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Abstract

Stratospheric balloons have been used for many years as platforms to carry scientific payloads
into the upper layers of the atmosphere. Compared to satellites and launchers, they are
cost-efficient, reusable, flexible in their deployment and operability, able to carry heavy payloads
and impose few mechanical constraints on them. DICOS is a balloon experiment under
development at CNES that aims to demonstrate the feasibility of coronagraph imaging to study
exoplanets aboard a balloon-borne gondola. Such an ambitious mission requires very accurate
pointing performance under the tenth of an arcsecond. To assess the pointing architecture and
validate the different transitions of DICOS pointing modes before its expected flight in
2024-2025, a generic simulator was developed in MATLAB/Simulink with a full dynamical
model of the flight chain and different models of sensors, actuators, and flight software. This
thesis presents the activities performed during the traineeship at the CNES site of Toulouse and
the improvements made to the simulator. Several models have been implemented, and their
effects on the entire simulator have been analyzed and discussed.
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Sommario

In questa tesi vengono descritte le attività di tirocinio svolte presso l’agenzia spaziale francese
(CNES) con sede a Toulouse, in Francia. Il tirocinio si è svolto all’interno del programma
Erasmus+ Traineeship e ha avuto una durata di sei mesi durante i quali lo studente ha svolto le
sue attività nel dipartimento ”Palloni Stratosferici”. Esso si occupa del design di missioni
scientifiche a bordo di palloni stratosferici, i quali sono capaci di portare la gondola, su cui
vengono montati i payload, ad una quota operativa di circa 40 km. L’utilizzo dei palloni
stratosferici, come alternativa ai satelliti, offre numerosi vantaggi: i primi infatti sono più
economici, riutilizzabili, in grado di trasportare carichi utili pesanti imponendo loro meno
vincoli meccanici, e capaci di essere operati più semplicemente.

DICOS è una missione attualmente in corso di sviluppo presso il CNES che mira a dimostrare
la fattibilità dello studio di pianeti extrasolari per mezzo di un coronografo. Un obiettivo di
missione così ambizioso richiede un puntamento molto accurato, con prestazioni inferiori a un
decimo di arcosecondo. Per valutare l’architettura di puntamento e convalidare le diverse
transizioni tra le varie modalità di puntamento prima del volo previsto nel 2024-2025, è stato
sviluppato un simulatore in MATLAB/Simulink che riproduce il modello dinamico completo
della catena di volo, dei sensori, degli attuatori e del software di volo.

Durante il tirocinio sono stati migliorati ed implementati diversi modelli, ed i loro effetti
sull’intero simulatore sono stati analizzati e discussi. In particolare, sono stati creati i modelli per
i controllori ed i filtri che gestiscono i segnali di input alle ruote di reazione montate sulla
gondola, un nuovo modello per le ruote di reazione che tiene conto degli effetti dell’attrito, un
filtro che tiene conto dell’angolo di attorcigliamento della catena di volo, un nuovo modello
cinematico per correggere le inconsistenze rilevate durante lo studio, ed un modello preliminare
per le camere montate a bordo.
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1
Introduction

The Balloons division of CNES is in charge of the gondola and flight chain design and
development. The activities described in this thesis were performed during the internship in the
before-mentioned division at the CNES site in Toulouse, France.

In the next paragraphs, an overviewof theCSTand theBalloons division is provided. Moreover,
the DICOS mission is presented, focusing on the mission goals and on the MATLAB/Simulink
simulator that was development to simulate the different pointing stages and modes transitions.

1.1 The Space Centre of Toulouse
The CST was created in 1968 and currently hosts nearly 2500 people, including CNES
employees, staff from subsidiary companies and interns. It is a unique centre in Europe in terms
of size, diversity and sectors of activity. In fact, during the last few years, the CST has acquired a
high level of expertise in designing, developing and operating complex orbital systems and the
knowledge necessary for the development of satellites and scientific payloads.

The activities of the CST are divided into two main areas:

• Support the French space industry and research activities in the national, European and
international context by mastering the techniques necessary for the development of space
systems

• Control and operation of existing systems on behalf of national, European and
international institutions

1



Figure 1.1: The Space Centre of Toulouse

1.2 The Balloons division

CNES also deals with the creation and operation of stratospheric gondolas dedicated to scientific
or technological missions. These types of gondolas, which mass varies between 500 kg and 2500
kg, are carried into the stratosphere, through different possible types of balloons, at an altitude
varying between 30 and 43 km, at which conditions similar to the ones in space are obtained.
Balloon missions have many advantages over satellite missions: their cost is much lower, most of
the equipment is reusable, if not heavily damaged during the landing, the deployment and
operability are simpler and fewer mechanical constraints are imposed on payloads.

The missions performed by the Balloons division are mainly of two types:

1. Technological missions in which technologies intended for use on satellites are tested,
calibrated and qualified (CASOLBA and innovative solar cells)
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2. Scientific missions, that mainly belong to two areas:

• Atmospheric chemistry studies that analyse the composition of the atmosphere

• Astronomic studies in which telescopes sensitive to different wavelengths are used.
Examples of this type of missions are: PILOT (sub-millimetre radiation), CLEAR
(gamma rays) and FIREBALL (visible and UV radiation), which have been launched
over the past years

In the astronomicmissions, the pointing of the payloads consists in orienting the telescope line
of sight in the desired direction by means of a two-stage fine pointing system that controls the
azimuth of the entire gondola (orientation around the vertical axis) and the elevation and cross-
elevation of the frame supporting the telescope itself.

Figure 1.2: Representation of the telescope pointing control

Depending on the type of mission and, therefore, on the type of gondola and payload,
different balloons could be implemented. The ascent of the balloon follows the Archimedes’
principle: any body immersed in a fluid receives a force opposite to its weight and of value equal
to the weight of the volume of fluid displaced. Therefore, several types of gas are used in the
balloon envelope such as hot air, helium, or hydrogen. Considering the mass and the required
operative altitude of scientific balloons, envelopes greater than one million cubic meters are
required. CNES uses different types of balloons, depending on the specifications, mass, altitude,
and mission duration. The most common types are the Infrared Hot Air Balloons (MIR), which
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altitude depends on the daytime, Pressurized Balloons (BPS), which have a pressurized envelope
allowing them to fly for a longer time, and Open Stratospheric Balloons (BSO), which have side
sleeves to avoid any overpressure problem and consequently the bursting of the balloon once it
reaches the final altitude.

Figure 1.3 shows a schematic representation of a BSO, in which the different elements of the
flight chain can be identified.

Figure 1.3: Schematic representation of a BSO. (1): Blowhole for the altitude control; (2): Balloon envelope; (3): GPS (4):
Separator; (5): Parachute; (6): Flight avionics; (7): Antennas; (8): Strobe light; (9): Gondola.

1.3 The DICOS mission
The Balloon division of CNES is developing a new fine-pointing architecture in view of future
astronomic missions whose themes are the analysis of the cosmic microwave background and
intergalactic medium, and the study of exoplanets via stellar coronagraphy. To ensure the
feasibility of this last type of mission, a technological demonstrator project called DICOS
(Demonstrator of Space COronographic Imager) is under development at CNES. This project
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requires very high-performance pointing capabilities, of the order of magnitude of a few
hundredths of an arcsecond, and the implementation of a deformable mirror as the
very-fine-pointing stage to achieve a precision that has never been obtained before. The
long-term objective of a coronagraphic imager consists in producing an image, in the visible
spectrum, of an exoplanet close to a star by collecting the maximum amount of light coming
from the planet while rejecting the one emitted directly by the star using a mask that obscures it.
During the procedure, it is also important to compensate the thermoelastic deformations of the
instrument and the mechanical disturbances induced by the mechanisms aboard the gondola.
DICOS will have to prove the feasibility of a mission that requires the same precision that would
be needed to point, for several hours, a golf ball (4.85 cm) from a distance of 1000 km. To
simulate the behaviour of the system and the transition among the different pointing stages, a
dedicated simulator was created in the MATLAB/Simulink environment.

1.4 The Simulator

Figure 1.4: Representation of the simulator: the propagator in green; the flight software in red; the sensors in magenta; the
actuators in cyan; the dynamic and Kinematic blocks in light blue

The structure of the simulator, reported in Figure 1.4, is briefly described below.

1. Navigation

(a) NavigationModel

• Input: Elapsed time sampled every second
• Output: Latitude, longitude and actual date
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• Remarks: The system is considered fixed with respect to the Earth, and
coordinates are calculated with respect to the inertial reference frame

2. Sensors

(a) GPS

• Input: Latitude, longitude, actual date
• Output: Measured latitude, longitude, actual date
• Remarks: No model implemented

(b) IMU1

• Input: Speed of the cross-elevation frame with respect to the inertial one and
quaternion representing the rotation between the cross-elevation frame and the
local terrestrial frame

• Output: Measured speed of the cross-elevation frame with respect to the
inertial one and estimated quaternion representing the rotation between the
cross-elevation frame and the local terrestrial frame

(c) IMU0

• Input: Speed of the gondola with respect to the inertial reference frame and
quaternion representing the rotation between the gondola reference frame and
the local terrestrial frame

• Output: Measured speed of the gondola with respect to the inertial reference
frame and estimated quaternion representing the rotation between the gondola
reference frame and the local terrestrial frame

(d) DTU

• Input: Quaternion representing the rotation between the cross-elevation frame
and the inertial frame

• Output: Estimated quaternion representing the rotation between the
cross-elevation frame and the inertial frame

(e) Pivot tachometer

• Input: Angular speed of the azimuth pivot
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• Output: Measured angular speed of the azimuth pivot

(f) Elevation encoder

• Input: Angular position of the elevation frame with respect to the gondola
reference frame

• Output: Measured angular position of the elevation frame with respect to the
gondola reference frame

(g) Cross-elevation encoder

• Input: Angular position of the cross-elevation frame with respect to the
elevation frame

• Output: Measured angular position of the cross-elevation frame with respect to
the elevation frame

(h) Elevation stroke end sensor

• Input: Angular position of the elevation frame with respect to the gondola
reference frame measured by the elevation encoder

• Output:

(i) Cross-elevation stroke end sensor

• Input: Angular position of the cross-elevation frame with respect to the
elevation frame measured by the cross-elevation encoder

• Output:

3. Flight software

(a) Guidance model

• Input: Measured latitude, longitude, actual date. Celestial coordinates of the
star of interest

• Output: Azimuth, elevation and quaternions objective

(b) Gondola attitude estimation model

• Input: Angular position and velocity measured by IMU0
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• Output: Azimuth, elevation and cross-elevation estimated angular position and
velocity

(c) Azimuth control model

• Input: Azimuth objective, estimated azimuth and azimuth angular velocity,
angular speed of the azimuth pivot, torque acting on the azimuth pivot

• Output: Electrical tension to the azimuth pivot

(d) Reaction wheel control model

• Input: Estimation of elevation and cross-elevation angular position and velocity
• Output: Electrical tension to the reactions wheels acting along the XNA and
YNA directions

4. Actuators

(a) Azimuth pivot

• Input: Electrical control voltage and angular speed of the azimuth pivot
• Output: Torque produced by the pivot

(b) XY Reaction wheels

• Input: Electrical control voltage for the X and Y reaction wheels
• Output: Torque produced by the X and Y reaction wheels

(c) Elevation motor

• Input: Electrical control voltage and angular speed of the elevation frame
• Output: Torque produced by the elevation frame motor

(d) Cross-elevation motor

• Input: Electrical control voltage and angular speed of the cross-elevation frame
• Output: Torque produced by the cross-elevation frame motor

5. Dynamic and kinematic models
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(a) Dynamic model

• Input: Torques produced by the azimuth pivot, reaction wheels and elevation
and cross-elevation motors. Aerodynamic perturbations

• Output: Gondola position quaternion in the local terrestrial reference frame,
elevation and cross-elevation angular position and velocity, angular speed of the
azimuth pivot and angular velocity of the gondola with respect to the local
terrestrial reference frame

• Remarks: The aerodynamic perturbations have been considered null

(b) Kinematic model

• Input: Signals produced by the dynamic model, latitude and longitude of the
system and actual date

• Output: Cross-elevation position quaternions in the local terrestrial and inertial
reference frames, angular speed of the gondola and cross-elevation frames with
respect to the inertial reference frame
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2
Reaction wheels control

The system consisting of the gondola and the entire flight chain can be seen, as explained in [1] and
represented in Figure 2.1, as a multiple pendulum that is affected by a pendulummotion around
the X and Y axes and a torsion motion around the Z axis. Since the three axes are coupled, the
motion around one axis influences and can excite the motion around the others. The dynamic
study and the attitude control of the gondola are, therefore, very complex.

