
UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Ingegneria dell’Informazione

Corso di laurea magistrale in Control System Engineering

”Computer vision - based robotics for the

automation: simulation and control of a robotic

arm in the automotive field”

Tutore universitario:
Angelo Cenedese

Laureando:
Luigi Laratta

Tutore aziendale:
Stefano Rivella

Anno Accademico 2022/2023
Data di laurea: 24 Ottobre 2023

2

Abstract

This thesis project is driven by the goal of acquiring the necessary competencies
to develop a dedicated framework for the simulation and control of a 6-degree-of-
freedom robotic arm, Lite 6 of UFactory. The framework leverages ROS (Robot
Operating System) and computer vision algorithms to enhance the capabilities of
the robotic arm.

The project, developed as part of a curricular internship, comprises multiple phases
aimed at equipping the researcher with essential skills in computer vision and robotics.
These competencies are crucial for the realization of a system that seamlessly in-
tegrates with the test framework developed by Reply Concept Quality. The key
phases include the development of the ROS architecture for controlling the robotic
arm within a simulation environment, the integration of the simulated architecture
with the physical robotic platform, the integration of computer vision techniques in
the ROS architecture to allow the movement of the robot according to the objects
detected by the camera and the creation of an user-friendly remote control interface
through APIs, utilizing Python and Flask, to command the robotic arm.

The project results are in line with the objectives set at the outset, contributing
to the development of a versatile and accessible framework that underscores the
synergy between computer vision and robotics in the realm of industrial automa-
tion.

3

4

Abstract in lingua italiana

Questo progetto di tesi ha l’obiettivo di acquisire le competenze necessarie per svilup-
pare un framework dedicato alla simulazione e al controllo di un braccio robotico
a 6 gradi di libertà, Lite 6 di UFactory. Il framework sfrutta l’architettura ROS
(Robot Operating System) e algoritmi di computer vision per migliorare le capacità
del braccio robotico.

Il progetto, sviluppato nell’ambito di un tirocinio curriculare, comprende diverse
fasi volte a dotare il ricercatore di competenze essenziali in computer vision e robot-
ica. Queste competenze sono fondamentali per la realizzazione di un sistema che si
integri perfettamente con il framework di test sviluppato dall’azienda Reply Concept
Quality. Le fasi principali comprendono lo sviluppo dell’architettura ROS per il con-
trollo del braccio robotico all’interno di un ambiente di simulazione, l’integrazione
dell’architettura simulata con la piattaforma robotica fisica, l’integrazione di tec-
niche di computer vision nell’architettura ROS per consentire il movimento del
robot in funzione degli oggetti rilevati dalla camera e la creazione di un’interfaccia
di controllo remoto user-friendly attraverso API, utilizzando Python e Flask, per
comandare il braccio robotico.

I risultati del progetto sono in linea con gli obiettivi fissati all’inizio, contribuendo
allo sviluppo di un framework versatile e accessibile che sottolinea la sinergia tra
computer vision e robotica nel campo dell’automazione industriale.

5

6

Contents

1 Introduction 13

2 State of the art 15

3 Materials and methods 17
3.1 ROS: Robot Operating System . 17
3.2 UFactory Lite 6 robotic arm . 20
3.3 Logitech Streamcam . 21
3.4 Trajectory recording and playback . 22
3.5 Camera calibration . 22
3.6 Calibration validation . 24
3.7 Marker detection . 26
3.8 Object detection and localization . 27

4 Initial setup 31
4.1 ROS installation . 31
4.2 Robot installation . 32
4.3 UFactory Lite 6 repository installation 34
4.4 OpenCV installation . 37
4.5 ArUco module installation . 38

5 Robot kinematics 39
5.1 Forward kinematics . 39

5.1.1 Lite 6 forward kinematics . 39
5.2 Inverse kinematics . 41

5.2.1 Lite 6 inverse kinematics . 41

6 Trajectory recording and playback 43
6.1 Trajectory recording and playback via rosservice calls 43
6.2 Trajectory recording and playback via ROS node 45
6.3 Trajectory recording and playback via web page 52

6.3.1 Flask installation . 52
6.3.2 Application web page . 52

7 Computer vision and robotics 57
7.1 Image capture . 57
7.2 Camera calibration . 58

7

8 CONTENTS

7.3 Calibration validation . 62
7.4 Marker detection . 69
7.5 Object detection and localization . 75
7.6 Robot motion . 83

8 Conclusions 91

List of Figures

3.1 ROS message . 19
3.2 ROS service . 19
3.3 ROS action . 20
3.4 Robotic arm working range . 21
3.5 Robotic arm dimension . 21
3.6 Chessboard captures . 23
3.7 Result of the camera matrix equation validation 25
3.8 Points for the inverse camera matrix equation validation 25
3.9 ArUco markers . 26
3.10 ArUco marker detection . 27
3.11 Input image for object detection and localization 28
3.12 Object detetction and localization result on the input image 29

