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Chapter 1

Introduction

This work has the aim to improve previuos results on background discrimination via pulse shape analysis
for the GERDA experiment, focusing on superficial events. Till now pulse shape discrimination was carried
out in order to achieve good results in recognition of possible 0νββ candidates from γ background candidate
events. Study of this type was made through the exploitation of artificial neural networks (ANN), in such
a way that, after being trained, networks were able to discriminate signal from background and discard the
latter.
In this case superficial events will be considered as signal in order to study their basic characteristics and
being able to identify them in the best way possible. The ultimate goal is to create a sample as pure as
possible of superficial events: this could be exploited to recognize and discard such events as background
events in a GERDA data spectrum.
Before starting this work some introductions are needed.

1.1 The GERDA experiment

The GERmanium Detector Array (GERDA) experiment, at the Laboratori Nazionali del Gran Sasso (LNGS),
is a search for the neutrinoless double beta deacay (0νββ) of 76Ge. 76Ge is one of double beta 2νββ isotopes
emitters and so, outgoing from the Standard Model, a possible 0νββ emitter [1]. This is very attractive from
an experimental point of view, beacause high-purity Germanium detectors (HPGe) can be produced from
material enriched in 76Ge. Therefore, in the GERDA experiment, HPGe detectors enriched in 76Ge with an
isotopic fraction ups to 86%, act as both sources and detectors. Naked high-purity Germanium detectors
(enriched to 86% in 76Ge) are mounted in low-mass copper supports and immersed in a 64 m3 cryostat filled
with liquid argon (LAr). The LAr serves as the cooling medium and shield against external backgrounds.
The shielding is complemented by a 590 m3 steel water tank, to detect muons coming from the outside.
The experiment consists of two phases. GERDA Phase I ended with the establishment of the most stringent
0νββ half-life limit for 76Ge ([2]). Past claim for a 0νββ signal in 76Ge (Heidelberg-Moscow experiment, [3])
has been strongly disapproved, calling for a further exploration of degenerate Majorana neutrino mass scale.
This will be pursued by GERDA phase II aiming for a sensitivity increased by a factor of about 10. In
GERDA phase II will be deployed about 25 new custom-made enriched Broad Energy Germanium (BEGe)
detectors. These will be added to the previous eight semicoaxial HPGe detectors taken (and reprocessed)
from Heidelberg-Moscow (HDM) and IGEX [4] experiments and to five Broad Energy Germanium detectors.

1.2 The GERDA off-line data processing

The charge signals of the HPGe detectors deployed in GERDA are composed by pulses with a rising part
of about 1 µs followed by an exponential decay tail ( ' 100 µs ) given by the front-end charge-sensitive
preamplifier. The rising part (leading edge) is induced by the drift of electron-hole pairs - generated by γ-ray
or charge particle interactions - toward the detector electrodes and it contains information concerning the
event topology ([5]). The analog signals are digitized at 100 MHz sampling frequency by 14-bit flash-ADCs
(FADC) equipped with integrated anti-aliasing bandwidth filters. For each event, the FADC computes in run-
time and writes to disk two traces. The first trace is sampled at 100 MHz and it is 4 µs long (high-frequency-
short trace, HFS trace). The second trace is sampled at 25 MHz and it is 160 µs long (low-frequency-long
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2 CHAPTER 1. INTRODUCTION

(a) Multi-tiers structure of GERDA data. (b) Generation of Tier2 file from Tier1 one.

Figure 1.1: Conceptual schemes of GERDA data storage and manipulation.

trace, LFL trace). The offline analysis of the digitized charge pulses is performed with a software framework
for advanced data analysis and digital signal processing developed for the GERDA experiment: GELATIO
(GErda LAyouT for Input/Output). Such a framework, implemented in C++, organizes the data into a multi-
tier structure, from the raw data up to the condensed analysis parameters, and includes tools and utilities
to handle the data stream between the different levels ([6]). The raw data provided by FADC are stored
in the lowest level (Tier0). Data are then converted into a new encoding and stored as Tier1. Tier1 file
contains exactly the same amount of information of raw data; the difference is that Tier0 is the native data
acquisition system (DAQ) format, while the Tier1 is encoded with a different format based on ROOT [7]
and MGDO [8]. The latter is a C++ software library which contains a set of data objects and interfaces to
encapsulate, store and manage all the physical quantities of interest. For example, a Tier1 file contains a
TTree of MGDO object MGTEvents, in which are stored all the information acquired by the DAQ. Tier1 files
are the starting point for the analysis; Tier2 files, obtained by Tier1 processing, are the first “real data” files:
they contain for example all the risetimes of charge pulses, baselines, energies, max amplitude of current
pulses etc. Similarly, the Tier3 files store the information extracted from the Tier2 and so on. The core
of GELATIO is the digital signal processing which creates the Tier2 files starting from the detector signals
stored in the Tier1. To support a highly customizable analysis, the design of GELATIO is based on a modular
approach. The analysis is divided into modules, each of them handling a unique and consistent task of the
digital data processing. The modules utilized for this work are listed below.

• GEMDEnergyGauss. It reconstructs the event energy using an approximate Gaussian filter (uses LFL
trace).

• GEMDRiseTime. It computes the rise time between 10% and 90% (by default) of the maximum amplitude
of the pulse (uses LFL trace).

• GEMDCurrentPSA. It computes the current signal as the derivative of the charge signal and then extracts
the basic features of the current pulse, like rise time, width and area (uses HFS trace).

A graphic example of the multi-tier structure of data can be seen in figure 1.1a, while figure 1.1b shows a
schematic diagram of a GELATIO run.