Figure 2.1: Schematic representation of the flight chain motion: Pendulum motion on the left and torsional motion on the right

To limit and balance the unwanted motion of the gondola, passive elements, that increase the
system inertia around a specific axis, and active actuators, such as reaction wheels, are necessary.
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This chapter reports the study conducted on the filter that filters the signal that controls the RWs
used to compensate for the gondola pendulummotion around theX and Y axes. Figure 2.2 shows
the RWs that will be used in the DICOSmission.

Figure 2.2: Photos of the Reaction Wheels in a thermal chamber

At first, the flight software implemented in the FIREBALL mission and responsible for the
signal filtering was studied to create a Simulink model as similar as possible to reality; then, the
obtained model was compared with the previous implementation to tune the filter parameters.
Eventually, the comparison between the continue-time and discrete-time implementations has
been done.

2.1 Flight software analysis

The filtering action is performed by the function SrvRouReg.c which is composed of several sub-
functions, as indicated in Figure 2.3, that first initiate the necessary variables and then filter the
input signal.

From the code reported below, which represents the most important part of the flight
software, it is possible to notice that there are two inputs signals: the “fVitNum_degps” and the
”fAttNum_deg”, that is multiplied by the “fGainK”. These two signals are summed up together
obtaining the input signal of the filter, X.

void SrvRouRegSendCmd ( ESrvRouRegDrv*RouDrv )
{

float fTmp = 0.0f;

12



Figure 2.3: Schematic representation of the filter functions implemented in the flight software

fTmp = libMathsCalcPole( RouDrv->fVitNum_degps
+ ( RouDrv->fGainK * RouDrv->fAttNum_deg ),
RouDrv->fPolK,
RouDrv->fPolF,
RouDrv->fPolZ,
RouDrv->pePolePrms )

+ RouDrv->fRoueCmdOffset;
// Affectation si pas d'erreur
if( !isnan( fTmp ) )
{

RouDrv->fRoueCmd = fTmp;
}
// Actualiser la sortie selon l'état de l'interrupteur
fTmp = GET_VALUE_SEL( float, RouDrv->eSwitchRoue );
// Appliquer sur la PWM
libLmd18200Set( &RouDrv->ePwmOut, fTmp );

}

The implemented filter is the so-called digital filter which, in signal processing, is a system that
performsmathematical operations on a sampled, discrete-time signal to enhance certain aspects of
that signal itself. The transfer function for a linear, time-invariant, digital filter can be expressed as
a transfer function in the z-domain,whereX(z) is the input andY (z) is the output. Its expression
is reported in Equation 2.1.
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H(z) =
Y (z)

X(z)
=

a0 + a1z
(−1) + a2z

(−2) + ...+ anz
(−n)

b0 + b1z(−1) + b2z(−2) + ...+ bmz(−m)
(2.1)

For an explanation on the z-domain and its advantages, see [2]. The implemented filter is of a
second order, so the transfer function reduces to:

H(z) =
Y (z)

X(z)
=

a0 + a1z
(−1) + a2z

(−2)

b0 + b1z(−1) + b2z(−2)
(2.2)

The output signal is therefore:

Y (z)(b0 + b1z
(−1) + b2z

(−2)) = X(z)(a0 + a1z
(−1) + a2z

(−2)) (2.3)

And its expression in the time domain is:

b0y(n) + b1y(n− 1) + b2y(n− 2) = a0x(n) + a1x(n− 1) + a2x(n− 2) (2.4)

That eventually becomes:

y(n) =
(a0x(n) + a1x(n− 1) + a2x(n− 2)− b1y(n− 1)− b2y(n− 2))

b0
(2.5)

In which the different parameters a0, a1, a2, b0, b1 and b2 had been previously tuned for the
FIREBALLmission.

2.2 Previous implementation

The MATLAB function and Simulink models that were implemented inside the simulator were
not complete. In fact, the Simulink model reported in Figure 2.4, does not make use of the
“selecteurs” and the parameters defined inside were not existent. Moreover, it evident that only
the signals Rp_est and Tp_est, which are respectively the velocity around the X and Y axes, are
used, while the instantaneous angles around the same axes are not present.
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Figure 2.4: Previous filter model implemented in the simulator

2.3 New implementation

At first, no correspondence between the MATLAB function relative to the old filter and the
flight software previously analysed was found. However, results (see also the next chapter)
showed that they are quite similar. Therefore, the old MATLAB implementation was used to
tune some parameters of the new filter that, otherwise, could not be estimated.

The MATLAB code first defines the wheels parameters (electrical resistance, inertia, gains,
supply tension…) and the filter parameters (proper frequencies of the low pass filter and high
pass filter, the middle frequency…).

The idea was to use a low pass filter and a high pass filter to create a band-bass filter. Its transfer
function is reported in Equation 2.6:

G(s) =
1

1 + sτpb

sτph
1 + sτph

(2.6)

The values of the different parameters are reported below:
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• R = 13.60 Ω

• Ir = 0.0074 kgm2

• Ke = 0.3410 V s rad−1

• Km = 0.43 NmA−1

• Vb = 28 V

• τpb = 0.0080 s

• τph = 0.5305 s

One can see that: τpb < τph. The Bode plot of G(s) is, as expected, the one presented in
Figure 2.5. It is also interesting to notice that in the MATLAB code, the filter was normalized in
order to obtain 0 dB gain at ω0.

Figure 2.5: G(s) Bode diagram

To compare the old and the new implementation, it was necessary to express H(z) in the s-
domain using the bilinear transform reported in Equation 2.7, and replacing the z variable in the
Equation 2.2. By considering that a1 = 0, a2 = −a0 and b0 = 1, one obtains:
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s =
2

Te

z − 1

z + 1
(2.7)

H(s) =

a2 + a0

(
2 + sTe

2− sTe

)2

b2 + b1

(
2 + sTe

2− sTe

)
+

(
2 + sTe

2− sTe

)2 (2.8)

And after some calculations:

H(s) =

(
2Kξ

ω0

)
s

1 + 2ξ
s

ω0

+

(
s

ω0

)2 (2.9)

By plotting the Equation 2.9, one obtains the Figure 2.6, which is quite similar to the one
relative to the previous implementation.

Figure 2.6: H(s) Bode diagram
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By comparing the obtained plot with the one relative to the filter previously implemented, the
following parameters were found: ω0 = 15 rad s−1 and ξ = 5. Moreover, the value ofK that
could ensure |H(ω0)| = 0 dBwas investigated.

H(s) =
H(S)

|H(ω0)|
=

(
2ξ

ω0

)
s

1 + 2ξ
s

ω0

+

(
s

ω0

)2 (2.10)

Therefore,K = 1 and the resulting transfer function is:

H(s) =
150s

225 + 150s+ s2
(2.11)

The corresponding bode plot is reported in Figure 2.7, while the discrete time filter that was
implemented in the simulator is reported in Figure 2.8

Figure 2.7: H(s) Bode diagram consideringK = 1
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(a) RW control block model

(b) Discrete filter model

Figure 2.8: New filter model implemented in the simulator
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2.4 Discussion and comparison of the results

2.4.1 Continue vs. Discrete implementation

As expected and showed in Figure 2.9, since the continue transfer function was correctly retrieved
from the discrete one, the two output signals, given the same input signal, are basically the same.
However, it is important to choose the correct sampling frequency with respect to the frequency
of the input signal. In fact, working in the discrete time domain shall not introduce errors that
could compromise the system performance. Therefore, an investigation on the sampling period
was done.

Figure 2.9: Continue vs. discrete time results

Considering that the filter is centered around ω0 = 15 rad s−1, one could expect an input
signal having that frequency. By looking at the Bode plot in Figure 2.10, the range of frequencies
in which |H(s)| > −3 dBwas identified.

Between the two identified frequencies, the most problematic could be the higher one, which
was therefore considered. The risk, in fact, is to have a sampling frequency not sufficiently high
with respect to the input.

By consideringG = 2 V rad−1 and the same sinusoidal input having ω = 151.0 rad s−1, the
error between the input and the output signals of the continuous and discrete time filters has
been analysed varying the sapling period Te. As visible from Figure 2.11, considering a sampling
frequency of fe = 1 Hz, yields to an absolute maximum error of about 0.7 V, which is
approximately 2.5% of the end of scale value (28 V) and that, therefore, can be considered
sufficient.
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Figure 2.10: H(s) Bode plot consideringK = 1

(a) Te = 0.1s (b) Te = 0.01s

(c) Te = 0.001s

Figure 2.11: Continue vs. Discrete results depending on Te
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2.4.2 Output vs. Input

By comparing the output and input signals, it is possible to notice that the first one is shifted due
to the offset applied to the signal soon after the filter, has different magnitude and phase due to
the filter itself, and has an opposite sign due to the applied negative gain. Moreover, it would
be possible to notice that, if the input signal is too high, the output signal will be capped by the
saturation block, which limits its magnitude between+28 V and−28 V, as desired.
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3
Attitude estimation of the gondola

The input signals to the filter analysed in chapter 2 are the output signals of the so-called
complementary filter that combines the measurements of angle and angular velocities done by
the IMU0 to estimate the attitude of the gondola. In this chapter, the before-mentioned filter is
analysed: at first, the code implemented in the flight software of the FIREBALL mission is
studied to retrieve an equivalent Simulink model and, then, the results are discussed. The
complementary filter combines two separate data fluxes produced by the IMU0: the first one
contains the three attitude angles that are retrieved from 3 accelerometers, while the second one
is retrieved from 3 FOG. The accelerometers offer very good measurements at low frequency due
to the processes performed inside the IMU, but are not reliable at high frequency. Vice versa, the
angular velocity measurements made by the gyro inside the IMU are very good at high frequency
and are not good at low frequency. The implemented complementary filter combines the two
streams of data, since they refer to the same entity, and combines them to get a better estimation
of the gondola attitude. The idea, in fact, is to give a bigger importance to the velocity data when
the gondola rotates rapidly and bigger importance to the angle measurements when the gondola
is rotating slowly.

3.1 Flight software analysis
The filtering action is performed in the InterfacerImu90.stf function. The process is divided into
two main parts. In the first one, the information from the IMU is verified.
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IF ( ( not IMU90Vit.Val ) OR ( not IMU90Att.Val ) ) THEN
(* Si le MPF était opérationnel, on le sécurise *)
IF ( etatPF = E_ETAT_PF_OPER ) THEN

CommandeSFC_MPF := CMD_SECU ;
END_IF;
(* Si le MPA était ON, on le sécurise *)
IF ( LibMpa.Etat = MPA_FBL_ETAT_MARCHE ) THEN

CommandeSFC_MPA := CMD_SECU ;
END_IF;

If the information is valid, the attitude of the gondola is initialized using the angle
measurements provided by the IMU. Roll, pitch and azimuth angles saved in the corresponding
structures are converted by the function “any_to_lreal” in double precision real values and saved
in the corresponding vectors.