4.1 Hardware connection . 33
4.2 Rosgraph . 37

6.1 Home page . 53
6.2 Recorded trajectories page . 54
6.3 Robot characteristics page . 55

7.1 chessboard captures service . 58
7.2 getCalibrationParams service . 63
7.3 World reference frame . 64
7.4 /logitech camera/image service . 69
7.5 Detected ArUco markers with the midpoint 74
7.6 Plane reference frame . 74
7.7 /logitech camera/image2 and getParams services 75
7.8 Reference frames and relative transformations 77
7.9 move to service . 84
7.10 Custom-made end-effector . 86
7.11 Robot goal poses . 87
7.12 Robot home pose . 89

9

10 LIST OF FIGURES

List of Tables

3.1 Range of various motion parameters of the robotic arm 21
3.2 Definition of the camera matrix equation symbols 24

7.1 Definition and value of the transformations symbols 78

11

12 LIST OF TABLES

Chapter 1

Introduction

The integration of computer vision with robotics has revolutionized the field of au-
tomation, enabling the development of advanced systems capable of perceiving and
interacting with their environment. This new hybrid approach offers loads of bene-
fits when it comes to talk about flexibility, intelligence and adaptability in regards
to automation systems. Moreover, it opens up several new perspectives for the
development of a broad array of projects taking advantage of a robotic arm, such
as pick-and-place tasks, assembly operations and quality control inspections in the
automotive industry [1].

This thesis is developed on the basis of a curricular internship, which purpose is
to acquire the computer vision and robotics skills that are necessary for the creation
of a system that can be integrated into the test framework developed by the Re-
ply Concept Quality company. Overall, this dissertation focuses on the creation of
an intuitive and user-friendly framework that enables seamless interaction with the
robot and facilitates the development of projects that leverage its capabilities.

In particular, we will deal with the development and integration of the ROS (Robot
Operating System) architecture for the control of a robotic arm, UFactory Lite 6
[4], in both simulation and real-world environments. The primary objectives of this
work include the creation of an intuitive remote control interface using APIs in or-
der to make trajectory recording and playback and the incorporation of computer
vision techniques within the ROS framework for object detection and localization.
An external camera is employed to capture the visual scene from which the position
of specific objects is extracted. These object positions are then used to guide the
robotic arm, enabling it to execute precise movements.

The remainder of this dissertation is structured as follows:

• Chapter 2 presents a general overview of the key concepts of robotics and
computer vision, explaining how these two disciplines complement each other
aiming to improve the robot abilities to perceive and understand its surround-
ings;

• Chapter 3 describes materials and methods employed in the development of
the project, including hardware, software tools and the algorithms used;

13

14 CHAPTER 1. INTRODUCTION

• Chapter 4 deals with the initial setup and the steps followed in order to start
working with both robotic arm and external camera;

• Chapter 5 explains the general robot kinematics (forward and inverse kine-
matics), focusing then on the specific case of the Lite 6 robotic arm;

• Chapter 6 illustrates the design and implementation of an application pro-
gramming interface using Flask, in order to remotely control the robotic arm.
In particular, we implement a web page where APIs are called to record robot
trajectories and to playback them.

• Chapter 7 describes the integration of computer vision techniques within the
ROS architecture. It discusses the implementation of object detection algo-
rithms, the utilization of camera data and the development of algorithms to
enable the robot to autonomously move towards the detected objects.

• Chapter 8 concludes the thesis by summarizing the findings, highlighting the
contributions and outlining potential future directions for research and devel-
opment.

Through the realization of this thesis, we aim to make significant contributions to
the automation of tasks in the automotive field, by providing an accessible and
user-friendly framework that harnesses the power of Computer vision and robotics.
The ultimate objective is to pave the way for enhanced efficiency, precision, and
versatility in industrial automation.

This thesis is accompanied by the ”Tirocinio Reply” folder, which contains all the
materials used to accomplish the final objectives. Specifically, the implemented code,
that will be presented in detail in the following chapters, is located in the ”project”
folder, whose path is the following: Tirocinio Reply/ros/catkin ws/src/xarm ros.
This code serves as a practical implementation of the concepts and theories discussed
in the document, enabling readers to observe the actual execution and outcomes of
the proposed methodologies.

Chapter 2

State of the art

Robotics is an interdisciplinary field that has witnessed remarkable advancements
in recent years. It involves the design, construction, operation and application of
robots to automate various tasks. The growing interest in robotics is driven by the
need to improve efficiency, safety and productivity in industries and everyday life.
Over the years, robotics has evolved from simple, pre-programmed machines to so-
phisticated systems capable of autonomous decision-making and learning [5].

