Figure 2.38 is also characterized by the presence of the SED design curve proposed by Lazzarin and Zambardi
[25] (Black lines).

Figure 2.38: Fatigue strength in terms of SED, calculated at the weld toe.
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The following conclusions can be defined:

1. The SED approach has correctly defined that the crack initiation point is the weld toe, according to the
experimental results for 3 joints with only one exception: the 2nd specimen, where the value of the root
is higher than the weld toe;

2. The all experimental data fall above the lines that represents the 97.7% of probability of survival. Thus,
the SED design curve has demonstrated to be effective and conservative

3. The theoretical scatter band amplitude TW is equal to 1.819 and it is lower than the re-elaborated TW that
is 2.74. This is due to that during the re-elaboration only 23 data have been employed against the 900
experimental data available to Lazzarin and Zambardi [25].

2.5 PSM (Peak Stress Method) approach

As described in the paragraph 1.3.3, the objective of the Peak Stress method is to detect rapidly the value
of NSIFs for fatigue assessment of welded joints. Indeed, the NSIFs approach shows a major drawback in
engineering application, due to the very refined finite elements size at the V-notch tip (size = 10−5), causing an
increase of computational time.
The PSM wants to overcome the limits of NSIF’s approach and the peak stress method is characterized by two
principal advantages:

1. FE analysis require a coarser mesh than the NSIFs and SED approaches. Indeed the global element size
d can be higher than the control radius R0, unlike the "direct approach" to calculate the SED where is
necessary to have d < R0;

2. The post-process analysis require only one nodal peak stress instead of a large number of stress distance
values as in NSIFs approach;

As defined in the Chapter1, the PSM gives the correlation between the mode I,II and III NSIFs and the corre-
sponding peak stress component, as defined by the following equations:

K1
∼= K∗

FE ·σθθ ,θ=0,peak ·d1−λ1 (2.20)

K2
∼= K∗∗

FE · τrθ ,θ=0,peak ·d1−λ2 (2.21)

K3
∼= K∗∗∗

FE · τθz,θ=0,peak ·d1−λ3 (2.22)

where:

• K∗
FE ,K

∗∗
FE ,K

∗∗∗
FE are the calibration constants related to mode I,II,II and depend on the element type, the

software type, the mesh conformation and the nodal stress evaluation method;

• σθθ ,θ=0,peak,τrθ ,θ=0,peak,τθz,θ=0,peak are the peak nodal stresses detected at the V-notch profiles (see
Figure 1.14a);

• d is the global element size;

• λ1,λ2,λ3 are the Williams’ eigenvalues.
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2.5 PSM (Peak Stress Method) approach

Figure 2.39: Nodal stresses at the V-notch [24]

The equivalent stress peak is define in the equation (2.23):

σeq,peak =
√

f 2
w1 ·σ2

θθ ,θ=0,peak + f 2
w2 · τ2

rθ ,θ=0,peak + f 2
w3 · τ2

zθ ,θ=0,peak (2.23)

where:

• fwi,i=1,2,3 are the peak stresses corrective factors and are defined like follows as the equation (1.17):

fwi = K
j

FE ·
√

2ei

1−ν2 ·
(

d

R0

)1−λi
∣

∣

∣

∣ i=1,2,3
j=∗,∗∗,∗∗∗

(2.24)

• σθθ ,θ=0,peak,τrθ ,θ=0,peak,τ
2
zθ ,θ=0,peakare the nodal peak stresses defined in the paragraph 1.3.3.

2.5.1 Calculation of Equivalent Peak Stress in Ansys®APDL

The following procedure refers to the 1st specimen (Maddox 1991) but it can be similarly extended for the
other joints.
The four-node linear element PLANE 182 is chosen inside Ansys®APDL, with Simple Enhanced Strain as
Key Options 1 and Plane Strain as Key Options 3.
As defined during in the paragraph 2.2, the weld toe is subjected to pure mode I because it is characterised by
a V-notch opening angle 2α equal to 135°.
On the other hand, the root is characterised by a V-notch opening angle equal to 0°, so it is subjected to mode I
and also mode II.
Under mode I and mode II, the PSM requirements are defined in the following table:

Mode I

Element type
Mesh

algorithm
(a/d)min 2α

Mesh Pattern

2α<90°

Mesh Pattern

2α>90°

Plane 182
KeyOpt:Simple

Enhanced Strain

+ Plane Strain

Free 3 0°<2α<135°
Four adjacent

elements share the
same node

Two adjacent
elements share the

same node

Mode II

Plane 182
KeyOpt:Simple

Enhanced Strain

+ Plane Strain

Free 14 0°<2α<135°
Four adjacent

elements share the
same node

Four adjacent
elements share the
same node up to

2α =102.5°

Table 2.17: Requirements for PSM.
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Chapter 2: Numerical analysis of experimental data to detect the NSIFs, SED and PSM parameters

The mode I PSM calibration constant is equal to K∗
FE = 1.38± 3%, instead for mode II the calibration

constant is equal to K∗∗
FE = 3.38±3%.

The size of the element is obtained with the following procedure:

1. From literature the ratio (a/d)min is determined. In this case there are 2 ratio: the first one for mode I
and the second for mode II. The highest ratio is chosen;

2. The value of a is the reference dimension for selecting the maximal FE sizes d for PSM application and
is defined as the minimum value between:

(a) Half joint main plate thickness that for the 1st specimen is equal to a = 13/2 = 6.5

(b) The minimum value between z and l, where z is the weld leg (8mm in this case) and l is the depth
of root face (5mm in this case) as the figure below shows

Figure 2.40: Indication for z and l [11]

so the minimum is l, the depth of the root face;

3. Subsequently, the minimum element size is defined as follow:

dmin =
a

14
=

5
14

= 0.357mm (2.25)

4. The chosen dimension of elements is 0.3mm

The λ1,e1 λ2 and e2 values are depended on the V-notch opening angle 2α , that is 135° for the weld toe and
0° for the root:

2α [°] λ1 (Mode I) e1 (Mode I) λ2 (Mode II) e2 (Mode II)

135° 0.674 0.117 / /
0° 0.5 0.133 0.5 0.341

Table 2.18: Value of λ1,e1,λ2 and e2 in function of the opening angle 2α
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2.5 PSM (Peak Stress Method) approach

The corrective stress factors for mode I and II are calculated with the equation (2.24) for the weld toe and
root. The results are reported in the Table 2.19

2α [°] fw1 fw2

135° 0.716 /
0° 0.775 3.029

Table 2.19: Values of the corrective stress factors fw1 and fw2 in function of the opening angle 2α

Finally, the mesh can be laid on the model and the results is displayed on the Figure 2.41:

Figure 2.41: Mesh conformation with global element size d = 0.3mm

After the application of load and constraint in according to the paragraph 2.1.1 , the system can be solved:

Solution→ Solve → Current LS

The results of the first principal stress is plotted with the following commands in the Figure 2.42:

General Postproc→ Plot Results → Contour Plot→Nodal Solution→Stress→1st Principal Stress

Figure 2.42: Plot of 1st principal stress in Maddox 1987 1st specimen, for an external applied nominal stress range of

1MPa. In black the global coordinate system.
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In reference to Figure 2.42, the peak stress ∆σθθ ,θ=0,peak must be evaluated in the most solicited point of
the model, for example the weld toe tip. To obtain a very accurate results of the peak stress ∆σθθ ,θ=0,peak,
the rigorous procedure is to create a local coordinate system as the one adopted for the detection of K1. If the
structure is subjected to pure mode I loading, the 1st principal stress can be approximated equal to the local
stress ∆σyy. Due to the presence of the root, this approximation can not be done because the root is subjected
to mode I and II.
Thus, a local coordinate systems are created at the weld toe and root to detect the stress ∆σyy. The procedure
for local system creation is the same describe in the paragraph 2.2.1 for the NSIFS detection.
For an external applied nominal stress range ∆σnom = 1MPa, the maximum ∆σyy is located at the weld toe tip
for three specimens with only one exception: Gurney 1991 2nd specimen, where the peak stress is placed at
the weld root.
In the case of Maddox 1987 1st specimen the results at the weld toe and root are:

∆σyy,weld−toe = ∆σθθ ,θ=0,peak = 2.78MPa (2.26)

∆σyy,root = ∆σθθ ,θ=0,peak =−0.64MPa (2.27)

∆τxy,root = ∆τrθ ,θ=0,peak =−0.13MPa (2.28)

(2.29)

Defined the peak stresses, K1,K2 and ∆σeq,peak can be calculated with the formulae (2.20)-(2.21) and (2.23):

∆K1,weld−toe
∼= K∗

FE ·σθθ ,θ=0,peak ·d1−λ1 = 1.38 ·2.78 ·d1−0.674 = 2.59MPamm0.326 (2.30)

∆K1,root
∼= K∗

FE ·σθθ ,θ=0,peak ·d1−λ1 = 1.38 · |0.64| ·d1−0.5 = 0.48MPamm0.5 (2.31)

∆K2,root
∼= K∗∗

FE · τrθ ,θ=0,peak ·d1−λ2 = 3.38 · |0.13| ·d1−0.5 = 0.25MPamm0.5 (2.32)

∆σeq,peak,weld−toe = ∆σθθ ,θ=0,peak · fw1 = 2.78 ·0.716 = 1.987MPa (2.33)

∆σeq,peak,root =
√

f 2
w1 ·σ2

θθ ,θ=0,peak + f 2
w2 · τ2

rθ ,θ=0,peak

=
√

0.7752 · (−0.64)2 +3.0292 · (−0.13)2 = 0.64MPa

(2.34)

This result is in good agreement with the value found by Maddox in 1987 [37]:

∆σeq,peak,Maddox = 1.87MPa (2.35)

Thus, the relative error expresses in percentage between the calculated ∆σeq,peak and the ∆σeq,peak,Maddox

calculated by Maddox is:

∆% =
∆σeq,peak,calculated −∆σeq,peak,Maddox

∆σeq,peak,Maddox

·100 = 6.25% (2.36)
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2.5 PSM (Peak Stress Method) approach

2.5.2 PSM results

Thanks to the linear elasticity hypothesis, the equivalent peak stress can be defined for different loading condi-
tions with the following expression:

∆σeq,peak,gen =
∆σgen

∆σre f

·∆σeq,peak,re f (2.37)

where:

• ∆σeq,peak,gen is a generic value of the equivalent peak stress for a generic loading condition that has to be
detected;

• ∆σgen is the respective applied nominal stress;

• ∆σeq,peak,re f is the reference value of equivalent peak stress that are already detected;

• ∆σre f is the reference nominal stress.

One important thing to underline is that the comparison of stress field between V-notch with different
opening angle is possible because the fatigue resistance is expressed in terms of equivalent peak stress, so the
unit of measure remain constant.
The results obtained by the re-elaboration of each set of experimental data are displayed on the following tables
in terms of ∆σeq,peak and K1/2 for the root and weld toe. Furthermore, inside the table is reported the dimension
od the element for each geometry.

Specimen type,load and

element dimension

∆σnom

[MPa]

∆σeq,peak,weld−toe

[MPa]

K1,weld−toe

[MPa·mm0.326]
Nf [cycles]

Maddox 1st specimen

Transverse NLC/axial,

d=0.3mm

200 397.38 517.48 192 000
140 278.17 362.24 507 000
100 198.69 258.74 2 937 000
80 158.95 206.99 4 297 000

Gurney 2nd specimen

Transverse NLC/axial,

d=1mm

150 692.06 901.22 109 000
120 553.65 720.97 224 000
100 461.37 600.81 322 000
65 299.89 390.53 1 153 000
55 253.76 330.45 2 147 000

Gurney 3rd specimen

Transverse

NLC/bending,

d=0.4mm

260 577.35 751.84 120 000
220 488.53 636.17 200 000
180 399.70 520.50 302 000
140 310.88 404.84 744 000
120 266.47 347.00 1 180 000
110 244.26 318.09 2 158 000

Gurney 4th specimen

T-shape joint/bending,

d=0.2mm

300 429.77 559.66 135 000
260 372.47 485.04 237 000
200 286.52 373.11 407 000
190 272.19 354.45 573 000
180 257.86 335.80 665 000
160 229.21 298.47 1 525 000
150 214.89 279.83 1 534 000
140 200.56 261.18 2 601 000

Table 2.20: Results of PSM approach at the weld toe
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Specimen type,load

and element dimension

∆σnom

[MPa]

∆σeq,peak,root

[MPa]

K1,root

[MPa·mm0.5]
K2,root

[MPa·mm0.5]
Nf

[cycles]

Maddox 1st specimen

Transverse NLC/axial,

d=0.3mm

200 128.00 96.87 49.33 192 000
140 89.60 67.81 34.53 507 000
100 64.00 48.43 24.67 2 937 000
80 51.20 38.75 19.73 4 297 000

Gurney 2nd specimen

Transverse NLC/axial,

d=1mm

150 706.31 387.22 357.54 109 000
120 565.05 309.78 286.03 224 000
100 470.87 258.15 238.36 322 000
65 306.07 167.80 154.93 1 153 000
55 258.98 141.98 131.10 2 147 000

Gurney 3rd specimen

Transverse

NLC/bending,

d=0.4mm

260 182.8 1 144.39 65.52 120 000
220 154.68 122.18 55.44 200 000
180 126.56 99.97 45.36 302 000
140 98.44 77.75 35.28 744 000
120 84.37 66.64 30.24 1 180 000
110 77.34 61.09 27.72 2 158 000

Gurney 4th specimen

T-shape joint/bending,

d=0.2mm

300 429.77 95.70 6.17 135 000
260 372.47 82.94 5.35 237 000
200 286.52 63.80 4.12 407 000
190 272.19 60.61 3.91 573 000
180 257.86 57.42 3.70 665 000
160 229.21 51.04 3.29 1 525 000
150 214.89 47.85 3.07 1 534 000
140 200.56 44.66 2.89 2 601 000

Table 2.21: Results of PSM approach at the weld root

As the tables show, the weld toe area is characterised by a equivalent peak stress value greater than the root
region with the exception of the 2nd specimen Gurney, where the peak stress value of the root are major than
the weld toe.
The all re-elaborated data are collected together and subjected to a statistical analysis: the results are reported
in the Figure 2.43, where the inverse slope is set to k = 3, in agreement with the literature and the red line
represents the design curve obtained by statistical analysis with the re-elaborated data. The graph represented
in Figure 2.43 is also characterized by the presence of the PSM design curve proposed by Meneghetti and
Lazzarin [5] (Black lines).

Figure 2.43: Fatigue strength in terms of equivalent peak stress, calculated at the weld toe.
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2.5 PSM (Peak Stress Method) approach

The following conclusions can be defined:

1. The PSM approach has correctly defined that the crack initiation point is the weld toe, according to the
experimental results for 3 joints with only one exception: the 2nd specimen, where the value of the t;

2. The all experimental data fall above the lines that represents the 97.7% of probability of survival. Thus,
the PSM design curve has demonstrated to be effective and conservative

3. The theoretical scatter band amplitude TW is equal to 1.90 and it is lower than the re-elaborated TW that
is 2.74. This is due to that during the re-elaboration only 23 data have been employed.

2.5.3 Comparison between Analytical and PSM-estimated K1

One of the most important advantages of the PSM approach is the possibility to detect rapidly the value of
NSIFs for fatigue assessment. For this reason, a comparison between the PSM-estimated and analytical K1

values ate the weld toe and root is performed:

Specimen type and

load

K1,weld−toe,PSM

[MPa·mm0.326]
K1,weld−toe,analytical

[MPa·mm0.326]
Rel. error

[%]

Maddox 1st specimen

Transverse NLC/axial

517.48 536.75

∼= 3.72%
362.24 375.73
258.74 268.38
206.99 214.70

Gurney 2nd specimen

Transverse NLC/axial

901.22 913.63

∼= 1.38%
720.97 730.91
600.81 609.09
390.53 395.91
330.45 335.00

Gurney 3rd specimen

Transverse

NLC/bending

751.84 778.93

∼= 3.60%

636.17 659.10
520.50 539.26
404.84 419.42
347.00 359.51
318.09 329.55

Gurney 4th specimen

T-shape joint/bending

559.66 578.07

∼= 3.29%

485.04 500.99
373.11 385.38
354.45 366.11
335.80 346.84
298.47 308.30
279.83 289.03
261.18 269.76

Table 2.22: Comparison between the PSM-estimated and the analytical K1 at the weld toe
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Specimen type and

load

K1,root,PSM

[MPa·mm0.5]
K1,root,analytical

[MPa·mm0.5]
Rel. error

[%]

Maddox 1st specimen

Transverse NLC/axial

96.87 97.01

∼= 0.14%
67.81 67.91
48.43 48.50
38.75 38.80

Gurney 2nd specimen

Transverse NLC/axial

387.22 399.03

∼= 3.05%
309.78 319.22
258.15 266.02
167.80 172.91
141.98 146.31

Gurney 3rd specimen

Transverse

NLC/bending

144.43 144.39

∼= 0.02%

122.18 122.21
99.97 99.99
77.75 77.77
66.64 66.66
61.09 61.10

Gurney 4th specimen

T-shape joint/bending

95.70 99.12

∼= 3.58%

82.94 85.91
63.80 66.08
60.61 62.78
57.42 59.47
51.04 52.87
47.85 49.56
44.66 46.26

Table 2.23: Comparison between the PSM-estimated and the analytical K1 at the weld root

As the tables show and in agreement with the theory, the totality of relative error falls below ±4%.

2.6 Geometry description of square chord with circular brace joint:

Gandhi (1998)

The fifth joint analysed is a tube-to-beam structure, studied by Gandhi in 1998 [39] under CAL (Constant
Amplitude Loading). The structure is characterised by a circular hollow section tube (CHS or Brace side)
welded on the top of a rectangular hollow section double cantilever beam (SHS or Chord side).
The principal information and mechanical properties about this typology of the joint are summarized in the
Table 2.24 and Table 2.25:

Weld condition Fracture location Load application

As-welded, non-load carrying
(NLC), full penetration

Weld toe, SHS and
CHS sides,

depending on the
geometry

Axial, main plate,
parent material °

Table 2.24: Information about the specimens

Material model
Yield strength fy

[MPa]

Young modulus

[MPa]

Poisson’s ratio

ν

API2H, Linear
elastic, isotropic

355 206000 0.3

Table 2.25: Information about mechanical properties
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2.6 Geometry description of square chord with circular brace joint: Gandhi (1998)

The geometry of this type of joint is defined in the Figure 2.44 and there are seven different type of structure
as Figure 2.45 shows.

Figure 2.44: Geometry of Gandhi structure. The quotes are defined in [mm] [39].

Figure 2.45: Seven different type of geometries for the same specimen [39].

The parameters of the weld profile for the Gandhi’s geometry number 4, are defined in the following table:

ρ weld toe tip [mm] Weld leg [mm] Weld flack angle [°] 2α

∼= 0 6.3 45
SHS: 135°
CHS: 135°

Table 2.26: Information about the weld profile

The experimental data for the Gandhi N°4 are defined in the table below in terms of nominal stress ∆σnom:

Stress ratio R ∆σnom[MP a] Nf [cycles]

-0.36 49.58
201 000 (complete fracture)

269 000 (through-the-thickness crack)

Table 2.27: Experimental data for Gandhi N°4
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The modeling procedure in Ansys®APDL is briefly described:

• Thanks to the double symmetry of the structure, only 1/4 of the joint is created to reduce the computa-
tional time;

• The structure is subjected to an axial load and it is applied to the CHS top sectional area as a constant
pressure equal to p =−∆σnom;

• Symmetry boundary conditions are applied on the highlighted area in the Figure 2.46-2.47.

Figure 2.46: Gandhi N°4 inside Ansys®APDL where the red circle highlights the area where the symmetry condition is

applied.

Figure 2.47: Gandhi N°4 inside Ansys®APDL where the red circle highlights the area where the symmetry condition is

applied.

2.7 PSM approach with Submodeling technique

The fatigue assessment for the structure Gandhi N°4 is performed by the application of Peak Stress Method
for 3D structures with the adoption of eight-node linear elements. As describe in the paragraph 1.3.3, the
submodelling technique is request.

Main Model

First of all, is necessary to study the main model and the ten-node quadratic element SOLID 187 is chosen in
Ansys®APDL with Pure Displacement Key Options 1, which means that the nodal forces are only dependent

58



2.7 PSM approach with Submodeling technique

on the displacements.
The main model is displayed on the Figure 2.48.The cut boundary is defined by a stress convergence analysis,
indeed four different meshes, with global element size respectively equal to 8, 5, 4 and 3 mm, are laid on the
main model.

Figure 2.48: Example of mesh with global element size equal to 3mm.

The parameter to complete the convergence analysis is the first principal stress range ∆σ11, obtained along
the x-axis that starts from the weld toe tip SHS side, as Figure 2.49 shows:

Figure 2.49: Direction of x-axis and path along which ∆σ11 is defined.

The results of the convergence stress analysis are reported in the following graph:
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Figure 2.50: Results of convergence stress analysis.

As Figure 2.50 shows, the cut boundary is placed at x = 50.8mm from the weld toe (chord side), where the
compatibility between the results is achieved.

Submodel

The next step is to create and study the sub model. The eight-node linear element SOLID 185 is chosen in
Ansys®APDL with Simple Enhanced Strain as Key Option 1.
When the Submodelling technique is employed, the reference system of the submodel must coincide with that
of the mainmodel because the sumodel’s boundary conditions are interpolated in the cut boundary with respect
to the main model reference system.
The weld toe is prevailing subjected to mode I because it is characterised by a opening angle 2α equal to 135°.
Indeed, referring to graph of the Williams eigenvalues trend in Figure 1.13, mode II is not singular for V-notch
opening angle greater than 102.5°, so λ2 = 0 and the mode III can be neglected. For this reason the equation
(2.20) is used.
Under mode I, the PSM, with Brick elements SOLID 185, requirements are define in the following table:

Mode I

Element type
Mesh

algorithm
(a/d)min 2α

Mesh Pattern

2α<90°

Mesh Pattern

2α>90°

Solid 185
KeyOpt:Pure

Displacement

Free 3 0°<2α<135°
Four adjacent

elements share the
same node

Two adjacent
elements share the

same node

Table 2.28: Requirements for PSM with Brick elements SOLID185.

The mode I PSM calibration constant is equal to K∗
FE = 1.38±3%.

To define the global element size of the model, the size of the element is obtained with the following procedure:

1. From literature the ratio (a/d)min is determined. In this case the ratio for pure mode I is chosen and it is
equal to 3;

2. The value of a is the reference dimension for selecting the maximal FE sizes d for PSM application and
is defined as lower thickness of the structure, so in this case is equal to 4.5mm;

3. Subsequently, the minimum element size is defined as follow:

dmin =
a

3
=

4.5
3

= 1.5mm (2.38)
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2.7 PSM approach with Submodeling technique

4. The chosen dimension of elements is 1 mm

The λ1 and e1 values are depended on the opening angle 2α , that is 135° for the weld toe at CHS and SHS
sides:

2α [°] λ1 (Mode I) e1 (Mode I)

135° 0.674 0.117

Table 2.29: Value of λ1 and e1 in function of the opening angle 2α

The corrective stress factors for mode I is calculated with the equation (2.24). The result is reported in the
Table 2.30

2α [°] fw1

135° 1.04

Table 2.30: Value of the corrective stress factors fw1 in function of the opening angle 2α

To create the submodel, the one possible procedure is the revolution by 90° about the global reference
system y-axis of the sectional area reported in Figure 2.52, which is pre-meshed with the same requirements
above-mentioned with elements PLANE 182 with Simple Enhanced Strain as Key Options 1 and Plane Strain

as Key Options 3. These elements after the extrusion, will be SOLID 185.
The number of extruded elements must be chosen to have cubic elements. For this reason two different sub-
models is created with different Extrude Options to obtain along the chord and the brace brick elements with
cubic shape:

1. The first submodel is used for the Brace’s tension analysis and the number of element division is obtained
with the following formula:

n◦o f division =
π ·φ
4d

=
π ·76
4 ·1 = 59.69 (2.39)

where φ is the diameter of the Brace (76mm) and d is the dimension of the elements (1mm in this case);

2. The second submodel is used for the Chord’s tension analysis and the number of element division is
obtained with the following formula:

n◦o f division =
π ·φ
4d

=
π ·85
4 ·1 = 66.76 (2.40)

where φ is the diameter of the Chord (85mm) and d is the dimension of the elements (1mm in this case);

To obtain a correct extrusion in Ansys®APDL, the following commands are used:

Preprocessor→Modelling→Operate→Extrude→Elem Ext Opts

SOLID 185 is selected as Element type number and as the number of element extrusion depend on which
submodel is created (see equation (2.39)-(2.40)). The Figure 2.51 shows the correct options for the extrusion.
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Figure 2.51: The element extrusion options.

Figure 2.52: The sectional area that has to be extruded.

After that, the area can be extruded with the commands below:

Preprocessor→Modelling→Operate→Extrude→Area→About Axis

The result is reported in the Figure 2.53:
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2.7 PSM approach with Submodeling technique

Figure 2.53: Submodel geometry.

The submodel is characterized by symmetry boundary conditions that are applied to the highlighted areas
in the Figure 2.54 with the following commands:

Preprocessor→Loads→Define Loads → Apply→Displacements→Symmetry B.C.→ on Areas

Figure 2.54: Selected area for the symmetry boundary condition.
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Figure 2.55: Selected area for the cut boundary condition.

To apply the nodal displacements to the nodes belonging to the cut boundary (Figure 2.55 represents the
area of it), the following procedure is applied:

1. First of all, the nodes attached to the cut boundary are selected with the following commands:

Select→Entities→Areas→From Full→ Selection of the Cur boundary areas

Select→Entities→Node→Attached to→Areas All

2. Subsequently, a file containing the coordinates of the cut boundary nodes is created:

Preprocessor→Modelling→Create→Nodes→Write Node File

where the file is saved with the extension name-file.node;

3. After that, the main model is opened again and solved. The displacements are interpolated in the cut
boundary nodal coordinates and the file with these information is saved with .cbdo extension as the
Figure 2.56 shows and with the following commands:

General Postproc→Submodelling→Interpolate DOF
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2.7 PSM approach with Submodeling technique

Figure 2.56: Window for configuration for Interpolate DOF.

4. The submodel is opened again and the nodal displacements are defined on the cut boundary with these
commands:

File→ Read Input from→submodel.cbdo

5. The system can be solved;

Solution→Solve→Current LS

2.7.1 PSM with Submodeling technique: results

Before the post-processing of the data, it is advised to disable the PowerGraphics option in Ansys®APDL
toolbar as Figure 2.57 shows, otherwise the output results are given by the average of only the superficial nodal
stresses, without considering the inner ones.

Figure 2.57: PowerGraphics disabled.

The structure is subjected to pure mode I loading, so in this situation it can be demonstrated that, in the case
that the stress flow is aligned with the external pressure direction, the first principal stress range ∆σ11 can be
approximated equal to local stress ∆σyy, evaluated with a local reference system with the origin placed on the
V-notch. To reduce the post-processing time, the first principal stress is replaced by ∆σyy and the results can be
observed in the Figure 2.58, for an external applied pressure equal to 49.58 MPa:
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Figure 2.58: Plot of the first principal stress on the sub model.

To obtain the trend of the nodal stress at the V-notch, brace and chord side, the nodes attached to the
respective lines are selected with the following commands:

Select→Entities→Lines→From full

Select→Entities→Nodes→Attached to→Lines all

The selection of the nodes belonging to the chord and brace lines must be done separately.
The results are plotted in function of the angular coordinate θ , that is range from 0° to 90° and it is defined in
Figure 2.59. The results are illustrated on the graph in Figure 2.60:

Figure 2.59: The angular coordinate θ .

Figure 2.60: Trend of the first principal stress respect with the angular coordinate θ along the chord and brace side.
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2.8 PSM approach with four-node Tetra element (Tetra 285)

For an external applied pressure ∆σnom = 49.58MPa, the maximum value is located at θ = 90◦ for both
sides:

∆σ11,chordside = 690.93MPa (2.41)

∆σ11,braceside = 705.60MPa (2.42)

The Notch stress intensity factor ∆K1 and the equivalent peak stress are calculated by the formulae (2.20)
and (2.23):

K1,chord−side
∼= K∗

FE ·σθθ ,θ=0,peak ·d1−λ1 = 1.38 ·690.93 ·11−0.674 = 953.48MPamm0.326 (2.43)

∆σeq,peak,chord−side = σθθ ,θ=0,peak · fw1 = 690.93 ·1.06 = 732.20MPa (2.44)

K1,brace−side
∼= K∗

FE ·σθθ ,θ=0,peak ·d1−λ1 = 1.38 ·705.60 ·11−0.674 = 973.73MPamm0.326 (2.45)

∆σeq,peak,brace−side = σθθ ,θ=0,peak · fw1 = 705.60 ·1.06 = 747.74MPa (2.46)

The PSM with Brick 185 defined that the brace is more solicited than the chord side. The experimental
fracture for Gandhi N°4 is located at the weld toe, CHS, so the PSM detects the crack initiation in the correct
location.

2.8 PSM approach with four-node Tetra element (Tetra 285)

The fatigue assessment for the structure Gandhi N°4 is performed by the application of Peak Stress Method for
3D structures with the adoption of four-node linear elements.
The element SOLID 285 is chosen from the Ansys®APDL library and this elements is characterised that it has
not Key option in its definition.
As defined in the paragraph 2.7, the model is prevailing subjected to mode I. Under mode I, the PSM require-
ments, with Tetra elements SOLID 285, are define in the following table:

Mode I

Element type
Mesh

algorithm
(a/d)min 2α Mesh Pattern

Solid 285
KeyOpt:none

Free 3 135°
No particular
indications

Table 2.31: Requirements for PSM with Brick elements SOLID 285.

The mode I PSM calibration constant is equal to K∗
FE = 1.75±22%.

The size of the element is obtained with the following procedure:

1. From literature the ratio (a/d)min is determined. In this case the ratio for pure mode I is chosen and it is
equal to 3;

2. The value of a is the reference dimension for selecting the maximal FE sizes d for PSM application and
is defined as lower thickness of the structure, so in this case is equal to 4.5mm;

3. Subsequently, the minimum element size is defined as follow:

dmin =
a

3
=

4.5
3

= 1.5mm (2.47)

4. The chosen dimension of elements is 1.5 mm

The λ1 and e1 values are depended on the opening angle 2α , that is 135° for the weld toe at CHS and SHS
sides:
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2α [°] λ1 (Mode I) e1 (Mode I)

135° 0.674 0.117

Table 2.32: Value of λ1 and e1 in function of the opening angle 2α

The corrective stress factors for mode I is calculated with the equation (2.24). The result is reported in the
Table 2.33

2α [°] fw1

135° 1.51

Table 2.33: Value of the corrective stress factors fw1 in function of the opening angle 2α

2.8.1 PSM with Tetra 4 elements: results

Before the post-processing of the data, it is advised to disable the PowerGraphics option in Ansys®APDL
toolbar as Figure 2.57 shows, otherwise the output results are given by the average of only the superficial nodal
stresses, without considering the inner ones.
To obtain the correct value of the equivalent peak stress with the application of PSM Tetra 285, three consider-
ations must be done:

1. The mesh is generate automatically by the free-mesh algorithm and it is intrinsically irregular,that is
the node of the notch tip could be shared by different elements having a important different shape and
size. For this reason, the peak stress could vary along the notch tip profile even in the case of a constant
applied NSIF [24]. This problem can be solved by introducing an average peak stress value,which has
been defined as the moving average on three adjacent vertex nodes, starting from the generic node n=k:

σ i, j,peak,n=k =
σi, j,peak,n=k−1 +σi, j,peak,n=kσi, j,peak,n=k+1

3

∣

∣

∣

n=node
(2.48)

2. Another important thing related to equation (2.48) is that only peak stresses calculated at vertex nodes of
tetra elements have be introduced in this equation, thus the stresses at mid-side nodes must be neglected
[30].

3. The V-notch profile edge nodes must be excluded from the average because they are affected by the nodal
values in the adjacent areas.

In the analysis with Tetra 285 elements, the structure is subjected to pure mode I loading, so in this situation
it can be demonstrated that, in the case that the stress flow is aligned with the external pressure direction, the
first principal stress range ∆σ11 can be approximated equal to local stress ∆σyy, evaluated with a local reference
system with the origin placed on the V-notch. To reduce the post-processing time, the first principal stress is
replaced by ∆σyy and the results can be observed in the Figure 2.61, for an external applied pressure equal to
49.58 MPa:
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Figure 2.61: Plot of the first principal stress.

To obtain the trend of the nodal stress at the V-notch, brace and chord side, the nodes attached to the
respective lines are selected with the following commands:

Select→Entities→Lines→From full

Select→Entities→Nodes→Attached to→Lines all

The selection of the nodes belonging to the chord and brace lines must be done separately.
The averaged and the non-averaged nodal ∆σ11 values are plotted in the following graph, respect to the angular
coordinate θ ,that is range from 0° to 90° and it is defined in Figure 2.59. The results are illustrated on the graph
in Figure 2.62:

Figure 2.62: Trend of the first principal stress respect with the angular coordinate θ along the chord and brace side.

For an external applied pressure ∆σnom = 49.58MPa, the maximum value is located at θ = 85◦ for both
sides:

∆σ11,chordside = 448.56MPa (2.49)

∆σ11,braceside = 465.77MPa (2.50)
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The Notch stress intensity factor ∆K1 and the equivalent peak stress are calculated by the formulae (2.20)
and (2.23):

K1,chord−side
∼= K∗

FE ·∆σθθ ,θ=0,peak ·d1−λ1 = 1.75 ·448.56 ·11−0.674 = 895.91MPamm0.326 (2.51)

∆σeq,peak,chord−side = ∆σθθ ,θ=0,peak · fw1 = 448.56 ·1.51 = 676.12MPa (2.52)

K1,brace−side
∼= K∗

FE ·∆σθθ ,θ=0,peak ·d1−λ1 = 1.75 ·465.77 ·11−0.674 = 930.29MPamm0.326 (2.53)

∆σeq,peak,brace−side = ∆σθθ ,θ=0,peak · fw1 = 465.77 ·1.51 = 702.07MPa (2.54)

The PSM with Tetra 285 defined that the brace is more solicited than the chord side. The experimental
fracture for Gandhi N°4 is located at the weld toe, CHS, so the PSM detects the crack initiation in the correct
location.

2.9 PSM approach with ten-node Tetra element (Tetra 187)

The fatigue assessment for the structure Gandhi N°4 is performed by the application of Peak Stress Method for
3D structures with the adoption of ten-node quadratic elements.
The element SOLID 187 is chosen from the Ansys®APDL library with Pure Displacement as Key Option 1,
which means that the nodal forces are only dependent on the displacements.
As defined in the paragraph 2.7, the model is prevailing subjected to mode I. Under mode I, the PSM require-
ments, with Tetra elements SOLID 187, are define in the following table:

Mode I

Element type
Mesh

algorithm
(a/d)min 2α Mesh Pattern

Solid 187
KeyOpt:Pure

Displacement

Free 1 135°
No particular
indications

Table 2.34: Requirements for PSM with Brick elements SOLID 187.

The mode I PSM calibration constant is equal to K∗
FE = 1.21±10%.

The size of the element is obtained with the following procedure:

1. From literature the ratio (a/d)min is determined. In this case the ratio for pure mode I is chosen and it is
equal to 1;

2. The value of a is the reference dimension for selecting the maximal FE sizes d for PSM application and
is defined as lower thickness of the structure, so in this case is equal to 4.5mm;

3. Subsequently, the minimum element size is defined as follow:

dmin =
a

1
=

4.5
1

= 4.5mm (2.55)

4. The chosen dimension of elements is 3 mm

The λ1 and e1 values are depended on the opening angle 2α , that is 135° for the weld toe at CHS and SHS
sides:
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2α [°] λ1 (Mode I) e1 (Mode I)

135° 0.674 0.117

Table 2.35: Value of λ1 and e1 in function of the opening angle 2α

The corrective stress factors for mode I is calculated with the equation (2.24). The result is reported in the
Table 2.36

2α [°] fw1

135° 1.31

Table 2.36: Value of the corrective stress factors fw1 in function of the opening angle 2α

2.9.1 PSM with Tetra 10 elements: results

Before the post-processing of the data, it is advised to disable the PowerGraphics option in Ansys®APDL
toolbar as Figure 2.57 shows, otherwise the output results are given by the average of only the superficial nodal
stresses, without considering the inner ones.
To obtain the correct value of the equivalent peak stress with the application of PSM Tetra 187, the same
consideration of PSM Tetra 285 must be done.

In the analysis with Tetra 187 elements, a series of local systems are created on each nodes along the brace
and chord side. To create these local systems, the following procedure has to be adopted:

1. The WorkPlane is displayed and the nodes along the chord side are selected with the following com-
mands:

Select→Entities→Lies→From full→click on the chord line

Select→Entities→Nodes→Attached to→Lines all

To eliminate the intermediate nodes, the following APDL command is applied:

NSLE,R,CORNER

this command select only the corner nodes;

2. Subsequently, the WorkPlane is placed through a offset at one node of chord side with the following
commands:

Utility Menu→Offset WorkPlane to→ Node

3. The WorkPlane is subjected to two rotation to obtain the correct orientation of the local system:

(a) The first rotation is characterised by an angle φ equal to 3.91° clockwise about the x-axis that is
obtained with the following equation:

φchord−side =
90

n◦nodes−1
=

90
24−1

= 3.91◦ (2.56)

With this rotation, the z-axis is tangent to the profile of the chord side.

(b) The second rotation is characterised by an angle equal to 112.5° clockwise about the z-axis. With
this rotation,the x-axis is aligned with the V-notch bisector and represents r in the equation (2.1)
and σyy replaces σθθr,θ=0 . The commands to rotate the WorkPlane are:

Utility Menu→Offset WP by Increments →Degrees

4. Subsequently, the local reference coordinate system is created in the WorkPlane origin with the following
commands:

Utility Menu→Local Coordinate System→Created Local CS→At WP origin
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Figure 2.63: Creation of a local coordinate system at WP origin. As KCN option, a number greater then 10 must be

chosen; so 11 is defined.

5. To plot the results in the new coordinate system, the following commands are executed:

General Postproc →Option for Outp

Figure 2.64: Option for Output window.

6. Before the creation of the another local reference system on the next node,is needed that the WorkPlane
is aligned to the global reference system to avoid mistakes. The commands to execute this operation are:

Utility Menu→Align WP with→Global Cartesian

The same procedure is executed for the brace side but with the first rotation angle defined as follows:

φBrace−side =
90

n◦nodes−1
=

90
21−1

= 4.50◦ (2.57)

The local reference system created are displayed on the Figure 2.65-2.66:
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Figure 2.65: Local reference system along the chord and brace side.

Figure 2.66: Local reference system along the chord and brace side.

During the analysis of the results, the first principal stress is evaluated and compared with ∆σyy. The results
of the first principal stress can be observed in the Figure 2.67, for an external applied pressure equal to 49.58
MPa:

Figure 2.67: Plot of the first principal stress.

The results of the nodal tension ∆σyy and ∆σ11 along the chord and the brace and the relative comparison,
are reported in the Appendix A.
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The averaged and the non-averaged nodal ∆σyy values are plotted in the following graph, respect to the angular
coordinate θ :

Figure 2.68: ∆σyy stress averaged and non-averaged, in function of angular coordinate θ along chord and brace side.

For an external applied pressure ∆σnom = 49.58MPa, the maximum value is located at θ = 81◦ for both
sides:

∆σyy,chordside = 516.28MPa (2.58)

∆σ11,chordside = 519.76MPa (2.59)

∆σyy,braceside = 572.29MPa (2.60)

∆σ11,braceside = 574.93MPa (2.61)

The Notch stress intensity factor ∆K1 and the equivalent peak stress are calculated by the formulae (2.20)
and (2.23):

K1,chord−side
∼= K∗

FE ·∆σθθ ,θ=0,peak ·d1−λ1 = 1.21 ·516.28 ·11−0.674 = 893.75MPamm0.326 (2.62)

∆σeq,peak,chord−side = ∆σθθ ,θ=0,peak · fw1 = 516.28 ·1.31 = 674.49MPa (2.63)

K1,brace−side
∼= K∗

FE ·∆σθθ ,θ=0,peak ·d1−λ1 = 1.21 ·572.29 ·11−0.674 = 990.69MPamm0.326 (2.64)

∆σeq,peak,brace−side = ∆σθθ ,θ=0,peak · fw1 = 572.29 ·1.31 = 747.65MPa (2.65)

The PSM with Tetra187 defined that the brace is more solicited than the chord side. The experimental
fracture for Gandhi N°4 is located at the weld toe, CHS, so the PSM detects the crack initiation in the correct
location.

2.10 Comparison of the results and data entry in the PSM curve

The relative errors between the ∆σeq,peak detected with the PSM brick 185, PSM Tetra 285 and PSM Tetra 187,
are reported in the following table:
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2.10 Comparison of the results and data entry in the PSM curve

Brace side

Type of Analysis ∆σeq,peak[MP a] ∆K1[MP amm0.326]

Brick 185 734.85 973.73
Tetra 285 702.07 930.29
Tetra 187 747.65 990.69

Rel. error %:185-285 4.67%
Rel. error %:285-187 6.49%
Rel. error %:185-187 1.74%

Table 2.37: Comparison of the results.

In the following graphs, a comparison between the trends of the nodal stress along the brace and chord side
obtained by the three method is done and the results are represented in the figures below:

Figure 2.69: Comparison of the nodal stress trend between the three different approach.

Figure 2.70: Comparison of the nodal stress trend between the three different approach.

The single available experimental data is inserted inside the PSM design curve proposed by Meneghetti,
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Guzzella and Atzori in the 2014 [10] for structures prevailing subjected to mode I. The geometry Gandhi N°4
is characterized by:

• N2 = 32000cycles is the number of cycles to first visible cracking by visual examination;

• N3 = 201000cycles is the number of cycles to through thickness cracking;

• N4 = 269000cycles is the number of cycles to complete failure of the specimen;

The following graph represents the life of the specimens subjected to a constant load and evaluated for
different number of cycles.

Figure 2.71: Data inside the PSM design curve.

The following conclusions can be defined:

1. The PSM approach has correctly defined that the crack initiation point is the weld toe, according to the
experimental results;

2. The all experimental data fall above the lines that represents the 97.7% of probability of survival. Thus,
the PSM design curve has demonstrated to be effective and conservative



Chapter 3

Numerical analysis of experimental data

and fatigue assessment of As-welded joint

by local approaches

The objective of this chapter is to perform a fatigue assessment on various as-welded joint in terms of nom-
inal stress, averaged Strain Energy Density SED, Equivalent Peak Stress and Structural Hot-Spot stress. The
re-elaborated data are collected together and entered inside their respective design curve, available in the litera-
ture. Subsequently, a fatigue life N f comparison with the experimental data, is elaborated to identify the grade
of conservatives defined by each method.

The analysed joint are:

1. One longitudinal stiffeners FAT 71 analysed by Marquis and Yildirim in 2010 [41];

2. Other two longitudinal stiffeners but characterized by FAT 63 class and analysed by Yildirim in 2013 [42]
and subsequently by Vanrostenberghe in 2015;

3. Four transverse attachments FAT 80, analysed by Yildirim in 2020, Okawa in 2013 [43], Kuhlmann in
2006 and by Kuhlmann and Gunther in 2009 [44].

The assessment are performed with the application of local approaches above-mentioned through the use
of the finite element software Ansys®Mechanical APDL with the license of the University of Padua.
For the modelling and study of 2D geometries, the four-node linear element PLANE 182 is adopted with Sim-

ple Enhanced Strain as Key Options 1 and Plane Strain as Key Options 3; on the other hand, in the case of
3D structure, the eight-node linear element SOLID 185 (also called Brick 185) is used with Simple Enhanced

Strain as Key Options 1 and also the ten-node quadratic element SOLID 187 (also called Tetra 187) is adopted
with Pure displacement as Key Options 1.

The all specimens have been modelled inside SOLIDWORKS 2020 and after they have been imported inside
Ansys®APDL with .IGS extension. All the following joints are studied in as-welded conditions. According to
the non-conventional LEFM extension to welded joints, the weld toe profile is considered as a V-notch with tip
radius equal to zero (worst case) and the root is assumed as pre-crack in the structure.

3.1 Marquis 2010, longitudinal attachment FAT 71

The first joint analysed is a longitudinal stiffener characterised by a fatigue class FAT 71, studied by Marquis
and Yildirim in 2010 [41] under CAL (Constant Amplitude Loading).
The principal information and mechanical properties about this typology of the joint are summarized in the
Table 3.1 and Table 3.2:
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approaches

Weld condition Fracture location Load application
Main plate/gusset

thickness

As-welded, non-load carrying
(NLC), full penetration

Weld toe
Axial, main plate,

parent material
Main plate: 8mm

Gusset: 8mm

Table 3.1: Information about the specimens

Material model
Yield strength fy

[MPa]

Young modulus

[MPa]

Poisson’s ratio

ν

S700, HSS, Linear
elastic, isotropic

700 206000 0.3

Table 3.2: Information about mechanical properties

The dimensions of this joint are defined in the following table and figure:

t [mm] b [mm] w [mm] L [mm] h [mm] 2α[°] z [mm]

8 150 100 350 40 150 10.40

Table 3.3: Dimension of the longitudinal attachment FAT 71

Figure 3.1: Marquis 2010, longitudinal attachment FAT 71 [33].

The parameters of the weld profile is described in the following table and figure:

ρ weld toe tip [mm] Weld leg [mm] Weld flack angle [°] 2α

0.4-1.32 5.20 30
Weld toe: 150°
Gusset: 120°

Table 3.4: Information about the weld profile
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Figure 3.2: As-welded profile, local geometry [45].

The radius ρ of the weld toe is lower than 1.5mm, so the assumption of a sharp V-notch (ρ = 0mm) at the
weld toe is acceptable with the non conventional LEFM extension to welded joints.
As described in the IIW recommendations [1], the effect of misalignment can be neglected in continuous welds
longitudinally loaded. The first analysed joint is characterised by an angular distortion lower than 1°, so the
misalignment is neglected.
The experimental data are defined in the following table in terms of nominal stress ∆σnom:

Stress Ratio

R

∆σnom

[MPa]
Nf [cycles]

-1

159.7 229 600
158.9 265 500
158.5 679 800
149.5 402 100
136.7 2 808 000
116.8 564 900
104.5 844 100
100.5 6 403 000

Table 3.5: Experimental data of the 1st joint, Marquis 2010. The number barred represents the run-outs

FAT 71 is modelled in SOLIDWORKS 2020 and subsequently, is imported inside Ansys®APDL with .IGS

extension. The results is reported in the figure below:

Figure 3.3: Model of longitudinal attachment FAT 71 .
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The modelling procedure in Ansys®APDL is briefly described:

• Thanks to the triple symmetry of the longitudinal stiffener, only 1/8 of the geometry is modelled to reduce
the computational time;

• The first joint is subjected to an axial load and it is applied on the main plait as a constant pressure equal
to p = ∆σnom, on the Area A30 as Figure 3.4 shows;

• Symmetry boundary conditions are applied on A20, A21 and A23(Figure 3.5).

Figure 3.4: Model of longitudinal attachment FAT 71 .

Figure 3.5: Model of longitudinal attachment FAT 71 .
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In the following figure, there are the all boundary conditions applied:

Figure 3.6: Boundary conditions of the model. S indicate the symmetry boundary condition, while the red arrow

represents the external pressure.

3.1.1 PSM approach with Submodeling technique

The fatigue assessment for the first joint (Marquis 2010) is initially performed by the application of Peak Stress
Method for 3D structures with the adoption of eight-node linear elements. As describe in the paragraph 1.3.3,
the submodelling technique is request.
The structure is prevailing subjected to mode I at the attachment edge with a opening angle 2α equal to 150°.
Indeed, referring to the graph of the Williams eigenvalues trend in Figure 1.13, mode II is not singular for
V-notch opening angle greater than 102.5°, so λ2 = 0. The mode III becomes singular in the junction part of
the longitudinal stiffener, but its contribute is practically null, so it can be neglected.
Another important observation is that the V-notch opening angle 2α is equal to 150° and the PSM with the
submodeling technique is not calibrated for V-notch opening angle higher than 135°. For this reason, the
available calibration constants for 2α = 135◦ is extended for this case.

Main Model

First of all, is necessary to study the main model and the ten-node quadratic element SOLID 187 is chosen in
Ansys®APDL with Pure Displacement Key Options 1, which means that the nodal forces are only dependent
on the displacements.
The main model is displayed on the Figure 3.7. The cut boundary is defined by a stress convergence analysis,
indeed four different meshes, with global element size respectively equal to 5, 4, 3, 2 and 1 mm, are laid on the
main model.

Figure 3.7: Example of main model with global element size equal to 2 mm.
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The parameter to complete the convergence analysis is the first principal stress range ∆σ11, obtained along
the x-axis that starts from the weld toe along the longitudinal direction, as Figure 3.8 shows:

Figure 3.8: Direction of x-axis and path along which ∆σ11 is defined.

The results of the convergence stress analysis are reported in the following graph:

Figure 3.9: Results of convergence stress analysis.

As Figure 3.9 shows, the cut boundary is placed at x = 15.0mm from the weld toe, where the compatibility
between the results is achieved.

Submodel

The next step is to create and study the submodel. The eight-node linear element SOLID 185 is chosen in
Ansys®APDL with Simple Enhanced Strain as Key Option 1.
As described in the paragraph 2.7, the reference system of the submodel must coincide with that of the main-
model because the sumodel’s boundary conditions are interpolated in the cut boundary with respect to the main
model reference system.
Due to the same consideration of the main model, the weld toe is prevailing subjected to mode I because the
opening angle 2α is equal to 150°, so mode II is null and mode III can be neglected due to its little contribute.
Under mode I, the PSM, with Brick elements SOLID 185, requirements are define in the following table:
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Location: weld toe 2α = 150◦ Mode I

Element type
Mesh

algorithm
(a/d)min 2α

Mesh Pattern

2α<90°

Mesh Pattern

2α>90°

Solid 185
KeyOpt:Simple

Enhanced Strain

Free 3
135°

extended to
150°

Four adjacent
elements share the

same node

Two adjacent
elements share the

same node

Location: gusset 2α = 120◦ Mode I

Element type
Mesh

algorithm
(a/d)min 2α

Mesh Pattern

2α<90°

Mesh Pattern

2α>90°

Solid 185
KeyOpt:Simple

Enhanced Strain

Free 3
0°<

2α <135°

Four adjacent
elements share the

same node

Two adjacent
elements share the

same node

Table 3.6: Requirements for PSM with Brick elements SOLID 185.

The mode I PSM calibration constant is extended at the weld toe where 2α = 150◦ and it is equal to
K∗

FE = 1.38± 3%; at the gusset, where 2α = 120◦, the PSM calibration constant for mode I is again equal to
K∗

FE = 1.38±3%.
The size of the element is obtained with the following procedure:

1. From literature the ratio (a/d)min is determined according to the Table 3.6. In this case the ratio for pure
mode I is chosen and it is equal to 3;

2. The value of a is the reference dimension for selecting the maximal FE sizes d for PSM application and
is defined as the half of the thickness t, so in this case is equal to 4 mm;

3. Subsequently, the minimum element size is defined as follow:

dmin =
a

3
=

4
3
= 1.33mm (3.1)

4. The chosen dimension of elements is 1 mm

The λ1 and e1 values are depended on the opening angle 2α , that is 150° for the weld toe and 120° for the
gusset:

2α [°] λ1 (Mode I) e1 (Mode I)

120° 0.616 0.130
150° 0.752 0.103

Table 3.7: Value of λ1 and e1 in function of the opening angle 2α

The corrective stress factors for mode I is calculated with the equation (2.24). The result is reported in the
Table 3.8

2α [°] fw1

120° 1.203
150° 0.900

Table 3.8: Value of the corrective stress factors fw1 in function of the opening angle 2α

The submodel is created by the extrusion by 4mm along the global z-axis of the sectional area, reported
in Figure 3.11, which is pre-meshed with the same requirements above-mentioned with elements PLANE 182
with Simple Enhanced Strain as Key Options 1 and Plane Strain as Key Options 3. These elements after the
extrusion, will be SOLID 185.
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To obtain a correct extrusion in Ansys®APDL, the following commands are used:

Preprocessor→Modelling→Operate→Extrude→Elem Ext Opts

SOLID 185 is selected as Element type number and as the number of element extrusion is equal to 4 to
obtain element with cube shape. The Figure 2.51 shows the correct options for the extrusion.

Figure 3.10: The element extrusion options.

Figure 3.11: The sectional area that has to be extruded.

After that, the area can be extruded with the commands below:

Preprocessor→Modelling→Operate→Extrude→Area→About Axis

The submodel is characterized by symmetry boundary conditions that are applied to the highlighted areas
in the Figure 3.12 with the following commands:

Preprocessor→Loads→Define Loads → Apply→Displacements→Symmetry B.C.→ on Areas
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Figure 3.12: Selected area for the cut boundary condition on the right; on the left the selected areas for symmetry

boundary conditions.

To apply the nodal displacements to the nodes belonging to the cut boundary (Figure 3.12 right side repre-
sents the area of it), the following procedure is applied:

1. First of all, the nodes attached to the cut boundary are selected with the following commands:

Select→Entities→Areas→From Full→ Selection of the Cur boundary areas

Select→Entities→Node→Attached to→Areas All

2. Subsequently, a file containing the coordinates of the cut boundary nodes is created:

Preprocessor→Modelling→Create→Nodes→Write Node File

where the file is saved with the extension name-file.node. However the submodel presents two issues:

(a) The area highlighted in red on the Figure 3.12 is characterised by a not converging displacements;

(b) The same problem is presents for the points in yellow in the Figure 3.12.

3. After that, the main model is opened again and solved. The displacements are interpolated in the cut
boundary nodal coordinates and the file with these information is saved with .cbdo extension as the
Figure 3.13 shows and with the following commands:

General Postproc→Submodelling→Interpolate DOF

Figure 3.13: Window for configuration for Interpolate DOF.
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4. The submodel is opened again and the nodal displacements are defined on the cut boundary with these
commands:

File→ Read Input from→submodel.cbdo

5. The system can be solved;

Solution→Solve→Current LS

3.1.2 PSM approach with Submodeling technique: results

Before the post-processing of the data, it is advised to disable the PowerGraphics option in Ansys®APDL
toolbar, otherwise the output results are given by the average of only the superficial nodal stresses, without
considering the inner ones.
In this analysis, the structure is subjected to pure mode I loading, so in this situation it can be demonstrated
that, in the case that the stress flow is aligned with the external pressure direction, the first principal stress range
∆σ11 can be approximated equal to local stress ∆σyy, evaluated with a local reference system with the origin
placed on the V-notch. However, to obtain a more precise results, two local reference system are created on the
node that represents the weld toe and the gusset with the following procedure:

1. The WorkPlane is displayed and is placed through a offset at one node of weld toe with the following
commands:

Utility Menu→Offset WorkPlane to→ Node

2. The WorkPlane is subjected to one rotation to obtain the correct orientation of the local system, by an
angle equal to 105° about the z-axis. The commands to rotate the WorkPlane are:

Utility Menu→Offset WP by Increments →Degrees

3. Subsequently, the local reference coordinate system is created in the WorkPlane origin with the following
commands:

Utility Menu→Local Coordinate System→Created Local CS→At WP origin

Figure 3.14: Creation of a local coordinate system at WP origin. As KCN option, a number greater then 10 must be

chosen; so 11 is defined.

4. To plot the results in the new coordinate system, the following commands are executed:

General Postproc →Option for Outp
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Figure 3.15: Option for Output window.

5. Before the creation of the local reference system at the gusset,is needed that the WorkPlane is aligned to
the global reference system to avoid mistakes. The commands to execute this operation are:

Utility Menu→Align WP with→Global Cartesian

6. Subsequently, the same procedure is repeated with the only difference that the rotation angle is equal to
120°. The results are shown in the following figure:

Figure 3.16: Local reference systems at the weld toe (11) and gusset (12).

During the analysis of the results, the first principal stress is evaluated and compared with ∆σyy. The results
of the first principal stress can be observed in the Figure 3.17, for an external applied pressure equal to 1 MPa:
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Figure 3.17: Plot of the first principal stress.

For an external applied pressure ∆σnom = 1MPa, the results for weld toe and gusset are:

∆σyy,weld−toe = 2.10732MPa (3.2)

∆σ11,weld−toe = 2.11076MPa (3.3)

∆σyy,gusset = 1.72814MPa (3.4)

∆σ11,gusset = 1.75698MPa (3.5)

The equivalent peak stress are calculated by the formulae (2.23):

∆σeq,peak,weld−toe = ∆σθθ ,θ=0,peak · fw1 = 2.10732 ·0.900 = 1.897MPa (3.6)

∆σeq,peak,gusset = ∆σθθ ,θ=0,peak · fw1 = 1.72814 ·1.203 = 2.079MPa (3.7)

This result is not in good agreement with the value found in the literature [33]:

∆σeq,peak,literature = 2.307MPa (3.8)

Thus, the relative error expresses in percentage between the calculated ∆σeq,peak and the ∆σeq,peak,literature

is:

∆% =
∆σeq,peak,calculated −∆σeq,peak,literature

∆σeq,peak,literature

·100 =−17.75% (3.9)

This high relative error is due to the two issues above-mentioned relative to the definition of the cut bound-
ary.
To reduce the error, a new submodel is created with a more fine mesh than before, with a global element size
equal to 0.2mm (Figure 3.18). The objective is to obtain a uniform cut boundary, indeed with the initial sub-
model the nodes of cut boundary, near to the weld toe, are characterised by a non converging displacements,
also called singular displacements.
The procedure to create the new submodel is the same of previous one.
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Figure 3.18: Submodel with global element size equal to 0.2 mm.

The results are:

∆σyy,weld−toe = 3.06095MPa (3.10)

∆σ11,weld−toe = 3.06183MPa (3.11)

∆σyy,gusset = 3.12644MPa (3.12)

∆σ11,gusset = 3.13779MPa (3.13)

The equivalent peak stress are calculated by the formulae (2.23):

∆σeq,peak,weld−toe = ∆σθθ ,θ=0,peak · fw1 = 3.06095 ·0.604 = 1.849MPa (3.14)

∆σeq,peak,gusset = ∆σθθ ,θ=0,peak · fw1 = 3.12644 ·0.648 = 2.027MPa (3.15)

This result is not, as before, in good agreement with the value found in the literature [33]:

∆σeq,peak,literature = 2.307MPa (3.16)

The relative error expresses in percentage between the calculated ∆σeq,peak and the ∆σeq,peak,literature is:

∆% =
∆σeq,peak,calculated −∆σeq,peak,literature

∆σeq,peak,literature

·100 =−19.84% (3.17)

As the results show, the error remain roughly constant because the PSM calibration constant K∗
FE = 1.38±3%

is calibrated for a opening angle 2α lesser than 135° and in this case, it is extended for a angle of 150°. Indeed,
the PSM Brick 185 approach has erroneously foreseen the experimental crack initiation point at gusset, instead
the weld toe, as the experimental reality shows. Due to the important relative error between the value obtained
from the PSM with submodelling technique and the value defined in literature, the data are not inserted inside
the fatigue design PSM curve.

3.1.3 PSM approach with Tetra 187

The fatigue assessment for this model is performed by the application of Peak Stress Method for 3D structures
with the adoption of ten-node quadratic elements, considering only the weld toe.
The element SOLID 187 is chosen from the Ansys®APDL library with Pure Displacement as Key Option 1,
which means that the nodal forces are only dependent on the displacements.
As defined in the paragraph 3.1.1, the model is prevailing subjected to mode I. Under mode I, the PSM require-
ments, with Tetra elements SOLID 187, are define in the following table:
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Location: weld toe 2α = 150◦ Mode I

Element type
Mesh

algorithm
(a/d)min 2α Mesh Pattern

Solid 187
KeyOpt:Pure

Displacement

Free 1 150°
No particular
indications

Table 3.9: Requirements for PSM with Tetra elements SOLID 187.

The mode I PSM calibration constant is calibrated at the weld toe where 2α = 150◦ and it is equal to
K∗

FE = 1.4423.
To define the global element size of the model, the size of the element is obtained with the following procedure:

1. From literature the ratio (a/d)min is determined according to the Table 3.9. In this case the ratio for pure
mode I is chosen and it is equal to 1;

2. The value of a is the reference dimension for selecting the maximal FE sizes d for PSM application and
is defined as the half of the thickness t, so in this case is equal to 4 mm;

3. Subsequently, the minimum element size is defined as follow:

dmin =
a

3
=

4
3
= 1.33mm (3.18)

4. The chosen dimension of elements is 1 mm

The λ1 and e1 values are depended on the opening angle 2α , that is 150° for the weld toe:

2α [°] λ1 (Mode I) e1 (Mode I)

150° 0.752 0.103

Table 3.10: Value of λ1 and e1 in function of the opening angle 2α

The corrective stress factors for mode I is calculated with the equation (2.24). The result is reported in the
Table 3.11

2α [°] fw1

150° 0.941

Table 3.11: Value of the corrective stress factors fw1 in function of the opening angle 2α

Once the model is properly meshed, loaded and constraint, the system can be solved:

Solution→Solve→Current LS

3.1.4 PSM approach with Tetra 187: results

Before the post-processing of the data, it is advised to disable the PowerGraphics option in Ansys®APDL
toolbar, otherwise the output results are given by the average of only the superficial nodal stresses, without
considering the inner ones.
To obtain the correct value of the equivalent peak stress with the application of PSM Tetra 187, three consider-
ations must be done:

1. The mesh is generate automatically by the free-mesh algorithm and it is intrinsically irregular,that is
the node of the notch tip could be shared by different elements having a important different shape and
size. For this reason, the peak stress could vary along the notch tip profile even in the case of a constant
applied NSIF [24]. This problem can be solved by introducing an average peak stress value,which has
been defined as the moving average on three adjacent vertex nodes, starting from the generic node n=k:

Åσi, j,peak,n=k =
σi, j,peak,n=k−1 +σi, j,peak,n=kσi, j,peak,n=k+1

3

∣

∣

∣

n=node
(3.19)
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2. Another important thing related to equation (3.19) is that only peak stresses calculated at vertex nodes of
tetra elements have be introduced in this equation, thus the stresses at mid-side nodes must be neglected
[30].

3. The V-notch profile edge nodes must be excluded from the average because they are affected by the nodal
values in the adjacent areas.

In this analysis, the structure is subjected to pure mode I loading, so in this situation it can be demonstrated
that, in the case that the stress flow is aligned with the external pressure direction, the first principal stress range
∆σ11 can be approximated equal to local stress ∆σyy, evaluated with a local reference system with the origin
placed on the V-notch. To reduce the post-processing time, the first principal stress is replaced by ∆σyy and the
results can be observed in the Figure 3.19, for an external applied pressure equal to 1 MPa:

Figure 3.19: Plot of the first principal stress.

To obtain the trend of the nodal stress at the V-notch, the nodes attached to line that represents the weld toe
(see Figure3.20), is selected with the following commands:

Select→Entities→Lines→From full

Select→Entities→Nodes→Attached to→Lines all

Figure 3.20: Selected nodes along the weld toe.

The results of the nodal tensions ∆σ11 and the relative average peak stress value are reported in the Appendix
B.1.
For an external applied pressure ∆σnom = 1MPa, the result at the weld toe is:

∆σ11,weld−toe,peak = 2.517MPa (3.20)

The equivalent peak stress are calculated by the formulae (2.23):

∆σeq,peak,weld−toe = ∆σθθ ,θ=0,peak · fw1 = 2.517 ·0.841 = 2.368MPa (3.21)

This result is in good agreement with the value found in the literature [33]:

∆σeq,peak,literature = 2.307MPa (3.22)
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Thus, the relative error expresses in percentage between the calculated ∆σeq,peak and the ∆σeq,peak,literature

is:

∆% =
∆σeq,peak,calculated −∆σeq,peak,literature

∆σeq,peak,literature

·100 = 2.66% (3.23)

3.1.5 Data results for PSM curve

The previous model was characterised by a load equal to 1 MPa, applied to the main plate of the specimen.
Thanks to the linear elasticity hypothesis, the equivalent peak stress can be defined for different loading condi-
tions with the following expression:

∆σeq,peak,gen =
∆σgen

∆σre f

·∆σeq,peak,re f (3.24)

where:

• ∆σeq,peak,gen is a generic value of the equivalent peak stress for a generic loading condition that has to be
detected;

• ∆σgen is the respective applied nominal stress;

• ∆σeq,peak,re f is the reference value of equivalent peak stress that are already detected;

• ∆σre f is the reference nominal stress, 1MPa.

The results in terms of equivalent peak stress calculated with PSM Tetra 187 approach, are defined in the
Appendix C.1.
The all experimental data are collected inside the PSM design curve proposed by Meneghetti, Guzzella and
Atzori for structure subjected to prevailing mode I.

Figure 3.21: Experimental data inside the PSM design curve with Tetra 187 elements.

The following conclusion can be defined:

1. The all experimental data fall above the lines that represents the 97.7% of probability of survival. Thus
the PSM design curve has demonstrated to be effective and conservative;

2. The PSM Brick 185 approach find results that are not in according with the literature due to the area of
boundary condition that is characterised by a not converging displacements;

3. The PSM 187 approach gives more precise results thanks also to the presence of a calibration constant
K∗

FE calibrated for angle higher than 135°. Indeed, the PSM Brick 185 method extends the K∗
FE for a

opening angle 2α =135°, also for 2α =150°
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3.1.6 SED (Strain Energy Density) approach

The fatigue assessment for this model is performed by the application of the Strain Energy Density approach.
This method is a energetic criterion proposed by Lazzarin and Zambarandi [25] in 2001 and it derives from the
Neuber’s theory of structural volume. Indeed, the averaged Strain Energey Density inside a circular volume
of radius R0 with the center in the V-notch tip, is the critical parameter to valuate the fatigue strength of the
welded components.
The element SOLID 187 is chosen from the Ansys®APDL with Pure Displacement as Key Option 1, which
means that the nodal forces are only dependent on the displacements.
First of all, the control volume is created and it is characterised by a 3-dimensional circular sector shape with
radius equal to R0 = 0.28mm and the deep is 0.28mm (0.14 in the model due to the symmetry condition). The
center of the control volume is placed at the weld toe as the figure below shows:

Figure 3.22: Control volume with the center at the V-notch tip.

The all model with the control volume has been modelled inside SOLIDWORKS 2020 and after it has been
imported in Ansys®APDL with .IGS extension.
To create the mesh of the model, the following procedure is executed:

1. The element inside the structural volume are characterised by a global element size equal to 0.05mm
with a free-mesh algorithm;

Figure 3.23: Mesh of the structural volume with global element size of 0.05.
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2. The other volume is meshed with a global element size equal to 1 mm with a free-mesh algorithm.

Figure 3.24: Mesh of the all structure.

Once the model is properly meshed, loaded and constraint, the system can be solved:

Solution→Solve→Current LS

3.1.7 SED (Strain Energy Density) approach: results

Before the post-processing of the data, it is advised to disable the PowerGraphics option in Ansys®APDL
toolbar, otherwise the output results are given by the average of only the superficial nodal stresses, without
considering the inner ones.
The averaged Strain Energy Density is defined as the energy contained inside the structural volume. To define
this value, the element belonging the structural volume have to be selected with the following commands:

Utility Menu→ Select → Entities→ Volumes→ By Num/Pick→ From Ful

Utility Menu→ Select → Entities→ Elements→ Attached to→ Volumes

Subsequently, two Element Table are created :

1. The first one to define the energy inside each element selected. This Element Table is called SENE;

2. The second one to define the volume of each element selected. This Element Table is called VOLU;

The commands to create the Element Table are:

General Postproc→Element Table→Define Element Table →SENE/VOLU
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Figure 3.25: Element Table in Ansys®APDL

After the creation of the Element Tables, each single element SENE and VOLU values must be summed
with the following commands:

General Postproc→Element Table→Sum of Each Item

Finally, the averaged Strain Energy Density value can be calculated with the following expression:

∆ ÅWFEM =
∑V (R0)WFEM,i

V (R0)
=

SENE

VOLU
(3.25)

The result of SED for the weld toe when the specimen is subjected to a nominal stress of 1 MPa is:

SENE = 2.358 ·10−7MJ (3.26)

VOLU = 0.0201144mm3 (3.27)

SED =
SENE

VOLU
=

2.358 ·10−7

0.0201144
= 1.172 ·10−5 MJ

m3 (3.28)

From the SED, the equivalent peak stress is obtained with the following formula:

∆σeq,peak =

√

2 ·E ·SED

1−ν2 =

√

2 ·206000 ·1.172 ·10−5

1−0.32 = 2.3036MPa (3.29)

This result is in good agreement with the value found in literature [33]:

∆σeq,peak,literature = 2.307MPa (3.30)

Thus, the relative error expresses in percentage between the calculated ∆σeq,peak and the ∆σeq,peak,literature

is:

∆% =
∆σeq,peak,calculated −∆σeq,peak,literature

∆σeq,peak,literature

·100 =−0.129% (3.31)

3.1.8 Data results for SED curve

The previous model was characterised by a load equal to 1 MPa, applied to the main plate of the specimen.
Thanks to the linear elasticity hypothesis, the SED value can be defined for different loading conditions with
the following expression:

SEDgen =

(

∆σgen

∆σre f

)2

·SEDre f (3.32)

where:

• SEDgen is a generic value of the SED for a generic loading condition that has to be detected:

• ∆σgen is the respective applied nominal stress;

• SEDre f is the reference value of SED that are already detected;

• ∆σre f is the reference nominal stress, 1 MPa.
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The results in terms of SED are defined in the Appendix C.1.
The all experimental data are collected inside the SED design curve proposed by Lazzarin and Zambarandi:

Figure 3.26: Experimental data inside the SED design curve.

The following conclusion can be defined:

1. The all experimental data fall above the lines that represents the 97.7% of probability of survival. Thus
the PSM design curve has demonstrated to be effective and conservative;

2. The SED approach find results that are in according with the literature and it has correctly foreseen the
experimental crack initiation point at weld toe.

3.1.9 SHSS (Structural Hot Spot Stress) approach

The fatigue assessment for this model is performed by the application of SHSS approach, following the IIW
recommendation [1] to obtain the hot-spot stress. According to the guideline, the weld toe of the longitudinal
stiffener FAT 71 is a hot-spot type a and the hot-spot stress value is detected with the employment of fine mesh,
as Figure 1.4 shows.
The model of the longitudinal stiffener FAT 71 is divided in a series of volumes to allow the application of
Mapped-mesh algorithm; indeed each volumes must be characterised by a number of face between 4 and 6 to
obtain a Mapped-mesh. The eight-node linear element SOLID 185 is chosen in Ansys®APDL with Simple

Enhanced Strain as Key Option 1.
The all informations about the mesh is reported in the following table:

Element type
Mesh

algorithm

Main plate

thickness t

Max element

size

Adopted element

size

Solid 185
KeyOpt:Simple

Enhanced Strain

Mapped
8 mm (4 mm

modelled)
0.4 · t = 0.4 ·8 =

3.2mm
1.6 mm

Table 3.12: Requirements for SHSS mesh.

The hot-spot stress is extrapolated at two reference points placed at 0.4t and 1.0t distance from the weld
toe tip, so in this case at 3.2 mm and 8 mm from weld toe.
For the type of extrapolated stress, the graph in Figure 3.27 shows that, for an external applied pressure ∆σnom =
1MPa, after 1.90 mm, the ∆σxx and the first principal stress ∆σ11 are coincident. For this reason the choice is
indifferent.
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Figure 3.27: ∆σxx and ∆σyy plotted in function of the distance from weld toe tip

The mesh of the model is reported in the following figures:

Figure 3.28: Mapped mesh for SHSS approach

Figure 3.29: Mapped mesh for SHSS approach and reference points
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Before the post-processing of the data, it is advised to disable the PowerGraphics option in Ansys®APDL
toolbar, otherwise the output results are given by the average of only the superficial nodal stresses, without
considering the inner ones.
For an external applied pressure ∆σnom = 1MPa, the results of the tension at the reference points are:

∆σxx,0.4t = 1.36143MPa (3.33)

∆σxx,1.0t = 1.25651MPa (3.34)

∆σ11,0.4t = 1.36192MPa (3.35)

∆σ11,1.0t = 1.25659MPa (3.36)

(3.37)

The structural hot-spot stress is detected with the equation (1.2):

∆SHSSLSE,xx = 1,67 ·σxx,0.4·t −0.67 ·σxx,1.0·t = 1.67 ·1.36143−0.67 ·1.25651 = 1.4317MPa (3.38)

∆SHSSLSE,11 = 1,67 ·σ11,0.4·t −0.67 ·σ11,1.0·t = 1.67 ·1.36192−0.67 ·1.25659 = 1.4325MPa (3.39)

This result is in good agreement with the value found in literature [33]:

∆σxx,0.4t = 1.336MPa (3.40)

∆σxx,1.0t = 1.231MPa (3.41)

(3.42)

∆SHSSLSE,literature = 1,40635MPa

Thus, the relative errors expresses in percentage between the calculated ∆SHSSLSE,xx, ∆SHSSLSE,11 and
the∆SHSSLSE,literatureare:

∆% =
∆SHSSLSE,xx −∆SHSSLSE,literature

∆SHSSLSE,literature

·100 = 1.804% (3.43)

∆% =
∆SHSSLSE,11 −∆SHSSLSE,literature

∆SHSSLSE,literature

·100 = 1.86% (3.44)

3.1.10 Data results for IIW curve

Nominal stress approach

The results are reported in terms of nominal stress, defined in the beginning of paragraph 3.1, inside the FAT
71 curve proposed by IIW guideline [1]:
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Figure 3.30: Experimental data inside the IIW nominal stress design curve.

SHSS approach

The previous model was characterised by a load equal to 1 MPa, applied to the main plate of the specimen.
Thanks to the linear elasticity hypothesis, the SHSS value can be defined for different loading conditions with
the following expression:

SHSSgen =

(

∆σgen

∆σre f

)2

·SHSSre f (3.45)

where:

• SHSSgen is a generic value of the SED for a generic loading condition that has to be detected:

• ∆σgen is the respective applied nominal stress;

• SHSSre f is the reference value of SED that are already detected;

• ∆σre f is the reference nominal stress, 1 MPa.

The results in terms of SHSS are defined in the Appendix C.1.
The all experimental data are collected inside the SHSS design curve proposed by IIW guideline (Figure3.31).
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Figure 3.31: Experimental data inside the SHSS design curve.

The following conclusion can be defined:

1. These approaches have correctly been applied to FAT 63 welded joint, for weld toe fractures;

2. The nominal stress approach is characterised by the fact that all points fall above the lines that represents
the 97.7% of probability of survival. For this reason, the nominal stress approach has proven to be
conservative as the others methods;

3. The hot-spot stress method is characterised by the fact that all points fall above the lines that represents
the 97.7% of probability of survival. For this reason, the SHSS approach has proven to be conservative
as the others methods.