AttitudeImu[1] := any_to_lreal( IMU90Att.Roulis );
AttitudeImu[2] := any_to_lreal( IMU90Att.Tangage );
AttitudeImu[3] := any_to_lreal( IMU90Att.Azimut ) ;

The instantaneous velocity is then calculated monitoring the angle variation in each sampling
period Pe:

VitesseImu[1] := rad_to_deg_l ( any_to_lreal( IMU90Vit.DeltaThetaX1 ) / Pe ) ;
VitesseImu[2] := rad_to_deg_l ( any_to_lreal( IMU90Vit.DeltaThetaX2 ) / Pe ) ;
VitesseImu[3] := rad_to_deg_l ( any_to_lreal( IMU90Vit.DeltaThetaX3 ) / Pe ) ;

Then, there is an attitude estimator filter that aims to increase the attitude accuracy that can
be either used or not. If the filter is active, the program checks if it was run for the first time, and
in that case, the roll, pitch and azimuth angles are assigned to be equal to the “Sn” value of the
corresponding structures:

roulis_est_prec := passebas_roulis_fbl.Sn;
tangage_est_prec := passebas_tangage_fbl.Sn;
azimut_est_prec := passebas_azimut_fbl.Sn;

The different structures are created by the following functions, in which one can notice that
they take into account the sampling period, an indicator (TRUE/FALSE) that resets the integral
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effect of the filter, the τ of the low pass filter and the input signal. The latter is given by the sum
of the angles and the relative instantaneous velocities multiplied by the corresponding τ .

passebas_roulis_fbl(Pe, TRUE, passebas_roulis_tau, AttitudeImu[1] +
passebas_roulis_tau * VitesseImu[1] );

passebas_tangage_fbl(Pe, TRUE, passebas_tangage_tau, AttitudeImu[2] +
passebas_tangage_tau * VitesseImu[2] );

passebas_azimut_fbl(Pe, TRUE, passebas_azimut_tau, AttitudeImu[3] -
passebas_azimut_tau * VitesseImu[3] );

Eventually, the initialization indicator is placed equal to FALSE so that the initialization process
is skipped during the successive iterations.

bInitFiltresAttitudeIMU := FALSE;

After the initialization, the new angles are calculated:

passebas_roulis_fbl(Pe, FALSE, passebas_roulis_tau, AttitudeImu[1] +
passebas_roulis_tau * VitesseImu[1] );

passebas_tangage_fbl(Pe, FALSE, passebas_tangage_tau, AttitudeImu[2] +
passebas_tangage_tau * VitesseImu[2] );

passebas_azimut_fbl(Pe, FALSE, passebas_azimut_tau, AttitudeImu[3] -
passebas_azimut_tau * VitesseImu[3] );

The gondola angular velocity components are calculated considering the difference between the
new and old values of the angles and the sample period Pe

VitesseNacelle[1] := ( passebas_roulis_fbl.Sn - roulis_est_prec ) / Pe ;
VitesseNacelle[2] := ( passebas_tangage_fbl.Sn - tangage_est_prec ) / Pe ;
VitesseNacelle[3] := NormaliserDeltaAzimut_L( azimut_est_prec -

passebas_azimut_fbl.Sn ) / Pe ;

Note that due to the convention chosen for the yaw and azimuth directions, the result in the
Z direction has to be multiplied by −1. Moreover, one can see that the function
NormaliserDeltaAzimut_L is used to bring its input in the range of±180 ◦. Then, the previous
values of roll, pitch and yaw are updated for the next iteration:

roulis_est_prec := passebas_roulis_fbl.Sn;
tangage_est_prec := passebas_tangage_fbl.Sn;
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azimut_est_prec := passebas_azimut_fbl.Sn;

Eventually, the output values (attitude angles and angle rates) are calculated:

AttitudeNacelle[1] := roulis_est_prec;
AttitudeNacelle[2] := tangage_est_prec;
AttitudeNacelle[3] := NormaliserAzimut_L( azimut_est_prec + AzBiaisImuNac );

Note that the functionNormaliserAzimut_L.c is used to bring its input in the range of 0− 360 ◦.

On the other hand, if one does not want to use the filter, the attitude angles and angular
velocities of the gondola are simply the ones measured by the IMU, and the following equations
are applied:

AttitudeNacelle[1] := AttitudeImu[1] ;
AttitudeNacelle[2] := AttitudeImu[2] ;
AttitudeNacelle[3] := NormaliserAzimut_L( AttitudeImu[3] + AzBiaisImuNac );

VitesseNacelle[1] := VitesseImu[1] ;
VitesseNacelle[2] := VitesseImu[2] ; (* - 0.0015; *)
VitesseNacelle[3] := VitesseImu[3] ;

3.2 Previous implementation

The filter originally implemented was composed by a discrete low pass filter and a discrete high
pass filter that have been expressed, via a MATLAB function in their space vector representation.
The Simulink model previously implemented in the simulator is reported in Figure 3.1.

This implementation had to be tested and, anyhow, did not perfectly represent what is
performed in the flight software.
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Figure 3.1: Previous complementary filter model implemented in the simulator

3.3 New implementation

By considering the analysis done before on the flight software, it is possible to notice that the
velocities are first multiplied by the corresponding τ and, then, summed with the measured
angles. The results are later filtered with a low pass filter, which expression in the z-domain is
reported in Equation 3.1.

H(z) =
Te(z + 1)

(Te + 2τ)z + (Te − 2τ)
(3.1)

The velocity canbe computed as reported inEquation 3.2 that canbe expressed in the z-domain
as showed in Equation 3.3

vk =
∆u

∆t
=

uk − uk−1

Te

(3.2)

v(z) =
u(z)− zu(z)

Te

=
1− z

Te

u(z) (3.3)

The complete Simulink model is reported in Figure 3.2. It is possible to notice that the filter
can be turned on or off completely: it is not possible to filter only the angle signal or the velocity
signal, as it was wrongly done in the previous implementation.
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Figure 3.2: New complementary filter model implemented in the simulator

3.4 Discussion and comparison of the results

3.4.1 Old vs. new implementations

To compare the results, the following values have been considered for the different parameters:
Te = 0.1 s, τroll = τpitch = τazimuth = 0.01 s. Figure 3.3, Figure 3.4 and Figure 3.5 report the
comparison between the output of the new (on the left) and old (on the right) filters for different
combination of inputs.

From Figure 3.3a one can see that the angular profiles are not the same. In fact, they differ at
the beginning (in the transient) and tend to the same steady state values. From Figure 3.3b it can
be seen that the two models differ again. In fact, in the old implementation, the velocity of the
gondola was computed filtering with a high pass filter the measurements of velocity done by the
IMU0, so it was strongly dependent to the input velocity that, in this case, is zero. In the flight
software and, therefore, in the new implementations, the velocity components are computed
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(a) Angular response. New model on the left, previous model
on the right

(b) Velocity response. New model on the left, previous model
on the right

Figure 3.3: Input signals: −−−→xIMU = [1.0 0.2 0.5] rad and
−−−→
ẋIMU = [0 0 0] rad s−1

(a) Angular response. New model on the left, previous model
on the right

(b) Velocity response. New model on the left, previous model
on the right

Figure 3.4: Input signals: −−−→xIMU = [0 0 0] rad and
−−−→
ẋIMU = [1.0 0.2 0.5] rad s−1

calculating the discrete-time derivative of the attitude angles of the gondola. Therefore, the
angular and angular velocity signals are more correlated one to another.

From Figure 3.4 it can be seen that the twomodels differ again. In the old implementation, the
input velocity is filtered with a high pass filter to obtain the output velocity. Since the frequency
tends to 0 rad s−1, the magnitude tends to−∞ dB and, therefore, the signal is attenuated. The
same filtered signal is also integrated to obtain the angular profile. In the new implementation
instead, the low pass filter filters the input velocity and yields directly to a (angular) signal that is

(a) Angular response. New model on the left, previous model
on the right

(b) Velocity response. New model on the left, previous model
on the right

Figure 3.5: Input signals: −−−→xIMU = [1.0 0.2 0.5] rad and
−−−→
ẋIMU = [1.0 0.2 0.5] rad s−1
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not attenuated to zero since, in this case, themagnitude tends to 1dBwhen the frequency tends to
0 rad s−1. The output velocity is computed as a consequence of the angle variation and, therefore,
the two streams of signals are correlated.

Analogous considerations can be done for the third case, which plots are reported in Figure 3.5.

3.4.2 Continue vs. discrete implementations

To compare the discrete and the continue-time implementation and study the filter performance,
the test model represented in Figure 3.6 was created, and the following values were considered
Te = 0.001 s, τroll = τpitch = τazimuth = 0.01 s.

Figure 3.6: Simulink model used to test the continue and discrete implementation

As reported schematically in Figure 3.7, both the attitude signal and attitude rate signal are
filtered with a low pass filter that has a time constant τ . However, the attitude rate signal is also
multiplied by τ itself, which, consequently, attenuates the signal by 20log(τ) dB.

Figure 3.8 and Figure 3.9 report the output of the discrete and continue-time filter for different
inputs.

As expected from Figure 3.8, the amplitude of the output signals in the discrete and continue
time domains, are attenuated of−20 dB/dec for frequencies higher than 1000 Hz (since in this
case τ = 0.001 s). In addition, it is possible to notice that the discrete time signal, for f = 2000

Hz has an amplitude smaller than the continuous one. This is due to the sampling period that is
too high.
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(a) Low pass filter action (b) High pass filter action

(c) Schematic representation of the complementary filter

Figure 3.7: Complementary filter action

Figure 3.9 shows that, as mentioned before, the input signal, that in this case is a sinusoidal
velocity, is attenuated by 20log(τ) at any frequency.

Moreover, assuming that the output signal could depend on the ratio of the two input
frequencies ω1 and ω2, an analytical analysis was performed. Given two sinusoidal inputs
x1 = Asin(ω1t) and x2 = Bsin(ω2t), one can write that:

y(t) = x1(t) + x2(t) = (A− B)sin(ω1t) + 2Bsin

(
ω1 + ω2

2
t

)
cos

(
ω1 − ω2

2
t

)
(3.4)

The first addend of the Equation 3.4 is a simple sinusoidal function that is zero at tk1 =
k1π

ω1

,
where k1 = 1, 2, 3.... Figure 3.10a reports its graph.

The second addend of the Equation 3.4 is given by the product between a sin and a cos. The

resulting function is zero at tk2 =
2k2π

ω1 + ω2

, where k2 = 1, 2, 3..., and at tk3 =
π(1 + 2k3)

|ω1 − ω2|
,

where k3 = 0, 1, 2, ....
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(a) f = 1Hz (b) f = 10 Hz

(c) f = 100 Hz (d) f = 2000 Hz

Figure 3.8: Input signals: −−−→xIMU = [1.0 0.2 0.5]sin(2πft) rad and
−−−→
ẋIMU = [0 0 0] rad s−1

(a) f = 10 Hz (b) f = 2000 Hz

Figure 3.9: Input signals: −−−→xIMU = [0 0 0] rad and
−−−→
ẋIMU = [1.0 0.2 0.5]sin(2πft) rad s−1

(a) First addend, whereA = 5,B = 0.1A,w1 = 5
rad s−1

(b) Second addend, whereA = 5,B = 0.1A,w1 = 5
rad s−1 andw2 = 10 rad s−1

Figure 3.10: First and second addend of Equation 3.4
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Considering for example that x1 is the attitude signal and x2 the attitude rate signal, one has
that A ≫ B. Moreover, assuming that ω1 < ω2, it was possible to study the relationship
between the different tki . Figure 3.10b reports the plot of the second addend obtained
consideringA = 5,B = 0.1A,w1 = 5 rad s−1 andw2 = 10 rad s−1.

Comparison of the different tki , which result is reported in Figure 3.11 :

• tk1 vs. tk2

tk1 =
k1π

ω1

tk2 =
2k2π

ω1 + ω2

tk1 > tk2 → ω1 <
ω1 + ω2

2
→ ω1 < ω2

(3.5)

Since ω1 < ω2 by hypothesis, tk1 > tk2 always.

• tk1 vs. tk3

tk1 =
k1π

ω1

tk3 =
π(1 + 2k3)

ω2 − ω1

tk1 > tk3 → ω1 <
ω2

2

(3.6)

So, if ω1 <
ω2

2
, tk1 > tk3

• tk2 vs. tk3

tk2 =
2k2π

ω1 + ω2

tk3 =
π(1 + 2k3)

ω2 − ω1

tk2 > tk3 → ω1 <
ω2

3

(3.7)

So, if ω1 <
ω2

3
, tk2 > tk3
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Figure 3.11: Schematic representation of the identified zones

Figure 3.12 and Figure 3.13 show the behaviour of the function y(t), depending on the zone
considered. More in details:

• Zone C→ 1

2
<

ω1

ω2

< 1

As visible from Figure 3.12a, the two frequencies are quite similar and, consequently, the
blue signal is deformed in a smooth way.

• Zone C/B→ ω1

ω2

= 0.5

As visible fromFigure 3.12b,the behavior is almost the same, but in this case, the blue signal
is anti-symmetric with respect to the semi-period of the green one.

• Zone B→ 1

3
<

ω1

ω2

<
1

2

The symmetry is lost again. The frequency of the blue signal is becoming greater and the
deformation of the black signal are more localized.

• Zone A/B→ ω1

ω2

=
1

3

There is a new symmetry. The blue signal is symmetric with respect to the
T1

4
and anti-

symmetric with respect to the
T1

2
.

• Zone A→ ω1

ω2

<
1

3

It is evident that the lower the ratio
ω1

ω2

is and the more localized the variations produced by
the blue signal on the green one are, so the more the effects of x2 on x1 becomes local rather than
secular. On the other hand, the effects on x1 are less prominent sinceB ≪ A.
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(a) Zone C:
ω1

ω2
= 0.6 (b) Zone C/B:

ω1

ω2
= 0.5

(c) Zone B:
ω1

ω2
= 0.4 (d) Zone A/B:

ω1

ω2
=

1

3

Figure 3.12: Zones to C to B
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(a)
ω1

ω2
= 0.2 (b)

ω1

ω2
= 0.1

(c)
ω1

ω2
= 0.02

Figure 3.13: Zone A:
ω1

ω2
<

1

3
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4
Flight chain control

The azimuth signal filtered by the complementary filter analysed in the chapter 3 is used to control
the orientation of the gondola around the vertical axis. In addition to the azimuth control of the
gondola, it is necessary to control the flight chain angle. In fact, along it there arewires and sensitive
components that shall not twist, and therefore an active control that maintains the flight chain
angle in a certain range is required. In this chapter, the before-mentioned filter is analysed. At
first, the code implemented in the flight software of the FIREBALLmission is studied to retrieve
an equivalent Simulink model and, then, the results are discussed.