One of the key breakthroughs that revolutionized the field of robotics is the in-
troduction of computer vision. Computer vision is a subfield of artificial intelligence
and computer science that focuses on enabling machines to interpret and understand
visual information from the surrounding environment. By providing robots with the
ability to ”see” and interpret the world through cameras and sensors, computer vi-
sion has opened new avenues for automation and interaction with the physical world.
The combination of the two disciplines has significantly enhanced automation capa-
bilities. By incorporating computer vision into robotic systems, robots can perceive,
analyze and respond to their surroundings in real-time. This integration has led to
various applications in automation, revolutionizing industries such as manufactur-
ing, logistics, healthcare, agriculture and more.

Computer vision enables robots to identify and locate objects within their envi-
ronment. This capability is crucial for tasks such as pick-and-place operations in
manufacturing, sorting items in warehouses or assisting visually impaired individu-
als in daily activities. With computer vision, robots can navigate autonomously in
dynamic environments. They can build maps of their surroundings, detect obsta-
cles and plan optimal paths. This is particularly valuable in applications such as
autonomous vehicles, exploration robots and service robots operating in complex en-
vironments. Moreover, computer vision facilitates natural human-robot interaction
through gesture and facial expression recognition. This enables robots to under-
stand and respond to human cues, making them more intuitive and user-friendly
for tasks such as customer service, healthcare assistance and collaborative manu-
facturing. In manufacturing and production, computer vision-equipped robots can
conduct precise quality control and inspection tasks. They can identify defects,
measure tolerances and ensure products meet specific standards, thereby improving

15

16 CHAPTER 2. STATE OF THE ART

production efficiency and reducing errors.

While the integration of robotics and computer vision has shown promising re-
sults, several challenges remain. These include real-time processing of large visual
datasets, robustness to environmental variations and the ethical implications of au-
tomation in various industries. Future research in this area aims to address these
challenges and further advance the capabilities of robotic systems in automation. In
conclusion, the combination of robotics and computer vision has opened up exciting
possibilities in automation, enabling robots to perceive and interact with the world
in ways previously unattainable. The integration of these fields holds great potential
for transforming industries and enhancing the quality of human-robot interactions.

Chapter 3

Materials and methods

In this chapter we provide a description of the materials and methods employed in
this project. The key components of our experimental setup include software and
hardware tools: the ROS architecture, Python IDE, a six degrees of freedom robotic
arm (UFactory Lite 6), a linux PC for ROS and a Logitech Streamcam.
The camera calibration, image capture process, preprocessing techniques, trajectroy
recording process, detection, localization and pose estimation methods are presented
herein, but they will be described in detail in the following chapters where we will
develop the work of this thesis.

Initially, we focus on software and hardware tools, describing ROS, the robotic
arm and the streamcam, while in the second part we show methods and algorithms
applied to solve specific problems and achieve the desired goal.

3.1 ROS: Robot Operating System

ROS (Robot Operating System) [7] is a free and open-source software framework
for building and developing robot applications. It provides a collection of libraries,
tools and conventions to simplify the development of complex robotic systems. ROS
provides a flexible and modular architecture that allows developers to build com-
plex robot systems by combining and integrating software components called nodes.
Nodes can communicate with each other over a publish-subscribe messaging system
called ROS topic system. It also provides a range of other features, including sup-
port for various programming languages (such as C++, Python and Java), tools for
visualization and simulation, libraries for sensor and actuator control and a powerful
ecosystem of third-party libraries and packages. Overall, it has become a popular
choice for developing robot applications due to its flexibility, modularity and the
strong community support it provides.
The ROS architecture has been designed and divided into three sections or levels of
concepts:

• the Filesystem level

• the Computation Graph level

17

18 CHAPTER 3. MATERIALS AND METHODS

• the Community level

In the first level, a group of concepts are used to explain how ROS is internally
formed, the folder structure and the minimum number of files that it needs to work.
In the second level, communication between processes and systems happens. In this
section, you can see the concepts and mechanisms that ROS has to set up to sys-
tems, handle all the processes and communicate with more than a single computer,
and so on.
The third level is the Community level, which comprises a set of tools and concepts
to share knowledge, algorithms and code between developers.

The main goal of the ROS Filesystem is to centralize the build process of a project
while at the same time provide enough flexibility and tooling to decentralize its de-
pendencies. Similar to an operating system, a ROS program is divided into folders
and these folders have files that describe their functionalities:

• packages, which form the atomic level of ROS. A package has the minimum
structure and content to create a program within ROS;

• package manifests, which provide information about a package, licenses, de-
pendencies, compilation flags, and so on. A package manifest is managed with
a file called package.xml;

• metapackages, used to aggregate several packages in a group;

• metapackage manifests, which are similar to a normal package, but with an
export tag in XML. It also has certain restrictions in its structure;

• message (msg) types: a message is the information that a process sends to
other processes. ROS has a lot of standard types of messages;

• service (srv) types: service descriptions define the request and response data
structures for services provided by each process in ROS.