1.3 Pulse shape discrimination in Germanium detectors

Pulse shape discrimination analysis is of primary importance in the GERDA experiment. The signature
of a 0νββ decay of 76Ge is an energy deposition of the two beta particles with an energy sum equal to
Qββ = 2039 keV . Given the energy of the beta particles and the density of germanium crystals, the path
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Figure 1.2: Type of events used for pulse shape discrimination tecnique.

length is of the order of one millimetre ([9]). On the contrary, in background events near Qββ (high-energy
γ rays), photons interact via multiple Compton scattering and energy is often deposited at several locations
well separated by few cm in the detector. Discriminating multiple-site events (MSE) from single-site events
(SSE) can be therefore a powerful tool to accept 0νββ events and reject backgrounds. The pulse shapes
will be, in general, different for the two event classes and this can be used to improve the sensitivity of the
experiment, by discriminating between them. Energy depositions from α or β decays near or at the detector
surface lead to peculiar pulse shapes as well that allow their identification ([10]).
Figures 1.2a and 1.2b show the graphic representation of the various events types discussed before.

To understand proceedings of this work, it’s useful to spend some words about events typology in a energy
spectrum acquired with an HPGe detector. First of all, compared with NaI scintillators, the lower atomic
number of Germanium leads to a photoelectric cross section smaller by a factor of 10−20 (and even greater in
comparison with higher Z scintillators). The events contributing to the full-energy peak are now much more
likely to consist of multiple interactions, such as Compton scattering followed by photoelectric absorption of
the scattered photon. Absorption of the full photon energy in a single photoelectric event is relatively rare,
as can be seen in figure 1.3 ([11]).

Figure 1.3: Fractions of the FEP contributed by different energy loss mechanisms in a 6 cm × 6 cm coaxial HPGe
detector, as predicted by Monte Carlo simulation. Absorption of the gamma-ray photon in a single
photoelectric interaction predominates only for energies below about 140 keV (taken from [11]).

At high gamma-ray energies pair production becomes predominant. Electron-positron pair is created at
the site of the original gamma-ray interaction. Electron’s energy is rapidly absorbed (SSE), while positron
annihilate creating two 511 keV gamma-rays. So, all the events belonging to the double escape peak (DEP)
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will be SSE type, while all those belonging to the single escape peak (SEP) will be MSE type. Regarding
superficial events, they will be discussed in the following section, as they depend on the particular employed
detector.

1.4 Broad Energy Germanium detectors

Recent developments in pulse shape analysis show that detectors with a small read-out electrode exhibit
pulse shape discrimination performance superior to coaxial HPGe detectors ([12]). A commercial detector
with such characteristics is the p-type HPGe broad energy Germanium (BEGe) produced by Canberra [13].
A modified model of this detector was successfully used in the frame of the GERDA experiment (see [9]).
Detectors of this type are used in this field of research for the first time, and a massive exploitation of them
is provided in GERDA phase II, as said before. Detector features are briefly described in the following.

p–type germanium

p+ electrode (signal read–out contact)

n+ electrode
(high voltage contact)

Figure 1.4: Sketch of a BEGe detector. The signal read-out electrode and the groove are not to scale. The plot shows
a vertical section of the detector passing through the symmetry axis (taken from [12]).

The crystal is made of p-type HPGe with Li-drifted n+ contact covering the whole outer surface including
most of the bottom part. The small p+ contact is located in the middle of the bottom side (see figure 1.4).
By Shockley-Ramo theorem, the istantaneous current induced on a given electrode (by each single charge
carrier) is equal to:

i = q~v · ~Ew (1.1)

Where q is the charge of the carrier, ~v is its istantaneous velocity and ~Ew the weighting field in its actual
position. The induced charge on the electrode is given by the product of the charge on the carrier multiplied
by the difference in the weighting potential φw from the beginning to the end of the carrier path:

Q = q∆φw (1.2)

In this special case of BEGe detectors we are in presence of the so called “small pixel effect” [11], where
weghting field and weighting potential have the shape reported in figure 1.5.
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Figure 1.5: Weighting potential (φw) and weighting field strength (‖ ~Ew‖) of the small read-out electrode computed
for half of a vertical section of the BEGe detector (taken from [12]).

In such a situation, looking at equation 1.2, one can see that over most of the detector volume only the holes
will contribute to the induced charge signal on the electrode. Again, looking at equation 1.1, it can be seen
that over most of the detector volume only holes are responsible for the current peak and the contribution
of electrons is small ([14]). It can be noticed that for all these events, the last part of the hole collection
happens along a common path which is independent of the starting position. Accordingly, the last part of
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the induced signal is identical for the different events. Since the first part of the signal, induced by the
holes and electrons in weak ‖ ~Ew‖ (and φw) regions, is comparatively small, the signal shapes are essentially
independent of the interaction position ([12]). Consequently, for a localized deposition, the maximum of the
current pulse is nearly always directly proportional to the total charge q of the moving charge cluster (seen as
a single charge carrier) and so directly proportional to the energy of the event. This translates in a powerful
A/E discrimination, discussed below.

• For SSE, as just said, A/E is independent of the energy and the interaction location inside mostly detec-
tor active volume. So, for SSE in the bulk detector volume one expects a nearly Gaussian distribution
of A/E with a width dominated by the noise in the readout electronics ([10]).

• For MSE the current pulses of the charge clusters from the different locations will have different drift
times and hence two or more time-separated current pulses are visible. For the same total energy E,
the maximum current amplitude A will be smaller in this case.

• For surface events near the p+ electrode, the electrons contribution to the current pulse will be no
more negligible, but comparable with that of holes. So, for the same energy E, the maximum current
amplitude will be quite greater in this case, in such a way to be able to recognize efficiently these
signals.

Before describing n+ events characteristics, n+ region of detector has to be described. The n+ electrode is
formed by infusion of lithium, which diffuses inwards resulting in a fast falling concentration profile starting
from saturation at the surface. The p − n juction is below the n+ contact surface, and, from the junction,
electric field decrease till reaching 0 at the edge of n+ electrode dead layer (DL) (0.8-1 mm thick).