3.2 Vanrostenberghe 2015, longitudinal attachment FAT 63

The second joint analysed is a longitudinal stiffener characterised by a fatigue class FAT 63, studied by Yildirim
in 2013 [42] under CAL (Constant Amplitude Loading) and subsequently by Vanrostenberghe in 2015.
The principal information and mechanical properties about this typology of the joint are summarized in the
Table 3.13 and Table 3.14:

Weld condition Fracture location Load application
Main plate/gusset

thickness

As-welded, non-load carrying
(NLC), full penetration

Weld toe
Axial, main plate,

parent material
Main plate: 5-20mm

Gusset: 5-20mm

Table 3.13: Information about the specimens
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Material model
Yield strength fy

[MPa]

Young modulus

[MPa]

Poisson’s ratio

ν

S700MC, HSS, Linear elastic,
isotropic

700
206000 0.3

S690QL, HSS,Linear elastic,
isotropic

690

Table 3.14: Information about mechanical properties

Three different specimen are analysed:

• S700MC with main plate thickness equal to 10 mm;

• S690QL with main plate thickness equal to 10 mm;

• S690QL with main plate thickness equal to 20 mm;

The first two geometry are analysed together with a single model with thickness equal to 10mm, while the third
one is studied separately as a model with main plate thickness equal to 20mm The dimensions of these joints
are defined in the following table and figure:

Material t [mm] b [mm] w [mm] L [mm] h [mm] 2α[°] z [mm]

S700MC 10 150 80 370 40 120 4.96
S690QL 10 150 80 370 40 120 4.96
S690QL 20 150 80 370 40 120 7.50

Table 3.15: Dimension of the longitudinal attachment FAT 63

Figure 3.32: Vanrostenberghe 2015, longitudinal attachment FAT 63 [33].

The parameters of the weld profile is described in the following table:

t [mm] ρ weld toe tip [mm] Weld leg [mm] Weld flack angle [°]

10 0 4.3 60
20 0 6.5 60

Table 3.16: Information about the weld profile
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The radius ρ of the weld toe is defined equal to 0mm, as sharp V-notch at the weld toe.
As described in the IIW recommendations [1], the effect of misalignment can be neglected in continuous welds
longitudinally loaded.
The experimental data are defined in the following table in terms of nominal stress ∆σnom:

t=10mm

Material
Stress Ratio

R

∆σnom

[MPa]
Nf [cycles]

S690QL 0.1

50 10000000
70 10000000
90 3466968

200 204202
250 112546
350 47716

S700MC 0.5

50 10000000
70 2333651
90 893070

200 88800
250 49800
300 33700

t=20mm

Material
Stress Ratio

R

∆σnom

[MPa]
Nf [cycles]

S690QL 0.1

70 3600954
90 1513276

200 125887
250 113433
350 41521

S690QL 0.5

70 10000000
90 1612500

125 828000
200 136936
250 85459
300 49546

Table 3.17: Experimental data of the 2nd joint,Vanrostenberghe 2015. The number barred represents the run-outs

FAT 63 are modelled in SOLIDWORKS 2020 and subsequently, are imported inside Ansys®APDL with
.IGS extension. The results are reported in the figure below:

Figure 3.33: Model of longitudinal attachment FAT 63 with thickness equal to 10mm .
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Figure 3.34: Model of longitudinal attachment FAT 63 with thickness equal to 20mm .

The procedure to define the boundary conditions of the model follows the same steps and dispositions
defined for the longitudinal FAT71 (see paragraph 3.1). The results are reported in the following figures:

Figure 3.35: Boundary conditions of the model with thickness equal to 10mm. S indicate the symmetry boundary

condition, while the red arrow represents the external pressure.

Figure 3.36: Boundary conditions of the model with thickness equal to 20mm. S indicate the symmetry boundary

condition, while the red arrow represents the external pressure.
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3.2.1 PSM approach with Submodeling technique

The fatigue assessment for the second joints (Vanrostenberghe 2015 with thickness equal to 10 and 20 mm) are
initially performed by the application of Peak Stress Method for 3D structures with the adoption of eight-node
linear elements. As describe in the paragraph 1.3.3, the submodelling technique is request.
The structures are prevailing subjected to mode I at the weld toe V-notch with a opening angle 2α equal to
120°. Indeed, referring to the graph of the Williams eigenvalues trend in Figure 1.13, mode II is not singular
for V-notch opening angle greater than 102.5°, so λ2 = 0. The mode III becomes singular in the junction part
of the longitudinal stiffener, but its contribute is practically null, so it can be neglected.
The gusset is characterised by a opening angle equal to 2α = 150° and the PSM with the submodeling technique
is not calibrated for V-notch opening angle higher than 135°. For this reason, the available calibration constants
for 2α = 135◦ is extended for this case.

Main Model

First of all, is necessary to study the main model and the ten-node quadratic element SOLID 187 is chosen in
Ansys®APDL with Pure Displacement Key Options 1, which means that the nodal forces are only dependent
on the displacements.
The 10 mm and 20 mm main models are displayed on the Figure 3.37-3.38. The cut boundary for each main
model is defined by a stress convergence analysis; indeed four different meshes, with global element size
respectively equal to 5, 4, 3, 2 and 1 mm, are laid on the each main model.

Figure 3.37: Example of 10mm main model with global element size equal to 2 mm.

Figure 3.38: Example of 20mm main model with global element size equal to 3 mm.
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The parameter to complete the convergence analysis is the first principal stress range ∆σ11, obtained along
the x-axis that starts from the weld toe along the longitudinal direction, as Figure 3.39 shows:

Figure 3.39: Direction of x-axis and path along which ∆σ11 is defined.This reference is valid also for the 20 mm main

model

The results of the convergence stress analysis are reported in the following graph:

Figure 3.40: Results of convergence stress analysis for 10mm main model.

Figure 3.41: Results of convergence stress analysis for 20mm main model.
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As Figure 3.40-3.41 shows, the cut boundary is placed at x = 20.0mm from the weld toe for both models,
where the compatibility between the results is achieved.

Submodel

The next step is to create and study the submodel. The eight-node linear element SOLID 185 is chosen in
Ansys®APDL with Simple Enhanced Strain as Key Option 1.
As described in the paragraph 2.7, the reference system of the submodel must coincide with that of the main
model because the sumodel’s boundary conditions are interpolated in the cut boundary with respect to the main
model reference system.
Due to the same consideration of the main model, the weld toe is prevailing subjected to mode I because the
opening angle 2α is equal to 120°, so mode II is null and mode III can be neglected due to its little contribute.
Under mode I, the PSM, with Brick elements SOLID 185, requirements are define in the following table:

Location: weld toe 2α = 120◦ Mode I

Element type
Mesh

algorithm
(a/d)min 2α

Mesh Pattern

2α<90°

Mesh Pattern

2α>90°

Solid 185
KeyOpt:Simple

Enhanced Strain

Free 3 0°< 2α <135°
Four adjacent

elements share the
same node

Two adjacent
elements share the

same node

Location: gusset 2α = 150◦ Mode I

Element type
Mesh

algorithm
(a/d)min 2α

Mesh Pattern

2α<90°

Mesh Pattern

2α>90°

Solid 185
KeyOpt:Simple

Enhanced Strain

Free 3
135° extended to

150°

Four adjacent
elements share the

same node

Two adjacent
elements share the

same node

Table 3.18: Requirements for PSM with Brick elements SOLID 185.

The mode I PSM calibration constant is extended at the gusset where 2α = 150◦ and it is equal to K∗
FE =

1.38 ± 3%, at the weld toe, where 2α = 120◦, the PSM calibration constant for mode I is again equal to
K∗

FE = 1.38±3%.
To define the global element size of the 10 mm model, the following procedure is applied:

1. From literature the ratio (a/d)min is determined according to the Table 3.18. In this case the ratio for
pure mode I is chosen and it is equal to 3;

2. The value of a is the reference dimension for selecting the maximal FE sizes d for PSM application and
is defined as the half of the thickness t, so in this case is equal to 5 mm;

3. Subsequently, the minimum element size is defined as follow:

dmin =
a

3
=

5
3
= 1.667mm (3.46)

4. The chosen dimension of elements is 1.67 mm

For the 20mm model, the size of the elements is obtained as following:

1. From literature the ratio (a/d)min is determined according to the Table 3.18. In this case the ratio for
pure mode I is chosen and it is equal to 3;

2. The value of a is the reference dimension for selecting the maximal FE sizes d for PSM application and
is defined as the half of the thickness t, so in this case is equal to 10 mm;

3. Subsequently, the minimum element size is defined as follow:

dmin =
a

3
=

10
3

= 3.33mm (3.47)

4. The chosen dimension of elements is 3 mm
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2α [°] λ1 (Mode I) e1 (Mode I)

120° 0.616 0.130
150° 0.752 0.103

Table 3.19: Value of λ1 and e1 in function of the opening angle 2α

The λ1 and e1 values are depended on the opening angle 2α , that is 120° for the weld toe and 150° for the
gusset:

The corrective stress factors for mode I is calculated with the equation (2.24). The result is reported in the
Table 3.20

t=10 mm

2α [°] fw1

120° 1.464
150° 1.022

t=20 mm

2α [°] fw1

120° 1.834
150° 1.182

Table 3.20: Value of the corrective stress factors fw1 in function of the opening angle 2α

The submodel is created by the extrusion by 5mm and 10 mm along the global z-axis of the sectional area
for 10mm submodel and 20mm submodel respectively , reported in Figure 3.42-3.43, which is pre-meshed
with the same requirements above-mentioned with elements PLANE 182 with Simple Enhanced Strain as Key
Options 1 and Plane Strain as Key Options 3. These elements after the extrusion, will be SOLID 185.
To obtain a correct extrusion in Ansys®APDL, the following commands are used:

Preprocessor→Modelling→Operate→Extrude→Elem Ext Opts

SOLID 185 is selected as Element type number and as the number of element extrusion is equal to 3 for 10
mm submodel and to 3 for 20 mm submodel, to obtain element with cube shape. The Figure 3.42-3.43 shows
the correct options for the extrusion.

Figure 3.42: The element extrusion options and the sectional area that has to be extruded for 10mm submodel.
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Figure 3.43: The element extrusion options and the sectional area that has to be extruded for 20mm submodel.

After that, the area can be extruded with the commands below:

Preprocessor→Modelling→Operate→Extrude→Area→About Axis

The boundary conditions and the modelling procedure of the models follow the same steps defined for the
longitudinal FAT71.

3.2.2 PSM approach with Submodeling technique: results

Before the post-processing of the data, it is advised to disable the PowerGraphics option in Ansys®APDL
toolbar, otherwise the output results are given by the average of only the superficial nodal stresses, without
considering the inner ones.
In this analysis, the structures are subjected to pure mode I loading, so in these situations it can be demonstrated
that, in the case that the stress flow is aligned with the external pressure direction, the first principal stress range
∆σ11 can be approximated equal to local stress ∆σyy, evaluated with a local reference system with the origin
placed on the V-notch. However, to obtain a more precise results, two local reference system are created on the
node that represents the weld toe and the gusset with the same procedure described for the longitudinal joint
FAT 71.
During the analysis of the results, the first principal stress is evaluated and compared with ∆σyy. The results
of the first principal stress can be observed in the Figure 3.44-3.45, for an external applied pressure equal to 1
MPa:

Figure 3.44: Plot of the first principal stress for 10 mm submodel.
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Figure 3.45: Plot of the first principal stress for 20 mm submodel.

Numerical results for 10mm submodel

For an external applied pressure ∆σnom = 1MPa, the results for weld toe and gusset for 10mm submodel are:

∆σyy,weld−toe = 2.55334MPa (3.48)

∆σ11,weld−toe = 2.5523MPa (3.49)

∆σyy,gusset = 0.642697MPa (3.50)

∆σ11,gusset = 0.652425MPa (3.51)

The equivalent peak stress are calculated by the formulae (2.23):

∆σeq,peak,weld−toe = ∆σθθ ,θ=0,peak · fw1 = 2.55334 ·1.464 = 3.738MPa (3.52)

∆σeq,peak,gusset = ∆σθθ ,θ=0,peak · fw1 = 0.642697 ·1.022 = 0.6568MPa (3.53)

This result is not in good agreement with the value found in the literature [33]:

∆σeq,peak,literature = 3.274MPa (3.54)

Thus, the relative error expresses in percentage between the calculated ∆σeq,peak and the ∆σeq,peak,literature

is:

∆% =
∆σeq,peak,calculated −∆σeq,peak,literature

∆σeq,peak,literature

·100 = 14.17% (3.55)

This high relative error is due to the two issues above-mentioned (paragraph 3.1.1) relative to the definition
of the cut boundary.
To reduce the error, a new submodel is created with a more fine mesh than before, with a global element
size equal to 0.2mm (Figure 3.46). The objective is to obtain a uniform cut boundary, indeed with the initial
submodel the nodes of cut boundary, near to the weld toe, are characterised by a non converging displacements,
also called singular displacements.
The procedure to create the new submodel is the same of previous one.
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Figure 3.46: 10 mm submodel with global element size equal to 0.2 mm.

The results are:

∆σyy,weld−toe = 5.15851MPa (3.56)

∆σ11,weld−toe = 5.16062MPa (3.57)

∆σyy,gusset = 1.05404MPa (3.58)

∆σ11,gusset = 1.05517MPa (3.59)

∆σeq,peak,weld−toe = ∆σθθ ,θ=0,peak · fw1 = 5.15851 ·0.648 = 3.344MPa (3.60)

∆σeq,peak,gusset = ∆σθθ ,θ=0,peak · fw1 = 1.05404 ·0.604 = 0.637MPa (3.61)

∆σeq,peak,literature = 3.274MPa (3.62)

∆% =
∆σeq,peak,calculated −∆σeq,peak,literature

∆σeq,peak,literature

·100 = 2.12% (3.63)

As the results show, the relative error decreases and this approach has correctly foreseen the experimental crack
initiation point at the weld toe, in according to the experimental reality. This results is due to that the PSM
calibration constant K∗

FE = 1.38±3% is calibrated for a opening angle 2α lesser than 135° and in this case the
value for weld toe (2α = 120◦) is precise unlike the case of longitudinal joint FAT 71.
To decrease the relative error but with the initial global element size (1.67mm), a new submodel is created
with a larger and greater cut boundary than the first submodel to obtain a converging displacements of the cut
boundary nodes.
The procedure to create the new submodel is the same of previous one and the results is displayed on the
following figure:.

Figure 3.47: 10 mm submodel with a larger and greater cut boundary.
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The results are:

∆σyy,weld−toe = 2.3608MPa (3.64)

∆σ11,weld−toe = 2.39427MPa (3.65)

∆σyy,gusset = 0.911251MPa (3.66)

∆σ11,gusset = 0.95881MPa (3.67)

∆σeq,peak,weld−toe = ∆σθθ ,θ=0,peak · fw1 = 2.3608 ·1.464 = 3.457MPa (3.68)

∆σeq,peak,gusset = ∆σθθ ,θ=0,peak · fw1 = 0.911251 ·1.022 = 0.9317MPa (3.69)

∆σeq,peak,literature = 3.274MPa (3.70)

∆% =
∆σeq,peak,calculated −∆σeq,peak,literature

∆σeq,peak,literature

·100 = 5.58% (3.71)

As the results show, the error decrease because the displacements of the cut boundary and so the boundary
conditions of the submodel are more precise than the first type of submodel.The results obtained from the
PSM with submodeling technique with a global element size equal to 0.2 mm, are subsequently inserted in the
fatigue design PSM curve and compared with the results obtained from PSM Tetra 187.

Numerical results for 20 mm submodel

For an external applied pressure ∆σnom = 1MPa, the results for weld toe and gusset for 20mm submodel are:

∆σyy,weld−toe = 2.17002MPa (3.72)

∆σ11,weld−toe = 2.20585MPa (3.73)

∆σyy,gusset = 0.330816MPa (3.74)

∆σ11,gusset = 0.34869MPa (3.75)

The equivalent peak stress are calculated by the formulae (2.23):

∆σeq,peak,weld−toe = ∆σθθ ,θ=0,peak · fw1 = 2.17002 ·1.834 = 3.979MPa (3.76)

∆σeq,peak,gusset = ∆σθθ ,θ=0,peak · fw1 = 0.330816 ·1.182 = 0.391MPa (3.77)

This result is not in good agreement with the value found in literature [33]:

∆σeq,peak,literature = 3.572MPa (3.78)

Thus, the relative error expresses in percentage between the calculated ∆σeq,peak and the ∆σeq,peak,literature

is:

∆% =
∆σeq,peak,calculated −∆σeq,peak,literature

∆σeq,peak,literature

·100 = 11.40% (3.79)

This high relative error is due to the two issues above-mentioned (paragraph 3.1.1) relative to the definition
of the cut boundary.
To reduce the error, a new submodel is created with a more fine mesh than before, with a global element
size equal to 1 mm (Figure 3.48). The objective is to obtain a uniform cut boundary, indeed with the initial
submodel the nodes of cut boundary, near to the weld toe, are characterised by a non converging displacements,
also called singular displacements.
The procedure to create the new submodel is the same of previous one.
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Figure 3.48: 10 mm submodel with global element size equal to 1 mm.

The results are:

∆σyy,weld−toe = 3.05506MPa (3.80)

∆σ11,weld−toe = 3.06593MPa (3.81)

∆σyy,gusset = 0.418308MPa (3.82)

∆σ11,gusset = 0.4224MPa (3.83)

∆σeq,peak,weld−toe = ∆σθθ ,θ=0,peak · fw1 = 3.05506 ·0.1.203 = 3.674MPa (3.84)

∆σeq,peak,gusset = ∆σθθ ,θ=0,peak · fw1 = 0.418308 ·0.752 = 0.377MPa (3.85)

∆σeq,peak,literature = 3.572MPa (3.86)

∆% =
∆σeq,peak,calculated −∆σeq,peak,literature

∆σeq,peak,literature

·100 = 2.86% (3.87)

As the results show, the relative error decreases and this approach has correctly foreseen the experimental
crack initiation point at the weld toe, in according to the experimental reality. This results is due to that the
PSM calibration constant K∗

FE = 1.38± 3% is calibrated for a opening angle 2α lesser than 135° and in this
case the value for weld toe (2α = 120◦) is precise unlike the case of longitudinal joint FAT 71.
To decrease the relative error but with the initial global element size (3), a new submodel is created with a larger
and greater cut boundary than the first submodel to obtain a converging displacements of the cut boundary
nodes.
The procedure to create the new submodel is the same of previous one and the results is displayed on the
following figure:

Figure 3.49: 20 mm submodel with a larger and greater cut boundary.
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The results are:

∆σyy,weld−toe = 2.24836MPa (3.88)

∆σ11,weld−toe = 2.29424MPa (3.89)

∆σyy,gusset = 0.796534MPa (3.90)

∆σ11,gusset = 0.835011MPa (3.91)

∆σeq,peak,weld−toe = ∆σθθ ,θ=0,peak · fw1 = 2.24836 ·1.834 = 4.123MPa (3.92)

∆σeq,peak,gusset = ∆σθθ ,θ=0,peak · fw1 = 0.796534 ·1.182 = 0.942MPa (3.93)

∆σeq,peak,literature = 3.572MPa (3.94)

∆% =
∆σeq,peak,calculated −∆σeq,peak,literature

∆σeq,peak,literature

·100 = 15.42% (3.95)

As the results show,the error remain roughly constant.Thus, the best approach to obtain the minimum
relative error is to reduce the global element size of the submodel. The results obtained from the PSM with
submodeling technique with a global element size equal to 0.2 mm, are subsequently inserted in the fatigue
design PSM curve and compared with the results obtained from PSM Tetra 187.

3.2.3 PSM approach Tetra 187

The fatigue assessment for these models are performed by the application of Peak Stress Method for 3D struc-
tures with the adoption of ten-node quadratic elements, considering only the weld toe.
The element SOLID 187 is chosen from the Ansys®APDL library with Pure Displacement as Key Option 1,
which means that the nodal forces are only dependent on the displacements.
As defined in the paragraph 3.2.1, the model is prevailing subjected to mode I. Under mode I, the PSM require-
ments, with Tetra elements SOLID 187, are define in the following table:

Location: weld toe 2α = 150◦ Mode I

Element type
Mesh

algorithm
(a/d)min 2α Mesh Pattern

Solid 187
KeyOpt:Pure

Displacement

Free 1 150°
No particular
indications

Table 3.21: Requirements for PSM with Tetra elements SOLID 187.

The mode I PSM calibration constant is calibrated at the weld toe where 2α = 120◦ and it is equal to
K∗

FE = 1.0901.
To define the global element size of the 10 mm model, the following procedure is applied:

1. From literature the ratio (a/d)min is determined according to the Table 3.21. In this case the ratio for
pure mode I is chosen and it is equal to 1;

2. The value of a is the reference dimension for selecting the maximal FE sizes d for PSM application and
is defined as the half of the thickness t, so in this case is equal to 5 mm;

3. Subsequently, the minimum element size is defined as follow:

dmin =
a

1
=

5
1
= 5mm (3.96)

4. The chosen dimension of elements is 1 mm

For the 20mm model, the size of the elements is obtained as following:
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1. From literature the ratio (a/d)min is determined according to the Table 3.21. In this case the ratio for
pure mode I is chosen and it is equal to 1;

2. The value of a is the reference dimension for selecting the maximal FE sizes d for PSM application and
is defined as the half of the thickness t, so in this case is equal to 10 mm;

3. Subsequently, the minimum element size is defined as follow:

dmin =
a

3
=

10
1

= 10mm (3.97)

4. The chosen dimension of elements is 1 mm

The λ1 and e1 values are depended on the opening angle 2α , that is 120° for the weld toe:

2α [°] λ1 (Mode I) e1 (Mode I)

120° 0.616 0.130

Table 3.22: Value of λ1 and e1 in function of the opening angle 2α

The corrective stress factors for mode I is calculated with the equation (2.24). The result is reported in the
Table 3.23

t=10 mm

2α [°] fw1

120 0.950
t=20 mm

2α [°] fw1

120 0.950

Table 3.23: Value of the corrective stress factors fw1 in function of the opening angle 2α

Once the model is properly meshed, loaded and constraint, the system can be solved:

Solution→Solve→Current LS

3.2.4 PSM approach with Tetra 187: results

The method for the detection of the equivalent peak stress is characterized by the same considerations, proce-
dure and dispositions of the previous longitudinal joints FAT 71 analysis, defined in the paragraph 3.1.3.

10 mm results

In this analysis, the structure is subjected to pure mode I loading, as describe in the paragraph 3.2.1,so the first
principal stress range ∆σ11 can be approximated equal to local stress ∆σyy, evaluated with a local reference
system with the origin placed on the V-notch. To reduce the post-processing time, the first principal stress is
replaced by ∆σyy and the results can be observed in the Figure 3.50, for an external applied pressure equal to 1
MPa:
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Figure 3.50: Plot of the first principal stress.

To obtain the trend of the nodal stress at the V-notch, the nodes attached to line that represents the weld toe
(see Figure3.51), is selected with the following commands:

Select→Entities→Lines→From full

Select→Entities→Nodes→Attached to→Lines all

Figure 3.51: Selected nodes along the weld toe.

The results of the nodal tensions ∆σ11 and the relative average peak stress value are reported in the Appendix
B.2.
For an external applied pressure ∆σnom = 1MPa, the result at the weld toe is:

∆σ11,weld−toe,peak = 3.5503MPa (3.98)

The equivalent peak stress are calculated by the formulae (2.23):

∆σeq,peak,weld−toe = ∆σθθ ,θ=0,peak · fw1 = 3.5503 ·0.950 = 3.373MPa (3.99)

This result is in good agreement with the value found in literature [33]:

∆σeq,peak,literature = 3.2747MPa (3.100)

Thus, the relative error expresses in percentage between the calculated ∆σeq,peak and the ∆σeq,peak,literature

is:

∆% =
∆σeq,peak,calculated −∆σeq,peak,literature

∆σeq,peak,literature

·100 = 3.01% (3.101)
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20 mm results

In this analysis, the structure is subjected to pure mode I loading, as describe in the paragraph 3.2.1,so the first
principal stress range ∆σ11 can be approximated equal to local stress ∆σyy, evaluated with a local reference
system with the origin placed on the V-notch. To reduce the post-processing time, the first principal stress is
replaced by ∆σyy and the results can be observed in the Figure 3.52, for an external applied pressure equal to 1
MPa:

Figure 3.52: Plot of the first principal stress.

To obtain the trend of the nodal stress at the V-notch, the nodes attached to line that represents the weld toe
(see Figure3.53), is selected with the same procedure described before.

Figure 3.53: Selected nodes along the weld toe.

The results of the nodal tensions ∆σ11 and the relative average peak stress value are reported in the Appendix
B.2.
For an external applied pressure ∆σnom = 1MPa, the result at the weld toe is:

∆σ11,weld−toe,peak = 3.7781MPa (3.102)

The equivalent peak stress are calculated by the formulae (2.23):

∆σeq,peak,weld−toe = ∆σθθ ,θ=0,peak · fw1 = 3.7781 ·0.950 = 3589MPa (3.103)

This result is in good agreement with the value found in literature [33]:

∆σeq,peak,literature = 3.572MPa (3.104)

Thus, the relative error expresses in percentage between the calculated ∆σeq,peak and the ∆σeq,peak,literature

is:

∆% =
∆σeq,peak,calculated −∆σeq,peak,literature

∆σeq,peak,literature

·100 = 0.47% (3.105)
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3.2.5 Data results for PSM curve

The previous model was characterised by a load equal to 1 MPa, applied to the main plate of the specimen; to
obtain the value of the peak stress related to the applied nominal stress, the equation (3.24) is applied.
The results in terms of equivalent peak stress calculated with PSM Tetra 187 approach, are defined in the
Appendix C.2.
The all experimental data are collected inside the PSM design curve proposed by Meneghetti, Guzzella and
Atzori for structure subjected to prevailing mode I.

Figure 3.54: Experimental data inside the PSM design curve with Brick 185 and Tetra 185 elements for 10mm model.

Figure 3.55: Experimental data inside the PSM design curve with Brick 185 and Tetra 185 elements for 20mm model.

The following conclusion can be defined:

1. The all experimental data fall above the lines that represents the 50% of probability of survival. Thus the
PSM design curve has demonstrated to be effective and conservative;

2. The PSM Brick 185 approach have correctely foreseen the experimental crack initiation point at the weld
toe. The best PSM Brick 185 approach is characterised by a submodel global element size equal to 0.2
mm for 10 mm model and to 1mm for 20 mm model. Indeed, with this method the relative error between
the analytical results and literature results is acceptable.
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3.2.6 SED (Strain Energy Density) approach

The fatigue assessment for these models are performed by the application of the Strain Energy Density ap-
proach.
The element SOLID 187 is chosen from the Ansys®APDL with Pure Displacement as Key Option 1, which
means that the nodal forces are only dependent on the displacements.
First of all, the control volume is created and it is characterised by a 3-dimensional circular sector shape with
radius equal to R0 = 0.28mm and the deep is 0.28mm (0.14 in the model due to the symmetry condition). The
center of the control volume is placed at the weld toe for the both models (10 mm and 20 mm) as the figures
below show:

Figure 3.56: Control volume for the 10 mm model with the center at the V-notch tip.

Figure 3.57: Control volume for the 20 mm model with the center at the V-notch tip.

The models with the control volume have been modelled inside SOLIDWORKS 2020 and after they have
been imported in Ansys®APDL with .IGS extension.
To create the mesh of the model, the procedure is the same for the 10 mm and 20 mm model and is characterised
by the following steps:

1. The element inside the structural volume are characterised by a global element size equal to 0.05mm
with a free-mesh algorithm;
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Figure 3.58: Mesh of the structural volume with global element size of 0.05, the structural volume is the same for 10 and

20 mm model.

2. The other volume is meshed with a global element size equal to 1 mm with a free-mesh algorithm.

Figure 3.59: Mesh of the all 10 mm structure.

Figure 3.60: Mesh of the all 20 mm structure.

Once the model is properly meshed, loaded and constraint, the system can be solved:

Solution→Solve→Current LS
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3.2.7 SED (Strain Energy Density) approach: results

Before the post-processing of the data, it is advised to disable the PowerGraphics option in Ansys®APDL
toolbar, otherwise the output results are given by the average of only the superficial nodal stresses, without
considering the inner ones.
The method for the detection of the SED (Strain Energy Density) is characterised by the same considerations,
procedure and dispositions of the previous longitudinal joint FAT 71 analysis, defined in the paragraph 3.1.8

10 mm results

The result of SED for the 10 mm model weld toe when the specimen is subjected to a nominal stress of 1 MPa
is:

SENE = 5.4255 ·10−7MJ (3.106)

VOLU = 0.0229879mm3 (3.107)

SED =
SENE

VOLU
=

5.4255 ·10−7

0.0229879
= 2.3602 ·10−5 MJ

m3 (3.108)

From the SED, the equivalent peak stress is obtained with the following formula:

∆σeq,peak =

√

2 ·E ·SED

1−ν2 =

√

2 ·206000 ·2.3602 ·10−5

1−0.32 = 3.2689MPa (3.109)

This result is in good agreement with the value found in literature [33]:

∆σeq,peak,literature = 3.274MPa (3.110)

Thus, the relative error expresses in percentage between the calculated ∆σeq,peak and the ∆σeq,peak,literature

is:

∆% =
∆σeq,peak,calculated −∆σeq,peak,literature

∆σeq,peak,literature

·100 =−0.168% (3.111)

20 mm results

The result of SED for the 20 mm model weld toe when the specimen is subjected to a nominal stress of 1 MPa
is:

SENE = 6.4728 ·10−7MJ (3.112)

VOLU = 0.0229879mm3 (3.113)

SED =
SENE

VOLU
=

6.4728 ·10−7

0.0229879
= 2.8157 ·10−5 MJ

m3 (3.114)

From the SED, the equivalent peak stress is obtained with the following formula:

∆σeq,peak =

√

2 ·E ·SED

1−ν2 =

√

2 ·206000 ·2.8157 ·10−5

1−0.32 = 3.5705MPa (3.115)

This result is in good agreement with the value found in literature [33]:

∆σeq,peak,literature = 3.572MPa (3.116)

Thus, the relative error expresses in percentage between the calculated ∆σeq,peak and the ∆σeq,peak,literature

is:

∆% =
∆σeq,peak,calculated −∆σeq,peak,literature

∆σeq,peak,literature

·100 =−0.049% (3.117)
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3.2.8 Data results for SED curve

The previous model was characterised by a load equal to 1 MPa, applied to the main plate of the specimen; to
obtain the value of the peak stress related to the applied nominal stress, the equation (3.32) is applied.
The results in terms of SED are defined in the Appendix C.2.
The all experimental data are collected inside the SED design curve proposed by Lazzarin and Zambarandi:

Figure 3.61: 10 mm experimental data inside the SED design curve.

Figure 3.62: 20 mm experimental data inside the SED design curve.
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The following conclusion can be defined:

1. The all experimental data fall above the lines that represents the 50% of probability of survival. Thus the
PSM design curve has demonstrated to be effective and conservative;

2. The SED approach find results that are in according with the literature and it has correctly foreseen the
experimental crack initiation point at weld toe.

3.2.9 SHSS (Structural Hot Spot Stress) approach

The fatigue assessment for these models are performed by the application of SHSS approach, following the IIW
recommendation [1] to obtain the hot-spot stress. According to the guideline, the weld toe of the longitudinal
stiffener FAT 63 is a hot-spot type a and the hot-spot stress value is detected with the employment of fine mesh,
as Figure 1.4 shows.
The models of the longitudinal stiffener FAT 63 10 mm and 20 mm are divided in a series of volumes to allow
the application of Mapped-mesh algorithm; indeed each volumes must be characterised by a number of face be-
tween 4 and 6 to obtain a Mapped-mesh.The eight-node linear element SOLID 185 is chosen in Ansys®APDL
with Simple Enhanced Strain as Key Option 1.

10 mm model

The all informations about the mesh for 10mm model is reported in the following table:

Element type
Mesh

algorithm

Main plate

thickness t

Max element

size

Adopted element

size

Solid 185
KeyOpt:Simple

Enhanced Strain

Mapped
10 mm (5 mm

modelled)
0.4 · t =

0.4 ·10 = 4mm
2 mm

Table 3.24: Requirements for SHSS mesh.

The hot-spot stress is extrapolated at two reference points placed at 0.4t and 1.0t distane from the weld toe
tip, so in this case at 4 mm and 10 mm from weld toe.
For the type of extrapolated stress, the graph in Figure 3.63 shows that, for an external applied pressure ∆σnom =
1MPa, after 1.95 mm, the ∆σxx and the first principal stress ∆σ11 are coincident. For this reason the choice is
indifferent.

Figure 3.63: ∆σxx and ∆σyy plotted in function of the distance from weld toe tip
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The mesh of the model is reported in the following figures:

Figure 3.64: Mapped mesh for SHSS approach

Figure 3.65: Mapped mesh for SHSS approach and reference points

Before the post-processing of the data, it is advised to disable the PowerGraphics option in Ansys®APDL
toolbar, otherwise the output results are given by the average of only the superficial nodal stresses, without
considering the inner ones.
For an external applied pressure ∆σnom = 1MPa, the results of the tension at the reference points are:

∆σxx,0.4t = 1.3246MPa (3.118)

∆σxx,1.0t = 1.20659MPa (3.119)

∆σ11,0.4t = 1.32561MPa (3.120)

∆σ11,1.0t = 1.20673MPa (3.121)

(3.122)

The structural hot-spot stress is detected with the equation 1.2:

∆SHSSLSE,xx = 1,67 ·σxx,0.4·t −0.67 ·σxx,1.0·t = 1.67 ·1.3246−0.67 ·1.20659 = 1.4037MPa (3.123)

∆SHSSLSE,11 = 1,67 ·σ11,0.4·t −0.67 ·σ11,1.0·t = 1.67 ·1.32561−0.67 ·1.20673 = 1.4053MPa (3.124)

This result is in good agreement with the value found in literature [33]:

∆σxx,0.4t = 1.312MPa (3.125)

∆σxx,1.0t = 1.205MPa (3.126)

(3.127)
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∆SHSSLSE,literature = 1,384MPa

Thus, the relative errors expresses in percentage between the calculated ∆SHSSLSE,xx, ∆SHSSLSE,11 and
the∆SHSSLSE,literatureare:

∆% =
∆SHSSLSE,xx −∆SHSSLSE,literature

∆SHSSLSE,literature

·100 = 1.44% (3.128)

∆% =
∆SHSSLSE,11 −∆SHSSLSE,literature

∆SHSSLSE,literature

·100 = 1.56% (3.129)

20 mm model

The all informations about the mesh for 10mm model is reported in the following table:

Element type
Mesh

algorithm

Main plate

thickness t

Max element

size

Adopted element

size

Solid 185
KeyOpt:Simple

Enhanced Strain

Mapped
20 mm (10

mm
modelled)

0.4 · t =
0.4 ·20 = 8mm

2 mm

Table 3.25: Requirements for SHSS mesh.

The hot-spot stress is extrapolated at two reference points placed at 0.4t and 1.0t distance from the weld
toe tip, so in this case at 8 mm and 20 mm from weld toe.
For the type of extrapolated stress, the graph in Figure 3.66 shows that, for an external applied pressure ∆σnom =
1MPa, after 1.95 mm, the ∆σxx and the first principal stress ∆σ11 are coincident. For this reason the choice is
indifferent.

Figure 3.66: ∆σxx and ∆σyy plotted in function of the distance from weld toe tip
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The mesh of the model is reported in the following figures:

Figure 3.67: Mapped mesh for SHSS approach

Figure 3.68: Mapped mesh for SHSS approach and reference points

Before the post-processing of the data, it is advised to disable the PowerGraphics option in Ansys®APDL
toolbar, otherwise the output results are given by the average of only the superficial nodal stresses, without
considering the inner ones.
For an external applied pressure ∆σnom = 1MPa, the results of the tension at the reference points are:

∆σxx,0.4t = 1.15154MPa (3.130)

∆σxx,1.0t = 1.08205MPa (3.131)

∆σ11,0.4t = 1.15175MPa (3.132)

∆σ11,1.0t = 1.08207MPa (3.133)

(3.134)

The structural hot-spot stress is detected with the equation 1.2:

∆SHSSLSE,xx = 1,67 ·σxx,0.4·t −0.67 ·σxx,1.0·t = 1.67 ·1.15154−0.67 ·1.08205 = 1.1981MPa (3.135)

∆SHSSLSE,11 = 1,67 ·σ11,0.4·t −0.67 ·σ11,1.0·t = 1.67 ·1.15175−0.67 ·1.08207 = 1.1984MPa (3.136)

This result is in good agreement with the value found in literature [33]:

∆σxx,0.4t = 1.154MPa (3.137)

∆σxx,1.0t = 1.082MPa (3.138)

(3.139)
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∆SHSSLSE,literature = 1,202MPa

Thus, the relative errors expresses in percentage between the calculated ∆SHSSLSE,xx, ∆SHSSLSE,11 and
the∆SHSSLSE,literatureare:

∆% =
∆SHSSLSE,xx −∆SHSSLSE,literature

∆SHSSLSE,literature

·100 =−0.345% (3.140)

∆% =
∆SHSSLSE,11 −∆SHSSLSE,literature

∆SHSSLSE,literature

·100 =−0.316% (3.141)

3.2.10 Data results for IIW curve

Nominal stress approach

The results are reported in terms of nominal stress, defined in the beginning of paragraph3.2, inside the FAT 63
curve proposed by IIW guideline [1]:

Figure 3.69: Experimental data inside the IIW nominal stress design curve.
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Figure 3.70: Experimental data inside the IIW nominal stress design curve.

SHSS approach

The previous model was characterised by a load equal to 1 MPa, applied to the main plate of the specimen; to
obtain the value of the hot-spot stress related to the applied nominal stress, the equation (3.45) is applied.

The results in terms of SHSS are defined in the Appendix C.2.
The all experimental data are collected inside the SHSS design curve proposed by IIW guideline:

Figure 3.71: Experimental data inside the SHSS design curve.
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Figure 3.72: Experimental data inside the SHSS design curve.

The following conclusion can be defined:

1. These approaches have correctly been applied to FAT 63 welded joint, for weld toe fractures;

2. The nominal stress approach is characterised by the fact that all points fall above the lines that represents
the 97.7% of probability of survival. For this reason, the nominal stress approach has proven to be
conservative as the others methods;

3. The hot-spot stress method is characterised by the fact that some points fall below the lines that rep-
resents the 97.7% of probability of survival. For this reason, the SHSS approach has not proven to be
conservative as the others methods.

3.3 Yildirim 2020, transverse attachment FAT 80

The third joint analysed is a transverse attachment characterised by a fatigue class FAT 80, studied by Yildirim
in 2020 [18] under CAL (Constant Amplitude Loading).
The principal information and mechanical properties about this typology of the joint are summarized in the
Table 3.26 and Table 3.27:

Weld condition Fracture location Load application
Main plate/gusset

thickness

As-welded, non-load carrying
(NLC), full penetration

Weld toe
Axial, main plate,

parent material
Main plate: 6mm

Gusset: 6mm

Table 3.26: Information about the specimens
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Material model
Yield strength fy

[MPa]

Young modulus

[MPa]

Poisson’s ratio

ν

AH36, HSS, Linear elastic,
isotropic

392 206000 0.3

Table 3.27: Information about mechanical properties

The dimensions of this joint are defined in the following table and figure:

t [mm] b [mm] w [mm] L [mm] h [mm] 2α[°] z [mm]

6 6 40 600 40 135 5.50

Table 3.28: Dimension of the transverse attachment FAT 80, studied by Yidirim in 2020.

Figure 3.73: Yidirim 2020, transverse attachment FAT 80 [33].

The parameters of the weld profile is described in the following table:

ρ weld toe tip [mm] Weld leg [mm] Weld flack angle [°] 2α

∼= 0 5.50 45
Weld toe: 135°
Gusset: 135°

Table 3.29: Information about the weld profile

The radius ρ of the weld toe is lower than 1.5mm, so the assumption of a sharp V-notch (ρ = 0mm) at the
weld toe is acceptable with the non conventional LEFM extension to welded joints.
The effect of misalignment can not be neglected in transverse joint, however in this first analysis it is neglected.
The experimental data are defined in the following table in terms of nominal stress ∆σnom:
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Stress Ratio

R

∆σnom

[MPa]
Nf [cycles]

0.1

153 827502
190 334910
153 837466
190 383736
117 11700000
125 10052008

-0.46

190 608805
243 201094
153 1723400
243 217785
190 710346
136 10122344

Table 3.30: Experimental data of the 3rd joint, Yildirim 2020. The number barred represents the run-outs

Yidirim FAT 80 is modelled in SOLIDWORKS 2020 and subsequently, is imported inside Ansys®APDL
with .IGS extension. The results is reported in the figure below:

Figure 3.74: Model of transverse attachment FAT 80, studied by Yildirim in 2020.

The modelling procedure in Ansys®APDL is briefly described:

• Thanks to the double symmetry of the longitudinal stiffener, only 1/4 of the geometry is modelled to
reduce the computational time;

• A root has been created and it is characterized by a initial opening length equal to 0.1mm;

• The first joint is subjected to an axial load and it is applied on the main plate as a constant pressure equal
to p = ∆σnom, on the Line L2 as Figure 3.75 shows;

• Symmetry boundary conditions are applied on the lines L1, L7 and L10(Figure 3.76).
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Figure 3.75: Load of the model of transverse attachment FAT 80, studied by Yildirim in 2020.

Figure 3.76: Symmetry condition of the model of transverse attachment FAT 80 studied by Yildirim in 2020.

3.3.1 PSM approach Plane 182

The fatigue assessment for this model is performed by the application of Peak Stress Method for 2D structures
with the adoption of four-node linear elements.
The element PLANE 182 is chosen from the Ansys®APDL library with Simple Enhanced Strain as Key Option
1 and Plane Strain as Key Option 3.
The model is prevailing subjected to mode I at the attachment edge with a opening angle 2α equal to 135°.Indeed,
referring to the graph of the Williams eigenvalues trend in Figure 1.13, mode II is not singular for V-notch open-
ing angle greater than 102.5°, so λ2 = 0; the mode III can be neglected because is irrelevant.
Under mode I, the PSM requirements, with Tetra elements PLANE 182, are define in the following table:

Mode I

Element type
Mesh

algorithm
(a/d)min 2α

Mesh Pattern

2α<90°

Mesh Pattern

2α>90°

Plane 182
KeyOpt:Simple

Enhanced Strain

+ Plane Strain

Free 3 0°<2α<135°
Four adjacent

elements share the
same node

Two adjacent
elements share the

same node

Table 3.31: Requirements for PSM.

The mode I PSM calibration constant is calibrated at the weld toe where 2α = 135◦ and it is equal to
K∗

FE = 1.38±3%.
To define the global element size of the model, the following procedure is applied:

1. From literature the ratio (a/d)min is determined according to the Table 3.31. In this case the ratio for
pure mode I is chosen and it is equal to 3;

2. The value of a is the reference dimension for selecting the maximal FE sizes d for PSM application and
is defined as the half of the thickness t, so in this case is equal to 3 mm;
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3. Subsequently, the minimum element size is defined as follow:

dmin =
a

3
=

3
3
= 1mm (3.142)

4. The chosen dimension of elements is 1 mm

The λ1 and e1 values are depended on the opening angle 2α , that is 135° for the weld toe:

2α [°] λ1 (Mode I) e1 (Mode I)

135° 0.674 0.117

Table 3.32: Value of λ1 and e1 in function of the opening angle 2α

The corrective stress factors for mode I is calculated with the equation (2.24). The result is reported in the
Table 3.33

2α [°] fw1

135° 1.06

Table 3.33: Value of the corrective stress factors fw1 in function of the opening angle 2α

Once the model is properly meshed, loaded and constraint, the system can be solved:

Solution→Solve→Current LS

3.3.2 PSM approach with Plane 182: results

In this analysis, the structures are subjected to pure mode I loading, so in these situations it can be demonstrated
that, in the case that the stress flow is aligned with the external pressure direction, the first principal stress range
∆σ11 can be approximated equal to local stress ∆σyy, evaluated with a local reference system with the origin
placed on the V-notch. However, to obtain a more precise results, a local reference system is created on the
node that represents the weld toe with the same procedure described in the paragraph 2.2.1(see Figure3.77).

Figure 3.77: Local reference system with the origin at the weld toe.

During the analysis of the results, the first principal stress is evaluated and compared with ∆σyy. The results
of the first principal stress can be observed in the Figure 3.78, for an external applied pressure equal to 1 MPa:
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Figure 3.78: Plot of the first principal stress.

For an external applied pressure ∆σnom = 1MPa, the result at the weld toe is:

∆σ yy,weld−toe,peak = 1.49156MPa (3.143)

∆σ11,weld−toe,peak = 1.50839MPa (3.144)

(3.145)

The equivalent peak stress are calculated by the formulae (2.23):

∆σeq,peak,weld−toe = ∆σθθ ,θ=0,peak · fw1 = 1.49156 ·1.06 = 1.5985MPa (3.146)

This result is in good agreement with the value found in literature [33]:

∆σeq,peak,literature = 1.620MPa (3.147)

Thus, the relative error expresses in percentage between the calculated ∆σeq,peak and the ∆σeq,peak,literature

is:

∆% =
∆σeq,peak,calculated −∆σeq,peak,literature

∆σeq,peak,literature

·100 =−1.37% (3.148)

3.3.3 Data results for PSM curve

The previous model was characterised by a load equal to 1 MPa, applied to the main plate of the specimen; to
obtain the value of the peak stress related to the applied nominal stress, the equation (3.24) is applied.
The results in terms of equivalent peak stress calculated with PSM Plane 182 approach, are defined in the
Appendix C.3.
The all experimental data are collected inside the PSM design curve proposed by Meneghetti and Lazzarin for
structure subjected to prevailing mode I.
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Figure 3.79: Experimental data inside the PSM design curve with Plane 182 elements.

The following conclusion can be defined:

1. The all experimental data fall above the lines that represents the 97.7% of probability of survival. Thus
the PSM design curve has demonstrated to be effective and conservative;

2. The PSM Plane 182 approach have correctely foreseen the experimental crack initiation point at the weld
toe.

3.3.4 SHSS (Structural Hot Spot Stress) approach

The fatigue assessment for this model is performed by the application of SHSS approach, following the IIW
recommendation [1] to obtain the hot-spot stress. According to the guideline, the weld toe of the transverse
attachment FAT 80 studied by Yildirim in 2020, is a hot-spot type a and the hot-spot stress value is detected
with the employment of fine mesh, as Figure 1.4 shows.
The model is divided in a series of areas to allow the application of Mapped-mesh algorithm; indeed each areas
must be characterised by a number of side between 3 and 4 to obtain a Mapped-mesh.The eight-node linear
element PLANE 182 is chosen in Ansys®APDL with Simple Enhanced Strain as Key Option 1 and Plane

Strain as Key Option 3.
The all informations about the mesh is reported in the following table:

Element type
Mesh

algorithm

Main plate

thickness t

Max element

size

Adopted element

size

Plane 182
KeyOpt:Simple

Enhanced Strain

+ Plane Strain

Mapped
6 mm (3 mm

modelled)
0.4 · t = 0.4 ·6 =

2.4mm
1.2 mm

Table 3.34: Requirements for SHSS mesh.

The hot-spot stress is extrapolated at two reference points placed at 0.4t and 1.0t distance from the weld
toe tip, so in this case at 2.4 mm and 6 mm from weld toe.
For the type of extrapolated stress, the graph in Figure 3.80 shows that, for an external applied pressure ∆σnom =
1MPa, after 1.50 mm, the ∆σxx and the first principal stress ∆σ11 are coincident. For this reason the choice is
indifferent.
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Figure 3.80: ∆σxx and ∆σyy plotted in function of the distance from weld toe tip

The mesh of the model is reported in the following figures:

Figure 3.81: Mapped mesh for SHSS approach

Figure 3.82: Mapped mesh for SHSS approach and reference points

135



Chapter 3: Numerical analysis of experimental data and fatigue assessment of As-welded joint by local

approaches

For an external applied pressure ∆σnom = 1MPa, the results of the tension at the reference points are:

∆σxx,0.4t = 1.01433MPa (3.149)

∆σxx,1.0t = 0.99117MPa (3.150)

∆σ11,0.4t = 1.01476MPa (3.151)

∆σ11,1.0t = 0.99118MPa (3.152)

(3.153)

The structural hot-spot stress is detected with the equation 1.2:

∆SHSSLSE,xx = 1,67 ·σxx,0.4·t −0.67 ·σxx,1.0·t = 1.67 ·1.01433−0.67 ·0.99117 = 1.0298MPa (3.154)

∆SHSSLSE,11 = 1,67 ·σ11,0.4·t −0.67 ·σ11,1.0·t = 1.67 ·1.01476−0.67 ·0.99118 = 1.03056MPa (3.155)

This result is in good agreement with the value found in literature [33]:

∆σxx,0.4t = 1.017MPa (3.156)

∆σxx,1.0t = 0.991MPa (3.157)

(3.158)

∆SHSSLSE,literature = 1,035MPa

Thus, the relative errors expresses in percentage between the calculated ∆SHSSLSE,xx, ∆SHSSLSE,11 and
the∆SHSSLSE,literatureare:

∆% =
∆SHSSLSE,xx −∆SHSSLSE,literature

∆SHSSLSE,literature

·100 =−0.50% (3.159)

∆% =
∆SHSSLSE,11 −∆SHSSLSE,literature

∆SHSSLSE,literature

·100 =−0.43% (3.160)

3.3.5 Data results for IIW curve

Nominal stress approach

The results are reported in terms of nominal stress, defined in the beginning of paragraph3.3, inside the FAT 80
curve proposed by IIW guideline [1]:

Figure 3.83: Experimental data inside the IIW nominal stress design curve.
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SHSS approach

The previous model was characterised by a load equal to 1 MPa, applied to the main plate of the specimen; to
obtain the value of the hot-spot stress related to the applied nominal stress, the equation (3.45) is applied.

The results in terms of SHSS are defined in the Appendix C.3.
The all experimental data are collected inside the SHSS design curve proposed by IIW guideline:

Figure 3.84: Experimental data inside the SHSS design curve.

The following conclusion can be defined:

1. These approaches have correctly been applied to FAT 80 welded joint, for weld toe fractures;

2. The nominal stress approach is characterised by the fact that all points fall above the lines that represents
the 97.7% of probability of survival. For this reason, the nominal stress approach has proven to be
conservative as the others methods.

3. The hot-spot stress method is characterised by the fact that all points fall above the lines that represents
the 97.7% of probability of survival. For this reason, the SHSS approach has proven to be conservative
as the others methods.

3.4 Okawa 2013, transverse attachment FAT 80

The fourth joint analysed is a transverse attachment characterised by a fatigue class FAT 80, studied by Okawa
in 2013 [43] under CAL (Constant Amplitude Loading).
The principal information and mechanical properties about this typology of the joint are summarized in the
Table 3.35 and Table 3.36:

Weld condition Fracture location Load application
Main plate/gusset

thickness

As-welded, non-load carrying
(NLC), full penetration

Weld toe
Axial, main plate,

parent material
Main plate: 20mm

Gusset: 10mm

Table 3.35: Information about the specimens
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Material model
Yield strength fy

[MPa]

Young modulus

[MPa]

Poisson’s ratio

ν

AH36, HSS, Linear elastic,
isotropic

392 206000 0.3

Table 3.36: Information about mechanical properties

The dimensions of this joint are defined in the following table and figure:

t [mm] b [mm] w [mm] L [mm] h [mm] 2α[°] z [mm]

20 10 75 700 50 135 8

Table 3.37: Dimension of the transverse attachment FAT 80, studied by Okawa in 2013.

Figure 3.85: Okawa 2013, transverse attachment FAT 80 [33].

The parameters of the weld profile is described in the following table:

ρ weld toe tip [mm] Weld leg [mm] Weld flack angle [°] 2α

∼= 0 8 45
Weld toe: 135°
Gusset: 135°

Table 3.38: Information about the weld profile

The radius ρ of the weld toe is lower than 1.5mm, so the assumption of a sharp V-notch (ρ = 0mm) at the
weld toe is acceptable with the non conventional LEFM extension to welded joints.
The effect of misalignment can not be neglected in transverse joint, however in this first analysis it is neglected.
The experimental data are defined in the following table in terms of nominal stress ∆σnom:

Stress Ratio

R

∆σnom

[MPa]
Nf [cycles]

0.1

200 164000
150 354000
100 1320000
80 5000000

Table 3.39: Experimental data of the 4th joint, Okawa 2013. The number barred represents the run-outs

OKawa FAT 80 is modelled in SOLIDWORKS 2020 and subsequently, is imported inside Ansys®APDL
with .IGS extension. The results is reported in the figure below:
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Figure 3.86: Model of transverse attachment FAT 80, studied by Okawa in 2013.

The procedure to define the boundary conditions of the model follows the same steps and dispositions
defined for the transverse attachment FAT 80, studied by Yildirim in 2020 (see paragraph 3.3). The results are
reported in the following figures:

Figure 3.87: Load of the model of transverse attachment FAT 80, studied by Okawa in 2013.

Figure 3.88: Symmetry condition of the model of transverse attachment FAT 80 studied by Okawa in 2013.
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3.4.1 PSM approach Plane 182

The fatigue assessment for this model is performed by the application of Peak Stress Method for 2D structures
with the adoption of four-node linear elements.
The element PLANE 182 is chosen from the Ansys®APDL library with Simple Enhanced Strain as Key Option
1 and Plane Strain as Key Option 3.
The model is prevailing subjected to mode I at the attachment edge with a opening angle 2α equal to 135°.Indeed,
referring to the graph of the Williams eigenvalues trend in Figure 1.13, mode II is not singular for V-notch open-
ing angle greater than 102.5°, so λ2 = 0; the mode III can be neglected because is irrelevant.
Under mode I, the PSM requirements, with Tetra elements PLANE 182, are define in the following table:

Mode I

Element type
Mesh

algorithm
(a/d)min 2α

Mesh Pattern

2α<90°

Mesh Pattern

2α>90°

Plane 182
KeyOpt:Simple

Enhanced Strain

+ Plane Strain

Free 3 0°<2α<135°
Four adjacent

elements share the
same node

Two adjacent
elements share the

same node

Table 3.40: Requirements for PSM.

The mode I PSM calibration constant is calibrated at the weld toe where 2α = 135◦ and it is equal to
K∗

FE = 1.38±3%.
To define the global element size of the model, the following procedure is applied:

1. From literature the ratio (a/d)min is determined according to the Table 3.40. In this case the ratio for
pure mode I is chosen and it is equal to 3;

2. The value of a is the reference dimension for selecting the maximal FE sizes d for PSM application and
is defined as the half of the thickness t, so in this case is equal to 10 mm;

3. Subsequently, the minimum element size is defined as follow:

dmin =
a

3
=

10
3

= 3.33mm (3.161)

4. The chosen dimension of elements is 3 mm

The λ1 and e1 values are depended on the opening angle 2α , that is 135° for the weld toe:

2α [°] λ1 (Mode I) e1 (Mode I)

135° 0.674 0.117

Table 3.41: Value of λ1 and e1 in function of the opening angle 2α

The corrective stress factors for mode I is calculated with the equation (2.24). The result is reported in the
Table 3.42

2α [°] fw1

135° 1.569

Table 3.42: Value of the corrective stress factors fw1 in function of the opening angle 2α

Once the model is properly meshed, loaded and constraint, the system can be solved:

Solution→Solve→Current LS
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3.4.2 PSM approach with Plane 182: results

In this analysis, the structures are subjected to pure mode I loading, so in these situations it can be demonstrated
that, in the case that the stress flow is aligned with the external pressure direction, the first principal stress range
∆σ11 can be approximated equal to local stress ∆σyy, evaluated with a local reference system with the origin
placed on the V-notch. However, to obtain a more precise results, a local reference system is created on the
node that represents the weld toe with the same procedure described in the paragraph 2.2.1(see Figure3.89).

Figure 3.89: Local reference system with the origin at the weld toe.

During the analysis of the results, the first principal stress is evaluated and compared with ∆σyy. The results
of the first principal stress can be observed in the Figure 3.90, for an external applied pressure equal to 1 MPa:

Figure 3.90: Plot of the first principal stress.
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For an external applied pressure ∆σnom = 1MPa, the result at the weld toe is:

∆σ yy,weld−toe,peak = 1.43403MPa (3.162)

∆σ11,weld−toe,peak = 1.41986MPa (3.163)

(3.164)

The equivalent peak stress are calculated by the formulae (2.23):

∆σeq,peak,weld−toe = ∆σθθ ,θ=0,peak · fw1 = 1.434303 ·1.569 = 2.17417MPa (3.165)

This result is in good agreement with the value found in literature [33]:

∆σeq,peak,literature = 2.1785MPa (3.166)

Thus, the relative error expresses in percentage between the calculated ∆σeq,peak and the ∆σeq,peak,literature

is:

∆% =
∆σeq,peak,calculated −∆σeq,peak,literature

∆σeq,peak,literature

·100 =−0.20% (3.167)

3.4.3 Data results for PSM curve

The previous model was characterised by a load equal to 1 MPa, applied to the main plate of the specimen; to
obtain the value of the peak stress related to the applied nominal stress, the equation (3.24) is applied.
The results in terms of equivalent peak stress calculated with PSM Plane 182 approach, are defined in the
Appendix C.4.
The all experimental data are collected inside the PSM design curve proposed by Meneghetti and Lazzarin for
structure subjected to prevailing mode I.

Figure 3.91: Experimental data inside the PSM design curve with Plane 182 elements.
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The following conclusion can be defined:

1. The all experimental data fall above the lines that represents the 97.7% of probability of survival. Thus
the PSM design curve has demonstrated to be effective and conservative;

2. The PSM Plane 182 approach have correctely foreseen the experimental crack initiation point at the weld
toe.

3.4.4 SHSS (Structural Hot Spot Stress) approach

The fatigue assessment for this model is performed by the application of SHSS approach, following the IIW
recommendation [1] to obtain the hot-spot stress. According to the guideline, the weld toe of the transverse
attachment FAT 80 studied by Okawa in 2013, is a hot-spot type a and the hot-spot stress value is detected with
the employment of fine mesh, as Figure 1.4 shows.
The model is divided in a series of areas to allow the application of Mapped-mesh algorithm; indeed each areas
must be characterised by a number of side between 3 and 4 to obtain a Mapped-mesh.The eight-node linear
element PLANE 182 is chosen in Ansys®APDL with Simple Enhanced Strain as Key Option 1 and Plane

Strain as Key Option 3.
The all informations about the mesh is reported in the following table:

Element type
Mesh

algorithm

Main plate

thickness t

Max element

size

Adopted element

size

Plane 182
KeyOpt:Simple

Enhanced Strain

+ Plane Strain

Mapped
20 mm (10

mm
modelled)

0.4 · t =
0.4 ·20 = 8mm

4 mm

Table 3.43: Requirements for SHSS mesh.

The hot-spot stress is extrapolated at two reference points placed at 0.4t and 1.0t distance from the weld
toe tip, so in this case at 8 mm and 20 mm from weld toe.
For the type of extrapolated stress, the graph in Figure 3.92 shows that, for an external applied pressure ∆σnom =
1MPa, after 1.10 mm, the ∆σxx and the first principal stress ∆σ11 are coincident. For this reason the choice is
indifferent.

Figure 3.92: ∆σxx and ∆σyy plotted in function of the distance from weld toe tip
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The mesh of the model is reported in the following figures:

Figure 3.93: Mapped mesh for SHSS approach

Figure 3.94: Mapped mesh for SHSS approach and reference points

For an external applied pressure ∆σnom = 1MPa, the results of the tension at the reference points are:

∆σxx,0.4t = 1.03714MPa (3.168)

∆σxx,1.0t = 0.99394MPa (3.169)

∆σ11,0.4t = 1.03759MPa (3.170)

∆σ11,1.0t = 0.99394MPa (3.171)

(3.172)

The structural hot-spot stress is detected with the equation 1.2:

∆SHSSLSE,xx = 1,67 ·σxx,0.4·t −0.67 ·σxx,1.0·t = 1.67 ·1.03714−0.67 ·0.99394 = 1.0661MPa (3.173)

∆SHSSLSE,11 = 1,67 ·σ11,0.4·t −0.67 ·σ11,1.0·t = 1.67 ·1.03759−0.67 ·0.99394 = 1.0668MPa (3.174)

This result is in good agreement with the value found in literature [33]:

∆σxx,0.4t = 1.037MPa (3.175)

∆σxx,1.0t = 0.994MPa (3.176)

(3.177)

∆SHSSLSE,literature = 1,066MPa

Thus, the relative errors expresses in percentage between the calculated ∆SHSSLSE,xx, ∆SHSSLSE,11 and
the∆SHSSLSE,literatureare:
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∆% =
∆SHSSLSE,xx −∆SHSSLSE,literature

∆SHSSLSE,literature

·100 =−0.008% (3.178)

∆% =
∆SHSSLSE,11 −∆SHSSLSE,literature

∆SHSSLSE,literature

·100 =−0.078% (3.179)

3.4.5 Data results for IIW curve

Nominal stress approach

The results are reported in terms of nominal stress, defined in the beginning of paragraph3.4, inside the FAT 80
curve proposed by IIW guideline [1]:

Figure 3.95: Experimental data inside the IIW nominal stress design curve.

SHSS approach

The previous model was characterised by a load equal to 1 MPa, applied to the main plate of the specimen; to
obtain the value of the hot-spot stress related to the applied nominal stress, the equation (3.45) is applied.

The results in terms of SHSS are defined in the Appendix C.4.
The all experimental data are collected inside the SHSS design curve proposed by IIW guideline:
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Figure 3.96: Experimental data inside the SHSS design curve.

The following conclusion can be defined:

1. These approaches have correctly been applied to FAT 80 welded joint, for weld toe fractures;

2. The nominal stress approach is characterised by the fact that all points fall above the lines that represents
the 97.7% of probability of survival. For this reason, the nominal stress approach has proven to be
conservative as the others methods.

3. The hot-spot stress method is characterised by the fact that all points fall below the lines that repre-
sents the 97.7% of probability of survival. For this reason, the SHSS approach has not proven to be
conservative as the others methods.

3.5 Kuhlmann-Gunther 2009, transverse attachment FAT 80

The fifth joint analysed is a transverse attachment characterised by a fatigue class FAT 80, studied by Kuhlmann
and Gunther in 2009 [44] under CAL (Constant Amplitude Loading).
The principal information and mechanical properties about this typology of the joint are summarized in the
Table 3.44 and Table 3.45:

Weld condition Fracture location Load application
Main plate/gusset

thickness

As-welded, non-load carrying
(NLC), full penetration

Weld toe
Axial, main plate,

parent material
Main plate: 12mm

Gusset: 12mm

Table 3.44: Information about the specimens
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Material model
Yield strength fy

[MPa]

Young modulus

[MPa]

Poisson’s ratio

ν

S355J2, linear elastic, isotropic 355
206000 0.3

S690QL, linear elastic, isotropic 690

Table 3.45: Information about mechanical properties

The dimensions of this joint are defined in the following table and figure:

t [mm] b [mm] w [mm] L [mm] h [mm] 2α[°] z [mm]

12 12 80 450 40 135 7

Table 3.46: Dimension of the transverse attachment FAT 80, studied by Kuhlmann and Gunther in 2009.

Figure 3.97: Kuhlmann-Gunther 2009, transverse attachment FAT 80 [33].

The parameters of the weld profile is described in the following table:

ρ weld toe tip [mm] Weld leg [mm] Weld flack angle [°] 2α

∼= 0 7 45
Weld toe: 135°
Gusset: 135°

Table 3.47: Information about the weld profile

The radius ρ of the weld toe is lower than 1.5mm, so the assumption of a sharp V-notch (ρ = 0mm) at the
weld toe is acceptable with the non conventional LEFM extension to welded joints.
The effect of misalignment can not be neglected in transverse joint, however in this first analysis it is neglected.
The experimental data are defined in the following table in terms of nominal stress ∆σnom:
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Stress Ratio

R
Material

∆σnom

[MPa]
Nf [cycles]

0.1 S355J2

300 67921
300 64159
170 574631
170 456289
125 1400261
125 3712215
225 185219
225 168630
125 1933751

0.1 S690QL

300 106797
300 123652
225 537534
225 415746
190 1028720
190 575000
190 1034355
150 3517443
150 1833757

Table 3.48: Experimental data of the 5th joint, Kuhlmann-Gunther 2009. The number barred represents the run-outs

Kuhlmann-Gunther FAT 80 is modelled in SOLIDWORKS 2020 and subsequently, is imported inside An-
sys®APDL with .IGS extension. The results is reported in the figure below:

Figure 3.98: Model of transverse attachment FAT 80, studied by Kuhlmann and Gunther in 2009.

The procedure to define the boundary conditions of the model follows the same steps and dispositions
defined for the transverse attachment FAT 80, studied by Yildirim in 2020 (see paragraph 3.3). The results are
reported in the following figures:
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Figure 3.99: Load of the model of transverse attachment FAT 80, studied by Kuhlmann and Gunther in 2009.

Figure 3.100: Symmetry condition of the model of transverse attachment FAT 80 studied by Kuhlmann and Gunther in

2009.

3.5.1 PSM approach Plane 182

The fatigue assessment for this model is performed by the application of Peak Stress Method for 2D structures
with the adoption of four-node linear elements.
The element PLANE 182 is chosen from the Ansys®APDL library with Simple Enhanced Strain as Key Option
1 and Plane Strain as Key Option 3.
The model is prevailing subjected to mode I at the attachment edge with a opening angle 2α equal to 135°.Indeed,
referring to the graph of the Williams eigenvalues trend in Figure 1.13, mode II is not singular for V-notch open-
ing angle greater than 102.5°, so λ2 = 0; the mode III can be neglected because is irrelevant.
Under mode I, the PSM requirements, with Tetra elements PLANE 182, are define in the following table:

Mode I

Element type
Mesh

algorithm
(a/d)min 2α

Mesh Pattern

2α<90°

Mesh Pattern

2α>90°

Plane 182
KeyOpt:Simple

Enhanced Strain

+ Plane Strain

Free 3 0°<2α<135°
Four adjacent

elements share the
same node

Two adjacent
elements share the

same node

Table 3.49: Requirements for PSM.

The mode I PSM calibration constant is calibrated at the weld toe where 2α = 135◦ and it is equal to
K∗

FE = 1.38±3%.
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To define the global element size of the model, the size of the element is obtained with the following procedure:

1. From literature the ratio (a/d)min is determined according to the Table 3.49. In this case the ratio for
pure mode I is chosen and it is equal to 3;

2. The value of a is the reference dimension for selecting the maximal FE sizes d for PSM application and
is defined as the half of the thickness t, so in this case is equal to 6 mm;

3. Subsequently, the minimum element size is defined as follow:

dmin =
a

3
=

6
3
= 2mm (3.180)

4. The chosen dimension of elements is 2 mm

The λ1 and e1 values are depended on the opening angle 2α , that is 135° for the weld toe:

2α [°] λ1 (Mode I) e1 (Mode I)

135° 0.674 0.117

Table 3.50: Value of λ1 and e1 in function of the opening angle 2α

The corrective stress factors for mode I is calculated with the equation (2.24). The result is reported in the
Table 3.51

2α [°] fw1

135° 1.328

Table 3.51: Value of the corrective stress factors fw1 in function of the opening angle 2α

Once the model is properly meshed, loaded and constraint, the system can be solved:

Solution→Solve→Current LS

3.5.2 PSM approach with Plane 182: results

In this analysis, the structures are subjected to pure mode I loading, so in these situations it can be demonstrated
that, in the case that the stress flow is aligned with the external pressure direction, the first principal stress range
∆σ11 can be approximated equal to local stress ∆σyy, evaluated with a local reference system with the origin
placed on the V-notch. However, to obtain a more precise results, a local reference system is created on the
node that represents the weld toe with the same procedure described in the paragraph 2.2.1(see Figure3.101).

Figure 3.101: Local reference system with the origin at the weld toe.
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During the analysis of the results, the first principal stress is evaluated and compared with ∆σyy. The results
of the first principal stress can be observed in the Figure 3.102, for an external applied pressure equal to 1 MPa:

Figure 3.102: Plot of the first principal stress.

For an external applied pressure ∆σnom = 1MPa, the result at the weld toe is:

∆σ yy,weld−toe,peak = 1.42988MPa (3.181)

∆σ11,weld−toe,peak = 1.41695MPa (3.182)

(3.183)

The equivalent peak stress are calculated by the formulae (2.23):

∆σeq,peak,weld−toe = ∆σθθ ,θ=0,peak · fw1 = 1.42988 ·1.328 = 1.899MPa (3.184)

This result is in good agreement with the value found in literature [33]:

∆σeq,peak,literature = 1.968MPa (3.185)

Thus, the relative error expresses in percentage between the calculated ∆σeq,peak and the ∆σeq,peak,literature

is:

∆% =
∆σeq,peak,calculated −∆σeq,peak,literature

∆σeq,peak,literature

·100 =−3.488% (3.186)

3.5.3 Data results for PSM curve

The previous model was characterised by a load equal to 1 MPa, applied to the main plate of the specimen; to
obtain the value of the peak stress related to the applied nominal stress, the equation (3.24) is applied.
The results in terms of equivalent peak stress calculated with PSM Plane 182 approach, are defined in the
Appendix C.5.
The all experimental data are collected inside the PSM design curve proposed by Meneghetti and Lazzarin for
structure subjected to prevailing mode I.

The following conclusion can be defined:

1. The all experimental data fall above the lines that represents the 97.7% of probability of survival. Thus
the PSM design curve has demonstrated to be effective and conservative;

2. The PSM Plane 182 approach have correctely foreseen the experimental crack initiation point at the weld
toe.
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Figure 3.103: Experimental data inside the PSM design curve with Plane 182 elements.

3.5.4 SHSS (Structural Hot Spot Stress) approach

The fatigue assessment for this model is performed by the application of SHSS approach, following the IIW
recommendation [1] to obtain the hot-spot stress. According to the guideline, the weld toe of the transverse
attachment FAT 80 studied by Kuhlmann and Gunther in 2009, is a hot-spot type a and the hot-spot stress value
is detected with the employment of fine mesh, as Figure 1.4 shows.
The model is divided in a series of areas to allow the application of Mapped-mesh algorithm; indeed each areas
must be characterised by a number of side between 3 and 4 to obtain a Mapped-mesh.The eight-node linear
element PLANE 182 is chosen in Ansys®APDL with Simple Enhanced Strain as Key Option 1 and Plane

Strain as Key Option 3.
The all informations about the mesh is reported in the following table:

Element type
Mesh

algorithm

Main plate

thickness t

Max element

size

Adopted element

size

Plane 182
KeyOpt:Simple

Enhanced Strain

+ Plane Strain

Mapped
12 mm (6 mm

modelled)
0.4 · t =

0.4 ·12 = 4.8mm
2.4 mm

Table 3.52: Requirements for SHSS mesh.

The hot-spot stress is extrapolated at two reference points placed at 0.4t and 1.0t distance from the weld
toe tip, so in this case at 4.8 mm and 12 mm from weld toe.
For the type of extrapolated stress, the graph in Figure 3.104 shows that, for an external applied pressure
∆σnom = 1MPa, after 1.10 mm, the ∆σxx and the first principal stress ∆σ11 are coincident. For this reason the
choice is indifferent.
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Figure 3.104: ∆σxx and ∆σyy plotted in function of the distance from weld toe tip

The mesh of the model is reported in the following figures:

Figure 3.105: Mapped mesh for SHSS approach

Figure 3.106: Mapped mesh for SHSS approach and reference points

153



Chapter 3: Numerical analysis of experimental data and fatigue assessment of As-welded joint by local

approaches

For an external applied pressure ∆σnom = 1MPa, the results of the tension at the reference points are:

∆σxx,0.4t = 1.02291MPa (3.187)

∆σxx,1.0t = 0.99199MPa (3.188)

∆σ11,0.4t = 1.02336MPa (3.189)

∆σ11,1.0t = 0.99199MPa (3.190)

(3.191)

The structural hot-spot stress is detected with the equation 1.2:

∆SHSSLSE,xx = 1,67 ·σxx,0.4·t −0.67 ·σxx,1.0·t = 1.67 ·1.02291−0.67 ·0.99199 = 1.04363MPa (3.192)

∆SHSSLSE,11 = 1,67 ·σ11,0.4·t −0.67 ·σ11,1.0·t = 1.67 ·1.02336−0.67 ·0.99199 = 1.04438MPa (3.193)

This result is in good agreement with the value found in literature [33]:

∆σxx,0.4t = 1.021MPa (3.194)

∆σxx,1.0t = 0.992MPa (3.195)

(3.196)

∆SHSSLSE,literature = 1,041MPa

Thus, the relative errors expresses in percentage between the calculated ∆SHSSLSE,xx, ∆SHSSLSE,11 and
the∆SHSSLSE,literatureare:

∆% =
∆SHSSLSE,xx −∆SHSSLSE,literature

∆SHSSLSE,literature

·100 = 0.25% (3.197)

∆% =
∆SHSSLSE,11 −∆SHSSLSE,literature

∆SHSSLSE,literature

·100 = 0.32% (3.198)

3.5.5 Data results for IIW curve

Nominal stress approach

The results are reported in terms of nominal stress, defined in the beginning of paragraph3.5, inside the FAT 80
curve proposed by IIW guideline [1]:

SHSS approach

The previous model was characterised by a load equal to 1 MPa, applied to the main plate of the specimen; to
obtain the value of the hot-spot stress related to the applied nominal stress, the equation (3.45) is applied.

The results in terms of SHSS are defined in the Appendix C.5.
The all experimental data are collected inside the SHSS design curve proposed by IIW guideline:
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Figure 3.107: Experimental data inside the IIW nominal stress design curve.

Figure 3.108: Experimental data inside the SHSS design curve.

The following conclusion can be defined:

1. These approaches have correctly been applied to FAT 80 welded joint, for weld toe fractures;

2. The nominal stress approach is characterised by the fact that all points fall above the lines that represents
the 97.7% of probability of survival. For this reason, the nominal stress approach has proven to be
conservative as the others methods.

3. The hot-spot stress method is characterised by the fact that all points fall below the lines that represents
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the 97.7% of probability of survival. For this reason, the SHSS approach has proven to be conservative
as the others methods.

3.6 Kuhlmann 2006, transverse attachment FAT 80

The sixth joint analysed is a transverse attachment characterised by a fatigue class FAT 80, studied by Kuhlmann
in 2006 [44] under CAL (Constant Amplitude Loading).
The principal information and mechanical properties about this typology of the joint are summarized in the
Table 3.53 and Table 3.54:

Weld condition Fracture location Load application
Main plate/gusset

thickness

As-welded, non-load carrying
(NLC), full penetration

Weld toe
Axial, main plate,

parent material
Main plate: 12mm

Gusset: 12mm

Table 3.53: Information about the specimens

Material model
Yield strength fy

[MPa]

Young modulus

[MPa]

Poisson’s ratio

ν

S355, linear elastic, isotropic 355
206000 0.3

S460, linear elastic, isotropic 460

Table 3.54: Information about mechanical properties

The dimensions of this joint are defined in the following table and figure:

t [mm] b [mm] w [mm] L [mm] h [mm] 2α[°] z [mm]

12 12 40 500 50 135 5.66

Table 3.55: Dimension of the transverse attachment FAT 80, studied by Kuhlmann in 2006.