The workspace is a folder which contains packages, those packages contain our source
files and the environment or workspace provides us with a way to compile those pack-
ages. It is useful when you want to compile various packages at the same time and
it is a good way to centralize all of our developments.

In the workspace, each folder is a different space with a different role:

• the source space (src folder), where you put packages, projects, clone packages,
and so on. One of the most important files in this space is CMakeLists.txt. The
src folder has this file because it is invoked by cmake when you configure the
packages in the workspace. This file is created with the catkin init workspace
command;

• the build space (build folder), where cmake and catkin keep the cache informa-
tion, configuration and other intermediate files for our packages and projects;

3.1. ROS: ROBOT OPERATING SYSTEM 19

• development space (devel folder), used to keep the compiled programs. This is
used to test the programs without the installation step. Once the programs are
tested, you can install or export the package to share with other developers.

Regarding the Computation Graph level, ROS creates a network where all the pro-
cesses are connected. Any node in the system can access this network, interact with
other nodes, see the information that they are sending and transmit data to the
network. The basic concepts in this level are nodes, the master, messages, services,
actions and bags, all of which provide data to the graph in different ways and are
explained in the following list:

• nodes, which are processes where computation is done. If you want to have
a process that can interact with other nodes, you need to create a node with
this process to connect it to the ROS network;

• the master, which provides the registration of names and the lookup service
to the rest of the nodes. It also sets up connections between the nodes. If
you don’t have it in your system, you can’t communicate with nodes, services,
messages, and others;

• messages: nodes communicate with each other through messages. A message
contains data that provides information to other nodes. ROS has many types
of messages, and you can also develop your own type of message using standard
message types. Each message must have a name to be routed by the ROS
network. When a node is sending data, we say that the node is publishing
a topic. Nodes can receive topics from other nodes by simply subscribing to
the topic. It’s important that topic names are unique to avoid problems and
confusion between topics with the same name;

Figure 3.1: ROS message

• services: when you publish topics, you are sending data in a many-to-many
fashion, but when you need a request or an answer from a node, you can’t do
it with topics. Services give us the possibility of interacting with nodes. Also,
services must have a unique name;

Figure 3.2: ROS service

20 CHAPTER 3. MATERIALS AND METHODS

• actions, which have a client-to-server communication relationship with a spec-
ified protocol. The actions use ROS topics to send goal messages from a client
to the server. After receiving a goal, the server processes it and can give
information back to the client. This information includes the status of the
server, the state of the current goal, feedback on that goal during operation
and finally a result message when the goal is complete;

Figure 3.3: ROS action

• bags, which are formats to save and play back the ROS message data. Bags
are an important mechanism to store data, such as sensor data, that can be
difficult to collect but is necessary to develop and test algorithms.

3.2 UFactory Lite 6 robotic arm

The UFactory Lite 6 [4]is a desktop robotic arm with six degrees of freedom. It
can rotate around its base, lift objects up and down, extend its arm forward and
backward and also move its wrist and gripper. It has a reach of 440 mm, a payload
capacity of 660 g and a speed of 500 mm/s. The robotic arm is controlled by a soft-
ware interface that allows users to program movements and actions or control the
arm manually using a joystick or keyboard commands. It is compatible with a wide
range of peripherals, including cameras, sensors and grippers, which can be attached
to the arm using a modular system. This makes it a versatile tool for a variety of
applications, such as pick-and-place tasks, 3D printing and machine vision. Overall,
it is a powerful and flexible robotic arm that offers users a high level of control and
precision for different industrial and research applications.

The robotic arm workspace refers to the area within the extension of the links.
The figures and the table below show its working range and dimension

3.3. LOGITECH STREAMCAM 21

Figure 3.4: Robotic arm working range

Maximum Speed 180°/s
Joint 1 ±360°
Joint 2 ±150°
Joint 3 -3.5° ∼ 300°
Joint 4 ±360°
Joint 5 ±124°
Joint 6 ±360°

Table 3.1: Range of various motion parameters of the robotic arm

Figure 3.5: Robotic arm dimension

3.3 Logitech Streamcam

The Logitech Streamcam [6] is a portable webcam employed for capturing images
and videos. The camera is mounted on a fixed frame and positioned to have a clear
view of the workspace. It has a resolution of 1920x1080 pixels and a frame rate of
30 frames per second.

22 CHAPTER 3. MATERIALS AND METHODS

3.4 Trajectory recording and playback

One of the purposes of this project consists of recording and storing a desired path
or motion of the robotic arm in order to replay it later. It allows the robot to re-
produce a specific sequence of movements accurately, which is useful in applications
where repetitive or precise tasks need to be performed.