• For an event occurred in the dead layer, holes (electrons do not contribute at all) can be transferred
from the dead layer into the active volume via diffusion. This is true only for the DL region in wich
Li concentration is not so high to results in a significant recombination probability. The slow nature
of diffusion compared to the charge carrier drift in the active volume results in a increased rise time
of signals for these events. Charge recombination instead causes a ballistic deficit loss in the energy
reconstruction. The final result is a reduced A/E ratio ([10]).

It’s important to remember that, unlike the current amplitude, the amplitude of the induced charge (and
so the energy) is independent of the event type and of the region where charges are formed, provided all
carriers are fully collected ([11]).

Figure 1.6: A/E distribution for Compton continuum data. The dashed blue curve is the Gaussian component and
the green curve is the component approximating the MSE contribution (taken from [10]).

In figure 1.6 can be seen what said before about A/E distribution of SSE and MSE. In particular MSE term
is approximated by the function:

f(x = A/E) = A0 ·
eA1(x−A2) +A3

e(x−A2)/A4 +A2
(1.3)
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MSE term is parameterized empirically by parameters A0, A1, A2, A3 and A4.

1.5 TMVA and Artificial Neural Networks

The Toolkit for Multivariate Data Analysis (TMVA [15]) provides a ROOT-integrated machine learning
environment for the processing and parallel evaluation of multivariate classification (and regression) tech-
niques. It contains the object oriented implementation in C++/ROOT of many multivariate analysis methods,
including artificial neural networks (ANN).
A neural network is in general a computational model, inspired by the architecture and operation principles
of central nervous systems, capable of machine learning and pattern recognition.
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ij .

Figure 1.7: Schematic view of a one-hidden layer MLP and a generic neuron (taken from [15]).

Figure 1.7b shows the general structure of a neuron. Each neuron receives input information from the
others through inter-neuron connections, that are weighted with an appropriate connection weights (w(l−1)

ij )
based on the connection’s importance. Each neuron is also associated with a bias value, that in case of
figure 1.7b we should call w(l−1)

0j . The neuron processes the input information (and the bias) through the
neuron responce function (ρ) returning an output value. The neuron responce function can be seen as a
function ρ : Rn → R that maps the neuron input (y

(l−1)
1 , . . . , y

(l−1)
n ) onto the neuron output. This responce

function can be separated into two functions: the synaps function

k : (y
(l)
1 , . . . , y(l)n |w

(l)
0j , . . . , w

(l)
nj )→ w

(l)
0j +

n∑
i=1

y
(l)
i w

(l)
ij (1.4)

and the activation function

α : x→ tanh(x) =
ex − e−x

ex + e−x
(1.5)

so that ρ = α ◦ k. The most simple activation function is the linear function α : x→ x, that doesn’t modify
input variables (all information are always transmitted). Functions 1.4 and 1.5 are those we are going to use
in the analysis.
Figure 1.7a shows an example of a multi layer perceptron (MLP) with one hidden layer. Multi layer percep-
tron is a particular kind of neural network where neurons are organized in layers and connections are allowed
only between neurons belonging to different layers. The input layer consists of the chosen variables for the
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classification, while output layer of one single neuron that holds the output variable: the neural network
estimator yANN .

Artificial neural networks have to be trained for every specific problem before the usage. The training phase
is aimed to properly set the weights of each connection according (in our case) to the “backpropagation
algorithm” (BP). The weights are chosen in order to minimize the error function E, defined as:

E(~x1, . . . , ~xN |~w) =
N∑
a=1

1

2
(yANN,a − ŷa)2 (1.6)

Where a represents the single processed event from the training sample, N is the number of events in the
training sample and ŷa is the known expected result for that particular event: 0 for background and 1 for
signal. As said before yANN,a is the output of the output layer for the event a, that is, in case of figure 1.7a
(and all biases set to 0):

yANN =

nhl∑
j=1

y
(2)
j w

(2)
j1 =

nhl∑
j=1

tanh

(nvar∑
i=1

xiw
(1)
ij

)
w

(2)
j1 (1.7)

Where nhl is the number of neurons in the hidden layer, nvar is the number of discriminating variables
(number of neurons in the input layer), w(k)

ij are the connections weights and xi are the single variables. In
equation 1.6 each vector ~xi represents all discriminating variable for the event i and ~w is the vector of all
network weights. Starting from a random set of weights ~w (i), according to the BP algorithm, the new vector
of weights will be:

~w (i+1) = ~w (i) − η∇wE
∣∣
~w(i) (1.8)

η is a positive number and it’s called “learning rate”. Such an algorithm will converge to a stationary point
of the error function, with a speed and precision stated by the numerical value of η. In this particular case
in which η is positive, the algorithm will converge to a minimum: E is never negative, and so it will have
a global minimum value at or near 0 (0 only if it’s possible for the neuron to represent the target function
perfectly).

In order to allow consistency checks, the training algorithm described above is performed using only a
subsample of the whole training data set. The other subsample becomes the test sample, to which is applied
the just trained network. This guarantees a statistically independent evaluation of the MVA algorithms
based on the test sample ([15]). Therefore, the whole TMVA training phase consists of a proper training
and a testing phase. Just after these two steps it is always possible to access and check the results regarding
the reliability of trained network, computed by the application of such a network on the test subsample.



Chapter 2

Phase 1

For the following analyis it will be used ANN configuration parameters and discrimination variables which
led to the best results in [16]. The first phase of this work consists therefore in training ANN to discriminate
SSEs from MSEs in the active volume of detector, making sure that the chosen parameters of the networks
are able to return results in agreement with previuos ones.