Figure 3.109: Kuhlmann 2006, transverse attachment FAT 80 [33].

The parameters of the weld profile is described in the following table:
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ρ weld toe tip [mm] Weld leg [mm] Weld flack angle [°] 2α

∼= 0 7 45
Weld toe: 135°
Gusset: 135°

Table 3.56: Information about the weld profile

The radius ρ of the weld toe is lower than 1.5mm, so the assumption of a sharp V-notch (ρ = 0mm) at the
weld toe is acceptable with the non conventional LEFM extension to welded joints.
The effect of misalignment can not be neglected in transverse joint, however in this first analysis it is neglected.
The experimental data are not available.
Kuhlmann FAT 80 is modelled in SOLIDWORKS 2020 and subsequently, is imported inside Ansys®APDL
with .IGS extension. The results is reported in the figure below:

Figure 3.110: Model of transverse attachment FAT 80, studied by Kuhlmann in 2006.

The procedure to define the boundary conditions of the model follows the same steps and dispositions
defined for the transverse attachment FAT 80, studied by Yildirim in 2020 (see paragraph 3.3). The results are
reported in the following figures:

Figure 3.111: Load of the model of transverse attachment FAT 80, studied by Kuhlmann 2006.
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Figure 3.112: Symmetry condition of the model of transverse attachment FAT 80 studied by Kuhlmann 2006.

3.6.1 SHSS (Structural Hot Spot Stress) approach

The fatigue assessment for this model is performed by the application of SHSS approach, following the IIW
recommendation [1] to obtain the hot-spot stress. According to the guideline, the weld toe of the transverse
attachment FAT 80 studied by Kuhlmann in 2006, is a hot-spot type a and the hot-spot stress value is detected
with the employment of fine mesh, as Figure 1.4 shows.
The model is divided in a series of areas to allow the application of Mapped-mesh algorithm; indeed each areas
must be characterised by a number of side between 3 and 4 to obtain a Mapped-mesh.The eight-node linear
element PLANE 182 is chosen in Ansys®APDL with Simple Enhanced Strain as Key Option 1 and Plane

Strain as Key Option 3.
The all informations about the mesh is reported in the following table:

Element type
Mesh

algorithm

Main plate

thickness t

Max element

size

Adopted element

size

Plane 182
KeyOpt:Simple

Enhanced Strain

+ Plane Strain

Mapped
12 mm (6 mm

modelled)
0.4 · t =

0.4 ·12 = 4.8mm
2.4 mm

Table 3.57: Requirements for SHSS mesh.

The hot-spot stress is extrapolated at two reference points placed at 0.4t and 1.0t distance from the weld
toe tip, so in this case at 4.8 mm and 12 mm from weld toe.
For the type of extrapolated stress, the graph in Figure 3.113 shows that, for an external applied pressure
∆σnom = 1MPa, after 1.25 mm, the ∆σxx and the first principal stress ∆σ11 are coincident. For this reason the
choice is indifferent.
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Figure 3.113: ∆σxx and ∆σyy plotted in function of the distance from weld toe tip

The mesh of the model is reported in the following figures:

Figure 3.114: Mapped mesh for SHSS approach

Figure 3.115: Mapped mesh for SHSS approach and reference points
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For an external applied pressure ∆σnom = 1MPa, the results of the tension at the reference points are:

∆σxx,0.4t = 1.02783MPa (3.199)

∆σxx,1.0t = 0.99254MPa (3.200)

∆σ11,0.4t = 1.02829MPa (3.201)

∆σ11,1.0t = 0.99254MPa (3.202)

(3.203)

The structural hot-spot stress is detected with the equation 1.2:

∆SHSSLSE,xx = 1,67 ·σxx,0.4·t −0.67 ·σxx,1.0·t = 1.67 ·1.02783−0.67 ·0.99254 = 1.05147MPa (3.204)

∆SHSSLSE,11 = 1,67 ·σ11,0.4·t −0.67 ·σ11,1.0·t = 1.67 ·1.02829−0.67 ·0.99254 = 1.05224MPa (3.205)

This result is in good agreement with the value found in literature [33]:

∆σxx,0.4t = 1.025MPa (3.206)

∆σxx,1.0t = 0.992MPa (3.207)

(3.208)

∆SHSSLSE,literature = 1,046MPa

Thus, the relative errors expresses in percentage between the calculated ∆SHSSLSE,xx, ∆SHSSLSE,11 and
the∆SHSSLSE,literatureare:

∆% =
∆SHSSLSE,xx −∆SHSSLSE,literature

∆SHSSLSE,literature

·100 = 0.52% (3.209)

∆% =
∆SHSSLSE,11 −∆SHSSLSE,literature

∆SHSSLSE,literature

·100 = 0.60% (3.210)

Due to the lack of the experimental data, the results can not be imported inside the FAT 100 curve proposed
by IIW guideline [1].
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3.7 Summary of the results

SHSS results

The Hot-spot stress results of the all models are collected together in the following table with the type of mesh
algorithm, the type of element, the thickness t, the global element size d and the relative error.

Name of model
Mesh

Pattern

FE

type

t

[mm]

d

[mm]

SHSSLSE,paper

[MPa]

SHSSLSE,calc.

[MPa]
∆%

Marquis (2010) Mapped
Solid
185

8 1.6 1.406 1.432 1.80%

Vanrostenberghe
(2015)

Mapped
Solid
185

10 2 1.384 1.404 1.44%

Vanrostenberghe
(2015)

Mapped
Solid
185

20 2 1.203 1.198 -0.35%

Yildirim (2020) Mapped
Plane
182

6 1.2 1.035 1.0298 -0.50%

Okawa (2013) Mapped
Plane
182

20 4 1.066 1.0661 0.026%

Kuhlmann-
Gunther (2009)

Mapped
Plane
182

12 2.4 1.041 1.0436 0.25%

Kuhlmann(2006) Mapped
Plane
182

12 2.4 1.046 1.0515 0.52%

Table 3.58: Summary of SHSS results of the all models

The all experimental data of the all models are collected inside the SHSS design curve proposed by IIW
guideline:

Figure 3.116: Experimental data inside the SHSS design curve.
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PSM results

The PSM results of the all models are collected in three tables :

1. The first two tables collect the PSM results of 3D models. Indeed there are the values of the equivalent
peak stress obtained from PSM Brick 185 (∆σeq,peak,Sub),PSM Tetra 187(∆σeq,peak,Tetra) and from SED
(∆σeq,peak,SED) with the relative errors;

2. The third table collect the PSM results of 2D models with the relative errors.

Name of model
∆σeq,peak,paper

[MPa]

∆σeq,peak,Sub

[MPa]
∆%

∆σeq,peak,Tetra

[MPa]
∆%

Marquis (2010) 2.307 1.897 -17.74% 2.368 2.66%
Vanrostenberghe

(2015)
3.274 3.738 -14.17% 3.274 3.01%

Vanrostenberghe
(2015)

3.571 3.979 -11.40% 3.589 0.47%

Table 3.59: Summary of PSM results of the all 3D models

Name of model
∆σeq,peak,paper

[MPa]

∆σeq,peak,SED

[MPa]
∆%

Marquis (2010) 2.307 2.304 -0.129%
Vanrostenberghe

(2015)
3.274 3.269 -0.168%

Vanrostenberghe
(2015)

3.571 3.571 -0.049%

Table 3.60: Summary of PSM results of the all 3D models

Name of model
∆σeq,peak,paper

[MPa]

∆σeq,peak,PSM

[MPa]
∆%

Yildirim (2020) 1.620 1.5985 -1.37%
Okawa (2013) 1.969 1.899 -3.488%

Kuhlmann-
Gunther (2009)

2.178 2.179 0.20%

Table 3.61: Summary of PSM results of the all 2D models
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The all experimental data are collected inside the PSM design curve proposed by Meneghetti and Lazzarin
for structure subjected to prevailing mode I.

Figure 3.117: Experimental data inside the PSM design curve.
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Chapter 4

Numerical analysis of experimental data

and fatigue assessment of HFMI-treated

joint by local approaches

The objective of this chapter is to perform a fatigue assessment on various HFMI-treated joint in terms of
Equivalent Peak Stress and Structural Hot-Spot stress. The re-elaborated data are collected together and en-
tered inside their respective design curve, available in the literature. Subsequently, a fatigue life N f comparison
with the experimental data, is elaborated to identify the grade of conservatives defined by each method.
The Equivalent Peak Stress is calculated through the SED approach, the same method used for as-welded joint.
The fatigue assessment with the SHSS method refers to the rule and dispositions defined in the IIW guide-
line [3].
The analysed joint are the same of the as-welded analysed joint in the Chapter 3.

The assessment are performed with the application of local approaches above-mentioned through the use
of the finite element software Ansys®Mechanical APDL with the license of the University of Padua.
For the modelling and study of 2D geometries, the four-node linear element PLANE 182 is adopted with Sim-

ple Enhanced Strain as Key Options 1 and Plane Strain as Key Options 3; on the other hand, in the case of
3D structure, the eight-node linear element SOLID 185 (also called Brick 185) is used with Simple Enhanced

Strain as Key Options 1 and also the ten-node quadratic element SOLID 187 (also called Tetra 187) is adopted
with Pure displacement as Key Options 1.

The all specimens have been modelled inside SOLIDWORKS 2020 and after they have been imported inside
Ansys®APDL with .IGS extension.
The dimensions of the HFMI groove are defined in the literature [33] and in order to correctly apply the PSM
with the SED approach, the hypothesis of blunt V-notches has to be made.
The SHSS method for HFMI-treated joints is characterised by the same procedures described in the Chapter3.
The misalignment effect on the HFMI-treated joints is neglected because is not considered critical.
Before the description of the equivalent peak stress detection, the HFMI treatment is explained and described.

4.1 Principles of HFMI post-weld treatments on welded joints to im-

prove the weld toe

The structures are subjected to severe cyclic and dynamic loading conditions during their service life, which
can result in fatigue damage at welded joints, where the local stress concentration are significant effect due to
the joint geometry (weld toes and roots). In order to overcome this problem, several thermal and mechanical
post-weld treatment are proposed to improve the stress field and/or the surface geometry in and around the
welds. Some of this techniques are applied during the welding process, others are performed after the welding
process.
The High-frequency mechanical impact (HFMI) is a novel, reliable and effective post-treatment technique to
improve the fatigue strength of welded structures.
The reference guideline for this technique is IIW Recommendations for the HFMI Treatment [3].
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4.1.1 Description of HFMI treatment

The HFMI treatment was developed at the Northern Scientific an Technological Foundation in Russia in asso-
ciation with Paton Welding Institute in Ukraine.
In the past ten years, the HFMI treatment has been defined as a reliable, user-friendly and efficient technique
for post-weld fatigue life improvement of welded joints. Indeed, the past decade has seen steady increase in
the number of HFMI peening equipment manufactures. There are different type of power sources for peening
devices: ultrasonic impact treatment (UIT), ultrasonic peening (UP), ultrasonic peening treatment (UPT), high
frequency impact treatment (HiFiT), pneumatic impact treatment (PIT) and ultrasonic needle peening (UNP).
The working principle of the High-frequency mechanical impact technique is identical for every power sources:
a cylindrical indenters are accelerated against a component or structure at the potential fatigue crack initiation
sites with high frequency (>90 Hz), so that the impacted material endures a local plastic deformation. The
cylindrical indenters can be different diameters and can be single or multiple, depending on the manufacturer
of the device and the purpose of the use.
The benefits of HFMI treatment are:

1. The imposed of a beneficial compressive residual stress state near to the weld toe;

2. The establishment of a smooth transition from parent material to the weld metal (same thing for the
cold-worked surface region);

3. The material microstructure modifies, as well as the local weld toe geometry.

In the following figure are reported some example of HFMI treatment joint from different companies:

Figure 4.1: Different HFMI grooves [46].

The reference guideline for this technique is IIW Recommendations for the HFMI Treatment [3] and it has
been published in the 2006. The guideline defined that the HFMI treatment is applicable to joint made of
structural steel, main plate ranging between 5 and 50 mm and steel grade fy ranges from 235 MPa to 960 MPa.
However, during the last years, a research is conducted also on aluminium and stainless-steel structures.
This technique can solely be applied to weld toe. For this reason, if a joint is characterised by a potential
fracture at the root, the HFMI treatment can not be effective for this joint.
The weld toe treatment procedures can vary from application to application and depending on the tool being
used. The Table 4.1 defines example procedure parameter for two HFMI tools with alternate power sources
and indenter configuration (Figure 4.2).

Figure 4.2: Orientation of the HFMI tool respect to weld being treated [3].
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Parameter
HFMI tool

HiFIT UIT

Power source Pneumatic
Ultrasonic

magnetostrictive
Number of indenters 1 1-4

Angle of the axis of the

indenters with respect to the

plate surface, Φ

60°-80° 30-60°
40°-80°

Angle of the axis of the

indenters with respect to the

direction of travel, Ψ

70°-90°
90° (all pins should
contatct the weld

toe)

Working speed 3-5 mm/s
5-10 mm/s
5-25 mm/s

Other

The self-weight of
the tool is sufficient.

Minimum of 5
passes

Table 4.1: Comparison between HiFIT and UIT [3].

The inclination angle of the indenter with respect to plate surface Φ is common practise to match it to the
V-notch bisector.
The guideline define some advices on visual inspections for the qualitative and quantitative measurement of
weld toe groove due to HFMI treatment. The resulting groove must be smooth along all defined weld, shiny,
continuous, with no breaks or visible lines as undercuts or porosity. Figure 4.3-4.4 show some example of no
well-treated weld toe.

Figure 4.3: A shiny and defect free HFMI groove [3].

Figure 4.4: On the left, the HFMI groove shows a thin crack-like defect which can reduce or eliminate the benefits of

HFMI treatment. On the right, a non-smooth HFMI groove which needs further peening [3].
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HFMI treatment produces significant local cold-forming of the material near the weld fusion line. In the
case that the indenters are excessively impacted in one single location at the weld toe, the resulting plastic
displacement of the metal can result in a crack-like feature at the side of HFMI groove as Figure 4.5 shows.
This defect must be removed by light grinding and the weld toe should be retreated

Figure 4.5: On the left,the proper profile of HFMI groove. On the right, an improper profile of HFMI groove where there

is a crack-like feature due to plastic deformation of the material [3].

Concerning quantitative aspects, the guideline defines some typical post-weld treatment geometrical di-
mensions with reference to Figure 4.6:

• Groove depth: 0.1-0.6 mm;

• Groove width; 3-6 mm;

• Groove radius: depends on the type of pin tip and the number of passes.

Figure 4.6: Reference to define the dimension of HFMI groove [3].

The guideline defines that no single groove dimension is optimal in all situations because each configuration
depends on the steel yield strength and the diameter of indenter. Furthermore, a minimum groove depth of about
0.1-0.2 mm is necessary to guarantee a complete weld toe treatment.
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4.1.2 Fatigue assessment of HFMI-treated joints (IIW recommendations)

The fatigue assessment of HFMI-treated joints is defined in terms of nominal stress, structural hot-spot method
and effective notch stress. The guideline includes the fatigue design curve for each assessment method.
The HFMI improvements is applied to the weld toe and its objective is to increase the fatigue lives of weld
treated from the point of view of potential fatigue failure from the weld toe.

Nominal stress approach

The advantages of HFMI treatment are available only for welded joints characterised by FAT classes between
FAT 50 and FAT 90. This limitation is due to the fact that the upper classes include complex structural geome-
tries or non-welded details, that are not governed by a weld toe failure; instead, the lower classes have not been
studied with respect the HFMI improvement yet.
There are many factors that can reduce and modify the reference nominal FAT classes for the HFMI-treated
joints:

1. Thickness and size effect: plate thickness and weld size influence the local stress concentration at the
weld toe and the stress gradient through the plate thickness. These effects can reduce the fatigue strength
of the joint. For this reason the nominal stress assessment method and also the structural hot-spot method
require a thickness reduction factor for plate characterised by a thickness greater then 25 mm and it is
defined in the following equation:

f (t) =
( 25

te f f

)0.2
(4.1)

where:

• te f f =
L
2 for L

t
< 2;

• te f f = t for L
t
≥ 2.

Figure 4.7: Description of L and t [3].

2. Steel Strength: the effect of the material steel strength on the grade of improvement is reported in the
Figure 4.8 and the recommendation defines that:

• for fy < 355MPa, four fatigue classes FAT increase in strength respect to the nominal fatigue class
in the as-welded condition;

• for fy > 355MPa, one fatigue class FAT increase in strength (about 12.5%) for every 200 MPa
increment in yield resistance fy is recommended.

The HFMI benefit effect have the tendency to increase with the material steel grade.
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Figure 4.8: Maximum increase in the number of FAT classes as a function of fy [3].

3. Loading effects: the overloads on the structures can conduct to a plastic redistribution of the material
around the weld toe area and this effect can cause a decrease of the beneficial compressive residual
stress, so the structures can have a reduction of the benefit effect of HFMI treatment. The following table
explains the limitation on the maximum applied stress:

Type of load
As-welded

condition
HFMI + hammer/needle peening

∆σnom,max [MPa] 1.5 · fy

0.8 · fy due to overloads, R<0.5∆τnom,max [MPa] 1.5 · fy√
3

∆σhs,max [MPa] 2 · fy

Table 4.2: Maximum applied stress [3].

4. Stress ratio R: the effect of stress ratio R is expressed as a penalty with respect to the maximum increase
in the number of FAT classes as a function of fy. Indeed, this effect can strongly change the service life
of the component.
The graph in the Figure 4.9 expresses that the higher the stress ratio is, the lower the fatigue endurance
in terms of maximum applicable nominal stress becomes.

Figure 4.9: Influence of stress Ratio in CAL condition and in terms of ∆σnom,max [3].
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The penalty effect of the stress ratio R is expressed in the following table:

Stress Ratio R Minimum FAT classes reduction

R ≤ 0.15 No reduction

0.15 < R ≤ 0.28 One FAT class reduction

0.28 < R ≤ 0.4 Two FAT classes reduction

0.4 < R ≤ 0.52 Three FAT classes reduction

R < 0.52 No data available

Table 4.3: Effect of stress ratio R [3].

5. Variable Amplitude Loading: in many situation it is convenient to express the variable amplitude
loading in terms of an equivalent constant amplitude loading history with the following equation, based
on Miner’s damage sum hypothesis:

∆σeq =
( 1

D
·

∑∆σm
i ·Ni +∆σm−m′

k +∑∆σm′
j ·N j

∑Ni +∑N j

)
1
m

(4.2)

where:

• ∆σeq is the equivalent applied stress in terms of Constant Amplitude Loading (CAL);

• Ni, j are the number of cycles spent at their respective stress range ∆σi, j;

• ∆σk is the stress range that corresponds to the knee point at N = 1 ·107 cycles;

• D is the damage sum, ranging from 0 to 1;

• m is the inverse slope above the knee point;

• m’ is the inverse slope below the knee point;

All fatigue design methods for HFMI-treated joints are based on an assumed inverse slope of the nominal
FAT classes equal to m = 5 and, as for the as-welded condition, FAT classes are defined at NA = 2 ·106 cycles.
For Constant Amplitude Loading (CAL) condition, it is recommended that the slope parameter m is changed
to 22 at ND = 1 ·107 cycles; while for VAL condition the inverse slope is changed to m′ = (2m−1).
The nominal S-N curves for HFMI-treated joints in CAL condition, are illustrated from Figure 4.10 to Figure

4.14 to changing of the steel grade fy and for a Stress Ratio R lower than 0.15.
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Figure 4.10: Nominal stress S-N curve for HFMI improved welded joints, fy < 355 MPa, R<0.15. The value in the

brackets represents the reference FAT class in As-welded condition. In black, the FAT 90 as-welded line with a inverse

slope m equal to 3 [3].

Figure 4.11: Nominal stress S-N curve for HFMI improved welded joints, 355MPa ≤ fy < 550MPa , R<0.15. The value

in the brackets represents the reference FAT class in As-welded condition [3].
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Figure 4.12: Nominal stress S-N curve for HFMI improved welded joints, 550MPa ≤ fy < 750MPa , R<0.15. The value

in the brackets represents the reference FAT class in As-welded condition [3].

Figure 4.13: Nominal stress S-N curve for HFMI improved welded joints, 750MPa ≤ fy < 950MPa , R<0.15. The value

in the brackets represents the reference FAT class in As-welded condition [3].
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Figure 4.14: Nominal stress S-N curve for HFMI improved welded joints, 950MPa ≤ fy , R<0.15. The value in the

brackets represents the reference FAT class in As-welded condition [3].

In the Figure 4.10 is reported the as-welded FAT 90 and its respective HFMI FAT 140 curve. These two
curves are characterised by a different slope and due to this, there is an intersection point, called NI in this thesis.
Thus, for a number of cycles N < NI , the as-welded line define a higher number of cycles to failure than the
respective HFMI curve. Indeed, for welded structures in low strength steel, fatigue strength improvement due
to the HFMI treatment will not be expected if the fatigue life is less than NI . In the following table are reported
the specific value to varying the steel grade fy:

fy [MPa] NI [cycles]

fy < 355 72 000
355 ≤ fy < 550 30 000
550 ≤ fy < 750 12 500

750 ≤ fy <10 000

Table 4.4: Computed cycles limit below which HFMI is not expected to result in fatigue strength improvement as a

function of steel strength [3].

Structural Hot-Spot Stress approach

The procedure for the numerical extrapolation with the used of FE software for HFMI-treated joints is the same
of the as-welded joint, describe in the paragraph 1.2.1.
In as-welded condition, the different nominal FAT classes are collapsed in only two FAT classes for the hot-
spot method: FAT 90 and FAT 100. In the case of HFMI-treated joints, the IIW guideline defined that the FAT
classes depend on the steel grade range as the following table shows:
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LC fillet welds NLC fillet welds

fy [MPa] FAT LS,min FAT LS,min

As-welded, m=3

All fy 90 - 100 -
Improved by HFMI, m=5

fy < 355 140 - 160 -
355 ≤ fy < 550 160 - 180 -
550 ≤ fy < 750 180 - 200 1.15
750 ≤ fy < 950 200 1.15 225 1.25

950 ≤ fy 225 1.25 250 1.40

Table 4.5: FAT classes for structural hot-spot approach for as-welded and HFMI conditions [3].

After the extrapolation of the SHSS, the verification of the value is recommended with the following equa-
tion, that represents the structural hot-spot stress concentration kS:

kS =
σhs

σnom

> kS,min (4.3)

When the SHSS method is used a computation problem may arise for welded details with small structural
stress concentrations, the hot spot stress system must be limited so as not result in a S-N curve greater than FAT
180 in the nominal stress system [3].
The fatigue class reduction for nominal stress approach due to the stress ratio R and the loading conditions can
be used also for SHSS approach.

Effective Notch Stress approach

The procedure for the numerical extrapolation of Effective Notch Stress with the used of FE software for
HFMI-treated joints is the same of the as-welded joint, describe in the paragraph 1.2.2.
In as-welded condition, the different nominal FAT classes are collapsed in only one FAT class for the ENS
method: FAT 225. In the case of HFMI-treated joints, the IIW guideline defined that the FAT classes depend
on the steel grade range as the following table shows with the assumption that ∆σ is computed in terms of
maximum principal stress range at the notch:

fy [MPa]

Effective Notch Stress

characteristic curve modelled

using ρ f = 1mm

As-welded, m=3

All fy 225
Improved by HFMI, m=5

fy < 355 320
355 ≤ fy < 550 360
550 ≤ fy < 750 400
750 ≤ fy < 950 450

950 ≤ fy 500

Table 4.6: FAT classes for structural ENS approach for as-welded and HFMI conditions [3].

Fricke [2] defines the effective notch stress concentration as the ratio of effective notch stress to structural
stress:

KW =
σW

σS

(4.4)

Fricke proposes that a minimum KW of at least 1.6 should be used for low stress concentration details. Indeed,
if the computed KW is lower than 1.6, the minimum value of KW = 1.6 is used for fatigue assessment.
When the ENS method is used, a computation problem may arise for welded details with small structural stress
concentrations, the effective notch stress system must be limited so as not result in a S-N curve greater than
FAT 180 in the nominal stress system [3].
The fatigue class reduction for nominal stress approach due to the stress ratio R and the loading conditions can
be used also for ENS approach.
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4.1.3 Fatigue assessment of HFMI-treated joints: University of Padua approach

The Peak Stress method and the Strain Energy Density approach have been employed for the fatigue assessment
of welded joints in as-welded condition. In 2020, Meneghetti, Campagnolo, Yildirim and Belluzzo [33] studied
and applied the PSM and SED approaches for the fatigue assessment of HFMI-treated welded joints.
The HFMI groove radius at weld toe is typically defined between 1.5 mm and 4.5 mm. The hypothesis assumed
that the weld toe radius equal to zero as the as-welded condition, is too restrictive; for this reason the weld toe of
HFMI-treated joints is considered as a blunt V-notch. Thanks to this, the PSM can be employed in combination
with the SED approach for blunt notches as describe in [33].

SED approach for blunt notches

Initially, the Strain Energy Density approach was proposed by Lazzarin and Zambardi [25] in 2001 for sharp
V-notches but subsequently, it was extended also to blunt notches in 2005 [27]. The theory defined in 2005,
follows the same principles of the previous one in 2001 for sharp V-notches in steel and aluminium alloys
structure. A scheme of a blunt notch is displayed on the Figure 4.15 with a polar reference system:

Figure 4.15: Polar coordinate system and stress components [27].

In the Figure 4.15 are expressed two fundamental parameter to model correctly the rounded circular sector.
These expression were defined by Neuber in 1958 and they are reported in the following equations:

q =
2π −2α

π
(4.5)

r0 =
q−1

q
·ρ (4.6)

where:

• 2α is the notch opening angle;

• ρ is the notch radius;

• r0 is the distance between the origin of the analytical frame and the notch tip.

In the following figure are represented different examples of a structural volume in the case of sharp V-notch
and blunt notch:
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Figure 4.16: From left to right: schematic representation of sharp V-notch, a crack and blunt notch [27].

As described by Lazzarin in 2005, when a structure is subjected to different modes, at the notch the maxi-
mum principal stress is not aligned with the blunt notch bisector but it is characterised by a inclination angle φ .
In this case, the structural volume must be rigidly rotate by a certain angle φ about the centre of the blunt notch.
In this way, the maximum principal stress is entirely included in the volume, as the following figure shows:

Figure 4.17: On the left, an example of structural volume under pure mode I, on the right, under combined modes [27].

In the case of a HFMI-treated joint, the averaged strain energy density ∆W inside the structural volume can
be calculated with the equation (1.9). In the FE environment, the average SED is calculated with the so-called
"direct approach", with the following formula:

∆W FEM =
∑V (R0)WFEM,i

V (R0)
(4.7)

PSM combined with SED for blunt notches

Thanks to the linear elastic hypothesis, the equivalent peak stress can be defined as follows:

cw ·∆W FEM =
1−ν2

2E
·∆σ2

eq,peak (4.8)

∆σeq,peak =

√

cw · 2E ·∆W FEM

1−ν2 (4.9)

where:

• ∆σeq,peak is the equivalent peak stress;

• ∆W FEM is the average strain energy density inside the structural volume;

• cw is the parameter accounting of the stress ratio R;

• E is the Young modulus;

• ν is the Poisson’s ratio.
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4.2 Marquis 2010, longitudinal attachment FAT 71

The first joint analysed is a longitudinal stiffener characterised by a fatigue class FAT 71, studied by Marquis
and Yildirim in 2010 [41] under CAL (Constant Amplitude Loading).
The principal information and mechanical properties about this typology of the joint are summarized in the
Table 3.1 and Table 3.2:

Weld condition Fracture location Load application
Main plate/gusset

thickness

HFMI, non-load carrying
(NLC), full penetration

Weld toe
Axial, main plate,

parent material
Main plate: 8mm

Gusset: 8mm

Table 4.7: Information about the specimens

Material model
Yield strength fy

[MPa]

Young modulus

[MPa]

Poisson’s ratio

ν

S700, HSS, Linear
elastic, isotropic

700 206000 0.3

Table 4.8: Information about mechanical properties

The dimensions of this joint are defined and described in the paragraph 3.1 (Table3.3 and Figure 3.1).
Regarding the HFMI groove geometry, the dimensions (radius, depth and width) are taken from [33] and the
values are expressed in the following table with reference to Figure 4.18

depth [mm] ρHFMI [mm] width [mm] 2α[°]

0.21 3.31 3.71 150

Table 4.9: Dimension of HFMI groove for the longitudinal attachment FAT 71

Figure 4.18: Reference to define the dimension of HFMI groove [33].

The inclination angle of the indenters is assumed to be performed along the V-notch bisector, i.e. 75° in
this case.
The experimental data are defined in the following table in terms of nominal stress ∆σnom:
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Stress Ratio

R

∆σnom

[MPa]
Nf [cycles]

-1

464 499 700
450 552 400
446 208 600
410 1 949 000
337 964 800
337 858 400
317 447 500
305 469 700
257 290 7000
255 1 980 000

Table 4.10: Experimental data of the 1st joint, Marquis 2010 in HFMI treated condition.

FAT 71 is modelled in SOLIDWORKS 2020 with the HFMI groove and subsequently, is imported inside
Ansys®APDL with .IGS extension. The results is reported in the figure below:

Figure 4.19: Model of longitudinal attachment FAT 71 in HFMI treated condition.

The procedure to define the boundary conditions of the model follows the same steps and dispositions
defined for the same joint in as-welded condition described in the paragraph 3.1.

4.2.1 PSM combined with SED for blunt notches

The fatigue assessment for this model is performed by the application of Peak Stress Method in combination
with the SED approach with the adoption of ten-node quadratic elements, considering only the weld toe.
The element SOLID 187 is chosen from the Ansys®APDL library with Pure Displacement as Key Option 1,
which means that the nodal forces are only dependent on the displacements.
The SED approach for blunt notches is based on the creation of a structural volume at the radiused weld toe,
that can be rigidly rotated (Figure 4.20) to included the whole maximum principal stress, which is related to
the highest strain energy density.

179



Chapter 4: Numerical analysis of experimental data and fatigue assessment of HFMI-treated joint by local

approaches

Figure 4.20: The "crescent shape" structural volume to calculate the averaged SED at the radiused weld toe of HFMI

treated transverse NLC fillet welded joint [33].

The first step is to determinate the inclination angle Φ with respect to the blunt notch bisector of the most
stressed area that is indicated in red in Ansys®APDL.
To define the inclination angle, the model is meshed with a global element size equal to 1 mm. Subsequently,
two refinements with depth equal to 5 (see Figure 4.21 for the refine options) are applied to the arc that repre-
sents the groove due to HFMI treatment (Figure 4.22) with the following commands:

Preprocessor→Meshing→Modify Mesh→Refine At→Lines

Figure 4.21: Options for the refinement.

Figure 4.22: Arc that represents the HFMI groove where the refinements are applied.

The meshed model is displayed on the following figure:
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Figure 4.23: Mesh of the model to define the inclination angle.

The model is subjected to an external nominal stress ∆σnom = 1MPa applied on the main plate. Once the
model is properly meshed, loaded and constraint, the system can be solve:

Solution→Solve→Current LS

The first principal stress ∆σ11 is plotted:

Figure 4.24: Plot of the first principal stress.

The highest stress is not located exactly around the blunt notch bisector, so it is matter of quantifying the
grades of rotation. The value of the angle is reported in the following equation and represents a clockwise
rotation about the global z-axis:

Φ = 7.06◦ (4.10)
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Figure 4.25: Inclination angle Φ

The circular sector is created according to equations (4.5) and (4.6):

q =
2π −2α

π
= 2− 150

180
= 1.1667 (4.11)

r0 =
q−1

q
·ρHFMI =

1.1667−1
1.667

·3.31 = 0.53mm (4.12)

R0 + r0 = 0.28+0.53 = 0.81mm (4.13)

Subsequently, the control volume to calculate the averaged Strain Energy Density (SED) is created with a
deep equal to 0.14 due to the symmetries of the model. The result is reported in the following figure:

Figure 4.26: Illustration of the control volume to calculate the SED.

To create the mesh of the model, the following procedure is executed:

1. The element inside the structural volume are characterised by a global element size equal to 0.05mm
with a free-mesh algorithm;
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Figure 4.27: On the left, the mesh of the structural volume with global element size of 0.05. On the right, the proof that

the highest stress is contained inside the volume.

2. The other volume is meshed with a global element size equal to 1 mm with a free-mesh algorithm.

Figure 4.28: Mesh of the all structure.

Once the model is properly meshed, loaded and constraint, the system can be solved:

Solution→Solve→Current LS

Before the post-processing of the data, it is advised to disable the PowerGraphics option in Ansys®APDL
toolbar, otherwise the output results are given by the average of only the superficial nodal stresses, without
considering the inner ones.
The averaged Strain Energy Density is defined as the energy contained inside the structural volume. To define
this value, the element belonging the structural volume have to be selected with the following commands:

Utility Menu→ Select → Entities→ Volumes→ By Num/Pick→ From Ful

Utility Menu→ Select → Entities→ Elements→ Attached to→ Volumes

Subsequently, two Element Table are created :

1. The first one to define the energy inside each element selected. This Element Table is called SENE;

2. The second one to define the volume of each element selected. This Element Table is called VOLU;

The commands to create the Element Table are:

General Postproc→Element Table→Define Element Table →SENE/VOLU
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Figure 4.29: Element Table in Ansys®APDL

After the creation of the Element Tables, each single element SENE and VOLU values must be summed
with the following commands:

General Postproc→Element Table→Sum of Each Item

Finally, the averaged Strain Energy Density value can be calculated with the following expression:

∆ ÅWFEM =
∑V (R0)WFEM,i

V (R0)
=

SENE

VOLU
(4.14)

The result of SED for the weld toe when the specimen is subjected to a nominal stress of 1 MPa is:

SENE = 3.98752 ·10−7MJ (4.15)

VOLU = 0.0370094mm3 (4.16)

SED =
SENE

VOLU
=

3.98752 ·10−7

0.0370094
= 1.07743 ·10−5 MJ

m3 (4.17)

From the SED, the equivalent peak stress is obtained with the following formula:

∆σeq,peak =

√

2 ·E ·SED

1−ν2 =

√

2 ·206000 ·1.07743 ·10−5

1−0.32 = 2.2086MPa (4.18)

This result is in good agreement with the value found in literature [33]:

∆σeq,peak,literature = 2.219MPa (4.19)

Thus, the relative error expresses in percentage between the calculated ∆σeq,peak and the ∆σeq,peak,literature

is:

∆% =
∆σeq,peak,calculated −∆σeq,peak,literature

∆σeq,peak,literature

·100 =−0.47% (4.20)

4.2.2 Data results for SED curve

The previous model was characterised by a load equal to 1 MPa, applied to the main plate of the specimen; to
obtain the value of the peak stress related to the applied nominal stress, the equation (3.24) is applied.
The results in terms of equivalent peak stress are defined in the Appendix D.1.
The all experimental data are collected inside the PSM design curve proposed by Meneghetti, Camapgnolo,
Yildirim and Belluzzo [33]. The black lines are the PSM-based scatter band calculated in HFMI condition
with a inverse slope equal to 5 [33], the dotted blue lines are the PSM design curve proposed by Meneghetti,
Guzzella and Atzori for structure subjected to prevailing mode I [10]:
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Figure 4.30: Experimental data inside the PSM design curve.

The following conclusion can be defined:

1. The all experimental data fall above the lines that represents the 2.3% of probability of survival in as-
welded condition with a inverse slope equal to 3. Thus the PSM design curve has demonstrated to be
effective and very conservative. This result is expected because the PSM fatigue design curve proposed
by Meneghetti, Guzzella and Atzori is calibrated for as-welded joints and the considerations of the HFMI
benefits are not present;

2. The all experimental data fall above the lines that represents the 97.7% of probability of survival in
HFMI-treated condition with a inverse slope equal to 5. Thus the PSM design curve has demonstrated to
be effective and conservative;

3. The Peak Stress Method combined with SED approach find results that are in according with the literature
and it has correctly foreseen the experimental crack initiation point at weld toe.

4.2.3 SHSS(Structural Hot Spot Stress) approach

According to the IIW Recommendations, the SHSS approach procedure is the same adopted for as-welded
joints, described in the paragraph 3.1.10.
The previous model was characterised by a load equal to 1 MPa, applied to the main plate of the specimen; to
obtain the value of the hot-spot stress related to the applied nominal stress, the equation (3.45) is applied.
The results in terms of SHSS are defined in the Appendix D.1.
In agreement with the IIW Recommendations on the HFMI-treated joints [3], the design curve is increased
of a FAT class. The hot-spot FAT class for 550 ≤ fy < 750, non-load carrying fillet welds, is FAT 200 (see
Table4.5):
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Figure 4.31: Experimental data inside the SHSS design curve.

The following conclusion can be defined:

1. The all experimental data fall above the lines that represents the 97.7% of probability of survival in
HFMI-treated condition with a inverse slope equal to 5. Thus the PSM design curve has demonstrated to
be effective and conservative;

2. The SHSS approach find results that are in according with the literature and it has correctly foreseen the
experimental crack initiation point at weld toe.

4.3 Vanrostenberghe 2015, longitudinal attachment FAT 63

The second joint analysed is a longitudinal stiffener characterised by a fatigue class FAT 63, studied by Yildirim
in 2013 [42] under CAL (Constant Amplitude Loading) and subsequently by Vanrostenberghe in 2015.
The principal information and mechanical properties about this typology of the joint are summarized in the
Table 4.11 and Table 4.12:

Weld condition Fracture location Load application
Main plate/gusset

thickness

HFMI, non-load carrying
(NLC), full penetration

Weld toe
Axial, main plate,

parent material
Main plate: 5-20mm

Gusset: 5-20mm

Table 4.11: Information about the specimens

Material model
Yield strength fy

[MPa]

Young modulus

[MPa]

Poisson’s ratio

ν

S700MC, HSS, Linear elastic,
isotropic

700
206000 0.3

S690QL, HSS,Linear elastic,
isotropic

690

Table 4.12: Information about mechanical properties
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Three different specimen are analysed:

• S700MC with main plate thickness equal to 10 mm;

• S690QL with main plate thickness equal to 10 mm;

• S690QL with main plate thickness equal to 20 mm;

The first two geometry are analysed together with a single model with thickness equal to 10mm, while the third
one is studied separately as a model with main plate thickness equal to 20mm.
The dimensions of this joint are defined and described in the paragraph 3.2 (Table3.15 and Figure 3.32).
Regarding the HFMI groove geometry, the dimensions (radius, depth and width) are taken from [33] and the
values are expressed in the following table with reference to Figure 4.32

t [mm] depth [mm] ρHFMI [mm] width [mm] 2α[°]

10 0.21 3.31 4.42 120
20 0.21 3.31 4.42 120

Table 4.13: Dimension of HFMI groove for the longitudinal attachment FAT 63

Figure 4.32: Reference to define the dimension of HFMI groove [33].

The inclination angle of the indenters is assumed to be performed along the V-notch bisector, i.e. 60° in
this case.
The experimental data are defined in the following table in terms of nominal stress ∆σnom:
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t=10mm

Material
Stress Ratio

R

∆σnom

[MPa]
Nf [cycles]

0.1

90 10 000 000
175 10 000 000
90 6 000 000

150 6 000 000
90 2 000 000

200 6 000 000
225 10 000 000
90 10 000 000

200 10 000 000
70 2 000 000
90 2 000 000

S700MC 300 158 200
S690QL 150 2 031 700

250 3 547 800
350 101 200
150 532 122
350 187 828
250 855 162
350 82 506
400 98 500
250 317 200
350 223 100
225 18 010
350 134 300

S700MC 0.5
250 33 391
200 84 895

t=20mm

Material
Stress Ratio

R

∆σnom

[MPa]
Nf [cycles]

S690QL 0.1

150 10 000 000
250 10 000 000
275 141 700
200 480 200
250 232 323
350 80 830
400 184 642
300 470 640
350 123 655

S690QL 0.5

200 343 210
125 1 019 256
150 644 530
275 56 926

Table 4.14: Experimental data of the 2nd joint,Vanrostenberghe 2015 in HFMI-treated condition. The number barred

represents the run-outs

FAT 63 is modelled in SOLIDWORKS 2020 with the HFMI groove and subsequently, is imported inside
Ansys®APDL with .IGS extension. The results is reported in the figure below:
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Figure 4.33: Model of longitudinal attachment 10 mm FAT 63 in HFMI treated condition.

Figure 4.34: Model of longitudinal attachment 20 mm FAT 63 in HFMI treated condition.

The procedure to define the boundary conditions of the models follow the same steps and dispositions
defined for the same joints in as-welded condition described in the paragraph 3.2.

4.3.1 PSM combined with SED for blunt notches

The fatigue assessment for this model is performed by the application of Peak Stress Method in combination
with the SED approach with the adoption of ten-node quadratic elements, considering only the weld toe.
The element SOLID 187 is chosen from the Ansys®APDL library with Pure Displacement as Key Option 1,
which means that the nodal forces are only dependent on the displacements.
The SED approach for blunt notches is based on the creation of a structural volume at the radiused weld toe,
that can be rigidly rotated (Figure4.20) to included the whole maximum principal stress, which is related to the
highest strain energy density.
The first step is to determinate the inclination angle Φ with respect to the blunt notch bisector of the most
stressed area that is indicated in red in Ansys®APDL.
To define the inclination angle, the 10mm model is meshed with a global element size equal to 1 mm and equal
to 2 mm for 20mm model. Subsequently, two refinements with depth equal to 5 (see Figure 4.35 for the refine
options) are applied to the arc that represents the groove due to HFMI treatment(Figure 4.36-4.36) with the
following commands:

Preprocessor→Meshing→Modify Mesh→Refine At→Lines
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Figure 4.35: Options for the refinement for 10mm and 20mm model.

Figure 4.36: Arc that represents the HFMI groove where the refinements are applied for 10mm model.

Figure 4.37: Arc that represents the HFMI groove where the refinements are applied for 20mm model.

The meshed models are displayed on the following figure:
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Figure 4.38: Mesh of the 10mm model to define the inclination angle.

Figure 4.39: Mesh of the 20mm model to define the inclination angle.

The models are subjected to an external nominal stress ∆σnom = 1MPa applied on the main plate. Once the
model is properly meshed, loaded and constraint, the system can be solve:

Solution→Solve→Current LS

The first principal stress ∆σ11 is plotted:
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Figure 4.40: Plot of the first principal stress on the 10mm model.

Figure 4.41: Plot of the first principal stress on the 20mm model.

The highest stresses are not located exactly around the blunt notch bisector, so it is matter of quantifying the
grades of rotation. The values of the angles are reported in the following equations and represent a clockwise
rotation about the global z-axis:

Φ10mm = 11.78◦ (4.21)

Φ20mm = 9.09◦ (4.22)

The circular sector is created according to equations (4.5) and (4.6) and the results are the same for 10mm
and 20mm models:

q =
2π −2α

π
= 2− 120

180
= 1.333 (4.23)

r0 =
q−1

q
·ρHFMI =

1.333−1
1.333

·3.31 = 0.8275mm (4.24)

R0 + r0 = 0.28+0.8275 = 1.1075mm (4.25)

Subsequently, the control volume to calculate the averaged Strain Energy Density (SED) is created with a
deep equal to 0.14 due to the symmetries of the model. The results for 10mm and 20mm models are reported
in the following figures:
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Figure 4.42: Illustration of the control volume to calculate the SED for 10mm model.

Figure 4.43: Illustration of the control volume to calculate the SED for 20mm model.

To create the mesh of the two models, the following procedure is executed:

1. The element inside the structural volume are characterised by a global element size equal to 0.05mm
with a free-mesh algorithm;

Figure 4.44: On the left, the mesh of the structural volume of 10mm model with global element size of 0.05. On the right,

the proof that the highest stress is contained inside the volume.
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Figure 4.45: On the left, the mesh of the structural volume of 20mm model with global element size of 0.05. On the right,

the proof that the highest stress is contained inside the volume.

2. The other volume is meshed with a global element size equal to 1 mm with a free-mesh algorithm.

Figure 4.46: Mesh of the all 10mm model.

Figure 4.47: Mesh of the all 20mm model.

Once the model is properly meshed, loaded and constraint, the system can be solved:

Solution→Solve→Current LS

Before the post-processing of the data, it is advised to disable the PowerGraphics option in Ansys®APDL
toolbar, otherwise the output results are given by the average of only the superficial nodal stresses, without
considering the inner ones.
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The averaged Strain Energy Density is defined as the energy contained inside the structural volume. The same
procedure used for FAT 71 is applied to detect the SED value.

10mm results

The result of SED for the weld toe when the specimen is subjected to a nominal stress of 1 MPa is:

SENE = 6.45882 ·10−7MJ (4.26)

VOLU = 0.046614mm3 (4.27)

SED =
SENE

VOLU
=

6.45882 ·10−7

0.046614
= 1.3856 ·10−5 MJ

m3 (4.28)

From the SED, the equivalent peak stress is obtained with the following formula:

∆σeq,peak =

√

2 ·E ·SED

1−ν2 =

√

2 ·206000 ·1.3856 ·10−5

1−0.32 = 2.5046MPa (4.29)

This result is in good agreement with the value found in literature [33]:

∆σeq,peak,literature = 2.501MPa (4.30)

Thus, the relative error expresses in percentage between the calculated ∆σeq,peak and the ∆σeq,peak,literature

is:

∆% =
∆σeq,peak,calculated −∆σeq,peak,literature

∆σeq,peak,literature

·100 =−0.15% (4.31)

20mm results

The result of SED for the weld toe when the specimen is subjected to a nominal stress of 1 MPa is:

SENE = 7.50133 ·10−7MJ (4.32)

VOLU = 0.046614mm3 (4.33)

SED =
SENE

VOLU
=

7.50133 ·10−7

0.046614
= 1.60923 ·10−5 MJ

m3 (4.34)

From the SED, the equivalent peak stress is obtained with the following formula:

∆σeq,peak =

√

2 ·E ·SED

1−ν2 =

√

2 ·206000 ·1.60923 ·10−5

1−0.32 = 2.6992MPa (4.35)

This result is in good agreement with the value found in literature [33]:

∆σeq,peak,literature = 2.699MPa (4.36)

Thus, the relative error expresses in percentage between the calculated ∆σeq,peak and the ∆σeq,peak,literature

is:

∆% =
∆σeq,peak,calculated −∆σeq,peak,literature

∆σeq,peak,literature

·100 =−0.008% (4.37)

4.3.2 Data results for SED curve

The previous model was characterised by a load equal to 1 MPa, applied to the main plate of the specimen; to
obtain the value of the peak stress related to the applied nominal stress, the equation (3.24) is applied.
The results in terms of equivalent peak stress are defined in the Appendix D.2.
The all experimental data are collected inside the PSM design curve proposed by Meneghetti, Camapgnolo,
Yildirim and Belluzzo [33]. The black lines are the PSM-based scatter band calculated in HFMI condition
with a inverse slope equal to 5 [33], the dotted blue lines are the PSM design curve proposed by Meneghetti,
Guzzella and Atzori for structure subjected to prevailing mode I [10]. The curve proposed by Meneghetti,
Camapgnolo, Yildirim and Belluzzo [33] are different based on the stress ratio and the material steel strength:
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Figure 4.48: Experimental data inside the PSM design curve.

Figure 4.49: Experimental data inside the PSM design curve.

The following conclusion can be defined:

1. The all experimental data fall above the lines that represents the 97.7% of probability of survival in as-
welded condition with a inverse slope equal to 3. Thus the PSM design curve has demonstrated to be
effective and very conservative. This result is expected because the PSM fatigue design curve proposed
by Meneghetti, Guzzella and Atzori is calibrated for as-welded joints and the considerations of the HFMI
benefits are not present;

2. Several experimental data fall above the lines that represents the 97.7% of probability of survival in
HFMI-treated condition with a inverse slope equal to 5. Thus the PSM design curve has demonstrated to
be partially effective and conservative due to the misalignment effect have been neglected;

3. The Peak Stress Method combined with SED approach find results that are in according with the literature
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and it has correctly foreseen the experimental crack initiation point at weld toe.

4.3.3 SHSS(Structural Hot Spot Stress) approach

According to the IIW Recommendations, the SHSS approach procedure is the same adopted for as-welded
joints, described in the paragraph 3.2.9.
The previous model was characterised by a load equal to 1 MPa, applied to the main plate of the specimen; to
obtain the value of the hot-spot stress related to the applied nominal stress, the equation (3.45) is applied.
The results in terms of SHSS are defined in the Appendix D.2.
In agreement with the IIW Recommendations on the HFMI-treated joints [3], the design curve is increased of a
FAT class. The hot-spot FAT class for 550 ≤ fy < 750, non-load carrying fillet welds, is FAT 200 (see Table4.5)
for R ≤ 0.15 and FAT 140 for 0.4 < R ≤ 0.52:

Figure 4.50: Experimental data inside the SHSS design curve.

The following conclusion can be defined:

1. Several experimental data fall above the lines that represents the 97.7% of probability of survival in
HFMI-treated condition with a inverse slope equal to 5. Thus the PSM design curve has demonstrated to
be partially effective and conservative due to the misalignment effect have been neglected;

2. The SHSS approach find results that are in according with the literature and it has correctly foreseen the
experimental crack initiation point at weld toe.

4.4 Yildirim 2020, transverse attachment FAT 80

The third joint analysed is a transverse attachment characterised by a fatigue class FAT 80, studied by Yildirim
in 2020 [18] under CAL (Constant Amplitude Loading).
The principal information and mechanical properties about this typology of the joint are summarized in the
Table 4.15 and Table 4.16:
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Weld condition Fracture location Load application
Main plate/gusset

thickness

HFMI, non-load carrying
(NLC), full penetration

Weld toe
Axial, main plate,

parent material
Main plate: 6mm

Gusset: 6mm

Table 4.15: Information about the specimens

Material model
Yield strength fy

[MPa]

Young modulus

[MPa]

Poisson’s ratio

ν

AH36, HSS, Linear elastic,
isotropic

392 206000 0.3

Table 4.16: Information about mechanical properties

The dimensions of this joint are defined and described in the paragraph 3.3 (Table3.28 and Figure 3.73).
Regarding the HFMI groove geometry, the dimensions (radius, depth and width) are taken from [33] and the
values are expressed in the following table with reference to Figure 4.18

depth [mm] ρHFMI [mm] width [mm] 2α[°]

0.16 1.80 2.43 135

Table 4.17: Dimension of HFMI groove for the transverse attachment FAT 80, studied by Yildirim in 2020

The inclination angle of the indenters is assumed to be performed along the V-notch bisector, i.e. 67.5° in
this case.
The experimental data are defined in the following table in terms of nominal stress ∆σnom:

Stress Ratio

R

∆σnom

[MPa]
Nf [cycles]

-0.43

242 798 406
181 1 346 563
242 433 673
181 1 351 325
181 1 695 096

Table 4.18: Experimental data of the 3rd joint, Yildirim 2020 in HFMI treated condition.

FAT 80 is modelled in SOLIDWORKS 2020 with the HFMI groove and subsequently, is imported inside
Ansys®APDL with .IGS extension. The results is reported in the figure below:
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Figure 4.51: Model of longitudinal attachment FAT 80 studied by Yildirim in HFMI treated condition.

The procedure to define the boundary conditions of the model follows the same steps and dispositions
defined for the same joint in as-welded condition described in the paragraph 3.3.

4.4.1 PSM combined with SED for blunt notches

The fatigue assessment for this model is performed by the application of Peak Stress Method in combination
with the SED approach with the adoption of four-node linear elements, considering only the weld toe.
The element PLANE 182 is chosen from the Ansys®APDL library with Simple Enhanced Strain as Key Option
1 and Plane Strain as Key Option 3.
The SED approach for blunt notches is based on the creation of a structural volume at the radiused weld toe,
that can be rigidly rotated (Figure 4.20) to included the whole maximum principal stress, which is related to
the highest strain energy density.
The first step is to determinate the inclination angle Φ with respect to the blunt notch bisector of the most
stressed area that is indicated in red in Ansys®APDL.
To define the inclination angle, the model is meshed with a global element size equal to 0.8 mm and subse-
quently, two refinements with depth equal to 5 (see Figure 4.52 for the refine options) are applied to the arc that
represents the groove due to HFMI treatment(Figure 4.53) with the following commands:

Preprocessor→Meshing→Modify Mesh→Refine At→Lines

Figure 4.52: Options for the refinement.
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Figure 4.53: Arc that represents the HFMI groove where the refinements are applied.

The meshed model is displayed on the following figure:

Figure 4.54: Mesh of the model to define the inclination angle.

The model is subjected to an external nominal stress ∆σnom = 1MPa applied on the main plate. Once the
model is properly meshed, loaded and constraint, the system canbe solve:

Solution→Solve→Current LS
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The first principal stress ∆σ11 is plotted:

Figure 4.55: Plot of the first principal stress.

The highest stress is not located exactly around the blunt notch bisector, so it is matter of quantifying the
grades of rotation. The value of the angle is reported in the following equation and represents a clockwise
rotation about the global z-axis:

Φ = 10.5◦ (4.38)

Figure 4.56: Inclination angle Φ

The circular sector is created according to equations (4.5) and (4.6):

q =
2π −2α

π
= 2− 135

180
= 1.25 (4.39)

r0 =
q−1

q
·ρHFMI =

1.25−1
1.25

·1.80 = 0.4mm (4.40)

R0 + r0 = 0.28+0.4 = 0.68mm (4.41)

Subsequently, the control volume to calculate the averaged Strain Energy Density (SED) is created. The
result is reported in the following figure:
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Figure 4.57: Illustration of the control Area to calculate the SED.

To create the mesh of the model, the following procedure is executed:

1. The element inside the structural volume are characterised by a global element size equal to 0.01mm
with a free-mesh algorithm;

Figure 4.58: On the left, the mesh of the structural volume with global element size of 0.01. On the right, the proof that

the highest stress is contained inside the volume.

2. The other volume is meshed with a global element size equal to 0.1 mm with a free-mesh algorithm.

Figure 4.59: Mesh of the all structure.

Once the model is properly meshed, loaded and constraint, the system can be solved:

Solution→Solve→Current LS

The averaged Strain Energy Density is defined as the energy contained inside the structural volume. The same
procedure used for FAT 71 is applied to detect the SED value.
The result of SED for the weld toe when the specimen is subjected to a nominal stress of 1 MPa is:

SENE = 1.44139 ·10−6MJ (4.42)

VOLU = 0.245309mm3 (4.43)
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4.4 Yildirim 2020, transverse attachment FAT 80

SED =
SENE

VOLU
=

1.44139 ·10−6

0.245309
= 5.87581 ·10−6 MJ

m3 (4.44)

From the SED, the equivalent peak stress is obtained with the following formula:

∆σeq,peak =

√

2 ·E ·SED

1−ν2 =

√

2 ·206000 ·5.87581 ·10−6

1−0.32 = 1.6310MPa (4.45)

This result is in good agreement with the value found in literature [33]:

∆σeq,peak,literature = 1.611MPa (4.46)

Thus, the relative error expresses in percentage between the calculated ∆σeq,peak and the ∆σeq,peak,literature

is:

∆% =
∆σeq,peak,calculated −∆σeq,peak,literature

∆σeq,peak,literature

·100 = 1.24% (4.47)

4.4.2 Data results for SED curve

The previous model was characterised by a load equal to 1 MPa, applied to the main plate of the specimen; to
obtain the value of the peak stress related to the applied nominal stress, the equation (3.24) is applied.
The results in terms of equivalent peak stress are defined in the Appendix D.3.
The all experimental data are collected inside the PSM design curve proposed by Meneghetti, Camapgnolo,
Yildirim and Belluzzo [33]. The black lines are the PSM-based scatter band calculated in HFMI condition
with a inverse slope equal to 5 [33], the dotted blue lines are the PSM design curve proposed by Meneghetti,
Guzzella and Atzori for structure subjected to prevailing mode I [10]:

Figure 4.60: Experimental data inside the PSM design curve.
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The following conclusion can be defined:

1. The all experimental data fall above the lines that represents the 50% of probability of survival in as-
welded condition with a inverse slope equal to 3. Thus the PSM design curve has demonstrated to be
effective and very conservative. This result is expected because the PSM fatigue design curve proposed
by Meneghetti, Guzzella and Atzori is calibrated for as-welded joints and the considerations of the HFMI
benefits are not present;

2. The all experimental data fall above the lines that represents the 97.7% of probability of survival in
HFMI-treated condition with a inverse slope equal to 5. Thus the PSM design curve has demonstrated to
be effective and conservative;

3. The Peak Stress Method combined with SED approach find results that are in according with the literature
and it has correctly foreseen the experimental crack initiation point at weld toe.

4.4.3 SHSS(Structural Hot Spot Stress) approach

According to the IIW Recommendations, the SHSS approach procedure is the same adopted for as-welded
joints, described in the paragraph 3.3.4.
The previous model was characterised by a load equal to 1 MPa, applied to the main plate of the specimen; to
obtain the value of the hot-spot stress related to the applied nominal stress, the equation (3.45) is applied.
The results in terms of SHSS are defined in the Appendix D.3.
In agreement with the IIW Recommendations on the HFMI-treated joints [3], the design curve is increased of a
FAT class. The hot-spot FAT class for 355 ≤ fy < 550, non-load carrying fillet welds, is FAT 180 (see Table4.5)
for the stress ratio R ≤ 0.15:

Figure 4.61: Experimental data inside the SHSS design curve.

The following conclusion can be defined:

1. Several experimental data fall above the lines that represents the 97.7% of probability of survival in
HFMI-treated condition with a inverse slope equal to 5. Thus the PSM design curve has demonstrated to
be partially effective and conservative due to the misalignment effect have been neglected;

2. The SHSS approach find results that are in according with the literature and it has correctly foreseen the
experimental crack initiation point at weld toe.
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4.5 Okawa 2013, transverse attachment FAT 80

The fourth joint analysed is a transverse attachment characterised by a fatigue class FAT 80, studied by Okawa
in 2013 [43] under CAL (Constant Amplitude Loading).
The principal information and mechanical properties about this typology of the joint are summarized in the
Table 4.19 and Table 4.20:

Weld condition Fracture location Load application
Main plate/gusset

thickness

HFMI, non-load carrying
(NLC), full penetration

Weld toe
Axial, main plate,

parent material
Main plate: 20mm

Gusset: 10mm

Table 4.19: Information about the specimens

Material model
Yield strength fy

[MPa]

Young modulus

[MPa]

Poisson’s ratio

ν

AH36, HSS, Linear elastic,
isotropic

392 206000 0.3

Table 4.20: Information about mechanical properties

The dimensions of this joint are defined and described in the paragraph 3.4 (Table3.37 and Figure 3.85).
Regarding the HFMI groove geometry, the dimensions (radius, depth and width) are taken from [33] and the
values are expressed in the following table with reference to Figure 4.18

depth [mm] ρHFMI [mm] width [mm] 2α[°]

0.186 2.00 2.72 135

Table 4.21: Dimension of HFMI groove for the transverse attachment FAT 80, studied by Okawa in 2013

The inclination angle of the indenters is assumed to be performed along the V-notch bisector, i.e. 67.5° in
this case.
The experimental data are defined in the following table in terms of nominal stress ∆σnom:

Stress Ratio

R

∆σnom

[MPa]
Nf [cycles]

-1
420 378 000
400 990 000
380 2 295 000

0.1

250 5 000 000
270 818 000
260 1 067 000
300 304 000

0.5

125 346 000
175 346 000
150 503 000
135 3 450 000

Table 4.22: Experimental data of the 4th joint, Okawa 2013 in HFMI treated condition.

FAT 80 is modelled in SOLIDWORKS 2020 with the HFMI groove and subsequently, is imported inside
Ansys®APDL with .IGS extension. The results is reported in the figure below:
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Figure 4.62: Model of longitudinal attachment FAT 80 studied by Okawa in HFMI treated condition.

The procedure to define the boundary conditions of the model follows the same steps and dispositions
defined for the same joint in as-welded condition described in the paragraph 3.4.

4.5.1 PSM combined with SED for blunt notches

The fatigue assessment for this model is performed by the application of Peak Stress Method in combination
with the SED approach with the adoption of four-node linear elements, considering only the weld toe.
The element PLANE 182 is chosen from the Ansys®APDL library with Simple Enhanced Strain as Key Option
1 and Plane Strain as Key Option 3.
The SED approach for blunt notches is based on the creation of a structural volume at the radiused weld toe,
that can be rigidly rotated (Figure4.20) to included the whole maximum principal stress, which is related to the
highest strain energy density.
The first step is to determinate the inclination angle Φ with respect to the blunt notch bisector of the most
stressed area that is indicated in red in Ansys®APDL.
To define the inclination angle, the model is meshed with a global element size equal to 0.6 mm and subse-
quently, two refinements with depth equal to 5 (see Figure 4.63 for the refine options) are applied to the arc that
represents the groove due to HFMI treatment(Figure 4.64) with the following commands:

Preprocessor→Meshing→Modify Mesh→Refine At→Lines

Figure 4.63: Options for the refinement.
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Figure 4.64: Arc that represents the HFMI groove where the refinements are applied.

The meshed model is displayed on the following figure:

Figure 4.65: Mesh of the model to define the inclination angle.

The model is subjected to an external nominal stress ∆σnom = 1MPa applied on the main plate. Once the
model is properly meshed, loaded and constraint, the system canbe solve:

Solution→Solve→Current LS

The first principal stress ∆σ11 is plotted:

Figure 4.66: Plot of the first principal stress.
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The highest stress is not located exactly around the blunt notch bisector, so it is matter of quantifying the
grades of rotation. The value of the angle is reported in the following equation and represents a clockwise
rotation about the global z-axis:

Φ = 10.5◦ (4.48)

The circular sector is created according to equations (4.5) and (4.6):

q =
2π −2α

π
= 2− 135

180
= 1.25 (4.49)

r0 =
q−1

q
·ρHFMI =

1.25−1
1.25

·2.00 = 0.4mm (4.50)

R0 + r0 = 0.28+0.4 = 0.68mm (4.51)

Subsequently, the control volume to calculate the averaged Strain Energy Density (SED) is created. The
result is reported in the following figure:

Figure 4.67: Illustration of the control Area to calculate the SED.

To create the mesh of the model, the following procedure is executed:

1. The element inside the structural volume are characterised by a global element size equal to 0.01mm
with a free-mesh algorithm;

Figure 4.68: On the left, the mesh of the structural volume with global element size of 0.01. On the right, the proof that

the highest stress is contained inside the volume.

2. The other volume is meshed with a global element size equal to 0.2 mm with a free-mesh algorithm.
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Figure 4.69: Mesh of the all structure.

Once the model is properly meshed, loaded and constraint, the system can be solved:

Solution→Solve→Current LS

The averaged Strain Energy Density is defined as the energy contained inside the structural volume. The same
procedure used for FAT 71 is applied to detect the SED value.
The result of SED for the weld toe when the specimen is subjected to a nominal stress of 1 MPa is:

SENE = 2.46788 ·10−6MJ (4.52)

VOLU = 0.2476mm3 (4.53)

SED =
SENE

VOLU
=

2.46788 ·10−6

0.2476
= 9.96721 ·10−6 MJ

m3 (4.54)

From the SED, the equivalent peak stress is obtained with the following formula:

∆σeq,peak =

√

2 ·E ·SED

1−ν2 =

√

2 ·206000 ·9.96721 ·10−6

1−0.32 = 2.1243MPa (4.55)

This result is in good agreement with the value found in literature [33]:

∆σeq,peak,literature = 2.10MPa (4.56)

Thus, the relative error expresses in percentage between the calculated ∆σeq,peak and the ∆σeq,peak,literature

is:

∆% =
∆σeq,peak,calculated −∆σeq,peak,literature

∆σeq,peak,literature

·100 = 1.16% (4.57)

4.5.2 Data results for SED curve

The previous model was characterised by a load equal to 1 MPa, applied to the main plate of the specimen; to
obtain the value of the peak stress related to the applied nominal stress, the equation (3.24) is applied.
The results in terms of equivalent peak stress are defined in the Appendix D.4.
The all experimental data are collected inside the PSM design curve proposed by Meneghetti, Camapgnolo,
Yildirim and Belluzzo [33]. The black lines are the PSM-based scatter band calculated in HFMI condition
with a inverse slope equal to 5 [33], the dotted blue lines are the PSM design curve proposed by Meneghetti,
Guzzella and Atzori for structure subjected to prevailing mode I [10]. The curve proposed by Meneghetti,
Camapgnolo, Yildirim and Belluzzo [33] are different based on the stress ratio and the material steel strength:
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Figure 4.70: Experimental data inside the PSM design curve.

Figure 4.71: Experimental data inside the PSM design curve.

The following conclusion can be defined:

1. The all experimental data fall above the lines that represents the 97.7% of probability of survival in as-
welded condition with a inverse slope equal to 3 for stress ratio R ≤ 0.15. For 0.4 ≤ R ≤ 0.52, the all
experimental data fall above the lines that represents the 50% of probability of survival in as-welded
condition. Thus the PSM design curve has demonstrated to be effective and very conservative. This
result is expected because the PSM fatigue design curve proposed by Meneghetti, Guzzella and Atzori is
calibrated for as-welded joints and the considerations of the HFMI benefits are not present;

2. The all experimental data fall above the lines that represents the 50% of probability of survival in HFMI-
treated condition with a inverse slope equal to 5. Thus the PSM design curve has demonstrated to be
effective and conservative;
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3. The Peak Stress Method combined with SED approach find results that are in according with the literature
and it has correctly foreseen the experimental crack initiation point at weld toe.

4.5.3 SHSS(Structural Hot Spot Stress) approach

According to the IIW Recommendations, the SHSS approach procedure is the same adopted for as-welded
joints, described in the paragraph 3.4.5.
The previous model was characterised by a load equal to 1 MPa, applied to the main plate of the specimen; to
obtain the value of the hot-spot stress related to the applied nominal stress, the equation (3.45) is applied.
The results in terms of SHSS are defined in the Appendix D.4.
In agreement with the IIW Recommendations on the HFMI-treated joints [3], the design curve is increased of a
FAT class. The hot-spot FAT class for 355 ≤ fy < 550, non-load carrying fillet welds, is FAT 180 (see Table4.5)
for the stress ratio R ≤ 0.15 and FAT 125 for 0.4 ≤ R ≤ 0.52:

Figure 4.72: Experimental data inside the SHSS design curve.

The following conclusion can be defined:

1. The all experimental data fall above the lines that represents the 97.7% of probability of survival in
HFMI-treated condition with a inverse slope equal to 5. Thus the PSM design curve has demonstrated to
be effective and conservative due to the misalignment effect have been neglected;

2. The SHSS approach find results that are in according with the literature and it has correctly foreseen the
experimental crack initiation point at weld toe.
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4.6 Kuhlmann-Gunther 2009, transverse attachment FAT 80

The fifth joint analysed is a transverse attachment characterised by a fatigue class FAT 80, studied by Kuhlmann
and Gunther in 2009 [44] under CAL (Constant Amplitude Loading).
The principal information and mechanical properties about this typology of the joint are summarized in the
Table 4.23 and Table 4.24:

Weld condition Fracture location Load application
Main plate/gusset

thickness

HFMI, non-load carrying
(NLC), full penetration

Weld toe
Axial, main plate,

parent material
Main plate: 12mm

Gusset: 12mm

Table 4.23: Information about the specimens

Material model
Yield strength fy

[MPa]

Young modulus

[MPa]

Poisson’s ratio

ν

S355J2, linear elastic, isotropic 355
206000 0.3

S690QL, linear elastic, isotropic 690

Table 4.24: Information about mechanical properties

The dimensions of this joint are defined and described in the paragraph 3.5 (Table3.46 and Figure 3.97).
Regarding the HFMI groove geometry, the dimensions (radius, depth and width) depend on the material type
and are taken from [33]. The values are expressed in the following table with reference to Figure 4.18:

Material depth [mm] ρHFMI [mm] width [mm] 2α[°]

S355J2 0.17 2 2.7
135

S690QL 0.12 2 2.58

Table 4.25: Dimension of HFMI groove for the transverse attachment FAT 80, studied by Kuhlmann and Gunther in 2009

The inclination angle of the indenters is assumed to be performed along the V-notch bisector, i.e. 67.5° in
this case.
The experimental data are defined in the following table in terms of nominal stress ∆σnom:

Material
Stress Ratio

R

∆σnom

[MPa]
Nf [cycles]

S355J2 0.1

300 1 426 998
340 137 721
340 116 159
315 711 012
315 298 866
280 799 250

S690QL 0.1

340 768 457
340 478 283
315 759 450
315 1 270 270
400 193 512
400 228 100
280 2 119 665

Table 4.26: Experimental data of the 5th joint, Kuhlmann-Gunther 2009 in HFMI treated condition.

FAT 80 is modelled in SOLIDWORKS 2020 with the HFMI groove and subsequently, is imported inside
Ansys®APDL with .IGS extension. Due to the different dimensions of the groove, two models are created: the

212



4.6 Kuhlmann-Gunther 2009, transverse attachment FAT 80

first one for the S355J2 material; the second one for th S690QL material. The results are reported in the figures
below:

Figure 4.73: Model of longitudinal attachment FAT 80 S355J2 studied by Kuhlmann and Gunther in HFMI treated

condition.

Figure 4.74: Model of longitudinal attachment FAT 80 S690QL studied by Kuhlmann and Gunther in HFMI treated

condition.

The procedure to define the boundary conditions of the model follows the same steps and dispositions
defined for the same joint in as-welded condition described in the paragraph 3.5.

4.6.1 PSM combined with SED for blunt notches

The fatigue assessment for this model is performed by the application of Peak Stress Method in combination
with the SED approach with the adoption of four-node linear elements, considering only the weld toe.
The element PLANE 182 is chosen from the Ansys®APDL library with Simple Enhanced Strain as Key Option
1 and Plane Strain as Key Option 3.
The SED approach for blunt notches is based on the creation of a structural volume at the radiused weld toe,
that can be rigidly rotated (Figure4.20) to included the whole maximum principal stress, which is related to the
highest strain energy density.
The first step is to determinate the inclination angle Φ with respect to the blunt notch bisector of the most
stressed area that is indicated in red in Ansys®APDL.
To define the inclination angle, the models are meshed with a global element size equal to 0.5 mm and sub-
sequently, two refinements with depth equal to 5 (see Figure 4.75 for the refine options) are applied to the arc
that represents the groove due to HFMI treatment(Figure 4.76-4.77) with the following commands:
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Preprocessor→Meshing→Modify Mesh→Refine At→Lines

Figure 4.75: Options for the refinement.

Figure 4.76: Arc that represents the HFMI groove where the refinements are applied for S355J2 model.

Figure 4.77: Arc that represents the HFMI groove where the refinements are applied for S690QL model.

The meshed models are displayed on the following figures:

Figure 4.78: Mesh of the model S355J2 to define the inclination angle.
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Figure 4.79: Mesh of the model S690QL to define the inclination angle.

The model is subjected to an external nominal stress ∆σnom = 1MPa applied on the main plate. Once the
model is properly meshed, loaded and constraint, the system canbe solve:

Solution→Solve→Current LS

The first principal stress ∆σ11 is plotted:

Figure 4.80: Plot of the first principal stress for the model S355J2.

Figure 4.81: Plot of the first principal stress for the model S690QL.
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The highest stress is not located exactly around the blunt notch bisector, so it is matter of quantifying the
grades of rotation. The value of the angle is reported in the following equation and represents a clockwise
rotation about the global z-axis:

ΦS355J2 = 9.50◦ (4.58)

ΦS690QL = 8.18◦ (4.59)

The circular sector is created according to equations (4.5) and (4.6) and the results are the same for S355J2
and S690QL models:

q =
2π −2α

π
= 2− 135

180
= 1.25 (4.60)

r0 =
q−1

q
·ρHFMI =

1.25−1
1.25

·2 = 0.4mm (4.61)

R0 + r0 = 0.28+0.4 = 0.68mm (4.62)

Subsequently, the control volume to calculate the averaged Strain Energy Density (SED) is created. The
result is reported in the following figure:

Figure 4.82: Illustration of the control Area to calculate the SED for S355J2.

Figure 4.83: Illustration of the control Area to calculate the SED for S690QL.

To create the mesh of the model, the following procedure is executed:

1. The element inside the structural volume are characterised by a global element size equal to 0.01mm
with a free-mesh algorithm;
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Figure 4.84: On the left, the mesh of the structural volume with global element size of 0.01. On the right, the proof that

the highest stress is contained inside the volume for the model S355J2.

Figure 4.85: On the left, the mesh of the structural volume with global element size of 0.01. On the right, the proof that

the highest stress is contained inside the volume for the model S690QL.

2. The other volume is meshed with a global element size equal to 0.2 mm with a free-mesh algorithm.

Figure 4.86: Mesh of the all structure S355J2.

Figure 4.87: Mesh of the all structure S690QL.

217



Chapter 4: Numerical analysis of experimental data and fatigue assessment of HFMI-treated joint by local

approaches

Once the model is properly meshed, loaded and constraint, the system can be solved:

Solution→Solve→Current LS

The averaged Strain Energy Density is defined as the energy contained inside the structural volume. The same
procedure used for FAT 71 is applied to detect the SED value.

Results for S355J2 model

The result of SED for the weld toe when the specimen is subjected to a nominal stress of 1 MPa is:

SENE = 2.06236 ·10−6MJ (4.63)

VOLU = 0.24673mm3 (4.64)

SED =
SENE

VOLU
=

2.06236 ·10−6

0.24673
= 8.35877 ·10−6 MJ

m3 (4.65)

From the SED, the equivalent peak stress is obtained with the following formula:

∆σeq,peak =

√

2 ·E ·SED

1−ν2 =

√

2 ·206000 ·8.35877 ·10−6

1−0.32 = 1.9454MPa (4.66)

This result is in good agreement with the value found in literature [33]:

∆σeq,peak,literature = 1.909MPa (4.67)

Thus, the relative error expresses in percentage between the calculated ∆σeq,peak and the ∆σeq,peak,literature

is:

∆% =
∆σeq,peak,calculated −∆σeq,peak,literature

∆σeq,peak,literature

·100 = 1.90% (4.68)

Results for S690QL model

The result of SED for the weld toe when the specimen is subjected to a nominal stress of 1 MPa is:

SENE = 2.01481 ·10−6MJ (4.69)

VOLU = 0.248067mm3 (4.70)

SED =
SENE

VOLU
=

2.01481 ·10−6

0.248067
= 8.12204 ·10−6 MJ

m3 (4.71)

From the SED, the equivalent peak stress is obtained with the following formula:

∆σeq,peak =

√

2 ·E ·SED

1−ν2 =

√

2 ·206000 ·8.12204 ·10−6

1−0.32 = 1.9176MPa (4.72)

This result is in good agreement with the value found in literature [33]:

∆σeq,peak,literature = 1.909MPa (4.73)

Thus, the relative error expresses in percentage between the calculated ∆σeq,peak and the ∆σeq,peak,literature

is:

∆% =
∆σeq,peak,calculated −∆σeq,peak,literature

∆σeq,peak,literature

·100 = 1.91% (4.74)
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4.6.2 Data results for SED curve

The previous model was characterised by a load equal to 1 MPa, applied to the main plate of the specimen; to
obtain the value of the peak stress related to the applied nominal stress, the equation (3.24) is applied.
The results in terms of equivalent peak stress are defined in the Appendix D.4.
The all experimental data are collected inside the PSM design curve proposed by Meneghetti, Camapgnolo,
Yildirim and Belluzzo [33]. The black lines are the PSM-based scatter band calculated in HFMI condition
with a inverse slope equal to 5 [33], the dotted blue lines are the PSM design curve proposed by Meneghetti,
Guzzella and Atzori for structure subjected to prevailing mode I [10]. The curve proposed by Meneghetti,
Camapgnolo, Yildirim and Belluzzo [33] are different based on the stress ratio and the material steel strength:

Figure 4.88: Experimental data inside the PSM design curve.