4.1 Flight software analysis

The flight chain control is performed by the function SrvAngCdv.c that is composed by several
sub-functions, as indicated in the Figure 4.1. In the next lines, a general explanation of the filter is
provided.

At the beginning, the function controls if the surveillance is active or inactive. In the first case,
the actual angular position of the flight chain is monitored, otherwise it is not. Then, the low pass
filter is initialized. The function verifies that the sampling period Te > 0, the surveillance is active,
and the condition reported in Equation 4.1 is verified, where f and fe are respectively the cutoff
frequency of the low pass filter and the sampling frequency.
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Figure 4.1: Schematic representation of the filter functions implemented in the flight software

f < π
fe
2

(4.1)

This is indeed to remove frequencies above the half sampling frequency (also called Nyquist
frequency), that would otherwise get folded back into frequencies below the Nyquist frequency,
corrupting the signal. To remove those frequencies, the cutoff frequency shall be as lower as
possible with respect to the sampling frequency, and obligatory smaller than the Nyquist
frequency. If these conditions are respected, the low pass filter is initiated and the filter
parametersA0 andA1 are computed as reported in Equation 4.2 and Equation 4.3.

Considering the transfer function of a low pass filter and the bilinear transform reported in
Equation 2.7, one obtains:

H(s) =
V (s)

U(s)
=

1

1 + sτ
=

Te + Tez

(Te − 2τ) + (Te + 2τ)z
=

Te

Te + 2τ
+

Te

Te + 2τ
z−1

1 +
Te − 2τ

Te + 2τ
z−1

From which:

V (n) = U(n)
Te

Te + 2τ
+ U(n− 1)

Te

Te + 2τ
− V (n− 1)

Te − 2τ

Te + 2τ

=
Te

Te + 2τ
(U(n) + U(n− 1)) +

2τ − Te

Te + 2τ
V (n− 1)

38



And eventually:

A0 =
2τ − Te

Te + 2τ
(4.2)

A1 =
Te

Te + 2τ
(4.3)

The input signal to the filter is given by the angular velocity of the flight chain times the time
constant of the low pass filter. In fact, as mentioned later, in reality a high pass filter should be
implemented, but the s at the denominator of the integrator operator would be simplified by the
one a the numerator of the high pass filter and, therefore, what remains is a τ that multiplies a low
pass filter. The input signal is filtered and the output is monitored to determine whether the angle
of the flight chain exceeds the range.

4.2 New implementation

In this case, there was not a previous model implemented in the simulator. From the flight
software, two main parts could be identified:

1. filtering of the flight chain angle

2. comparison between the flight chain angle and the threshold value

Considering the needs of the DICOSmission, a threshold value of 360 ◦ and a τ = 150 swere
considered. To understand precisely how to integrate the model in the simulator, it is useful to
remember that the pivot, indicated in Figure 4.2, has to satisfy two objectives:

1. point the gondola towards the desired direction, meaning that the azimuth of the gondola
shall be equal to the azimuth objective

2. keep the velocity of the flight chain at zero for stability reasons

Therefore, the torque generated by the pivot is given by the sum (with sign) of the two torques
that satisfy the two objectives respectively as reported in Equation 4.4, whereKD,θ,KP,θ,KP,v,
KI,v, θz , θc and θFC are respectively the derivative gain for azimuth orientation, proportional
gain for azimuth orientation, proportional gain for FC damping, integral gain for FC damping,
azimuth of the gondola, azimuth objective and azimuth of the FC.
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Figure 4.2: Photo of the gondola Carmencita and detail of the pivot

Cmot = CAzimuthcontrol − CFCdamping

= (KD,θ(θż − θċ) +KP,θ(θz − θc))− (KP,vθFC
˙ +KI,vθFC)

(4.4)

The choice of using a proportional and derivative solution for CAzimuthcontrol and a
proportional and integral solution for CFCdamping was based on considerations that were out of
the scope of this study, but that aimed to satisfy the objectives while opposing to the external
disturbances without affecting the stability of the system.

In the azimuth pointing loop, it is possible to identify the following actuators and sensors,
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relevant for this study:

• a pivot, which is a DC motor that could be connected to a gear box in some applications
and that connects the gondola to the rest of the flight chain.

• a tachometer, which is a secondmotor that generates a tension proportional to the rotation
speed. It is mounted inside the pivot. Its voltage is then elaborated by the MPA unit to
determine the rotation speed of the flight chain. The speedometer measures the relative
velocity between the gondola and the flight chain θtacho˙ , while the IMU0 measures the θż .
Therefore, the Equation 4.5 can be retrieved:

θtacho˙ = θFC
˙ − θż → θFC

˙ = θtacho˙ + θż (4.5)

A schematic representation is reported in Figure 4.3.

Figure 4.3: Schematic representation of the pivot

The low pass filter studied in the previous section is used to filter the θFC
˙ to obtain, as output,

the angle of the flight chain θFC , as if the input signal was filtered by a high pass filter. Figure 4.4
summarizes this process, while Figure 4.5 presents the Simulinkmodels that have been created and
implemented in the simulator and the equivalent digital filter.
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Figure 4.4: Schematic representation of the filter

Figure 4.5: Simulink models implemented in the simulator

4.3 Discussion of the results

Figure 4.7 reports the plots obtained after running the simulation. It is possible to notice that
the flight chain velocity has a pseudo-sinusoidal behaviour that is particularly disturbed at the
beginning of the simulation. After approximately 10 s, the disturbances are eliminated and the
profile converges to zero as wanted and mentioned before. Moreover, it is also possible to notice
that the velocity magnitude is significantly smaller than previously hypothesize and that the angle
of the flight chain stabilizes to a value which is not zero. In fact, as mentioned before, the two 1st
order high pass filters, make the system lose the capability of controlling the flight chain direction.
That is why it may occur situations in which the angle exceeds the limit of 360 ◦. Moreover, it is
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possible to notice that the angle signal is relatively smaller than the threshold value. In fact, the
voltage applied to the pivot is never forced to zero, since the threshold angle is never reached.

To check what happens if the flight chain has an angle greater than 360◦, its value was
manually forced to exceed the range after 2 s from the beginning of the simulation. As expected,
the tension to the pivot became zero and the system could not reach the azimuth objective. As
visible from Figure 4.6, since no automatic action that could reactivate the pivot was
implemented in the current model, the motor remains off until the end of the simulation. In the
next versions, different actions could be done on the pivot when the FC angle exceeds the range.

Figure 4.6: Azimuth profile
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(a) θFC
˙

(b) θFC

(c) Pivot suply voltage

Figure 4.7: Simulation results
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5
Reaction wheels model

Reaction wheels are the actuators responsible for the azimuth control and pendulum motion
damping described in the previous chapters. Considering their crucial role, an alternative model
to the one previously implemented in the simulator is investigated, considering different possible
friction models.

5.1 Previous implementation

The RWs considered in this study are those mounted on the gondola and having the spinning axis
aligned respectively with the XNA and YNA. Since they are used to compensate the oscillations
of the gondola around the homonyms axes, their velocity profile crosses the 0 often and therefore
friction effects, such as stiction, should be kept into account to obtain a good model.

Figure 5.1 reports the model previously implemented in the simulator that was tested to verify
if there were margins of improvement. To do so, a dedicated model in a separated Simulink file
was created and a ramp or sinusoidal input function was considered as θobjective. Since the RW
model required an electrical tension as input, a PI controller was implemented to convert the error
between θobjective and θreal into a tension signal. To tune the PI parameters, a step function was
used, as shown from Figure 5.2.
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Figure 5.1: Previous RW model implemented in the simulator

Figure 5.2: Response to a step function input

By comparing the output and input signals of the model, it was possible to assert that there
was not any friction model implemented in this the previous RWmodel. In fact the response of
the system has a certain time delay due to the motor inertia, but does not present any plateau or
irregular behaviors.
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5.2 New implementation

Figure 5.3: New RW model

Since, as mentioned at the beginning of the chapter, friction is very important for this kind of
application, the model reported in Figure 5.3 was created.

The total torque generated by the wheel (which calculations is explained later) acts on the
gondola and on the wheel itself, but with opposite sign. Considering the inertia of the wheel and
the estimated one of the gondola, it is possible to compute both the angular acceleration of the
wheel and gondola. By integrating those signals, one obtains the angular velocity of the wheel
and of the gondola, which is much lower since its inertia is considerably higher. By summing
these signals, one obtains the relative angular velocity that is used to compute the torque to the
motor and the friction torque.

5.3 Friction models
Several friction models are available in the literature and each of them present advantages and
disadvantages. In this section, twopossible frictionmodels and their implementation are analyzed.

5.3.1 First model

As reported in Figure 5.4a this model considers the stiction, that is the friction force at zero
velocity, the Coulomb friction, which value is constant at any velocity, and the viscous friction
that increases linearly with the relative velocity.

To avoid numerical errors during the simulation, a threshold velocity wthreshold ̸= 0 was used
as upper limit of the velocity range in which one can consider the stiction presence. Moreover,
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(a) Theoretical model (b) Implemented model

Figure 5.4: Representation of the first friction model

to avoid issues in the determination of sign(wrel) when wrel ≪ 1, a solution that considers the
numerical precision of the simulation ε is used. Figure 5.4b shows a schematic representation of
the model.

The parameters used in this model have been retrieved from the wheels datasheet and from
papers in which experiments have been done using similar wheels. However, for a better
characterization, practical experiments may be required to correctly represent the actual behavior
of our wheels. Nevertheless, one can see in Figure 5.5 the simulation results for a sine wave input
and overestimated friction coefficients.

(a) RW relative velocity (b) RW angular profile

Figure 5.6: Output signals for realistic friction coefficients
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(a) Angular profile (b) Velocity profile

(c) Zoom in the velocity profile

Figure 5.5: Output signals for overestimated friction coefficients

The motor rotates effectively when the applied torque is bigger than the total friction torque.
Therefore, the ωrel profile presents some plateaus soon after the zero crossing. Clearly, this
phenomenon becomes more problematic if θobjective˙ crosses 0 often.

To select realistic values for the friction coefficients, the RW datasheet (T-2215-C motor by
Kollmorgen) was used, from which the following information can be extrapolated:

• Static friction Tf = 0.0233 Nm

• No load speed ωNL = 54 rad s−1

• Peak electrical power Pp = 41W

• Peak torque Tp = 0.76248 Nm
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By reading from the datasheet that the static friction is the sum of the brush-commutator
friction and the magnetic friction (that includes both the cogging torque and the hysteresis drag),
and by knowing its order of magnitude, the different drag coefficients in the model have been
tuned to respect the before-mentioned values.

Figure 5.6 shows the relative velocity of the wheel and the corresponding angular profile.
In conclusion, one could say that the obtained results are realistic and that the model could be

implemented in the simulator as representative of a possible friction model.

5.3.2 Second model

Even if the previous model, once correctly tuned, represents sufficiently well the real behavior of
the RW, it does not represent the reality in case of lubricated surfaces and/or small motion.
Generally, one could decide to create or use a model that tries to capture as many friction
characteristics as possible. However, this does not necessary mean it is the best solution, since it
may involve some side effects such as non-linearities, high computational costs, etc. A better
solution is to use a model sufficiently precise to represent the most important aspects of the
system under study. The model implemented in this chapeter is the so-called LuGre model, that
incorporates the Stribeck model and the pre-sliding behavior,considering plastic deformation for
the asperities.

(a) Friction profile (b) Friction coefficient

Figure 5.7: Representation of the second friction model

As shown in Figure 5.7, the Stribeck model consists of three lubrication regions:
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1. The boundary lubrication: the surfaces are in direct contact and the load is supported
mainly by the surfaces asperities.

2. The mixed lubrication: both the asperities and the liquid lubricant support the load. The
surfaces slide on a thin layer of liquid lubricant (almost) without touching each other.

3. The hydrodynamic lubrication: the load is supported mainly by hydrodynamic pressure.
The viscous friction becomes important since the velocity is high enough.