2.1 Settings and data samples

Discriminating variables are:

1. Rise time of the charge pulse, from 10% to 90% of the maximum height.

2. A/E ratio.

3. Parameter characterizing the asymmetry of the current pulse.

The latter parameter is chosen as:

Asym = (A/E) · L−R
L+R

(2.1)

Where L and R are the left and right current pulse integrals computed from the maximum amplitude to the
3% of the maximum amplitude.
The chosen neural network is the MLP with a single hidden layer containing 18 neurons. The data for
the training phase is taken from the “N28_Th228_calibration” measurement of Thorium spectrum with the
GD91C detector (see section 3.1 for more information). The DEP of 228Th at 1592 keV has been chosen as
SSE prototype, while 214Bi FEP at 1620 keV as MSE prototype. Taking into account the shape of spectral
background [17], these peaks has been fitted with:

f(x) =
A0

A1

√
2π
e
− (x−A2)

2

2A2
1 +A3 +

A4

e
x−A2
2A1 + 1

(2.2)

Where Ai are fit parameters and represent respectively: gaussian area, sigma and mean value, background
right, background left - background right.
Selected events are all those lying into 2σ of the gaussian part of fitting function 2.2.
From the DEP fit it’s also possible estimating the background percentage in the SSE sample, that was
computed taking mean value of the fitted function integrals from 6σ to 8σ at the left and right of the
centroid position. Background percentage in the DEP sample results (15.5 ± 0.3)%. Figure 2.1 shows the
two fitted peaks.

8
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Figure 2.1: DEP of 228Th and FEP of 214Bi fitted with function 2.2.

2.2 Networks training results and application

All relevant information are enclosed in the classifier output distribution, that can be seen in figure 2.2b.
From here the optimal cut value can be chosen according to signal efficiency and background rejection. Signal
efficiency for a given cut value is computed calculating signal fraction above that value. Background rejection
computing background fraction before cut value.
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(a) Network architecture. The colour and width of the arrows rep-
resent the value of the weight of every connection.
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Figure 2.2: Network’s responses for training phase

Optimal cut value has been chosen as that output classifier value which maximizes signal efficiency and
background rejection. Values are in table 2.1.

Cut Value Signal Efficiency Background Rejection

0.82 0.78 0.78

Table 2.1: Training phase evaluation values that will be utilized for network application phase.

The first application phase of this network is done on the Compton edge of 228Th FEP. In this region the
majority of events is multiple site and I’m expecting a susbstantial reduction. Another test to be applied
to just trained network consists of processing the spectral region of 228Th DEP and 214Bi FEP taken from
another measurement of Thorium spectrum (result of application on training measurement is already known).
It has been chosen measurement “M1_Th228_top_v2 ”, taken with same detector of training sample.
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Figure 2.3: Application results of trained network: energy spectra.

Compton Edge 228Th DEP 214Bi FEP

Discarded events (%) 86.8 19.8 83.3
Survived events (%) 13.2 80.2 16.7

Table 2.2: Ratio of discarded and survived events in application phase.

Results of these applications can be seen in figure 2.3a for application on Compton edge of training file, and
in figure 2.3b for application on Thorium DEP and Bismuth FEP of measurement “M1 ”. The first figure
shows that network successfully brings to zero the “pure” multiple Compton scattering region; the latter that
network is clearly able to discriminate between multiple site and single site. Numeric values indexes of the
application goodness are displayed in table 2.2.
Values obtained in this first phase are in a quite good agreement with previuos values of [16]. Neural network
set parameters and discriminating variables have returned the positive expected results, therefore these
settings will be maintained for the newest part of this analysis.



Chapter 3

Phase 2

Here starts the real part of this work. ANN with the same configuration and discriminating variables chosen
in the previous chapter will be employed trying to discriminate superficial events from all other types. In
such a way, if discriminating parameters are satisfactory and classification is feasible, it will be possible to
isolate superficial events from the others and to create a “pure” sample of superficial events. If this will be
successful, such a method could be adapted to the GERDA experiment for the removal of superficial events
from GERDA spectra (using the final obtained pure sample as background for ANN).

3.1 The data: Upside-Down BEGe GD91C

The whole data set exploited for this part of analysis comes from Bjoern Lehnert (et al.) experiment on the
BEGe detector GD91C at LNGS, first presented at the GERDA Collaboration Meeting on 4th November
2013 at LNGS ([18], [19]). Experimental setup and objectives of this experiment are listed below.

Experimental setup

• BEGe detector GD91C was mounted upside-
down, with the p+ contact side upwards.

• 0.6 mm carbon-epoxy window.

• No passivation layer.

• Reverse bias voltage 3800 V (3600 V only if spec-
ified).

Objectives

• Transition layer investigation.

• Pulse shapes at p+ contact.

• DEP pulse shapes without passivation.

• Full Charge Collection Depth on p+ contact side,
Active Volume without passivation.

Measurements with several sources have been acquired, each of them for a different purpose. A detailed
description of Bjoern’s experiment is not our purpose, so here it ends.
What is of interest to this work is the 90Sr set of measurements. 90

38Sr β− decays in ground state (g.s.) of
90Y with a Qβ = 545.9 keV and T1/2 = 28.80 y. In his turn 90

39Y β− decays in g.s. of the stable nucleus 90Zr,
with a Qβ = 2279.8 keV and T1/2 = 2.6684 d [20].
All the measurements have been taken on the upside-down detector’s top surface. Experimental apparatus
can be seen in figure 3.1a and 3.1b. In figure 3.1a are shown the 90Sr measurement sites: five measurements
have been taken, named from “M30” to “M34”. The big circular red areas represent the beam size on detector’s
surface and the small inner one the collimator size. Diameter of these two regions are respectively 24 mm
and 10 mm. Central region of detector corresponds to the p+ contact, where the space enclosed by two black
circumferences just out of M32 collimator is the groove between p+ contact and n+ one. In figure 3.1b can
be seen the so called “lead castle” (LC), used as shielding from external background. During measurements
top of lead castle was covered by the 90Sr collimator, an Al plate and a PE plate. Bremsstrahlung (BS) and
background measurements for 90Sr were acquired too (with closed collimator).
Another measurement that will be taken into account will be that of a 60Co source, acquired in similar
conditions to 90Sr one. 60

27Co β− decays into 60Ni excited states (Qβ = 2823.07 keV ) then γ, giving two
spectral lines at 1173.228 and 1332.492 keV (most probable ones) [20].