Figure 4.89: Experimental data inside the PSM design curve.
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The following conclusion can be defined:

1. The all experimental data fall above the lines that represents the 50% of probability of survival in as-
welded condition with a inverse slope equal to 3 for yield strength 355 ≤ fy < 550MPa. The all experi-
mental data fall above the lines that represents the 2.3% of probability of survival in as-welded condition
for yield strength 550 ≤ fy < 750MPa.. Thus the PSM design curve has demonstrated to be effective and
very conservative. This result is expected because the PSM fatigue design curve proposed by Meneghetti,
Guzzella and Atzori is calibrated for as-welded joints and the considerations of the HFMI benefits are
not present;

2. The all experimental data fall above the lines that represents the 50% of probability of survival in HFMI-
treated condition with a inverse slope equal to 5. Thus the PSM design curve has demonstrated to be
effective and conservative;

3. The Peak Stress Method combined with SED approach find results that are in according with the literature
and it has correctly foreseen the experimental crack initiation point at weld toe.

4.6.3 SHSS(Structural Hot Spot Stress) approach

According to the IIW Recommendations, the SHSS approach procedure is the same adopted for as-welded
joints, described in the paragraph 3.5.4.
The previous model was characterised by a load equal to 1 MPa, applied to the main plate of the specimen; to
obtain the value of the hot-spot stress related to the applied nominal stress, the equation (3.45) is applied.
The results in terms of SHSS are defined in the Appendix D.5.
In agreement with the IIW Recommendations on the HFMI-treated joints [3], the design curve is increased of
a FAT class. The hot-spot FAT class for non-load carrying fillet welds, is FAT 180 (see Table4.5) for the yield
strength 355 ≤ fy < 550MPa and FAT 200 550 ≤ fy < 750MPa:

Figure 4.90: Experimental data inside the SHSS design curve.
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Figure 4.91: Experimental data inside the SHSS design curve.

The following conclusion can be defined:

1. The all experimental data fall above the lines that represents the 97.7% of probability of survival in
HFMI-treated condition with a inverse slope equal to 5. Thus the PSM design curve has demonstrated to
be effective and conservative due to the misalignment effect have been neglected;

2. The SHSS approach find results that are in according with the literature and it has correctly foreseen the
experimental crack initiation point at weld toe.

4.7 Kuhlmann 2006, transverse attachment FAT 80

The sixth joint analysed is a transverse attachment characterised by a fatigue class FAT 80, studied by Kuhlmann
in 2006 [44] under CAL (Constant Amplitude Loading).
The principal information and mechanical properties about this typology of the joint are summarized in the
Table 4.27 and Table 4.28:

Weld condition Fracture location Load application
Main plate/gusset

thickness

HFMI, non-load carrying
(NLC), full penetration

Weld toe
Axial, main plate,

parent material
Main plate: 12mm

Gusset: 12mm

Table 4.27: Information about the specimens

Material model
Yield strength fy

[MPa]

Young modulus

[MPa]

Poisson’s ratio

ν

S355, linear elastic, isotropic 355
206000 0.3

S460, linear elastic, isotropic 460

Table 4.28: Information about mechanical properties

The dimensions of this joint are defined and described in the paragraph 3.6 (Table3.55 and Figure 3.109).
Regarding the HFMI groove geometry, the dimensions (radius, depth and width) are taken from [33] and the
values are expressed in the following table with reference to Figure 4.18
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depth [mm] ρHFMI [mm] width [mm] 2α[°]

0.10 2.50 3.00 135

Table 4.29: Dimension of HFMI groove for the transverse attachment FAT 80, studied by Kuhlmann in 2006

The inclination angle of the indenters is assumed to be performed along the V-notch bisector, i.e. 67.5° in
this case.
The experimental data are defined in the following table in terms of nominal stress ∆σnom:

Material
Stress Ratio

R

∆σnom

[MPa]
Nf [cycles]

S355 0.1

306 108 489
278 363 274
253 455 624
230 977 946
261 349,432
264 315 592
217 1 146 656
260 845 460
320 89,949
250 1 365 764
294 200 637

S460 0.1

290 595 040
320 174 924
287 346 406
250 992 769
240 1 077822
387 51 593
294 221 726
332 260 850
356 162 744
271 522 654

Table 4.30: Experimental data of the 6th joint, Kuhlmann 2006 in HFMI treated condition.

FAT 80 is modelled in SOLIDWORKS 2020 with the HFMI groove and subsequently, is imported inside
Ansys®APDL with .IGS extension. The results is reported in the figure below:

Figure 4.92: Model of longitudinal attachment FAT 80 studied by Okawa in HFMI treated condition.

The procedure to define the boundary conditions of the model follows the same steps and dispositions
defined for the same joint in as-welded condition described in the paragraph 3.6.
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4.7.1 PSM combined with SED for blunt notches

The fatigue assessment for this model is performed by the application of Peak Stress Method in combination
with the SED approach with the adoption of four-node linear elements, considering only the weld toe.
The element PLANE 182 is chosen from the Ansys®APDL library with Simple Enhanced Strain as Key Option
1 and Plane Strain as Key Option 3.
The SED approach for blunt notches is based on the creation of a structural volume at the radiused weld toe,
that can be rigidly rotated (Figure4.20) to included the whole maximum principal stress, which is related to the
highest strain energy density.
The first step is to determinate the inclination angle Φ with respect to the blunt notch bisector of the most
stressed area that is indicated in red in Ansys®APDL.
To define the inclination angle, the model is meshed with a global element size equal to 0.5 mm and subse-
quently, two refinements with depth equal to 5 (see Figure 4.93 for the refine options) are applied to the arc that
represents the groove due to HFMI treatment(Figure 4.94) with the following commands:

Preprocessor→Meshing→Modify Mesh→Refine At→Lines

Figure 4.93: Options for the refinement.

Figure 4.94: Arc that represents the HFMI groove where the refinements are applied.

The meshed model is displayed on the following figure:
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Figure 4.95: Mesh of the model to define the inclination angle.

The model is subjected to an external nominal stress ∆σnom = 1MPa applied on the main plate. Once the
model is properly meshed, loaded and constraint, the system canbe solve:

Solution→Solve→Current LS

The first principal stress ∆σ11 is plotted:

Figure 4.96: Plot of the first principal stress.

The highest stress is not located exactly around the blunt notch bisector, so it is matter of quantifying the
grades of rotation. The value of the angle is reported in the following equation and represents a clockwise
rotation about the global z-axis:

Φ = 9.88◦ (4.75)

The circular sector is created according to equations (4.5) and (4.6):

q =
2π −2α

π
= 2− 135

180
= 1.25 (4.76)

r0 =
q−1

q
·ρHFMI =

1.25−1
1.25

·2.5 = 0.5mm (4.77)

R0 + r0 = 0.28+0.4 = 0.78mm (4.78)

Subsequently, the control volume to calculate the averaged Strain Energy Density (SED) is created. The
result is reported in the following figure:
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Figure 4.97: Illustration of the control Area to calculate the SED.

To create the mesh of the model, the following procedure is executed:

1. The element inside the structural volume are characterised by a global element size equal to 0.01mm
with a free-mesh algorithm;

Figure 4.98: On the left, the mesh of the structural volume with global element size of 0.01. On the right, the proof that

the highest stress is contained inside the volume.

2. The other volume is meshed with a global element size equal to 0.2 mm with a free-mesh algorithm.

Figure 4.99: Mesh of the all structure.

Once the model is properly meshed, loaded and constraint, the system can be solved:
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Solution→Solve→Current LS

The averaged Strain Energy Density is defined as the energy contained inside the structural volume. The same
procedure used for FAT 71 is applied to detect the SED value.
The result of SED for the weld toe when the specimen is subjected to a nominal stress of 1 MPa is:

SENE = 1.89439 ·10−6MJ (4.79)

VOLU = 0.266519mm3 (4.80)

SED =
SENE

VOLU
=

1.89439 ·10−6

0.266519
= 7.1079 ·10−6 MJ

m3 (4.81)

From the SED, the equivalent peak stress is obtained with the following formula:

∆σeq,peak =

√

2 ·E ·SED

1−ν2 =

√

2 ·206000 ·7.1079 ·10−6

1−0.32 = 1.7939MPa (4.82)

This result is in good agreement with the value found in literature [33]:

∆σeq,peak,literature = 1.773MPa (4.83)

Thus, the relative error expresses in percentage between the calculated ∆σeq,peak and the ∆σeq,peak,literature

is:

∆% =
∆σeq,peak,calculated −∆σeq,peak,literature

∆σeq,peak,literature

·100 = 1.18% (4.84)

4.7.2 Data results for SED curve

The previous model was characterised by a load equal to 1 MPa, applied to the main plate of the specimen; to
obtain the value of the peak stress related to the applied nominal stress, the equation (3.24) is applied.
The results in terms of equivalent peak stress are defined in the Appendix D.6.
The all experimental data are collected inside the PSM design curve proposed by Meneghetti, Camapgnolo,
Yildirim and Belluzzo [33]. The black lines are the PSM-based scatter band calculated in HFMI condition
with a inverse slope equal to 5 [33], the dotted blue lines are the PSM design curve proposed by Meneghetti,
Guzzella and Atzori for structure subjected to prevailing mode I [10]:

Figure 4.100: Experimental data inside the PSM design curve.

The following conclusion can be defined:
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1. The all experimental data fall above the lines that represents the 50% of probability of survival in as-
welded condition with a inverse slope equal to 3. Thus the PSM design curve has demonstrated to be
effective and very conservative. This result is expected because the PSM fatigue design curve proposed
by Meneghetti, Guzzella and Atzori is calibrated for as-welded joints and the considerations of the HFMI
benefits are not present;

2. The all experimental data fall above the lines that represents the 97.7% of probability of survival in
HFMI-treated condition with a inverse slope equal to 5. Thus the PSM design curve has demonstrated to
be effective and conservative;

3. The Peak Stress Method combined with SED approach find results that are in according with the literature
and it has correctly foreseen the experimental crack initiation point at weld toe.

4.7.3 SHSS(Structural Hot Spot Stress) approach

According to the IIW Recommendations, the SHSS approach procedure is the same adopted for as-welded
joints, described in the paragraph 3.6.1.
The previous model was characterised by a load equal to 1 MPa, applied to the main plate of the specimen; to
obtain the value of the hot-spot stress related to the applied nominal stress, the equation (3.45) is applied.
The results in terms of SHSS are defined in the Appendix D.6.
In agreement with the IIW Recommendations on the HFMI-treated joints [3], the design curve is increased of a
FAT class. The hot-spot FAT class for 355 ≤ fy < 550, non-load carrying fillet welds, is FAT 180 (see Table4.5)
for the stress ratio R ≤ 0.15:

Figure 4.101: Experimental data inside the SHSS design curve.

The following conclusion can be defined:

1. The all experimental data fall above the lines that represents the 97.7% of probability of survival in
HFMI-treated condition with a inverse slope equal to 5. Thus the PSM design curve has demonstrated to
be effective and conservative due to the misalignment effect have been neglected;

2. The SHSS approach find results that are in according with the literature and it has correctly foreseen the
experimental crack initiation point at weld toe.
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4.8 Summary of the results

SHSS results

The Hot-spot stress results of the all models are collected together in the following table with the type of mesh
algorithm, the type of element, the thickness t, the global element size d and the relative error.

Name of model
Mesh

Pattern

FE

type

t

[mm]

d

[mm]

SHSSLSE,paper

[MPa]

SHSSLSE,calc.

[MPa]
∆%

Marquis (2010) Mapped
Solid
185

8 1.6 1.406 1.432 1.80%

Vanrostenberghe
(2015)

Mapped
Solid
185

10 2 1.384 1.404 1.44%

Vanrostenberghe
(2015)

Mapped
Solid
185

20 2 1.203 1.198 -0.35%

Yildirim (2020) Mapped
Plane
182

6 1.2 1.035 1.0298 -0.50%

Okawa (2013) Mapped
Plane
182

20 4 1.066 1.0661 0.026%

Kuhlmann-
Gunther (2009)

Mapped
Plane
182

12 2.4 1.041 1.0436 0.25%

Kuhlmann (2006) Mapped
Plane
182

12 2.4 1.046 1.0515 0.52%

Table 4.31: Summary of SHSS results of the all models
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In agreement with the IIW Recommendations on the HFMI-treated joints [3], the design curve is increased
of a FAT class and it depends on the steel grade range and the stress ratio. The improvement of FAT class for
each joint are reported in the following table:

FAT class Improvement

Name of

model
Material fy [MPA] R

FAT

Class

AW

Only

fy

effect

R effect

Marquis
(2010)

S7000 550 ≤ fy < 750 -1 100 200 200

Vanrosten.
10mm(2015)

S7000 550 ≤ fy < 750 0.1 0.5 100 200 200 140

Vanrosten.
20mm(2015)

S7000 550 ≤ fy < 750 0.1 0.5 100 200 200 140

Vanrosten.
10mm(2015)

S690QL 550 ≤ fy < 750 0.1 0.5 100 200 200 140

Vanrosten.
20mm(2015)

S690QL 550 ≤ fy < 750 0.1 0.5 100 200 200 140

Yildirim
(2020)

AH36 423 -0.43 100 180 180

Okawa
(2013)

AH36 423 -1 0.1 0.5 100 180 180 180 125

Kuhlmann-
Gunther
(2009)

S355J2 355 ≤ fy < 550 0.1 100 180 180

Kuhlmann-
Gunther
(2009)

S690QL 550 ≤ fy < 750 0.1 100 200 200

Kuhlmann
(2006)

S460 460 0.1 100 180 180

Kuhlmann
(2006)

S355 355 0.1 100 180 180

Table 4.32: FAT class improvement for each model.
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The all experimental data of the all models are collected inside the SHSS design curve proposed by IIW
guideline. In agreement with the IIW Recommendations on the HFMI-treated joints [3], the design curve is
increased of a FAT class as shown in Table4.32:

Figure 4.102: Experimental data inside the SHSS design curve for 355 ≤ fy < 550MPa.

Figure 4.103: Experimental data inside the SHSS design curve for 550 ≤ fy < 750MPa.
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PSM results

The PSM results of the all models are collected together in the following table with the thickness t, the global
element size dglobal and the element size inside the SED volume dlocal , inclination angle of the SED volume
and the relative error:

Name of model
t

[mm]

dglobal

[mm]

dlocal

[mm]

Φpaper

[°]

Φcalc.

[°]

∆σeq,peak,paper

[MPa]

∆σeq,peak,calc.

[MPa]
∆%

Marquis (2010) 8 1 0.05 3.57 7.06 2.219 2.2086 -0.47%
Vanrostenberghe

(2015)
10 1 0.05 11.9 11.78 2.501 2.5046 0.15%

Vanrostenberghe
(2015)

20 1 0.05 7.57 9.09 2.699 2.6992 0.008%

Yildirim (2020) 6 1 0.05 11.7 11.73 1.611 1.6310 1.24%
Okawa (2013) 20 1 0.05 10.5 10.5 2.100 2.1243 1.16%

Kuhlmann-
Gunther (2009)

S355J2
12 1 0.05 9.00 9.5 1.909 1.9454 1.90%

Kuhlmann-
Gunther (2009)

S690QL
12 1 0.05 9.00 8.18 1.909 1.9176 0.45%

Kuhlmann (2006) 12 1 0.05 8.3 9.88 1.773 1.7939 1.18%

Table 4.33: Summary of éSM results of the all models

The all experimental data are collected inside the PSM design curve proposed by Meneghetti, Camapgnolo,
Yildirim and Belluzzo [33] for HFMI-treated joints. The curves are divided in based on the stress Ratio R and
the steel grade range:

Figure 4.104: Experimental data inside the PSM design curve for 355 ≤ fy < 550MPa and R ≤ 0.15.
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Figure 4.105: Experimental data inside the PSM design curve for 355 ≤ fy < 550MPa and 0.4 ≤ R ≤ 0.52.

Figure 4.106: Experimental data inside the PSM design curve for 550 ≤ fy < 750MPa and R ≤ 0.15.
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Figure 4.107: Experimental data inside the PSM design curve for 550 ≤ fy < 750MPa and 0.4 ≤ R ≤ 0.52.
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Chapter 5

Assessment of misalignment effect of

cruciform joints in HFMI condition

The objective of this chapter is to perform an assessment of the misalignment effect on several cruciform joints
in HFMI condition in terms of Effective Notch Stress (ENS), Structural Hot-Spot stress and Equivalent Peak
Stress. This chapter aims to detect a kmis factor in function of the angular misalignment α , the axial misalign-
ment e and the thickness t of the joints. This factor considers the misalignment effect on the fatigue life of the
welded joints.
The Equivalent Peak Stress for the HFMI joints is calculated through the SED approach, the same method used
in the Chapter 4.

The assessment are performed with the application of local approaches above-mentioned through the use
of finite element software Ansys®Mechanical APDL and MatLab with the license of the University of Padua.
For the modelling and the study of the 2D cruciform joints with the PSM approach, Hot-Spot stress method and
ENS approach, the four-node element PLANE 182 is adopted with Simple Enhanced Strain as Key Options 1
and Plane Strain as Key Options 3. Furthermore, the ENS method is applied also with the use of the eight-node
quadratic element PLANE 183, with Quadrilateral as Key Options 1, Plane Strain as Key Options 3 and Pure

Displacement as Key Options 6.
The all specimens have been modelled inside MatLab code, where a .txt file with the APDL commands has
been created and after it has been imported inside Ansys®APDL.
Before the description of the procedure for the detection of kmis factor, the misalignment effect is explained and
described.

5.1 Definition of angular and linear misalignment

All structures which will be subjected to stress fluctuations during them employment, must be designed against
the possibility of fatigue failure. Most of today’s steel structures are characterised by the presence of welded
connections, which will involve ensuring that each welded joints will possess an adequate fatigue strength to
avoid failure.
The fatigue strength of some welded joints, can be reduced by the presence of welding defects, such as slag
inclusions, gas pores, undercuts or misalignment. The misalignment in welded components is a results of the
thermal-input during welding and also its mechanical restraints. In many cases the misalignment effect can not
be completely avoided because they have a influence on the fatigue life of the welded joint.
The main cause for the reduction in fatigue strength of misaligned welded joints is thought to be the introduction
of additional tensile stress due to the presence of a secondary bending. These effect also increase the degree of
stress and strain concentration, which deteriorates the fatigue properties of the welded joints.
There are two different types of misalignment: the axial misalignment, called in this thesis e, and the angular
misalignment, called α , as illustrated in the following figures:
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Figure 5.1: Definition of two types of joint misalignment in fillet welded connection: (a)axial misalignment; (b) angular

misalignment [53]

Figure 5.2: Definition of two types of joint misalignment in butt welded connection [54].

Thus, the fatigue of welded connection can be significantly influenced by joint misalignments which intro-
duce a secondary bending at the presence of axial tension.

5.2 Procedure for the detection of misalignment effect

5.2.1 Definition of sample’s geometry

The samples analysed are cruciform joints that are made of AH36 steel grades having 6 mm of thickness, which
are provided by SSAB in Finland. This joints have been studied by Yildirim under VAL (Variable Amplitude
Loading).
The mechanical properties and chemical composition of the AH36 are reported in the following tables:

Material

model

Yield strength fy

[MPa]

Ultimate strength

fU [MPa]

Elongation

[%]

Young

modulus

[MPa]

Poisson’s

ratio ν

AH36 423 546 0 206000 0.3

Table 5.1: Information about mechanical properties.

Material C Si Mn P S Al Nb V Ti Cu Cr Ni Mo Ca

AH36 0.14 0.39 1.43 0.008 0.007 0.034 0.013 0.008 0.04 0.021 0.08 0.06 0.007 0.0

Table 5.2: Information about chemical composition.

Geometry measurements are carried out with an ATOS Scanbox from GmbH having an optical measuring
system with an accuracy of 0.02mm. From this measurement, 13 clouds of points are obtained, one for each
samples. Indeed, the model of the joints is created from the relative cloud of points and for each model,the
principal geometrical dimensions are obtained. The ideal model without misalignment and the dimensions that
are obtained from the model, are displayed on the following figure:
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Figure 5.3: Definition of the principal dimension of the samples.

To obtain the values of the principal geometrical dimensions, the .txt file with the coordinates of the points
is read from MatLab and subsequently, a sampling is applied to reduce the number of points. The sampling
parameter n is chosen equal to 10, meaning that every 10 points of the cloud, the tenth is taken and used to build
the model. This value of the sampling parameter is obtained thanks to an analysis of the sensitivity. Indeed, if
the sampling parameter changes, the maximum principal stress at the weld toe will be roughly constant, as the
following graph shows:

Figure 5.4: Graph to understand the influence of sampling parameter.

The MatLab code used is reported in the Appendix E.1. Furthermore, the specimen must be extend to
obtain the real length of the sample (600 mm). Indeed, the total length of the cloud of points is characterised
by a length equal to 300 mm. This operation is done inside MatLab and the code is reported in the Appendix
E.1.
The dimension of each samples are reported in the following table with the name of the .txt file:
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Name of .txt file L [mm] t [mm] b [mm] z [mm] h [mm] 2α[°]

355-WH-2 600 6 6 6 33 135
355-WH-3 600 6 6 6.8 32 135
355-WH-4 600 6 6 5.8 33 135
355-WH-5 600 6 6 6 34 135
355-WH-8 600 6 6 6.8 33 135
355-WH-11 600 6 6 6.41 33 135
355-WH-14 600 6 6 6.5 33 135
355-WH-16 600 6 6 6.45 33 135
355-WH-17 600 6 6 6.45 33 135
355-WH-18 600 6 6 7 32.6 135
355-WH-20 600 6 6 6.2 34 135
355-WH-21 600 6 6 6.2 34 135
355-WH-22 600 6 6 7 33 135

Table 5.3: Dimension of the samples.

After the detection of the geometrical dimension of the samples, the angular misalignment is obtained from
the calculation of the angular coefficient of the longer arm of the welded joints, as Figure 5.5 shows.

Figure 5.5: Definition of the angular misalignment.

Thus, the angular misalignment is obtained from the following equation:

α = tan−1 m (5.1)

where:

• α is the angular misalignment;

• m is the angular coefficient of the longer arm, obtained from MatLab code in Appendix E.1.
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The results of the angular misalignment are reported in the following tables:

Name of .txt file Right misalignment αR [°] Left misalignment αL [°]

355-WH-2 1.16 1.48
355-WH-3 1.03 1.42
355-WH-4 0.91 1.32
355-WH-5 0.87 1.27
355-WH-8 0.64 1.25

355-WH-11 0.76 1.09
355-WH-14 1.03 1.51
355-WH-16 0.78 1.29
355-WH-17 0.80 1.23
355-WH-18 0.86 1.24
355-WH-20 0.86 1.07
355-WH-21 0.96 1.01
355-WH-22 1.01 0.94

Table 5.4: Value of the right and left angular misalignment.

The samples are tested in VAL (Variable Amplitude Loading) condition and the experimental results are
defined in the following tables:

Name of .txt file σmax [MPa] σmin [MPa] ∆σ [MPa] N f [cycles]

355-WH-2 258.33 -116.67 375.00 2 799 750
355-WH-3 258.33 -116.67 375.00 3 387 000
355-WH-5 233.33 -100.00 333.33 3 410 280
355-WH-8 200.00 -83.33 283.33 8 750 324
355-WH-14 175.00 -75.00 250.00 6 673 500
355-WH-16 175.00 -75.00 250.00 7 085 250
355-WH-17 200.00 -83.33 283.33 4 420 500
355-WH-18 233.33 -100.00 333.33 3 607 500
355-WH-20 233.33 -100.00 333.33 3 261 000
355-WH-21 200.00 -83.33 283.33 4 446 750
355-WH-22 258.33 -116.67 375.00 2 341 500

Table 5.5: Experimental data of the samples with angular misalignment.

5.2.2 Preliminary analysis of the samples

The samples are initially subjected to a preliminary analysis. First of all, thanks to the MatLab code (see
Appendix E.1), the model of the welded joint is created inside Ansys®APDL.
The modelling procedure in Ansys®APDL is briefly described:

• Due to the presence of angular misalignment, the symmetries are not present, so the whole model is
created;

• The boundary conditions are taken from the reference [50]. Thus, the constraint are:

1. ux = 0 for the Line 168 (Figure 5.6);

2. uy = 0 for the Line 161 and 167 (Figure 5.6);

3. The specimens is subjected to a pressure p =−∆σnom = 1MPa on the Line 169 (Figure 5.7)

• All APDL commands are defined inside the MatLab code, which creates a .txt file that it is imported
inside Ansys.
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Figure 5.6: Boundary condition of the model inside Ansys®APDL.

Figure 5.7: Boundary condition of the model inside Ansys®APDL.

In the following figure, there are the all boundary conditions applied:

Figure 5.8: Boundary condition of the model inside Ansys®APDL.The red arrow represents the external pressure.

During this preliminary analysis, each model is meshed with a global element size equal to 0.5 mm with
the following commands:

Preprocessr→Meshing→Size Cntrls→Manual Size→Global→Size→0.5

Meshing→Mesh→Area→Free

The results is displayed on the following figure:
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Figure 5.9: Mesh of the model with a global element size equal to 0.5 mm.

Once the model is properly meshed, loaded and constraint, the system can be solved:

Solution→Solve→Current LS

The results of the first principal stress can be observed in the Figure 5.10, for an external applied pressure
equal to 1 MPa:

Figure 5.10: Plot of the first principal stress.
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The results of the preliminary analysis for each model are reported in the following table:

Name of .txt file
∆σ11,max,weldtoe

[MPa]
Right misalignment αR [°] Left misalignment αL [°]

355-WH-2 5.7937 1.16 1.48
355-WH-3 5.7993 1.03 1.42
355-WH-4 5.8974 0.91 1.32
355-WH-5 4.5343 0.87 1.27
355-WH-8 4.92 0.64 1.25
355-WH-11 4.8354 0.76 1.09
355-WH-14 5.6188 1.03 1.51
355-WH-16 5.4915 0.78 1.29
355-WH-17 5.0055 0.80 1.23
355-WH-18 5.0221 0.86 1.24
355-WH-20 4.6786 0.86 1.07
355-WH-21 4.5449 0.96 1.01
355-WH-22 4.4553 1.01 0.94

Table 5.6: Results of preliminary analysis.

5.2.3 Ideal model and application of local approaches

The next step for the detection of the misalignment effect is to create a ideal model. Indeed, for each points
cloud, an ideal model is built without the angular misalignment and with a sharp V-notch at the weld toe.
Furthermore, a ideal model without misalignment but with the groove due to the HFMI treatment is created
and the PSM approach combine with the SED is applied on it.
One example of the ideal model with a sharp V-notch is represented in the Figure5.11. Thanks to the lack of
angular misalignment, the cruciform joint is characterised by a double symmetry; for this reason only 1/4 of
the joint is created:

Figure 5.11: Geometry of the ideal model inside Ansys®APDL.

The modelling procedure in Ansys®APDL is briefly described:

• The ideal model is subjected to an axial load on the main plate as a constant pressure equal to p =
−∆σnom = 1MPa, on the Line L2 as Figure 5.12 shows;

• Symmetry boundary condition are applied on the lines L1 and L7 (Figure 5.12);

Figure 5.12: Boundary condition of the ideal model inside Ansys®APDL.

Subsequently, each ideal model is analysed and the Peak Stress Method (PSM), Effective Notch Stress
(ENS) approach and Structural Hot-Spot Stress (SHSS) approach are applied. In the next paragraphs, the
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application of local approaches will be described and each procedure refers to the ideal model that comes from
the points cloud called 355-WH-2, but it can be similarly extended for the other joints. All procedures are
implemented in MatLab to reduce the working time and to parameterize the procedure. The idea of MatLab
code is to create a .txt file with the APDL commands, allowing the creation of the model, mesh and to extract
the results from the model. All MatLab codes are reported in the Appendix E.2.

Effective Notch Stress (ENS) approach

The fatigue assessment for this model is performed by the application of the Effective Notch Stress approach.
Two different analysis are done:

1. The first one is characterised by the using of 4-node linear element PLANE 182 with Simple Enhanced

Strain as Key Option 1 and Plane Strain as Key Option 3;

Figure 5.13: Options for the element PLANE 182.

2. The second one is characterised by the using of 8-node quadratic element PLANE 183 with Quadrilateral

as Key Option 1, Plane Strain as Key Option 2 and Pure Displacement as Key Option 6.

Figure 5.14: Options for the element PLANE 183.

To apply this approach, the IIW Recommendations for Fatigue Assessment by Notch Stress Analysis for

welded Structures [2] is followed. The guideline defines that the rounding of the roots of non-penetrating fillet
welds can be of three different types, as Figure 5.15 shows.

Figure 5.15: Rounding of weld root of non penetrating fillet weld by a keyhole and an U-shaped notch [2].

In this case the rounding of the weld root displayed on the Figure 5.15c is chosen. The effective radius,
which is implemented to finite element model, is defined as follows:

ρ f = ρ +1mm (5.2)

where:
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• ρ f is the effective radius;

• ρ is the actual radius of weld toe.

For the worst case and practical applications, the actual radius ρ is assumed equal to zero. Thus, the ENS
approach for fatigue assessment is reduced to ρ f = 1mm at weld toe or root.
The IIW recommendations gives some rules for the global element size and mesh pattern as Figure 5.16 shows.
The rule for the size are expressed in Table 5.7 and have to be observed in the curved part and straight part of
the notch surfaces in normal and tangential direction.

Figure 5.16: Recommended meshing at weld toes and roots [2].

Element type
Relative

size

Absolute size

[mm]

No. of elements in

45°arc

No. of elements in

360°arc

Quadratic with
mid-side nodes

≤ r/4 ≤ 0.25 ≥ 3 ≥ 24

Linear ≤ r/6 ≤ 0.15 ≥ 5 ≥ 40

Table 5.7: Recommended size of elements on surface [1].

The ideal model for the application of ENS approach is displayed on the following figure:

Figure 5.17: Ideal model for the application of ENS approach.
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For the analysis with the element PLANE 182, the global element size is equal to 0.1 mm, according to
the IIW Recommendations [2]. To obtain the correct number of elements along the roots and the weld toe,
two refinements are applied with depth of two elements. The mesh of the model is displayed on the following
figure:

Figure 5.18: Mesh of ideal model with element PLANE 182.

Once the model is properly meshed, loaded and constraint, the system can be solved:

Solution→Solve→Current LS

The results of the first principal stress can be observed in the Figure 5.19, for an external applied pressure
equal to 1 MPa:

Figure 5.19: Plot of the first principal stress of ideal model with element PLANE 182.
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The maximum first principal stress at the weld toe and root are:

∆σ11,Toe,max = 2.7779MPa (5.3)

∆σ11,Root,max = 3.0455MPa (5.4)

For the analysis with the element PLANE 183, the global element size is equal to 0.2 mm, according to the
IIW Recommendations [2]. To obtain the correct number of elements along the roots and the weld toe, two
refinements are applied with depth of two elements. The mesh of the model is displayed on the following
figure:

Figure 5.20: Mesh of ideal model with element PLANE 183.

Once the model is properly meshed, loaded and constraint, the system can be solved:

Solution→Solve→Current LS

The results of the first principal stress can be observed in the Figure 5.21, for an external applied pressure
equal to 1 MPa:

Figure 5.21: Plot of the first principal stress of ideal model with element PLANE 183.
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The maximum first principal stress at the weld toe and root are:

∆σ11,Toe,max = 2.7615MPa (5.5)

∆σ11,Root,max = 3.0324MPa (5.6)

The results of the all ideal model are reported in the Appendix F.2.

Structural Hot-Spot Stress (SHSS) approach

The fatigue assessment for this model is performed by the application of SHSS approach, following the IIW
recommendation [1] to obtain the hot-spot stress.The hot-spot stress value is detected with the employment of
fine mesh, as Figure 1.4 shows, and the hot-spot stress is detected with the formulas for hot-spot type a and
also type b.
The model is divided in a series of areas to allow the application of Mapped-mesh algorithm; indeed each areas
must be characterised by a number of side between 3 and 4 to obtain a Mapped-mesh. The four-node linear
element PLANE 182 is chosen in Ansys®APDL with Simple Enhanced Strain as Key Option 1 and Plane

Strain as Key Option 3.
The all informations about the mesh is reported in the following table:

Element type
Mesh

algorithm

Main plate

thickness t

Max element

size

Adopted element

size

Plane 182
KeyOpt:Simple

Enhanced Strain

+ Plane Strain

Mapped 6 mm
0.4 · t = 0.4 ·6 =

2.4mm
0.4 mm

Table 5.8: Requirements for SHSS mesh.

The hot-spot stress is extrapolated at two reference points placed at 0.4t and 1.0t distance from the weld
toe tip, so in this case at 2.4 mm and 6 mm from weld toe. These reference points are used for the hot-spot type
a. For type b, the structural hot-spot stress is extrapolated at three reference points located at 4mm, 8mm and
12mm distance from the weld toe.
For the type of extrapolated stress, the graph in Figure 5.22 shows that, for an external applied pressure ∆σnom =
1MPa, the ∆σxx and the first principal stress ∆σ11 are coincident. For this reason the choice is indifferent.

Figure 5.22: ∆σxx and ∆σyy plotted in function of the distance from weld toe tip.
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The mesh of the model is reported in the following figures:

Figure 5.23: Mapped mesh for SHSS approach.

Figure 5.24: Mapped mesh for SHSS approach and reference points.

For an external applied pressure ∆σnom = 1MPa, the results of the tension at the reference points for hot
spot type a are:

∆σxx,0.4t = 0.99384MPa (5.7)

∆σxx,1.0t = 0.99285MPa (5.8)

∆σ11,0.4t = 0.99388MPa (5.9)

∆σ11,1.0t = 0.99285MPa (5.10)

The structural hot-spot stress type a is detected with the equation (1.2):

∆SHSSLSE,xx = 1,67 ·σxx,0.4·t −0.67 ·σxx,1.0·t = 1.67 ·0.99384−0.67 ·0.99285 = 0.99450MPa (5.11)

∆SHSSLSE,11 = 1,67 ·σ11,0.4·t −0.67 ·σ11,1.0·t = 1.67 ·0.99388−0.67 ·0.99285 = 1.03056MPa (5.12)

For an external applied pressure ∆σnom = 1MPa, the results of the tension at the reference points for hot
spot type b are:

∆σxx,4mm = 0.98176MPa (5.13)

∆σxx,8mm = 0.99855MPa (5.14)

∆σxx,12mm = 1.00006MPa (5.15)

∆σ11,4mm = 0.98176MPa (5.16)

∆σ11,8mm = 0.99855MPa (5.17)

∆σ11,12mm = 1.00006MPa (5.18)
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The structural hot-spot stress type b is detected with the following equation:

∆SHSSLSE = 3 ·∆σxx,4mm −3 ·∆σxx,8mm +∆σxx,12mm (5.19)

∆SHSSLSE,xx = 3 ·∆σxx,4mm −3 ·∆σxx,8mm +∆σxx,12mm = 3 ·0.98176−3 ·0.99855+1.00006 = 0.9497 (5.20)

∆SHSSLSE,11 = 3 ·∆σ11,4mm−3 ·∆σ11,8mm+∆σ11,12mm = 3 ·0.98176−3 ·0.99855+1.00006 = 0.9497 (5.21)

The results of the all ideal model are reported in the Appendix F.2.

Peak Stress Method (PSM) for ideal model with sharp V-notch

The fatigue assessment for this model is performed by the application of the PSM approach for 2D structure
with the adoption of four-node linear elements. The element PLANE 182 is chosen from the Ansys®APDL
library with Simple Enhanced Strain as Key Option 1 and Plane Strain as Key Option 3. The model is charac-
terised by a root with an initial opening length equal to 0.1 mm.
The weld toe is subjected to pure mode I because it is characterised by a V-notch opening angle 2α equal to
135°.On the other hand, the root is characterised by a V-notch opening angle equal to 0°, so it is subjected to
mode I and also mode II.
Under mode I and mode II, the PSM requirements are defined in the following table:

Mode I

Element type
Mesh

algorithm
(a/d)min 2α

Mesh Pattern

2α<90°

Mesh Pattern

2α>90°

Plane 182
KeyOpt:Simple

Enhanced Strain

+ Plane Strain

Free 3 0°<2α<135°
Four adjacent

elements share the
same node

Two adjacent
elements share the

same node

Mode II

Plane 182
KeyOpt:Simple

Enhanced Strain

+ Plane Strain

Free 14 0°<2α<135°
Four adjacent

elements share the
same node

Four adjacent
elements share the
same node up to

2α =102.5°

Table 5.9: Requirements for PSM.

The mode I PSM calibration constant is equal to K∗
FE = 1.38± 3%, instead for mode II, the calibration

constant is equal to K∗∗
FE = 3.38±3%.

The size of the element is obtained with the following procedure:

1. From literature the ratio (a/d)min is determined. In this case there are 2 ratio: the first one for mode I
and the second for mode II. The highest ratio is chosen;

2. The value of a is the reference dimension for selecting the maximal FE sizes d for PSM application and
is defined as the half of the thickness t;

3. Subsequently, the minimum element size is defined as follow:

dmin =
a

14
=

6
14

= 0.214mm (5.22)

4. The chosen dimension of elements is 0.2mm.

The λ1, e1, λ2 and e2 values are depended on the V-notch opening angle 2α , that is 135° for the weld toe
and 0° for the root:
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2α [°] λ1 (Mode I) e1 (Mode I) λ2 (Mode II) e2 (Mode II)

135° 0.674 0.117 / /
0° 0.5 0.133 0.5 0.341

Table 5.10: Value of λ1,e1,λ2 and e2 in function of the opening angle 2α .

The corrective stress factors for mode I and II are calculated with the equation (2.24) for the weld toe and
root. The results are reported in the Table 5.11

2α [°] fw1 fw2

135° 0627 /
0° 0.633 2.473

Table 5.11: Values of the corrective stress factors fw1 and fw2 in function of the opening angle 2α .

Finally, the mesh can be laid on the model and the results is displayed on the Figure 5.25:

Figure 5.25: Mesh conformation with global element size d = 0.2mm.

After the application of load and constraint, the system can be solved:

Solution→ Solve → Current LS

The results of the first principal stress is plotted in the Figure 5.26:

Figure 5.26: Plot of 1st principal stress for an external applied nominal stress range of 1MPa.

Two local reference systems (Figure 5.27) are created on the nodes that represent the weld toe and the apex
of the root. The WorkPlane is rotated by an angle equal to 112.5° for the toe and by an angle equal to 90° for
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the root. The procedure for the creation of the local reference systems is the same as described in the paragraph
3.1.2.

Figure 5.27: Local reference system ate the weld toe and root.

Thanks to the creation of the local reference system, the tension ∆σyy can be extracted:

∆σyy,weldtoe = 3.10342MPa (5.23)

∆σyy,root = 2.83454MPa (5.24)

∆τxy,root = 0.30412MPa (5.25)

The equivalent peak stresses are calculated by the formula (2.23):

∆σeq,peak,toe = fw1 ·σθθ ,θ=0,peak = 1.946MPa (5.26)

∆σeq,peak,root =
√

f 2
w1 ·σ2

θθ ,θ=0,peak + f 2
w2 · τ2

rθ ,θ=0,peak = 1.945MPa (5.27)

The results of the all ideal model are reported in the Appendix F.2.

Peak Stress Method (PSM) for ideal model with HFMI groove

The fatigue assessment for this model is performed by the application of Peak Stress Method in combination
with the SED approach with the adoption of four-node linear elements, considering only the weld toe.
First of all, the dimensions of the HFMI groove are taken from the reference [47] and are reported in the
following table:

depth [mm] ρHFMI [mm] width [mm] 2α[°]

0.3 3.31 4.48 135

Table 5.12: Dimension of HFMI groove.

The element PLANE 182 is chosen from the Ansys®APDL library with Simple Enhanced Strain as Key
Option 1 and Plane Strain as Key Option 3.
The SED approach for blunt notches is based on the creation of a structural volume at the radiused weld toe,
that can be rigidly rotated (Figure 4.20) to included the whole maximum principal stress, which is related to
the highest strain energy density.
The first step is to determinate the inclination angle Φ with respect to the blunt notch bisector of the most
stressed area that is indicated in red in Ansys®APDL.
To define the inclination angle, the model is meshed with a global element size equal to 0.5 mm and subse-
quently, two refinements with depth equal to 5 (see Figure 5.28 for the refine options) are applied to the arc that
represents the groove due to HFMI treatment ( Figure 5.29) with the following commands:

Preprocessor→Meshing→Modify Mesh→Refine At→Lines
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Figure 5.28: Options for the refinement.

Figure 5.29: Arc that represents the HFMI groove where the refinements are applied.

The meshed model is displayed on the following figure:

Figure 5.30: Mesh of the model to define the inclination angle.

The model is subjected to an external nominal stress ∆σnom = 1MPa applied on the main plate. Once the
model is properly meshed, loaded and constraint, the system can be solve:

Solution→Solve→Current LS

The highest stress is not located exactly around the blunt notch bisector, so it is matter of quantifying the
grades of rotation. The value of the angle is reported in the following equation and represents a clockwise
rotation about the global z-axis:

Φ = 2.411◦ (5.28)

The circular sector is created according to equations (4.5) and (4.6):

q =
2π −2α

π
= 2− 135

180
= 1.25 (5.29)
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r0 =
q−1

q
·ρHFMI =

1.25−1
1.25

·3.31 = 0.662mm (5.30)

R0 + r0 = 0.28+0.662 = 0.942mm (5.31)

Subsequently, the control volume to calculate the averaged Strain Energy Density (SED) is created. The
result is reported in the following figure:

Figure 5.31: Illustration of the control Area to calculate the SED.

To create the mesh of the model, the following procedure is executed:

1. The element inside the structural volume are characterised by a global element size equal to 0.01mm
with a free-mesh algorithm;

Figure 5.32: On the left, the mesh of the structural volume with global element size of 0.01. On the right, the proof that

the highest stress is contained inside the volume.

2. The other volume is meshed with a global element size equal to 0.1 mm with a free-mesh algorithm.

Figure 5.33: Mesh of the all structure.

Once the model is properly meshed, loaded and constraint, the system can be solved:

Solution→Solve→Current LS
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The averaged Strain Energy Density is defined as the energy contained inside the structural volume. The same
procedure described in the paragraph 4.2.2 is applied to detect the SED value.
The result of SED for the weld toe when the specimen is subjected to a nominal stress of 1 MPa is:

SENE = 1.84529 ·10−6MJ (5.32)

VOLU = 0.294241mm3 (5.33)

SED =
SENE

VOLU
=

1.84529 ·10−6

0.294241
= 6.2713 ·10−6 MJ

m3 (5.34)

From the SED, the equivalent peak stress is obtained with the following formula:

∆σeq,peak =

√

2 ·E ·SED

1−ν2 =

√

2 ·206000 ·6.2713 ·10−6

1−0.32 = 1.685MPa (5.35)

Subsequently, the equivalent peak stress at the weld root is detected with the same procedure used for the
ideal model with sharp V-notch. Thus, the results are:

∆σyy,root = 2.93004MPa (5.36)

∆τxy,root = 0.331525MPa (5.37)

The equivalent peak stresses are calculated by the formula (2.23):

∆σeq,peak,root =
√

f 2
w1 ·σ2

θθ ,θ=0,peak + f 2
w2 · τ2

rθ ,θ=0,peak = 2.028MPa (5.38)

The results of the all ideal model are reported in the Appendix F.2.

5.2.4 Ideal model with Misalignment and application of local approaches

The next step for the detection of the misalignment effect is to create a ideal model with angular misalignment,
detected in the paragraph 5.2.1. With the terminology ideal model means that it does not come from the cloud
of points.
For each ideal model defined in the paragraph 5.2.3, a new ideal model is built with the angular misalignment
and with a sharp V-notch at the weld toe. Furthermore, a ideal model with misalignment but with the groove
due to the HFMI treatment is created and the PSM approach combine with the SED is applied on it.
One example of the ideal model with a sharp V-notch is represented in the following figure. Due to the angular
misalignment, the cruciform joint is not characterised by a double symmetry as before:

Figure 5.34: Geometry of the ideal model with misalignment inside Ansys®APDL.

The modelling procedure in Ansys®APDL is briefly described:

• The ideal model is subjected to an axial load on the main plate as a constant pressure equal to p =
−∆σnom = 1MPa, on the Line L4 as Figure 5.35 shows;

• ux = 0 for the Line 13 (Figure 5.6);

• uy = 0 for the Line 14 and 5 (Figure 5.35);
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5.2 Procedure for the detection of misalignment effect

Figure 5.35: Boundary condition of the ideal model with misalignment inside Ansys®APDL.

Subsequently, each ideal model with angular misalignment is analysed and the Peak Stress Method (PSM),
Effective Notch Stress (ENS) approach and Structural Hot-Spot Stress (SHSS) approach are applied. In the
next paragraphs, the application of local approaches will be described and each procedure refers to the ideal
model with misalignment with the dimensions that comes from the points cloud called 355-WH-2, but it can be
similarly extended for the other joints. All procedures are implemented in MatLab to reduce the working time
and to parameterize the procedure. The idea of MatLab code is to create a .txt file with the APDL commands,
allowing the creation of the model, mesh and to extract the results from the model. All MatLab codes are
reported in the Appendix E.3.

Effective Notch Stress (ENS) approach

The fatigue assessment for this model is performed by the application of the Effective Notch Stress approach.
As before, two different analysis are done:

1. The first one is characterised by the using of 4-node linear element PLANE 182 with Simple Enhanced

Strain as Key Option 1 and Plane Strain as Key Option 3;

2. The second one is characterised by the using of 8-node quadratic element PLANE 183 with Quadrilateral

as Key Option 1, Plane Strain as Key Option 2 and Pure Displacement as Key Option 6.

To apply this approach, the IIW Recommendations for Fatigue Assessment by Notch Stress Analysis for

welded Structures [2] is followed and the same rules of ideal model (see paragraph 5.2.3) are followed . As
before, for the worst case and practical applications, the actual radius ρ is assumed equal to zero. Thus, the
ENS approach for fatigue assessment is reduced to ρ f = 1mm at weld toe or root.
To define the global element size of the model, the same rules used for the ideal model, are followed in this
case.
The ideal model for the application of ENS approach is displayed on the following figure:

Figure 5.36: Ideal model with angular misalignment for the application of ENS approach.
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Chapter 5: Assessment of misalignment effect of cruciform joints in HFMI condition

For the analysis with the element PLANE 182, the global element size is equal to 0.1 mm, according to
the IIW Recommendations [2]. To obtain the correct number of elements along the roots and the weld toe,
two refinements are applied with depth of two elements. The mesh of the model is displayed on the following
figure:

Figure 5.37: Mesh of ideal model with misalignment with element PLANE 182.

Once the model is properly meshed, loaded and constraint, the system can be solved:

Solution→Solve→Current LS

The results of the first principal stress can be observed in the Figure 5.38, for an external applied pressure
equal to 1 MPa:

Figure 5.38: Plot of the first principal stress of ideal model with angular misalignment with element PLANE 182.

The maximum first principal stress at the weld toe and root are:

∆σ11,Toe,max = 6.4756MPa (5.39)

∆σ11,Root,max = 3.9549MPa (5.40)

For the analysis with the element PLANE 183, the global element size is equal to 0.2 mm, according to the
IIW Recommendations [2]. To obtain the correct number of elements along the roots and the weld toe, two
refinements are applied with depth of two elements. The mesh of the model is displayed on the following
figure:
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5.2 Procedure for the detection of misalignment effect

Figure 5.39: Mesh of ideal model with angular misalignment with element PLANE 183.

Once the model is properly meshed, loaded and constraint, the system can be solved:

Solution→Solve→Current LS

The results of the first principal stress can be observed in the Figure 5.40, for an external applied pressure
equal to 1 MPa:

Figure 5.40: Plot of the first principal stress of ideal model with angular misalignment with element PLANE 183.

The maximum first principal stress at the weld toe and root are:

∆σ11,Toe,max = 6.4557MPa (5.41)

∆σ11,Root,max = 3.9365MPa (5.42)

The results of the all ideal model with angular misalignment are reported in the Appendix F.3.

Structural Hot-Spot Stress (SHSS) approach

The fatigue assessment for this model is performed by the application of SHSS approach, following the IIW
recommendation [1] to obtain the hot-spot stress. The hot-spot stress value is detected with the employment
of fine mesh, as Figure 1.4 shows, and the hot-spot stress is detected with the formulas for hot-spot type a and
also type b.
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Chapter 5: Assessment of misalignment effect of cruciform joints in HFMI condition

The model is divided in a series of areas to allow the application of Mapped-mesh algorithm; indeed each areas
must be characterised by a number of side between 3 and 4 to obtain a Mapped-mesh (see Figure 5.41). The
four-node linear element PLANE 182 is chosen in Ansys®APDL with Simple Enhanced Strain as Key Option
1 and Plane Strain as Key Option 3.
The all informations about the mesh is reported in the following table:

Element type
Mesh

algorithm

Main plate

thickness t

Max element

size

Adopted element

size

Plane 182
KeyOpt:Simple

Enhanced Strain

+ Plane Strain

Mapped 6 mm
0.4 · t = 0.4 ·6 =

2.4mm
0.4 mm

Table 5.13: Requirements for SHSS mesh.

Figure 5.41: Subdivision of area for Mapped mesh.

The hot-spot stress is extrapolated at two reference points placed at 0.4t and 1.0t distance from the weld
toe tip, so in this case at 2.4 mm and 6 mm from weld toe. These reference points are used for the hot-spot type
a. For type b, the structural hot-spot stress is extrapolated at three reference points located at 4mm, 8mm and
12mm distance from the weld toe.
For the type of extrapolated stress, the graph in Figure 5.42 shows that, for an external applied pressure ∆σnom =
1MPa, the ∆σxx and the first principal stress ∆σ11 are coincident. For this reason the choice is indifferent.

Figure 5.42: ∆σxx and ∆σyy plotted in function of the distance from weld toe tip.
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5.2 Procedure for the detection of misalignment effect

The mesh of the model is reported in the following figures:

Figure 5.43: Mapped mesh for SHSS approach.

Figure 5.44: Mapped mesh for SHSS approach and reference points.

For an external applied pressure ∆σnom = 1MPa, the results of the tension at the reference points for hot
spot type a are:

∆σxx,0.4t = 3.17274MPa (5.43)

∆σxx,1.0t = 3.09208MPa (5.44)

∆σ11,0.4t = 3.17424MPa (5.45)

∆σ11,1.0t = 3.09396MPa (5.46)

The structural hot-spot stress type a is detected with the equation (1.2):

∆SHSSLSE,xx = 1,67 ·σxx,0.4·t −0.67 ·σxx,1.0·t = 1.67 ·3.17274−0.67 ·3.09208 = 3.2268MPa (5.47)

∆SHSSLSE,11 = 1,67 ·σ11,0.4·t −0.67 ·σ11,1.0·t = 1.67 ·3.17424−0.67 ·3.09396 = 3.2280MPa (5.48)

For an external applied pressure ∆σnom = 1MPa, the results of the tension at the reference points for hot
spot type b are:

∆σxx,4mm = 3.12408MPa (5.49)

∆σxx,8mm = 3.05216MPa (5.50)

∆σxx,12mm = 2.9612MPa (5.51)

∆σ11,4mm = 3.12599MPa (5.52)

∆σ11,8mm = 3.05398MPa (5.53)

∆σ11,12mm = 2.96265MPa (5.54)

The structural hot-spot stress type b is detected with the following:

∆SHSSLSE = 3 ·∆σxx,4mm −3 ·∆σxx,8mm +∆σxx,12mm (5.55)
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∆SHSSLSE,xx = 3 ·∆σxx,4mm −3 ·∆σxx,8mm +∆σxx,12mm = 3 ·0.98176−3 ·0.99855+1.00006 = 0.9497 (5.56)

∆SHSSLSE,11 = 3 ·∆σ11,4mm−3 ·∆σ11,8mm+∆σ11,12mm = 3 ·0.98176−3 ·0.99855+1.00006 = 0.9497 (5.57)

The results of the all ideal model with angular misalignment are reported in the Appendix F.3.

Peak Stress Method (PSM) for ideal model with angular misalignment with sharp V-notch

The fatigue assessment for this model is performed by the application of the PSM approach for 2D structure
with the adoption of four-node linear elements. The element PLANE 182 is chosen from the Ansys®APDL
library with Simple Enhanced Strain as Key Option 1 and Plane Strain as Key Option 3. The model is charac-
terised by a root with an initial opening length equal to 0.1 mm.
The weld toe is subjected to pure mode I because it is characterised by a V-notch opening angle 2α equal to
135°. On the other hand, the root is characterised by a V-notch opening angle equal to 0°, so it is subjected to
mode I and also mode II.
Under mode I and mode II, the PSM requirements are defined in the following table:

Mode I

Element type
Mesh

algorithm
(a/d)min 2α

Mesh Pattern

2α<90°

Mesh Pattern

2α>90°

Plane 182
KeyOpt:Simple

Enhanced Strain

+ Plane Strain

Free 3 0°<2α<135°
Four adjacent

elements share the
same node

Two adjacent
elements share the

same node

Mode II

Plane 182
KeyOpt:Simple

Enhanced Strain

+ Plane Strain

Free 14 0°<2α<135°
Four adjacent

elements share the
same node

Four adjacent
elements share the
same node up to

2α =102.5°

Table 5.14: Requirements for PSM.

The mode I PSM calibration constant is equal to K∗
FE = 1.38± 3%, instead for mode II, the calibration

constant is equal to K∗∗
FE = 3.38±3%.

The size of the element is obtained with the following procedure:

1. From literature the ratio (a/d)min is determined. In this case there are 2 ratio: the first one for mode I
and the second for mode II. The highest ratio is chosen;

2. The value of a is the reference dimension for selecting the maximal FE sizes d for PSM application and
is defined as the half of the thickness t;

3. Subsequently, the minimum element size is defined as follow:

dmin =
a

14
=

6
14

= 0.214mm (5.58)

4. The chosen dimension of elements is 0.2mm.

The λ1, e1, λ2 and e2 values are depended on the V-notch opening angle 2α , that is 135° for the weld toe
and 0° for the root:
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5.2 Procedure for the detection of misalignment effect

2α [°] λ1 (Mode I) e1 (Mode I) λ2 (Mode II) e2 (Mode II)

135° 0.674 0.117 / /
0° 0.5 0.133 0.5 0.341

Table 5.15: Value of λ1,e1,λ2 and e2 in function of the opening angle 2α .

The corrective stress factors for mode I and II are calculated with the equation (2.24) for the weld toe and
root. The results are reported in the Table 5.16.

2α [°] fw1 fw2

135° 0.627 /
0° 0.633 2.473

Table 5.16: Values of the corrective stress factors fw1 and fw2 in function of the opening angle 2α .

Finally, the mesh can be laid on the model and the results is displayed on the Figure 5.45:

Figure 5.45: Mesh conformation with global element size d = 0.2mm.

After the application of load and constraint, the system can be solved:

Solution→ Solve → Current LS

The results of the first principal stress is plotted in the Figure 5.46:
Two local reference systems (Figure 5.47) are created on the nodes that represent the weld toe and the apex

of the root. The WorkPlane is rotated by an angle equal to 112.5° for the toe and by an angle equal to 90° for
the root. The procedure for the creation of the local reference systems is the same as described in the paragraph
3.1.2.

Thanks to the creation of the local reference system, the tension ∆σyy can be extracted:

∆σyy,weldtoe = 7.7474MPa (5.59)

∆σyy,root = 3.5517MPa (5.60)

∆τxy,root = 0.02118MPa (5.61)

The equivalent peak stresses are calculated by the formula (2.23:

∆σeq,peak,toe = fw1 ·σθθ ,θ=0,peak = 4.854MPa (5.62)

∆σeq,peak,root =
√

f 2
w1 ·σ2

θθ ,θ=0,peak + f 2
w2 · τ2

rθ ,θ=0,peak = 2.249MPa (5.63)

The results of the all ideal model with angular misalignment are reported in the Appendix F.3.

261



Chapter 5: Assessment of misalignment effect of cruciform joints in HFMI condition

Figure 5.46: Plot of 1st principal stress for an external applied nominal stress range of 1MPa.

Figure 5.47: Local reference system at the weld toe and root.

Peak Stress Method (PSM) for ideal model with angular misalignment with HFMI groove

The fatigue assessment for this model is performed by the application of Peak Stress Method in combination
with the SED approach with the adoption of four-node linear elements, considering only the weld toe.
First of all, the dimensions of the HFMI groove are taken from the reference [47] and are reported in the
following table:

depth [mm] ρHFMI [mm] width [mm] 2α[°]

0.3 3.31 4.649 135

Table 5.17: Dimension of HFMI groove.

The element PLANE 182 is chosen from the Ansys®APDL library with Simple Enhanced Strain as Key
Option 1 and Plane Strain as Key Option 3.
The SED approach for blunt notches is based on the creation of a structural volume at the radiused weld toe,
that can be rigidly rotated (Figure 4.20) to included the whole maximum principal stress, which is related to
the highest strain energy density.
The first step is to determinate the inclination angle Φ with respect to the blunt notch bisector of the most
stressed area that is indicated in red in Ansys®APDL.
To define the inclination angle, the model is meshed with a global element size equal to 0.5 mm and subse-
quently, two refinements with depth equal to 5 (see Figure 5.48 for the refine options) are applied to the arc that
represents the groove due to HFMI treatment(Figure 5.49) with the following commands:

Preprocessor→Meshing→Modify Mesh→Refine At→Lines
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5.2 Procedure for the detection of misalignment effect

Figure 5.48: Options for the refinement.

Figure 5.49: Arc that represents the HFMI groove where the refinements are applied.

The meshed model is displayed on the following figure:

Figure 5.50: Mesh of the model to define the inclination angle.

The model is subjected to an external nominal stress ∆σnom = 1MPa applied on the main plate. Once the
model is properly meshed, loaded and constraint, the system can be solve:

Solution→Solve→Current LS

The highest stress is not located exactly around the blunt notch bisector, so it is matter of quantifying the
grades of rotation. The value of the angle is reported in the following equation and represents a clockwise
rotation about the global z-axis:

Φ = 18.2605◦ (5.64)

The circular sector is created according to equations (4.5) and (4.6):

q =
2π −2α

π
= 2− 135

180
= 1.2582 (5.65)
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r0 =
q−1

q
·ρHFMI =

1.25−1
1.25

·3.31 = 0.6793mm (5.66)

R0 + r0 = 0.28+0.6793 = 0.9593mm (5.67)

Subsequently, the control volume to calculate the averaged Strain Energy Density (SED) is created. The
result is reported in the following figure:

Figure 5.51: Illustration of the control Area to calculate the SED.

To create the mesh of the model, the following procedure is executed:

1. The element inside the structural volume are characterised by a global element size equal to 0.01mm
with a free-mesh algorithm;

Figure 5.52: On the left, the mesh of the structural volume with global element size of 0.01. On the right, the proof that

the highest stress is contained inside the volume.

2. The other volume is meshed with a global element size equal to 0.1 mm with a free-mesh algorithm.

Figure 5.53: Mesh of the all structure.

Once the model is properly meshed, loaded and constraint, the system can be solved:

Solution→Solve→Current LS
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5.2 Procedure for the detection of misalignment effect

The averaged Strain Energy Density is defined as the energy contained inside the structural volume. The same
procedure described in the paragraph 4.2.2 is applied to detect the SED value.
The result of SED for the weld toe when the specimen is subjected to a nominal stress of 1 MPa is:

SENE = 1.45997 ·10−5MJ (5.68)

VOLU = 0.298236mm3 (5.69)

SED =
SENE

VOLU
=

1.45997 ·10−5

0.298236
= 4.8954 ·10−5 MJ

m3 (5.70)

From the SED, the equivalent peak stress is obtained with the following formula:

∆σeq,peak =

√

2 ·E ·SED

1−ν2 =

√

2 ·206000 ·4.8954 ·10−5

1−0.32 = 4.7078MPa (5.71)

Subsequently, the equivalent peak stress at the weld root is detected with the same procedure used for the
ideal model with angular misalignment with sharp V-notch. Thus, the results are:

∆σyy,root = 3.719MPa (5.72)

∆τxy,root = 0.01747MPa (5.73)

The equivalent peak stresses are calculated by the formula (2.23):

∆σeq,peak,root =
√

f 2
w1 ·σ2

θθ ,θ=0,peak + f 2
w2 · τ2

rθ ,θ=0,peak = 2.354MPa (5.74)

The results of the all ideal model with angular misalignment are reported in the Appendix F.3.

5.2.5 Definition of several ratio to understand the misalignment effect

After the FE analysis of the ideal model with and without angular misalignment, different ratios are defined
to detect the misalignment effect and to understand the advantages that came from the HFMI post-welded
treatment. These ratios are expressed in terms of equivalent peak stress, hot-spot stress and effective notch
stress.
The ratios are:

1. The first factor is the ratio between the maximum equivalent peak stress between the root and the weld
toe in the ideal model with angular misalignment and the maximum equivalent peak stress between the
root and the weld toe in the ideal model without angular misalignment:

Factor1 =
∆σmax,eq,peak,between−root−and−toe−with−Misalignment

∆σmax,eq,peak,between−root−and−toe−without−Misalignment

(5.75)

The results are reported in the following table:
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Name of .txt file
∆σmax,eq,peak,between−root

and−toe−with−Misalignment

[MPa]

∆σmax,eq,peak,between−root

and−toe−without−Misalignment

[MPa]

F actor1

355-WH-2 4.708 2.028 2.322
355-WH-3 4.434 1.831 2.422
355-WH-4 4.216 2.080 2.027
355-WH-5 4.122 2.027 2.033
355-WH-8 3.793 1.821 2.082
355-WH-11 3.732 1.971 1.894
355-WH-14 4.569 1.932 2.365
355-WH-16 4.013 1.964 2.044
355-WH-17 3.950 1.964 2.011
355-WH-18 4.043 1.817 2.225
355-WH-20 3.836 1.974 1.944
355-WH-21 3.858 1.974 1.955
355-WH-22 3.801 1.792 2.121

Table 5.18: Results of factor 1.

2. The second factor is the ratio between the effective notch stress, calculated with the elements PLANE
182, at the weld toe in the ideal model with angular misalignment and the effective notch stress, calcu-
lated with the elements PLANE 182, at the weld toe in the ideal model without angular misalignment:

Factor2 =
∆σ11,max,toe−with−Misalignment,PLANE182

∆σ11,max,toe−without−Misalignment,PLANE182
(5.76)

The results are reported in the following table:

Name of .txt file
∆σ11,max,toe−with−Misalignment,

PLANE182

[MPa]

∆σ11,max,toe−without−Misalignment,

PLANE182

[MPa]

F actor2

355-WH-2 6.476 2.778 2.331
355-WH-3 6.000 2.576 2.329
355-WH-4 5.975 2.840 2.104
355-WH-5 5.776 2.777 2.080
355-WH-8 5.239 2.576 2.034
355-WH-11 5.236 2.664 1.966
355-WH-14 6.209 2.642 2.350
355-WH-16 5.561 2.653 2.096
355-WH-17 5.495 2.653 2.071
355-WH-18 5.462 2.538 2.152
355-WH-20 5.393 2.719 1.984
355-WH-21 5.427 2.719 1.996
355-WH-22 5.216 2.538 2.055

Table 5.19: Results of factor 2.

3. The third factor is the ratio between the effective notch stress, calculated with the elements PLANE 183,
at the weld toe in the ideal model with angular misalignment and the effective notch stress, calculated
with the elements PLANE 183, at the weld toe in the ideal model without angular misalignment:

Factor3 =
∆σ11,max,toewithMisalignment,PLANE183

∆σ11,max,toewithoutMisalignment,PLANE183
(5.77)

The results are reported in the following table:
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Name of .txt file
∆σ11,max,toe−with−Misalignment,

PLANE183

[MPa]

∆σ11,max,toe−without−Misalignment,

PLANE182

[MPa]

F actor3

355-WH-2 6.456 2.762 2.338
355-WH-3 5.979 2.564 2.332
355-WH-4 5.953 2.826 2.106
355-WH-5 5.755 2.761 2.085
355-WH-8 5.224 2.565 2.037

355-WH-11 5.221 2.650 1.970
355-WH-14 6.190 2.629 2.355
355-WH-16 5.542 2.640 2.099
355-WH-17 5.475 2.640 2.074
355-WH-18 5.447 2.527 2.155
355-WH-20 5.373 2.703 1.988
355-WH-21 5.409 2.703 2.001
355-WH-22 5.193 2.527 2.055

Table 5.20: Results of factor 3.

4. The fourth factor is the ratio between the hot-spot stress type a of the ideal model with angular misalign-
ment and the hot-spot stress type a of the ideal model without angular misalignment:

Factor4 =
SHSSLSE,withMisalignment,typea

SHSSLSE,withoutMisalignment,typea

(5.78)

The results are reported in the following table:

Name of .txt file
SHSSLSE,with−Misalignment,type−A

[MPa]

SHSSLSE,without−Misalignment,type−A

[MPa]
F actor4

355-WH-2 3.227 0.994 3.245
355-WH-3 3.064 0.992 3.088
355-WH-4 2.892 0.990 2.920
355-WH-5 2.814 0.994 2.829
355-WH-8 2.614 0.992 2.635

355-WH-11 2.562 0.993 2.580
355-WH-14 3.149 0.993 3.171
355-WH-16 2.759 0.993 2.778
355-WH-17 2.720 0.993 2.739
355-WH-18 2.769 0.992 2.793
355-WH-20 2.622 0.994 2.639
355-WH-21 2.644 0.994 2.660
355-WH-22 2.620 0.992 2.642

Table 5.21: Results of factor 4.

5. The fifth factor is the ratio between the maximum first principal stress at the weld toe of the model
obtained from the cloud of point and the effective notch stress, calculated with the elements PLANE
182, at the weld toe in the ideal model without angular misalignment:

Factor4 =
∆σ11,max,toe, f rom−cloud−point−with−Misalignment

∆σ11,max,toe−without−Misalignment,PLANE182
(5.79)

The results are reported in the following table:
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Name of .txt file
∆σ11,max, f rom−cloud−point

with−Misalignment

[MPa]

∆σ11,max, f rom−cloud−point

without−Misalignment,PLANE182

[MPa]

F actor5

355-WH-2 5.7937 2.778 2.086
355-WH-3 5.7993 2.576 2.251
355-WH-4 5.8974 2.840 2.077
355-WH-5 4.5343 2.777 1.633
355-WH-8 4.9200 2.576 1.910
355-WH-11 4.8354 2.664 1.815
355-WH-14 5.6188 2.642 2.127
355-WH-16 5.4915 2.653 2.070
355-WH-17 5.0055 2.653 1.887
355-WH-18 5.0221 2.538 1.979
355-WH-20 4.6786 2.719 1.721
355-WH-21 4.5449 2.719 1.672
355-WH-22 4.7214 2.538 1.860

Table 5.22: Results of factor 5.

6. The sixth factor is the ratio between the equivalent peak stress at the weld toe in the ideal model with
angular misalignment and with sharp V-notch, and the equivalent peak stress at the weld toe in the ideal
model with angular misalignment and with the HFMI groove:

Factor4 =
∆σ11,maxtoe, f romcloud pointwithMisalignment

∆σ11,max,toewithoutMisalignment,PLANE182
(5.80)

The results are reported in the following table:

Name of .txt file
∆σeq,peak,toe−with−Misalignment

sharp−V−notch

[MPa]

∆σeq,peak,toe−with−Misalignment

HFMI−groove

[MPa]

F actor6

355-WH-2 4.854 4.708 1.031
355-WH-3 4.573 4.434 1.031
355-WH-4 4.512 4.216 1.070
355-WH-5 4.321 4.122 1.048
355-WH-8 3.963 3.793 1.045
355-WH-11 3.940 3.732 1.056
355-WH-14 4.672 4.569 1.023
355-WH-16 4.174 4.013 1.040
355-WH-17 4.124 3.950 1.044
355-WH-18 4.145 4.043 1.025
355-WH-20 4.017 3.836 1.047
355-WH-21 4.041 3.858 1.047
355-WH-22 3.913 3.801 1.029

Table 5.23: Results of factor 6.

5.2.6 Definition of kmis factor for the detection of misalignment effect

After the definition of the different ratios, the aim is to obtain a kmis factor to detect the effect of the axial e and
angular misalignment α .
The procedure to define the expression of the kmis factor consists to hypothesize some expression of the factor
that consider the misalignment effect. These expression will be function of the axial and angular misalignment
and the thickness t. Furthermore, these formula will be characterised by two constants β and γ that will be
systematically changed to determine which values would result in minimum standard deviation σy for the used
data.
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The procedure to obtain the correct definition of the kmis factor is characterised by the following steps:

1. Firstly, the experimental data used for the evaluation of kmis factor are multiplied for a stress intensity
factors calculated for each specimen from FE analysis. These factors are obtained from the preliminary
analysis (see paragraph 5.2.2, in this thesis it is called actual model), from the application of the Effective
Notch Stress method and PSM approach on the ideal model with angular misalignment (see paragraph
5.2.4). Subsequently, these values are multiplied also for the kmis factor that consider the misalignment
effect:

σmax,mis = σmax ·Ks,actual/ENS/PSM · kmis (5.81)

2. The angular misalignment is converted in axial misalignment with the following formula:

enew =
l

2
· tan(αtot) (5.82)

where l is the total length of the sample and αtot is the sum of the right and left angular misalignment.
The results are reported in the following table:

Name of .txt file σmax[MPa] σmin[MPa] ∆σ[MPa]
Nf

[cycles]

t

[mm]
αtot [°] e [mm]

355-WH-2 258.33 -116.67 375.00 2 799 750 6 2.641 13.837
355-WH-3 258.33 -116.67 375.00 3 387 000 6 2.452 12.846
355-WH-5 233.33 -100.00 333.33 3 410 280 6 2.137 11.194
355-WH-8 200.00 -83.33 283.33 8 750 324 6 1.896 9.932

355-WH-14 175.00 -75.00 250.00 6 673 500 6 2.538 13.296
355-WH-16 175.00 -75.00 250.00 7 085 250 6 2.068 10.833
355-WH-17 200.00 -83.33 283.33 4 420 500 6 2.034 10.653
355-WH-18 233.33 -100.00 333.33 3 607 500 6 2.102 11.014
355-WH-20 233.33 -100.00 333.33 3 261 000 6 1.931 10.113
355-WH-21 200.00 -83.33 283.33 4 446 750 6 1.965 10.293
355-WH-22 258.33 -116.67 375.00 2 341 500 6 1.948 10.203

Table 5.24: Results of axial misalignment from angular misalignment with the application of equation (5.82).

3. The expressions use for the detection of kmis factor are the following:

kmis = γ ·
(

1+β · enew

t

)

(5.83)

kmis = γ ·
(

1−β · enew

t

)

(5.84)

kmis =
γ

1+β · enew
t

(5.85)

kmis = γ1−β · enew
t (5.86)

kmis = γ1+β · enew
t (5.87)

kmis = γ
1

1−β · enew
t (5.88)

kmis = γ
1

1+β · enew
t (5.89)

kmis = γβ · enew
t (5.90)

4. The two constants β and γ are systematically changed to determine which values would result in a
minimum standard deviation σy for the data. The range of variation for both is between 0.1 and 10 with
step-size equal to 0.05;

5. For each expression of the kmis factor, the minimum standard deviation σy, the corresponding Tσ and
slope B are extracted. The results are reported in the following subsection and two statistical analysis are
conducted: the first one with a free slope; the second with a fixed slope equal to 5, that is the typical value
of the design curve for the HFMI joints. The analysis is done through a MatLab code that is reported in
the Appendix E.4
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Results of statistical analysis with stress intensity factor from the actual model

The results of statistical analysis with the stress intensity factor from the actual model with a free slope are
reported in the following table:

σy β γ Formula of kmis Tσ B (slope)

0.16662 0.1 0.7 γ ·
(

1+β · enew
t

)

7.7736 1.0892

0.15834 0.2 1.05 γ ·
(

1−β · enew
t

)

3.4863 1.6997

0.1587 0.8 1.8 γ
1+β · enew

t
3.5805 1.668

0.15849 0.6 1.7 γ1−β · enew
t 3.5351 1.6826

0.15849 6.2 0.95 γ1+β · enew
t 3.5357 1.6824

0.12523 0.15 0.6 γ
1

1−β · enew
t 4.3444 1.1429

0.15884 0.4 10 γ
1

1+β · enew
t 3.6463 1.646

0.15849 6.2 0.95 γβ · enew
t 3.5357 1.6824

Table 5.25: Results of statistical analysis with free slope and the stress intensity factor obtained from actual model.

As the Table 5.25 shows, the following formula is characterised by the minimum σy standard deviation

kmis = γ
1

1−β · enew
t (5.91)

with β = 0.15 and γ = 0.6.
Subsequently, the different couples of β and γ values are plotted on 3D graph in function of the standard
deviation σy. The graph is reported in the following figure:

Figure 5.54: 3D surface where on the x and y axes are plotted the values of β and γ , along the z-axis is plotted the

standard deviation σy. The red dot define the minimum value of the standard deviation.
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5.2 Procedure for the detection of misalignment effect

As Figure 5.54 shows, the minimum standard deviation is obtained for β and γ values between 0.05 and 1.
For this reason, another statistical analysis is done with a decrease of the definition interval of the two constant
and also with a reduction of the step size, as Figure 5.55 shows.

Figure 5.55: Definition of the two constants in MatLab.

The results are:

• σy = 0.12523;

• β = 0.221;

• γ = 0.653;

• Tσ = 4.3027;

• m = 1.1505;

Figure 5.56: 3D surface where on the x and y axes are plotted the values of β and γ , along the z-axis is plotted the

standard deviation σy. The red dot define the minimum value of the standard deviation.

The fatigue design curve for β = 0.221 and γ = 0.653 with a free slope is represented in the following
figure:
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Figure 5.57: Fatigue design curve for β = 0.221 and γ = 0.653.