Figure 5.8: Schematic representation of the two surfaces touching in the asperities

By focusing more on the first region and doing a zoom in, one would see the two surfaces
touching each other in the asperities, as schematically shown in Figure 5.8 that was reported
from [3] and [4]. If the external force/torque is not zero, but not sufficiently high to overcome
the static friction, the asperities will experience deformation and the two contact surfaces will
face a pre-sliding motion. Only when the external force/torque becomes high enough, the two
surfaces start sliding one on the other. From [3] it is possible to extrapolate the Equation 5.1.

F = σ0z + σ1ż + σ2ẋ

ż = ẋ− σ0
|ẋ|
g(ẋ)

z

g(ẋ) = Fc + (Fs − Fc) exp

(
−| ẋ

ωs

|
) (5.1)

Where

• F is the friction force

• σ0 is the bristle stiffness
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• σ1 is the bristle damping coefficient

• σ2 is the viscous friction coefficient

• z is the average deflection of the bristle

• ẋ is the sliding velocity

• g(ẋ) is a function proposed to describe the Stribeck effect

• Fs is the static friction

• Fc is the coulomb friction

• ωs is the Stribeck velocity. It is empirically determined and generally has a value
∈ [10−5, 10−2] m s−1

• j is the Stribeck shape factor. Its value is usually 2

Figure 5.9 shows the Simulink implementation.

Figure 5.9: Simulink model of the second friction model

LuGre model is based on a group of complex nonlinear equations with six parameters: four
static parameters (Fs, Fc, ωs, σ2) and two dynamic parameters (σ0, σ1). These parameters are
difficult to estimate since they are coupled and they cannot be directly measured. However, they
could be estimated empirically. Static parameters could be obtained through a series of
experiments, in which the velocity of the motor is kept constant in a region where it does not
experience the stick-slip behavior. By monitoring the torque, it is possible to obtain the empirical
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Stribeck curve (see the next paragraphs) that will be fitted by tuning the static parameters of the
LuGre model. In the pre-sliding process, the friction is mainly due to σ0z and σ1ż; therefore, in
order to estimate the dynamic parameters, one can measure the angle output of the motor and
compare it with the theoretical one obtained for a combination of σ0 and σ1. Since during the
traineeship this data was not available and it was not possible to conduct any experiment, values
that have been used in similar motors and and in the literature have been used, checking again
that the results respected the datasheet of the motor.

Steady State analysis

In the steady state, when the sliding velocity is kept constant, the bristle deformation is constant
too and, therefore, ż = 0. From the second equation of Equation 5.1, one can obtain:

ẋ− |ẋ|
g(ẋ)

z = 0 → zss = g(ẋ)sign(ẋ)

Therefore, the friction force becomes:

Fss = σ0zss + σ2ẋ = Fcsign(ẋ) + (Fs − Fc)exp

(
− ẋ

ωs

)2

sign(ẋ) + σ2ẋ (5.2)

Which corresponds to the friction force of the Stribeck’s model.
Figure 5.10 reports a comparison between the theoretical and empirical curves.

(a) Theoretical curve (b) Curve obtained through Simulink

Figure 5.10: Comparison between the theoretical steady state friction profile and the one retrieved from simulations
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Studying the steady state dynamics was useful to understand the influence of the static
parameters. Basically, once one defines σ2, Fs and Fc, which are respectively the steepness of the
straight line, the force at ẋ = 0 and the point of intersection between the straight line extension
and the y-axis, the only parameter that remains to be defined is the ωs. The lower this parameter
is, the more the position of the minimum point of Fss moves to the bottom-left corner.

Dynamic analysis

As also mentioned in [3], when the sliding velocity is not constant, the behavior of the system in
terms of pre-sliding displacement and break-away force will depend on the shape of the function
g(ẋ) and on the whole nonlinear differential equations (rather than on a single parameter).
Different typical cases have been studied in the before mentioned paper. In the this section, the
considerations done after investigating the wheel dynamics when it has to move linearly with a
constant speed of 10−3 rad s−1 have been reported.

Considering a linear angular profile allowed to understand more easily the behavior of the
system. Figure 5.11 reports the obtained results. From Figure 5.11a and Figure 5.11b, it is
possible to see that the surfaces seem to start sliding after almost 0.2 s. In fact, the wheel velocity
in the same region is not zero, but positive and increasing, as shown in Figure 5.11c and
Figure 5.11d. In fact, the error (ϵ = θobjective − θ) is increasing in time and, therefore, the
applied torque does the same. This deforms the surface asperities more and more causing a
micro-motion process. As shown in Figure 5.11f, the friction torque increases in time, since the
average deformation of the bristles keeps increasing. Thanks to this study, it was possible to
understand more the influence of some parameters:

• σ0 → the higher it is, the higher the friction torque is, since for the same deformation z,
the material generates a higher resistance

• σ1 → the higher it is, the bigger the resistance against rapid θ changes is

• σ2 → does not have a big influence on this region, since it is linked to the sliding velocity,
which is low

• Fs → defines the breaking force/torque, after which the two surfaces start sliding (Force
value at 1.6 s)

• The other parameters respect what was already said
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(a) Angular profile (b) Zoom in in the angular profile

(c) Angular velocity profile (d) Zoom in angular velocity profile

(e) Friction torque profile (f) Zoom in friction torque profile

Figure 5.11: Results for a constant angular velocity θobjective˙ = 10(−3) rad s−1

Once the applied torque reaches the Fs, the surfaces start sliding one over the other and the
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motor starts moving. The friction drops and, for a certain∆t, the applied torque is much higher
than the friction torque. This accelerates the motor and produces the step that can be seen in the
velocity profile. Since there is a sudden variation in the bristle deformation, σ1 has a big influence
on the behavior of the system in this region of the plot. After this transitory, there is the viscous
region, in which σ2 has a big influence and the viscous friction is prominent. Once the system
reaches the steady state, the wheel speed and the friction torque remain constant, as shown in
Figure 5.11d and Figure 5.11e respectively. This study also permitted to highlight the great
influence that the input velocity has on the wheel dynamics. More precisely, the lower the speed
of the wheel is, the worse it is since the wheel operates in the stick-slip region, where there is
stiction and therefore a discontinuous motion. In fact, by considering an input velocity of 10−4

rad s−1, one obtains the angular profile reported in Figure 5.12a.

(a) Angular profile (b) Velocity profile

Figure 5.12: Results for a constant angular velocity θobjective˙ = 10−4 rad s−1

By looking at the friction profile in the first 8 s, it is possible to recognize the same behavior
described before: micro motion until the input torque reaches the breaking point and, then,
viscous motion. Soon after the wheel starts sliding, the velocity reaches a value too high and,
therefore, the PID controller regulates the tension in order to reduce the error. The applied
torque decreases and the velocity of the wheel goes to zero, but in this way the wheel enters again
the stick region, and cannot leave it until the applied torque is again sufficiently high. This
requires the error to be high enough and, therefore, a considerable amount of time. As a result,
the velocity profile is the one reported in Figure 5.12b.

A possible way to prevent this behavior, in applications that requires small velocities, is to better
tune the PID controller (for example increasing the proportional gain), or by choosing a motor
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capable of producing a higher torque with the same current.
The same considerations can be done also for a sinusoidal velocity, as input, with amplitude of

10−2 rad s−1. The Figure 5.13 gathers the obtained results.

(a) Angular profile (b) Velocity profile

Figure 5.13: Results for a sinusoidal angular velocity with amplitudeA = 10(−2) rad s−1

In conclusion, one can say that the LuGre’s model seems to be accurate, if correctly tuned, and
that it can take into account the pre-sliding effect, which is important if the velocity is low (itmakes
physically sense, since themotor is departing from the stick region very slowly). On the other hand,
the model is not linear and consequently:

• changes of the output are not proportional to the changes of the input

• the solution strongly depends on initial and boundary conditions

• the non-linear dynamical equations are difficult to solve and this increases the
computational cost and time

In addition, the different parameters have to be tuned properly, since they heavily influence the
system response. To do so, one could do some tests on the RWs. During the traineeship, there was
not this possibility and information from different tests and reports have been used to compare
the transfer functions of the two different models.

One of the conducted studies tried to estimate the electrical and mechanical frequencies of the
RW under study by interpolating the theoretical transfer function, reported in Equation 5.3,
with the empirical one, retrieved as showed in Figure 5.14 and Equation 5.6. Results showed that
felectric = 41 Hz and fmechanic = 598 Hz at +50◦C. These two values have been used to
deduce the inductance of the RWL and the ratio J/Km as indicated below.
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Htheoretic(ω, fmechanic, felectric) =
Gstaticiω(

1 +
iω

2πfelectric

)(
1 +

iω

2πfmechanic

) (5.3)

Figure 5.14: Schematic representation of the transfer functionH =
I
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(5.4)

And, by considering that normally∆ > 0 and τelectric ≪ τmechanic, one can obtain:

I

V
=

J

KmKe

s(
1 +

L

R
s

)(
1 +

RJ

KmKe

s

) (5.5)
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Therefore,

felectric =
R

2πL
→ L =

R

2πfelectric
= 0.0036 H

fmechanic =
KmKe

2πRJ
→ J

Km

=
Ke

2πRfmechanic

= 0.00012 kgm2 AN−1 m−1

(5.6)

Although the first result is realistic, the second one is too small. In fact, by considering J =

7.36103 kgm2 from the datasheet, one would obtain thatKm = 59.97NmA−1 ≫ Ke. Since
it seemed there was an inconsistency in the data used to conduct the previous study and there was
no possibility of further investigation, the study was interrupted here.

5.4 New implementation

As shown in Figure 5.15a and Figure 5.15b, the RW model was implemented in the simulator.
As mentioned before, the different parameters reported below need to be correctly and accurately
tuned to obtain realistic and consistent results.

% ROUES XY FROTTEMENT
conf.rou_xy_frott_Rm_x = 13.6; %[Ohm]
conf.rou_xy_frott_J_roue_x = 7.36e-3; %[kg.m^2]
conf.rou_xy_frott_Ke_x = 0.431; %[Vs/rad]
conf.rou_xy_frott_Km_x = 0.43; %[Nm/A]
conf.rou_xy_frott_F_c_x = 5e-4; %[N.m]
conf.rou_xy_frott_F_s_x = 1e-3; %[N.m]
conf.rou_xy_frott_Sigma_0_x = 0.0140; %[N.m/rad]
conf.rou_xy_frott_Sigma_1_x = 0.007; %[N.m/(rad/s)]
conf.rou_xy_frott_Sigma_2_x = 7.189e-04; %[N.m/(rad/s)]
conf.rou_xy_frott_V_s_x = 0.01; %[rad/s]

conf.rou_xy_frott_Rm_y = 13.6; %[Ohm]
conf.rou_xy_frott_J_roue_y = 7.36e-3; %[kg.m^2]
conf.rou_xy_frott_Ke_y = 0.431; %[Vs/rad]
conf.rou_xy_frott_Km_y = 0.43; %[Nm/A]
conf.rou_xy_frott_F_c_y = 5e-4; %[N.m]
conf.rou_xy_frott_F_s_y = 1e-3; %[N.m]
conf.rou_xy_frott_Sigma_0_y = 0.0140; %[N.m/rad]
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conf.rou_xy_frott_Sigma_1_y = 0.007; %[N.m/(rad/s)]
conf.rou_xy_frott_Sigma_2_y = 7.189e-04; %[N.m/(rad/s)]
conf.rou_xy_frott_V_s_y = 0.01; %[rad/s]

(a) RW model in the simulator

(b) RW model

Figure 5.15: New RW model implemented in the simulator
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6
Kinematic model

While debugging the simulator, a problem in the implemented kinematic block emerged. In fact,
the signal obtained from the quaternions manipulation seemed to not be consistent with the one
obtained from the velocities manipulation, even if they describe the same entity, namely the
motion of the cross-elevation frame with respect to the inertial frame.

In this chapter, an alternative convention to the one previously used to name velocities is
introduced and every single part of the block is analyse in deep. Eventually, the new model has
been implemented in the simulator and the results have been discussed.