11
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90Sr Scan

(a) Detailed view of GD91C upside-
down data taking.

(b) View of GD91C inside the Lead Castle (LC). M26 acquired in the same
M34 site.

Figure 3.1: BEGe detector GD91C in the 90Sr measurements. Taken from [21] and [19]
.

3.2 Analysis

Beta surface events of 90Sr are those superficial events we intend to study, while 60Co can be exploited as
source of internal events (high energy γ rays interacting in the detector’s active volume).
First of all, we can observe general features of a raw 90Sr spectrum.
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(a) Calibrated energy spectrum of 90Sr
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Figure 3.2: Graphics for 90Sr M30 measurement.

Figure 3.2a shows the calibrated energy spectrum of 90Sr M30 measurement. Calibration was carried out
through the Thorium measurement “M1_Th228_top_v2”. Calibration clearly allows us to identify Kα1 and
Kβ1 Pb fluorescence peaks, respectively at energies of 74.97 and 84.94 keV [22]. In figure 3.2a, before the
proper 90Sr beta spectrum, near zero, we notice the presence of a very sharp and high peak.
Figure 3.2b is a bright example of the BEGe physics discussed in section 1.4: about between 0.025 and 0.02 of
A/E axis lies the single site band, while the whole region above SSE band is entirely populated by p+ events.
Figure 3.2b clearly shows the ease of identification and removal of p+ events from the others exploiting the
powerful discriminating parameter A/E (see section 1.4). For such a reason, we’ll never consider p+ events
in this study, cutting off them a priori. Thus, we have at first to identificate the SSE band: once obtained
such an interval, all events above its upper limit can be discarded as p+.
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(the red one) has a higher p+ region, as expected.
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Figure 3.3: A/E normalized distribution of all 90Sr measurements.

As can be seen in figure 3.3a all A/E distributions have the same central peak, i.e. SSE peak. So an A/E
cut is the most simple way to reject all SSE band and all p+ events. Having a good statistic, cut is chosen by
taking mean value and RMS of background A/E distribution, and cutting at ±3RMS. SSE cutting interval
results:

SSE Range = [0.0218, 0.0231] (3.1)

This could appear quite small for non background distributions (see figure 3.3b), but the point is that for
90Sr measurement a considerable part of (mainly BS) MSE events clusters on the left side of SSE peak with a
shape expressed by equation 1.3 (see figure 1.6). In such a way cutting too much could lead to a considerable
loss of MSE events and probably of some superficial events. Anyway, residual presence of SSEs is not a
problem for us, because ANN could easily identify them, as seen in section 2.2.
Cutting in this way, however, could lead to problems due to the linear A/E systematic small energy depen-
dence discussed in [10]. This small observed dependence of A/E from energy is thought to be an artefact
of data acquisition and/or signal processing. Explicit correction was carried out in [9] exploiting the whole
228Th calibration data to compute the sistematic (negative) slope of this linear dependence. In our case,
deciding to cut off all the data exceeding the 90Sr Qβ value, such a correction is negligible. So, evaluating
calibration function at 90Sr Qβ , energy cut value in channel turns out to be:

Qchβ = 2954 ADC channels (3.2)

In such a way we are focusing on the whole 90Sr low-energy beta.

We have to do some considerations about the events survived the cuts 3.1 and 3.2. Survived sample now
contains mainly MSE and n+ events. The latter are those events we want to focus on. It is not possible
to identify n+ events from MSE by simple A/E or energy cuts. According to the theory of BEGe detector
discussed in section 1.4 MSE and n+ events have quite comparable A/E ratio. Thus, in discrimination
of these two types of events, parameter A/E, that has proved to be the most important discriminating
variable between SSE and MSE (see figure 2.2a), should have to loose almost all its importance. Another
discriminating variable should rise above the other ones: current signal risetime. Indeed, due to holes diffusion
from dead layer, n+ are the slowest events among all those who are considered. The purpose then, is to
training an artificial neural network that will be able to distinguish between n+ and MSEs. To do this we
have to make a careful choice of background and signal training samples. As previously done in section 2.2
“pure” background and signal sample are needed for training phase. But if a pure background sample can
be identified with whole events inside a gamma line, it is not possible to obtain a sample consisting only of
n+ events.
Thus, our purpose is to prepare the purest n+ training signal sample as we can do. Till now selected cuts
for signal sample are:
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1. A/E < 0.0218, for SSE and p+ events.

2. E < 2954, for events after the 90Sr Qβ .

Looking at figure 3.2a and 3.2b one can notice that the events survived the latter cuts are not just n+ and
MSE, but also all those “not classified” events lying under the sharp peak near zero in figure 3.2a. In the
same energy range of this peak, in figure 3.2b, can be seen an high-density region with a well definite shape.
The situation is the same for all the other 90Sr measurements.
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Figure 3.4: A/E as function of E for M30 measurement: view of low-energy region.

In figure 3.4a is shown a detailed view of low energy region of A/E versus E plot. It’s clearly visible the
horizontal SSE band, and the other “unknown” high density region, that seems to have a shape ∝ 1/E. This
first impression is confirmed by looking at figure 3.4b, that is the same previous plot with bilogarithmic scale
set on. Now the inspected events distribution takes the form of a straight line, that is the shape that assumes
a power law in bilogarithmic scale. In particular, if the shape is in a good approximation ∝ 1/E, the slope
of that linear region should be about −1.
The most important question now is what types of events are hidden in such a region. At first sight, looking
at the energy spectrum, they seem to be some type of pathological events, due to, for example, electronics.
Therefore the idea would be to cut off the “pathological” peak from the energy spectrum, with all the events
enclosed by this. But looking at figure 3.4a one can think that “pathological” events could be enclosed only
in the “hyperbolic” high-density region, so cutting on energy would lead to a loss of all possible physical
events between “hyperbolic” region and SSE band. More information are needed.