To execute this process using the Lite 6 robotic arm, the following steps are needed:

• choose the appropriate recording mode for trajectory capture: manual record-
ing mode where the arm is physically moved while recording or software record-
ing mode where an external palnner like Moveit! permits to define the trajec-
tory programmatically;

• begin the trajectory recording mode. This could involve pressing a specific
button or initiating the recording process through the control software. The
robotic arm will start capturing the movements that we perform or program
during this recording phase;

• physically manipulate the robotic arm to perform the desired path or motion
that we want to record. We can also program the arm to move through a
series of waypoints or execute a pre-designed motion sequence;

• once the desired trajectory is completed, stop the recording process. This can
be done by pressing a stop button or ending the recording mode through the
control software;

• store the recorded trajectory. In the specific case of this robot, the recorded
trajectory is saved in the Control box;

• to execute the recorded trajectory, we can trigger the correct mode and the
arm will then follow the stored trajectory, replicating the same sequence of
movements that were recorded earlier.

3.5 Camera calibration

In order to use the camera, first we need to calibrate it. Camera calibration involves a
chessboard pattern to determine the intrinsic and extrinsic parameters of the camera.
In the following, we can see how to do this process using chessboard images:

• consider a physical chessboard pattern (a square grid of black and white
squares) with a known number of corners;

• capture multiple images of the chessboard pattern using the camera that re-
quires calibration. It is recommended to capture images from various angles
and positions, covering different parts of the image frame, as shown in the
following pictures;

3.5. CAMERA CALIBRATION 23

Figure 3.6: Chessboard captures

• in each captured image, detect the corners of the chessboard pattern using
a corner detection algorithm, such as the Harris corner detector or the Shi-
Tomasi corner detector. The algorithm should identify the coordinates of the
internal corners of the chessboard squares;

• extract the corner coordinates from each image, storing them as corresponding
2D points in the image plane;

• assign world coordinates to the 3D points of the chessboard corners. For
example, assuming a flat chessboard lying on a plane, the world coordinates
can be assigned as the (x, y) positions of the corners on the chessboard plane.

• use the extracted 2D image points and corresponding 3D world points to es-
timate the camera’s intrinsic and extrinsic parameters. This process typically
involves solving a set of equations using algorithms like Direct Linear Trans-
form (DLT) or Zhang’s method, but in our case we use a built function of
OpenCV;

• the intrinsic parameters of the camera include the focal length, principal point,
and distortion coefficients. These parameters describe the camera’s internal
characteristics such as its lens properties and distortion effects;

• the extrinsic parameters represent the camera’s position and orientation in
the 3D world. They include the rotation matrix and translation vector, which

24 CHAPTER 3. MATERIALS AND METHODS

define the camera’s pose relative to the chessboard.

3.6 Calibration validation

In order to validate the calibration process, we consider the camera matrix equation

susv
s

 = s

uv
1

 = K R | t

X
Y
Z
1

 =

=

fx 0 cx
0 fy cy
0 0 1

 R | t

X
Y
Z
1

 =

=

fx 0 cx
0 fy cy
0 0 1

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

X
Y
Z
1

(3.1)

because it includes the previous estimated parameters. This equation allows to
calculate the 2D pixel coordinates of a given 3D real point. In the following table,
all the equation symbols are defined.

Symbols Definition
s Scaling factor
u
v

Pixel coordinates

K Camera matrix
fx Focal length along x coordinate
fy Focal length along y coordinate
cx Camera principal point along x coordinate
cy Camera principal point along y coordinate
R Rotation matrix
t Translation vectorXY
Z

 Real-world coordinates

Table 3.2: Definition of the camera matrix equation symbols

The validation process is characterized by two steps:

• the first step is to validate the previous equation (from real-world coordinates
to pixel coordinates): given a 3D real point of coordinates (0, 0, 0), we obtain
one of the inner corner of the chessboard, as shown in the following figure.

3.6. CALIBRATION VALIDATION 25

Figure 3.7: Result of the camera matrix equation validation

• the second one is to validate the inverse equation (from pixel coordinates to
real-world coordinates): given two points on the captured image, such as the
two highlighted in the following figure,

Figure 3.8: Points for the inverse camera matrix equation validation

the distance between the corresponding real points is equal to the square side
of the chessboard.
In order to determine the inverse equation, we start from the equation 3.1 and
reduce it,

s

uv
1

 =

fx 0 cx
0 fy cy
0 0 1

r11 r12 t1
r21 r22 t2
r31 r32 t3

XY
1

 (3.2)

because the 3D real points are on the plane, therefore their z coordinate is

26 CHAPTER 3. MATERIALS AND METHODS

equal to 0. As a consequence, we can get the inverse camera matrix equation
in this way: fx 0 cx

0 fy cy
0 0 1

−1 susv
s1

 =

r11 r12 t1
r21 r22 t2
r31 r32 t3

XY
1

XY
1

 =

r11 r12 t1
r21 r22 t2
r31 r32 t3

−1 fx 0 cx
0 fy cy
0 0 1

−1 susv
s

(3.3)

3.7 Marker detection

The marker detection is another important procedure to be done for the final goal.
On the plane below the camera, some ArUco markers are placed and used as ref-
erence points or landamarks in the localization and coordination between camera,
robot and objects.