Subsequently, the same procedure is applied in the case of fixed slope m = 5. The results of statistical
analysis with the stress intensity factor from the actual model with a fixed slope are reported in the following
table:

σy β γ Formula of kmis Tσ B (slope)

0.36503 0.1 5.35 γ ·
(

1+β · enew
t

)

2.661 5

0.25609 0.25 2.15 γ ·
(

1−β · enew
t

)

1.987 5

0.25608 2.0 6.65 γ
1+β · enew

t
1.9869 5

0.25427 0.25 5.25 γ1−β · enew
t 1.9773 5

0.25427 2.25 0.85 γ1+β · enew
t 1.9773 5

0.25033 0.35 0.9 γ
1

1−β · enew
t 1.9565 5

0.2637 0.5 10 γ
1

1+β · enew
t 2.0279 5

0.25427 2.55 0.85 γβ · enew
t 1.9773 5

Table 5.26: Results of statistical analysis with fixed slope and the stress intensity factor obtained from actual model.

As the Table 5.26 shows, the following formula is characterised by the minimum σy standard deviation

kmis = γ
1

1−β · enew
t (5.92)

with β = 0.35 and γ = 0.9.
Subsequently, the different couples of β and γ values are plotted on 3D graph in function of the standard
deviation σy. The graph is reported in the following figure:
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5.2 Procedure for the detection of misalignment effect

Figure 5.58: 3D surface where on the x and y axes are plotted the values of β and γ , along the z-axis is plotted the

standard deviation σy. The red dot define the minimum value of the standard deviation.

As Figure 5.58 shows, the minimum standard deviation is obtained for β and γ values between 0.05 and 1
for β and for γ . For this reason, another statistical analysis is done with a decrease of the definition interval of
the two constant and also with a reduction of the step size, as Figure 5.59 shows.

Figure 5.59: Definition of the two constants in MatLab.

The results are:

• σy = 0.25018;

• β = 0.345;

• γ = 0.895;

• Tσ = 1.9557;

• m = 5;

Figure 5.60: 3D surface where on the x and y axes are plotted the values of β and γ , along the z-axis is plotted the

standard deviation σy. The red dot define the minimum value of the standard deviation.
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The fatigue design curve for β = 0.345 and γ = 0.895 with a free slope is represented in the following
figure:

Figure 5.61: Fatigue design curve for β = 0.345 and γ = 0.895.

Results of statistical analysis with stress intensity factor from ENS approach

The results of statistical analysis with the stress intensity factor from the application of the ENS approach on
the ideal model with angular misalignment with a free slope are reported in the following table:

σy β γ Formula of kmis Tσ B (slope)

0.12094 0.1 0.8 γ ·
(

1+β · enew
t

)

2.5171 1.7564

0.089685 0.2 9.1 γ ·
(

1−β · enew
t

)

1.608 2.5313

0.090314 0.75 4.35 γ
1+β · enew

t
1.6218 2.504

0.08984 0.75 1.5 γ1−β · enew
t 1.6152 2.5118

0.08984 0.75 1.5 γ1+β · enew
t 2.0618 2.5112

0.088659 0.3 0.85 γ
1

1−β · enew
t 1.5972 2.5383

0.090607 0.4 10 γ
1

1+β · enew
t 1.6285 2.4909

0.08984 0.85 0.7 γβ · enew
t 1.6154 2.5112

Table 5.27: Results of statistical analysis with free slope and the stress intensity factor obtained from the application of

ENS approach on the ideal model with angular misalignment.

As the Table 5.27 shows, the following formula is characterised by the minimum σy standard deviation

kmis = γ
1

1−β · enew
t (5.93)

with β = 0.3 and γ = 0.85.

274



5.2 Procedure for the detection of misalignment effect

Subsequently, the different couples of β and γ values are plotted on 3D graph in function of the standard
deviation σy. The graph is reported in the following figure:

Figure 5.62: 3D surface where on the x and y axes are plotted the values of β and γ , along the z-axis is plotted the

standard deviation σy. The red dot define the minimum value of the standard deviation.

As Figure 5.62 shows, the minimum standard deviation is obtained for β and γ values between 0.05 and 1
for β and for γ . For this reason, another statistical analysis is done with a decrease of the definition interval of
the two constant and also with a reduction of the step size, as Figure 5.63 shows.

Figure 5.63: Definition of the two constants in MatLab.

The results are:

• σy = 0.067973;

• β = 0.599;

• γ = 0.998;

• Tσ = 1.6768;

• m = 1.7628;
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Chapter 5: Assessment of misalignment effect of cruciform joints in HFMI condition

Figure 5.64: 3D surface where on the x and y axes are plotted the values of β and γ , along the z-axis is plotted the

standard deviation σy. The red dot define the minimum value of the standard deviation.

The fatigue design curve for β = 0.599 and γ = 0.998 with a free slope is represented in the following
figure:

Figure 5.65: Fatigue design curve for β = 0.599 and γ = 0.998.

Subsequently, the same procedure is applied in the case of fixed slope m = 5. The results of statistical anal-
ysis with the stress intensity factor from the application of ENS on the ideal model with angular misalignment
with a fixed slope are reported in the following table:
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5.2 Procedure for the detection of misalignment effect

σy β γ Formula of kmis Tσ B (slope)

0.29553 0.1 7.55 γ ·
(

1+β · enew
t

)

2.1086 5

0.18597 0.2 6.45 γ ·
(

1−β · enew
t

)

1.6464 5

0.18764 1.1 8.2 γ
1+β · enew

t
1.6538 5

0.18651 0.75 1.6 γ1−β · enew
t 1.6488 5

0.18651 6.85 0.95 γ1+β · enew
t 1.6488 5

0.18415 0.25 0.7 γ
1

1−β · enew
t 1.6384 5

0.19047 0.5 10 γ
1

1+β · enew
t 1.6664 5

0.18651 6.85 0.9 γβ · enew
t 1.6464 5

Table 5.28: Results of statistical analysis with fixed slope and the stress intensity factor obtained from the application of

ENS approach on the ideal model with angular misalignment.

As the Table 5.28 shows, the following formula is characterised by the minimum σy standard deviation

kmis = γ
1

1−β · enew
t (5.94)

with β = 0.25 and γ = 0.7.
Subsequently, the different couples of β and γ values are plotted on 3D graph in function of the standard
deviation σy. The graph is reported in the following figure:

Figure 5.66: 3D surface where on the x and y axes are plotted the values of β and γ , along the z-axis is plotted the

standard deviation σy. The red dot define the minimum value of the standard deviation.

As Figure 5.66 shows, the minimum standard deviation is obtained for β and γ values between 0.05 and 1
for β and for γ . For this reason, another statistical analysis is done with a decrease of the definition interval of
the two constant and also with a reduction of the step size, as Figure 5.67 shows.

Figure 5.67: Definition of the two constants in MatLab.

The results are:

• σy = 0.18181;

• β = 0.391;

• γ = 0.966;
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• Tσ = 1.6282;

• m = 5;

Figure 5.68: 3D surface where on the x and y axes are plotted the values of β and γ , along the z-axis is plotted the

standard deviation σy. The red dot define the minimum value of the standard deviation.

The fatigue design curve for β = 0.391 and γ = 0.966 with a free slope is represented in the following
figure:

Figure 5.69: Fatigue design curve for β = 0.391 and γ = 0.966.

Results of statistical analysis with stress intensity factor from PSM approach

The results of statistical analysis with the stress intensity factor from the application of the PSM approach on
the ideal model with angular misalignment with a free slope are reported in the following table:
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σy β γ Formula of kmis Tσ B (slope)

0.12554 0.1 1.5 γ ·
(

1+β · enew
t

)

2.7576 1.6591

0.092684 0.2 4.7 γ ·
(

1−β · enew
t

)

1.652 2.4752

0.093498 0.95 7.15 γ
1+β · enew

t
1.6638 2.4619

0.093014 6.9 1.05 γ1−β · enew
t 1.6558 2.4725

0.093014 3.2 0.9 γ1+β · enew
t 1.6557 2.4728

0.092359 0.25 0.7 γ
1

1−β · enew
t 1.6419 2.4971

0.094309 0.45 10 γ
1

1+β · enew
t 1.6843 2.4251

0.093014 3.2 0.9 γβ · enew
t 1.6557 2.4728

Table 5.29: Results of statistical analysis with free slope and the stress intensity factor obtained from the application of

PSM approach on the ideal model with angular misalignment.

As the Table 5.29 shows, the following formula is characterised by the minimum σy standard deviation

kmis = γ
1

1−β · enew
t (5.95)

with β = 0.25 and γ = 0.7.
Subsequently, the different couples of β and γ values are plotted on 3D graph in function of the standard
deviation σy. The graph is reported in the following figure:

Figure 5.70: 3D surface where on the x and y axes are plotted the values of β and γ , along the z-axis is plotted the

standard deviation σy. The red dot define the minimum value of the standard deviation.

As Figure 5.70 shows, the minimum standard deviation is obtained for β and γ values between 0.05 and 1
for β and for γ . For this reason, another statistical analysis is done with a decrease of the definition interval of
the two constant and also with a reduction of the step size, as Figure 5.71 shows.

Figure 5.71: Definition of the two constants in MatLab.
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The results are:

• σy = 0.071122;

• β = 0.599;

• γ = 0.998;

• Tσ = 1.7322;

• m = 1.7354;

Figure 5.72: 3D surface where on the x and y axes are plotted the values of β and γ , along the z-axis is plotted the

standard deviation σy. The red dot define the minimum value of the standard deviation.

The fatigue design curve for β = 0.599 and γ = 0.998 with a free slope is represented in the following
figure:

Figure 5.73: Fatigue design curve for β = 0.599 and γ = 0.998.

Subsequently, the same procedure is applied in the case of fixed slope m = 5. The results of statistical
analysis with the stress intensity factor from the ideal model with angular misalignment with a fixed slope are
reported in the following table:
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σy β γ Formula of kmis Tσ B (slope)

0.31242 0.1 9.65 γ ·
(

1+β · enew
t

)

2.3109 5

0.19249 0.2 6.5 γ ·
(

1−β · enew
t

)

1.6755 5

0.1922 1.55 9.5 γ
1+β · enew

t
1.6742 5

0.19102 0.2 6.9 γ1−β · enew
t 1.6689 5

0.19103 0.2 6.9 γ1+β · enew
t 1.6689 5

0.18948 0.3 0.8 γ
1

1−β · enew
t 1.662 5

0,1984 0.5 10 γ
1

1+β · enew
t 1.7022 5

0,19103 7.55 0.95 γβ · enew
t 1.6689 5

Table 5.30: Results of statistical analysis with fixed slope and the stress intensity factor obtained from the application of

PSM on the ideal model with angular misalignment.

As the Table 5.30 shows, the following formula is characterised by the minimum σy standard deviation

kmis = γ
1

1−β · enew
t (5.96)

with β = 0.3 and γ = 0.8.
Subsequently, the different couples of β and γ values are plotted on 3D graph in function of the standard
deviation σy. The graph is reported in the following figure:

Figure 5.74: 3D surface where on the x and y axes are plotted the values of β and γ , along the z-axis is plotted the

standard deviation σy. The red dot define the minimum value of the standard deviation.

As Figure 5.74 shows, the minimum standard deviation is obtained for β and γ values between 0.05 and 1
for β and for γ . For this reason, another statistical analysis is done with a decrease of the definition interval of
the two constant and also with a reduction of the step size, as Figure 5.75 shows.

Figure 5.75: Definition of the two constants in MatLab.

The results are:

• σy = 0.18845;

• β = 0.338;

• γ = 0.891;
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• Tσ = 1.6574;

• m = 5;

Figure 5.76: 3D surface where on the x and y axes are plotted the values of β and γ , along the z-axis is plotted the

standard deviation σy. The red dot define the minimum value of the standard deviation.

The fatigue design curve for β = 0.338 and γ = 0.891 with a free slope is represented in the following
figure:

Figure 5.77: Fatigue design curve for β = 0.338 and γ = 0.891.
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5.2.7 Definition of kmis factor for the detection of misalignment effect for joint sub-

jected to CAL condition

In a review of published experimental data on fatigue strength of welded joint characterised by angular or axial
misalignment, subjected to Constant Amplitude Loading (CAL), 16 publications containing fatigue data for
welded steel joints are analysed and studied. The objective is to define a kmis factor to detect the misalignment
effect on th fatigue strength of welded joint in CAL condition. The procedure is the same of that described in
the paragraphs 5.2.4 and 5.2.6.
The experimental data are summarized in the following table:

Ref. Steel type fy [MPa]
Stress

ratio R

Plate

Thickness

[mm]

N° of

data
Type of Joints

[49] S1100 ≥1100 0.1 6 20 Butt Joints
[50] S1100 ≥1100 0.1 8 8 Cruciform joints

[51]
BS 4369 Grade

43A
347 0 12.5 41

Cruciform joints
partial pen. and

fillet welds
[52] S690 690 0.1 5 27 T-joints
[53] DH-36 355 -1 5 57 Cruciform Joints
[54] RAEX S275 287 0 12 11 Butt Joints

[55] Optim 1100QC 1100
0.05 /0.1

/0.57
6 20 Butt Joints

[56] 15G2ANb 370 0.5/-1 8 41 Cruciform Joints
[57] Fe510 D1 455 0 8 8 Butt Joints
[58] ASTM A36 250 0 12 42 Butt Joints
[59] RAEX S275 287 0 12 32 Butt Joints
[60] S960 MC 960 0.1/0.2 8 4 T-joints

[61]
HW-50 580

0.1 20 22 Butt Joints
HW-70 820

[62] A36 250 0 12.5 and 15.9 19 Butt Joints

[63]
BS4260 Grade

43A
275 0 12.5 22 Butt Joints

[64]
Damex 355 MC 355

0
12

72 Cruciform JointsDamex 550 MC 550 3
Weldax 960 960 3

Table 5.31: Experimental constant amplitude axial fatigue data for welded joints.

Initially, each set of experimental data is subjected to a FE analysis to obtain the stress intensity factor of
each joint. Indeed, the Peak Stress Method (PSM) and Effective Notch Stress (ENS) approach are applied to
detect the stress intensity factor.
In the next section, the application of these two methods are described for only one type of cruciform joint [50]
and one for butt joint [54].
The cruciform joints are a non-load-carrying cruciform joints made of S1100 ultra-high-strength steels plates
with the base and adjoined plate thickness of t0 = t1 = 8mm, respectively. The following figure shows the shape
and the principal dimensions of the sample:
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Figure 5.78: Geometry and principal dimension of the sample [50].

The boundary condition of the samples in the FE environment are displayed on the following figure:

Figure 5.79: Boundary condition of the sample in the FE environment [50].

The butt joints are made of RAEX S275 low strength stress as base material. The following figure shows
the shape and principal dimensions of the sample:

Figure 5.80: Geometry and principal dimension of the sample [54].

The boundary condition of the samples in the FE environment are displayed on the following figure:

Figure 5.81: Boundary condition of the sample in the FE environment.
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PSM approach for cruciform joint from [50]

The fatigue assessment for this model is performed by the application of the PSM approach for 2D structure
with the adoption of four-node linear elements. The element PLANE 182 is chosen from the Ansys®APDL
library with Simple Enhanced Strain as Key Option 1 and Plane Strain as Key Option 3. The model is charac-
terised by a root with an initial opening length equal to 0.1 mm.
The weld toe is subjected to pure mode I because it is characterised by a V-notch opening angle 2α equal to
135°. The mode II at the root is neglected because is lower than the mode I.
Under mode I, the PSM requirements are defined in the following table:

Mode I

Element type
Mesh

algorithm
(a/d)min 2α

Mesh Pattern

2α<90°

Mesh Pattern

2α>90°

Plane 182
KeyOpt:Simple

Enhanced Strain

+ Plane Strain

Free 3 0°<2α<135°
Four adjacent

elements share the
same node

Two adjacent
elements share the

same node

Table 5.32: Requirements for PSM.

The mode I PSM calibration constant is equal to K∗
FE = 1.38±3%.

The size of the element is obtained with the following procedure:

1. From literature the ratio (a/d)min is determined according to the Table 5.32. In this case the ratio for
mode I is chosen and it is equal to 3;

2. The value of a is the reference dimension for selecting the maximal FE sizes d for PSM application and
is defined as the half of the thickness t;

3. Subsequently, the minimum element size is defined as follow:

dmin =
a

3
=

4
3
= 1.33mm (5.97)

4. The chosen dimension of elements is 1mm.

The λ1 and e1 values are depended on the V-notch opening angle 2α , that is 135° for the weld toe:

2α [°] λ1 (Mode I) e1 (Mode I)

135° 0.674 0.117

Table 5.33: Value of λ1 and e1 in function of the opening angle 2α .

The corrective stress factors for mode I and II are calculated with the equation (2.24) for the weld toe and
root. The results are reported in the Table 5.11.

2α [°] fw1

135° 1.0597

Table 5.34: Values of the corrective stress factor fw1 in function of the opening angle 2α .

Finally, the mesh can be laid on the model and the results is displayed on the Figure 5.82:
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Figure 5.82: Mesh conformation with global element size d = 1mm.

After the application of load and constraint, the system can be solved:

Solution→ Solve → Current LS

The results of the first principal stress is plotted in the Figure 5.83:

Figure 5.83: Plot of 1st principal stress for an external applied nominal stress range of 1MPa.

Local reference systems (Figure 5.84) are created on the nodes that represent the weld toe. The WorkPlane

is rotated by an angle equal to 112.5° for the toe. The procedure for the creation of the local reference systems
is the same as described in the paragraph 3.1.2.

Figure 5.84: Local reference system at the weld toe and root.

Thanks to the creation of the local reference system, the tension ∆σyy can be extracted and the equivalent
peak stresses can be calculated by the formula (2.23).
The results of the all ideal model with angular misalignment are reported in the Appendix G.2.
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ENS approach for cruciform joint from [50]

The fatigue assessment for this model is performed by the application of the Effective Notch Stress approach.
The analysis is characterised by the using of 4-node linear element PLANE 182 with Simple Enhanced Strain

as Key Option 1 and Plane Strain as Key Option 3.
To apply this approach, the IIW Recommendations for Fatigue Assessment by Notch Stress Analysis for welded

Structures [2] is followed and the same rules of ideal model (see paragraph 5.2.3) are followed . For the worst
case and practical applications, the actual radius ρ is assumed equal to zero. Thus, the ENS approach for
fatigue assessment is reduced to ρ f = 1mm at weld toe or root.
To define the global element size of the model, the same rules described in the paragraph 5.2.3, are followed in
this case.
For the analysis with the element PLANE 182, the global element size is equal to 0.1 mm, according to the
IIW Recommendations [2]. To obtain the correct number of elements along the roots and the weld toe, two
refinements are applied with depth of two elements. The mesh of the model is displayed on the following
figure:

Figure 5.85: Mesh of the model with element PLANE 182.

Once the model is properly meshed, loaded and constraint, the system can be solved:

Solution→Solve→Current LS

The results of the first principal stress can be observed in the Figure 5.86, for an external applied pressure
equal to 1 MPa:

Figure 5.86: Plot of the first principal stress of ideal model with angular misalignment with element PLANE 182.

The results of the all ideal model with angular misalignment are reported in the Appendix G.2.
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PSM approach for Butt joint from [54]

The fatigue assessment for this model is performed by the application of the PSM approach for 2D structure
with the adoption of four-node linear elements. The element PLANE 182 is chosen from the Ansys®APDL
library with Simple Enhanced Strain as Key Option 1 and Plane Strain as Key Option 3. The model is charac-
terised by a root with an initial opening length equal to 0.1 mm.
The application of the PSM approach for the butt welded joints is described by Meneghetti, Campagnolo and
Berto in [48]. The actual geometry of the weld bead is approximated in the FE models with a trapezoidal shape,
defined as a function of the bead height h, width w and inclination angle 2α derived from the original papers.
In this case the dimensions of the weld bead are:

htoe [mm]
wtoe

[mm]
2αtoe[°]

hroot

[mm]

wroot

[mm]
2αroot [°]

2.2 18.0 29 1.4 10 18

Table 5.35: Dimension weld bead.

The weld toe is subjected to pure mode I because it is characterised by a V-notch opening angle 2α equal
to 150°. The mode II at the root is neglected because is lower than the mode I.
Under mode I, the PSM requirements are defined in the following table:

Mode I

Element type
Mesh

algorithm
(a/d)min 2α

Mesh Pattern

2α<90°

Mesh Pattern

2α>90°

Plane 182
KeyOpt:Simple

Enhanced Strain

+ Plane Strain

Free 3 0°<2α<135°
Four adjacent

elements share the
same node

Two adjacent
elements share the

same node

Table 5.36: Requirements for PSM.

The mode I PSM calibration constant is equal to K∗
FE = 1.6682±3%.

The size of the element is obtained with the following procedure:

1. From literature the ratio (a/d)min is determined according to the Table 5.36. In this case the ratio for
mode I is chosen and it is equal to 3;

2. The value of a is the reference dimension for selecting the maximal FE sizes d for PSM application and
is defined as the half of the thickness t;

3. Subsequently, the minimum element size is defined as follow:

dmin =
a

3
=

4
3
= 1.33mm (5.98)

4. The chosen dimension of elements is 0.5mm.

The λ1 and e1 values are depended on the V-notch opening angle 2α , that is 150° for the weld toe:

2α [°] λ1 (Mode I) e1 (Mode I)

150° 0.752 0.10304

Table 5.37: Value of λ1 and e1 in function of the opening angle 2α .

The corrective stress factors for mode I and II are calculated with the equation (2.24) for the weld toe and
root. The results are reported in the Table 5.38.
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2α [°] fw1

150° 0.9166

Table 5.38: Values of the corrective stress factor fw1 in function of the opening angle 2α .

Finally, the mesh can be laid on the model and the results is displayed on the Figure 5.87:

Figure 5.87: Mesh conformation with global element size d = 0.5mm.

After the application of load and constraint, the system can be solved:

Solution→ Solve → Current LS

The results of the first principal stress is plotted in the Figure 5.88:

Figure 5.88: Plot of 1st principal stress for an external applied nominal stress range of 1MPa.

The maximum first principal stress ∆σ11,max can be extracted and the equivalent peak stresses can be calcu-
lated by the formula (2.23).
The results of the all ideal model with angular misalignment are reported in the Appendix G.6.

ENS approach for Butt joint from [54]

The fatigue assessment for this model is performed by the application of the Effective Notch Stress approach.
The analysis is characterised by the using of 4-node linear element PLANE 182 with Simple Enhanced Strain

as Key Option 1 and Plane Strain as Key Option 3.
To apply this approach, the IIW Recommendations for Fatigue Assessment by Notch Stress Analysis for welded

Structures [2] is followed and the same rules of ideal model (see paragraph 5.2.3) are followed . For the worst
case and practical applications, the actual radius ρ is assumed equal to zero. Thus, the ENS approach for
fatigue assessment is reduced to ρ f = 1mm at weld toe or root.
To define the global element size of the model, the same rules described in the paragraph 5.2.3,are followed in
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this case.
For the analysis with the element PLANE 182, the global element size is equal to 0.1 mm, according to the
IIW Recommendations [2]. To obtain the correct number of elements along the roots and the weld toe, two
refinements are applied with depth of two elements. The mesh of the model is displayed on the following
figure:

Figure 5.89: Mesh of the model with element PLANE 182.

Once the model is properly meshed, loaded and constraint, the system can be solved:

Solution→Solve→Current LS

The results of the first principal stress can be observed in the Figure 5.90, for an external applied pressure
equal to 1 MPa:

Figure 5.90: Plot of the first principal stress of ideal model with angular misalignment with element PLANE 182.

The results of the all ideal model with angular misalignment are reported in the Appendix G.6.

5.2.8 Definition of kmis factor for the detection of misalignment effect in CAL condi-

tion

Initially, a statistical analysis is done without considering the misalignment factor kmis. Thus, the used data are
only the nominal stress and the relative fatigue life. Two different types of statistical analysis are done: the first
one with a free slope; the second with a fixed slope equal to 3, typical slope value for the as-welded joints.
The results of the statistical analysis for the data used for the detection of kmis when the Effective Notch Stress
(ENS) method is applied to obtain the stress intensity factor are:
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5.2 Procedure for the detection of misalignment effect

1. Free slope:

Figure 5.91: Fatigue design curve considering only the nominal stress and the relative fatigue life with free slope.

where:

• σy = 0.5575;

• Tσ = 23.7531;

• m = 1.3333.

2. Fixed slope:

Figure 5.92: Fatigue design curve considering only the nominal stress and the relative fatigue life with fixed slope.

where:

• σy = 0.7149;

• Tσ = 6.0817;

• m = 3.

The results of the statistical analysis for the data used for the detection of kmis when the Peak Stress Method
(PSM) is applied to obtain the stress intensity factor are:
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1. Free slope:

Figure 5.93: Fatigue design curve considering only the nominal stress and the relative fatigue life with free slope.

where:

• σy = 0.5582;

• Tσ = 22.1688;

• m = 1.3646.

2. Fixed slope:

Figure 5.94: Fatigue design curve considering only the nominal stress and the relative fatigue life with fixed slope.

where:

• σy = 0.7080;

• Tσ = 5.9759;

• m = 3.

The procedure to define the expression of the kmis factor in CAL condition is the same as that described in
the paragraph 5.2.6 for VAL condition.
The steps of the procedure to obtain the correct definition of the kmis factor are:
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1. Firstly, the experimental data used for the evaluation of kmis factor are multiplied for a stress intensity
factors calculated for each specimen from FE analysis. These factors are obtained from the application
of the Effective Notch Stress method and PSM approach on the ideal model with angular misalignment
(see paragraph 5.2.7). Subsequently, these values are multiplied also for the kmis factor that consider the
misalignment effect:

σmax,mis = σmax ·Ks,ENS/PSM · kmis (5.99)

2. There are two different types of misalignment:

• Axial misalignment e;

• Angular misalignment α .

The angular misalignment is converted in axial misalignment with the following formula:

etot =
l

2
· tan(αtot) (5.100)

where l is the total length of the sample. Thus, the total misalignment is defined as following:

enew = e+
l

2
· tan(αtot) (5.101)

The results of each joints are reported in the Appendix G.

3. The expressions use for the detection of kmis factor are the following:

kmis = γ ·
(

1+β · etot

t

)

(5.102)

kmis = γ ·
(

1−β · etot

t

)

(5.103)

kmis =
γ

1+β · etot
t

(5.104)

kmis = γ1−β · etot
t (5.105)

kmis = γ1+β · etot
t (5.106)

kmis = γ
1

1−β · etot
t (5.107)

kmis = γ
1

1+β · etot
t (5.108)

kmis = γβ · etot
t (5.109)

4. The two constants β and γ are systematically changed to determine which values would result in a
minimum standard deviation σy for the data. The range of variation for both is between 0.1 and 10 with
step-size equal to 0.05;

5. For each expression of the kmis factor, the minimum standard deviation σy, the corresponding Tσ and
slope B are extracted. The results are reported in the following subsection and two statistical analysis
are conducted: the first one with a free slope; the second with a fixed slope equal to 3, that is the typical
value of the slope of the design curve for the as-welded joints. The analysis is done through a MatLab
code that is the same as that used in the paragraph 5.2.6.

Results of statistical analysis with stress intensity factor from ENS approach

The results of statistical analysis with the stress intensity factor from the application of the ENS approach on
FE model with misalignment with a free slope are reported in the following table:
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σy β γ Formula of kmis Tσ B (slope)

0.38635 0.1 2.9 γ ·
(

1+β · etot
t

)

3.5409 2.3148

0.37434 0.15 1.05 γ ·
(

1−β · etot
t

)

3.1607 2.4642

0.37359 0.2 5.3 γ

1+β · etot
t

3.1374 2.4752

0.374 0.1 5.3 γ1−β · etot
t 3.1525 2.4675

0.374 3.25 0.95 γ1+β · etot
t 3.1521 2.4678

0.37444 0.1 0.25 γ
1

1−β · etot
t 3.1665 2.461

0.36617 1.35 1.25 γ
1

1+β · etot
t 3.0532 2.4852

0.374 3.25 0.95 γβ · etot
t 3.1521 2.4678

Table 5.39: Results of statistical analysis with free slope and the stress intensity factor obtained from the application of

ENS approach on FE model with misalignment.

As the Table 5.39 shows, the following formula is characterised by the minimum σy standard deviation

kmis = γ
1

1+β · etot
t (5.110)

with β = 1.35 and γ = 1.25.
Subsequently, the different couples of β and γ values are plotted on 3D graph in function of the standard
deviation σy. The graph is reported in the following figure:

Figure 5.95: 3D surface where on the x and y axes are plotted the values of β and γ , along the z-axis is plotted the

standard deviation σy. The red dot define the minimum value of the standard deviation.

As Figure 5.95 shows, the minimum standard deviation is obtained for β and γ values between 1 and 2 for
β and γ . For this reason, another statistical analysis is done with a decrease of the definition interval of the two
constant and also with a reduction of the step size, as Figure 5.96 shows.

Figure 5.96: Definition of the two constants in MatLab.
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The results are:

• σy = 0.36615;

• β = 1.342;

• γ = 1.266;

• Tσ = 3.0504;

• m = 2.4871;

Figure 5.97: 3D surface where on the x and y axes are plotted the values of β and γ , along the z-axis is plotted the

standard deviation σy. The red dot define the minimum value of the standard deviation.

The fatigue design curve for β = 1.342 and γ = 1.266 with a free slope is represented in the following
figure:

Figure 5.98: Fatigue design curve for β = 1.342 and γ = 1.266.

Subsequently, the same procedure is applied in the case of fixed slope m = 3. The results of statistical
analysis with the stress intensity factor from the actual model with a fixed slope are reported in the following
table:
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σy β γ Formula of kmis Tσ B (slope)

0.41791 0.1 1.35 γ ·
(

1+β · etot
t

)

2.8728 3

0.39276 0.15 2.8 γ ·
(

1−β · etot
t

)

2.696 3

0.39069 0.25 2.45 γ

1+β · etot
t

2.682 3

0.39165 0.1 8.05 γ1−β · etot
t 2.6885 3

0.39165 0.15 0.25 γ1+β · etot
t 2.6885 3

0.39258 0.1 0.15 γ
1

1−β · etot
t 2.6948 3

0.38288 1.2 1.4 γ
1

1+β · etot
t 2.6296 3

0.39165 0.15 0.25 γβ · etot
t 2.6885 3

Table 5.40: Results of statistical analysis with fixed slope and the stress intensity factor obtained from the application of

ENS approach on the FE model with misalignment.

As the Table 5.40 shows, the following formula is characterised by the minimum σy standard deviation

kmis = γ
1

1+β · etot
t (5.111)

with β = 1.2 and γ = 1.4.
Subsequently, the different couples of β and γ values are plotted on 3D graph in function of the standard
deviation σy. The graph is reported in the following figure:

Figure 5.99: 3D surface where on the x and y axes are plotted the values of β and γ , along the z-axis is plotted the

standard deviation σy. The red dot define the minimum value of the standard deviation.

As Figure 5.99 shows, the minimum standard deviation is obtained for β and γ values between 1 and 2 for
β and γ . For this reason, another statistical analysis is done with a decrease of the definition interval of the two
constant and also with a reduction of the step size, as Figure 5.100 shows.

Figure 5.100: Definition of the two constants in MatLab.

The results are:

• σy = 0.38286;
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• β = 1.224;

• γ = 1.374;

• Tσ = 2.6295;

• m = 3;

Figure 5.101: 3D surface where on the x and y axes are plotted the values of β and γ , along the z-axis is plotted the

standard deviation σy. The red dot define the minimum value of the standard deviation.

The fatigue design curve for β = 1.224 and γ = 1.374 with a fixed slope is represented in the following
figure:

Figure 5.102: Fatigue design curve for β = 1.224 and γ = 1.374.
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Results of statistical analysis with stress intensity factor from PSM approach

The results of statistical analysis with the stress intensity factor from the application of the PSM approach on
the FE model with misalignment with a free slope are reported in the following table:

σy β γ Formula of kmis Tσ B (slope)

0.37426 0.1 9.2 γ ·
(

1+β · etot
t

)

3.1611 2.4635

0.37266 0.1 5.9 γ ·
(

1−β · etot
t

)

3.0394 2.5395

0.37238 0.1 9.85 γ

1+β · etot
t

3.0388 2.5381

0.37152 0.3 1.1 γ1−β · etot
t 3.054 2.5208

0.37152 0.1 0.75 γ1+β · etot
t 3.05387 2.5209

0.37138 0.6 0.95 γ
1

1−β · etot
t 3.0015 2.5597

0.37153 0.1 1.35 γ
1

1+β · etot
t 3.0549 2.5203

0.37152 0.1 0.75 γβ · etot
t 3.054 2.5209

Table 5.41: Results of statistical analysis with free slope and the stress intensity factor obtained from the application of

PSM approach on the FE model with misalignment.

As the Table 5.41 shows, the following formula is characterised by the minimum σy standard deviation

kmis = γ
1

1−β · etot
t (5.112)

with β = 0.6 and γ = 0.95.
Subsequently, the different couples of β and γ values are plotted on 3D graph in function of the standard
deviation σy. The graph is reported in the following figure:

Figure 5.103: 3D surface where on the x and y axes are plotted the values of β and γ , along the z-axis is plotted the

standard deviation σy. The red dot define the minimum value of the standard deviation.
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As Figure 5.103 shows, the minimum standard deviation is obtained for β and γ values between 0.05 and 1
for β and γ . For this reason, another statistical analysis is done with a decrease of the definition interval of the
two constant and also with a reduction of the step size, as Figure 5.104 shows.

Figure 5.104: Definition of the two constants in MatLab.

The results are:

• σy = 0.36985;

• β = 0.659;

• γ = 0.996;

• Tσ = 3.0143;

• m = 2.5394;

Figure 5.105: 3D surface where on the x and y axes are plotted the values of β and γ , along the z-axis is plotted the

standard deviation σy. The red dot define the minimum value of the standard deviation.

The fatigue design curve for β = 0.659 and γ = 0.996 with a free slope is represented in the following
figure:
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Figure 5.106: Fatigue design curve for β = 0.659 and γ = 0.996.

Subsequently, the same procedure is applied in the case of fixed slope m = 3. The results of statistical
analysis with the stress intensity factor from the actual model with a fixed slope are reported in the following
table:

σy β γ Formula of kmis Tσ B (slope)

0.39303 0.1 1 γ ·
(

1+β · etot
t

)

2.6979 3

0.38587 0.1 6.7 γ ·
(

1−β · etot
t

)

2.6495 3

0.3857 0.1 7.45 γ

1+β · etot
t

2.6484 3

0.3857 0.4 1.2 γ1−β · etot
t 2.6475 3

0.38557 0.45 0.85 γ1+β · etot
t 2.6475 3

0.38336 0.6 0.95 γ
1

1−β · etot
t 2.6328 3

0,38558 0.1 2.25 γ
1

1+β · etot
t 2.6554 3

0,38557 0.45 0.85 γβ · etot
t 2.6475 3

Table 5.42: Results of statistical analysis with fixed slope and the stress intensity factor obtained from the application of

PSM on the FE model with misalignment.

As the Table 5.42 shows, the following formula is characterised by the minimum σy standard deviation

kmis = γ
1

1−β · etot
t (5.113)

with β = 0.6 and γ = 0.95.
Subsequently, the different couples of β and γ values are plotted on 3D graph in function of the standard
deviation σy. The graph is reported in the following figure:
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Figure 5.107: 3D surface where on the x and y axes are plotted the values of β and γ , along the z-axis is plotted the

standard deviation σy. The red dot define the minimum value of the standard deviation.

As Figure 5.107 shows, the minimum standard deviation is obtained for β and γ values between 0.05 and 1
for β and γ . For this reason, another statistical analysis is done with a decrease of the definition interval of the
two constant and also with a reduction of the step size, as Figure 5.108 shows.

Figure 5.108: Definition of the two constants in MatLab.

The results are:

• σy = 0.38267;

• β = 0.630;

• γ = 0.975;

• Tσ = 2.6282;

• m = 3;
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Figure 5.109: 3D surface where on the x and y axes are plotted the values of β and γ , along the z-axis is plotted the

standard deviation σy. The red dot define the minimum value of the standard deviation.

The fatigue design curve for β = 0.630 and γ = 0.975 with a fixed slope is represented in the following
figure:

Figure 5.110: Fatigue design curve for β = 0.630 and γ = 0.975.
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Comparison of the results

The results of the statistical analysis with the kmis factor are compared with the initially results of the statistical
analysis of the nominal stress and the relative fatigue life. These comparisons are reported in the following
table:

ENS (Free slope)

Without kmis With kmis ∆%

Tσ 23.7531 Tσ 3.0504 -87.16%
σy 0.5575 σy 0.36615 -34.32%

Table 5.43: Comparison of the ENS results with free slope.

kmis = γ
1

1+β · etot
t (5.114)

where:

• β = 1.342;

• γ = 1.266.

ENS (Fixed slope m=3)

Without kmis With kmis ∆%

Tσ 6.0817 Tσ 2.6295 -56.76%
σy 0.7149 σy 0.38286 -46.45%

Table 5.44: Comparison of the ENS results with fixed slope.

kmis = γ
1

1+β · etot
t (5.115)

where:

• β = 1.224;

• γ = 1.374.

PSM (Free slope)

Without kmis With kmis ∆%

Tσ 22.1688 Tσ 3.0143 -86.40%
σy 0.5582 σy 0.36985 -33.74%

Table 5.45: Comparison of the PSM results with free slope.

kmis = γ
1

1−β · etot
t (5.116)

where:

• β = 0.659;

• γ = 0.996.
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PSM (Fixed slope m=3)

Without kmis With kmis ∆%

Tσ 5.9759 Tσ 2.6282 -56.02%
σy 0.7080 σy 0.38267 -45.95%

Table 5.46: Comparison of the PSM results with fixed slope.

kmis = γ
1

1−β · etot
t (5.117)

where:

• β = 0.630;

• γ = 0.975.

As the tables show, the consideration of the kmis factor decreases the value of the standard deviation and the
width of the scatter band. Furthermore, the expression of kmis factor when the stress intensity factor obtained
by the application of the ENS approach is the same for the free and fixed slope, with the value of two constant
β and γ that are roughly the same. The same consideration can be done for the kmis factor when the stress
intensity factor obtained by the application of the PSM approach.
In the next figures, the design fatigue curve are reported and the reader are able to recognize the different set of
data.

Figure 5.111: ENS Fatigue design curve for β = 1.342 and γ = 1.266 with free slope.
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Figure 5.112: ENS Fatigue design curve for β = 1.224 and γ = 1.374 with fixed slope.

Figure 5.113: PSM Fatigue design curve for β = 0.659 and γ = 0.996 with free slope.
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Figure 5.114: PSM Fatigue design curve for β = 0.630 and γ = 0.975 with fixed slope.
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Chapter 6

Testing program and comparison of

results

The objective of this chapter is to describe the experimental procedure that is applied to assess the effect of
the misalignment on the cruciform joint and T-joint, subjected to an axial load and previously studied by Elena
Pullin [66] and Daniele Berto [65] in 2019 . The experimental results are reported in this chapter. First, a briefly
introduction on the tests and loading condition will be given. Then, a comparison between the experimental
results, theoretical results obtained from Chapter 5 and the results obtained from IIW recommendations [1] will
be made.

6.1 Experimental instrumentation

In this paragraph will be described the experimental instrumentation, used during the tests and also the instru-
mentation to acquire the data during the tests.

6.1.1 Geometry of the tested specimens

The specimens that are used in these tests, are two:

1. A cruciform load-carrying fillet welded joints under axial load (Figure 6.1) with a thickness t equal to 10
mm and width w equal to 40 mm;

2. A T nlc fillet-welded joints under axial load (Figure 6.2) with a thickness t equal to 10 mm and width w

equal to 40 mm.

Figure 6.1: Geometry of the cruciform load-carrying fillet welded joints under axial load [66].
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Figure 6.2: Geometry of the T nlc fillet welded joints under axial load [66].

These joint are the same as those analysed by Pullin and Berto in 2019 [66] [65].
The specimens are made of two different material:

1. ADI 1050, that is characterised by the following mechanical properties:

Material

model

Yield strength fy

[MPa]

Elongation

[%]

Young

modulus

[MPa]

ADI 1050 1050 6 168000

Table 6.1: Information about mechanical properties from ISO 17804.

2. S355J2, that is characterised by the following mechanical properties:

Material

model

Yield strength fy

[MPa]

Elongation

[%]

Young

modulus

[MPa]

S355J2 355 22 206000

Table 6.2: Information about mechanical properties.

These specimens are characterised by angular and axial misalignment. Berto and Pullin [65] [66] measured
the misalignments for these specimens (the procedure is described in the paragraph 6.2) and the results are
reported in the following table:

Specimen
Angular Misalignment α

[°]

Axial Misalignment e

[mm]

Cruciform
Joint

0.243 1.353

T-joint 0.96 0

Table 6.3: Value of the angular and axial misalignment.

6.1.2 Strain gauge E.R.M.

The foil strain gauge is able to convert an input signal (linear variation of the length) into a electric output
signal. The strain gauge is a device used to measure the local relative displacement between two points of
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the samples, subjected to dynamic or static load. The foil strain gauge is typically uniaxial, thus it is able to
measure the strain along only one direction.
The strain gauge is made up by the following elements:

• A grid that is made of metallic material and it is characterised by a electric resistance R that is defined as
follows:

R = ρ · l

A
(6.1)

where

± A is the section of the wire that made up the grid;

± l is the total length of the rectified grid;

± ρ is the resistivity of the grid material. In this case the grid is made of constantan (a copper±nickel
alloy).

• Polyimide Carrier that is glued on the surface of the object under examination and gives the electrical
insulation. This elements transmit the strain of the object to the grid;

• An adhesive to transmit the strain to the carrier;

• A protection because the grid is sensitive to the work environment. In this case the protection is silicon
SG250.

Figure 6.3: Scheme of the structure of the strain gauge.

In the following table are reported the all characteristics of the used strain gauge:

Producer KYOWA Strain Gauge
Type KFG-3-120-C1-11L3M3R

Gauge Factor 2.11±1.0%
Gage Length 3 mm

Gage

Resistance(24°.50%RH
120.0±0.8Ω

Adoptable Thermal

Expansion
11.7 PPM/°C (for Steel)

Temperature Coefficient

of Gage Factor
+0.008%/°C

Applicable Gage Cement CC-33A, EP-34B

Table 6.4: Characteristic of the used strain gauge.
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Figure 6.4: The used strain gauge attached to the welded joint.

Strain Gauge principle

The principle of the strain gauge is based on the changing of its electric resistance R due to the strain of the
grid. Indeed, the resistance is proportional to the length l and material resistivity ρ , inversely proportional
to conductor’s cross section A as the equation (6.1) shows. If the surface where the strain gauge is glued, is
subjected by a deformation due to the application of the load, the resistance variation is related to the variation
of the three terms L, ρ and A:

∆R

R
=

∆ρ

ρ
+

∆l

l
+

∆A

A
(6.2)

The conductor follows the Elasticity rules, so the ∆l
l

represents the strain of the conductor in longitudinal
direction and ∆A

A
is the variation of the cross section of the conductor:

ε =
σ

E
(6.3)

εt =−ν · εl (6.4)

∆A

A
=−2 ·ν · εl (6.5)

∆l

l
= εl (6.6)

Where;

• εt is the deformation in transversal direction of the conductor;

• E is Young modulus;

• ν is the coefficient of Poisson.

Substituting the equations (6.5) and (6.6) in the (6.2), the result is:

∆R

R
=

∆ρ

ρ
+(1+2 ·ν) · εl (6.7)

From the last equation, the variation of the resistance R depends on the longitudinal deformation and on the
variation of the resistivity.
One of the most important metrological characteristics of the strain gauge is the gauge factor, that is defined as
follows:

K =
∆R/R

∆l/l
=

∆R/R

εl

= 1+2 ·ν +
∆ρ/ρ

εl

(6.8)

The gauge factor is defined experimentally from the producer of the strain gauge and in this case is equal to
2.11±1.0%.
Normally, one strain gauge is not sufficient to obtain an accurate measurement because the variation of the
resistance in output are too small to read it correctly. For this reason, the output signal is amplified thanks to
the use of Wheatstone bridge control units, where instead of using the four resistance, one or more strain gauge
are inserted. One example is displayed on the following figure:
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Figure 6.5: Example of 1/4 of Wheatstone bridge configuration.

In the case of full bridge (4 strain gauge inside the Wheatstone bridge configuration), the output potential
difference U is defined as follows:

U =
V

4
·
(

∆R1

R1
− ∆R2

R2
+

∆R3

R3
− ∆R4

R4

)

=V · K

4
· (ε1 − ε2 + ε3 − ε4) =V · k

4
· εtot (6.9)

Where V is the input tension of the bridge. The equation (6.9) defined the relation between the measured
deformation from the four strain gauge and the potential difference measured in the configuration. The most
common Wheatstone bridge configuration are:

• Full bridge configuration with 4 strain gauge;

• Half bridge configuration with 2 strain gauge and 2 resistance;

• Quarter bridge configuration with 1 strain gauge and 3 resistance.

In this thesis, the quarter bridge configuration is used to measure the strain of the welded joint and the following
equation is valid:

U =V · K

4
· ε1 (6.10)

Figure 6.6: Quarter bridge configuration.

6.1.3 Strain gauge control unit IMC

The acquisition of the output signal of the strain gauge is done by a strain gauge control unit IMC-CRONOS
PL2 (Figure 6.7). After the definition of the type of Wheatstone bridge and the gauge factor K of the strain
gauge, the control unit gives the value of the strain along the direction of the grid. This value is visible thanks
the using of a personal computer that is also an data store during the acquisition.
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Figure 6.7: On the left there is an image of the strain gauge control unit IMC. On the right, there is an image of the system

for the acquisition (personal compute, strain gauge control unit and relative cables).

The functioning of the acquisition system is explained on the Figure 6.8, where the all elements are illus-
trated.

Figure 6.8: Scheme of the acquisition system of the strain during the test.

The strain gauge control unit IMC is able to acquire signal until 50 kHZ of frequency and it is characterised
by eight analogical channel and four digital channel. A Wheatstone bridge can be connected for each analogical
channel.

6.1.4 Connectors

The connection between the cables of the strain gauge and the strain gauge control unit is executed by the
connectors. Each connector is able to host two channel for the acquisition. After connecting the cable of strain
gauge with the right Wheatstone bridge configuration, the connectors are closed and fixed through two screws
to the control units inputs. In this way, the strain gauge control units are able to send the input signal of the
bridge and at the same time to transmit the output signal to the personal computer, defined in µε . In the Figure

6.9 is displayed a scheme of the possible connection of the connector. In based on how the strain gauge cables
are connected in the connector, the configuration can be a quarter or half bridge.

Figure 6.9: On the left there is a scheme of the inside of the connector. On the right, there is an image of a connector.
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6.1.5 Multimeter

The multimeter is a instrument used to control the following things:

• The right functioning of the strain gauge cables;

• The right connection of the strain gauge cables;

• To verify that there is not a contact between the grid of strain gauge and the surface of the samples.

The multimeter is characterized by two elements that are put in contact with the cables of the strain gauge to
verify the electrical resistance.

Figure 6.10: Multimeter used to control the strain gauge cables.

6.1.6 Schenck Hydropuls®PSA machine

The machine used for the test is a Schenck Hydropuls®PSA, an axial testing machine, that is characterised by
the following features:

Characteristics

Force capacity 100 kN
Actuator dynamic stroke 100 mm
Max vertical test space 550 mm

Grips depth 50 mm
Specimen Testing

Specimen type flat and round
Thickness 0 mm to 15 mm
Diameter 6 mm to 17 mm

Table 6.5: Characteristic Schenck Hydropuls®PSA.
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The test machine is displayed on the following figure:

Figure 6.11: Schenck Hydropuls®PSA, an axial testing machine in the laboratory of Materials Characterization of the

University of Padua.

6.2 Misalignment measurement method

The method used for the measure of the welded joint misalignment is described in this paragraph. As described
in the Chapter 5, misalignment can influence the fatigue life of the specimens. When the welded joints are
clamped by the machine, they tends to straighten due to the action of the clamps of the axial testing machine.
This leads to undesired displacements of the welded joints extremities and a secondary bending moment is
introduced.
This effect increase the degree of stress and strain concentration near the weld bead, which deteriorates the
fatigue properties of the welded joints. For this reason the misalignment effect has to be considered.
As described in the paragraph 5.1, there are two types of misalignment:

1. Axial misalignment consists in a eccentricity between the axes of the two plates from the ideal condition
(perfectly parallel), as Figure 6.12a shows;

2. Angular misalignment consists in the angle between the axes of the two plates when they have the origin
at the same point, as Figure 6.12b shows;

The specimens usually present both of them simultaneously (Figure 6.12c).
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Figure 6.12: Misalignment of welded specimen: a) axial misalignment, b) angular misalignment, c) combined

misalignment [66].

6.2.1 Description of measurement method

In this paragraph the measurement method is described and a numerical-controlled milling machine with a
touch probe is used to measure both of the misalignment. The procedure is characterised by the following
steps:

1. The first step is characterised by the clamping of the specimen on the work plane of the machine, as
Figure 6.13 shows. It is advisable to constrain the welded joint on the steel side because its surface is
more regular than the one of the ADI side.

Figure 6.13: Welded joint clamped on the work plane of the machine [66].

2. Subsequently, the touch probe has to be placed at the middle point of the joint width to measure the all
points on the longitudinal plane.
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3. When the touch probe is on the edge of the specimen, the X-axis is set to zero, as Figure 6.14 shows.

Figure 6.14: Reset of the X-axis at the edge of the welded joint [66].

4. The touch probe is moved to x = 2mm and the all coordinates are reseted. Indeed, the X and Z axes will
change, while the Y axis is kept constant at the middle-point (Figure 6.15).

Figure 6.15: Set of the reference point O for the measurement [66].

5. The x and z coordinates of the point A are measured. A is the point just before the weld toe on the S355J2
side. In the case of cruciform joint, one should pay attention to avoid hurting the fillet with the head of
the touch probe (Figure 6.16).
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Figure 6.16: The measurement of the coordinated of point A, before the weld toe on the steel side [66].

6. The x and z coordinates of the point A’ are measured. A’ is the point just beyond the weld toe on the ADI
side (Figure 6.17).

Figure 6.17: The measurement of the coordinated of point A’, beyond the weld toe on the ADI side [66].

7. The x and z coordinates of the point O’ are measured. O’ is the point at the end of the specimen on the
ADI side (Figure 6.18).
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Figure 6.18: The measurement of the coordinated of point O’, at the end of the specimen on the ADI side [66].

8. The specimen are rotated of 180° and the same points are measured on the lower surface.

9. The misalignment are calculated with the following equation and procedure with reference to Figure

6.19:

(a) The axial misalignment is calculated as the difference between the z-coordinates of the points be-
fore and beyond the weld toe. To increase the accuracy of the measurement, the average value is
calculated from the ones obtained on the upper and lower surface of the specimen:

e = ZA −ZA′ (6.11)

(b) Obtaining the coordinates of the four points on the surface, the total misalignment ∆Z is calculated
as follows:

∆Z = ZO′ + l ·βS355J2 (6.12)

where:

• l is the total length of the specimen;

• LS355J2 is the length of the steel plate;

• βS355J2 is the angle between the specimen and the work plane defined as:

βS355J2 = arctan(
ZA −ZO

LS355J2
) (6.13)

(c) e1 is the misalignment due to the angular component α and it is obtained by the subtraction of e

from ∆Z:

e1 = ∆Z − e (6.14)

(d) After that, the angular misalignment can be calculated in radiant:

α = tan(
e1

lADI

) (6.15)
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Figure 6.19: Parameters for the calculation of the misalignment [66].

The results are reported in the following table:

Specimen
Angular Misalignment α

[°]

Axial Misalignment e

[mm]

Cruciform
Joint

0.243 1.353

T-joint 0.96 0

Table 6.6: Value of the angular and axial misalignment.

6.3 Experimental procedure

The first step of the experimental procedure is to define the number of strain gauge for each samples. In
according to Berto and Pullin [65] [66], the cruciform joints is characterised by 4 strain gauges to study the
bending on all four surface of the joint (Figure 6.20); the T-Joints is is characterised by 8 strain gauges to study
the bending on all four surface of the joint but only the 4 strain gauges closer to the weld toe are used (the strain
gauges called CH3, CH7, CH6,CH2 in the Figure 6.21).

Figure 6.20: Disposition of the strain gauges in the cruciform joint.
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Figure 6.21: Disposition of the strain gauges in the T-joint.

The all strain gauges are already glued because they are used for the thesis work of Berto and Pullin. The
subsequent steps are described in the following sections.

6.3.1 Verification of the functioning of the strain gauge cables with multimeter

Before the test of the samples, the right functioning of the strain gauges have to be verify to guarantee the
correct acquisition of the data. This operation is done thanks to the using of the multimiter that allows to
measure the electric resistance of a metallic object. As Figure 6.10 shows, the initial value of the resistance
that will be measured, has to be imposed. The nominal value of the resistance is 120Ω, so the knob is turned of
180° to obtain a range of 200Ω. Subsequently, the resistance is measured. The strain gauges are characterised
by three different cables: 1 red cable and 2 white cables. To measure correctly the resistance of the strain
gauge, one pointer of the multimeter is placed on the red cable; the other pointer is placed on the one of white
cable. The value of the resistance on the display of the multimeter has to be higher than 120Ω. After that, the
same procedure is repeated for the two white cables. The difference of the two measurement has to be equal to
120Ω.

6.3.2 Connection between strain gauges, connectors and strain gauge control unit

IMC

After the verification of the functioning of the all strain gauges, the next step is the connection of the strain
gauges cables inside the connectors. In this case, the quarter bridge configuration is chosen because thanks to
its simplicity, this configuration is the most used one for the strain measurement.
A quarter bridge configuration gives in output a signal that is characterised by a contribute due to the bending.
Indeed, the aim of this experimental experience is to quantify the bending contribute due to the misalignment
of the welded joint, so this configuration is the best one to achieve the objective.
A quarter bridge configuration defines that a channel is dedicated for each strain gauge; the sample is charac-
terised by four strain gauges, so four independent acquisition channels are necessary. Each connectors hosts
two channel, two connectors are necessary to complete the connection between the strain gauges and the control
unit. In the following figure are displayed an examples of connection between the strain gauge and connector
with a quarter bridge configuration.
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Figure 6.22: On the left, an image that represents a scheme of the connection of the cables to obtain a quarter bridge

configuration for a strain gauge with three wires. On the right, a right connection of the cables.

The supply voltage of the connector is equal to 5 Volt. The red cable of the strain gauge has to be connected
in +VB. One of the two white cables has to be inserted in the quarter bridge input (entrance number 5) to
close the Wheatstone bridge circuit with a resistance equal to the initial one of the strain gauge (120 Ohm).
Subsequently, the last white cable is connected to +IN (entrance number 3) to allow the reading of the bridge
imbalance. The last step is to connect the blue cables with a short circuit between the two terminals +IN and
SENSE.
This procedure is repeated for the second acquisition channel, using the terminals from 7 to 12. Subsequently,
the connector is closed and the same procedure is repeated for the other connector.
The two connectors are connected to two input of the strain gauge control unit, as Figure 6.23 shows. The
connection is characterised by 4 strain gauges, so 4 quarter bridge configuration.

Figure 6.23: Connection between the two connectors en the strain gauge control unit.
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6.3.3 Configuration of the software IMC Devices

In this paragraph is described the principal step for the configuration of the acquisition system. After turning
on the computer, the program IMC devices V2.6 is opened and the New Experiment is selected. Before starting
the test, three steps have to be executed:

1. Configuration of the channel;

2. Data save settings;

3. Clearing of the channels, initialization and starting of the acquisition.

Configuration of the channel

To open the window for the channel configuration, the following commands are used:

Menu → Settings → Configuration→ Base

Figure 6.24: Window of IMC devices and commands for the configuration of the new set-up.

Subsequently, the channel of interest are selected and the section Status is imposed to Active. After that,
the duration of acquisition is imposed equal to Undefined with a Sampling equal to 100 ms. In this case, the
channel 1, 2, 3 and 4 are activated.

Figure 6.25: Window of Base for the configuration of the channels.

After that, the section Amplifiers is selected and the window Strain Gage is opened for the selection of the
quarter bridge configuration (Figure 6.26). After the definition of the bridge configuration, the value of the
resistance has to be verified because it has to be equal to 120Ω (nominal value of the strain gauge). After that,
the value of the Gauge factor K is inserted equal to 2.11 and the Supply Voltage has to be equal to 5V. The input
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range is selected equal to ±1900µeps and it represents the maximum value of the strain that can be measured
during the acquisition. This value derives from initial hypothesis. After these steps, the Device Configuration

window is closed.

Figure 6.26: Amplifier section, Strain Gage window.

Data save settings

For the saving data, the following commands are applied:

Setting → Storage → Selection of Drive

Clearing of the channels, initialization and starting of the acquisition

Before the starting of the acquisition, the channels have to be activated to acquire the data. This operation is
done with the following commands:

Device→ Connect

After that, from Settings→ Amplifier, the clearing of the channels is done. The meaning of this operation is
that the initial strain is imposed equal to zero because during the previous steps the strain gauges can be read
some deformation, with this offset, the deformation before the test are neglected. After the selection of the all
channels, the Bridge is clicked to balance the bridge.
To see on the computer display the trend of the strain, Show curve is clicked. After that the acquisition can be
started.

6.3.4 Mounting of the specimen in the machine

After the turning on the machine, the Schenck will be in Displacement control with interlock inserted.
Initially, only one extremities of the specimen is fixed because the deformation out of the machine (the defor-
mation of the specimens when the specimen is not fixed with the both extremities) has to be measured. For this
reason, the superior clamp is opened and it is distanced sufficiently to allow the insertion of the sample inside
the inferior clamp. Before the tightening of the wedges, the specimen has to be aligned with the principal plate
in the frontal plane. Indeed, during the the insertion of the sample, a bracket and bubble are used to verify the
verticality. During these operations, the cable of the strain gauges must not be pulled o pitched.
After these verifications, the superior clamp can be closed (Figure 6.27) and the deformation on the computer
display will be roughly equal to zero because the bridges was cleared just after the closed of superior clamp
and also the sample is not subjected to bending or axial force .
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Figure 6.27: Specimen inside the machine with closed clamp.

Subsequently, the inferior clamp is closed and the machine applies a force equal to 3.5 kN due to the
dynamics of the clamping. To defined a force equal to zero, the command of the machine is changed from
Displacement control to Force control and the value of 0 kN is manually inserted to re-establish the condition
with external force equal to zero. This is the first applied static load. Indeed, the imposition of the external
force equal to zero doesn’t mean null bending moment acting on the specimen. Indeed, the welded joint is
hyperstatically constrained at the two extremities and it is subjected by a bending stress. For this reason, the
output signal of the strain gauge unit control are not neglected and the value of the strains measured by the
strain gauges demonstrate the typical trend of bending stress. This is a confirm that the principal plate of the
joint is characterised by a misalignment.

Figure 6.28: Image of the cruciform joint clamped hyperstatically inside the machine. As show the figure, the output

strain are equal to ±25µeps for the superior part and equal to ±15µeps for the inferior part.
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6.3.5 Manual application of the static load

To study the variation of the bending stress due to the misalignment of the welded joint, the specimen is
subjected to different static load.
The yield strength of the ADI is equal to 1050 MPa and 355 MPa for the S355J2. For this reason the maximum
applied load is 125 MPa. This value is lower than the S355J2 yield strength and it is chosen this value because
if a higher load is applied, the joint will be slid out of the clamping.
The section of the both specimens is equal to 400mm2, so maximum applied force is:

F = σmax ·A = 125 ·400 = 50kN (6.16)

The loads are applied as a loading ramp ascending descending from 0 kN to 50 kN with an increment equal to
5 kN, as the following graph shows:

Figure 6.29: Loading ramp ascending descending 0kN-50kN-0kN of static load, manually applied to the cruciform and

T-joint.

The null value of the force is the condition of 0 kN applied from the test machine when the both extrem-
ities of the specimen are clamped. Before the application of the subsequent load, the output signal has to be
stabilized. The loading ramp is applied 3 times for each specimen because during the elaboration of the data,
the value of the strain will be the average value of the all acquisition.
At the end of each loading ramp, the machine has to be placed in Displacement control, one of the two clamps
are opened and the deformation out of the machine is acquired. After that, the acquisition is stopped and the
clearing of the channels is repeated and the system is ready for a new acquisition.

6.3.6 Elaboration of the results

This step is characterised by the analysis of the strain that the strain gauge control unit has measured during the
test. As Figure 6.30 shows, the section A-A the total strain state measured can be divided in two contributes:

1. The first is a membrane contribution due to the tensile load;

2. The second is a bending contribution due to the misalignment of the welded joint and the clamping
system.

The deformation due to each contribution are calculated with the following formulas:

εmembr,sup[µeps] =
εCH1 + εCH2

2
→ σmembr,sup[MPa] = E · εmembr,sup ·10−6 (6.17)

εmembr,in f [µeps] =
εCH3 + εCH4

2
→ σmembr,in f [MPa] = E · εmembr,in f ·10−6 (6.18)

εbend,sup[µeps] = εmax,CH1−CH2 − εmembr,sup → σbend,sup[MPa] = E · εbend,sup ·10−6 (6.19)

εbend,in f [µeps] = εmax,CH3−CH4 − εmembr,in f → σbend,in f [MPa] = E · εbend,in f ·10−6 (6.20)
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Figure 6.30: Scheme of the loaded plate and real solicitations acting on it. The bending moment acts along the z-axis and

it induces a bending stress on the loaded plate. This stress adds up to the tensile stress, that is uniform along the all

surface. The bending stress is characterised by the classic butterfly’s trend. The superimposition of these two trends gives

a new stress state that change the quantity of the fiber in compression and in traction.

The numerical results of the two specimen for each ramp are reported in the Appendix H with the definition
of the relative error between the membrane stress and the theoretical stress. For each ramp loading, a graph is
reported with the membrane and bending stress for the cruciform and T-joint and a comparison between the the
experimental data obtained from the test and the results of the previous work has been done.

Results of cruciform joint

In Figure 6.31 the membrane and bending stress are reported in function of the applied load. The real applied
load is not equal to the ideal load due to an imprecision of the machine, as reported in the Appendix H.
The area between the two curves (first curve represents the phase of ascending load; the second one represents
the phase of descending load) shows a hysteretic phenomenon that it decreases with the application of the sub-
sequent loading ramps. Indeed the first ramp that was applied, is not really the first because Berto and Pullin
during their work thesis have applied other ramp loading condition. For this reason the value of the hysteretic
area is roughly null. As the Table H.4 shows, the relative error between the membrane stress and the theoretical
one is included between 0.67%, obtained in the superior part of the welded joint, and 10.06%, obtained in the
inferior part of the welded joint.
As the graph in Figure 6.31 shows, the bending stress increases in linear way for the both parts of the specimen.
Furthermore, for an external force equal to 0 kN, the sample is subjected to a bending stress.

Figure 6.31: Distribution of the membrane and bending stress obtained in the cruciform joint for the application of the 1st

loading ramp. In the graph, the theoretical stress are represented for a comparison with the measured membrane stress.
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In Figure 6.32 the membrane and bending stress are reported in function of the applied load for the 2nd
loading ramp. The real applied load is not equal to the ideal load due to an imprecision of the machine, as
reported in the Appendix H.
The difference between the theoretical stress line and the membrane stress line are lower than the case of the 1st
loading ramp. Indeed as the Table H.5 shows, the relative error between the membrane stress and the theoretical
one is included between −0.19%, obtained in the superior part of the welded joint, and 8.72%, obtained in the
inferior part of the welded joint.
As the graph in Figure 6.32 shows, the bending stress increases in linear way for the both parts of the specimen.
Furthermore as before, for an external force equal to 0 kN, the sample is subjected to a bending stress.

Figure 6.32: Distribution of the membrane and bending stress obtained in the cruciform joint for the application of the

2nd loading ramp. In the graph, the theoretical stress are represented for a comparison with the measured membrane

stress.

In Figure 6.33 the membrane and bending stress are reported in function of the applied load for the 3rd
loading ramp. The real applied load is not equal to the ideal load due to an imprecision of the machine, as
reported in the Appendix H.
The difference between the theoretical stress line and the membrane stress line are roughly equal to the case
of 1st loading ramp. Indeed as the Table H.6 shows, the relative error between the membrane stress and the
theoretical one is included between −0.81%, obtained in the superior part of the welded joint, and 11.66%,
obtained in the inferior part of the welded joint.
As the graph in Figure 6.33 shows, the bending stress increases in linear way for the both parts of the specimen.
Furthermore as before, for an external force equal to 0 kN, the sample is subjected to a bending stress.

Figure 6.33: Distribution of the membrane and bending stress obtained in the cruciform joint for the application of the 3rd

loading ramp. In the graph, the theoretical stress are represented for a comparison with the measured membrane stress.
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The obtained results are in according with the results of Berto [65]. The comparison is done only for applied
loads equal to 10, 20 and 30 kN because in this work has been applied a different loading ramp. Indeed, Berto
has applied a ramp from 0 kN to 100 kN with a step size equal to 10 kN.
Another important difference between the tests is that in this thesis the axial testing machine used is a Schenck

Hydropuls®PSA, instead Berto has used MFL SYSTEME. The comparison between the results is not done for
applied force equal to 40 kN and 50 kN because, as described before, in this case the Schenck machine are
not able to apply exactly the desired load, unlike the MFL SYSTEME. The comparison is done in terms of
membrane stress and it is reported in the following table:

Freal

[kN]

FPullin−Berto

[kN]

σmembr,in f ,avg

[MPa]

σmembr,sup,avg

[MPa]

σmembr,in f ,Pul−Ber

[MPa]

σmembr,sup,Pul−Ber

[MPa]
∆in f % ∆sup%

10 10 25.933 25.727 25.872 26.334 0.23 -2.30
20 20 51.695 51.470 52.416 53.004 -1.38 -2.89

29.27 30 75.773 75.347 79.044 79.212 -4.14 -4.88

Table 6.7: Comparison of the results for the cruciform joint.

Results of T-joint

In Figure 6.34 the membrane and bending stress are reported in function of the applied load. The real applied
load is not equal to the ideal load due to an imprecision of the machine, as reported in the Appendix H.
The area between the two curves (first curve represents the phase of ascending load; the second one represents
the phase of descending load) shows a hysteretic phenomenon that it decreases with the application of the
subsequent loading ramps. Indeed the first ramp that was applied, is not really the first because Berto and
Pullin during their work thesis have applied other ramp loading condition. For this reason the value of the
hysteretic area is roughly null. As the Table H.10 shows, the relative error between the membrane stress and
the theoretical one is included between 0.17%, obtained in the superior part of the welded joint, and 6.12%,
obtained in the inferior part of the welded joint.
As the graph in Figure 6.34 shows, the bending stress can be consider roughly constant. Furthermore, for an
external force equal to 0 kN, the sample is subjected to a bending stress.

Figure 6.34: Distribution of the membrane and bending stress obtained in the T-joint for the application of the 1st loading

ramp. In the graph, the theoretical stress are represented for a comparison with the measured membrane stress.

In Figure 6.35 the membrane and bending stress are reported in function of the applied load for the 2nd
loading ramp. The real applied load is not equal to the ideal load due to an imprecision of the machine, as
reported in the Appendix H.
The difference between the theoretical stress line and the membrane stress line are lower than the case of
the 1st loading ramp. Indeed as the Table H.11 shows, the relative error between the membrane stress and
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the theoretical one is included between 0.15%, obtained in the inferior part of the welded joint, and 4.01%,
obtained in the superior part of the welded joint.
As the graph in Figure 6.35 shows, the bending stress can be consider roughly constant. Furthermore as before,
for an external force equal to 0 kN, the sample is subjected to a bending stress.

Figure 6.35: Distribution of the membrane and bending stress obtained in the T-joint for the application of the 2nd

loading ramp. In the graph, the theoretical stress are represented for a comparison with the measured membrane stress.

In Figure 6.36 the membrane and bending stress are reported in function of the applied load for the 3rd
loading ramp. The real applied load is not equal to the ideal load due to an imprecision of the machine, as
reported in the Appendix H.
The difference between the theoretical stress line and the membrane stress line are roughly equal to the case
of 1st loading ramp. Indeed as the Table H.12 shows, the relative error between the membrane stress and the
theoretical one is included between −0.81%, obtained in the superior part of the welded joint, and 11.66%,
obtained in the inferior part of the welded joint.
As the graph in Figure 6.36 shows, the bending stress can be consider roughly constant. Furthermore as before,
for an external force equal to 0 kN, the sample is subjected to a bending stress.

Figure 6.36: Distribution of the membrane and bending stress obtained in the T-joint for the application of the 3rd

loading ramp. In the graph, the theoretical stress are represented for a comparison with the measured membrane stress.

The obtained results are in according with the results of Berto [65]. The comparison is done only for applied
loads equal to 10, 20 and 30 kN because in this work has been applied a different loading ramp. Indeed, Berto
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has applied a ramp from 0 kN to 135 kN for the T-joint with a different step size.
Another important difference between the tests is that in this thesis the axial testing machine used is a Schenck

Hydropuls®PSA, instead Berto has used MFL SYSTEME. The comparison between the results is not done for
applied force equal to 40 kN and 50 kN because, as described before, in this case the Schenck machine are
not able to apply exactly the desired load, unlike the MFL SYSTEME. The comparison is done in terms of
membrane stress and it is reported in the following table:

Freal

[kN]

FPullin−Berto

[kN]

σmembr,in f ,avg

[MPa]

σmembr,sup,avg

[MPa]

σmembr,in f ,Pul−Ber

[MPa]

σmembr,sup,Pul−Ber

[MPa]
∆in f % ∆sup%

10 10 24.263 24.210 25.441 24.102 -4.63 0.45
20 20 48.801 48.597 51.191 49.028 -4.67 -0.88

28.23 30 69.395 69.070 77.765 73.542 -10.76 -6.08

Table 6.8: Comparison of the results for the T-joint.

6.4 Detection of the misalignment effect

In this paragraph the factor kmis, that considers the effect of misalignment, will be calculated in three different
way:

1. The first kmis is calculated by the using of the formula obtained in the paragraph 5.2.8. These formula are
obtained by a statistical analysis with the minimization of the standard deviation value;

2. The second one is calculated from the formula obtained from the IIW guideline [1];

3. The third kmis is obtained from experimental data.

6.4.1 Calculation of kmis with obtained formula in paragraph 5.2.8

The value of kmis for the cruciform and T-joint are calculated from the formulas obtained in the paragraph 5.2.8
in case of fixed and free slope. The expression are the following:

• Formula obtained from the consideration of stress intensity factor calculated by the application of the
Effective Notch Stress method with a free slope:

kmis = γ
1

1+β · etot
t (6.21)

where:

± β = 1.342;

± γ = 1.266.

• Formula obtained from the consideration of stress intensity factor calculated by the application of the
Effective Notch Stress method with a fixed slope m = 3:

kmis = γ
1

1+β · etot
t (6.22)

where:

± β = 1.224;

± γ = 1.374.

• Formula obtained from the consideration of stress intensity factor calculated by the application of the
Peak Stress Method with a free slope:

kmis = γ
1

1−β · etot
t (6.23)

where:

± β = 0.659;
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± γ = 0.996.

• Formula obtained from the consideration of stress intensity factor calculated by the application of the
Peak Stress Method with a fixed slope m = 3:

kmis = γ
1

1−β · etot
t (6.24)

where:

± β = 0.630;

± γ = 0.975.

The welded joints, as described in the paragraph 6.2.1, are characterised by two different types of misalign-
ment:

1. Axial misalignment e;

2. Angular misalignment α;

The angular misalignment α is converted in an equivalent axial misalignment with the following formula:

enew =
l

2
· tan(α) (6.25)

where l is the total length of the sample. Thus the total misalignment of the welded joint is defined as follows:

etot = e+ enew = e+
l

2
· tan(α) (6.26)

The results are reported in the following tables:

Method β γ Formula of kmis Slope
e

[mm]
α [°]

l/2

[mm]

etot

[mm]

t

[mm]
kmis

ENS 1.342 1.266 γ
1

1+β · etot
t Free 1.323 0.243 150 1.96 10 1.2053

ENS 1.224 1.274 γ
1

1+β · etot
t Fixed 1.323 0.243 150 1.96 10 1.2921

PSM 0.659 0.996 γ
1

1−β · etot
t Free 1.323 0.243 150 1.96 10 0.9954

PSM 0.630 0.975 γ
1

1−β · etot
t Fixed 1.323 0.243 150 1.96 10 0.9715

Table 6.9: Results of kmis for the cruciform joint.

Method β γ Formula of kmis Slope
e

[mm]
α [°]

l/2

[mm]

etot

[mm]

t

[mm]
kmis

ENS 1.342 1.266 γ
1

1+β · etot
t Free 0 0.96 150 2.51 10 1.1929

ENS 1.224 1.274 γ
1

1+β · etot
t Fixed 0 0.96 150 2.51 10 1.2750

PSM 0.659 0.996 γ
1

1−β · etot
t Free 0 0.96 150 2.51 10 0.9952

PSM 0.630 0.975 γ
1

1−β · etot
t Fixed 0 0.96 150 2.51 10 0.9704

Table 6.10: Results of kmis for the T-joint.
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6.4.2 Calculation of kmis with formula from IIW guideline [1]

In this case the value of the kmis factor is calculated using the formula obtained from the IIW recommendations
[1].
The cruciform joint is characterised by an angular and axial misalignment, thus the following formula are used
to consider the effect of the angular misalignment in a cruciform joint:

kmis,angular = 1+λ ·α ·
(

l
2

)2

t · l
2

(6.27)

where:

• λ is a constant that depends on the restraint and in this case is equal to 3;

• α is the angular misalignment of the cruciform joint expresses in radiant (4.24 ·10−3rad);

• l is the total length of the specimen (300 mm);

• t is the thickness of the specimen (10 mm).

If the values of the parameters are inserted in the equation (6.27) the results is:

kmis,angular = 1+λ ·α ·
(

l
2

)2

t · l = 1+3 ·4.24 ·10−3 ·
(

300
2

)2

10 ·300
= 1.0954 (6.28)

The following formula are used to consider the effect of the axial misalignment in a cruciform joint:

kmis,axial = 1+λ ·α · e · l
2

t · l (6.29)

where:

• λ is a constant that depends on the restraint and in this case is equal to 3;

• e is the axial misalignment of the cruciform joint expresses in millimetres (1.323 mm);

• l is the total length of the specimen (300 mm);

• t is the thickness of the specimen (10 mm).

If the values of the parameters are inserted in the equation (6.29) the results is:

kmis,axial = 1+λ · e · l
2

t · l = 1+3 · 1.323 · 300
2

10 ·300
= 1.198 (6.30)

To consider the effect of both misalignment, the following formula is used:

kmis,IIW = 1+(kmis,axial −1)+(kmis,angular −1) (6.31)

If the values of the kmis,angular and kmis,axial are inserted in the equation (6.31) the results is:

kmis,IIW = 1+(kmis,axial −1)+(kmis,angular −1) = 1+(1.198−1)+(1.0954−1) = 1.2939 (6.32)

The T-joint is characterised by only an angular misalignment, so the kmis factor is defined as follows:

kmis,angular = 1+λ ·α ·
(

l
2

)2

t · l (6.33)

where:

• λ is a constant that depends on the restraint and in this case is equal to 3;

• α is the angular misalignment of the cruciform joint expresses in radiant (0.0168 rad);

• l is the total length of the specimen (300 mm);

• t is the thickness of the specimen (10 mm).