The most simple way to learn more about these events is “looking inside” the regions of interest. It has been
written a software framework that’s able to put in parallel a Tier1 and Tier2 file, selecting from both of
them only the events specified by a user’s cut (both at Tier1 that Tier2 level), and extracting from them
any desired variable or object (through a method that has only to be implemented as algorithm). All the
extracted information are saved in two TTrees, one for Tier1 and one for Tier2 methods. The variables and
objects used for this inspection are the discriminating variables chosen for ANN (see section 2.1) plus the
waveforms of all selected events. Through the writing of another program, it becomes possible to “see” any
selected event. The inspection has been made on three regions, described in table 3.1.

min E [ch] max E [ch] min A/E max A/E

Region 1 40 45 0.0155 0.0165
Region 2 217 600 / /
Region 3 140 180 0.010 0.015

Table 3.1: Ranges of inspection regions
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Figure 3.5: Graphics to inspect the suspicious events.

The three selected regions are visible in figure 3.5b. Motivation for such selections follows. First of all it has
been chosen an energy cut at 40 keV to roughly discriminate between “suspicious” and physical events, as
shown in figure 3.5a. Then, from the A/E versus E plot, it has been chosen one region (Region 1) entirely
enclosed in the “hyperbolic” region, another big one (Region 2) as a sample of the whole physical events, and
a last region (Region 3) to inspect events situated between the hyperbolic and SSE regions.

By observation of events in these regions, it becomes possible to make assumptions on the “hyperbolic”
region. First of all, almost all events belonging to Region 1 are like those reported in figure 3.6a and 3.6b.
Comparing these events with those of Region 2, one can notice that there is a very big difference between
them. Events shown in figures 3.7a, 3.7b, 3.7c and 3.7d are all physical events (like all those events founded
in this region), respectively they are SSE, MSE, p+ and n+ candidates. Focusing on the n+ candidate it is
possible to see that it’s a very slow event in comparison with SSE, MSE and p+ candidates. The majority
of events in Region 3 is very similar to those shown in figures 3.8a and 3.8b. They are probably n+ lower in
energy and time, however they are very different from Region 1 events too. Another information that turns
out from this inspection is that, focusing only on the ANN discriminating variables, events from Region 1
are dangerously similar to those slow n+ events we have seen in Region 2. Therefore, taking assumption
that the “hyperbolic” events are not of interest for us, it is very important to remove as much as possible
of them. Moreover, we must be careful not to lose all events between pathological region and SSE one (i.e.
events shown in Region 3). An optimal cut has to be designed.
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Figure 3.6: Typical events from Region 1



16 CHAPTER 3. PHASE 2

t [ns]
0 5000 10000 15000 20000 25000 30000 35000 40000

A
D

C

12900

13000

13100

13200

13300

Charge pulseEvent number: 400

A/E = 0.022657
Energy = 338.804 ch

Asymmetry = 0.301765

Risetime = 270 ns

 = 0 nsofft

t [ns]
0 5000 10000 15000 20000 25000 30000 35000 40000

A
D

C

0

0.5

1

1.5

2

2.5

Current pulse
 = 0 nsofft

(a) Candidate SSE event

t [ns]
16000 18000 20000 22000 24000

A
D

C

12850

12900

12950

13000

13050

13100

13150

13200
Charge pulseEvent number: 46

A/E = 0.0198301
Energy = 235.618 ch

Asymmetry = 0.204337

Risetime = 380 ns

 = 0 nsofft

t [ns]
16000 18000 20000 22000 24000

A
D

C

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Current pulse

 = 0 nsofft

(b) Candidate MSE event
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(c) Candidate p+ event
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Figure 3.7: Events from Region 2

t [ns]
0 5000 10000 15000 20000 25000 30000 35000 40000

A
D

C

12850

12900

12950

13000

13050

Charge pulseEvent number: 4
A/E = 0.0112585

Energy = 150.759 ch
Asymmetry = -0.30219

Risetime = 800 ns

 = 0 nsofft

t [ns]
0 5000 10000 15000 20000 25000 30000 35000 40000

A
D

C

-0.2

0

0.2

0.4

0.6

Current pulse
 = 0 nsofft

(a)

t [ns]
0 5000 10000 15000 20000 25000 30000 35000 40000

A
D

C

13150

13200

13250

13300

13350

13400

Charge pulseEvent number: 860

A/E = 0.010582
Energy = 163.708 ch

Asymmetry = -0.452142

Risetime = 740 ns

 = 0 nsofft

t [ns]
0 5000 10000 15000 20000 25000 30000 35000 40000

A
D

C

-0.2

0

0.2

0.4

0.6

Current pulse
 = 0 nsofft

(b)

Figure 3.8: Typical events from Region 3

Before starting to decide the cut for pathological events, it is very useful trying to understand the physics
behind this “hyperbolic” region. From figure 3.6a and 3.6b it can be seen that the charge pulse derivative
(current pulse) is almost entirely a background signal. That is, for all the events of this type the rise of
the charge pulse is so slow and background dominated that the derivative is only affected by background
fluctuations and do not perceive the real rise of the pulse. Thus, the current signal lacks a true peak and
appears as a background noise. In such a way, the current amplitude A will be about the same for all events
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that behave like this, and so the hyperbole in the A/E versus E plot is perfectly explained.
All of this, however, is only a first approximation, indeed, first of all, the derivative of charge pulses shown
in previous figures is a “raw” derivative, while the derivative computed by the GEMDCurrentPSA module of
GELATIO follows the application of some noise filters, that leads to a better current pulse signal. Anyway,
what has been just shown is the basic and main concept to understand the hyperbolic-like distribution of
such events.