Figure 3.9: ArUco markers

Once the camera captures an image of the plane, using OpenCV’s ArUco module,
the detection process is executed in this way:

• the captured image is preprocessed depending on image quality and lighting
conditions;

• the resulting image is convert to grayscale;

• initialize the ArUco dictionary using the selected dictionary;

3.8. OBJECT DETECTION AND LOCALIZATION 27

• detect markers by calling an ArUco function (aruco.detectMarkers());

• obtain the marker corners and marker IDs from the detection results.

Figure 3.10: ArUco marker detection

3.8 Object detection and localization

Object detection localization refer to the processes of identifying and determining
the precise location of some objects within an image. Given an image as the following

28 CHAPTER 3. MATERIALS AND METHODS

Figure 3.11: Input image for object detection and localization

we perform object detection based on color thresholds in the HSV color space.
Secondly, we estimate objects position. We suppose to detect only green and yellow
objects. The following steps explain how to do this process:

• we define lower and upper color ranges in the HSV color space. These color
ranges are used to create binary masks for isolating the objects of interest;

• the input image is converted from the BGR color space to the HSV color space
using the OpenCV function cv2.cvtColor();

• based on the defined color ranges, we create binary masks by thresholding the
image using cv2.inRange(). These masks separate the regions of the image
that correspond to the desired colors;

• morphological operations are applied to the binary masks to remove noise and
smooth the edges, obtaining cleaner object regions;

• using cv2.findContours(), the function detects contours in the binary masks
obtained from the previous step. It separately finds contours for green and
yellow objects;

• for each contour found, we calculate the center of mass using the moments
of the contour. If the center of mass is not close to any previously detected
center (within a defined threshold), it is considered as a new center, otherwise
we compute their mean because they refer to the same object;

• finally, we draw circles at the detected centers of the green and yellow objects
on the input image using cv2.circle().

3.8. OBJECT DETECTION AND LOCALIZATION 29

Figure 3.12: Object detetction and localization result on the input image

30 CHAPTER 3. MATERIALS AND METHODS

Chapter 4

Initial setup

In order to start working in the word of ROS and the use of the robot, it is essential
to carry out a correct initial configuration. In this chapter, we deal with all the steps
necessary to prepare the work environment and ensure correct integration between
ROS, the robot and the resources needed for development. We start by installing
ROS on the Linux PC. This framework allows us to fully exploit the potential of
robotics and automation. We explore the system requirements, necessary packages
and step-by-step procedures for a successful installation. Next, we focus on setting
up the robot itself. We explain the necessary hardware components, connections
and configurations to ensure proper communication and control of the robot via
ROS. Then, we cover the topic of robot repository installation. This step allows
us to access all the specific resources, libraries and packages for our robot, which
will be essential for the development of our project. In the end, we describe the
OpenCV and ArUco module installation in order to integrate computer vision with
the robotic arm.
Preparing the working environment correctly is the first step to ensure the success
of our robotics activities.

4.1 ROS installation

In this section, we provide a step-by-step guide to install ROS on Ubuntu. First of
all, we have to setup our computer to accept software from packages.ros.org

$ sudo sh -c ’echo "deb http :// packages.ros.org/ros/ubuntu $(
lsb_release -sc) main" > /etc/apt/sources.list.d/ros -latest.list

’

and set up our keys

$ sudo apt install curl # if you haven ’t already installed curl

$ curl -s https :// raw.githubusercontent.com/ros/rosdistro/master/

ros.asc | sudo apt -key add -

31

32 CHAPTER 4. INITIAL SETUP

Now, we can update packages and install ROS

$ sudo apt update

$ sudo apt install ros -<distro >-desktop -full # replace <distro >

with your desired ROS version (e.g. noetic)

For this project, the melodic distribution is used.
It is convenient if the ROS environment variables are automatically added to the
bash session every time a new shell is launched:

$ echo "source /opt/ros/melodic/setup.bash" >> ~/. bashrc

$ source ~/. bashrc

If we have more than one ROS distribution installed, /.bashrc must only source
the setup.bash for the version we are currently using. If we just want to change the
environment of our current shell, instead of the above, we can type:

$ source /opt/ros/melodic/setup.bash

Before using many ROS tools, we need to initialize rosdep. It enables to easily install
system dependencies for source we want to compile and is required to run some core
components in ROS. If we have not yet installed rosdep, do so as follows.

$ sudo apt install python -rosdep

With the following, we can initialize rosdep.