The equation (6.33) is valid for angular misalignment of cruciform joint. Due to the lack of a formula for
T-joint, the equation is extended for this type of joint.
If the values of the parameters are inserted in the equation (6.33) the results is:

kmis,angular = 1+λ ·α ·
(

l
2

)2

t · l = 1+3 ·0.0168 ·
(

300
2

)2

10 ·300
= 1.377 (6.34)
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The results are summarised in the following table:

Joint
e

[mm]
α [rad]

l

[mm]

t

[mm]
kmis,angular kmis,axial kmis,tot

Cruciform 1.323 4.24 ·10−3 300 10 1.0954 1.198 1.2939
T-joint 0 0.0168 300 10 1.377 1 1.377

Table 6.11: Summary of results of kmis,IIW .

6.4.3 Calculation of kmis from experimental data

In this case the value of the kmis factor is calculated from the experimental data obtained from the previous test.
Firstly, the ratio between the σbend and σmembr is calculated for each test and for each applied load. This ratio is
called R in this thesis. Subsequently, the average value is calculated. The results are reported in the following
table:

Test 1 Test 2 Test 3 Average value

Freal,avg

[kN]
Rin f Rsup Rin f Rsup Rin f Rsup Rin f ,avg Rsup,avg

5 0.2228 0.6812 0.1917 0.6759 0.1998 0.7200 0.2048 0.6924
10 0.3127 0.5125 0.2961 0.5091 0.2992 0.5318 0.3027 0.5178
15 0.3391 0.4549 0.3259 0.4533 0.3303 0.4683 0.3318 0.4588
20 0.3501 0.4247 0.3425 0.4233 0.3480 0.4367 0.3469 0.4283

24.93 0.3553 0.4066 0.3489 0.4039 0.3508 0.4150 0.3517 0.4085
29.27 0.3573 0.3952 0.3512 0.3909 0.3536 0.4009 0.3541 0.3957
33.33 0.3580 0.3880 0.3511 0.3798 0.3545 0.3908 0.3545 0.3862
37.23 0.3575 0.3812 0.3513 0.3721 0.3467 0.3713 0.3519 0.3749
41.07 0.3522 0.3663 0.3518 0.3666 0.3481 0.3673 0.3507 0.3667
44.83 0.3531 0.3647 0.3518 0.3621 0.3487 0.3645 0.3512 0.3637
40.93 0.3461 0.3688 0.3498 0.3661 0.3477 0.3686 0.3479 0.3678
36.97 0.3450 0.3737 0.3492 0.3711 0.3453 0.3732 0.3465 0.3727
32.97 0.3419 0.3801 0.3473 0.3767 0.3431 0.3796 0.3441 0.3788
28.96 0.3378 0.3873 0.3443 0.3844 0.3399 0.3868 0.3406 0.3862
24.83 0.3314 0.3975 0.3390 0.3929 0.3341 0.3964 0.3348 0.3956

20 0.3198 0.4120 0.3295 0.4072 0.3235 0.4119 0.3243 0.4104
15 0.2984 0.4365 0.3100 0.4293 0.3046 0.4364 0.3043 0.4341
10 0.2621 0.4862 0.2706 0.4738 0.2623 0.4809 0.2650 0.4803
5 0.1330 0.6257 0.1475 0.6095 0.1354 0.6114 0.1386 0.6155

Table 6.12: Results of ratio R for the cruciform joint.
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Test 1 Test 2 Test 3 Average value

Freal,avg

[kN]
Rin f Rsup Rin f Rsup Rin f Rsup Rin f ,avg Rsup,avg

5 0.6522 0.2485 0.6413 0.2556 0.6482 0.2552 0.6472 0.2531
10 0.3429 0.1318 0.3368 0.1356 0.3394 0.1341 0.3397 0.1338
15 0.2366 0.0919 0.2322 0.0944 0.2339 0.0950 0.2342 0.0938
20 0.1827 0.0718 0.1802 0.0747 0.1809 0.0758 0.1813 0.0741

24.33 0.1535 0.0628 0.1510 0.0652 0.1521 0.0652 0.1522 0.0644
28.23 0.1344 0.0526 0.1326 0.0588 0.1338 0.0590 0.1336 0.0568
32.10 0.1204 0.0488 0.1186 0.0540 0.1192 0.0533 0.1194 0.0520
35.93 0.1095 0.0451 0.1074 0.0500 0.1081 0.0505 0.1083 0.0485
39.67 0.1005 0.0438 0.0988 0.0472 0.0992 0.0475 0.0995 0.0462
43.50 0.0936 0.0411 0.0921 0.0442 0.0921 0.0448 0.0926 0.0434
39.67 0.1016 0.0438 0.0985 0.0473 0.0990 0.0475 0.0997 0.0462
35.93 0.1096 0.0468 0.1072 0.0510 0.1077 0.0513 0.1082 0.0497
32.07 0.1205 0.0499 0.1179 0.0557 0.1189 0.0550 0.1191 0.0535
28.20 0.1343 0.0548 0.1319 0.0607 0.1322 0.0609 0.1328 0.0588
24.37 0.1533 0.0628 0.1505 0.0672 0.1509 0.0683 0.1516 0.0661

20 0.1817 0.0732 0.1793 0.0787 0.1807 0.0786 0.1806 0.0768
15 0.2376 0.0903 0.2340 0.0977 0.2357 0.0973 0.2358 0.0951
10 0.3453 0.1231 0.3439 0.1339 0.3452 0.1343 0.3448 0.1304
5 0.6600 0.2164 0.6640 0.2387 0.6691 0.2460 0.6644 0.2337

Table 6.13: Results of ratio R for the T-joint.

After that, the kmis factor that considers the misalignment effect is defined as follows:

kmis =
σmembr,sup/in f +σbend,sup/in f

σmembr,sup/in f

(6.35)

If the values of the average stress are substituted inside the equation (6.35), the results are:

Freal,avg

[kN]

σmembr,sup,avg

[MPa]

σmembr,in f ,avg

[MPa]

σbend,sup,avg

[MPa]

σbend,in f ,avg

[MPa]
kmis,exp,sup kmis,exp,in f

5 12.85 13.02 8.90 2.67 1.693 1.205
10 25.73 25.93 13.32 7.85 1.518 1.303
15 38.59 38.84 17.71 12.88 1.459 1.332
20 51.47 51.69 22.04 17.93 1.428 1.347

24.93 64.18 64.52 26.22 22.69 1.408 1.352
29.27 75.35 75.77 29.82 26.83 1.396 1.354
33.33 85.67 86.24 33.09 30.58 1.386 1.355
37.23 95.28 96.50 35.72 33.95 1.375 1.352
41.07 104.80 106.47 38.43 37.34 1.367 1.351
44.83 114.77 116.29 41.75 40.84 1.364 1.351
40.93 104.79 106.46 38.55 37.04 1.368 1.348
36.97 94.55 96.28 35.24 33.36 1.373 1.346
32.97 84.20 85.91 31.90 29.56 1.379 1.344
28.96 73.77 75.54 28.49 25.73 1.386 1.341
24.83 63.15 64.94 24.98 21.74 1.396 1.335

20 50.62 52.49 20.78 17.02 1.410 1.324
15 37.72 39.60 16.37 12.05 1.434 1.304
10 24.83 26.66 11.93 7.06 1.480 1.265
5 11.91 13.77 7.33 1.91 1.616 1.139

Table 6.14: Results of kmis,exp for the cruciform joint.
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Freal,avg

[kN]

σmembr,sup,avg

[MPa]

σmembr,in f ,avg

[MPa]

σbend,sup,avg

[MPa]

σbend,in f ,avg

[MPa]
kmis,exp,sup kmis,exp,in f

5 16.10 12.10 3.05 7.83 1.190 1.647
10 28.28 24.26 3.24 8.24 1.115 1.340
15 40.44 36.48 3.41 8.54 1.084 1.234
20 52.17 48.80 3.60 8.85 1.069 1.181

24.33 62.57 59.63 3.82 9.07 1.061 1.152
28.23 72.27 69.40 3.92 9.27 1.054 1.134
32.10 81.87 79.12 4.09 9.45 1.050 1.119
35.93 91.44 88.81 4.29 9.62 1.047 1.108
39.67 100.90 98.30 4.51 9.78 1.045 1.099
43.50 104.27 108.02 4.66 10.01 1.045 1.093
39.67 95.10 98.83 4.53 9.85 1.048 1.100
35.93 85.90 89.65 4.42 9.70 1.052 1.108
32.07 76.50 80.22 4.26 9.56 1.056 1.119
28.20 66.99 70.80 4.13 9.40 1.062 1.133
24.37 57.16 61.16 4.01 9.27 1.070 1.152

20 46.00 50.53 3.85 9.12 1.084 1.181
15 33.62 38.11 3.59 8.99 1.107 1.236
10 21.22 25.60 3.31 8.83 1.156 1.345
5 8.74 13.04 3.01 8.66 1.344 1.664

Table 6.15: Results of kmis,exp for the T-joint.

Subsequently, the average value of the kmis,exp,in f/sup is calculated and the results are reported in the follow-
ing table:

Type of Joint kmis,exp,sup,avg kmis,exp,in f ,avg

Cruciform 1.433 1.318
T-joint 1.091 1.218

Table 6.16: Results of kmis,exp,avg for cruciform and T-joint.
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Chapter 7

Conclusions

The present work delved into the effect of the misalignment on the fatigue behaviour of welded joint, made of
steel, in CAL (Constant Amplitude Loading) and in VAL (Variable Amplitude Loading) condition.
In the case of CAL condition, as described in the Chapter 5, four new design curve are proposed for the Effec-
tive Notch Stress approach and Peak Stress Method to consider the misalignment effect through the definition
of a factor kmis, that is a function of the thickness and the misalignment of the joint. The scatter band of these
curve are obtained through a statistical analysis with the objective to minimize the standard deviation and the
ratio Tσ . This method has been applied with a imposed slope m equal to 3 (typical value of the fatigue design
curve for welded joint in as-welded condition) and also for a free slope. These design curve are represented in
the following figure with the relative definition of the factor kmis:

kmis = γ
1

1+β · etot
t (7.1)

where:

• β = 1.342;

• γ = 1.266.

Figure 7.1: ENS Fatigue design curve for β = 1.342 and γ = 1.266 with free slope.
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kmis = γ
1

1+β · etot
t (7.2)

where:

• β = 1.224;

• γ = 1.374.

Figure 7.2: ENS Fatigue design curve for β = 1.224 and γ = 1.374 with fixed slope.

kmis = γ
1

1−β · etot
t (7.3)

where:

• β = 0.659;

• γ = 0.996.

Figure 7.3: PSM Fatigue design curve for β = 0.659 and γ = 0.996 with free slope.
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kmis = γ
1

1−β · etot
t (7.4)

where:

• β = 0.630;

• γ = 0.975.

Figure 7.4: PSM Fatigue design curve for β = 0.630 and γ = 0.975 with fixed slope.

The expression of the kmis are compared with the factor obtained from experimental results and from IIW
guideline [1] in the Chapter 6 for the welded joint analysed in the same chapter. The values of the kmis factor
are plotted in the following graph in terms of the applied force during the test and the results are summarised
in the Table 7.1:

Figure 7.5: Comparison of the value of kmis factor for the cruciform joint.
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Figure 7.6: Comparison of the value of kmis factor for the T-joint.

Cruciform Joint

kmis,PSM, f ree kmis,PSM, f ixed kmis,ENS, f ree kmis,ENS, f ixed kmis,IIW kmis,exp,in f ,avg kmis,exp,sup,avg

0.9954 0.9715 1.2053 1.2921 1.2939 1.318 1.433
T-Joint

0.9952 0.9704 1.1929 1.2750 1.377 1.218 1.091

Table 7.1: Results of kmis for the cruciform and T-joint.

The relative errors between kmis,ENS, f ixed , kmis,IIW , kmis,exp,in f ,avg and kmis,exp,sup,avg are calculated for the
cruciform joint:

∆%ENS, f ixed/IIW =
kmis,ENS, f ixed − kmis,IIW

kmis,IIW

·100 =−0.139% (7.5)

∆%ENS, f ree/exp,in f ,avg =
kmis,ENS, f ree − kmis,exp,in f ,avg

kmis,exp,in f ,avg

·100 =−8.551% (7.6)

∆%ENS, f ree/exp,sup,avg =
kmis,ENS, f ree − kmis,exp,sup,avg

kmis,exp,sup,avg

·100 =−15.890% (7.7)

∆%ENS, f ixed/exp,in f ,avg =
kmis,ENS, f ixed − kmis,exp,in f ,avg

kmis,exp,in f ,avg

·100 =−1.965% (7.8)

∆%ENS, f ixed/exp,sup,avg =
kmis,ENS, f ixed − kmis,exp,sup,avg

kmis,exp,sup,avg

·100 =−9.833% (7.9)

The relative errors between kmis,ENS, f ixed , kmis,IIW , kmis,exp,in f ,avg and kmis,exp,sup,avg are calculated for the
T-joint:

∆%ENS, f ixed/IIW =
kmis,ENS, f ixed − kmis,IIW

kmis,IIW

·100 =−7.407% (7.10)

∆%ENS, f ree/exp,in f ,avg =
kmis,ENS, f ree − kmis,exp,in f ,avg

kmis,exp,in f ,avg

·100 =−2.061% (7.11)

∆%ENS, f ree/exp,sup,avg =
kmis,ENS, f ree − kmis,exp,sup,avg

kmis,exp,sup,avg

·100 =−9.340% (7.12)

∆%ENS, f ixed/exp,in f ,avg =
kmis,ENS, f ixed − kmis,exp,in f ,avg

kmis,exp,in f ,avg

·100 =−4.680% (7.13)

∆%ENS, f ixed/exp,sup,avg =
kmis,ENS, f ixed − kmis,exp,sup,avg

kmis,exp,sup,avg

·100 =−16.865% (7.14)

As the graphs shows, for the cruciform joint the experimental values of the kmis are higher than both of kmis

obtained from the IIW guideline [1] and the proposed formulas. Instead, for the T-joints the values of the factor
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proposed from IIW guideline [1] and the new formula of kmis for ENS are higher than the experimental value.
These consideration is in according with the initial hypothesis because the external load of the cruciform joint
is applied on the plate made of ADI 1050 (so the Young modulus of the ADI 1050 is used for the calculation
of the membrane and bending stress), instead of the T-joint where the load is applied on the steel plate(so the
Young modulus of the steel is used for the calculation of the membrane and bending stress). Indeed, the pro-
posed formula are valid for the welded joint made of steel with different mechanical properties.
Another important consideration is that the value of kmis calculated with the formula proposed in this work for
ENS method with fixed slope and with the formula of IIW guideline [1] are in according each other for the
cruciform joint. In the case of the T-joint, the relative error between kmis,ENS, f ixed and kmis,IIW are higher than
the cruciform joint because the formula of the IIW guideline [1] is calibrated for the cruciform joint and not for
T-joint.
The proposed expression of the kmis factor in the case of the application of ENS approach, can substitute the
expression defined in the IIW guideline [1] (equations (6.27) and (6.29)) for the fatigue behaviour assessment
of steel welded joint in as-welded condition and subjected to an axial load.

In the case of VAL condition, as described in the Chapter 5, four new design curve are proposed for
the Effective Notch Stress approach and Peak Stress Method to consider the misalignment effect through the
definition of a factor kmis, that is a function of the thickness and the misalignment of the joint. In this case, the
welded joint analysed are characterised by a HFMI post welded treatment. The scatter band of these curve are
obtained through a statistical analysis with the objective to minimize the standard deviation and the ratio Tσ .
This method has been applied with a imposed slope m equal to 5 (typical value of the fatigue design curve for
welded joint HFMI post-welded treatment) and also for a free slope. These design curve are represented in the
following figure with the relative definition of the factor kmis:

kmis = γ
1

1−β · etot
t (7.15)

where:

• β = 0.599;

• γ = 0.998.

Figure 7.7: ENS Fatigue design curve for β = 0.599 and γ = 0.998 with free slope (VAL condition).
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kmis = γ
1

1−β · etot
t (7.16)

where:

• β = 0.391;

• γ = 0.966.

Figure 7.8: ENS Fatigue design curve for β = 0.391 and γ = 0.966 with fixed slope (VAL condition).

kmis = γ
1

1−β · etot
t (7.17)

where:

• β = 0.599;

• γ = 0.998.
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Figure 7.9: PSM Fatigue design curve for β = 0.599 and γ = 0.998 with free slope (VAL condition).

kmis = γ
1

1−β · etot
t (7.18)

where:

• β = 0.338;

• γ = 0.891.

Figure 7.10: PSM Fatigue design curve for β = 0.338 and γ = 0.891 with fixed slope.
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7.1 Future improvements

As further developments:

1. The FE analysis for the application of ENS and PSM approaches should be improved with the imposition
of displacement to simulate the action of the clamps when the specimen is inserted in the test machine;

2. Experimental data collection of the misalignment joint in CAL condition should be performed at the
University of Padua;

3. The procedure to detect the kmis should be extended for HFMI welded joint in CAL condition;

4. To obtain a more accurate definition of the kmis factor in VAL condition, the number of specimen should
be increase;

5. The definition of the kmis factor in VAL condition should be verify and compared with experimental
results. Thus, the same experimental procedure executed for CAL condition should be applied.
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Appendix A

Nodal stress ∆σyy and ∆σ11 and relative

comparison

A.1 Brace side

∆σ11[MP a] ∆σyy[MP a] ϕ[◦] ∆σyy,avg[MP a]
Rel. error yy-11

[%]

303.87 303.82 0 / 0.02
345.05 344.76 4.50 / 0.08
353.98 351.56 9.00 356.21 0.69
375.38 372.31 13.50 350.31 0.82
332.25 327.02 18.00 347.52 1.58
351.32 343.17 22.50 337.88 2.38
350.04 343.41 27.00 340.53 1.93
345.71 335.02 31.50 335.98 3.19
353.49 329.52 36.00 338.06 7.28
362.25 349.66 40.50 357.55 3.60
405.67 393.46 45.00 383.05 3.10
416.48 406.03 49.50 407.93 2.57
435.44 424.29 54.00 420.98 2.63
442.2 432.61 58.50 446.73 2.22
489.5 483.29 63.00 472.28 1.28

506.21 500.93 67.50 493.06 1.05
498.84 494.95 72.00 520.07 0.79
568.13 564.33 76.50 529.71 0.67
532.52 529.86 81.00 572.29 0.50
624.13 622.67 85.50 / 0.23
534.35 532.05 90.00 / 0.43

Table A.1: Nodal stress ∆σyy and ∆σyy along the chord side and their relative error.
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Appendix A: Nodal stress ∆σyy and ∆σ11 and relative comparison

A.2 Chord side

∆σ11[MP a] ∆σyy[MP a] ϕ[◦] Rel. error [%] ∆σyy,avg[MP a]

271.59 271.52 0.00 / 0.03
344.90 344.46 3.91 / 0.13
293.96 292.15 7.83 302.98 0.62
277.14 272.33 11.74 290.15 1.77
312.40 305.97 15.65 295.62 2.10
318.11 308.56 19.57 298.64 3.10
293.34 281.39 23.48 301.92 4.25
328.33 315.82 27.39 310.03 3.96
350.15 332.89 31.30 335.22 5.18
375.55 356.96 35.22 348.28 5.21
370.77 354.98 39.13 376.22 4.45
433.37 416.70 43.04 397.66 4.00
440.45 421.28 46.96 412.32 4.55
416.54 398.99 50.87 419.05 4.40
455.46 436.87 54.78 433.52 4.26
474.36 464.70 58.70 468.02 2.08
515.07 502.49 62.61 489.55 2.50
510.77 501.47 66.52 510.76 1.86
533.43 528.32 70.43 503.37 0.97
485.25 480.32 74.35 496.33 1.03
482.96 480.36 78.26 493.38 0.54
520.69 519.48 82.17 516.28 0.23
549.69 549.02 86.09 / 0.12
541.71 541.35 90.00 / 0.07

Table A.2: Nodal stress ∆σyy and ∆σyy along the chord side and their relative error.
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Appendix B

Nodal stress ∆σ11 and average peak stress

value

B.1 Marquis 2010, longitudinal attachment FAT 71

Node ∆σ11[MP a] ∆σ yy,avg[MP a] ∆σ11,peak

2 2.674 / 2.517
8 2.537 /
6 2.420 2.517
4 2.593 2.437
1 2.294 2.449

893 2.462 2.364
891 2.331 2.357
889 2.271 2.246
887 2.126 2.150
885 2.050 2.053
883 1.984 1.972
881 1.882 1.868
879 1.737 1.752
877 1.637 1.660
875 1.605 1.549
873 1.406 1.423
871 1.257 1.278
869 1.170 1.163
867 1.060 1.072
865 0.984 0.987
863 0.918 /
712 0.877 /

Table B.1: Nodal stress ∆σ11 and averaged stress value along the weld toe.

Figure B.1: Selected nodes along the weld toe.
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Appendix B: Nodal stress ∆σ11 and average peak stress value

B.2 Vanrostenberghe 2010, longitudinal attachment FAT 63

10 mm

Node ∆σ11[MP a] ∆σ yy,avg[MP a] ∆σ11,peak

2 3.535 / 3.550
10 3.263 /
8 4.004 3.462
6 3.120 3.546
4 3.514 3.341
1 3.390 3.550

879 3.747 3.480
877 3.304 3.276
875 2.777 2.851
873 2.473 2.425
871 2.024 2.081
869 1.747 1.727
867 1.411 /
716 1.149 /

Table B.2: Nodal stress ∆σ11 and averaged stress value along the weld toe.

Figure B.2: Selected nodes along the weld toe.
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B.2 Vanrostenberghe 2010, longitudinal attachment FAT 63

20 mm

Node ∆σ11[MP a] ∆σ yy,avg[MP a] ∆σ11,peak

2 4.112 / 3.778
20 3.537 /
18 3.714 3.701
16 3.850 3.778
14 3.770 3.762
12 3.667 3.659
10 3.538 3.585
8 3.548 3.585
6 3.669 3.616
4 3.632 3.668
1 3.705 3.719

895 3.819 3.716
893 3.625 3.583
891 3.304 3.363
889 3.159 3.111
887 2.869 2.974
885 2.894 2.713
883 2.376 2.428
881 2.014 2.014
879 1.654 1.684
877 1.383 1.420
875 1.222 /
724 1.028 /

Table B.3: Nodal stress ∆σ11 and averaged stress value along the weld toe.

Figure B.3: Selected nodes along the weld toe.

349



Appendix B: Nodal stress ∆σ11 and average peak stress value
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Appendix C

Experimental results in As- welded

condition

C.1 Marquis 2010, longitudinal stiffener FAT 71

Stress Ratio

R

∆σnom

[MPa]
Nf [cycles]

∆σeq,peak,Tetra187

[MPa]

SED

[MJ/mm3]

SHSSLSE

[MPa]

-1

159.7 229 600 378.16 0.299 228.65
158.9 265 500 376.27 0.296 227.50
158.5 679 800 375.32 0.294 226.93
149.5 402 100 354.01 0.262 214.04
136.7 2 808 000 323.70 0.219 195.72
116.8 564 900 276.58 0.160 167.23
104.5 844 100 247.45 0.128 149.62
100.5 6 403 000 237.98 0.118 143.89

Table C.1: Results of the 1st joint, Marquis 2010. The number barred represents the run-outs

C.2 Vanrostenberghe 2015, longitudinal stiffener FAT 63

10mm

Stress

Ratio R

∆σnom

[MPa]

Nf

[cycles]

∆σeq,peak,Tetra187

[MPa]

SED

[MJ/mm3]

SHSSLSE

[MPa]

∆σeq,peak,Brick185

[MPa]

0.1

50 10000000 0.059 168.641 70.183 167.196
70 10000000 0.116 236.097 98.257 234.075
90 3466968 0.191 303.554 126.330 300.953

200 204202 0.944 674.563 280.733 668.784
250 112546 1.475 843.204 350.917 835.981
350 47716 2.891 1180.486 491.283 1170.373

0.1

50 10000000 0.059 168.641 70.183 167.196
70 2333651 0.116 236.097 98.257 234.075
90 893070 0.191 303.554 126.330 300.953

200 88800 0.944 674.563 280.733 668.785
250 49800 1.475 843.204 350.917 835.981
300 33700 2.124 1011.845 421.100 1003.177

Table C.2: Results of the 1st joint,Vanrostenberghe 2015 10 mm. The number barred represents the run-outs
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Appendix C: Experimental results in As- welded condition

20mm

Stress

Ratio R

∆σnom

[MPa]

Nf

[cycles]

∆σeq,peak,Tetra187

[MPa]

SED

[MJ/mm3]

SHSSLSE

[MPa]

∆σeq,peak,Brick185

[MPa]

0.1

70 3600954 0.138 251.244 83.867 234.075
90 1513276 0.228 323.028 107.829 300.953

200 125887 1.126 717.839 239.620 668.784
250 113433 1.760 897.299 299.525 835.981
350 41521 3.449 1256.218 419.334 1170.373

0.5

70 10000000 0.138 251.244 83.867 234.075
90 1612500 0.228 323.028 107.829 300.953

125 828000 0.440 448.649 149.762 417.990
200 136936 1.126 717.839 239.620 668.784
250 85459 1.760 897.299 299.525 835.981
300 49546 2.534 1076.759 359.429 1003.177

Table C.3: Results of the 1st joint,Vanrostenberghe 2015 20 mm. The number barred represents the run-outs

C.3 Yildirim 2020, transverse attachment FAT 80

Stress Ratio

R

∆σnom

[MPa]
Nf [cycles]

∆σeq,peak,Plane182

[MPa]

SHSSLSE

[MPa]

0.1

153 827502 244.567 157.566
190 334910 303.711 195.671
153 837466 244.567 157.566
190 383736 303.711 195.671
117 11700000 187.022 120.492
125 10052008 199.810 128.731

-0.43

190 608805 303.711 195.671
243 201094 388.430 250.253
153 1723400 244.567 157.566
243 217785 388.430 250.253
190 710346 303.711 195.671
136 10122344 217.393 140.059

Table C.4: Results of the 3rd joint, Yildirim 2020. The number barred represents the run-outs

C.4 Okawa 2013, transverse attachment FAT 80

Stress Ratio

R

∆σnom

[MPa]
Nf [cycles]

∆σeq,peak,Plane182

[MPa]

SHSSLSE

[MPa]

0.1

200 164000 434.833 213.217
150 354000 326.125 159.913
100 1320000 217.417 106.609
80 5000000 173.933 85.287

Table C.5: Results of the 4th joint, Okawa 2013. The number barred represents the run-outs

352



C.5 Kuhulmann-Gunther 2009, transverse attachment FAT 80

C.5 Kuhulmann-Gunther 2009, transverse attachment FAT 80

Stress Ratio

R
Material

∆σnom

[MPa]
Nf [cycles]

∆σeq,peak,Plane182

[MPa]

SHSSLSE

[MPa]

0.1 S355J2

300 67921 569.835 313.088
300 64159 569.835 313.088
170 574631 322.907 177.416
170 456289 322.907 177.416
125 1400261 237.431 130.453
125 3712215 237.431 130.453
225 185219 427.377 234.816
225 168630 427.377 234.816
125 1933751 237.431 130.453

0.1 S690QL

300 106797 569.835 313.088
300 123652 569.835 313.088
225 537534 427.377 234.816
225 415746 427.377 234.816
190 1028720 360.896 198.289
190 575000 360.896 198.289
190 1034355 360.896 198.289
150 3517443 284.918 156.544
150 1833757 284.918 156.544

Table C.6: Results of the 5th joint,Kuhlmann-Gunther 2009. The number barred represents the run-outs
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Appendix C: Experimental results in As- welded condition
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Appendix D

Experimental results in HFMI-treated

condition

D.1 Marquis 2010, longitudinal stiffener FAT 71

Stress Ratio

R

∆σnom

[MPa]
Nf [cycles]

SED

[MJ/mm3]

∆σeq,peak,SED

[MPa]

SHSSLSE

[MPa]

-1

464 499 700 2.320 1024.805 664.321
450 552 400 2.182 993.884 644.277
446 208 600 2.143 985.050 638.550
410 1 949 000 1.811 905.539 587.008
337 964 800 1.224 744.309 482.492
337 858 400 1.224 744.309 482.492
317 447 500 1.083 700.136 453.857
305 469 700 1.002 673.633 436.677
257 2 907 000 0.712 567.618 367.954
255 1 980 000 0.701 563.201 365.090

Table D.1: Results of the 1st joint in HFMI conditions, Marquis 2010.
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Appendix D: Experimental results in HFMI-treated condition

D.2 Vanrostenberghe, longitudinal stiffener FAT 63

10mm

Material
Stress Ratio

R

∆σnom

[MPa]
Nf [cycles]

SED

[MJ/mm3]

∆σeq,peak,SED

[MPa]

SHSSLSE

[MPa]

0.1

90 10 000 000 0.112 225.418 126.330
175 10 000 000 0.424 438.313 245.642
90 6 000 000 0.112 225.418 126.330

150 6 000 000 0.312 375.697 210.550
90 2 000 000 0.112 225.418 126.330

200 6 000 000 0.554 500.929 280.733
225 10 000 000 0.701 563.545 315.825
90 10 000 000 0.112 225.418 126.330

200 10 000 000 0.554 500.929 280.733
70 2 000 000 0.068 175.325 98.257
90 2 000 000 0.112 225.418 126.330

S700MC 300 158 200 1.247 751.394 421.100
S690QL 150 2 031 700 0.312 375.697 210.550

250 3 547 800 0.866 626.161 350.917
350 101 200 1.697 876.626 491.283
150 532 122 0.312 375.697 210.550
350 187 828 1.697 876.626 491.283
250 855 162 0.866 626.161 350.917
350 82 506 1.697 876.626 491.283
400 98 500 2.217 1001.858 561.467
250 317 200 0.866 626.161 350.917
350 223 100 1.697 876.626 491.283
225 18 010 0.701 563.545 315.825
350 134 300 1.697 876.626 491.283

S700MC 0.5
250 33 391 0.866 626.161 350.917
200 84 895 0.554 500.929 280.733

Table D.2: Results of the 2nd joint,Vanrostenberghe 2015 in HFMI-treated condition. The number barred represents the

run-outs.
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D.3 Yildirim 2020, transverse attachment FAT 80

20mm

Material
Stress Ratio

R

∆σnom

[MPa]
Nf [cycles]

SED

[MJ/mm3]

∆σeq,peak,SED

[MPa]

SHSSLSE

[MPa]

S690QL 0.1

150 10 000 000 0.362 404.882 179.715
250 10 000 000 1.006 674.803 299.525
275 141 700 1.217 742.283 329.477
200 480 200 0.644 539.842 239.620
250 232 323 1.006 674.803 299.525
350 80 830 1.971 944.724 419.334
400 184 642 2.575 1079.685 359.429
300 470 640 1.448 809.764 359.429
350 123 655 1.971 944.724 419.334

S690QL 0.5

200 343 210 0.644 539.842 239.620
125 1 019 256 0.251 337.402 149.762
150 644 530 0.362 404.882 179.715
275 56 926 1.217 742.283 329.477

Table D.3: Results of the 2nd joint in HFMI-treated condition,Vanrostenberghe 2015. The number barred represents the

run-outs.

D.3 Yildirim 2020, transverse attachment FAT 80

Stress Ratio

R

∆σnom

[MPa]
Nf [cycles]

SED

[MJ/mm3]

∆σeq,peak,SED

[MPa]

SHSSLSE

[MPa]

-0.43

242 798 406 0.344 450.038 249.223
181 1 346 563 0.192 336.598 186.402
242 433 673 0.344 450.038 249.223
181 1 351 325 0.192 336.598 186.402
181 1 695 096 0.192 336.598 186.402

Table D.4: Results of the 3rd joint in HFMI conditions, Yildirim 2020.
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Appendix D: Experimental results in HFMI-treated condition

D.4 Okawa 2013, transverse attachment FAT 80

Stress Ratio

R

∆σnom

[MPa]
Nf [cycles]

SED

[MJ/mm3]

∆σeq,peak,SED

[MPa]

SHSSLSE

[MPa]

-1
420 378 000 1.758 1017.268 447.756
400 990 000 1.595 968.827 426.435
380 2 295 000 1.439 920.386 405.113

0.1

250 5 000 000 0.623 605.517 266.522
270 818 000 0.727 653.958 287.843
260 1 067 000 0.674 629.738 277.183
300 304 000 0.897 726.620 319.826

0.5

125 346 000 0.156 302.758 133.261
175 346 000 0.305 423.862 186.565
150 503 000 0.224 363.310 159.913
135 3 450 000 0.182 326.979 143.922

Table D.5: Results of the 4th joint in HFMI conditions, Okawa 2013.The number barred represents the run-outs.

D.5 Kuhlmann-Gunther 2009, transverse attachment FAT 80

Material
Stress Ratio

R

∆σnom

[MPa]
Nf [cycles]

SED

[MJ/mm3]

∆σeq,peak,SED

[MPa]

SHSSLSE

[MPa]

S355J2 0.1

300 1 426 998 0.752 665.414 313.088
340 137 721 0.966 754.136 354.833
340 116 159 0.966 754.136 354.833
315 711 012 0.829 698.685 328.742
315 298 866 0.829 698.685 328.742
280 799 250 0.655 621.053 292.215

S690QL 0.1

340 768 457 0.9389 743.3803 354.8327
340 478 283 0.9389 743.3803 354.8327
315 759 450 0.8059 688.7200 328.7421
315 1 270 270 0.8059 688.7200 328.7421
400 193 512 1.2995 874.5651 417.4503
400 228 100 1.2995 874.5651 417.4503
280 2 119 665 0.6368 612.1956 292.2152

Table D.6: Results of the 5th joint in HFMI conditions, Kuhlmann-Gunther 2009.
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D.6 Kuhlmann 2006, transverse attachment FAT 80

D.6 Kuhlmann 2006, transverse attachment FAT 80

Material
Stress Ratio

R

∆σnom

[MPa]
Nf [cycles]

SED

[MJ/mm3]

∆σeq,peak,SED

[MPa]

SHSSLSE

[MPa]

S355 0.1

306 108 489 0.666 625.881 321.751
278 363 274 0.549 568.611 292.310
253 455 624 0.455 517.477 266.023
230 977 946 0.376 470.433 241.839
261 349,432 0.484 533.839 274.435
264 315 592 0.495 539.976 277.589
217 1 146 656 0.335 443.844 228.170
260 845 460 0.480 531.794 273.383
320 89,949 0.728 654.516 336.472
250 1 365 764 0.444 511.341 262.869
294 200 637 0.614 601.336 309.133

S460 0.1

290 595 040 0.598 593.155 304.928
320 174 924 0.728 654.516 336.472
287 346 406 0.585 587.019 301.773
250 992 769 0.444 511.341 262.869
240 1 077822 0.409 490.887 252.354
387 51 593 1.065 791.555 406.921
294 221 726 0.614 601.336 309.133
332 260 850 0.783 679.060 349.089
356 162 744 0.901 728.149 374.325
271 522 654 0.522 554.293 284.950

Table D.7: Results of the 6th joint in HFMI conditions, Kuhlmann 2006.
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Appendix D: Experimental results in HFMI-treated condition
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Appendix E

Matlab codes

E.1 MatLab code to build the model inside Ansys®APDL with the sam-

pling

1 clc;

clear all;

3 close all;

5 formatSpec = ’%f %f %f’;

sizeA = [3 Inf];

7 data=importdata(’355-WH-6.txt’);%import cloud of points

A=data;

9

for i=1:size(A,1)

11 if A(i,1)==1

A1(i,:)=A(i,:);

13 else

A0(i,:)=A(i,:);

15

end

17 end

A0 = A0(~all(A0 == 0, 2),:);

19

hold on

21 axis equal

plot(A1(:,2),A1(:,3))

23 plot(A0(:,2),A0(:,3))

25 A1_camp=zeros(size(A1));

A0_camp=zeros(size(A0));

27 n=10;% parameter for sampling

29 %Creation of matrix A1_camp

for i=1:n:size(A1,1)

31 A1_camp(i,:)=A1(i,:);

end

33 A1_camp = A1_camp(~all(A1_camp == 0, 2),:);

plot(A1_camp(:,2),A1_camp(:,3),’.r’)

35

%Creation of matrix A0_camp

37 for i=1:n:size(A0,1)

A0_camp(i,:)=A0(i,:);

39 end

41 A0_camp = A0_camp(~all(A0_camp == 0, 2),:);

plot(A0_camp(:,2),A0_camp(:,3),’.r’)

43
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Appendix E: Matlab codes

%Creation of matrix with the all coordinates after sampling

45 A_camp=[A1_camp;A0_camp];

47 %Opening of APDL file

fid=fopen(’MAPDLi.txt’,’w’);

49 fprintf(fid,’/CLEAR\n’);

51 %Opening of Preprocessor

fprintf(fid,[’/PREP7’,’\n’]);

53

%Definition of element

55 fprintf(fid,’ET,1,PLANE182\n’);

fprintf(fid,’KEYOPT,1,1,3\nKEYOPT,1,3,2\nKEYOPT,1,6,0\n’);

57

%Definition of Material

59 E=206000;

ni=0.3;

61 fprintf(fid,[’MPTEMP,,,,,,,,\nMPTEMP,1,0\nMPDATA,EX,1,,’,num2str(E),’\n’]);

fprintf(fid,’MPDATA,PRXY,1,,’,num2str(ni),’\n’);

63

65 %Writing of keypoints

for i=1:size(A_camp)

67 fprintf(fid,[’K,’,num2str(i),’,’,num2str(A_camp(i,2)),’,’,num2str(A_camp(i,3)),’,0’,’\n’]);

end

69

%Interpolation to extend the joint

71

l=300;%length of the joint

73 L1=200;%length of constraint

75 %keypoint a x=-300 in top left

deltax= A1_camp(1,2)-A1_camp(2,2);

77 deltay= A1_camp(1,3)-A1_camp(2,3);

m=deltay/deltax;

79 xp=A1_camp(1,2);

yp=A1_camp(1,3);

81 y=@(x) m*(x-xp)+yp;

y1=y(-l);

83 fprintf(fid,[’K,’,num2str(i+1),’,’,num2str(-l),’,’,num2str(y1),’,0’,’\n’]);

85 %keypoint a x=-200 in top left

deltax=-l-A1_camp(1,2);

87 deltay=y1-A1_camp(1,3);

m=deltay/deltax;

89 xp=-l;

yp=y1;

91 y=@(x) m*(x-xp)+yp;

y5=y(-L1);

93 fprintf(fid,[’K,’,num2str(i+5),’,’,num2str(-L1),’,’,num2str(y5),’,0’,’\n’]);

95 %keypoint a x=-300 in bottom left

deltax= A0_camp(1,2)-A0_camp(2,2);

97 deltay= A0_camp(1,3)-A0_camp(2,3);

m=deltay/deltax;

99 xp=A0_camp(1,2);

yp=A0_camp(1,3);

101 y=@(x) m*(x-xp)+yp;

y2=y(-l);

103 fprintf(fid,[’K,’,num2str(i+2),’,’,num2str(-l),’,’,num2str(y2),’,0’,’\n’]);

105 %keypoint a x=-200 in bottom left

deltax=-l-A0_camp(1,2);
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E.1 MatLab code to build the model inside Ansys®APDL with the sampling

107 deltay=y2-A0_camp(1,3);

m=deltay/deltax;

109 xp=-l;

yp=y2;

111 y=@(x) m*(x-xp)+yp;

y6=y(-L1);

113 fprintf(fid,[’K,’,num2str(i+6),’,’,num2str(-L1),’,’,num2str(y6),’,0’,’\n’]);

115 %keypoint a x=300 in top right

deltax= A1_camp(end,2)-A1_camp(end-1,2);

117 deltay= A1_camp(end,3)-A1_camp(end-1,3);

m=deltay/deltax;

119 xp=A1_camp(1,2);

yp=A1_camp(1,3);

121 y=@(x) m*(x-xp)+yp;

y3=y(l);

123 fprintf(fid,[’K,’,num2str(i+3),’,’,num2str(l),’,’,num2str(y3),’,0’,’\n’]);

125 %keypoint a x=200 in top right

deltax=l-A1_camp(end,2);

127 deltay=y3-A1_camp(end,3);

m=deltay/deltax;

129 xp=l;

yp=y3;

131 y=@(x) m*(x-xp)+yp;

y7=y(L1);

133 fprintf(fid,[’K,’,num2str(i+7),’,’,num2str(L1),’,’,num2str(y7),’,0’,’\n’]);

135

%keypoint a x=300 in bottom right

137 deltax= A0_camp(end,2)-A0_camp(end-1,2);

deltay= A0_camp(end,3)-A0_camp(end-1,3);

139 m=deltay/deltax;

xp=A0_camp(1,2);

141 yp=A0_camp(1,3);

y=@(x) m*(x-xp)+yp;

143 y4=y(l);

fprintf(fid,[’K,’,num2str(i+4),’,’,num2str(l),’,’,num2str(y4),’,0’,’\n’]);

145

%keypoint a x=200 in top right

147 deltax=l-A0_camp(end,2);

deltay=y4-A0_camp(end,3);

149 m=deltay/deltax;

xp=l;

151 yp=y4;

y=@(x) m*(x-xp)+yp;

153 y8=y(L1);

fprintf(fid,[’K,’,num2str(i+8),’,’,num2str(L1),’,’,num2str(y8),’,0’,’\n’]);

155

157 %Creation of the lines

159 for i=1:size(A_camp,1)-1

if i==size(A1_camp,1)

161 i=i+1;

end

163 fprintf(fid,[’L,’,num2str(i),’,’,num2str(i+1),’\n’]);

165 end

167 %Lines with the point that was created by interpolation

fprintf(fid,[’L’,’,’,num2str(i+6),’,’,’1’,’\n’]);

169 fprintf(fid,[’L’,’,’,num2str(i+6),’,’,num2str(i+2),’\n’]);
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fprintf(fid,[’L’,’,’,num2str(size(A1_camp,1)+1),’,’,num2str(i+7),’\n’]);

171 fprintf(fid,[’L’,’,’,num2str(i+7),’,’,num2str(i+3),’\n’]);

fprintf(fid,[’L’,’,’,num2str(size(A1_camp,1)),’,’,num2str(i+8),’\n’]);

173 fprintf(fid,[’L’,’,’,num2str(i+8),’,’,num2str(i+4),’\n’]);

fprintf(fid,[’L’,’,’,num2str(size(A_camp,1)),’,’,num2str(i+9),’\n’]);

175 fprintf(fid,[’L’,’,’,num2str(i+9),’,’,num2str(i+5),’\n’]);

177 %Vertical Lines

fprintf(fid,[’L’,’,’,num2str(i+2),’,’,num2str(i+3),’\n’]);

179 fprintf(fid,[’L’,’,’,num2str(i+4),’,’,num2str(i+5),’\n’]);

181 %Creation of Area

fprintf(fid,[’FLST,2,’,num2str(i+9),’,4\n’]);

183

for i=1:size(A_camp,1)+8

185 fprintf(fid,[’FITEM,2,’,num2str(i),’\n’]);

end

187 fprintf(fid,’AL,P51X\n’);

189 %Creation of mesh

global_element_size=1;

191

fprintf(fid,[’ESIZE,’,num2str(global_element_size),’,0,\n’]);

193 fprintf(fid,’MSHKEY,0\nCM,_Y,AREA\nASEL,,,, 4 \n’);

fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\n’);

195 fprintf(fid,’AMESH,_Y1\n!*\nCMDELE,_Y\nCMDELE,_Y1\nCMDELE,_Y2\n!*\n’);

197 %Definition of constraint and Pressure

%Constraint

199 fprintf(fid,’FLST,2,1,4,ORDE,1\n’);

fprintf(fid,[’FITEM,2,’,num2str(i-1),’\n’]);

201 fprintf(fid,’!*\n/GO\nDL,P51X, ,UX,\nFLST,2,2,4,ORDE,2\n’);

fprintf(fid,[’FITEM,2,’,num2str(i-8),’\n’,’FITEM,2,’,num2str(i-2),’!*\n’]);

203 fprintf(fid,’/GO\nDL,P51X, ,UY,\nLPLOT\n’);

205 %Pressure

p=-1;

207 fprintf(fid,’FLST,2,1,4,ORDE,1\n’);

fprintf(fid,[’FITEM,2,’,num2str(i),’\n’,’/GO\n!*\n’]);

209 fprintf(fid,[’SFL,P51X,PRES,’,num2str(p),’\n’]);

fclose(fid);

E.2 MatLab code for the application of local approaches for ideal model

E.2.1 Code for application of ENS

clc;

2 clear all;

close all;

4

%Opening of APDL file

6 fid=fopen(’ENS_model.txt’,’w’);

fprintf(fid,’/CLEAR\n’);

8

%% Opening of Preprocessor

10 fprintf(fid,[’/PREP7’,’\n’]);

%% Definition of element

12 % fprintf(fid,’ET,1,PLANE182\n’);

% fprintf(fid,’KEYOPT,1,1,3\nKEYOPT,1,3,2\nKEYOPT,1,6,0\n’);

14

% Definition of element PLANE 183
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16 fprintf(fid,’ET,1,PLANE183\n’);

fprintf(fid,’KEYOPT,1,1,0\nKEYOPT,1,3,2\nKEYOPT,1,6,0\n’);

18

20 %% Definition of Material

E=206000;

22 ni=0.3;

fprintf(fid,[’MPTEMP,,,,,,,,\nMPTEMP,1,0\nMPDATA,EX,1,,’,num2str(E), ...

24 ’\nMPDATA,PRXY,1,,’,num2str(ni),’\n’]);

%% Definition geometry parameters in mm

26 b=6;

t=6;

28 L=600;

z=6;

30 h=33;

32 r=1; % radius of root for ENS

34 %% Definition KP

%KP without root

36 fprintf(fid,’K,1,0,0,0\n’);

fprintf(fid,[’K,2,’,num2str(L/2),’,0,0’,’\n’]);

38 fprintf(fid,[’K,3,’,num2str(L/2),’,’,num2str(t/2),’,0’,’\n’]);

fprintf(fid,[’K,4,’,num2str(b/2+z),’,’,num2str(t/2),’,0’,’\n’]);

40 fprintf(fid,[’K,5,’,num2str(b/2),’,’,num2str(t/2+z),’,0’,’\n’]);

fprintf(fid,[’K,6,’,num2str(b/2),’,’,num2str(t/2+z+h),’,0’,’\n’]);

42 fprintf(fid,[’K,7,0,’,num2str(t/2+z+h),’,0’,’\n’]);

44 %KP root for ENS

fprintf(fid,[’K,8,’,num2str(b/2-r),’,0,0’,’\n’]);

46 fprintf(fid,[’K,9,’,num2str(b/2-r),’,’,num2str(t/2-r),’,0’,’\n’]);

fprintf(fid,[’K,10,’,num2str(b/2),’,’,num2str(t/2),’,0’,’\n’]);

48 fprintf(fid,[’K,11,’,num2str(b/2+r),’,’,num2str(t/2-r),’,0’,’\n’]);

fprintf(fid,[’K,12,’,num2str(b/2),’,’,num2str(t/2-r),’,0’,’\n’]); %center of arc

50 fprintf(fid,[’K,13,’,num2str(b/2+r),’,0,0’,’\n’]);

52 %% Creation of lines

54 fprintf(fid,’L,1,8\n’);

fprintf(fid,’L,8,9\n’);

56 fprintf(fid,[’LARC,9,10,12,’,num2str(r),’\n’]);

fprintf(fid,[’LARC,10,11,12,’,num2str(r),’\n’]);

58 fprintf(fid,’L,11,13\n’);

fprintf(fid,’L,13,2\n’);

60 fprintf(fid,’L,2,3\n’);

fprintf(fid,’L,3,4\n’);

62 fprintf(fid,’L,4,5\n’);

fprintf(fid,’L,5,6\n’);

64 fprintf(fid,’L,6,7\n’);

fprintf(fid,’L,7,1\n’);

66 fprintf(fid,[’LFILLT,8,9,’,num2str(r),’\n’]); %comando APDL per creazione fillet

68 n=13; %number of lines

70 %% Creation of Area

fprintf(fid,[’FLST,2,’,num2str(n),’,4\n’]);

72 for i=1:n

fprintf(fid,[’FITEM,2,’,num2str(i),’\n’]);

74 end

fprintf(fid,’AL,P51X\n’);

76

%% Creation of mesh

78 m=4; %paratero che vale 6 per Plane182 e 4 per i Plane183
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max_size=r/m;

80 realsize=num2str(max_size,3);

realsize2=realsize(1:3);

82 size=str2num(realsize2);

global_element_size=size;

84 %elements along fillet: >5 for PLANE182, >3 for PLANE183 weld toe

%elements along fillet: >40 for PLANE182, >24 for PLANE183 weld toe

86

fprintf(fid,[’ESIZE,’,num2str(global_element_size),’,0,\n’]);

88 fprintf(fid,’MSHKEY,0\nCM,_Y,AREA\nASEL, , , , 1 \n’);

fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\n’);

90 fprintf(fid,’AMESH,_Y1\n!*\nCMDELE,_Y\nCMDELE,_Y1\nCMDELE,_Y2\n!*\n’);

92 %Refine at weld toe and root

fprintf(fid,’FLST,5,1,4,ORDE,1\nFITEM,5,13 \n’);

94 fprintf(fid,[’CM,_Y,LINE\nLSEL, , , ,P51X \nCM,_Y1,LINE\nCMSEL,S,_Y’ ...

’\nCMDELE,_Y\n!*\n!*\n’]);

96 fprintf(fid,’LREF,_Y1, , ,1,2,1,1\nCMDELE,_Y1\n!*\n’);

98 fprintf(fid,’FLST,5,2,4,ORDE,2\nFITEM,5,3 \nFITEM,5,-4\n’);

fprintf(fid,[’CM,_Y,LINE\nLSEL, , , ,P51X \nCM,_Y1,LINE\nCMSEL,S,_Y’ ...

100 ’\nCMDELE,_Y\n!*\n!*\n’]);

fprintf(fid,’LREF,_Y1, , ,1,2,1,1\nCMDELE,_Y1\n!*\n’);

102

%% Definition of constraint and Pressure

104

%Constraint, symmetry boundary condition

106 fprintf(fid,’FLST,2,3,4,ORDE,3\n’);

fprintf(fid,’FITEM,2,1\n’);

108 fprintf(fid,’FITEM,2,6\n’);

fprintf(fid,’FITEM,2,12\n’);

110 fprintf(fid,’DL,P51X, ,SYMM\n’);

112 %Pressure

p=-1;

114 fprintf(fid,’FLST,2,1,4,ORDE,1\n’);

fprintf(fid,[’FITEM,2,7\n’,’/GO\n!*\n’]);

116 fprintf(fid,[’SFL,P51X,PRES,’,num2str(p),’\n’]);

118 %% Solution

fprintf(fid,’/SOLU\nSOLVE\n’);

120 fclose(fid);

E.2.2 Code for application of SHSS

clc;

2 clear all;

close all;

4

%Opening of APDL file

6 fid=fopen(’HS_model.txt’,’w’);

fprintf(fid,’/CLEAR\n’);

8

%% Opening of Preprocessor

10 fprintf(fid,[’/PREP7’,’\n’]);

%% Definition of element

12 fprintf(fid,’ET,1,PLANE182\n’);

fprintf(fid,’KEYOPT,1,1,3\nKEYOPT,1,3,2\nKEYOPT,1,6,0\n’);

14

%% Definition of Material

16 E=206000;

ni=0.3;
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18 fprintf(fid,[’MPTEMP,,,,,,,,\nMPTEMP,1,0\nMPDATA,EX,1,,’,num2str(E), ...

’\nMPDATA,PRXY,1,,’,num2str(ni),’\n’]);

20 %% Definition geometry parameters in mm

b=6;

22 t=6;

L=600;

24 z=6;

h=33;

26

%% Definition KP

28 %KP without root

fprintf(fid,’K,1,0,0,0\n’);

30 fprintf(fid,[’K,2,’,num2str(L/2),’,0,0’,’\n’]);

fprintf(fid,[’K,3,’,num2str(L/2),’,’,num2str(t/2),’,0’,’\n’]);

32 fprintf(fid,[’K,4,’,num2str(b/2+z),’,’,num2str(t/2),’,0’,’\n’]);

fprintf(fid,[’K,5,’,num2str(b/2),’,’,num2str(t/2+z),’,0’,’\n’]);

34 fprintf(fid,[’K,6,’,num2str(b/2),’,’,num2str(t/2+z+h),’,0’,’\n’]);

fprintf(fid,[’K,7,0,’,num2str(t/2+z+h),’,0’,’\n’]);

36

%% Creation of lines

38

fprintf(fid,’L,1,2\n’);

40 fprintf(fid,’L,2,3\n’);

fprintf(fid,’L,3,4\n’);

42 fprintf(fid,’L,4,5\n’);

fprintf(fid,’L,5,6\n’);

44 fprintf(fid,’L,6,7\n’);

fprintf(fid,’L,7,1\n’);

46 fprintf(fid,’LANG,7,5,90, ,\n’);

fprintf(fid,’LANG,1,5,90, ,\n’);

48 fprintf(fid,’LANG,11,4,90, ,\n’);

fprintf(fid,’LANG,10,4,90, ,\n’);

50 fprintf(fid,’LANG,8,10,90, ,\n’);

52 %% Creation of areas

54 fprintf(fid,’FLST,2,4,4\nFITEM,2,16\nFITEM,2,17\nFITEM,2,11\nFITEM,2,1\n’);

fprintf(fid,’AL,P51X\n’);

56 fprintf(fid,’FLST,2,4,4\nFITEM,2,11\nFITEM,2,13\nFITEM,2,15\nFITEM,2,10\n’);

fprintf(fid,’AL,P51X\n’);

58 fprintf(fid,’FLST,2,3,4\nFITEM,2,12\nFITEM,2,13\nFITEM,2,4\n’);

fprintf(fid,’AL,P51X\n’);

60 fprintf(fid,’FLST,2,4,4\nFITEM,2,12\nFITEM,2,9\nFITEM,2,8\nFITEM,2,17\n’);

fprintf(fid,’AL,P51X\n’);

62 fprintf(fid,’FLST,2,4,4\nFITEM,2,6\nFITEM,2,5\nFITEM,2,7\nFITEM,2,9\n’);

fprintf(fid,’AL,P51X\n’);

64 fprintf(fid,’FLST,2,4,4\nFITEM,2,2\nFITEM,2,14\nFITEM,2,3\nFITEM,2,15\n’);

fprintf(fid,’AL,P51X\n’);

66

%% Creation of mesh

68 d_max=0.4*t;

global_element_size=d_max/6;

70 fprintf(fid,[’ESIZE,’,num2str(global_element_size),’,0,\n’]);

fprintf(fid,’CM,_Y,AREA\nASEL, , , , 3 \n’);

72 fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\n’);

fprintf(fid,[’MSHKEY,1\nAMESH,_Y1\nMSHKEY,1\n!*\nCMDELE,_Y\nCMDELE,_Y1’ ...

74 ’\nCMDELE,_Y2\n!*\n’]);

fprintf(fid,’CM,_Y,AREA\nASEL, , , , 6 \n’);

76 fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\n’);

fprintf(fid,[’MSHKEY,1\nAMESH,_Y1\nMSHKEY,1\n!*\nCMDELE,_Y\nCMDELE,_Y1’ ...

78 ’\nCMDELE,_Y2\n!*\n’]);

fprintf(fid,’CM,_Y,AREA\nASEL, , , , 2 \n’);

80 fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\n’);
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fprintf(fid,[’MSHKEY,1\nAMESH,_Y1\nMSHKEY,1\n!*\nCMDELE,_Y\nCMDELE,_Y1’ ...

82 ’\nCMDELE,_Y2\n!*\n’]);

fprintf(fid,’CM,_Y,AREA\nASEL, , , , 4 \n’);

84 fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\n’);

fprintf(fid,[’MSHKEY,1\nAMESH,_Y1\nMSHKEY,1\n!*\nCMDELE,_Y\nCMDELE,_Y1’ ...

86 ’\nCMDELE,_Y2\n!*\n’]);

fprintf(fid,’CM,_Y,AREA\nASEL, , , , 1 \n’);

88 fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\n’);

fprintf(fid,[’MSHKEY,1\nAMESH,_Y1\nMSHKEY,1\n!*\nCMDELE,_Y\nCMDELE,_Y1’ ...

90 ’\nCMDELE,_Y2\n!*\n’]);

fprintf(fid,’CM,_Y,AREA\nASEL, , , , 5 \n’);

92 fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\n’);

fprintf(fid,[’MSHKEY,1\nAMESH,_Y1\nMSHKEY,1\n!*\nCMDELE,_Y\nCMDELE,_Y1’ ...

94 ’\nCMDELE,_Y2\n!*\n’]);

%% Definition of constraint and Pressure

96

%Constraint, symmetry boundary condition

98 fprintf(fid,’FLST,2,6,4,ORDE,6\n’);

fprintf(fid,’FITEM,2,7\n’);

100 fprintf(fid,’FITEM,2,8\n’);

fprintf(fid,’FITEM,2,16\n’);

102 fprintf(fid,’FITEM,2,1\n’);

fprintf(fid,’FITEM,2,10\n’);

104 fprintf(fid,’FITEM,2,14\n’);

fprintf(fid,’DL,P51X, ,SYMM\n’);

106

%Pressure

108 p=-1;

fprintf(fid,’FLST,2,1,4,ORDE,1\n’);

110 fprintf(fid,[’FITEM,2,2\n’,’/GO\n!*\n’]);

fprintf(fid,[’SFL,P51X,PRES,’,num2str(p),’\n’]);

112

%% Solution

114 fprintf(fid,’/SOLU\nSOLVE\n’);

116 %% Postprocessor

fprintf(fid,’/POST1\n’);

E.2.3 Code for application of PSM (Sharp V-notch)

clc;

2 clear all;

close all;

4

%Opening of APDL file

6 fid=fopen(’PSM_model.txt’,’w’);

fprintf(fid,’/CLEAR\n’);

8

%% Opening of Preprocessor

10 fprintf(fid,[’/PREP7’,’\n’]);

%% Definition of element

12 fprintf(fid,’ET,1,PLANE182\n’);

fprintf(fid,’KEYOPT,1,1,3\nKEYOPT,1,3,2\nKEYOPT,1,6,0\n’);

14

%% Definition of Material

16 E=206000;

ni=0.3;

18 fprintf(fid,[’MPTEMP,,,,,,,,\nMPTEMP,1,0\nMPDATA,EX,1,,’,num2str(E), ...

’\nMPDATA,PRXY,1,,’,num2str(ni),’\n’]);

20 %% Definition geometry parameters in mm

b=6;

22 t=6;
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L=600;

24 z=6;

h=33;

26 root_width=0.1;

28 %% Definition KP

%KP without root

30 fprintf(fid,’K,1,0,0,0\n’);

fprintf(fid,[’K,2,’,num2str(L/2),’,0,0’,’\n’]);

32 fprintf(fid,[’K,3,’,num2str(L/2),’,’,num2str(t/2),’,0’,’\n’]);

fprintf(fid,[’K,4,’,num2str(b/2+z),’,’,num2str(t/2),’,0’,’\n’]);

34 fprintf(fid,[’K,5,’,num2str(b/2),’,’,num2str(t/2+z),’,0’,’\n’]);

fprintf(fid,[’K,6,’,num2str(b/2),’,’,num2str(t/2+z+h),’,0’,’\n’]);

36 fprintf(fid,[’K,7,0,’,num2str(t/2+z+h),’,0’,’\n’]);

38 %KP root for PSM

fprintf(fid,[’K,8,’,num2str(b/2),’,0,0’,’\n’]);

40 fprintf(fid,[’K,9,’,num2str(b/2),’,’,num2str(t/2),’,0’,’\n’]);

fprintf(fid,[’K,10,’,num2str(b/2+root_width),’,0,0’,’\n’]);

42

%% Creation of lines

44

fprintf(fid,’L,1,8\n’);

46 fprintf(fid,’L,8,9\n’);

fprintf(fid,’L,9,10\n’);

48 fprintf(fid,’L,10,2\n’);

fprintf(fid,’L,2,3\n’);

50 fprintf(fid,’L,3,4\n’);

fprintf(fid,’L,4,5\n’);

52 fprintf(fid,’L,5,6\n’);

fprintf(fid,’L,6,7\n’);

54 fprintf(fid,’L,7,1\n’);

n=10; %number of lines

56

%% Creation of Area

58 fprintf(fid,[’FLST,2,’,num2str(n),’,4\n’]);

for i=1:n

60 fprintf(fid,[’FITEM,2,’,num2str(i),’\n’]);

end

62 fprintf(fid,’AL,P51X\n’);

%% Creation of mesh

64 a=t/2; %dimensional parametr

ratio_min=3; %from literature PSM review A.Campagnolo

66 d_max=a/ratio_min; %maximum dimension of element

68 global_element_size=0.2;

fprintf(fid,[’ESIZE,’,num2str(global_element_size),’,0,\n’]);

70 fprintf(fid,’MSHKEY,0\nCM,_Y,AREA\nASEL, , , , 1 \n’);

fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\n’);

72 fprintf(fid,’AMESH,_Y1\n!*\nCMDELE,_Y\nCMDELE,_Y1\nCMDELE,_Y2\n!*\n’);

%% Definition of constraint and Pressure

74

%Constraint, symmetry boundary condition

76 fprintf(fid,’FLST,2,3,4,ORDE,3\n’);

fprintf(fid,’FITEM,2,1\n’);

78 fprintf(fid,’FITEM,2,4\n’);

fprintf(fid,’FITEM,2,10\n’);

80 fprintf(fid,’DL,P51X, ,SYMM\n’);

82 %Pressure

p=-1;

84 fprintf(fid,’FLST,2,1,4,ORDE,1\n’);

fprintf(fid,[’FITEM,2,5\n’,’/GO\n!*\n’]);

369



Appendix E: Matlab codes

86 fprintf(fid,[’SFL,P51X,PRES,’,num2str(p),’\n’]);

88 %% Creation of local reference system at weld toe tip and root

alfa=112.5;

90 fprintf(fid,’WPSTYLE,,,,,,,,1\n’);

fprintf(fid,[’KWPAVE,4\nwprot,’,num2str(-alfa),’\n’]);

92 fprintf(fid,’CSWPLA,11,0,1,1,\n’);

fprintf(fid,’WPCSYS,-1,0\n’);

94 fprintf(fid,’KWPAVE,9\nwprot,90\n’);

fprintf(fid,’CSWPLA,12,0,1,1,\nWPSTYLE,,,,,,,,0\n’);

96

%% Solution

98 fprintf(fid,’/SOLU\nSOLVE\n’);

fprintf(fid,’!*\n /PSF,DEFA, ,1,0,1\n/PBF,DEFA, ,1 \n/PSYMB,CS,1 \n’);

100 fprintf(fid,’/PSYMB,NDIR,0 \n/PSYMB,ESYS,0\n/PSYMB,ESYS,0 \n/PSYMB,ESYS,0 \n’);

fprintf(fid,[’/PSYMB,ESYS,0\n/PSYMB,LDIV,0\n /PSYMB,LDIR,0\n/PSYMB,ADIR,0’ ...

102 ’\n/PSYMB,ECON,0\n’]);

fprintf(fid,[’/PSYMB,XNODE,0\n/PSYMB,DOT,1\n/PSYMB,PCONV,\n/PSYMB,LAYR,0’ ...

104 ’\n/PSYMB,FBCS,0\n’]);

fprintf(fid,’!*\n/PBC,ALL, ,1\n/REP\n!*\n’);

106 tic

fclose(fid);

108 toc

E.2.4 Code for application of PSM (No sharp V-notch)

clc;

2 clear all;

close all;

4 delete(’Tensioni_nodali.txt’)

delete(’Coordinate_nodali.txt’)

6 clc

%Opening of APDL file

8 fid=fopen(’PSM_model_HFMI_No_misalign.txt’,’w’);

fprintf(fid,’/CLEAR\n’);

10

%% Opening of Preprocessor

12 fprintf(fid,[’/PREP7’,’\n’]);

%% Definition of element

14 fprintf(fid,’ET,1,PLANE182\n’);

fprintf(fid,’KEYOPT,1,1,3\nKEYOPT,1,3,2\nKEYOPT,1,6,0\n’);

16

%% Definition of Material

18 E=206000;

ni=0.3;

20 fprintf(fid,[’MPTEMP,,,,,,,,\nMPTEMP,1,0\nMPDATA,EX,1,,’,num2str(E), ...

’\nMPDATA,PRXY,1,,’,num2str(ni),’\n’]);

22 %% Definition geometry parameters in mm

b=6;

24 t=6;

L=600;

26 z=6;

h=33;

28 root_width=0.1;

30 %% Definition KP

%KP without root

32 fprintf(fid,’K,1,0,0,0\n’);

fprintf(fid,[’K,2,’,num2str(L/2),’,0,0’,’\n’]);

34 fprintf(fid,[’K,3,’,num2str(L/2),’,’,num2str(t/2),’,0’,’\n’]);

fprintf(fid,[’K,4,’,num2str(b/2+z),’,’,num2str(t/2),’,0’,’\n’]);

36 fprintf(fid,[’K,5,’,num2str(b/2),’,’,num2str(t/2+z),’,0’,’\n’]);
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fprintf(fid,[’K,6,’,num2str(b/2),’,’,num2str(t/2+z+h),’,0’,’\n’]);

38 fprintf(fid,[’K,7,0,’,num2str(t/2+z+h),’,0’,’\n’]);

40 %KP root for PSM

fprintf(fid,[’K,8,’,num2str(b/2),’,0,0’,’\n’]);

42 fprintf(fid,[’K,9,’,num2str(b/2),’,’,num2str(t/2),’,0’,’\n’]);

fprintf(fid,[’K,10,’,num2str(b/2+root_width),’,0,0’,’\n’]);

44

%% Creation of lines

46

fprintf(fid,’L,1,8\n’);

48 fprintf(fid,’L,8,9\n’);

fprintf(fid,’L,9,10\n’);

50 fprintf(fid,’L,10,2\n’);

fprintf(fid,’L,2,3\n’);

52 fprintf(fid,’L,3,4\n’);

fprintf(fid,’L,4,5\n’);

54 fprintf(fid,’L,5,6\n’);

fprintf(fid,’L,6,7\n’);

56 fprintf(fid,’L,7,1\n’);

n=10; %number of lines

58

%% Creation of Area

60 fprintf(fid,[’FLST,2,’,num2str(n),’,4\n’]);

for i=1:n

62 fprintf(fid,[’FITEM,2,’,num2str(i),’\n’]);

end

64 fprintf(fid,’AL,P51X\n’);

%% KP HFMI

66

%Dimension of the groove

68 rho=3.31;%standard deviation 1.25

depth=0.21+0.09; %standard deviation 0.09

70

%Groove

72 alfa=135/2;

alfa_rad=deg2rad(alfa);

74 xc=t/2+z+((rho-depth)/(tan(alfa_rad)));

yc=t/2+rho-depth;

76 fprintf(fid,’NUMSTR,KP,200\n’);

fprintf(fid,[’K,,’,num2str(xc),’,’,num2str(yc),’,0’,’\n’]);

78 fprintf(fid,[’CYL4,’,num2str(xc),’,’,num2str(yc),’,’,num2str(rho),’\n’]);

80 %% Creation of Area with HFMI groove

fprintf(fid,’ASBA,1,2\n’);

82

%% Creation of mesh

84

global_element_size=0.5;

86 fprintf(fid,[’ESIZE,’,num2str(global_element_size),’,0,\n’]);

fprintf(fid,’MSHKEY,0\nCM,_Y,AREA\nASEL, , , ,3\nCM,_Y1,AREA\n’);

88 fprintf(fid,’CHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\nAMESH,_Y1\n!*\nCMDELE,_Y\n’);

fprintf(fid,’CMDELE,_Y1\nCMDELE,_Y2\n!*\n’);

90

%Refine mesh

92 fprintf(fid,[’FLST,5,2,4,ORDE,2\nFITEM,5,17\nFITEM,5,-18\nCM,_Y,LINE’ ...

’\nLSEL, , , ,P51X\n’]);

94 fprintf(fid,’CM,_Y1,LINE\nCMSEL,S,_Y\nCMDELE,_Y\n!*\n!*\n’);

fprintf(fid,[’LREF,_Y1, , ,1,5,1,1\nCMDELE,_Y1\n!*\nFLST,5,2,4,ORDE,2’ ...

96 ’\nFITEM,5,17\nFITEM,5,-18\n’]);

fprintf(fid,[’CM,_Y,LINE\nLSEL, , , ,P51X\nCM,_Y1,LINE\nCMSEL,S,_Y’ ...

98 ’\nCMDELE,_Y\n!*\n!*\n’]);

fprintf(fid,’LREF,_Y1, , ,1,5,1,1\nCMDELE,_Y1\n!*\n’);
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100

%% Definition of constraint and Pressure

102

%Constraint

104 fprintf(fid, [’FLST,2,3,4,ORDE,3\nFITEM,2,1\nFITEM,2,4\nFITEM,2,10’ ...

’\nDL,P51X, ,SYMM\n’]);

106

%Pressure

108 p=-1;

fprintf(fid,’FLST,2,1,4,ORDE,1\nFITEM,2,5\n/GO\n!*\n’);

110 fprintf(fid,[’SFL,P51X,PRES,’,num2str(p),’,\n’]);

112 %% Solution

fprintf(fid,’/SOLU\nSOLVE\nFINISH\n’);

114

%% Post processor

116

fprintf(fid,’/POST1\n!*\n’);

118 fprintf(fid,’FLST,5,2,4,ORDE,2\nFITEM,5,17\nFITEM,5,-18\nLSEL,S, , ,P51X\n’);

fprintf(fid,’NSLL,S,1\n’);

120

fprintf(fid,’INRES,ALL\nFILE,’’file’’,’’rst’’,’’.’’\nSET,LAST\nSET,FIRST\nAVPRIN,0, ,\n’);

122 fprintf(fid,’ETABLE, ,S,1\n/OUTPUT,Tensioni_nodali,txt\nPRNSOL, S, PRIN\n/OUT\n’);

124 %macro for nodal coordinates

fprintf(fid,’/INPUT,export_nodal_coords,mac\n’);

126 tic

! run_ansys.bat

128 toc

130 %Opening of txt file called tensioni nodali and writing matrix nodal stress

132 file_tensioni=fopen(’Tensioni_nodali.txt’,’r’);

tensioni_nodali_11=txt2mat(file_tensioni);

134 fclose(file_tensioni);

%Researching of node with max principal stress

136 ten_max=max(tensioni_nodali_11(:,2));

index_nodo=find(tensioni_nodali_11(:,2)==ten_max);

138 nodo_ten_max=tensioni_nodali_11(index_nodo,1);

140 %Creation of txt file coordinate nodali and writing the matrix

142

file_coordinate=fopen(’coordinate_nodali.txt’,’r’);

144 coordinate_nodali_11=txt2mat_c(file_coordinate);

fclose(file_coordinate);

146 %Researching of node with max principal stress

nodo_max=find(coordinate_nodali_11(:,1)==nodo_ten_max(1,1));

148 coordinate_nodo_max=coordinate_nodali_11(nodo_max,:);

150 %Coordinates of the point with max principal stress on weld toe up-left

152 x1=coordinate_nodo_max(2);

y1=coordinate_nodo_max(3);

154

%% Calculation of inclination angle of structural volume

156

158

%Point A represents the coordinates of V-notch up-left

160 xA=t/2+z;

yA=t/2;

162
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%Punto C represents the center of arc of HFMI groove

164 xc;

yc;

166

%Angular coefficient of the straight between A and C

168 %(Bisector)

m1=(yc-yA)/(xc-xA);

170

%Angular coefficient of the straight between C and 1 (point

172 %with max principal stress)

m2=(yc-y1)/(xc-x1);

174

176 %Inclination angle gamma

gamma_rad=atan(abs((m1-m2)/(1+m1*m2)));

178 gamma=rad2deg(gamma_rad);

%% Calculation of the center to create structural volume

180 %Geometrical parameters

alfa_2=2*alfa;

182 q=2-(alfa_2)/180;

r0=((q-1)/q)*rho;

184 R0=0.28;

R_SED=R0+r0;

186

%Inclination Angle of the straight between C and 1

188 psi=atan2((yc-y1),(xc-x1));

190 %Calculation of x2 and y2 coordinates of the center of the arc

%of structural volume for SED

192 %(Method 1)

x2=x1+r0*cos(psi);

194 y2=y1+r0*sin(psi);

%Equation of straight from 1 to 2 and inverse formula of the distance

196 %between 2 points (Method 2)

198

eq_y2= @(x) m2*(x-x1)+y1;

200 eq_x2=@(x) (x-x1).^2+(eq_y2(x)-y1).^2-r0^2;

202 %Plot of eq_x2 to verify the position of the zero

204 plot(linspace(x1,x1-5),eq_x2(linspace(x1,x1-5)))

grid on

206 %Initial point

x0=10;

208 x2_2=fsolve(eq_x2,x0);

hold on

210 plot(x2_2,eq_x2(x2_2),’or’)

y2_2=eq_y2(x2_2);

212 %Verification of the length of the segment

length_x2_y2=sqrt((x2-x1)^2+(y2-y1)^2)

214 length_x2_y2_2=sqrt((x2_2-x1)^2+(y2_2 -y1)^2)

r0

216

%% Creation of KP center of arc and the relative arc

218 %Selection all, opening of preprocessor, clean mesh, creation new geometry

220 fprintf(fid,’ALLSEL,ALL\n /PREP7\n’);

fprintf(fid,’ACLEAR, 3\n’);

222 fprintf(fid,[’FLST,2,2,8\nFITEM,2,’,num2str(x2),’,’,num2str(y2),’,0\n’]);

fprintf(fid,[’FITEM,2,’,num2str(x2),’,’,num2str(y2-R_SED),’,0\n’]);

224 fprintf(fid,’CIRCLE,P51X\n’);
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226 %Division of the lines of structural volume

fprintf(fid,’FLST,2,2,4,ORDE,2\nFITEM,2,17\nFITEM,2,-18\nLCOMB,P51X, ,0\n’);

228 %

fprintf(fid,’FLST,2,2,4,ORDE,2\nFITEM,2,6 \nFITEM,2,12\n’);

230 fprintf(fid,’FLST,3,1,4,ORDE,1\nFITEM,3,17\nLSBL,P51X,P51X, , ,KEEP\n’);

232 %Deleting of the lines in excess

234 fprintf(fid,’FLST,2,4,4,ORDE,4\nFITEM,2,7\nFITEM,2,11\nFITEM,2,18\nFITEM,2,-19\n’);

fprintf(fid,’LDELE,P51X, , ,1\n’);

236

238 %Division of principal area

fprintf(fid,’FLST,3,2,4,ORDE,2\nFITEM,3,13\nFITEM,3,-14\nASBL,3,P51X\n’);

240

%% Mesh of area

242

%Mesh Area of structural volume

244 size_SED=0.01;

fprintf(fid,[’ESIZE,’,num2str(size_SED),’,0,’]);

246 fprintf(fid,’MSHKEY,0\nCM,_Y,AREA\nASEL, , , ,1\n’);

fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\nAMESH,_Y1\n!*’);

248 fprintf(fid,’CMDELE,_Y\nCMDELE,_Y1\nCMDELE,_Y2\n!*\n’);

250 %Mesh external area

size_ext=0.1;

252 fprintf(fid,[’ESIZE,’,num2str(size_ext),’,0,’]);

fprintf(fid,’MSHKEY,0\nCM,_Y,AREA\nASEL, , , ,2\n’);

254 fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\nAMESH,_Y1\n!*’);

fprintf(fid,’CMDELE,_Y\nCMDELE,_Y1\nCMDELE,_Y2\n!*\n’);

256

%% Constraint and loads

258 fprintf(fid,’LSCLEAR,ALL\n’);

260 %Constraint

fprintf(fid, ’FLST,2,3,4,ORDE,3\nFITEM,2,1\nFITEM,2,4\nFITEM,2,10\nDL,P51X, ,SYMM\n’);

262

%Pressure

264 fprintf(fid,’FLST,2,1,4,ORDE,1\nFITEM,2,5\n/GO\n!*\n’);

fprintf(fid,[’SFL,P51X,PRES,’,num2str(p),’,\n’]);

266

%% Resolution of the model

268

fprintf(fid,’/SOLU\nSOLVE\n’);

270

%% Post Process

272 fprintf(fid,’/POST1\n!*\n’);

274 %Selection of structural area and attached elements

fprintf(fid,’ASEL,S, , ,1\nESLA,S\n/AUTO,1\n/REP,FAST\n’);

276

%Creation of Element Table SENE e VOLU

278 fprintf(fid,’AVPRIN,0, ,\nETABLE, ,SENE,\n!*\nAVPRIN,0, ,\nETABLE, ,VOLU,\n!*\n’);

data=[r0 gamma ]

280

fclose(fid);
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E.3 MatLab code for the application of local approaches for ideal model

with misalignment

E.3.1 Code for application of ENS

1 clc;

clear all;

3 close all;

5 %Opening of APDL file

fid=fopen(’ENS_model_misalignment.txt’,’w’);

7 fprintf(fid,’/CLEAR\n’);

9 %% Opening of Preprocessor

fprintf(fid,[’/PREP7’,’\n’]);

11 %% Definition of element

% fprintf(fid,’ET,1,PLANE183\n’);

13 % fprintf(fid,’KEYOPT,1,1,0\nKEYOPT,1,3,2\nKEYOPT,1,6,0\n’);

fprintf(fid,’ET,1,PLANE182\n’);

15 fprintf(fid,’KEYOPT,1,1,3\nKEYOPT,1,3,2\nKEYOPT,1,6,0\n’);

17 %% Definition of Material

E=206000;

19 ni=0.3;

fprintf(fid,[’MPTEMP,,,,,,,,\nMPTEMP,1,0\nMPDATA,EX,1,,’,num2str(E), ...