6.1 The new convention

Understanding exactly the nature of a signal was quite difficult since it was impossible to presume
that the previous implementation, reported in Figure 6.1, was correct. Therefore, it was necessary
to perform tests to verify that every signal was correct and expressed in the correct reference frame.
Thus, a new and common convention to express unambiguously the velocity signals was required.
To completely characterize the velocity vector, there are three important elements to define:

1. The body which the velocity is referred to

2. The second body (or system of reference) with respect to the velocity is calculated

3. The reference frame in which the vector is expressed

61



Figure 6.1: Previous Kinematic model implemented in the simulator

Figure 6.2: New kinematic convention

In fact, one could consider as an example the system represented in Figure 6.2 in which there
are the bodyA solidly attached to the body B, a tableC and awall D. A and, therefore, B can rotate
on the table, while both C and D are still. Supposing one is interested in expressing the velocity
of the body A (1), it will be numerically different if the said velocity is expressed with respect to B
or C/D (2). In the first case, in fact, it will be zero, while in the second case it will not. It is also
important to notice that C andD are still, but they have different reference frames. Therefore, the
velocity of A will have different Cartesian coordinates depending on the reference frame in which
the vector is projected (3). With that said, it was possible to introduce the following convention
to indicate the velocity of the body A with respect to B and expressed in the reference frame of C:
V it

[C]
B,A ⇐⇒ V it_B_A(C)
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6.2 Velocity of the Earth

The first thing done was to check the velocity of the Earth, named in the model as “Omega Terre
en repère nacelle”, that was defined in the function cCinematique_Dicos.m as follows:

conf.vit_Terre= [(2*pi)/86164.1 0 0];

Although the name suggests that the velocity is expressed in the (NA) reference frame, it is a
constant vector, whichdoes notmake sense since the gondola can rotatewith respect to (RTL) and,
therefore, to (I). Moreover, the velocity cannot be defined in the (RTL) reference frame since the
actual latitude and longitude of the system are not taken into account. In conclusion, considering
also the equations implemented in the ”fcn_calcul_q_I_RTL” block (studied in the next section),
itwaspossible to conclude that the velocityhad tobedefined as indicatedbelowand that, therefore,
the correct name should have been V it_I_T (I).

conf.vit_Terre= [0 0 (2*pi)/86164.1];

6.3 qI→RTL computation

The latitude, longitude and mission date are used inside the ”fcn_calcul_q_I_RTL” block to
compute the quaternion relative to the transformation from (I) to (RTL) qI→RTL. The
before-mentioned quaternion is multiplied by the quaternion relative to the transformation
from (RTL) to (NA) qRTL→NA, according to Equation 6.1 and the quaternion operations rules
that can be easily found in the literature.

qI→NA = qI→RTL ∗ qRTL→NA (6.1)

Therefore, the evolution in time of qI→NA depends on the motion of (RTL) with respect to
(I), since the system rotates aroundZI with the same velocity the Earth rotates around its rotation
axis, and on the motion of (NA) with respect to (RTL) due to the system dynamics.

The last input of the ”fcn_calcul_q_I_RTL” block is V it_I_T (I), that was discussed in the
previous section. As mentioned before, this is exactly the same velocity that the systemmust have
to maintain its orientation with respect to the surface of Earth. Different velocities, in fact, would
not permit the (RTL) reference frame to remain tangent to the surface and correctly oriented,
therefore V it_I_T (I) == V it_I_RTL(I). Figure 6.3 offers a schematic representation of the
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two frames of reference.

Figure 6.3: I and RTL reference frames representation

The Equation 6.2 is used to express the before-mentioned velocity in the (NA) reference
frame, where q∗I→NA is the conjugated of qI→NA, and qV it

[NA]
I,RTL

and q
V it

[I]
I,RTL

are the quaternions
obtained placing in front of the relative arrays a 0 as additional entry.

q
V it

[NA]
I,RTL

= q∗I→NA ∗ q
V it

[I]
I,RTL

∗ qI→NA (6.2)

This action is performed in the calcul_vit_T_NA.m function:

vit_T_NA = quatrot_mat(1,vit_T_I,q_I_NA);

By opening the before-mentioned function, one would see that since the first index of the
function is 1, the operation performed inside the function is the following one:

vec3 = Q * vece3 * conj(Q)

However, the correct equation that should be implemented is the following one:

vec3 = conjQ * vece3 * (Q)

In fact, by considering for example qI→NA = [−0.778− 0.1970.295− 0.518], that for a 321
rotation sequence corresponds to a rotation around each axis of [0◦ − 41.5394◦67.2652◦], one
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obtains the rotations reported in Figure 6.4.

Figure 6.4: Representation of qI→NA rotation sequence

Since YNA remains in the (XY )I plane, the ωy,NA should be roughly zero. However, by
plotting V it

[I]
I,RTL, one obtains the Figure 6.5a. On the other hand, using the correct formula

brings to Figure 6.5b which seems to be correct since the velocity vector is decomposed almost
equally along theXNA andZNA axes.

(a)Wrong angular disposition (b) Correct angular disposition

Figure 6.5: Wrong and correct angular disposition

6.4 Sampling frequency
By investigating the different signals inside the kinematic block, it was possible to notice that
qI→RTL is very dependant on the sampling period. In fact,

• if Te ≤ 1 s, the angles retrieved from the quaternion update every 1 s
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• if Te = t > 1 s, the angles retrieved from the quaternion update every t s

This is due to theway the date is calculated inside theOBC block. As visible fromFigure 6.6, the
time is sampled everyTe seconds. The discretized signal is used inside theModele navigation block
to compute the actual date in the following format: [Y Y Y Y,MO,DD, S], where S is the total
number of seconds elapsed from the beginning of the day DD. Consequently, the seconds are
represented by a discrete signal that presents discontinuities every 1 s, even if the sampling period
was smaller than that. As a consequence, the quaternion and the corresponding angles present the
same behavior and, therefore, their time derivative may change a lot depending on the chosen Te.

Figure 6.6: Discretization of the time signal

In fact, by considering for example Te = 0.2 s, one would obtain the angles reported in
Figure 6.7a that shows that the signal is actually updated every 1 s. Moreover, by computing the
time derivative of the reported signal, one would not obtain a constant positive value, as expected
since the signal is monotonous growing, but the signal reported in Figure 6.7b. In fact, the time
derivative of a signal u is given by Equation 6.3.

∆u

∆t
=

ut − ut−1

Te

(6.3)

By considering the plateau zones of Figure 6.7a, one would have that the derivative is zero since
∆u = 0. On the other hand, by considering the discontinuity zones, it is possible to see that∆u

is always the same and, therefore, the peaks are grater the smaller Te is.
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(a) Zoom in the discretization of the angular signal (b) Discretization of the angular velocity signal

Figure 6.7: Discretization of the angular and angular velocity signals

To avoid this computational error, a different procedure was implemented by creating the
”Date_to_quaternion” block to compute the Sidereal Time, which is at the basis for the
calculation of the quaternion qI→RTL. The block converts the initial date in a datetime type
variable in order to add proficiently the elapsed seconds during the simulation and then converts
it in the vector [Y Y Y Y,MO,DD,H,MI, S]. This vector is later used to compute the Julian
Days, the Sidereal Time and, eventually, the quaternion qI→RTL.

As a result, the zoom in the 3rd angle profile retrieved from the quaternion and its time
derivative are reported in Figure 6.8a and Figure 6.8b respectively.

(a) Zoom in the new discretization of the angular signal (b) New discretization of the angular velocity signal

Figure 6.8: Discretization of the new angular and angular velocity signals

It is evident that this approach makes the time discretization effectively useful and yields to a
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velocity signal that is physically consistent. Therefore, the new model was implemented in the
OBC block, as shown in Figure 6.9.

Figure 6.9: New OBC model implemented in the simulator

6.5 Local analysis

Since as seen in the previous section, the kinematic model could be badly influenced by other
models in the simulator, a local analysis of the whole simulator was performed to investigate the
reasons of the signals inconsistency. The relations showed in Equation 6.4 have been particularly
useful to verify the nature of the signals.

By considering :

q(t)˙ =
1

2
q(t) ∗ qΩ(t)

q(t)− q(t− dt)

dt
=

1

2
q(t) ∗ qΩ(t)
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It is possible to obtain :

qΩ(t) =
2

dt
q∗(t) ∗ (q(t)− q(t− dt))

And eventually :

qΩ(t) =
2

dt



1

0

0

0

− q∗(t) ∗ q(t− dt)

 (6.4)

where qΩ(t) is the quaternion obtained placing in front of the velocity vectorΩ(t) a 0 as additional
entry.

It is important to notice that, since the integration time and, therefore, dt are not constant
during the simulation, Equation 6.4 can only be applied once the simulation is over and the data
is gathered.

The ”Dynamic” block was supposed to be correct, and as such, it was not modified. However,
a small study on the signals q_nacelle and vitese_rotation_nacelle was done since the two
signals were not named properly.

Figure 6.10: New angular and angular velocity discretization

From Figure 6.10, it is evident that q_nacelle is computed directly from the
vitese_rotation_nacelle through the Equation 6.5 and, thus, the two signals had necessarily to
be consistent.
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q(t)˙ =
1

2
q(t) ∗ qΩ(t) (6.5)

Moreover, by comparing Equation 6.5 with Equation 6.6, it was possible to understand that
vitese_rotation_nacellewas vit_RTL_NA(NA), and the q_nacelle the qRTL→NA.

qA→B(t)˙ =
1

2
qA→B(t) ∗ qΩ[B]

A,B(t)
(6.6)

In addition, the obvious consistency among the before-mentioned signals offered the
possibility to test the applicability and correctness of Equation 6.4. Figure 6.11 shows in fact a
perfect consistency among the angular velocities around the three axes retrieved from the velocity
and the quaternion respectively.

(a) Angular velocity aroundXNA (b) Angular velocity around YNA

(c) Angular velocity aroundZNA

Figure 6.11: Angular velocities components comparison
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To check the Kinematic block, a new implementation that could represent the behavior of the
system was created in a different Simulink project. The aim was to use input signals that were
surely consistent, combine them, check whether the consistency was preserved and, if not, try to
understand the reasons. Thanks to this new implementation, it was also possible to better
understand how to combine signals and change reference frame. Moreover, it brought a
reduction in the required simulation time and some margins of enhancement.

The new implementation could be divided in three parts:

1. Motion of (NA) with respect to (I)

Figure 6.12: Motion of NA with respect to RTL

As showed in Figure 6.12, the considered model offers the possibility to choose different
possible initial orientation of the NA reference frame with respect to the RTL reference
frame bymodifying the quaternion qRTL_NA0

. Several initial orientations have been tested
and they did not affect the consistency of the results. The quaternion is then propagated
using the Equation 6.6 and the V it

[NA]
RTL,NA retrieved from Equation 6.7.

q
V it

[NA]
RTL,NA

= q∗RTL→NA ∗ q
V it

[RTL]
RTL,NA

∗ qRTL→NA (6.7)

The right side of the figure was created to obtain, through MATLAB, a visual
representation and simulation of the relative motion of the two reference frames.
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Figure 6.13: Motion of RTL with respect to I

As shown in Figure 6.13, the analogous implementation has been done to study themotion
of (RTL) with respect to the I reference frame. Unlike the previous case, now the the initial
quaternion qI_RTL0

could be either set arbitrary or retrieved from the latitude, longitude
and mission date.

Figure 6.14: Motion of NA with respect to I

As shown in Figure 6.14, themodel combines the other two previously analysed and verifies
the consistency of the obtained signals. On the upper part, theV it

[I]
RTL,NA is calculated and
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thenused to calculateV it
[I]
I,NA. On the lower part of the figure, the qI_RTL and qRTL_NA are

combined to obtain qI_NA, that should contain the same information bought by V it
[I]
I,NA.

In fact, simulations demonstrated that the two streams of data were consistent with each
other. Figure 6.15 reports a screenshot of the motion of NA with respect to I

Figure 6.15: Screenshot of the motion of NA with respect to I

It is dutiful also to say that, instead of comparing the velocities, one could compare the
quaternions qI_NA and the one obtained converting in quaternion the angles obtained via
integration of the velocity V it

[NA]
I,NA. By doing so, the plots in Figure 6.16 are obtained.
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(a) q1 (b) q2

(c) q3 (d) q4

Figure 6.16: Quaternions components comparison

It is possible to notice that the components of the two quaternions are exactly the same,
hence consistent, up to 4.19 s. Then, they become specular but remain consistent as
demonstrated in Equation 6.8.
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(6.8)

2. Motion of (CE) with respect to (NA)

Figure 6.17: Motion of EL with respect to NA

Figure 6.17 shows the model implemented to retrieve V it
[EL]
NA,EL and qNA→EL.

Figure 6.18: Motion of CE with respect to NA
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Analogously, Figure 6.18 shows the model implemented to retrieve V it
[CE]
NA,CE and

qNA→CE .

Thanks to these two schemes, it is possible to choose two arbitrary velocities for the EL and
CE frames, combine them, and obtain the velocity of the CE frame with respect toNA. By
considering the way the two frames move one in the other, schematized in Figure 6.19, it is
possible to observe that V it

[NA]
NA,EL will be always directed along YNA, while V it

[NA]
NA,CE will

always be directed alongXNA. Conducting several simulations in which both the velocity
and initial configurations were changed always yielded to consistent results.