$ sudo rosdep init

$ rosdep update

Now, ROS is installed on the Ubuntu machine. We can verify the installation by
running the command roscore in a terminal window. This should start the ROS
core, which is the central component of the ROS system.

4.2 Robot installation

In order to install the Lite 6 robotic arm, we need to make the hardware and soft-
ware connections. Starting from the first one, we define the workspace and fix the
robot base. Then, we connect the DC input cable to the integrated control box
of the robotic arm and the AC power cable to power supply. Adjust the voltage
selector switch according to local voltage. At this point, we connect the Emergency

4.2. ROBOT INSTALLATION 33

Stop Switch, LAN cable to the robotic arm and check the power and motion status
indicators. The connection between PC and router is more stable if it is via Network
cable. When we have connected all parts, it should look like as the following figure.

Figure 4.1: Hardware connection

Regarding the software connection, we configure the IP address of the PC: the
PC and the integrated Control Box have to be in the same LAN environment. The
network segment of integrated Control Box is 192.168.1.xxx, which means that the
IPV4 network segment of the PC must be between 192.168.1.1 and 192.168.1.255
(the end number of IP address shall be different from that of the Control Box); the
factory IP address of the Lite 6 has marked on the integrated Control Box.

Now, we have the following two ways to communicate with the robotic arm:
1. If we use a browser to access xArm Studio, we can communicate with the robot
as follows:

• Open the browser

• Enter the IP address of the control box: 18333 in the search bar. For example,
if the IP of control box is 192.168.1.185, enter 192.168.1.185:18333 in the search
bar.

2. If we access xArm Studio software (developed and provided by UFactory for the
operation and control of their robots, including the Lite 6 robotic arm), we can
communicate with the robotic arm through the following steps:

• Download xArm Studio
xArm Studio download address:
https://store-ufactory-cc.myshopify.com/pages/download-xarm

• Install xArm Studio software

• Open the xArm Studio software, and enter the IP address of the control box
in the search box.

34 CHAPTER 4. INITIAL SETUP

All installation steps have been completed, therefore the robotic arm is ready to use.

4.3 UFactory Lite 6 repository installation

In order to work with the robotic arm using ROS, we need to install the relative
repository. First of all, we create and initialize the ROS workspace,

$ mkdir -p $HOME/ros/catkin_ws/src
$ /bin/bash -c "source /opt/ros/melodic/setup.bash && cd $HOME/ros/

catkin_ws/src && catkin_init_workspace && cd .. && catkin_make"

$ rosdep update

set up .bashrc file

$ echo "" >> $HOME/. bashrc
$ echo "source $HOME/ros/catkin_ws/devel/setup.bash" >> $HOME/.

bashrc

$ echo "" >> $HOME/. bashrc

and check catkin make

$ /bin/bash -ci "cd $HOME/ros/catkin_ws; catkin_make"

For installing the repository of the robot, its recommended to clone the github repo
or every folder with roslaunch packages in HOME/ros/catkin ws/src folder.

$ cd $HOME/ros/catkin_ws/src
$ git clone https :// github.com/xArm -Developer/xarm_ros.git --

recursive

We update the package

$ cd $HOME/ros/catkin_ws/src/xarm_ros
$ git pull

$ git submodule sync

$ git submodule update --init --remote

and install ROS-packages for the Lite 6 robotic arm:

$ sudo apt -get update

$ sudo apt -get install -y mongodb -server -core \

ros -melodic -warehouse -ros \

ros -melodic -warehouse -ros -mongo \

4.3. UFACTORY LITE 6 REPOSITORY INSTALLATION 35

ros -melodic -trac -ik -kinematics -plugin \

ros -melodic -joint -state -publisher -gui \

ros -melodic -moveit -visual -tools

Update Ubuntu ROS-package

$ sudo apt update -qq

and install other dependent packages

$ cd $HOME/ros/catkin_ws
$ rosdep update

$ rosdep install --from -paths . --ignore -src --rosdistro melodic -y

Build the code

$ cd $HOME/ros/catkin_ws
$ catkin_make

and source the setup script

$ echo "source $HOME/ros/catkin_ws/devel/setup.bash" >> $HOME/.
bashrc

Skip above operation if you already have that inside your HOME/.bashrc. Then do

$ source $HOME/. bashrc

Now, we can simulate the robotic arm in RViz

$ roslaunch xarm_description lite6_rviz_display.launch

and run the demo in Gazebo, an open-source simulator. It is designed to create
three-dimensional virtual environments in which robot models, objects and realistic
scenarios can be simulated. Gazebo offers a wide range of features and tools to sup-
port the development and experimentation of robots and complex robotic systems.

$ roslaunch xarm_gazebo lite6_beside_table.launch

For running this demo, the ’table’ is needed. We can go inside the Gazebo simulator,

36 CHAPTER 4. INITIAL SETUP

navigate through the model database for ’table’ item, drag and place the 3D model
inside the virtual environment and it will then be downloaded locally.