21 ’\nMPDATA,PRXY,1,,’,num2str(ni),’\n’]);

%% Definition geometry parameters in mm

23 %for i=[300 350 400 450 500 550 600]

b=6;

25 t=6;

L=600;

27 z=6;

h=33;

29 root_width=0.1;

alfa_dx=deg2rad(1.16);

31 alfa_sx=deg2rad(1.48);

g=L/2-b/2-z;

33 v=100; %length for constraint

r=1; % radius of root for ENS

35

%% Definition KP

37 %External KP

fprintf(fid,[’K,1,’,num2str(b/2),’,’,num2str(t/2+z+h),’,0’,’\n’]);

39 fprintf(fid,[’K,2,’,num2str(b/2),’,’,num2str(t/2+z),’,0’,’\n’]);

fprintf(fid,[’K,3,’,num2str(b/2+z),’,’,num2str(t/2),’,0’,’\n’]);

41 fprintf(fid,[’K,4,’,num2str(L/2),’,’,num2str(t/2+g*tan(alfa_dx)), ...

’,0’,’\n’]);

43 fprintf(fid,[’K,5,’,num2str(L/2),’,’,num2str(t/2+g*tan(alfa_dx)-t), ...

’,0’,’\n’]);

45 fprintf(fid,[’K,6,’,num2str(L/2-v),’,’,num2str(t/2+(g-v)*tan(alfa_dx)-t), ...

’,0’,’\n’]);

47 fprintf(fid,[’K,7,’,num2str(b/2+z),’,’,num2str(-t/2),’,0’,’\n’]);

fprintf(fid,[’K,8,’,num2str(b/2),’,’,num2str(-(t/2+z)),’,0’,’\n’]);

49 fprintf(fid,[’K,9,’,num2str(b/2),’,’,num2str(-(t/2+z+h)),’,0’,’\n’]);

fprintf(fid,[’K,10,’,num2str(-b/2),’,’,num2str(-(t/2+z+h)),’,0’,’\n’]);

51 fprintf(fid,[’K,11,’,num2str(-b/2),’,’,num2str(-(t/2+z)),’,0’,’\n’]);

fprintf(fid,[’K,12,’,num2str(-(b/2+z)),’,’,num2str(-t/2),’,0’,’\n’]);

53 fprintf(fid,[’K,13,’,num2str(-L/2),’,’,num2str(t/2+g*tan(alfa_sx)-t), ...

’,0’,’\n’]);

55 fprintf(fid,[’K,14,’,num2str(-L/2),’,’,num2str(t/2+g*tan(alfa_sx)), ...

’,0’,’\n’]);

57 fprintf(fid,[’K,15,’,num2str(-(L/2-v)),’,’,num2str(t/2+(g-v)*tan(alfa_sx)), ...

’,0’,’\n’]);
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59 fprintf(fid,[’K,16,’,num2str(-(b/2+z)),’,’,num2str(t/2),’,0’,’\n’]);

fprintf(fid,[’K,17,’,num2str(-b/2),’,’,num2str(t/2+z),’,0’,’\n’]);

61 fprintf(fid,[’K,18,’,num2str(-b/2),’,’,num2str(t/2+z+h),’,0’,’\n’]);

63 %KP for the root

65 fprintf(fid,[’K,19,’,num2str(b/2-r),’,’,num2str(t/2-r),’,0’,’\n’]);

fprintf(fid,[’K,20,’,num2str(b/2),’,’,num2str(t/2),’,0’,’\n’]);

67 fprintf(fid,[’K,21,’,num2str(b/2),’,’,num2str(t/2-r),’,0’,’\n’]);%center of arc

fprintf(fid,[’K,22,’,num2str(b/2+r),’,’,num2str(t/2-r),’,0’,’\n’]);

69

fprintf(fid,[’K,23,’,num2str(b/2-r),’,’,num2str(-(t/2-r)),’,0’,’\n’]);

71 fprintf(fid,[’K,24,’,num2str(b/2),’,’,num2str(-t/2),’,0’,’\n’]);

fprintf(fid,[’K,25,’,num2str(b/2),’,’,num2str(-(t/2-r)),’,0’,’\n’]);%center of arc

73 fprintf(fid,[’K,26,’,num2str(b/2+r),’,’,num2str(-(t/2-r)),’,0’,’\n’]);

75

fprintf(fid,[’K,27,’,num2str(-(b/2-r)),’,’,num2str(t/2-r),’,0’,’\n’]);

77 fprintf(fid,[’K,28,’,num2str(-b/2),’,’,num2str(t/2),’,0’,’\n’]);

fprintf(fid,[’K,29,’,num2str(-b/2),’,’,num2str(t/2-r),’,0’,’\n’]);%center of arc

79 fprintf(fid,[’K,30,’,num2str(-(b/2+r)),’,’,num2str(t/2-r),’,0’,’\n’]);

81 fprintf(fid,[’K,31,’,num2str(-(b/2-r)),’,’,num2str(-(t/2-r)),’,0’,’\n’]);

fprintf(fid,[’K,32,’,num2str(-b/2),’,’,num2str(-t/2),’,0’,’\n’]);

83 fprintf(fid,[’K,33,’,num2str(-b/2),’,’,num2str(-(t/2-r)),’,0’,’\n’]);%center of arc

fprintf(fid,[’K,34,’,num2str(-(b/2+r)),’,’,num2str(-(t/2-r)),’,0’,’\n’]);

85

87

%% Creation of lines

89

fprintf(fid,’L,1,2\n’);

91 fprintf(fid,’L,2,3\n’);

fprintf(fid,’L,3,4\n’);

93 fprintf(fid,’L,4,5\n’);

fprintf(fid,’L,5,6\n’);

95 fprintf(fid,’L,6,7\n’);

fprintf(fid,’L,7,8\n’);

97 fprintf(fid,’L,8,9\n’);

fprintf(fid,’L,9,10\n’);

99 fprintf(fid,’L,10,11\n’);

fprintf(fid,’L,11,12\n’);

101 fprintf(fid,’L,12,13\n’);

fprintf(fid,’L,13,14\n’);

103 fprintf(fid,’L,14,15\n’);

fprintf(fid,’L,15,16\n’);

105 fprintf(fid,’L,16,17\n’);

fprintf(fid,’L,17,18\n’);

107 fprintf(fid,’L,18,1\n’);

n=18;

109

%root lines

111 fprintf(fid,[’LARC,19,20,21,’,num2str(r),’\n’]);

fprintf(fid,[’LARC,20,22,21,’,num2str(r),’\n’]);

113 fprintf(fid,[’LARC,23,24,25,’,num2str(r),’\n’]);

fprintf(fid,[’LARC,24,26,25,’,num2str(r),’\n’]);

115 fprintf(fid,’L,19,23\n’);

fprintf(fid,’L,22,26\n’);

117

fprintf(fid,[’LARC,27,28,29,’,num2str(r),’\n’]);

119 fprintf(fid,[’LARC,28,30,29,’,num2str(r),’\n’]);

fprintf(fid,[’LARC,31,32,33,’,num2str(r),’\n’]);

121 fprintf(fid,[’LARC,32,34,33,’,num2str(r),’\n’]);
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fprintf(fid,’L,27,31\n’);

123 fprintf(fid,’L,30,34\n’);

k=12;

125

fprintf(fid,[’LFILLT,2,3,’,num2str(r),’\n’]); %comando APDL per creazione fillet

127 fprintf(fid,[’LFILLT,6,7,’,num2str(r),’\n’]); %comando APDL per creazione fillet

fprintf(fid,[’LFILLT,11,12,’,num2str(r),’\n’]); %comando APDL per creazione fillet

129 fprintf(fid,[’LFILLT,15,16,’,num2str(r),’\n’]); %comando APDL per creazione fillet

m=4;

131 fprintf(fid,’LDIV,15,0.8668735095560043\n ’);

fprintf(fid,’LDIV,6,0.8738266883278072 \n ’);

133 fprintf(fid,’LANG,3,44,90, ,\n ’);

fprintf(fid,’LANG,12,43,90, ,\n ’);

135

137 %% Creation of Area

fprintf(fid,’FLST,2,32,4\n’);

139 fprintf(fid,[’FITEM,2,35\nFITEM,2,34\nFITEM,2,16\nFITEM,2,17\nFITEM,2,18’ ...

’\nFITEM,2,1\n’]);

141 fprintf(fid,[’FITEM,2,2\nFITEM,2,31\nFITEM,2,3\nFITEM,2,12\nFITEM,2,33’ ...

’\nFITEM,2,11\n’]);

143 fprintf(fid,[’FITEM,2,10\nFITEM,2,9\nFITEM,2,8\nFITEM,2,7\nFITEM,2,32’ ...

’\nFITEM,2,36\n’]);

145 fprintf(fid,[’FITEM,2,40\nFITEM,2,38\nFITEM,2,24\nFITEM,2,20\nFITEM,2,19’ ...

’\nFITEM,2,23\n’]);

147 fprintf(fid,[’FITEM,2,21\nFITEM,2,22\nFITEM,2,29\nFITEM,2,25\nFITEM,2,26’ ...

’\nFITEM,2,30\n’]);

149 fprintf(fid,’FITEM,2,28\nFITEM,2,27\nAL,P51X\n’);

fprintf(fid,’FLST,2,5,4\n’);

151 fprintf(fid,[’FITEM,2,14\nFITEM,2,13\nFITEM,2,39\nFITEM,2,15\nFITEM,2,40’ ...

’\nAL,P51X\n’]);

153 fprintf(fid,’FLST,2,5,4\n’);

fprintf(fid,[’FITEM,2,37\nFITEM,2,5\nFITEM,2,6\nFITEM,2,38\nFITEM,2,4’ ...

155 ’\nAL,P51X\n’]);

157 %% Creation of mesh

m=6; %paratero che vale 6 per Plane182 e 4 per i Plane183

159 max_size=r/m;

realsize=num2str(max_size,3);

161 realsize2=realsize(1:3);

size=str2num(realsize2);

163 global_element_size=1;

%elements along fillet: >5 for PLANE182, >3 for PLANE183 weld toe

165 %elements along fillet: >40 for PLANE182, >24 for PLANE183 weld toe

167 fprintf(fid,[’ESIZE,’,num2str(global_element_size),’,0,\n’]);

fprintf(fid,’MSHKEY,0\nCM,_Y,AREA\nASEL, , , , 1 \n’);

169 fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\n’);

fprintf(fid,’AMESH,_Y1\n!*\nCMDELE,_Y\nCMDELE,_Y1\nCMDELE,_Y2\n!*\n’);

171

%Refine at weld toe and root

173

fprintf(fid,’FLST,5,2,4,ORDE,2\nFITEM,5,4\nFITEM,5,13\n’);

175 fprintf(fid,’CM,_Y,LINE \nLSEL, , , ,P51X\nCM,_Y1,LINE\n’);

fprintf(fid,’CMSEL,,_Y\n!*\nLESIZE,_Y1, , ,6, , , , ,1\n!*\n ’);

177

fprintf(fid,’FLST,5,2,4,ORDE,2\nFITEM,5,5\nFITEM,5,14\n’);

179 fprintf(fid,’CM,_Y,LINE \nLSEL, , , ,P51X\nCM,_Y1,LINE\n’);

fprintf(fid,’CMSEL,,_Y\n!*\nLESIZE,_Y1, , ,100, , , , ,1\n!*\n ’);

181

fprintf(fid,’FLST,5,2,4,ORDE,2\nFITEM,5,37\nFITEM,5,39\n’);

183 fprintf(fid,’CM,_Y,LINE \nLSEL, , , ,P51X\nCM,_Y1,LINE\n’);

fprintf(fid,’CMSEL,,_Y\n!*\nLESIZE,_Y1, , ,400,25, , , ,1\n!*\n ’);
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185

fprintf(fid,’FLST,5,2,4,ORDE,2\nFITEM,5,6\nFITEM,5,15\n’);

187 fprintf(fid,’CM,_Y,LINE \nLSEL, , , ,P51X\nCM,_Y1,LINE\n’);

fprintf(fid,’CMSEL,,_Y\n!*\nLESIZE,_Y1, , ,250,1/20, , , ,1\n!*\n ’);

189 fprintf(fid,’MSHKEY,0\nFLST,5,2,5,ORDE,2\nFITEM,5,2\nFITEM,5,-3\n ’);

fprintf(fid,’CM,_Y,AREA\nASEL, , , ,P51X\nCM,_Y1,AREA\nCHKMSH,’’AREA’’\n’);

191 fprintf(fid,[’CMSEL,S,_Y\n!*\nAMESH,_Y1\n!*\nCMDELE,_Y\nCMDELE,_Y1’ ...

’\nCMDELE,_Y2\n!*\n’]);

193

%% Definition of constraint and Pressure

195

%Constraint

197 fprintf(fid,’FLST,2,2,4,ORDE,2\n’);

fprintf(fid,’FITEM,2,5\n’);

199 fprintf(fid,[’FITEM,2,14\n’,’/GO\n!*\n’]);

fprintf(fid,’DL,P51X, ,UY,\n’);

201

fprintf(fid,’FLST,2,1,4,ORDE,1\n’);

203 fprintf(fid,[’FITEM,2,13\n’,’/GO\n!*\n’]);

fprintf(fid,’DL,P51X, ,UX,\n’);

205

%Pressure

207 p=-1;

fprintf(fid,’FLST,2,1,4,ORDE,1\n’);

209 fprintf(fid,[’FITEM,2,4\n’,’/GO\n!*\n’]);

fprintf(fid,[’SFL,P51X,PRES,’,num2str(p),’\n’]);

211

%% Solution

213 fprintf(fid,’/SOLU\nSOLVE\n’);

fclose(fid);

E.3.2 Code for application of SHSS

1 clc;

clear all;

3 close all;

5 %Opening of APDL file

fid=fopen(’HS_model_misalignment.txt’,’w’);

7 fprintf(fid,’/CLEAR\n’);

9 %% Opening of Preprocessor

fprintf(fid,[’/PREP7’,’\n’]);

11 %% Definition of element

fprintf(fid,’ET,1,PLANE182\n’);

13 fprintf(fid,’KEYOPT,1,1,3\nKEYOPT,1,3,2\nKEYOPT,1,6,0\n’);

15 %% Definition of Material

E=206000;

17 ni=0.3;

fprintf(fid,[’MPTEMP,,,,,,,,\nMPTEMP,1,0\nMPDATA,EX,1,,’,num2str(E), ...

19 ’\nMPDATA,PRXY,1,,’,num2str(ni),’\n’]);

%% Definition geometry parameters in mm

21 b=6;

t=6;

23 L=600;

z=7;

25 h=33;

alfa_dx=deg2rad(1.01);

27 alfa_sx=deg2rad(0.94);

g=L/2-b/2-z;

29 v=100; %length for constraint
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31 %% Definition KP

%External KP

33 fprintf(fid,[’K,1,’,num2str(b/2),’,’,num2str(t/2+z+h),’,0’,’\n’]);

fprintf(fid,[’K,2,’,num2str(b/2),’,’,num2str(t/2+z),’,0’,’\n’]);

35 fprintf(fid,[’K,3,’,num2str(b/2+z),’,’,num2str(t/2),’,0’,’\n’]);

fprintf(fid,[’K,4,’,num2str(L/2),’,’,num2str(t/2+g*tan(alfa_dx)), ...

37 ’0’,’\n’]);

fprintf(fid,[’K,5,’,num2str(L/2),’,’,num2str(t/2+g*tan(alfa_dx)-t), ...

39 ’0’,’\n’]);

fprintf(fid,[’K,6,’,num2str(L/2-v),’,’,num2str(t/2+(g-v)*tan(alfa_dx)-t), ...

41 ’0’,’\n’]);

fprintf(fid,[’K,7,’,num2str(b/2+z),’,’,num2str(-t/2),’,0’,’\n’]);

43 fprintf(fid,[’K,8,’,num2str(b/2),’,’,num2str(-(t/2+z)),’,0’,’\n’]);

fprintf(fid,[’K,9,’,num2str(b/2),’,’,num2str(-(t/2+z+h)),’,0’,’\n’]);

45 fprintf(fid,[’K,10,’,num2str(-b/2),’,’,num2str(-(t/2+z+h)),’,0’,’\n’]);

fprintf(fid,[’K,11,’,num2str(-b/2),’,’,num2str(-(t/2+z)),’,0’,’\n’]);

47 fprintf(fid,[’K,12,’,num2str(-(b/2+z)),’,’,num2str(-t/2),’,0’,’\n’]);

fprintf(fid,[’K,13,’,num2str(-L/2),’,’,num2str(t/2+g*tan(alfa_sx)-t), ...

49 ’0’,’\n’]);

fprintf(fid,[’K,14,’,num2str(-L/2),’,’,num2str(t/2+g*tan(alfa_sx)), ...

51 ’0’,’\n’]);

fprintf(fid,[’K,15,’,num2str(-(L/2-v)),’,’,num2str(t/2+(g-v)*tan(alfa_sx)), ...

53 ’0’,’\n’]);

fprintf(fid,[’K,16,’,num2str(-(b/2+z)),’,’,num2str(t/2),’,0’,’\n’]);

55 fprintf(fid,[’K,17,’,num2str(-b/2),’,’,num2str(t/2+z),’,0’,’\n’]);

fprintf(fid,[’K,18,’,num2str(-b/2),’,’,num2str(t/2+z+h),’,0’,’\n’]);

57

%% Creation of lines

59

fprintf(fid,’L,1,2\n’);

61 fprintf(fid,’L,2,3\n’);

fprintf(fid,’L,3,4\n’);

63 fprintf(fid,’L,4,5\n’);

fprintf(fid,’L,5,6\n’);

65 fprintf(fid,’L,6,7\n’);

fprintf(fid,’L,7,8\n’);

67 fprintf(fid,’L,8,9\n’);

fprintf(fid,’L,9,10\n’);

69 fprintf(fid,’L,10,11\n’);

fprintf(fid,’L,11,12\n’);

71 fprintf(fid,’L,12,13\n’);

fprintf(fid,’L,13,14\n’);

73 fprintf(fid,’L,14,15\n’);

fprintf(fid,’L,15,16\n’);

75 fprintf(fid,’L,16,17\n’);

fprintf(fid,’L,17,18\n’);

77 fprintf(fid,’L,18,1\n’);

79 fprintf(fid,’L,16,3\n’);

fprintf(fid,’L,12,7\n’);

81 fprintf(fid,’L,12,16\n’);

fprintf(fid,’L,7,3\n’);

83 fprintf(fid,’LANG,19,17,90, ,\n’);

fprintf(fid,’LANG,20,11,90, ,\n’);

85 fprintf(fid,’LANG,25,8,90, ,\n’);

fprintf(fid,’LANG,23,2,90, ,\n’);

87 fprintf(fid,’L,20,19\n’);

fprintf(fid,’L,21,22\n’);

89 fprintf(fid,’L,11,8\n’);

fprintf(fid,’L,17,2\n’);

91 fprintf(fid,’LANG,3,6,90, ,\n’);

fprintf(fid,’LANG,12,15,90, ,\n’);

379



Appendix E: Matlab codes

93 %% Creation of areas

95 fprintf(fid,’FLST,2,4,4\nFITEM,2,21\nFITEM,2,20\nFITEM,2,31\nFITEM,2,19\n’);

fprintf(fid,’AL,P51X\n’);

97 fprintf(fid,’FLST,2,4,4\nFITEM,2,31\nFITEM,2,23\nFITEM,2,25\nFITEM,2,32\n’);

fprintf(fid,’AL,P51X\n’);

99 fprintf(fid,’FLST,2,4,4\nFITEM,2,32\nFITEM,2,27\nFITEM,2,29\nFITEM,2,22\n’);

fprintf(fid,’AL,P51X\n’);

101 fprintf(fid,’FLST,2,3,4\nFITEM,2,19\nFITEM,2,16\nFITEM,2,24\n’);

fprintf(fid,’AL,P51X\n’);

103 fprintf(fid,’FLST,2,4,4\nFITEM,2,23\nFITEM,2,24\nFITEM,2,30\nFITEM,2,34\n’);

fprintf(fid,’AL,P51X\n’);

105 fprintf(fid,’FLST,2,3,4\nFITEM,2,30\nFITEM,2,29\nFITEM,2,2\n’);

fprintf(fid,’AL,P51X\n’);

107 fprintf(fid,’FLST,2,4,4\nFITEM,2,34\nFITEM,2,1\nFITEM,2,17\nFITEM,2,18\n’);

fprintf(fid,’AL,P51X\n’);

109 fprintf(fid,’FLST,2,3,4\nFITEM,2,20\nFITEM,2,26\nFITEM,2,11\n’);

fprintf(fid,’AL,P51X\n’);

111 fprintf(fid,’FLST,2,4,4\nFITEM,2,26\nFITEM,2,25\nFITEM,2,33\nFITEM,2,28\n’);

fprintf(fid,’AL,P51X\n’);

113 fprintf(fid,’FLST,2,3,4\nFITEM,2,27\nFITEM,2,28\nFITEM,2,7\n’);

fprintf(fid,’AL,P51X\n’);

115 fprintf(fid,’FLST,2,4,4\nFITEM,2,33\nFITEM,2,10\nFITEM,2,8\nFITEM,2,9\n’);

fprintf(fid,’AL,P51X\n’);

117 fprintf(fid,’FLST,2,4,4\nFITEM,2,13\nFITEM,2,37\nFITEM,2,38\nFITEM,2,14\n’);

fprintf(fid,’AL,P51X\n’);

119 fprintf(fid,’FLST,2,4,4\nFITEM,2,15\nFITEM,2,12\nFITEM,2,38\nFITEM,2,21\n’);

fprintf(fid,’AL,P51X\n’);

121 fprintf(fid,’FLST,2,4,4\nFITEM,2,5\nFITEM,2,4\nFITEM,2,35\nFITEM,2,36\n’);

fprintf(fid,’AL,P51X\n’);

123 fprintf(fid,’FLST,2,4,4\nFITEM,2,3\nFITEM,2,6\nFITEM,2,22\nFITEM,2,36\n’);

fprintf(fid,’AL,P51X\n’);

125

%% Creation of mesh

127 d_max=0.4*t;

global_element_size=d_max/6;

129 fprintf(fid,[’ESIZE,’,num2str(global_element_size),’,0,\n’]);

fprintf(fid,’CM,_Y,AREA\nASEL, , , , 12 \n’);

131 fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\n’);

fprintf(fid,[’MSHKEY,1\nAMESH,_Y1\nMSHKEY,1\n!*\nCMDELE,_Y\nCMDELE,_Y1’ ...

133 ’\nCMDELE,_Y2\n!*\n’]);

fprintf(fid,’CM,_Y,AREA\nASEL, , , , 13 \n’);

135 fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\n’);

fprintf(fid,[’MSHKEY,1\nAMESH,_Y1\nMSHKEY,1\n!*\nCMDELE,_Y\nCMDELE,_Y1’ ...

137 ’\nCMDELE,_Y2\n!*\n’]);

fprintf(fid,’CM,_Y,AREA\nASEL, , , , 15 \n’);

139 fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\n’);

fprintf(fid,[’MSHKEY,1\nAMESH,_Y1\nMSHKEY,1\n!*\nCMDELE,_Y\nCMDELE,_Y1’ ...

141 ’\nCMDELE,_Y2\n!*\n’]);

fprintf(fid,’CM,_Y,AREA\nASEL, , , , 14 \n’);

143 fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\n’);

fprintf(fid,[’MSHKEY,1\nAMESH,_Y1\nMSHKEY,1\n!*\nCMDELE,_Y\nCMDELE,_Y1’ ...

145 ’\nCMDELE,_Y2\n!*\n’]);

fprintf(fid,’CM,_Y,AREA\nASEL, , , , 4 \n’);

147 fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\n’);

fprintf(fid,[’MSHKEY,1\nAMESH,_Y1\nMSHKEY,1\n!*\nCMDELE,_Y\nCMDELE,_Y1’ ...

149 ’\nCMDELE,_Y2\n!*\n’]);

fprintf(fid,’CM,_Y,AREA\nASEL, , , , 1 \n’);

151 fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\n’);

fprintf(fid,[’MSHKEY,1\nAMESH,_Y1\nMSHKEY,1\n!*\nCMDELE,_Y\nCMDELE,_Y1’ ...

153 ’\nCMDELE,_Y2\n!*\n’]);

fprintf(fid,’CM,_Y,AREA\nASEL, , , , 8 \n’);

155 fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\n’);
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fprintf(fid,[’MSHKEY,1\nAMESH,_Y1\nMSHKEY,1\n!*\nCMDELE,_Y\nCMDELE,_Y1’ ...

157 ’\nCMDELE,_Y2\n!*\n’]);

fprintf(fid,’CM,_Y,AREA\nASEL, , , , 6 \n’);

159 fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\n’);

fprintf(fid,[’MSHKEY,1\nAMESH,_Y1\nMSHKEY,1\n!*\nCMDELE,_Y\nCMDELE,_Y1’ ...

161 ’\nCMDELE,_Y2\n!*\n’]);

fprintf(fid,’CM,_Y,AREA\nASEL, , , , 5 \n’);

163 fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\n’);

fprintf(fid,[’MSHKEY,1\nAMESH,_Y1\nMSHKEY,1\n!*\nCMDELE,_Y\nCMDELE,_Y1’ ...

165 ’\nCMDELE,_Y2\n!*\n’]);

fprintf(fid,’CM,_Y,AREA\nASEL, , , , 3 \n’);

167 fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\n’);

fprintf(fid,[’MSHKEY,1\nAMESH,_Y1\nMSHKEY,1\n!*\nCMDELE,_Y\nCMDELE,_Y1’ ...

169 ’\nCMDELE,_Y2\n!*\n’]);

fprintf(fid,’CM,_Y,AREA\nASEL, , , , 10 \n’);

171 fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\n’);

fprintf(fid,[’MSHKEY,1\nAMESH,_Y1\nMSHKEY,1\n!*\nCMDELE,_Y\nCMDELE,_Y1’ ...

173 ’\nCMDELE,_Y2\n!*\n’]);

fprintf(fid,’CM,_Y,AREA\nASEL, , , , 9 \n’);

175 fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\n’);

fprintf(fid,[’MSHKEY,1\nAMESH,_Y1\nMSHKEY,1\n!*\nCMDELE,_Y\nCMDELE,_Y1’ ...

177 ’\nCMDELE,_Y2\n!*\n’]);

fprintf(fid,’CM,_Y,AREA\nASEL, , , , 2 \n’);

179 fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\n’);

fprintf(fid,[’MSHKEY,1\nAMESH,_Y1\nMSHKEY,1\n!*\nCMDELE,_Y\nCMDELE,_Y1’ ...

181 ’\nCMDELE,_Y2\n!*\n’]);

fprintf(fid,’CM,_Y,AREA\nASEL, , , , 7 \n’);

183 fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\n’);

fprintf(fid,[’MSHKEY,1\nAMESH,_Y1\nMSHKEY,1\n!*\nCMDELE,_Y\nCMDELE,_Y1’ ...

185 ’\nCMDELE,_Y2\n!*\n’]);

fprintf(fid,’CM,_Y,AREA\nASEL, , , , 11 \n’);

187 fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\n’);

fprintf(fid,[’MSHKEY,1\nAMESH,_Y1\nMSHKEY,1\n!*\nCMDELE,_Y\nCMDELE,_Y1’ ...

189 ’\nCMDELE,_Y2\n!*\n’]);

191 %% Definition of constraint and Pressure

193 %Constraint

fprintf(fid,’FLST,2,2,4,ORDE,2\n’);

195 fprintf(fid,’FITEM,2,5\n’);

fprintf(fid,[’FITEM,2,14\n’,’/GO\n!*\n’]);

197 fprintf(fid,’DL,P51X, ,UY,\n’);

199 fprintf(fid,’FLST,2,1,4,ORDE,1\n’);

fprintf(fid,[’FITEM,2,13\n’,’/GO\n!*\n’]);

201 fprintf(fid,’DL,P51X, ,UX,\n’);

203

%Pressure

205 p=-1;

fprintf(fid,’FLST,2,1,4,ORDE,1\n’);

207 fprintf(fid,[’FITEM,2,4\n’,’/GO\n!*\n’]);

fprintf(fid,[’SFL,P51X,PRES,’,num2str(p),’\n’]);

209

%% Solution

211 fprintf(fid,’/SOLU\nSOLVE\n’);

fclose(fid);
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E.3.3 Code for application of PSM (Sharp V-notch)

clc;

2 clear all;

close all;

4

%Opening of APDL file

6 fid=fopen(’PSM_model_misalignment.txt’,’w’);

fprintf(fid,’/CLEAR\n’);

8

%% Opening of Preprocessor

10 fprintf(fid,[’/PREP7’,’\n’]);

%% Definition of element

12 fprintf(fid,’ET,1,PLANE182\n’);

fprintf(fid,’KEYOPT,1,1,3\nKEYOPT,1,3,2\nKEYOPT,1,6,0\n’);

14

%% Definition of Material

16 E=206000;

ni=0.3;

18 fprintf(fid,[’MPTEMP,,,,,,,,\nMPTEMP,1,0\nMPDATA,EX,1,,’,num2str(E), ...

’\nMPDATA,PRXY,1,,’,num2str(ni),’\n’]);

20 %% Definition geometry parameters in mm

b=6;

22 t=6;

L=600;

24 z=7;

h=33;

26 root_width=0.1;

alfa_dx=deg2rad(1.01);

28 alfa_sx=deg2rad(0.94);

g=L/2-b/2-z;

30 v=100; %length for constraint

32 %% Definition KP

%External KP

34 fprintf(fid,[’K,1,’,num2str(b/2),’,’,num2str(t/2+z+h),’,0’,’\n’]);

fprintf(fid,[’K,2,’,num2str(b/2),’,’,num2str(t/2+z),’,0’,’\n’]);

36 fprintf(fid,[’K,3,’,num2str(b/2+z),’,’,num2str(t/2),’,0’,’\n’]);

fprintf(fid,[’K,4,’,num2str(L/2),’,’,num2str(t/2+g*tan(alfa_dx)), ...

38 ’0’,’\n’]);

fprintf(fid,[’K,5,’,num2str(L/2),’,’,num2str(t/2+g*tan(alfa_dx)-t), ...

40 ’0’,’\n’]);

fprintf(fid,[’K,6,’,num2str(L/2-v),’,’,num2str(t/2+(g-v)*tan(alfa_dx)-t), ...

42 ’0’,’\n’]);

fprintf(fid,[’K,7,’,num2str(b/2+z),’,’,num2str(-t/2),’,0’,’\n’]);

44 fprintf(fid,[’K,8,’,num2str(b/2),’,’,num2str(-(t/2+z)),’,0’,’\n’]);

fprintf(fid,[’K,9,’,num2str(b/2),’,’,num2str(-(t/2+z+h)),’,0’,’\n’]);

46 fprintf(fid,[’K,10,’,num2str(-b/2),’,’,num2str(-(t/2+z+h)),’,0’,’\n’]);

fprintf(fid,[’K,11,’,num2str(-b/2),’,’,num2str(-(t/2+z)),’,0’,’\n’]);

48 fprintf(fid,[’K,12,’,num2str(-(b/2+z)),’,’,num2str(-t/2),’,0’,’\n’]);

fprintf(fid,[’K,13,’,num2str(-L/2),’,’,num2str(t/2+g*tan(alfa_sx)-t), ...

50 ’0’,’\n’]);

fprintf(fid,[’K,14,’,num2str(-L/2),’,’,num2str(t/2+g*tan(alfa_sx)), ...

52 ’0’,’\n’]);

fprintf(fid,[’K,15,’,num2str(-(L/2-v)),’,’,num2str(t/2+(g-v)*tan(alfa_sx)), ...

54 ’0’,’\n’]);

fprintf(fid,[’K,16,’,num2str(-(b/2+z)),’,’,num2str(t/2),’,0’,’\n’]);

56 fprintf(fid,[’K,17,’,num2str(-b/2),’,’,num2str(t/2+z),’,0’,’\n’]);

fprintf(fid,[’K,18,’,num2str(-b/2),’,’,num2str(t/2+z+h),’,0’,’\n’]);

58

%KP for the root

60 fprintf(fid,[’K,19,’,num2str(b/2),’,0,0’,’\n’]);

fprintf(fid,[’K,20,’,num2str(b/2),’,’,num2str(t/2),’,0’,’\n’]);
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62 fprintf(fid,[’K,21,’,num2str(b/2+root_width),’,0,0’,’\n’]);

fprintf(fid,[’K,22,’,num2str(b/2+root_width),’,’,num2str(-t/2),’,0’,’\n’]);

64

fprintf(fid,[’K,23,’,num2str(-b/2),’,0,0’,’\n’]);

66 fprintf(fid,[’K,24,’,num2str(-b/2),’,’,num2str(t/2),’,0’,’\n’]);

fprintf(fid,[’K,25,’,num2str(-(b/2+root_width)),’,0,0’,’\n’]);

68 fprintf(fid,[’K,26,’,num2str(-(b/2+root_width)),’,’,num2str(-t/2),’,0’,’\n’]);

70 %% Creation of lines

72 fprintf(fid,’L,1,2\n’);

fprintf(fid,’L,2,3\n’);

74 fprintf(fid,’L,3,4\n’);

fprintf(fid,’L,4,5\n’);

76 fprintf(fid,’L,5,6\n’);

fprintf(fid,’L,6,7\n’);

78 fprintf(fid,’L,7,8\n’);

fprintf(fid,’L,8,9\n’);

80 fprintf(fid,’L,9,10\n’);

fprintf(fid,’L,10,11\n’);

82 fprintf(fid,’L,11,12\n’);

fprintf(fid,’L,12,13\n’);

84 fprintf(fid,’L,13,14\n’);

fprintf(fid,’L,14,15\n’);

86 fprintf(fid,’L,15,16\n’);

fprintf(fid,’L,16,17\n’);

88 fprintf(fid,’L,17,18\n’);

fprintf(fid,’L,18,1\n’);

90 n=18;

92 %Lines for root

94 fprintf(fid,’L,19,20\n’);

fprintf(fid,’L,20,21\n’);

96 fprintf(fid,’L,21,22\n’);

fprintf(fid,’L,22,19\n’);

98

fprintf(fid,’L,23,24\n’);

100 fprintf(fid,’L,24,25\n’);

fprintf(fid,’L,25,26\n’);

102 fprintf(fid,’L,26,23\n’);

104 %number of line for root

k=8;

106

%% Creation of Area

108 fprintf(fid,[’FLST,2,’,num2str(n+k),’,4\n’]);

for i=1:(n+k)

110 fprintf(fid,[’FITEM,2,’,num2str(i),’\n’]);

end

112 fprintf(fid,’AL,P51X\n’);

114

%% Creation of mesh

116 a=t/2; %dimensional parametr

ratio_min=3; %from literature PSM review A.Campagnolo

118 d_max=a/ratio_min; %maximum dimension of element

120 global_element_size=0.2;

fprintf(fid,[’ESIZE,’,num2str(global_element_size),’,0,\n’]);

122 fprintf(fid,’MSHKEY,0\nCM,_Y,AREA\nASEL, , , , 1 \n’);

fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\n’);

124 fprintf(fid,’AMESH,_Y1\n!*\nCMDELE,_Y\nCMDELE,_Y1\nCMDELE,_Y2\n!*\n’);
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126 %% Definition of constraint and Pressure

128 %Constraint

fprintf(fid,’FLST,2,2,4,ORDE,2\n’);

130 fprintf(fid,’FITEM,2,5\n’);

fprintf(fid,[’FITEM,2,14\n’,’/GO\n!*\n’]);

132 fprintf(fid,’DL,P51X, ,UY,\n’);

134 fprintf(fid,’FLST,2,1,4,ORDE,1\n’);

fprintf(fid,[’FITEM,2,13\n’,’/GO\n!*\n’]);

136 fprintf(fid,’DL,P51X, ,UX,\n’);

138

%Pressure

140 p=-1;

fprintf(fid,’FLST,2,1,4,ORDE,1\n’);

142 fprintf(fid,[’FITEM,2,4\n’,’/GO\n!*\n’]);

fprintf(fid,[’SFL,P51X,PRES,’,num2str(p),’\n’]);

144

%% Creation of local reference system at weld toe tip and root

146 alfa=112.5;

fprintf(fid,’WPSTYLE,,,,,,,,1\n’);

148 fprintf(fid,[’KWPAVE,3\nwprot,’,num2str(-alfa),’\n’]);

fprintf(fid,’CSWPLA,11,0,1,1,\n’);

150 fprintf(fid,’WPCSYS,-1,0\n’);

fprintf(fid,’KWPAVE,20\nwprot,90\n’);

152 fprintf(fid,’CSWPLA,12,0,1,1,\nWPSTYLE,,,,,,,,0\n’);

fprintf(fid,’WPCSYS,-1,0\n’);

154

fprintf(fid,’WPSTYLE,,,,,,,,1\n’);

156 fprintf(fid,[’KWPAVE,7\nwprot,’,num2str(alfa),’\n’]);

fprintf(fid,’wprot,0,180,0\n’);

158 fprintf(fid,’CSWPLA,13,0,1,1,\n’);

fprintf(fid,’WPCSYS,-1,0\n’);

160 fprintf(fid,’KWPAVE,22\nwprot,-90\n’);

fprintf(fid,’wprot,0,180,0\n’);

162 fprintf(fid,’CSWPLA,14,0,1,1,\nWPSTYLE,,,,,,,,0\n’);

fprintf(fid,’WPCSYS,-1,0\n’);

164

fprintf(fid,’WPSTYLE,,,,,,,,1\n’);

166 fprintf(fid,[’KWPAVE,16\n wprot,’,num2str(alfa),’\n’]);

fprintf(fid,’wprot,0,0,180\n’);

168 fprintf(fid,’CSWPLA,15,0,1,1,\n’);

fprintf(fid,’WPCSYS,-1,0\n’);

170 fprintf(fid,’KWPAVE,24\nwprot,90\n’);

fprintf(fid,’CSWPLA,16,0,1,1,\nWPSTYLE,,,,,,,,0\n’);

172 fprintf(fid,’WPCSYS,-1,0\n’);

174 fprintf(fid,’WPSTYLE,,,,,,,,1\n’);

fprintf(fid,[’KWPAVE,12\nwprot,’,num2str(-alfa),’\n’]);

176 fprintf(fid,’wprot,0,0,180\n’);

fprintf(fid,’wprot,0,180,0\n’);

178 fprintf(fid,’CSWPLA,17,0,1,1,\n’);

fprintf(fid,’WPCSYS,-1,0\n’);

180 fprintf(fid,’KWPAVE,26\nwprot,-90\n’);

fprintf(fid,’wprot,0,180,0\n’);

182 fprintf(fid,’CSWPLA,18,0,1,1,\nWPSTYLE,,,,,,,,0\n’);

184 %% Solution

fprintf(fid,’/SOLU\nSOLVE\n’);

186 fprintf(fid,’!*\n /PSF,DEFA, ,1,0,1\n/PBF,DEFA, ,1 \n/PSYMB,CS,1 \n’);

fprintf(fid,[’/PSYMB,NDIR,0 \n/PSYMB,ESYS,0\n/PSYMB,ESYS,0 ’ ...
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188 ’\n/PSYMB,ESYS,0 \n’]);

fprintf(fid,[’/PSYMB,ESYS,0\n/PSYMB,LDIV,0\n /PSYMB,LDIR,0\n/PSYMB,ADIR,0’ ...

190 ’\n/PSYMB,ECON,0\n’]);

fprintf(fid,[’/PSYMB,XNODE,0\n/PSYMB,DOT,1\n/PSYMB,PCONV,\n/PSYMB,LAYR,0’ ...

192 ’\n/PSYMB,FBCS,0\n’]);

fprintf(fid,’!*\n/PBC,ALL, ,1\n/REP\n!*\n’);

194

fclose(fid);

E.3.4 Code for application of PSM (No sharp V-notch)

1 clc;

clear all;

3 close all;

delete(’Tensioni_nodali.txt’)

5 delete(’Coordinate_nodali.txt’)

clc

7 %Opening of APDL file

fid=fopen(’PSM_model_HFMI.txt’,’w’);

9 fprintf(fid,’/CLEAR\n’);

11 %% Opening of Preprocessor

fprintf(fid,[’/PREP7’,’\n’]);

13

%% Definition of element

15 fprintf(fid,’ET,1,PLANE182\n’);

fprintf(fid,’KEYOPT,1,1,3\nKEYOPT,1,3,2\nKEYOPT,1,6,0\n’);

17

%% Definition of Material

19 E=206000;

ni=0.3;

21 fprintf(fid,[’MPTEMP,,,,,,,,\nMPTEMP,1,0\nMPDATA,EX,1,,’,num2str(E), ...

’\nMPDATA,PRXY,1,,’,num2str(ni),’\n’]);

23

%% Definition geometry parameters in mm

25 b=6;

t=6;

27 L=600;

z=7;

29 h=33;

root_width=0.1;

31 alfa_dx=deg2rad(1.01);

alfa_sx=deg2rad(0.94);

33 g=L/2-b/2-z;

v=100; %length for constraint

35

%% Definition KP

37 %External KP

fprintf(fid,[’K,1,’,num2str(b/2),’,’,num2str(t/2+z+h),’,0’,’\n’]);

39 fprintf(fid,[’K,2,’,num2str(b/2),’,’,num2str(t/2+z),’,0’,’\n’]);

fprintf(fid,[’K,3,’,num2str(b/2+z),’,’,num2str(t/2),’,0’,’\n’]);

41 fprintf(fid,[’K,4,’,num2str(L/2),’,’,num2str(t/2+g*tan(alfa_dx)),’0’,’\n’]);

fprintf(fid,[’K,5,’,num2str(L/2),’,’,num2str(t/2+g*tan(alfa_dx)-t),’0’,’\n’]);

43 fprintf(fid,[’K,6,’,num2str(L/2-v),’,’,num2str(t/2+(g-v)*tan(alfa_dx)-t), ...

’0’,’\n’]);

45 fprintf(fid,[’K,7,’,num2str(b/2+z),’,’,num2str(-t/2),’,0’,’\n’]);

fprintf(fid,[’K,8,’,num2str(b/2),’,’,num2str(-(t/2+z)),’,0’,’\n’]);

47 fprintf(fid,[’K,9,’,num2str(b/2),’,’,num2str(-(t/2+z+h)),’,0’,’\n’]);

fprintf(fid,[’K,10,’,num2str(-b/2),’,’,num2str(-(t/2+z+h)),’,0’,’\n’]);

49 fprintf(fid,[’K,11,’,num2str(-b/2),’,’,num2str(-(t/2+z)),’,0’,’\n’]);

fprintf(fid,[’K,12,’,num2str(-(b/2+z)),’,’,num2str(-t/2),’,0’,’\n’]);

51 fprintf(fid,[’K,13,’,num2str(-L/2),’,’,num2str(t/2+g*tan(alfa_sx)-t),’0’,’\n’]);
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fprintf(fid,[’K,14,’,num2str(-L/2),’,’,num2str(t/2+g*tan(alfa_sx)),’0’,’\n’]);

53 fprintf(fid,[’K,15,’,num2str(-(L/2-v)),’,’,num2str(t/2+(g-v)*tan(alfa_sx)), ...

’0’,’\n’]);

55 fprintf(fid,[’K,16,’,num2str(-(b/2+z)),’,’,num2str(t/2),’,0’,’\n’]);

fprintf(fid,[’K,17,’,num2str(-b/2),’,’,num2str(t/2+z),’,0’,’\n’]);

57 fprintf(fid,[’K,18,’,num2str(-b/2),’,’,num2str(t/2+z+h),’,0’,’\n’]);

59 %KP for the root

fprintf(fid,[’K,19,’,num2str(b/2),’,0,0’,’\n’]);

61 fprintf(fid,[’K,20,’,num2str(b/2),’,’,num2str(t/2),’,0’,’\n’]);

fprintf(fid,[’K,21,’,num2str(b/2+root_width),’,0,0’,’\n’]);

63 fprintf(fid,[’K,22,’,num2str(b/2+root_width),’,’,num2str(-t/2),’,0’,’\n’]);

65 fprintf(fid,[’K,23,’,num2str(-b/2),’,0,0’,’\n’]);

fprintf(fid,[’K,24,’,num2str(-b/2),’,’,num2str(t/2),’,0’,’\n’]);

67 fprintf(fid,[’K,25,’,num2str(-(b/2+root_width)),’,0,0’,’\n’]);

fprintf(fid,[’K,26,’,num2str(-(b/2+root_width)),’,’,num2str(-t/2),’,0’,’\n’]);

69

%% Creation of lines

71

fprintf(fid,’L,1,2\n’);

73 fprintf(fid,’L,2,3\n’);

fprintf(fid,’L,3,4\n’);

75 fprintf(fid,’L,4,5\n’);

fprintf(fid,’L,5,6\n’);

77 fprintf(fid,’L,6,7\n’);

fprintf(fid,’L,7,8\n’);

79 fprintf(fid,’L,8,9\n’);

fprintf(fid,’L,9,10\n’);

81 fprintf(fid,’L,10,11\n’);

fprintf(fid,’L,11,12\n’);

83 fprintf(fid,’L,12,13\n’);

fprintf(fid,’L,13,14\n’);

85 fprintf(fid,’L,14,15\n’);

fprintf(fid,’L,15,16\n’);

87 fprintf(fid,’L,16,17\n’);

fprintf(fid,’L,17,18\n’);

89 fprintf(fid,’L,18,1\n’);

n=18;

91

%Lines for root

93

fprintf(fid,’L,19,20\n’);

95 fprintf(fid,’L,20,21\n’);

fprintf(fid,’L,21,22\n’);

97 fprintf(fid,’L,22,19\n’);

99 fprintf(fid,’L,23,24\n’);

fprintf(fid,’L,24,25\n’);

101 fprintf(fid,’L,25,26\n’);

fprintf(fid,’L,26,23\n’);

103

%number of line for root

105 k=8;

107 %% Creation of Area

fprintf(fid,[’FLST,2,’,num2str(n+k),’,4\n’]);

109 for i=1:(n+k)

fprintf(fid,[’FITEM,2,’,num2str(i),’\n’]);

111 end

fprintf(fid,’AL,P51X\n’);

113

%% KP HFMI
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115

%Dimension of the groove

117 rho=3.31;%standard deviation 1.25

depth=0.21+0.09; %standard deviation 0.09

119

%Groove up-right

121

alfa=((135-rad2deg(alfa_dx))/2)+rad2deg(alfa_dx);

123 alfa_rad=deg2rad(alfa);

xc=t/2+z+((rho-depth)/(tan(alfa_rad)));

125 yc=t/2+rho-depth;

fprintf(fid,’NUMSTR,KP,200\n’);

127 fprintf(fid,[’K,,’,num2str(xc),’,’,num2str(yc),’,0’,’\n’]);

fprintf(fid,[’CYL4,’,num2str(xc),’,’,num2str(yc),’,’,num2str(rho),’\n’]);

129

%Groove up-left

131

beta=((135-rad2deg(alfa_sx))/2)+rad2deg(alfa_sx);

133 beta_rad=deg2rad(beta);

xc1=t/2+z+((rho-depth)/(tan(beta_rad)));

135 yc1=t/2+rho-depth;

fprintf(fid,[’K,,’,num2str(-xc1),’,’,num2str(yc1),’,0’,’\n’]);

137 fprintf(fid,[’CYL4,’,num2str(-xc1),’,’,num2str(yc1),’,’,num2str(rho),’\n’]);

139 %Groove bottom-right

141

fprintf(fid,[’K,,’,num2str(xc),’,’,num2str(-yc),’,0’,’\n’]);

143 fprintf(fid,[’CYL4,’,num2str(xc),’,’,num2str(-yc),’,’,num2str(rho),’\n’]);

145 %Groove bottom-left

147 fprintf(fid,[’K,,’,num2str(-xc1),’,’,num2str(-yc1),’,0’,’\n’]);

fprintf(fid,[’CYL4,’,num2str(-xc1),’,’,num2str(-yc1),’,’,num2str(rho),’\n’]);

149

%% Creation of Area with HFMI groove

151 fprintf(fid,’FLST,3,4,5,ORDE,2\nFITEM,3,2\nFITEM,3,-5\nASBA,1,P51X\n’);

153

%% Creation of mesh

155

global_element_size=0.5;

157 fprintf(fid,[’ESIZE,’,num2str(global_element_size),’,0,\n’]);

fprintf(fid,’MSHKEY,0\nCM,_Y,AREA\nASEL, , , , 6 \n’);

159 fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\n’);

fprintf(fid,’AMESH,_Y1\n!*\nCMDELE,_Y\nCMDELE,_Y1\nCMDELE,_Y2\n!*\n’);

161

%Refine of mesh at the groove up-left

163

fprintf(fid,[’FLST,5,2,4,ORDE,2\nFITEM,5,53\nFITEM,5,-54\nCM,_Y,LINE’ ...

165 ’\nLSEL, , , ,P51X\n’]);

fprintf(fid,’CM,_Y1,LINE\nCMSEL,S,_Y\nCMDELE,_Y\n!*\n!*\n’);

167 fprintf(fid,[’LREF,_Y1, , ,1,5,1,1\nCMDELE,_Y1\n!*\nFLST,5,2,4,ORDE,2’ ...

’\nFITEM,5,53\nFITEM,5,-54\n’]);

169 fprintf(fid,[’CM,_Y,LINE\nLSEL, , , ,P51X\nCM,_Y1,LINE\nCMSEL,S,_Y’ ...

’\nCMDELE,_Y\n!*\n!*\n’]);

171 fprintf(fid,’LREF,_Y1, , ,1,5,1,1\nCMDELE,_Y1\n!*\n’);

173 %% Definition of constraint and Pressure

175 %Constraint

fprintf(fid,’FLST,2,2,4,ORDE,2\n’);

177 fprintf(fid,’FITEM,2,5\n’);
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fprintf(fid,[’FITEM,2,14\n’,’/GO\n!*\n’]);

179 fprintf(fid,’DL,P51X, ,UY,\n’);

181 fprintf(fid,’FLST,2,1,4,ORDE,1\n’);

fprintf(fid,[’FITEM,2,13\n’,’/GO\n!*\n’]);

183 fprintf(fid,’DL,P51X, ,UX,\n’);

185

%Pressure

187 p=-1;

fprintf(fid,’FLST,2,1,4,ORDE,1\n’);

189 fprintf(fid,[’FITEM,2,4\n’,’/GO\n!*\n’]);

fprintf(fid,[’SFL,P51X,PRES,’,num2str(p),’\n’]);

191

193

%% Solution

195 fprintf(fid,’/SOLU\nSOLVE\nFINISH\n’);

%% Post processor

197

fprintf(fid,’/POST1\n!*\n’);

199 fprintf(fid,’FLST,5,2,4,ORDE,2\nFITEM,5,53\nFITEM,5,-54\nLSEL,S, , ,P51X\n’);

fprintf(fid,’NSLL,S,1\n’);

201

203 fprintf(fid,[’INRES,ALL\nFILE,’’file’’,’’rst’’,’’.’’\nSET,LAST’ ...

’\nSET,FIRST\nAVPRIN,0, ,\n’]);

205 fprintf(fid,[’ETABLE, ,S,1\n/OUTPUT,Tensioni_nodali,txt’ ...

’\nPRNSOL, S, PRIN\n/OUT\n’]);

207

%macro for nodal coordinates

209 fprintf(fid,’/INPUT,export_nodal_coords,mac\n’);

tic

211 ! run_ansys.bat

toc

213

%Opening of txt file tensioni nodali and writing of matrix tensioni nodali

215

file_tensioni=fopen(’Tensioni_nodali.txt’,’r’);

217 tensioni_nodali_11=txt2mat(file_tensioni);

fclose(file_tensioni);

219 %Research of node with max principal stress

ten_max=max(tensioni_nodali_11(:,2));

221 index_nodo=find(tensioni_nodali_11(:,2)==ten_max);

nodo_ten_max=tensioni_nodali_11(index_nodo,1);

223

%Creation of txt file coordinate nodali and creation of matrix

225 file_coordinate=fopen(’coordinate_nodali.txt’,’r’);

coordinate_nodali_11=txt2mat_c(file_coordinate);

227 fclose(file_coordinate);

%Researching of node with max principal stress

229 nodo_max=find(coordinate_nodali_11(:,1)==nodo_ten_max);

coordinate_nodo_max=coordinate_nodali_11(nodo_max,:);

231 %Coordinatesof the point with max principal stress at weld toe up-left

x1=coordinate_nodo_max(2);

233 y1=coordinate_nodo_max(3);

235 %% Calculation of inclination angle for structuralvolume

237 %Point A represents the coordinates of the V-notch up-left

xA=-(t/2+z);

239 yA=t/2;
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241 %Point C represents the center of arc of the HFMI groove

xc1_ul=-xc1;

243 yc1_ul=yc1;

245 %Angular coefficient of the straight between A and the center od the arc of HFMI groove

m1=(yc1_ul-yA)/(xc1_ul-xA);

247

%Angular coefficient of the straight between center of HFMI groove and 1

249 %(point with max prinicpal stress

m2=(yc1_ul-y1)/(xc1_ul-x1);

251

%Inclination angle gamma

253 gamma_rad=atan(abs((m1-m2)/(1+m1*m2)));

gamma=rad2deg(gamma_rad);

255

%% Calculation of the center to create structural volume

257 %Geometrical parameter

delta=135-rad2deg(alfa_sx);

259 q=2-delta/180;

r0=((q-1)/q)*rho;

261 R0=0.28;

R_SED=R0+r0;

263

%Inclination angle of straight from C to 1

265 psi=atan2((yc1_ul-y1),(xc1_ul-x1));

267 %Calculation of x2 e y2 coordinates of the arc center of structural volume for SED

%(Method1)

269 x2=x1+r0*cos(psi);

y2=y1+r0*sin(psi);

271 %Equation of straight from 1 to 2 ed inverse formula of distance between 2 points

%(Method 2)

273

eq_y2= @(x) m2*(x-x1)+y1;

275 eq_x2=@(x) (x-x1).^2+(eq_y2(x)-y1).^2-r0^2;

277 %Plot of eq_x2 to verify the position of the zero

plot(linspace(x1,x1-5),eq_x2(linspace(x1,x1-5)))

279 grid on

%Initial point

281 x0=-11;

x2_2=fsolve(eq_x2,x0);

283 hold on

plot(x2_2,eq_x2(x2_2),’or’)

285 y2_2=eq_y2(x2_2);

%Verification of the length of the segment

287

length_x2_y2=sqrt((x2-x1)^2+(y2-y1)^2)

289 length_x2_y2_2=sqrt((x2_2-x1)^2+(y2_2 -y1)^2)

r0

291

%% Creation of KP center of arc and the relative arc

293 %Selection all, opening of preprocessor, clean mesh, creation new geometry

fprintf(fid,’ALLSEL,ALL\n /PREP7\n’);

295 fprintf(fid,’ACLEAR, 6\n’);

fprintf(fid,[’FLST,2,2,8\nFITEM,2,’,num2str(x2),’,’,num2str(y2),’,0\n’]);

297 fprintf(fid,[’FITEM,2,’,num2str(x2),’,’,num2str(y2-R_SED),’,0\n’]);

fprintf(fid,’CIRCLE,P51X\n’);

299

%Division of the lines of structural volume

301 fprintf(fid,’FLST,2,2,4,ORDE,2\nFITEM,2,2\nFITEM,2,7\n’);

fprintf(fid,’FLST,3,2,4,ORDE,2\nFITEM,3,53\nFITEM,3,-54\n’);

303 fprintf(fid,’LSBL,P51X,P51X, , ,KEEP\n ’);
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305 %Deleting of the lines in excess

fprintf(fid,’FLST,2,4,4,ORDE,4\nFITEM,2,3\nFITEM,2,6\nFITEM,2,15\nFITEM,2,-16\n’);

307 fprintf(fid,’LDELE,P51X, , ,1\n’);

309 %Division of principal area

fprintf(fid,’FLST,3,2,4,ORDE,2\nFITEM,3,11\nFITEM,3,-12\nASBL,6,P51X\n’);

311

%% Mesh of areas

313

%Mesh Area of structural volume

315 size_SED=0.05;

fprintf(fid,[’ESIZE,’,num2str(size_SED),’,0,’]);

317 fprintf(fid,’MSHKEY,0\nCM,_Y,AREA\nASEL, , , ,1\n’);

fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\nAMESH,_Y1\n!*’);

319 fprintf(fid,’CMDELE,_Y\nCMDELE,_Y1\nCMDELE,_Y2\n!*\n’);

321 %Mesh external area

size_ext=1;

323 fprintf(fid,[’ESIZE,’,num2str(size_ext),’,0,’]);

fprintf(fid,’MSHKEY,0\nCM,_Y,AREA\nASEL, , , ,2\n’);

325 fprintf(fid,’CM,_Y1,AREA\nCHKMSH,’’AREA’’\nCMSEL,S,_Y\n!*\nAMESH,_Y1\n!*’);

fprintf(fid,’CMDELE,_Y\nCMDELE,_Y1\nCMDELE,_Y2\n!*\n’);

327

%% Resolution of the model

329

fprintf(fid,’/SOLU\nSOLVE\n’);

331

%% Post Process

333 fprintf(fid,’/POST1\n!*\n’);

335 %Selection of structural area and attached elements

fprintf(fid,’ASEL,S, , ,1\nESLA,S\n/AUTO,1\n/REP,FAST\n’);

337

%Creation of Element Table SENE e VOLU

339 fprintf(fid,’AVPRIN,0, ,\nETABLE, ,SENE,\n!*\nAVPRIN,0, ,\nETABLE, ,VOLU,\n!*\n’);

data=[rad2deg(alfa_sx) r0 gamma ]

341 fclose(fid);

E.4 MatLab code for the statistical analysis for the detection of mis-

alignment factor

E.4.1 Free slope

1 clc

clear variables;

3 close all;

5 %% Reading of the data from excel file

S_max=xlsread(’Data.xlsx’,’PSM’,’B:B’);

7 N=xlsread(’Data.xlsx’,’PSM’,’E:E’);

t=xlsread(’Data.xlsx’,’PSM’,’G:G’); %Thickness

9 e=xlsread(’Data.xlsx’,’PSM’,’I:I’);%Misalignment

K_actual=xlsread(’Data.xlsx’,’PSM’,’F:F’);%stress intensity Factor

11 % ideal with misalignment

13

%Definition of factors

15 gamma=[4.05:0.001:5]’;

beta=[0.05:0.001:1]’;

17
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et=e./t;

19

%Trasformation of tha number of cycle in logarithmic

21 N_log=log10(N);

%Definizione della PS scelta e del livello di confidenza

23 prob_suv=95;

liv_conf=95;

25 nu=length(S_max)-1;

27 %Definition of number of cycles

Nmin=10000;

29 Nmax=10000000;

Nlim=2000000;

31

%% Calaculation of average value of the logarithmic data of number of cycles

33 N_avg_log=mean(N_log);

35 %% Calculation of Liebermann parameter

%Creation of the matrix to define the Liebermann parameter (it summaries the

37 %confidence level and the PS

39 Confidenza=xlsread(’Data.xlsx’,’Lieb’,’A:A’);

PS=xlsread(’Data.xlsx’,’Lieb’,’B:B’);

41 GDL=xlsread(’Data.xlsx’,’Lieb’,’C:C’);

ps_valori=xlsread(’Data.xlsx’,’Lieb’,’D:D’);

43

Lieb=[Confidenza PS GDL ps_valori];

45

k=find(Lieb(:,1)==liv_conf & Lieb(:,2)==prob_suv & Lieb(:,3)==nu);

47 k_lieb=Lieb(k,4);

49 %% Beginning of iterative cycle

51 %Pre-location of the vectors

S_max_new=zeros(length(S_max),length(beta),length(gamma));

53 S_max_new_log=zeros(length(S_max),length(beta),length(gamma));

%sigma_y=zeros(length(gamma),length(beta));

55 %Tsigma=zeros(length(gamma),length(beta));

%B=-5;

57 for i=1:length(gamma)

for j=1:length(beta)

59 %k_mis(:,j,i)=gamma(i)*(1+beta(j).*et);

k_mis(:,j,i)=abs(gamma(i)*(1-beta(j).*et));

61 %k_mis(:,j,i)=abs(gamma(i)./(1+beta(j).*et(:)));

%k_mis(:,j,i)=gamma(i).^(1-beta(j).*et);

63 %k_mis(:,j,i)=gamma(i).^(1+beta(j).*et);

%k_mis(:,j,i)=gamma(i).^(1/(1-beta(j).*et));

65 %k_mis(:,j,i)=gamma(i).^(1/(1+beta(j).*et));

%k_mis(:,j,i)=gamma(i).^(beta(j).*et);

67 S_max_new(:,j,i)=S_max.*K_actual.*k_mis(:,j,i);

S_max_new_log(:,j,i)=log10(S_max_new(:,j,i));

69 %Calculation of the average value for the tension

S_avg_new_log=mean(S_max_new_log(:,j,i));

71 %Calculation of the slope

B(i,j)=sum((S_max_new_log(:,j,i)-S_avg_new_log).* ...

73 (N_log-N_avg_log))./sum((S_max_new_log(:,j,i)-S_avg_new_log).^2);

%Calculation of intercept

75 A=N_avg_log-B(i,j)*S_avg_new_log;

%Calculation of standard deviation

77 sigma_y(i,j)=sqrt((sum((N_log-(A+B(i,j).*S_max_new_log(:,j,i))).^2)) ...

/(length(S_max)-2));

79 sigma_S=sigma_y(i,j)/B(i,j);

%Calculation of Tsigma
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81 lim_inf=A-sigma_y(i,j)*k_lieb;

lim_sup=A+sigma_y(i,j)*k_lieb;

83 %Tension at N=2*10^6 for PS 5%,50%,95%

sigma_inf_95=10^(-lim_inf/B(i,j))*Nlim^(1/B(i,j));

85 sigma_sup_5=10^(-lim_sup/B(i,j))*Nlim^(1/B(i,j));

sigma_50=10^(-A/B(i,j))*Nlim^(1/B(i,j));

87 Tsigma(i,j)=sigma_sup_5/sigma_inf_95;

Tsigma2(i,j)=10^(-(2*sigma_y(i,j)*k_lieb)/B(i,j));

89

end

91 end

93 [sigma_y_min,loc]=min(sigma_y(:));

[ii,jj]=ind2sub(size(sigma_y),loc);

95 fprintf([’The minimum value of standard deviation is ’,num2str(sigma_y_min), ...

’ for beta equal to ’,num2str(beta(jj)),’ and gamma equal to ’,num2str(gamma(ii)),’\n’]);

97 fprintf([’The Tsigma associated to the minimum value of standard deviation is equal to ’ ...

’’,num2str(Tsigma2(ii,jj)),’\n’]);

99 fprintf([’The slope associated to the minimum value of standard deviation is equal to’ ...

’ ’,num2str(B(ii,jj)),’\n’]);

101 gamma_ok=gamma(ii);

beta_ok=beta(jj);

103

[BETA,GAMMA]=meshgrid(beta,gamma);

105 s=surf(GAMMA,BETA,sigma_y,’FaceAlpha’,0.5);

s.EdgeColor=’none’

107 xlabel(’\gamma’);

ylabel(’\beta’);

109 zlabel(’Standard deviation \sigma_y’);

hold on

111 plot3(gamma_ok,beta_ok,sigma_y_min,’or’,’MarkerSize’,5)

E.4.2 Fixed slope m=5

clc

2 clear variables;

close all;

4

%% Reading of the data from excel file

6 S_max=xlsread(’Data.xlsx’,’PSM’,’B:B’);

N=xlsread(’Data.xlsx’,’PSM’,’E:E’);

8 t=xlsread(’Data.xlsx’,’PSM’,’G:G’); %Thickness

e=xlsread(’Data.xlsx’,’PSM’,’I:I’);%Misalignment

10 K_actual=xlsread(’Data.xlsx’,’PSM’,’F:F’);%stress intensity Factor

% ideal with misalignment

12

14 %Definition of factors

gamma=[6.05:0.001:7]’;

16 beta=[0.05:0.001:1]’;

18 et=e./t;

20 %Trasformation of tha number of cycle in logarithmic

N_log=log10(N);

22

%Definizione della PS scelta e del livello di confidenza

24 prob_suv=95;

liv_conf=95;

26 nu=length(S_max)-1;

28 %Definition of number of cycles
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Nmin=10000;

30 Nmax=10000000;

Nlim=2000000;

32

%% Calaculation of average value of the logarithmic data of number of cycles

34 N_avg_log=mean(N_log);

36 %% Calculation of Liebermann parameter

%Creation of the matrix to define the Liebermann parameter (it summaries the

38 %confidence level and the PS

40 Confidenza=xlsread(’Data.xlsx’,’Lieb’,’A:A’);

PS=xlsread(’Data.xlsx’,’Lieb’,’B:B’);

42 GDL=xlsread(’Data.xlsx’,’Lieb’,’C:C’);

ps_valori=xlsread(’Data.xlsx’,’Lieb’,’D:D’);

44

Lieb=[Confidenza PS GDL ps_valori];

46

k=find(Lieb(:,1)==liv_conf & Lieb(:,2)==prob_suv & Lieb(:,3)==nu);

48 k_lieb=Lieb(k,4);

50 %% Beginning of iterative cycle

52 %Pre-location of the vectors

S_max_new=zeros(length(S_max),length(beta),length(gamma));

54 S_max_new_log=zeros(length(S_max),length(beta),length(gamma));

%sigma_y=zeros(length(gamma),length(beta));

56 %Tsigma=zeros(length(gamma),length(beta));

B=-5;

58 for i=1:length(gamma)

for j=1:length(beta)

60 %k_mis(:,j,i)=gamma(i)*(1+beta(j).*et);

%k_mis(:,j,i)=abs(gamma(i)*(1-beta(j).*et));

62 %k_mis(:,j,i)=abs(gamma(i)./(1+beta(j).*et(:)));

k_mis(:,j,i)=gamma(i).^(1-beta(j).*et);

64 %k_mis(:,j,i)=gamma(i).^(1+beta(j).*et);

%k_mis(:,j,i)=gamma(i).^(1/(1-beta(j).*et));

66 %k_mis(:,j,i)=gamma(i).^(1/(1+beta(j).*et));

%k_mis(:,j,i)=gamma(i).^(beta(j).*et);

68 S_max_new(:,j,i)=S_max.*K_actual.*k_mis(:,j,i);

S_max_new_log(:,j,i)=log10(S_max_new(:,j,i));

70 %Calculation of the average value for the tension

S_avg_new_log=mean(S_max_new_log(:,j,i));

72 %Calculation of intercept

A=N_avg_log-B*S_avg_new_log;

74 %Calculation of standard deviation

sigma_y(i,j)=sqrt((sum((N_log-(A+B.*S_max_new_log(:,j,i))).^2))/(length(S_max)-2));

76 sigma_S=sigma_y(i,j)/B;

%Calculation of Tsigma

78 lim_inf=A-sigma_y(i,j)*k_lieb;

lim_sup=A+sigma_y(i,j)*k_lieb;

80 %Tension at N=2*10^6 for PS 5%,50%,95%

sigma_inf_95=10^(-lim_inf/B)*Nlim^(1/B);

82 sigma_sup_5=10^(-lim_sup/B)*Nlim^(1/B);

sigma_50=10^(-A/B)*Nlim^(1/B);

84 Tsigma(i,j)=sigma_sup_5/sigma_inf_95;

Tsigma2(i,j)=10^(-(2*sigma_y(i,j)*k_lieb)/B);

86

end

88 end

90 [sigma_y_min,loc]=min(sigma_y(:));

[ii,jj]=ind2sub(size(sigma_y),loc);
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92 fprintf([’The minimum value of standard deviation is ’,num2str(sigma_y_min), ...

’ for beta equal to ’,num2str(beta(jj)),’ and gamma equal to ’,num2str(gamma(ii)),’\n’]);

94 fprintf([’The Tsigma associated to the minimum value of standard deviation is equal to’ ...

’ ’,num2str(Tsigma2(ii,jj)),’\n’]);

96 gamma_ok=gamma(ii);

beta_ok=beta(jj);

98

[BETA,GAMMA]=meshgrid(beta,gamma);

100 s=surf(GAMMA,BETA,sigma_y,’FaceAlpha’,0.5);

s.EdgeColor=’none’

102 xlabel(’\gamma’);

ylabel(’\beta’);

104 zlabel(’Standard deviation \sigma_y’);

hold on

106 plot3(gamma_ok,beta_ok,sigma_y_min,’or’,’MarkerSize’,5)
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Appendix F

Results of misalignment analysis

F.1 Dimension of HFMI groove

Ideal model

Name of .txt file depth [mm] ρHFMI [mm] width [mm] ϕ(Inclinationangle)[°]

355-WH-2 3.31 0.3 4.48 2.41
355-WH-3 3.31 0.3 4.48 4.46
355-WH-4 3.31 0.3 4.48 3.27
355-WH-5 3.31 0.3 4.48 2.41
355-WH-8 3.31 0.3 4.48 4.46

355-WH-11 3.31 0.3 4.48 1.02
355-WH-14 3.31 0.3 4.48 1.88
355-WH-16 3.31 0.3 4.48 1.02
355-WH-17 3.31 0.3 4.48 1.02
355-WH-18 3.31 0.3 4.48 5.32
355-WH-20 3.31 0.3 4.48 0.69
355-WH-21 3.31 0.3 4.48 0.69
355-WH-22 3.31 0.3 4.48 6.18

Table F.1: Dimension of HFMI groove.

Ideal model with angular misalignment

Name of .txt file depth [mm] ρHFMI [mm] width [mm] ϕ(Inclinationangle)[°]

355-WH-2 3.31 0.3 4.649 18.26
355-WH-3 3.31 0.3 4.642 18.29
355-WH-4 3.31 0.3 4.631 17.47
355-WH-5 3.31 0.3 4.625 17.5
355-WH-8 3.31 0.3 4.623 17.51

355-WH-11 3.31 0.3 4.605 17.6
355-WH-14 3.31 0.3 4.652 18.24
355-WH-16 3.31 0.3 4.628 17.49
355-WH-17 3.31 0.3 4.621 17.52
355-WH-18 3.31 0.3 4.622 18.39
355-WH-20 3.31 0.3 4.603 17.61
355-WH-21 3.31 0.3 4.596 17.64
355-WH-22 3.31 0.3 4.588 17.68

Table F.2: Dimension of HFMI groove.
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F.2 Results of ideal model

ENS results

Name of .txt file
∆σ11,max,toe,ENS183

[MPa]

∆σ11,max,root,ENS183

[MPa]

∆σ11,max,toe,ENS182

[MPa]

∆σ11,max,root,ENS182

[MPa]

355-WH-2 2.762 3.032 2.778 3.046
355-WH-3 2.564 2.756 2.576 2.768
355-WH-4 2.826 3.111 2.84 3.124
355-WH-5 2.761 3.032 2.777 3.046
355-WH-8 2.565 2.756 2.576 2.768

355-WH-11 2.65 2.883 2.664 2.897
355-WH-14 2.629 2.853 2.642 2.866
355-WH-16 2.64 2.87 2.653 2.882
355-WH-17 2.64 2.87 2.653 2.882
355-WH-18 2.527 2.695 2.538 2.707
355-WH-20 2.703 2.958 2.719 2.971
355-WH-21 2.703 2.958 2.719 2.971
355-WH-22 2.527 2.695 2.538 2.706

Table F.3: ENS results of ideal model.

SHSS results

Name of .txt file
SHSSLSE,typeA

[MPa]

SHSSLSE,typeB

[MPa]

355-WH-2 0.994 0.950
355-WH-3 0.992 0.948
355-WH-4 0.990 0.950
355-WH-5 0.994 0.950
355-WH-8 0.992 0.948
355-WH-11 0.993 0.949
355-WH-14 0.993 0.948
355-WH-16 0.993 0.949
355-WH-17 0.993 0.949
355-WH-18 0.992 0.947
355-WH-20 0.994 0.949
355-WH-21 0.994 0.949
355-WH-22 0.950 0.947

Table F.4: SHSS results of ideal model.
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PSM results of ideal model with sharp V-notch

Name of .txt file
σeq,peak,toe

[MPa]

σeq,peak,root

[MPa]

355-WH-2 1.946 1.945
355-WH-3 1.850 1.768
355-WH-4 1.977 1.994
355-WH-5 1.944 1.946
355-WH-8 1.851 1.771

355-WH-11 1.892 1.844
355-WH-14 1.878 1.834
355-WH-16 1.886 1.844
355-WH-17 1.886 1.844
355-WH-18 1.831 1.731
355-WH-20 1.917 1.898
355-WH-21 1.917 1.898
355-WH-22 1.831 1.731

Table F.5: PSM results of ideal model with sharp V-notch.