(a) EL frame (b) CE frame

Figure 6.19: Schematic representation of the EL and CE frames

Before continuing, two remarkable things could be highlighted: it is very convenient to
work with quaternions rather than Euler’s angles for their well-known advantages, but
also because they involve less problems with the time derivation; quaternions represent
the instantaneous rotation of a reference frame with respect to an other, and they are not
specifically related to any rotation sequence.

3. Motion of (CE) with respect to (I)

Figure 6.20: Motion of CE with respect to I
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Figure 6.20 shows the last part of themodel, in whichV it
[CE]
I,CE and qI→CE are retrieved and

compared.On the left side of the scheme, the velocities calculated before are brought in the
NA reference frame and then summed to obtainV it

[NA]
NA,CE . Since the IMU1needs as input

a velocity expressed in CE, both V itI,NA and V itNA,CE are brought in the correct frame
and then summed to obtain V it

[CE]
I,CE . Simultaneously, the quaternion qI→CE is computed

using qI→NA and qNA→CE .

By comparing V it
[CE]
I,CE and qI→CE through the usual method, one would get the error

signal showed in Figure 6.21 that is relatively small if compared to the previous
implementation.

Figure 6.21: Error between V it
[CE]
I,CE and qI→CE

This result showed that the model is capable of preserving the consistency of the signals. In
fact, although the velocity and quaternions are not two completely distinct streams of data
since the first ones are brought in the different reference frame through the second ones,
this method is a good and valid alternative to the other option that would have seen the
quaternion qI→CE calculated directly with Equation 6.5 since, in this case, the consistency
would have been force.
By considering that the results are acceptable, themodel has been simplified (the simulation
in MATLAB has been removed) and it was integrated in a new kinematic block inside the
simulator.
In the future, an additional study could be done to understand the effects that these errors
have on the Kalman filter and on the system performance.
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6.6 Discussion and comparison of the results
From Figure 6.22 it is possible to notice from the previous plots that the speed retrieved from the
quaternions is very disturbed andpresents somepeaks that could also reach the order ofmagnitude
of 108. These peaks are probably due to numerical integration errors, but what is more worrying
and problematic is the offset between the different pairs of signals.

(a)XNA direction (b) YNA direction

(c)ZNA direction

Figure 6.22: Comparison between V it
[CE]
I,CE and qI_CE

Moreover, from Figure 6.23 that reports the error between the real state and state predicted by
the Kalman filter, it is evident that the errors in the kinematic models influence also the
performance of the Kalman filter.

On the contrary, Figure 6.24 shows that in the new implementation the different pairs of signals
are consistent and besides the peaks, that are smaller than before, they are basically the same. As
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Figure 6.23: Error between the real state and state predicted by the Kalman filter

a consequence, the error between the real and predicted states is one order of magnitude smaller
than before, and converges to 0 or oscillates around it.

In the future, an additional analysis could be done to understand the origin of the peaks, that
at the moment were suspected to be numerical, and to evaluate their effects on the Kalman filter.
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(a)XNA direction (b) Zoom: XNA direction

(c) YNA direction (d) Zoom: YNA direction

(e)ZNA direction (f) Zoom: ZNA direction

Figure 6.24: New implementation: comparison between V it
[CE]
I,CE and qI_CE
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7
Camera model

The fine pointing is performed using theCAM0 andCAM1mounted on theCE frame. The idea,
asmentioned, is to use theDTU, theRWs, and the EL andCE actuators to bring the star (or better
said, the centroid of the cloud) inside the FOV of CAM0. Then, using the pixel position of the
star on the camera detector, the quaternion required to align the camera LoS with the star vector
is computed and a command is sent to the before mentioned actuators. Once the centroid enters
the CAM1 FOV, the action of the before mentioned actuators is interrupted and the deformable
mirror starts to work in order to bring the centroid at the center of the camera FOV. Figure 7.1
summarizes the process.

(a) Characteristics of the cameras (b) Pointing sequences

Figure 7.1: CAM0 and CAM1 pointing process
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7.1 New Implementation

Since it was necessary to implement a first simple camera model that could also take into account
some kind of distortions that could affect the camera lens, the Pinhole camera model was chosen.
Given the coordinates of the target in the World reference frame, the aim is to compute its
projection position on the focal plane of the camera. Figure 7.2 reports a schematic
representation of the four reference frames utilized:

• UVW: theWorld reference frame

• XYZ: the Camera reference frame

• xy: the Image reference frame

• uv: the Pixel reference frame

Figure 7.2: Schematic representation of the different reference frames

It is evident that each reference frame is centered in a different point in space and has a different
orientation. Moreover, it is possible tonotice that the focal plane is positioned atZ = f , wheref is
the focal length of the pinhole camera. Equation 7.1 represent the so-called perspective projection
equations, which project a 3D point, with coordinates expressed in the XYZ reference frame, in
the xy plane.
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x = f
X

Z

y = f
Y

Z
(7.1)

To represent this transformation using the matrix notation, it is necessary to obtain first linear
equations. To achieve this, it is sufficient to use the so-called homogeneous coordinates in which
it is necessary to introduce a fictitious third non-zero coordinate, as shown in Equation 7.2.

[
x

y

]
→

x′

y′

z′

 (7.2)

Therefore, the perspective projection equations can be written as shown in Equation 7.3.

x′

y′

z′

 =

f 0 0 0

0 f 0 0

0 0 1 0



x

y

z

1

 (7.3)

Then, to obtain the real image coordinates, it is sufficient to apply the Equation 7.4.

x = f
x′

z′

y = f
y′

z′
(7.4)

Generally, the position of the target is not expressed in the XYZ reference frame, but in the
UVW reference frame. Therefore, it is convenient to introduce a transformation matrix between
the two reference frames. As shown in Equation 7.5 he transformation matrix contains both the
rotationmatrix and the translation vector (that represents the position of one reference framewith
respect to the other).
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[P2] =

[
[R]UVW→XY Z T⃗

0 1

]
=


r11 r12 r13 cx

r21 r22 r23 cy

r31 r32 r33 cz

0 0 0 1

 (7.5)

The parameters contained in [P2] are the so-called extrinsic parameters, since they are not
dependent on the camera characteristics.

An additional consideration can be done on the so-called intrinsic matrix P1, which takes into
account the transformation between the xy and uv reference frames, considering both the rotation
and the translation, the scaling and the skewangle (respectively due to thedifferent size of thepixels
along the x and y direction, and to the angle at the corner of the pixel). The intrinsic matrix has
the expression shown in Equation 7.6:

[P1] =

fx s u0

0 fy v0

0 0 1

 =

1 0 u0

0 1 v0

0 0 1


fx 0 0

0 fy 0

0 0 1


1

s
fx

0

0 1 0

0 0 1

 (7.6)

The intrinsic parameters depend on the camera characteristics.
Moreover, it would be possible to consider the lens distortion (like the radial one) using a

polynomial expression. However, since the errors produced by such distortions could be
corrected after a successful calibration of the camera, they have been neglected in this study.

Considering again the homogeneous coordinates, it is possible to obtain Equation 7.7.

x′

y′

z′

 =

fx s u0 0

0 fy v0 0

0 0 0 1



x

y

z

1

 (7.7)

So, altogether the transformation is reported in Equation 7.8.

x′

y′

z′

 =

fx s u0 0

0 fy v0 0

0 0 0 1



r11 r12 r13 cx

r21 r22 r23 cy

r31 r32 r33 cz

0 0 0 1



U

V

W

1

 (7.8)

From which it is possible to retrieve the pixel position using Equation 7.9.
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u = f
x′

z′

v = f
y′

z′
(7.9)

Once the pixel coordinates of the target are computed, it is possible to calculate the quaternion
qstar,CAM0→LoS,CAM0 using the procedure schematized in Figure 7.3.

Figure 7.3: Schematic representation of the method used to compute the pixel coordinates

Figure 7.4: Simplified model of the gondola kinematics

To verify the behavior of the model, a simplified implementation, reported in Figure 7.4, of
the gondola and flight chain was created. A Right Ascension RA and Declination DEC was
considered to identify a hypothetical star in the sky. Moreover, only the CE frame, on which the
DTU and cameras are mounted, was considered. The system inertia was represented by a simple
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matrix of inertia, and 3 independent RWs controlled by 3 PID controllers have been considered as
actuators. Themodel took into account the different orientation ofCAM0with respect to theCE
reference frame hypothetically, due to the temperature effects or other casual errors that affect the
system after the camera calibration, by using the variable ”error” that could be arbitrarily changed.
The aim of the simulation, was to match the LoS of the sensors with the direction vector between
the star and the sensor itself, considering the different pointing stages described at the beginning
of this chapter. Different initial configuration have been tested, and the model seemed to behave
fine.

7.2 Discussion and comparison of the results

Figure 7.5 reports the results obtained after a simulation fromwhich it can be seen that the system
managed to bring the star inside the FOV of CAM1.

Figure 7.5: Simulation results

In addition, amodel that could take into account the biases introduced by the thermal gradients
was implemented. The idea was to consider an hotspot on the camera CCD and a consequent
thermal conduction flux that was able to deform the focal plane characterized bynm poles equally

86



distributed. To determine the temperature in each of the poles, the Fourier’s law was applied: it
was sufficient to solve a system of nm equations in nm unknowns. Eventually, the temperature
distributions was interpolated linearly to obtain the results showed in Figure 7.6.

Figure 7.6: Temperature distribution

However, since this activity was done at the end of the internship, there was not enough time
to test exhaustively the model and implement a deformation model.
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8
Discussion of the results

The previous chapters reported at their end the results relative to the implementation of the
corresponding model. To test their effect on the entire simulator, a simulation of 80s has been
done, and the corresponding results have been reported in this chapter.

Figure 8.1, Figure 8.2 and Figure 8.3 show the comparison between the angular position of
the different elements of the flight chain, around theXNA, YNA and ZNA respectively, obtained
from the old and new implementations. By observing the plots, it is possible to observe a general
enhancement of the system performance. In fact, by looking at the divergent angular profiles, it is
evident that the system was previously unstable. This was probably due to multiple factors, such
as the inconsistency found in the kinematic model during the study that affected negatively the
behaviour of the system. Thanks to the new implementation and the correction of several minor
errors, it was possible to obtain a stable system that could converge, as visible from ??, after roughly
30s. On the other hand, an increase of the computational cost was observed. This behaviour is
due mainly to the implementation of the new reaction wheel model because, as discussed in the
dedicated chapter, consists in a set of non-linear equations which are difficult to solve.

Figure 8.4 reports a set of screenshots of the final state of the simulator, focusing mainly on the
parts modified during the traineeship.
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(a)Old implementation

(b) New implementation

Figure 8.1: Simulation results: roll
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(a)Old implementation

(b) New implementation

Figure 8.2: Simulation results: pitch
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(a)Old implementation

(b) New implementation

Figure 8.3: Simulation results: yaw
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(a)Overview

(b)OBC Block (c)MPA Block

(d) Dynamic and Kinematic blocks

Figure 8.4: Updated simulator
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9
Conclusion

During the traineeship, different features of the simulator have been treated and enhanced, and
several tasks have been completed. This thesis reports the activities done describes the procedure
that was followed for the creation and implementation of new models that aimed to enhance the
simulator performance and correspondence to the reality.

The chapter 2 reports the study that aimed to create a Simulink model as similar as possible
to the one implemented in the flight software. The different parameters of the filter have been
tuned considering the model previously implemented in the simulator, and the results have been
eventually discussed.

The chapter 3 treats the implementation of the complementary filter, that combines the
attitude and attitude velocity signals obtained from the IMU0 to estimate the attitude of the
gondola. The flight software was studied to obtain a Simulink model that could represent
correctly the system behaviour and, then, the results have been analysed and discussed to assert
the performance of the new implementation.

The chapter 4 deals with the implementation of the controller that monitors the twist angle
of the flight chain and controls the azimuth motor. Its Simulink model has been created and its
behaviour and effects on the simulator have been tested.

The chapter 5 reported two different models for the reaction wheels acting on alongXNA and
YNA that could take into account the friction. Among the two, the second one seemed to bemore
suitable since it could represent more accurately the wheel behaviour when its velocity crosses 0.
The corresponding model has been implemented in the simulator, but a precise tuning of the
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friction parameters is required to obtain a realistic model.
The chapter 6 reports the study that aimed to solve the inconsistency problem among the

output signals of the old Kinematic block by defining a new convention that could identify
uniquely the velocities, correcting several minor errors that affected the previous version of the
simulator, and creating a totally new kinematic model that could correctly sample the time and
manipulate the different signals. The new model has been tested and eventually integrated in the
simulator, observing a smaller inconsistency between the retrieved signals. Further investigations
could be done to assert if the observed error is due to numerical error, as hypothesized.