Once got here, it’s possible to proceed with greater awarness than before preparing the cut for the pathological
region. Exploiting the simple bilogarithmic shape of the region, the idea is to interpolate the center of the
bi-logged region with a straight line, then shift the latter of a certain parameter that has to be an index of
the region’s dispersion. All the events under this shifted stright line will be cut off.
We start estimating the center of such a region. To do this it has been used the Y projection: for each X
bin of A/E vs. E plot (see for example figure 3.4a), Y projection was computed for all the X bins where the
hyperbolic region showed an high density (in the M30 case from channel 30 to 200).
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Figure 3.9: View of one Y projection and hyperbolic interpolation of M30 measurement.

Output of an Y projection can be seen in figure 3.9a. For each Y projection in the established range has been
computed a gaussian fit on the main peak. The graph of centroid position versus the X projected bin center
returns the desired interpolation of the hyperbolic region, as shown in figure 3.9b. Then, after linear fitting
the bi-logged interpolating graph, it has been computed the quadratic sum of all distances of graph’s points
from the linear function. Call σM the square root of this value. As an order of magnitude, σM represents the
bi-log linear law dispersion of the region’s mean values. Thus, if we are interested in the dispersion of the
total region, its value will be about

√
N · σM := σL , where N is the number of region interpolating points.

The bi-log linear function is perpendicularly up-shifted by 2σL: all that’s located below is cut off. Examples
of result can be seen in figure 3.10a and 3.10b. All linear fit results and σL values are in table 3.2.

m q Range [ch] σL

M30 −0.854± 0.006 −0.41± 0.01 [30, 200] 0.116
M31 −0.872± 0.007 −0.38± 0.01 [32, 169] 0.090
M32 −0.889± 0.007 −0.35± 0.01 [30, 170] 0.085
M33 −0.886± 0.007 −0.36± 0.01 [30, 164] 0.110
M34 −0.859± 0.005 −0.40± 0.01 [25, 217] 0.139

Table 3.2: Values of linear bilogarithmic fits. Fitted function is y = m · x+ q.
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Figure 3.10: Applied cuts for M30 measurement (last and not visible cut is that on Qβ of 90Sr).

As shown in figure 3.10a, the “hyperbolic” cut is simply added to the others. Hyperbolic cut must be
stopped by looking at energy spectrum of figure 3.5a. Pathological events, indeed, are characteristics only
of low energy region. Moreover, looking at figure 3.5b and 3.7d, it is possible to notice that the typical n+

candidate founded in Region 2 lies exactly in the tail of hyperbole. In such a way, do not stop the hyperbolic
cut would lead to an high loss of signal. Energy stop value was chosen at 40 keV , that correspond to 217
ADC channels. The other stop value of hyperbolic cut is the lower limit of SSE band.

Before going on with ANN training phase it’s useful to compute some percentages.

M30 M31 M32 M33 M34

Events in Qβ (%) 92.33 94.21 83.50 95.32 88.69

Table 3.3: Percentage of events that lie in the interval [0, Qβ ].

In table 3.3 are reported percentages of events before Qβ of 90Sr. For M34 measurement at about 20000 ch
there is an high peak due to an α particle. Events percentage is recomputed excluding this peak: the new
percentage is of 90.95%.
Now we’ll assume that the whole considered data sample always goes from 0 to Qβ .
All percentages of table 3.4 are computed on this interval for each data sample.

M30 M31 M32 M33 M34

p+ (%) 15.85 15.73 26.28 16.62 16.69
SSE (%) 33.68 37.62 32.60 41.75 30.15
Pathological (%) 18.63 16.43 14.36 14.39 20.14
Total cut (%) 68.16 69.78 73.24 72.76 66.98

Table 3.4: Cut percentages of 90Sr from 0 to Qβ .

In table 3.4 are shown every cut’s events percentages. Looking at p+ percentages, is easy to understand that
measurement M32 is that with source on p+ contact.
Cut used to compute values of table 3.4 are those previously discussed:

• A/E > 0.0231 for p+.

• A/E ∈ [0.0218, 0.0231] for SSE.

•
(
A/E < 0.0218

)
AND

(
E < 217

)
AND

(
log10(A/E) < m · log10(E) + q′

)
for pathological events. Where

m is the slope of the bilogarithmic linear fit and q′ = q + 2 · σL cos(arctanm) (see table 3.2).
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The total number of events cut off (in the energy region of interest) is always higher than 65% for each data
sample. All survived events are mainly n+ and MSEs.

3.3 Training networks

So far we have chosen a smart cut to prepare an n+ data sample as pure as possible. However, it’s clear
that the n+ purity to which we aspire needs the exploiting of more intelligent method than a simple cut. We
also know that all events that survived the cut are both n+ and MSEs. So, now, the purpose is to exploit
artificial neural networks to purify the cut data sample, making a distinction between n+ and MSEs.
What we have for the neural network is a “dirty” signal sample, with a “dirt” percentage (MSE) that we
don’t know precisely. In such a situation it’s absolutely needed an high purity background sample. A pure
background sample can be chosen as a point of reference for selecting the cut value and helps to identify
the background component of signal sample looking at the signal and background overlap in the output of
classifier (see figure 2.2b).
The chosen background sample meets our requirements very well. As previously said in section 3.1, chosen
backround sample is 60Co: it has two γ lines at about 1173 and 1332 keV , that are certainly internal events.
A further proof of this is given by the Monte Carlo simulation of such a measurement made by Katharina
Von Sturm.
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Figure 3.11: Monte Carlo simulation of the 60Co source on the top surface of upside-down BEGe GD91C. Taken
from [23].