PSM results of ideal model with HFMI groove

Name of .txt file
σeq,peak,toe

[MPa]

σeq,peak,root

[MPa]

355-WH-2 1.685 2.028
355-WH-3 1.607 1.831
355-WH-4 1.699 2.08
355-WH-5 1.685 2.027
355-WH-8 1.607 1.821

355-WH-11 1.635 1.971
355-WH-14 1.630 1.932
355-WH-16 1.631 1.964
355-WH-17 1.631 1.964
355-WH-18 1.597 1.817
355-WH-20 1.652 1.974
355-WH-21 1.652 1.974
355-WH-22 1.596 1.792

Table F.6: PSM results of ideal model with HFMI groove.
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F.3 Results of ideal model with misalignment

ENS results

Name of .txt file
∆σ11,max,toe,ENS182

[MPa]

∆σ11,max,root,ENS182

[MPa]

∆σ11,max,toe,ENS183

[MPa]

∆σ11,max,root,ENS183

[MPa]

355-WH-2 6.476 3.955 6.456 3.937
355-WH-3 6.000 3.445 5.979 3.428
355-WH-4 5.975 3.934 5.953 3.894
355-WH-5 5.776 3.776 5.755 3.758
355-WH-8 5.239 3.284 5.224 3.269

355-WH-11 5.236 3.455 5.221 3.442
355-WH-14 6.209 3.628 6.190 3.606
355-WH-16 5.561 3.506 5.542 3.491
355-WH-17 5.495 3.493 5.475 3.478
355-WH-18 5.462 3.253 5.447 3.238
355-WH-20 5.393 3.590 5.373 3.577
355-WH-21 5.427 3.604 5.409 3.590
355-WH-22 5.216 3.211 5.193 3.200

Table F.7: ENS results of ideal model with misalignment.

SHSS results

Name of .txt file
SHSSLSE,typeA

[MPa]

SHSSLSE,typeB

[MPa]

355-WH-2 3.227 3.177
355-WH-3 3.064 3.015
355-WH-4 2.892 2.844
355-WH-5 2.814 2.766
355-WH-8 2.614 2.568
355-WH-11 2.562 2.516
355-WH-14 3.149 3.100
355-WH-16 2.759 2.712
355-WH-17 2.720 2.673
355-WH-18 2.769 2.722
355-WH-20 2.622 2.575
355-WH-21 2.644 2.597
355-WH-22 2.620 2.573

Table F.8: SHSS results of ideal model with angular misalignment.
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PSM results of ideal model with angular misalignment with sharp V-notch

Name of .txt file
σeq,peak,toe

[MPa]

σeq,peak,root

[MPa]

355-WH-2 4.854 2.249
355-WH-3 4.573 1.981
355-WH-4 4.512 2.243
355-WH-5 4.321 2.161
355-WH-8 3.963 1.900

355-WH-11 3.940 1.988
355-WH-14 4.672 2.063
355-WH-16 4.174 2.002
355-WH-17 4.124 2.010
355-WH-18 4.145 1.881
355-WH-20 4.017 2.056
355-WH-21 4.041 2.062
355-WH-22 3.913 1.854

Table F.9: PSM results of ideal model with angular misalignment with sharp V-notch.

PSM results of ideal model with angular misalignment with HFMI groove

Name of .txt file
σeq,peak,toe

[MPa]

σeq,peak,root

[MPa]

355-WH-2 4.708 2.354
355-WH-3 4.434 2.060
355-WH-4 4.216 2.357
355-WH-5 4.122 2.261
355-WH-8 3.793 1.951

355-WH-11 3.732 2.066
355-WH-14 4.569 2.161
355-WH-16 4.013 2.094
355-WH-17 3.950 2.099
355-WH-18 4.043 1.941
355-WH-20 3.836 2.141
355-WH-21 3.858 2.145
355-WH-22 3.801 1.913

Table F.10: PSM results of ideal model with angular misalignment with HFMI groove.
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Appendix G

Results of analysis of joint in CAL

condition

G.1 Results and Experimental data from [49]

t

[mm]

e

[mm]
e/t

etot

[mm]
α [°]

e from

α
[mm]

∆σnom

[MPa]

Nf

[cycles]

KPSM

[MPa]

KENS

[MPa]

6 0.75 0.125 0 0 0.75 503.01 34656 1.864 2.22782
6 0.75 0.125 0 0 0.75 399.83 76468 1.864 2.22782
6 0.75 0.125 0 0 0.75 399.91 111382 1.864 2.22782
6 0.75 0.125 0 0 0.75 300.32 305213 1.864 2.22782
6 0.75 0.125 0 0 0.75 300.37 412357 1.864 2.22782
6 0.75 0.125 0 0 0.75 300.44 459685 1.864 2.22782
6 0.75 0.125 0 0 0.75 248.45 685737 1.864 2.22782
6 0.75 0.125 0 0 0.75 300.44 715870 1.864 2.22782
6 0.75 0.125 0 0 0.75 223.62 1218111 1.864 2.22782
6 0.75 0.125 0 0 0.75 225.93 1897191 1.864 2.22782
6 1.5 0.25 0 0 1.5 400.49 26017 2.306 2.79286
6 1.5 0.25 0 0 1.5 399.33 50771 2.306 2.79286
6 1.5 0.25 0 0 1.5 300.44 125851 2.306 2.79286
6 1.5 0.25 0 0 1.5 250.10 137685 2.306 2.79286
6 1.5 0.25 0 0 1.5 300.57 237529 2.306 2.79286
6 1.5 0.25 0 0 1.5 200.84 335883 2.306 2.79286
6 1.5 0.25 0 0 1.5 200.93 633937 2.306 2.79286
6 1.5 0.25 0 0 1.5 201.01 856480 2.306 2.79286
6 1.5 0.25 0 0 1.5 175.66 1412010 2.306 2.79286
6 1.5 0.25 0 0 1.5 175.67 2056716 2.306 2.79286

Table G.1: Experimental constant amplitude axial fatigue data for welded joints [49] and PSM and ENS results.
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G.2 Results and Experimental data from [50]

t

[mm]

e

[mm]
e/t

etot

[mm]
α [°]

e from

α
[mm]

∆σnom

[MPa]

Nf

[cycles]

KPSM

[MPa]

KENS

[MPa]

8 6 0.75 0 0 6.00 206 214769 2.123 2.81873
8 6 0.75 0 0 6.00 168 547795 2.123 2.81873
8 9 1.125 0 0 9.00 206 217244 2.074 2.68309
8 9 1.125 0 0 9.00 244 124297 2.074 2.68309
8 9 1.125 0 0 9.00 169 596207 2.074 2.68309
8 9 1.125 0 0 9.00 188 463560 2.074 2.68309
8 16 2 0 0 16.00 206 253715 1.799 2.48121
8 16 2 0 0 16.00 168 883148 1.799 2.48121

Table G.2: Experimental constant amplitude axial fatigue data for welded joints [50] and PSM and ENS results.
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G.3 Results and Experimental data from [51]

G.3 Results and Experimental data from [51]

t

[mm]

e

[mm]
e/t

etot

[mm]
α [°]

e from

α
[mm]

∆σnom

[MPa]

Nf

[cycles]

KPSM

[MPa]

KENS

[MPa]

12.5 3.125 0.25 0 0 3.125 142.59 192516 3.243 4.45172
12.5 3.125 0.25 0 0 3.125 122.88 233970 3.243 4.45172
12.5 3.125 0.25 0 0 3.125 91.85 1004330 3.243 4.45172
12.5 6.25 0.5 0 0 6.25 114.44 212919 4.321 5.83969
12.5 6.25 0.5 0 0 6.25 87.22 493070 4.321 5.83969
12.5 6.25 0.5 0 0 6.25 82.82 926731 4.321 5.83969
12.5 6.25 0.5 0 0 6.25 66.9 1333205 4.321 5.83969
12.5 9.375 0.75 0 0 9.375 85.54 223484 5.289 7.21842
12.5 9.375 0.75 0 0 9.38 70 296799 5.289 7.21842
12.5 9.375 0.75 0 0 9.38 54.75 747473 5.289 7.21842
12.5 9.375 0.75 0 0 9.38 40.92 3569802 5.289 7.21842
12.5 12.5 1 0 0 12.50 74.2 159327 6.378 8.61132
12.5 12.5 1 0 0 12.50 58.03 335894 6.378 8.61132
12.5 12.5 1 0 0 12.50 49.05 1883456 6.378 8.61132
12.5 12.5 1 0 0 12.50 35.5 2613788 6.378 8.61132
12.5 12.5 1 0 0 12.50 41.45 6195096 6.378 8.61132
12.5 3.125 0.25 0 0 3.13 221.92 10546 3.984 5.46003
12.5 3.125 0.25 0 0 3.13 172.78 50566 3.984 5.46003
12.5 3.125 0.25 0 0 3.13 132.98 158660 3.984 5.46003
12.5 3.125 0.25 0 0 3.13 94.26 441328 3.984 5.46003
12.5 3.125 0.25 0 0 3.125 84.95 498642 3.984 5.46003
12.5 6.25 0.5 0 0 6.25 153.07 33457 5.024 6.911761
12.5 6.25 0.5 0 0 6.25 132.83 63934 5.024 6.911761
12.5 6.25 0.5 0 0 6.25 111.62 210834 5.024 6.911761
12.5 6.25 0.5 0 0 6.25 72.86 484413 5.024 6.911761
12.5 6.25 0.5 0 0 6.25 78.26 610690 5.024 6.911761
12.5 6.25 0.5 0 0 6.25 169.66 11576 5.024 6.911761
12.5 6.25 0.5 0 0 6.25 66.08 1215377 5.024 6.911761
12.5 6.25 0.5 0 0 6.25 56.41 2276374 5.024 6.911761
12.5 6.25 0.5 0 0 6.25 45.11 6997402 5.024 6.911761
12.5 9.375 0.75 0 0 9.375 171.55 12549 6.125 8.34399
12.5 9.375 0.75 0 0 9.375 66.05 836434 6.125 8.34399
12.5 9.375 0.75 0 0 9.375 55.44 1100322 6.125 8.34399
12.5 12.5 1 0 0 12.5 152.15 21673 7.237 9.74413
12.5 12.5 1 0 0 12.5 132 30590 7.237 9.74413
12.5 12.5 1 0 0 12.5 114.56 63374 7.237 9.74413
12.5 12.5 1 0 0 12.5 93.61 146796 7.237 9.74413
12.5 12.5 1 0 0 12.5 94.74 325959 7.237 9.74413
12.5 12.5 1 0 0 12.5 66.03 593349 7.237 9.74413
12.5 12.5 1 0 0 12.5 46.27 1182798 7.237 9.74413
12.5 12.5 1 0 0 12.5 41.07 3632513 7.237 9.74413

Table G.3: Experimental constant amplitude axial fatigue data for welded joints [51] and PSM and ENS results.
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Appendix G: Results of analysis of joint in CAL condition

G.4 Results and Experimental data from [52]

t

[mm]

e

[mm]
e/t

etot

[mm]
α [°]

e from

α
[mm]

∆σnom

[MPa]

Nf

[cycles]

KPSM

[MPa]

KENS

[MPa]

5 1.07 0.213 0 0 1.066 300 247930 1.445 2.019
5 1.19 0.238 0 0 1.189 500 29639 1.474 2.059
5 0.80 0.160 0 0 0.800 250 3753730 1.380 1.923
5 1.07 0.213 0 0 1.066 300 254183 1.445 2.019
5 1.09 0.217 0 0 1.087 400 70625 1.454 2.026
5 0.76 0.152 0 0 0.759 400 103163 1.371 1.920
5 1.03 0.205 0 0 1.025 500 29676 1.431 2.006
5 1.07 0.213 0 0 1.066 400 86119 1.445 2.019
5 1.21 0.242 0 0 1.210 500 28103 1.507 2.066
5 0.02 0.004 0 0 0.021 500 49513 1.189 1.683
5 -0.14 -0.029 0 0 -0.144 400 124270 1.194 1.630
5 -0.06 -0.012 0 0 -0.062 300 319375 1.200 1.656
5 -0.04 -0.008 0 0 -0.041 500 35196 1.214 1.663
5 -0.10 -0.021 0 0 -0.103 400 123710 1.189 1.643
5 -0.08 -0.016 0 0 -0.082 300 514187 1.200 1.649
5 0.12 0.025 0 0 0.123 300 523098 1.228 1.716
5 0.04 0.008 0 0 0.041 500 61503 1.194 1.690
5 -2.359 -0.472 0 0 -2.359 300 560492 / 0.933
5 -1.579 -0.316 0 0 -1.579 400 199715 / 1.169
5 -2.605 -0.521 0 0 -2.605 500 68931 / 0.859
5 -2.687 -0.537 0 0 -2.687 500 70962 / 0.835
5 -1.620 -0.324 0 0 -1.620 350 335610 / 1.157
5 -1.846 -0.369 0 0 -1.846 400 220275 / 1.088
5 -1.846 -0.369 0 0 -1.846 300 1493630 / 1.088
5 -2.174 -0.435 0 0 -2.174 500 93505 / 0.989
5 -2.174 -0.435 0 0 -2.174 350 275958 / 0.989
5 -3.097 -0.619 0 0 -3.097 600 38765 / 0.711

Table G.4: Experimental constant amplitude axial fatigue data for welded joints [52] and PSM and ENS results.

404



G.5 Results and Experimental data from [53]

G.5 Results and Experimental data from [53]

t

[mm]

e

[mm]
e/t

etot

[mm]
α [°]

e from

α
[mm]

∆σnom

[MPa]

Nf

[cycles]

KPSM

[MPa]

KENS

[MPa]

5 1 0.2 1.41 3.69 4.69 414 16600 4.272 6.596
5 0 0 0.65 1.70 1.70 414 18100 2.512 3.719
5 0.95 0.19 0.05 0.13 1.08 414 59100 2.711 4.076
5 0.65 0.13 0.72 1.89 2.54 414 22600 2.998 4.386
5 1.45 0.29 0.78 2.04 3.49 414 12700 3.562 5.190
5 0.65 0.13 2.27 5.95 6.60 414 7000 4.077 5.779
5 0.4 0.08 0.29 0.76 1.16 414 61600 2.287 3.239
5 0.95 0.19 1.71 4.48 5.43 207 177100 3.533 4.926
5 1 0.2 0.21 0.55 1.55 207 936200 2.632 3.6832
5 0.05 0.01 0.92 2.41 2.46 414 37119 2.480 3.477
5 1.05 0.21 0.99 2.59 3.64 414 10500 3.178 4.392
5 0.95 0.19 0.74 1.94 2.89 414 22512 2.980 4.091
5 0.6 0.12 1.72 4.50 5.10 414 17600 3.215 4.199
5 0.2 0.04 0.74 1.94 2.14 414 65300 2.269 3.004
5 0.35 0.07 1.24 3.25 3.60 207 261000 2.723 3.562
5 0.75 0.15 0.57 1.49 2.24 414 29892 2.505 3.296
5 1.4 0.28 1.13 2.96 4.36 414 9500 3.224 4.330
5 0.15 0.03 1.36 3.56 3.71 207 867700 2.627 3.504
5 1.55 0.31 1.56 4.09 5.64 207 143800 3.584 4.839
5 0.3 0.06 1.79 4.69 4.99 414 35800 3.076 4.014
5 1.55 0.31 0.69 1.81 3.36 414 22500 3.024 3.968
5 0.25 0.05 1.21 3.17 3.42 414 18300 2.574 3.380
5 1.55 0.31 0.91 2.38 3.93 207 345900 3.148 4.161
5 1.15 0.23 0.64 1.68 2.83 207 183300 2.697 3.541
5 1 0.2 0.19 0.50 1.50 414 24000 2.284 3.021

Table G.5: Experimental constant amplitude axial fatigue data for welded joints [53] and PSM and ENS results.
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Appendix G: Results of analysis of joint in CAL condition

t

[mm]

e

[mm]
e/t

etot

[mm]
α [°]

e from

α
[mm]

∆σnom

[MPa]

Nf

[cycles]

KPSM

[MPa]

KENS

[MPa]

10 0.6 0.06 0.46 1.20 1.80 414 14600 3.458 5.148
10 0 0 0.13 0.34 0.34 414 35600 2.613 3.6991
10 0.2 0.02 0.15 0.39 0.59 207 134700 2.697 3.810
10 0.4 0.04 0.12 0.31 0.71 414 51600 2.761 3.894
10 0.5 0.05 0.02 0.05 0.55 207 161000 2.585 3.602
10 0.1 0.01 0.26 0.68 0.78 207 303700 2.480 3.539
10 1.8 0.18 0.13 0.34 2.14 414 14800 3.117 4.291
10 0.6 0.06 1.74 4.56 5.16 414 16300 3.462 4.618
10 0.8 0.08 0.82 2.15 2.95 414 19400 3.093 4.195
10 0.3 0.03 1.92 5.03 5.33 207 131000 3.321 4.576
10 0.2 0.02 0.14 0.37 0.57 414 24000 2.517 3.521
10 0.4 0.4 1.78 4.66 8.66 414 21000 3.310 4.545
10 1.5 0.15 0.54 1.41 2.91 207 106600 3.194 4.375
10 0.5 0.05 0.18 0.47 0.97 414 44200 2.690 3.690
10 0.7 0.07 0.48 1.26 1.96 414 26900 2.906 3.953
10 0.2 0.02 0.5 1.31 1.51 414 34400 2.592 3.722
10 0.1 0.01 0.71 1.86 1.96 414 19500 2.713 3.790
10 0.9 0.09 0.6 1.57 2.47 207 174000 2.979 4.118
10 1.1 0.11 0.32 0.84 1.94 207 233700 2.940 4.058
10 0.4 0.04 0.26 0.68 1.08 414 47800 2.563 3.4745
10 0.3 0.03 1.98 5.19 5.49 414 14477 3.350 4.395
10 0 0 0.88 2.30 2.30 207 408200 2.633 3.630
10 1.1 0.11 0.36 0.94 2.04 414 34400 2.826 3.857
10 0.8 0.08 0.18 0.47 1.27 414 30200 2.707 3.616
10 0.1 0.01 0.36 0.94 1.04 207 296100 2.478 3.389
10 0.1 0.01 0.49 1.28 1.38 414 33500 2.490 3.306
10 0.1 0.01 0.78 2.04 2.14 207 467100 2.470 3.353
10 0.7 0.07 0.82 2.15 2.85 414 41900 2.731 3.644
10 1.1 0.11 0.78 2.04 3.14 414 20900 2.917 3.802
10 1.6 0.16 0.41 1.07 2.67 207 181300 2.924 3.819
10 0.4 0.04 2.22 5.81 6.21 207 335000 3.298 4.302
10 0.5 0.05 3.26 8.54 9.04 207 162800 3.702 4.857

Table G.6: Experimental constant amplitude axial fatigue data for welded joints [53] and PSM and ENS results.
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G.6 Results and Experimental data from [54]

G.6 Results and Experimental data from [54]

t

[mm]

e

[mm]
e/t

etot

[mm]
α [°]

e from

α
[mm]

∆σnom

[MPa]

Nf

[cycles]

KPSM

[MPa]

KENS

[MPa]

12 0.25 0.021 0.51 1.11 1.363 199 1037495 1.800 2.275
12 0.29 0.024 0.46 1.00 1.294 181 2041188 1.808 2.280
12 0.32 0.027 0.39 0.85 1.171 224 471601 1.787 2.268
12 0.24 0.020 0.41 0.89 1.134 249 277963 1.766 2.229
12 0.17 0.014 0.36 0.79 0.955 201 979349 1.736 2.168
12 0.03 0.003 0.38 0.83 0.859 252 376019 1.698 2.093
12 0.07 0.006 1.63 3.56 3.627 269 140088 1.960 2.390
12 0.12 0.010 1.52 3.32 3.437 263 210665 1.959 2.322
12 0.17 0.014 1.35 2.95 3.116 247 539280 1.680 2.194
12 0.12 0.010 1.15 2.51 2.629 229 404503 1.764 2.247
12 0.02 0.002 1.01 2.20 2.224 253 560784 1.514 1.911

Table G.7: Experimental constant amplitude axial fatigue data for welded joints [54] and PSM and ENS results.

G.7 Results and Experimental data from [55]

t

[mm]

e

[mm]
e/t

etot

[mm]
α [°]

e from

α
[mm]

∆σnom

[MPa]

Nf

[cycles]

KPSM

[MPa]

KENS

[MPa]

6 0.136 0.023 0.24 0.628 1 500 38016 1.5385 2.1552
6 0.136 0.023 0.24 0.628 1 500 57593 1.5385 2.1552
6 0.136 0.023 0.24 0.628 1 500 75725 1.5385 2.1552
6 0.136 0.023 0.24 0.628 1 400 141306 1.5385 2.1552
6 0.136 0.023 0.24 0.628 1 400 157878 1.5385 2.1552
6 0.136 0.023 0.24 0.628 1 399 267032 1.5385 2.1552
6 0.136 0.023 0.24 0.628 1 292 598080 1.5385 2.1552
6 0.136 0.023 0.24 0.628 1 500 40987 1.5385 2.1552
6 0.136 0.023 0.24 0.628 1 500 74000 1.5385 2.1552
6 0.136 0.023 0.24 0.628 1 500 105620 1.5385 2.1552
6 0.136 0.023 0.24 0.628 1 500 128174 1.5385 2.1552
6 0.136 0.0227 0.24 0.63 0.764 350 168112 1.5385 2.1552
6 0.136 0.0227 0.24 0.63 0.764 400 203678 1.5385 2.1552
6 0.136 0.0227 0.24 0.63 0.764 400 207136 1.5385 2.1552
6 0.136 0.0227 0.24 0.63 0.764 450 225330 1.5385 2.1552
6 0.136 0.0227 0.24 0.63 0.764 400 262538 1.5385 2.1552
6 0.136 0.0227 0.24 0.63 0.764 350 273018 1.5385 2.1552
6 0.136 0.0227 0.24 0.63 0.764 360 273227 1.5385 2.1552
6 0.136 0.0227 0.24 0.63 0.764 513 61200 1.5385 2.1552
6 0.136 0.0227 0.24 0.63 0.764 432 144580 1.5385 2.1552

Table G.8: Experimental constant amplitude axial fatigue data for welded joints [55] and PSM and ENS results.
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Appendix G: Results of analysis of joint in CAL condition

G.8 Results and Experimental data from [56]

t

[mm]

e

[mm]
e/t

etot

[mm]
α [°]

e from

α
[mm]

∆σnom

[MPa]

Nf

[cycles]

KPSM

[MPa]

KENS

[MPa]

8 3 0.375 0 0 3 105 140321 3.486 4.651
8 3 0.375 0 0 3 102 424464 3.486 4.651
8 3 0.375 0 0 3 93 282371 3.486 4.651
8 3 0.375 0 0 3 90 825675 3.486 4.651
8 3 0.375 0 0 3 79 1661524 3.486 4.651
8 3 0.375 0 0 3 79 513275 3.486 4.651
8 3 0.375 0 0 3 74 997801 3.486 4.651
8 3 0.375 0 0 3 70 1780947 3.486 4.651
8 6 0.75 0 0 6 81 87363 4.465 6.418
8 6 0.75 0 0 6 77 178685 4.465 6.418
8 6 0.75 0 0 6 68 178911 4.465 6.418
8 6 0.75 0 0 6 63 298391 4.465 6.418
8 6 0.75 0 0 6 57 319751 4.465 6.418
8 6 0.75 0 0 6 54 919445 4.465 6.418
8 6 0.75 0 0 6 48 1787957 4.465 6.418
8 8 1 0 0 8 76 58738 5.408 7.571
8 8 1 0 0 8 67 53806 5.408 7.571
8 8 1 0 0 8 62 140224 5.408 7.571
8 8 1 0 0 8 50 154168 5.408 7.571
8 8 1 0 0 8 48 354824 5.408 7.571
8 8 1 0 0 8 42 367356 5.408 7.571
8 8 1 0 0 8 45 675948 5.408 7.571
8 3 0.375 0 0 3 186 60837 3.486 4.651
8 3 0.375 0 0 3 154 133974 3.486 4.651
8 3 0.375 0 0 3 138 139252 3.486 4.651
8 3 0.375 0 0 3 132 269111 3.486 4.651
8 3 0.375 0 0 3 107 603725 3.486 4.651
8 6 0.75 0 0 6 98 1682973 4.465 6.418
8 6 0.75 0 0 6 79 1070233 4.465 6.418
8 6 0.75 0 0 6 90 238555 4.465 6.418
8 6 0.75 0 0 6 109 62598 4.465 6.418
8 6 0.75 0 0 6 106 307115 4.465 6.418
8 6 0.75 0 0 6 149 64545 4.465 6.418
8 6 0.75 0 0 6 129 29496 4.465 6.418
8 8 1 0 0 8 128 22032 5.408 7.571
8 8 1 0 0 8 110 50672 5.408 7.571
8 8 1 0 0 8 103 167911 5.408 7.571
8 8 1 0 0 8 84 552900 5.408 7.571
8 8 1 0 0 8 78 165906 5.408 7.571
8 8 1 0 0 8 65 530106 5.408 7.571
8 8 1 0 0 8 121 44973 5.408 7.571

Table G.9: Experimental constant amplitude axial fatigue data for welded joints [56] and PSM and ENS results.
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G.9 Results and Experimental data from [57]

G.9 Results and Experimental data from [57]

t

[mm]

e

[mm]
e/t

etot

[mm]
α [°]

e from

α
[mm]

∆σnom

[MPa]

Nf

[cycles]

KPSM

[MPa]

KENS

[MPa]

8 1.2 0.15 0 0 1 176.68 385123 1.998 2.69184
8 1.2 0.15 0 0 1 146.11 333625 1.998 2.69184
8 1.2 0.15 0 0 1 135.94 445968 1.998 2.69184
8 1.2 0.15 0 0 1 166.51 459132 1.998 2.69184
8 1.2 0.15 0 0 1 156.21 759754 1.998 2.69184
8 1.2 0.15 0 0 1 107.20 1259943 1.998 2.69184
8 1.2 0.15 0 0 1 98.08 1479637 1.998 2.69184
8 1.2 0.15 0 0 1 98.05 2117314 1.998 2.69184

Table G.10: Experimental constant amplitude axial fatigue data for welded joints [57] and PSM and ENS results.
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Appendix G: Results of analysis of joint in CAL condition

G.10 Results and Experimental data from [58]

t

[mm]

e

[mm]
e/t

etot

[mm]
α [°]

e from

α
[mm]

∆σnom

[MPa]

Nf

[cycles]

KPSM

[MPa]

KENS

[MPa]

12 1.2 0.1 0 0 1.20 339.83 18777 2.060 2.569
12 1.2 0.1 0 0 1.20 235.26 68417 2.060 2.569
12 1.2 0.1 0 0 1.20 197.59 120479 2.060 2.569
12 1.2 0.1 0 0 1.20 175.81 163191 2.060 2.569
12 1.2 0.1 0 0 1.20 144.78 287447 2.060 2.569
12 1.2 0.1 0 0 1.20 116.95 560059 2.060 2.569
12 1.2 0.1 0 0 1.20 98.19 928456 2.060 2.569
12 1.2 0.1 0 0 1.20 87.37 1257607 2.060 2.569
12 2.4 0.2 0 0 2.40 348.36 8391 2.524 3.143
12 2.4 0.2 0 0 2.40 243.86 37387 2.524 3.143
12 2.4 0.2 0 0 2.40 202.80 65846 2.524 3.143
12 2.4 0.2 0 0 2.40 180.45 89189 2.524 3.143
12 2.4 0.2 0 0 2.40 151.52 150861 2.524 3.143
12 2.4 0.2 0 0 2.40 120.01 294013 2.524 3.143
12 2.4 0.2 0 0 2.40 100.79 517745 2.524 3.143
12 2.4 0.2 0 0 2.40 82.22 988543 2.524 3.143
12 2.4 0.2 0 0 2.40 70.34 1394716 2.524 3.143
12 3.6 0.3 0 0 3.6 343.48 4149 3.021 3.684
12 3.6 0.3 0 0 3.6 240.79 23537 3.021 3.684
12 3.6 0.3 0 0 3.6 204.19 39807 3.021 3.684
12 3.6 0.3 0 0 3.6 179.93 55022 3.021 3.684
12 3.6 0.3 0 0 3.6 149.61 94973 3.021 3.684
12 3.6 0.3 0 0 3.6 119.66 181382 3.021 3.684
12 3.6 0.3 0 0 3.6 99.50 313082 3.021 3.684
12 3.6 0.3 0 0 3.6 79.59 610086 3.021 3.684
12 3.6 0.3 0 0 3.6 60.03 1289507 3.021 3.684
12 4.8 0.4 0 0 4.8 348.35 1611 3.297 4.213
12 4.8 0.4 0 0 4.8 242.56 15422 3.297 4.213
12 4.8 0.4 0 0 4.8 203.65 25566 3.297 4.213
12 4.8 0.4 0 0 4.8 181.21 34630 3.297 4.213
12 4.8 0.4 0 0 4.8 150.70 60989 3.297 4.213
12 4.8 0.4 0 0 4.8 121.72 116463 3.297 4.213
12 4.8 0.4 0 0 4.8 100.22 201052 3.297 4.213
12 4.8 0.4 0 0 4.8 80.17 391780 3.297 4.213
12 4.8 0.4 0 0 4.8 50.28 1458411 3.297 4.213
12 6 0.5 0 0 6 201.23 18161 3.766 4.774
12 6 0.5 0 0 6 179.06 24599 3.766 4.774
12 6 0.5 0 0 6 150.35 41608 3.766 4.774
12 6 0.5 0 0 6 119.11 84421 3.766 4.774
12 6 0.5 0 0 6 99.04 145719 3.766 4.774
12 6 0.5 0 0 6 79.99 272716 3.766 4.774
12 6 0.5 0 0 6 239.62 10523 3.766 4.774

Table G.11: Experimental constant amplitude axial fatigue data for welded joints [58] and PSM and ENS results.
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G.11 Results and Experimental data from [59]

G.11 Results and Experimental data from [59]

t

[mm]

e

[mm]
e/t

etot

[mm]
α [°]

e from

α
[mm]

∆σnom

[MPa]

Nf

[cycles]

KPSM

[MPa]

KENS

[MPa]

12 0.25 0.021 0.51 1.11 1.36 199 1037495 1.805 2.258
12 0.29 0.024 0.46 1.00 1.29 181 2041188 1.776 2.262
12 0.32 0.027 0.39 0.85 1.17 224 471601 1.763 2.252
12 0.24 0.020 0.41 0.89 1.13 249 277963 1.739 2.213
12 0.17 0.014 0.36 0.79 0.96 201 979349 1.701 2.152
12 0.14 0.012 0.4 0.87 1.01 269 189524 1.702 2.147
12 0.03 0.003 0.38 0.83 0.86 252 376019 1.693 2.074
12 0.02 0.002 0.43 0.94 0.96 200 1217355 1.706 2.089
12 0.13 0.011 0.38 0.83 0.96 224 516276 1.694 2.134
12 0.17 0.014 0.4 0.87 1.04 226 549004 1.713 2.168
12 0.25 0.021 0.38 0.83 1.08 184 1611693 1.763 2.207
12 0.31 0.008 0.38 0.83 1.14 201 513309 1.314 1.818
12 0.42 0.026 0.42 0.92 1.34 302 63011 1.392 1.951
12 0.3 0.035 0.48 1.05 1.35 190 984909 1.338 1.844
12 0.09 0.025 0.49 1.07 1.16 251 380053 1.222 1.544
12 0.19 0.008 0.2 0.44 0.63 201 849199 1.202 1.602
12 0.19 0.016 0.34 0.74 0.93 201 1138300 1.239 1.650
12 0.07 0.006 1.63 3.56 3.63 269 140088 1.885 2.211
12 0.12 0.010 1.52 3.32 3.44 263 210665 1.915 2.226
12 0.17 0.014 1.35 2.95 3.12 247 539280 1.928 2.216
12 0.12 0.010 1.15 2.51 2.63 229 404503 1.802 2.090
12 0.02 0.002 1.01 2.20 2.22 253 560784 1.639 1.936
12 0.43 0.036 0.42 0.92 1.35 252 354052 2.127 2.195
12 0.39 0.033 0.44 0.96 1.35 264 267320 2.088 2.178
12 0.43 0.036 0.35 0.76 1.19 242 451699 2.102 2.164
12 0.47 0.039 0.37 0.81 1.28 226 1057498 2.146 2.197
12 0.49 0.041 0.38 0.83 1.32 235 487091 2.166 2.214
12 0.51 0.043 0.36 0.79 1.30 218 888604 2.171 2.217
12 0.58 0.048 0.34 0.74 1.32 260 229253 2.223 2.250
12 0.47 0.039 0.34 0.74 1.21 239 502035 2.133 2.185
12 0.49 0.041 0.32 0.70 1.19 218 1546593 2.131 2.188
12 0.46 0.038 0.37 0.81 1.27 230 892600 2.137 2.191

Table G.12: Experimental constant amplitude axial fatigue data for welded joints [59] and PSM and ENS results.
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Appendix G: Results of analysis of joint in CAL condition

G.12 Results and Experimental data from [60]

t

[mm]

e

[mm]
e/t

etot

[mm]
α [°]

e from

α
[mm]

∆σnom

[MPa]

Nf

[cycles]

KPSM

[MPa]

KENS

[MPa]

8 0 0 1.15 6.60 6.60 299 94000 2.892 3.817
8 0 0 1.39 7.99 7.99 210 400000 3.119 4.214
8 0 0 0.33 1.88 1.88 378 37000 2.171 2.797
8 0 0 0.18 1.02 1.02 248 244000 1.975 2.581

Table G.13: Experimental constant amplitude axial fatigue data for welded joints [60] and PSM and ENS results.

G.13 Results and Experimental data from [61]

t

[mm]

e

[mm]
e/t

etot

[mm]
α [°]

e from

α
[mm]

∆σnom

[MPa]

Nf

[cycles]

KPSM

[MPa]

KENS

[MPa]

20 10 0.5 0 0 10 288.56 80854 3.607 6.017
20 10 0.5 0 0 10 184.34 418307 3.607 6.017
20 15 0.75 0 0 15 698.07 3882 4.800 6.525
20 15 0.75 0 0 15 351.00 13677 4.800 6.525
20 15 0.75 0 0 15 321.69 18348 4.800 6.525
20 15 0.75 0 0 15 234.95 43322 4.800 6.525
20 15 0.75 0 0 15 165.92 127196 4.800 6.525
20 20 1 0 0 0 20 159.97 68262 6.040 8.611
20 20 1 0 0 0 20 88.62 195644 6.040 8.611
20 30 1.5 0 0 30 163.86 49755 8.705 12.405
20 30 1.5 0 0 30 93.50 179379 8.705 12.405
20 10 0.5 0 0 10 253.07 55076 3.607 6.017
20 10 0.5 0 0 10 180.29 216858 3.607 6.017
20 15 0.75 0 0 15 444.29 15369 4.800 6.525
20 15 0.75 0 0 15 396.14 19609 4.800 6.525
20 15 0.75 0 0 15 338.04 22527 4.800 6.525
20 15 0.75 0 0 15 263.91 23570 4.800 6.525
20 15 0.75 0 0 15 179.80 90653 4.800 6.525
20 15 0.75 0 0 15 90.99 594386 4.800 6.525
20 20 1 0 0 0 20 358.95 15175 6.040 8.611
20 20 1 0 0 0 20 235.80 24393 6.040 8.611
20 30 1.5 0 0 30 243.24 10081 8.705 12.405
20 30 1.5 0 0 30 243.24 10081 8.705 12.405

Table G.14: Experimental constant amplitude axial fatigue data for welded joints [61] and PSM and ENS results.
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G.14 Results and Experimental data from [62]

G.14 Results and Experimental data from [62]

t

[mm]

e

[mm]
e/t

etot

[mm]
α [°]

e from

α
[mm]

∆σnom

[MPa]

Nf

[cycles]

KPSM

[MPa]

KENS

[MPa]

12.5 0 0 0.57 1.78 1.78 227.5 181000 2.540 2.585
12.5 0 0 0.31 0.96 0.96 227.5 195000 2.040 2.458
12.5 0 0 0.63 1.96 1.96 227.5 226000 2.170 2.634
12.5 0 0 0.77 2.38 2.38 227.5 297000 2.206 2.693
12.5 0 0 0.54 1.67 1.67 227.5 299000 2.113 2.553
12.5 0 0 0.71 2.20 2.20 165.5 887000 2.176 2.654
12.5 0 0 0.69 2.13 2.13 131 9680000 2.191 2.662
12.5 0 0 0.77 2.38 2.38 144.8 9130000 2.171 2.653
12.5 0 0 0.25 0.78 0.78 165.5 1960000 2.007 2.425
12.5 0 0 0.26 0.82 0.82 165.5 874000 2.044 2.448
12.5 0 0 0.25 0.78 0.78 165.5 1160000 2.224 2.439
15.9 0 0 0.92 2.85 2.85 227.5 212300 2.021 2.615
15.9 0 0 0.08 0.25 0.25 227.5 153000 2.069 2.468
15.9 0 0 0.09 0.28 0.28 227.5 213000 2.017 2.521
15.9 0 0 0.26 0.82 0.82 227.5 190000 2.097 2.556
15.9 0 0 0.33 1.03 1.03 227.5 182000 2.121 2.591
15.9 0 0 0.21 0.64 0.64 165.5 258000 2.320 2.475
15.9 0 0 0.46 1.42 1.42 165.5 5868000 2.228 2.656
15.9 0 0 0.09 0.28 0.28 165.5 438000 2.008 2.463

Table G.15: Experimental constant amplitude axial fatigue data for welded joints [62] and PSM and ENS results.
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Appendix G: Results of analysis of joint in CAL condition

G.15 Results and Experimental data from [63]

t

[mm]

e

[mm]
e/t

etot

[mm]
α [°]

e from

α
[mm]

∆σnom

[MPa]

Nf

[cycles]

KPSM

[MPa]

KENS

[MPa]

12.5 3.2 0.256 0 0 3.2 240 191100 2.630 3.645
12.5 3.2 0.256 0 0 3.2 220 102560 2.630 3.645
12.5 3.2 0.256 0 0 3.2 200 150700 2.630 3.645
12.5 3.2 0.256 0 0 3.2 160 273380 2.630 3.645
12.5 3.2 0.256 0 0 3.2 120 758960 2.630 3.645
12.5 6.3 0.504 0 0 6.3 200 51000 3.709 5.161
12.5 6.3 0.504 0 0 6.3 180 62650 3.709 5.161
12.5 6.3 0.504 0 0 6.3 160 60200 3.709 5.161
12.5 6.3 0.504 0 0 6.3 130 89900 3.709 5.161
12.5 6.3 0.504 0 0 6.3 100 172300 3.709 5.161
12.5 6.3 0.504 0 0 6.3 90 1028400 3.709 5.161
12.5 6.3 0.504 0 0 6.3 80 2045200 3.709 5.161
12.5 9.5 0.76 0 0 9.5 180 17100 5.090 7.350
12.5 9.5 0.76 0 0 9.5 160 38200 5.090 7.350
12.5 9.5 0.76 0 0 9.5 120 74800 5.090 7.350
12.5 9.5 0.76 0 0 9.5 70 990100 5.090 7.350
12.5 9.5 0.76 0 0 9.5 60 906500 5.090 7.350
12.5 12.5 1 0 0 12.5 120 18600 6.554 10.312
12.5 12.5 1 0 0 12.5 100 44300 6.554 10.312
12.5 12.5 1 0 0 12.5 70 137400 6.554 10.312
12.5 12.5 1 0 0 12.5 55 528300 6.554 10.312
12.5 12.5 1 0 0 12.5 45 1319000 6.554 10.312

Table G.16: Experimental constant amplitude axial fatigue data for welded joints [63] and PSM and ENS results.
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G.16 Results and Experimental data from [64]

G.16 Results and Experimental data from [64]

t

[mm]

e

[mm]
e/t

etot

[mm]
α [°]

e from

α
[mm]

∆σnom

[MPa]

Nf

[cycles]

KPSM

[MPa]

KENS

[MPa]

12 0 0 0.29 1.13 1.13 150 351000 2.304 2.975
12 0 0 0.29 1.13 1.13 130 731000 2.304 2.975
12 0 0 0.29 1.13 1.13 130 687000 2.304 2.975
12 0 0 0.29 1.13 1.13 220 128000 2.304 2.975
12 0 0 0.29 1.13 1.13 130 748000 2.304 2.975
12 0 0 0.29 1.13 1.13 250 77000 2.304 2.975
12 0 0 0.29 1.13 1.13 150 421000 2.304 2.975
12 0 0 0.29 1.13 1.13 150 322000 2.304 2.975
12 0 0 0.29 1.13 1.13 130 454000 2.304 2.975
12 0 0 0.29 1.13 1.13 250 70000 2.304 2.975
12 0 0 0.29 1.13 1.13 150 369000 2.304 2.975
12 0 0 0.29 1.13 1.13 130 493000 2.304 2.975
12 0 0 0.29 1.13 1.13 150 806000 2.304 2.975
12 0 0 0.29 1.13 1.13 150 471000 2.304 2.975
12 0 0 0.29 1.13 1.13 250 82000 2.304 2.975
3 0 0 0.95 1.50 1.50 300 123000 2.256 3.008
3 0 0 0.95 1.50 1.50 150 450000 2.256 3.008
3 0 0 0.95 1.50 1.50 100 8000000 2.256 3.008
3 0 0 0.95 1.50 1.50 250 87000 2.256 3.008
3 0 0 0.95 1.50 1.50 130 1456000 2.256 3.008
3 0 0 0.95 1.50 1.50 130 1810000 2.256 3.008
3 0 0 0.95 1.50 1.50 130 3131000 2.256 3.008
3 0 0 0.95 1.50 1.50 200 242000 2.256 3.008
3 0 0 0.95 1.50 1.50 150 518000 2.256 3.008
3 0 0 0.95 1.50 1.50 150 533000 2.256 3.008
3 0 0 0.95 1.50 1.50 150 1856000 2.256 3.008
3 0 0 0.95 1.50 1.50 200 352000 2.256 3.008
3 0 0 0.95 1.50 1.50 200 433000 2.256 3.008
3 0 0 0.95 1.50 1.50 250 154000 2.256 3.008

Table G.17: Experimental constant amplitude axial fatigue data for welded joints [64] and PSM and ENS results.
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Appendix G: Results of analysis of joint in CAL condition

t

[mm]

e

[mm]
e/t

etot

[mm]
α [°]

e from

α
[mm]

∆σnom

[MPa]

Nf

[cycles]

KPSM

[MPa]

KENS

[MPa]

3 0 0 0.17 0.26 0.26 200 909000 1.456 1.983
3 0 0 0.17 0.26 0.26 200 3800000 1.456 1.983
3 0 0 0.17 0.26 0.26 300 215000 1.456 1.983
3 0 0 0.17 0.26 0.26 230 748000 1.456 1.983
3 0 0 0.17 0.26 0.26 230 405000 1.456 1.983
3 0 0 0.17 0.26 0.26 230 556000 1.456 1.983
3 0 0 0.17 0.26 0.26 350 98000 1.456 1.983
3 0 0 0.17 0.26 0.26 350 83000 1.456 1.983
3 0 0 0.17 0.26 0.26 350 84000 1.456 1.983
3 0 0 0.17 0.26 0.26 250 212000 1.456 1.983
3 0 0 0.17 0.26 0.26 250 244000 1.456 1.983
3 0 0 0.17 0.26 0.26 250 359000 1.456 1.983
3 0 0 0.21 0.33 0.33 200 382000 1.492 2.028
3 0 0 0.21 0.33 0.33 150 10000000 1.492 2.028
3 0 0 0.21 0.33 0.33 300 134000 1.492 2.028
3 0 0 0.21 0.33 0.33 180 817000 1.492 2.028
3 0 0 0.21 0.33 0.33 180 1091000 1.492 2.028
3 0 0 0.21 0.33 0.33 180 484000 1.492 2.028
3 0 0 0.21 0.33 0.33 350 48000 1.492 2.028
3 0 0 0.21 0.33 0.33 200 237000 1.492 2.028
3 0 0 0.21 0.33 0.33 300 88000 1.492 2.028
3 0 0 0.21 0.33 0.33 350 49000 1.492 2.028
3 0 0 0.21 0.33 0.33 150 9500000 1.492 2.028
3 0 0 0.21 0.33 0.33 350 65000 1.492 2.028
3 0 0 0.21 0.33 0.33 500 18000 1.492 2.028
3 0 0 0.21 0.33 0.33 200 292000 1.492 2.028
3 0 0 0.21 0.33 0.33 300 107000 1.492 2.028
3 0 0 0.21 0.33 0.33 300 92000 1.492 2.028
3 0 0 0.21 0.33 0.33 200 366000 1.492 2.028
3 0 0 0.21 0.33 0.33 300 85000 1.492 2.028
3 0 0 0.21 0.33 0.33 200 321000 1.492 2.028
3 0 0 0.21 0.33 0.33 180 793000 1.492 2.028
3 0 0 0.21 0.33 0.33 180 419000 1.492 2.028
3 0 0 0.21 0.33 0.33 350 56000 1.492 2.028
3 0 0 0.21 0.33 0.33 350 68000 1.492 2.028
3 0 0 0.21 0.33 0.33 160 10000000 1.492 2.028
3 0 0 0.21 0.33 0.33 400 39000 1.492 2.028
3 0 0 0.21 0.33 0.33 170 662000 1.492 2.028
3 0 0 0.21 0.33 0.33 160 9500000 1.492 2.028
3 0 0 0.21 0.33 0.33 400 46000 1.492 2.028
3 0 0 0.21 0.33 0.33 170 10000000 1.492 2.028
3 0 0 0.21 0.33 0.33 400 47000 1.492 2.028
3 0 0 0.21 0.33 0.33 170 452000 1.492 2.028

Table G.18: Experimental constant amplitude axial fatigue data for welded joints [64] and PSM and ENS results.
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Appendix H

Experimental and elaboration results

H.1 Cruciform joint

H.1.1 Experimental data

Test 1

F [kN] Freal [kN]
ϵCH1

[µeps]
ϵCH2

[µeps]
ϵCH3

[µeps]
ϵCH4

[µeps]

0 (out of
machine)

0 4.1 1.4 5.0 0.3

0 0 25.9 -24.9 14.2 -12.9
5 5 129.3 24.5 59.8 94.1
10 10 232.4 74.9 105.6 201.8
15 15 334.8 125.4 152.2 308.4
20 20 437.1 176.5 199.6 414.7
25 25 539.8 227.7 247.4 520.1
30 29.4 630.8 273.5 290.5 613.4
35 33.5 715.0 315.3 330.4 698.9
40 37.5 796.0 356.6 370.3 782.4
45 41.2 855.9 397.0 410.9 857.6
50 44.9 935.1 435.3 447.7 936.4
45 41 857.1 395.2 415.3 854.8
40 37 776.3 353.9 376.4 772.9
35 33 694.7 312.0 337.4 687.9
30 28.99 612.0 270.3 298.3 602.6
25 24.9 528.4 227.8 259.4 516.4
20 20 428.1 178.3 213.1 413.6
15 15 325.3 127.6 166.1 307.3
10 10 222.6 77.0 116.9 200.0
5 5 118.6 27.3 71.0 92.8
0 0 14.6 -21.9 26.9 -14.6

0 (out of
machine)

0 6.6 3.1 10.4 5.2

Table H.1: Experimental results of cruciform joint, Test 1.
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Appendix H: Experimental and elaboration results

Test 2

F [kN] Freal [kN]
ϵCH1

[µeps]
ϵCH2

[µeps]
ϵCH3

[µeps]
ϵCH4

[µeps]

0 (out of
machine)

0 0 0 0 0

0 0 21.9 -24.6 16.4 -14.5
5 5 125.7 24.3 62.6 92.3
10 10 228.7 74.4 108.5 199.8
15 15 331.8 124.8 155.9 306.7
20 20 434.1 175.9 202.3 413.0
25 24.8 531.4 225.7 248.9 515.6
30 28.9 610.8 267.5 288.2 600.3
35 32.8 687.0 308.8 328.1 683.1
40 36.7 764.0 349.6 367.0 764.5
45 40.6 841.7 390.1 405.5 845.7
50 44.4 918.5 430.2 443.4 924.7
45 40.5 841.1 390.3 406.9 844.8
40 36.6 761.4 349.3 367.9 762.8
35 32.6 681.0 308.4 329.3 679.7
30 28.7 599.8 266.7 290.9 596.3
25 24.6 517.1 225.4 252.3 511.1
20 20 421.5 177.6 208.1 412.7
15 15 318.4 127.1 161.3 306.2
10 10 215.2 76.8 114.8 200.0
5 5 110.8 26.9 69.0 92.8
0 0 6.9 -22.4 23.4 -14.4

0(out of
machine)

0 2.5 1.2 3.9 3.9

Table H.2: Experimental results of cruciform joint, Test 2.
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H.1 Cruciform joint

Test 3

F [kN] Freal [kN]
ϵCH1

[µeps]
ϵCH2

[µeps]
ϵCH3

[µeps]
ϵCH4

[µeps]

0 (out of
machine)

0 0 0 0 0

0 0 30.4 -28.1 16.1 -13.8
5 5 133.3 21.7 62.5 93.8
10 10 236.2 72.2 108.8 201.6
15 15 338.6 122.6 155.3 308.4
20 20 441.5 173.1 201.0 415.6
25 25 543.1 224.6 250.6 521.5
30 29.5 636.3 272.1 295.3 618.4
35 33.7 718.6 314.7 335.5 704.1
40 37.5 779.3 357.3 379.7 782.6
45 41.4 860.2 398.1 418.1 864.7
50 45.2 941.3 438.4 456.3 944.7
45 41.3 861.4 397.4 417.6 862.9
40 37.3 779.9 356.0 379.2 779.3
35 33.3 697.5 313.7 339.6 694.4
30 29.2 614.2 271.6 300.2 609.3
25 25 528.2 228.3 259.8 520.4
20 20 425.3 177.2 212.1 414.9
15 15 322.2 126.4 164.5 308.7
10 10 218.6 76.6 118.1 202.2
5 5 114.2 27.5 71.8 94.3
0 0 10.7 -21.6 26.6 -12.6

0 (out of
machine)

0 2.8 2.2 8.3 5.9

Table H.3: Experimental results of cruciform joint, Test 3.
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Appendix H: Experimental and elaboration results

H.1.2 Elaboration results

Test 1

Freal

[kN]

ϵmembr,in f

[µeps]
ϵmembr,sup

[µeps]
ϵbend,in f

[µeps]
ϵbend,sup

[µeps]
σmembr,in f

[MPa]

σmembr,sup

[MPa]

σbend,in f

[MPa]

σbend,sup

[MPa]

σth

[MPa]
∆%in f ∆%sup

0
(0.m.)

2.67 2.71 -2.37 1.34 0.449 0.455 -0.398 0.226 0 / /

0 0.65 0.53 -13.56 25.39 0.109 0.089 -2.278 4.265 0 / /
5 76.97 76.88 17.15 52.37 12.931 12.916 2.881 8.798 12.50 3.45 3.33

10 153.71 153.62 48.07 78.73 25.824 25.808 8.075 13.227 25.00 3.30 3.23
15 230.32 230.12 78.11 104.69 38.693 38.660 13.122 17.587 37.50 3.18 3.09
20 307.14 306.83 107.54 130.32 51.600 51.547 18.066 21.893 50.00 3.20 3.09
25 383.78 383.76 136.36 156.04 64.474 64.472 22.908 26.215 62.50 3.16 3.16

29.4 451.95 452.12 161.49 178.66 75.928 75.956 27.130 30.014 73.50 3.30 3.34
33.5 514.61 515.13 184.25 199.86 86.455 86.542 30.954 33.577 83.75 3.23 3.33
37.5 576.35 576.31 206.06 219.71 96.826 96.820 34.619 36.910 93.75 3.28 3.27
41.2 634.22 626.43 223.34 229.46 106.548 105.240 37.521 38.549 103.00 3.45 2.17
44.9 692.08 685.21 244.36 249.87 116.270 115.115 41.053 41.978 112.25 3.58 2.55
41 635.04 626.16 219.79 230.93 106.686 105.195 36.924 38.796 102.50 4.08 2.63
37 574.66 565.15 198.25 211.20 96.542 94.944 33.305 35.482 92.50 4.37 2.64
33 512.65 503.39 175.29 191.36 86.124 84.569 29.449 32.148 82.50 4.39 2.51

28.99 450.48 441.15 152.15 170.84 75.681 74.113 25.561 28.701 72.48 4.42 2.26
24.9 387.89 378.14 128.53 150.30 65.166 63.528 21.594 25.250 62.25 4.68 2.05
20 313.36 303.22 100.22 124.92 52.645 50.940 16.837 20.987 50.00 5.29 1.88
15 236.69 226.44 70.62 98.83 39.764 38.042 11.864 16.604 37.50 6.04 1.45
10 158.48 149.80 41.54 72.83 26.625 25.167 6.979 12.235 25.00 6.50 0.67
5 1081.89 72.96 10.89 45.65 13.758 12.257 1.829 7.669 12.50 10.06 -1.95
0 6.16 -3.66 -20.72 18.26 1.035 -0.614 -3.480 3.068 0 / /
0

(o.m.)
7.82 4.86 -2.62 1.73 1.314 554.074 -0.439 0.291 0 / /

Table H.4: Elaborated results of cruciform joint, Test 1. The abbreviation o.m. means out of machine.In the case of the

cruciform joint, the Young Modulus is equal to 168000 MPa, value of ADI 1050.

Where:
σth = Freal ·A (H.1)

∆%in f/sup =
σmembr,in f/sup −σth

σth

·100 (H.2)
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H.1 Cruciform joint

Test 2

Freal

[kN]

ϵmembr,in f

[µeps]
ϵmembr,sup

[µeps]
ϵbend,in f

[µeps]
ϵbend,sup

[µeps]
σmembr,in f

[MPa]

σmembr,sup

[MPa]

σbend,in f

[MPa]

σbend,sup

[MPa]

σth

[MPa]
∆%in f ∆%sup

0
(o.m.)

0 0 0 0 0 0 0 0 0 / /

0 0.97 -1.35 -15.44 23.22 0.163 -0.227 -2.593 3.902 0 / /
5 77.45 74.99 14.85 50.69 13.011 12.598 2.494 8.515 12.50 4.09 0.78
10 154.17 151.57 45.65 77.17 25.900 25.464 7.669 12.964 25.00 3.60 1.86
15 231.34 228.33 75.40 103.49 38.865 38.359 12.667 17.387 37.50 3.64 2.29
20 307.66 305.00 105.37 129.11 51.687 51.240 17.702 21.691 50.00 3.37 2.48

24.8 382.25 378.54 133.35 152.88 64.218 63.595 22.402 25.683 62.00 3.58 2.57
28.9 444.29 439.13 156.05 171.67 74.641 73.774 26.217 28.841 72.25 3.31 2.11
32.8 505.61 497.93 177.49 189.09 84.942 83.652 29.819 31.767 82.00 3.59 2.01
36.7 565.70 556.80 198.75 207.16 95.038 93.543 33.390 34.803 91.75 3.58 1.95
40.6 625.63 615.87 220.10 225.78 105.106 103.467 36.977 37.931 101.50 3.55 1.94
44.4 684.06 674.32 240.63 244.14 114.923 113.286 40.425 41.016 111.00 3.53 2.06
40.5 625.89 615.71 218.94 225.39 105.149 103.440 36.782 37.865 101.25 3.85 2.16
36.6 565.37 555.33 197.44 206.06 94.981 93.296 33.170 34.619 91.50 3.80 1.96
32.6 504.49 494.69 175.19 186.33 84.754 83.107 29.432 31.304 81.50 3.99 1.97
28.7 443.62 433.28 152.72 166.56 74.529 72.791 25.657 27.982 71.75 3.87 1.45
24.6 381.70 371.23 129.38 145.87 64.126 62.367 21.736 24.506 61.50 4.27 1.41
20 310.39 299.56 102.27 121.99 52.146 50.326 17.181 20.493 50.00 4.29 0.65
15 233.75 222.78 72.47 95.64 39.271 37.427 12.175 16.067 37.50 4.72 -0.19
10 157.43 146.02 42.59 69.19 26.448 24.531 7.156 11.623 25.00 5.79 -1.88
5 80.90 68.86 11.93 41.97 13.590 11.569 2.004 7.051 12.50 8.72 -7.45
0 4.46 -7.76 -18.90 14.64 0.748 -1.304 -3.175 2.459 0 / /
0

(o.m.)
3.91 1.81 -0.02 0.65 0.657 0.303 -0.004 0.109 0 / /

Table H.5: Elaborated results of cruciform joint, Test 2. The abbreviation o.m. means out of machine.In the case of the

cruciform joint, the Young Modulus is equal to 168000 MPa, value of ADI 1050.

Where:
σth = Freal ·A (H.3)

∆%in f/sup =
σmembr,in f/sup −σth

σth

·100 (H.4)
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Appendix H: Experimental and elaboration results

Test 3

Freal

[kN]

ϵmembr,in f

[µeps]
ϵmembr,sup

[µeps]
ϵbend,in f

[µeps]
ϵbend,sup

[µeps]
σmembr,in f

[MPa]

σmembr,sup

[MPa]

σbend,in f

[MPa]

σbend,sup

[MPa]

σth

[MPa]
∆%in f ∆%sup

0(o.m.) 0 0 0 0 0 0 0 0 0 / /
0 1.13 1.17 -14.95 29.26 0.191 0.196 -2.512 4.916 0 / /
5 78.14 77.52 15.61 55.81 13.128 13.023 2.623 9.376 12.50 5.02 4.18

10 155.21 154.22 46.44 82.02 26.075 25.909 7.801 13.779 25.00 4.30 3.64
15 231.87 230.61 76.58 108.00 38.954 38.742 12.865 18.143 37.50 3.88 3.31
20 308.32 307.28 107.28 134.19 51.797 51.623 18.023 22.544 50.00 3.59 3.25
25 386.04 383.86 135.43 159.28 64.855 64.488 22.752 26.759 62.50 3.77 3.18

29.5 456.84 454.22 161.54 182.11 76.749 76.309 27.138 30.594 73.75 4.07 3.47
33.7 519.80 516.68 184.27 201.94 87.326 86.803 30.958 33.926 84.25 3.65 3.03
37.5 581.15 568.31 201.49 211.02 97.633 95.475 33.851 35.452 93.75 4.14 1.84
41.4 641.39 629.13 223.29 231.07 107.753 105.693 37.513 38.820 103.50 4.11 2.12
45.2 700.49 689.88 244.24 251.45 117.683 115.901 41.032 42.243 113.00 4.14 2.57
41.3 640.22 629.37 222.63 232.01 107.557 105.733 37.402 38.977 103.25 4.17 2.41
37.3 579.26 567.91 200.02 211.95 97.316 95.409 33.604 35.608 93.25 4.36 2.32
33.3 517.01 505.56 177.37 191.91 86.857 84.935 29.797 32.241 83.25 4.33 2.02
29.2 454.77 442.91 154.56 171.33 76.401 74.409 25.966 28.784 73.00 4.66 1.93
25 390.06 378.26 130.31 149.95 65.530 63.547 21.891 25.192 62.50 4.85 1.68
20 313.50 301.24 101.42 124.08 52.669 50.608 17.039 20.845 50.00 5.34 1.22
15 236.61 224.29 72.07 97.88 39.751 37.680 12.107 16.444 37.50 6.00 0.48
10 160.15 147.60 42.00 70.98 26.905 24.797 7.057 11.924 25.00 7.62 -0.81
5 83.08 70.86 11.25 43.32 13.958 11.905 1.890 7.278 12.50 11.66 -4.76
0 7.00 -5.46 -19.61 16.18 1.176 -0.918 -3.295 2.718 0 / /
0

(o.m.)
7.14 2.48 -1.19 0.28 1.199 0.416 -0.200 0.047 0 / /

Table H.6: Elaborated results of cruciform joint, Test 3. The abbreviation o.m. means out of machine.In the case of the

cruciform joint, the Young Modulus is equal to 168000 MPa, value of ADI 1050.

Where:
σth = Freal ·A (H.5)

∆%in f/sup =
σmembr,in f/sup −σth

σth

·100 (H.6)
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H.2 T-joint

H.2 T-joint

H.2.1 Experimental data

Test 1

F [kN] Freal [kN]
ϵCH1

[µeps]
ϵCH2

[µeps]
ϵCH3

[µeps]
ϵCH4

[µeps]

0 (out of
machine)

0 0 0 0 0

0 0 14.1 -14.7 -36.0 37.4
5 5 73.2 44.1 20.5 97.3
10 10 133.1 102.1 77.6 158.6
15 15 192.4 160.0 134.9 218.6
20 20 252.7 218.9 193.6 280.1
25 24.4 306.8 270.6 245.5 334.5
30 28.3 354.0 318.6 292.1 382.8
35 32.2 401.7 364.4 338.5 431.1
40 36 449.3 410.5 384.7 479.3
45 39.7 496.9 455.1 430.7 526.9
50 43.6 544.5 501.5 476.8 575.3
45 39.7 499.4 457.5 432.9 530.9
40 36 454.4 413.8 389.1 484.9
35 32.1 408.1 369.4 344.0 438.3
30 28.2 361.6 324.0 298.9 391.6
25 24.3 315.5 278.2 252.7 344.2
20 20 263.1 227.2 201.8 291.4
15 15 201.7 168.3 141.9 230.3
10 10 140.5 109.7 82.0 168.6
5 5 78.3 50.5 21.9 106.9
0 0 16.1 -8.7 -38.2 44.8

0 (out of
machine)

0 2.8 3.1 2.1 0.4

Table H.7: Experimental results of T-joint, Test 1.
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Appendix H: Experimental and elaboration results

Test 2

F [kN] Freal [kN]
ϵCH1

[µeps]
ϵCH2

[µeps]
ϵCH3

[µeps]
ϵCH4

[µeps]

0 (out of
machine)

0 0 0 0 0

0 0 13.4 -13.8 -36.0 36.5
5 5 74.6 44.2 21.0 96.0
10 10 134.2 102.1 77.9 157.0
15 15 194.2 160.7 136.0 218.2
20 20 254.7 219.3 193.9 279.2
25 24.3 307.8 270.1 245.5 332.8
30 28.2 355.9 316.4 292.1 381.3
35 32.1 403.4 362.1 338.4 429.4
40 35.9 450.7 407.8 384.5 477.0
45 39.7 497.3 452.5 429.6 523.7
50 43.5 544.5 498.4 475.6 572.1
45 39.7 499.3 454.2 431.7 526.0
40 35.9 454.7 410.6 387.8 480.9
35 32.1 408.5 365.4 343.1 434.8
30 28.2 362.0 320.6 297.8 388.2
25 24.6 314.3 274.7 251.6 340.8
20 20 262.7 224.4 200.8 288.6
15 15 201.6 165.7 141.4 227.8
10 10 140.2 107.1 81.1 166.2
5 5 78.2 48.0 21.1 104.5
0 0 16.3 -11.2 -39.0 42.5

0 (out of
machine)

0 2.8 0.8 1.0 -0.6

Table H.8: Experimental results of T-joint, Test 2.
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H.2 T-joint

Test 3

F [kN] Freal [kN]
ϵCH1

[µeps]
ϵCH2

[µeps]
ϵCH3

[µeps]
ϵCH4

[µeps]

0 (out of
machine)

0 0 0 0 0

0 0 13.2 -15.1 -36.0 -36.4
5 5 72.3 42.9 20.7 96.9
10 10 132.4 101.1 77.8 157.8
15 15 192.5 159.1 135.8 218.8
20 20 252.7 217.1 194.3 280.1
25 24.3 305.0 267.7 245.2 333.2
30 28.2 353.0 313.7 291.4 381.4
35 32 400.3 359.7 337.8 429.2
40 35.9 448.3 405.2 384.0 477.1
45 39.6 494.4 449.5 429.0 523.4
50 43.4 542.0 495.5 475.0 571.4
45 39.6 496.4 451.4 431.1 525.9
40 35.9 451.9 407.8 387.5 481.0
35 32 405.2 363.0 342.0 434.3
30 28.2 358.9 317.7 297.5 388.1
25 24.2 312.0 272.1 251.3 340.6
20 20 260.1 222.1 200.4 288.8
15 15 198.7 163.5 140.9 227.8
10 10 137.1 104.6 81.1 166.7
5 5 75.2 45.5 20.8 104.7
0 0 13.5 -12.5 -39.1 43.1

0 (out of
machine)

0 0.2 -1.3 0.3 0

Table H.9: Experimental results of T-joint, Test 3.
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Appendix H: Experimental and elaboration results

H.2.2 Elaboration results

Test 1

Freal

[kN]

ϵmembr,in f

[µeps]
ϵmembr,sup

[µeps]
ϵbend,in f

[µeps]
ϵbend,sup

[µeps]
σmembr,in f

[MPa]

σmembr,sup

[MPa]

σbend,in f

[MPa]

σbend,sup

[MPa]

σth

[MPa]
∆%in f ∆%sup

0
(o.m.)

0 0 0 0 0 0 0 0 0 0 0

0 0.71 -25.34 13.37 10.65 0.145 -5.220 2.753 2.193 35.18 / /
5 58.89 58.67 38.41 14.58 12.131 12.085 7.912 3.003 12.50 -2.96 -3.32

10 118.06 117.63 40.49 15.51 24.321 24.233 8.341 3.194 25.00 -2.72 -3.07
15 176.76 176.21 41.82 16.20 36.413 36.299 8.615 3.337 37.50 -2.90 -3.20
20 236.88 235.83 43.27 16.92 48.797 48.580 8.913 3.486 50.00 -2.41 -2.84

24.4 290.00 288.73 44.50 18.12 59.740 59.478 9.168 3.733 61.00 -2.07 -2.49
28.3 337.48 336.33 45.35 17.70 69.521 69.285 9.342 3.647 70.75 -1.74 -2.07
32.2 384.81 383.05 46.34 18.69 79.270 78.908 9.547 3.850 80.50 -1.53 -1.98
36 431.98 429.89 47.28 19.38 88.988 88.557 9.740 3.993 90.00 -1.12 -1.60

39.7 478.78 475.99 48.11 20.86 98.628 98.053 9.911 4.298 99.25 -0.63 -1.21
43.6 526.05 522.99 49.26 21.51 108.365 107.736 10.147 4.431 109.00 -0.58 -1.16
39.7 481.89 478.43 48.96 20.94 99.270 98.556 10.086 4.314 99.25 0.02 -0.70
36 437.03 434.12 47.88 20.31 90.028 89.429 9.864 4.183 90.00 0.03 -0.63

32.1 391.19 388.74 47.15 19.38 80.586 80.080 9.714 3.993 80.25 0.42 -0.21
28.2 345.27 342.81 46.36 18.79 71.125 70.619 9.549 3.871 70.50 0.89 0.17
24.3 298.46 296.88 45.77 18.65 61.483 61.156 9.428 3.843 60.75 1.21 0.67
20 246.57 245.14 44.79 17.95 50.794 50.499 9.227 3.697 50.00 1.59 1.00
15 186.07 184.99 44.20 16.70 38.330 38.108 9.106 3.440 37.50 2.21 1.62
10 125.31 125.10 43.27 15.40 25.813 25.770 8.913 3.173 25.00 3.25 3.08
5 64.39 64.38 42.50 13.93 13.265 13.263 8.755 2.870 12.50 6.12 6.10
0 3.29 3.75 41.52 12.40 0.677 0.772 8.553 2.555 0 / /
0

(o.m.)
1.24 2.96 -0.85 -0.19 0.255 0.610 -0.174 -0.038 0 / /

Table H.10: Elaborated results of T-joint, Test 1. The abbreviation o.m. means out of machine.In the case of the cruciform

joint, the Young Modulus is equal to 206000 MPa, value of S355J2.

Where:
σth = Freal ·A (H.7)

∆%in f/sup =
σmembr,in f/sup −σth

σth

·100 (H.8)
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H.2 T-joint

Test 2

Freal

[kN]

ϵmembr,in f

[µeps]
ϵmembr,sup

[µeps]
ϵbend,in f

[µeps]
ϵbend,sup

[µeps]
σmembr,in f

[MPa]

σmembr,sup

[MPa]

σbend,in f

[MPa]

σbend,sup

[MPa]

σth

[MPa]
∆%in f ∆%sup

0
(o.m.)

0 0 0 0 0 0 0 0 0 / /

0 0.22 -0.25 36.23 13.60 0.05 -0.051 7.463 2.801 0 / /
5 58.52 59.41 37.53 15.18 12.05 12.238 7.730 3.127 12.50 -3.57 -2.10
10 117.46 118.14 39.56 16.01 24.20 24.338 8.150 3.299 25.00 -3.21 -2.65
15 177.10 177.44 41.11 16.76 36.48 36.552 8.469 3.452 37.50 -2.71 -2.53
20 236.58 236.98 42.64 17.70 48.73 48.818 8.784 3.647 50.00 -2.53 -2.36

24.3 289.16 288.96 43.66 18.84 59.57 59.526 8.994 3.881 60.75 -1.95 -2.02
28.2 336.70 336.16 44.64 19.78 69.36 69.249 9.196 4.074 70.50 -1.62 -1.44
32.1 383.88 382.76 45.51 20.67 79.08 78.848 9.375 4.257 80.00 -1.15 -1.48
35.9 430.77 429.22 46.25 21.47 88.74 88.418 9.528 4.422 89.75 -1.13 -1.48
39.7 476.65 474.92 47.10 22.41 98.19 97.834 9.702 4.617 99.00 -0.82 -1.18
43.5 523.87 521.49 48.26 23.06 107.92 107.426 9.942 4.751 108.50 -0.54 -0.99
39.7 478.86 476.77 47.15 22.53 98.64 98.216 9.714 4.641 99.0 -0.36 -0.79
35.9 434.32 432.62 46.56 22.07 89.47 89.119 9.592 4.546 89.75 -0.31 -0.70
32.1 388.94 386.97 45.87 21.55 80.12 79.716 9.449 4.438 80.00 0.15 -0.36
28.2 343.01 341.29 45.23 20.71 70.66 70.305 9.318 4.267 70.50 0.23 -0.28
24.6 296.19 294.48 44.58 19.78 61.02 60.663 9.184 4.074 60.50 0.85 0.27
20 244.71 243.56 43.88 19.17 50.41 50.174 9.039 3.949 50.00 0.82 0.35
15 184.60 183.61 43.20 17.94 38.03 37.825 8.898 3.695 37.50 1.41 0.87
10 123.64 123.61 42.53 16.55 25.47 25.463 8.760 3.409 25.00 1.88 1.85
5 62.81 63.11 41.70 15.07 12.94 13.001 8.591 3.104 12.50 3.51 4.01
0 1.74 2.56 40.73 13.72 0.36 0.528 8.391 2.826 0 / /
0

(o.m.)
0.19 1.79 -0.79 0.98 0.04 0.369 -0.162 0.203 0 / /

Table H.11: Elaborated results of cruciform joint, Test 2. The abbreviation o.m. means out of machine.In the case of the

cruciform joint, the Young Modulus is equal to 206000 MPa, value of S355J2.

Where:
σth = Freal ·A (H.9)

∆%in f/sup =
σmembr,in f/sup −σth

σth

·100 (H.10)
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Appendix H: Experimental and elaboration results

Test 3

Freal

[kN]

ϵmembr,in f

[µeps]
ϵmembr,sup

[µeps]
ϵbend,in f

[µeps]
ϵbend,sup

[µeps]
σmembr,in f

[MPa]

σmembr,sup

[MPa]

σbend,in f

[MPa]

σbend,sup

[MPa]

σth

[MPa]
∆%in f ∆%sup

0
(o.m.)

0 0 0 0 0 0 0 0 0 0 0

0 -36.22 -0.97 -0.21 14.14 -7.461 -0.201 -0.043 2.913 0 / /
5 58.81 57.64 38.12 14.71 12.114 11.873 7.852 3.030 12.50 -3.09 -5.01

10 117.82 116.79 39.99 15.66 24.271 24.059 8.238 3.225 25.00 -2.92 -3.77
15 177.33 175.80 41.48 16.70 36.530 36.216 8.545 3.440 37.50 -2.59 -3.43
20 237.24 234.91 42.91 17.81 48.871 48.391 8.839 3.668 50.00 -2.26 -3.22

24.3 289.21 286.36 43.99 18.66 59.578 58.989 9.063 3.845 60.75 -1.93 -2.90
28.2 336.43 333.38 45.01 19.66 69.304 68.677 9.273 4.050 70.50 -1.70 -2.59
32 383.52 379.99 45.71 20.26 79.005 78.278 9.416 4.174 80.00 -1.24 -2.15

35.9 430.58 426.79 46.55 21.56 88.700 87.918 9.590 4.441 89.75 -1.17 -2.04
39.6 476.17 471.91 47.22 22.44 98.092 97.214 9.728 .622 99.00 -0.92 -1.80
43.4 523.19 518.73 48.18 23.22 107.777 106.859 9.926 4.784 108.50 -0.67 -1.51
39.6 478.51 473.92 47.39 22.49 98.573 97.627 9.761 4.634 99.00 -0.43 -1.39
35.9 434.27 429.82 46.77 22.07 89.460 88.542 9.635 4.546 89.75 -0.32 -1.35
32 388.12 384.12 46.16 21.11 79.952 79.129 9.509 4.348 80.00 -0.06 -1.09

28.2 342.79 338.31 45.31 20.61 70.615 69.692 9.335 4.245 70.50 0.16 -1.15
24.2 295.96 292.04 44.65 19.95 60.968 60.160 9.199 4.109 60.50 0.77 -0.56
20 244.57 241.10 44.20 18.95 50.382 49.667 9.106 3.905 50.00 0.76 -0.67
15 184.38 181.07 43.46 17.61 37.982 37.300 8.953 3.628 37.50 1.28 -0.53
10 123.88 120.86 42.77 16.23 25.520 24.898 8.810 3.344 25.00 2.08 -0.41
5 62.74 60.35 41.98 14.85 12.924 12.431 8.648 3.058 12.50 3.39 -0.55
0 2.00 0.50 41.11 12.97 0.412 0.103 8.469 2.672 0 / /
0

(o.m.)
0.16 -0.51 -0.16 0.74 0.033 -0.105 -0.033 0.153 0 / /

Table H.12: Elaborated results of cruciform joint, Test 3. The abbreviation o.m. means out of machine.In the case of the

cruciform joint, the Young Modulus is equal to 206000 MPa, value of S355J2.

Where:
σth = Freal ·A (H.11)

∆%in f/sup =
σmembr,in f/sup −σth

σth

·100 (H.12)
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