The chapter 7 deals with the implementation of a first camera model to obtain the pixel
coordinates of the star and, from them, the quaternion that represents the rotation between the
camera line of sigh and the direction of the star. A simplified and separated model, that could
represent the system kinematic, has been created and used to test the camera model and pointing
procedures. Eventually, the results have been discussed highlighting that the model should be
further tested to assert the model performance.

Among the different topics treated, the implementation of the friction models for the reaction
wheels and the creation of the new kinematicmodel have been themost demanding. The first one
required the resolution of several numerical errors, while the second one required the debugging
of the entire simulator.

Considering the current state of the simulator, different possible features could be developed
or further enhanced, such as:

• A better characterization of the friction phenomenon to correctly tune the friction
parameters of the reaction wheel models

• A more precise camera model that could take into account the thermal deformations

• A different approach to solve the algebraic loops in the simulator

Nevertheless, the implemented models proved a general enhancement of the system
performance, at a relatively low computational cost, and introduced several new features that
were not present before.

Moreover, by considering the technical topics treated in this thesis and the additional
accomplishments achieved during the traineeship, it is possible to assert that this experience was
successful and extremely fulfilling.
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A
Additional Studies

This chapter gathers two additional and independent studies that have been done during the
traineeship and that do not influence the performances of the simulator.

A.1 Azimuth ramp error

This section reports the study conducted on the error between the azimuth objective and azimuth
filtered by two low pass filters. An analytical approach is exposed, the results are discussed and
eventually a possible solution that aims to reduce the error is proposed.

A.1.1 Motivations

Keeping in mind that the main objective is to enhance the performance of the system in order to
achieve a better pointing precision, the behavior of the Azimuth Control block contained in the
MPA block was studied. More precisely, the effects that the filter has on the pointing accuracy
have been investigated.

By running a simulation, one can observe that the azimuth objective, once that the system
reaches the steady state and starts tracking the Sun or a star, varies in time like a sinusoidal
function that has a period T ≈ 24 h. Locally, this function can be approximated as a straight
line and therefore, it can be seen as a ramp function.
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Feeding the subsystemwith a ramp signal as input yields to a filtered signal that presents a certain
offset with respect to the original one, as deeper analysed later. The aim of this study is to estimate
this steady state error and try to remove it.

A.1.2 Analytical approach and implementation

Figure A.1 reports the filter block contained inside theMPAblock. It is possible to notice that the
azimuth objective signal is first limited by a Slew Rate Limiter and then filtered by two low pass
filters that have the same time constant τ .

(a) Filter block

(b) Azimuth filtering process

Figure A.1: Representation of the azimuth filter

The system can be represented as schematically shown in Figure A.2, where E(s) is given by
Equation A.1, where A is the slope of the ramp and γ(t) is 0 for t < 0 and 1 otherwise.

Figure A.2: Schematic representation of the filtering process

e(t) = Atγ(t) → E(s) =
A

s2
(A.1)

By using the Theorem of the Final Value, it is possible to compute the steady state error as
indicated in Equation A.2.
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ϵ(t = ∞) = lim
s→0

sϵ(s)

= lim
s→0

s(E(s)− U(s))

= lim
s→0

s

(
A

s2
− A

s2
H(s)

)
= 2Aτ

(A.2)

From which it is evident that the grater A and τ are, and the grater the error is. In fact, if the
ramp is very steep, the initial error, that will be carried in the future, between the first point on the
ramp and the state before will be great. Moreover, the grater τ is and the slower the response of the
systemwill be. However, it is important to notice that theMPAworks in the discrete time domain,
and therefore, it is necessary to understand if the discrete time filtering adds an additional error to
the one previously calculated. It is convenient to use the z-transform andmove from the s domain
to the z one. Many conversions are possible, but the most used one is the Tustin’s transformation
that is reported in Equation A.3.

s =
2

Te

z − 1

z + 1
(A.3)

EquationA.4 reports the calculationofH(z), starting fromH(s), while EquationA.5 the error
between the input and output signals ϵ(z).

H(s) =
1

1 + τs

1

1 + τs
=

1

(1 + τs)2
=

1

1 + 2τs+ τ 2s2

And by using the Tustin’s transformation, one obtains:

H(z) =
1

1 + 2τ

(
2

Te

z − 1

z + 1

)
+ τ 2

(
2

Te

z − 1

z + 1

)2

= 1− T 2
e (z

2 + 2z + 1)

(T 2
e + 4τTe + 4τ 2)z2 + (2T 2

e − 8τ 2)z + (T 2
e − 4τTe + 4τ 2)

(A.4)
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ϵ(z) = E(z)− U(z) = E(z)(1−H(z))

= E(z)

(
1− T 2

e (z
2 + 2z + 1)

(T 2
e + 4τTe + 4τ 2)z2 + (2T 2

e − 8τ 2)z + (T 2
e − 4τTe + 4τ 2)

)
And by remembering that the Theorem of the Final Value in the z-domain is
ϵ(t = ∞) = limz→1(z − 1)ϵ(z), one obtains:

ϵ(t = ∞) = 2Aτ (A.5)

Equation A.5 proves that the steady state error does not depend on the chosen sampling
period since the continuous and discrete time implementation are subjected to the same error.
To compare the discrete time behavior with the continuous one, the Simulink model represented
in Figure A.3, was created remembering the analogy between the z-domain and the discrete time
domain (x(n− k) = X(z)z−k).

Figure A.3: Schematic representation of the discrete time filtering process
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(a) Error vs. Ramp steepness (b) Error vs. τ

(c)Output signal

Figure A.4: Signal comparison

A.1.3 Discussion and comparison of the results

It is possible to notice from Figure A.4a and Figure A.4b the linear dependence of the error ϵ(t)
from the ramp steepness A and time constant τ . Moreover, Figure A.4c shows that increasing τ
makes the system response slower.

As visible from Figure A.5, the steady state error is the same in all cases since there was no
dependence from the sampling period. On the other hand, one can notice that the greater the
sampling period is, the grater the error in the first instants of the simulation is. This is due to the
fact that, the input chances quickly at the beginning and, therefore, the discrete time filter
cannot “track” its trend.

In conclusion, one can say that there is no difference between the discrete and continuous time
implementation if the sampling period is sufficiently small.
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(a) Error vs. Te (b) Zoom on error vs. Te

Figure A.5: Signal comparison

A.1.4 Steady state error compensation

Since the steady state error is constant and depends only on the steepness of the ramp and the time
constant of the low pass filters, a possible approach to compensate it was investigated.

Figure A.6: Simulink model for the steady state error compensation

Figure A.6 represents the model implemented in Simulink, where the green elements represent

104



are responsible for the error compensation. The idea was to add to the input signal the steady

state error calculated with Equation A.5, where A =
e(k)− e(k − 1)

Te

. As a consequence, the
compensation removes effectively the steady state error but, on the other hands, creates a step at
the beginning of the simulation, as visible from Figure A.7.

Figure A.7: Compensated and uncompensated output signals

The error of the uncompensated and compensated signals with respect to the input signal is
reported in Figure A.8.

A possible solution to limit the initial step behavior of the compensated output and, therefore,
the error at the beginning of the simulation, is to use a low pass filter as reported in Figure A.9.
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Figure A.8: Compensated and uncompensated errors

Figure A.9: Simulink model for the steady state error compensation with attenuated step behaviour

As a result, by using a time constant τcorrection = 0.2Aπ, one obtains Figure A.10.
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Figure A.10: Compensated and uncompensated errors with attenuated step behaviour

In conclusion, the conducted study showed that the action of filtering a ramp signal,
representative of the azimuth objective, in the continuous or discrete time domains yields to the
same steady state error for both cases. The discrete time filtering adds an additional error due to
the sampling period that affects the output in the first stages of the simulation. To remove the
steady state error, it is possible to add a compensator that, as drawback, adds an error in the first
stages of the simulation. To remove it, an additional low pass filter can be added, tuning well the
τcorrection in order to achieve a good compromise between the error magnitude and the time at
which it reaches zero.
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A.2 Unwinding pendulum

In this section, a study that aimed to prove the feasibility of damping the pendulummotion of the
gondola by simply unwinding the flight chainwas conducted. An analytical approach is proposed,
the results are presented and eventually the feasibility is discussed.

A.2.1 Idea

The main idea was to approximate the whole system as a big pendulum that, taking into account
the great inertia of the balloon, can be considered oscillating around a point A. Although more
precise models that consider for example the flight chain composed b n − bodies could be
implemented, for a first feasibility study, the system reported in Figure A.11 was considered to be
sufficiently accurate.

Figure A.11: System approximation
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A.2.2 Analytical approach and implementation

To study thephenomenon, one canuse theLagrange’s equation, inwhich the kinetic andpotential
gravitational energy are respectively reported in Equation A.6 and Equation A.7.

T =
1

2
mV 2 =

1

2
m(l2q̇2 + l̇

2
) (A.6)

U = −mgl cos (q) (A.7)

Therefore, the equation of motion linearized for small angles can be retrieved as indicated in
Equation A.8.

L = T − U =
1

2
m(l2q̇2 + l̇

2
) +mgl cos (q)

∂L

∂q̇
= ml2q̇

∂

∂t

∂L

∂q̇
− ∂L

∂q
= ml2q̈ +mgl sin (q) + 2mlq̇l̇ = 0

q̈ +
2l̇

l
q̇ +

g

l
sin (q) = 0

q̈ +
2l̇

l
q̇ +

g

l
q = 0 (A.8)

From Equation A.8 it is possible to define the equivalent stiffness coefficientKeq =
g

l
and the

equivalent damping coefficient Ceq =
2l̇

l
. The first one is always positive, while the second one

has a sign that depends on the sign of l̇:

• if l̇ > 0,Ceq > 0, the pendulum unwinds and the system is stable

• if l̇ < 0, Ceq < 0, the pendulum rolls up and the system is unstable. In fact, part of the
energy provided to the system is used to increaseU (since h increases), while the other part
increase the oscillations of the pendulum.

Clearly, the friction with air would contribute to damp the oscillations since it would increase
Ceq, but it can be neglected in this studt since at 40km of altitude its effect is limited. Moreover,
increasing l̇ reduces the required time to unwind the flight chain, and therefore the number of
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oscillations, but increases their magnitude. Since this is a 2 DoF system, an equation for l should
have beenwritten too. However, thiswould have been out of the scope of this study and, therefore,
it was not considered.

The system dynamics has been simulated on MATLAB using Ode45. A constant unwinding
velocity and the initial conditions reported below have been considered. The simulation
automatically ends when the length of the flight chain reaches the final length.

% INITIAL CONDITIONS
ic_starting.angolo=deg2rad(5); %[rad] - Initial angular displacement
ic_starting.vel_angolare=0; %[rad/s] - Initial angular velocity
ic_starting.vel_lineare=e.vel_lineare; %[m/s] - Initial linear velocity
% CONSTANTS DEFINITION
e.g=9.81; %[m/s^2]
e.lunghezza_finale=100; %[m] - Final length of the chord
e.lunghezza_iniziale=10; %[m] - Initial length of the chord
e.vel_lineare=0.1; %[m/s] - Unrolling velocity of the chord

An initial amplitude of 5 was considered. Note that, since the equation was linearized, the
higher the initial angle is and the less accurate the results will be. The initial and final length of the
flight chain are respectively 10m and 100m, but they can be adjusted considering a more realistic
scenario.

A.2.3 Discussion of the results

The equation of motion of a normal pendulum is retrieved in Equation A.9.

L = T − U =
1

2
ml2q̇2 ++mgl cos (q)

∂L

∂q̇
= ml2q̇

∂

∂t

∂L

∂q̇
− ∂L

∂q
= q̈l + g sin (q) = 0

q̈l + gq = 0

q̈ +
g

l
q = 0 (A.9)

Bypropagating it and the equation relative to anunwindingpendulum, itwas possible to obtain
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the plots reported in Figure A.12. Figure A.12a clearly shows that using an unwinding pendulum
reduces the angular amplitude of the oscillations, while fromFigureA.12b it is clear that the linear
oscillations along the X direction increases as a consequence of the flight chain length growth.
However, the X amplitude is considerably low if compared to the one obtained if the pendulum
would oscillate with a constant length of 100m.

(a) Angular oscillations (b) Linear oscillations

Figure A.12: Simulation results

The obtained results can be considered promising. However, the reality is more bitter since the
flight chain is not properly a single simple body, since it is made of several pieces and parts that
contains sensors and, sometimes, fragile components. Moreover, its length and nature make it
hard to be folded and even harder to be outspread following a desired velocity profile. Therefore,
additional studies are required to definitely determine the feasibility of the proposed idea.
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