Results of simulation can be seen in figure 3.11a and 3.11b: they are respectively referred to 1173 and
1332 keV 60Co peaks. For each figure, the first graphic is a top view of the upside-down detector GD91C
upper surface (p+ surface: x vs. y), the second is the graphic of r2 = x2 + y2 versus z (height). Colour
indicates the number of hits, i.e. number of interactions. From these figures it is possible to see that all the
events are located into the inner part of detector.
We choose as background sample these two γ peaks of 60Co. Sample is selected by fitting γ peaks with
function 2.2 and selecting all events lying into 3σ of fitting function.
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Figure 3.12: 60Co calibrated spectrum.
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In figure 3.12 is shown 60Co energy spectrum. The chosen background sample, however, is incomplete. The
two 60Co peaks are both full energy peaks, so they are made up almost entirely by multiple site events (see
figure 1.3). As said in section 3.2, the decided SSE cut could be underestimated, leaving a certain amount
of SSEs in the prepared signal sample. By using only 60Co FEPs as background sample these survived
SSE events won’t be recognized and discriminated by network. On the contrary, adding to background
sample a pure SSE peak, it will be possible to recognize also these survived SSEs, as successfully done in
section 2.2. The chosen background SSE peak is the DEP peak of M1 Thorium measurement, that we can
see in figure 2.3b. The DEP of 228Th has been fitted with function 2.2, selecting all the events lying into 2σ
of fitting function.
Now we are going to proceed as follows. Signal sample used for the ANN training phase will be the cut
sample of M30 measurement. Then, the application phase will be carried out applying the trained network
on the other 90Sr cut data samples.

MLP response
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Figure 3.13: Output of classifier. To notice the intersection region between signal and background.

Looking at the output of classifier in figure 3.13, it can be seen that there is a considerable overlap region
between signal and background. Remembering that the training signal sample is polluted by the same type
of events that populate the background sample, an overlap region is expected. It may seem as if the neural
network has understood that there is a considerable number of events shared by signal and background
samples, and so it has put them in the region between “pure signal” and “pure background”, leaving to us
the choice of classifying these events as “signal in background” or “background in signal”.
The choice of the cut value follows from the consideration that background sample employed for the training
is very pure, while this is false for the signal one. Thus, we select the cut value trying to maximize the
background rejection. The cut is chosen at 0.9 of output classifier. Background rejection and signal efficiency
are shown in table 3.5.

Cut Value Signal Efficiency Background Rejection

0.90 0.568 0.998

Table 3.5: Chosen cut and related parameters.
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3.4 Results

Networks has been trained using as signal the M30 data sample (cutted as described in section 3.2) and
as background the two 60Co FEPs and the 228Th DEP. Application has been made on the other four
90Sr measurements opportunely prepared as done for training signal sample, in such a way to be able to
discriminate mostly only between n+ and MSE. Cutting percentages are shown in table 3.6.

M31 M32 M33 M34

Discarded events (%) 47.82 49.48 56.14 36.65
Survived events (%) 52.18 50.52 43.86 63.35

Table 3.6: Results of ANN application phase.

To test the goodness of ANN application results the best way is to look at significant plots as done in
figures 2.3a and 2.3b for 228Th energy spectrum. But now the situation is different: energy spectrum doesn’t
contain any useful information. Firstly, it is possible to check the result on the A/E vs. E graph.
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Figure 3.14: A/E vs. E plots for M31 measurement before and after ANN application. Notice that colour legend is
changed.

Looking at figure 3.14 it can be seen that ANN finds and removes the SSE events survived to the sample
cutting phase. Also the region just below SSE band is greatly reduced in number of events. This is the
main MSE region that, in the A/E distribution, clusters below SSE peak with a shape described by the
equation 1.3 (see figure 1.6). The region least affected by the cuts is the low A/E region and low energy
region. This is in agreement with the shape of beta 90Sr spectrum and with the fact that n+ have a ballistic
energy defect due to charges recombination. A clearly vision of this SSE and MSE cut is given by the A/E
distribution histograms before and after network application.
From figures 3.15a, 3.15b, 3.15c and 3.15d it’s visible what it has just been said. Survived SSE peak is
completely cut down, so as the exponential MSE tail described in figure 1.6 by equation 1.3. From here we
can see that network recognizes both MSEs and SSEs.
However, the most important variable to discriminate n+ events from the others is the pulse risetime. Looking
at risetime histograms give us important information on the network application goodness.
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(c) M33 measurement.
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Figure 3.15: A/E distributions before and after neural network application.

Figures 3.16a, 3.16b, 3.16c and 3.16d prove that network is able to discriminate between internal and super-
ficial (n+) events. All the cut off events belong to the low-risetime peak. The best feature of these plots is
not only that all cut off events belong to risetime peak, but also that the risetime peak cut is a smart cut. It
can be seen in the zoomed histograms that cutting is not brutal nor simple, but smooth. The region between
risetime peak and risetime tail is smoothly brought to zero, and smooth is the arising of the survived risetime
tail. This could not be reproduced by a simple risetime cut.
A problem may be given by the hypothetical survived pathological events. The fact that the high-risetime
region has been left untouched by network application, says us that if some (not negligible) number of patho-
logical events has survived the preparing cut, it has not been removed by application phase. This would be
in agreement with what we noticed in section 3.2: n+ and pathological events are very similar regarding the
discriminating variables used for the network.
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Figure 3.16: Risetime histograms before and after neural network application. The smaller histogram reported on
each canvas is the zoom on the cut down risetime peak.
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3.5 Conclusions

Discrimination by Artificial Neural Networks proves to be a correct method to reach the point of this work.
Chosen settings and variables confirm their validity also in discriminating between superficial and internal
events. After preparing the best signal sample as possible, the network was able to discriminate between
superficial n+ events and internal MSE (and SSE) ones. Discrimination has confirmed that n+ events are
characterized by a much higher ristime and a lower A/E ratio compared to internal events. Four high-pure
samples of superficial events are available now.

Possible improvements and future developments:

• More detailed study of the so called “pathological events”, trying to remove all of them from the data
sample (their presence is probable in the obtained final samples).

• Study of new discriminating variables for a best discrimination of n+ events.

• Employment of others TMVA classifiers instead of ANN. Study and comparison of the results to
determine the best discriminator for such a problem.

• Adapt the method to the GERDA experiment. ANN application on GERDA spectra, using the ob-
tained final n+ samples as background for the training phase.
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