Additionally, we can execute the MoveIt motion planner, which is a powerful tool
designed to generate and optimize motion plans for the robot. MoveIt is instru-
mental in tasks such as trajectory planning, collision avoidance and path execution,
making it an essential component in robotic applications for tasks like grasping,
manipulation and navigation.

• To run Moveit motion planner along with Gazebo simulator, supposing that
no arm gripper is needed, first run:

$ roslaunch xarm_gazebo lite6_beside_table.launch

then in another terminal:

$ roslaunch lite6_moveit_config lite6_moveit_gazebo.launch

If we have a satisfied motion planned in Moveit, hit the ”Execute” button and
the virtual arm in Gazebo will execute the trajectory.

• To run Moveit! motion planner to control the real robotic arm: first make
sure the arm and the controller box are powered on, then execute:

$ roslaunch lite6_moveit_config realMove_exec.launch robot_ip

:=<your controller box LAN IP address >

If any error occured during the launch, you can play with the robot in Rviz and
execute the sucessfully planned trajectory on real arm. Moreover, we can see all the
ROS topics by using the following command:

$ rostopic list

and the ROS graph

$ rqt_graph

which plot the relationship between each node and the topics that they communicate
with.

4.4. OPENCV INSTALLATION 37

Figure 4.2: Rosgraph

4.4 OpenCV installation

OpenCV (Open Source Computer Vision Library) is an open-source computer vi-
sion library [3] used for a very wide range of applications, including medical image
analysis, stitching street view images, surveillance video, detecting and recognizing
faces, tracking moving objects, extracting 3D models, and much more.

To install the latest OpenCV version, we perform the following steps:

• install the required dependencies:

$ sudo apt install build -essential cmake git pkg -config libgtk

-3-dev \ libavcodec -dev libavformat -dev libswscale -dev

libv4l -dev \ libxvidcore -dev libx264 -dev libjpeg -dev libpng

-dev libtiff -dev \ gfortran openexr libatlas -base -dev

python3 -dev python3 -numpy \ libtbb2 libtbb -dev libdc1394

-22-dev

• clone the OpenCV’s and OpenCV contrib repositories:

$ mkdir ~/ opencv_build && cd ~/ opencv_build

$ git clone https :// github.com/opencv/opencv.git

$ git clone https :// github.com/opencv/opencv_contrib.git

• once the download is complete, create a temporary build directory, and switch
to it:

$ cd ~/ opencv_build/opencv

$ mkdir build && cd build

38 CHAPTER 4. INITIAL SETUP

Set up the OpenCV build with CMake:

$ cmake -D CMAKE_BUILD_TYPE=RELEASE \

-D CMAKE_INSTALL_PREFIX =/usr/local \

-D INSTALL_C_EXAMPLES=ON \

-D INSTALL_PYTHON_EXAMPLES=ON \

-D OPENCV_GENERATE_PKGCONFIG=ON \

-D OPENCV_EXTRA_MODULES_PATH =~/ opencv_build/opencv_contrib/

modules \

-D BUILD_EXAMPLES=ON ..

• start the compilation process:

$ make -j8

Modify the -j flag according to the processor. If you do not know the number
of cores in your processor, you can find it by typing nproc.

• install OpenCV with:

$ sudo make install

• to verify whether OpenCV has been installed successfully, we can type the
following command and we should see the OpenCV version:

$ pkg -config --modversion opencv4$

4.5 ArUco module installation

The ArUco module is a computer vision library used for marker-based augmented
reality applications. It allows us to detect and track ArUco markers. They can be
printed and placed in the real world and a camera can then track these markers to
superimpose virtual objects or information onto the real world.

To install the ArUco module in OpenCV, we can follow these steps:

• make sure we have OpenCV installed, otherwise we can install it using pip:

pip install opencv -python

• install the ArUco module

pip install opencv -contrib -python

Chapter 5

Robot kinematics

Before performing any task with the robot, we want to investigate its kinematics.
Robot kinematics deals with the study of motion and positioning of robot manipula-
tors without considering the forces and torques involved. It focuses on understanding
and describing the geometry, structure and movement of robotic systems. In partic-
ular, robot kinematics involves analyzing the relationship between the joint angles
and the resulting position and orientation of the robot’s end-effector (the tool or
device attached to the robot’s arm). It aims to determine how the robot’s joints
move and how the end-effector moves in response to those joint motions.
Robot kinematics can be divided into two main areas: forward kinematics and in-
verse kinematics.

5.1 Forward kinematics

Forward Kinematics involves calculating the position and orientation of the end-
effector based on the given joint angles. This process is essential for determining
where the robot’s end-effector will be located in the workspace for a given set of
joint values. Forward kinematics can be visualized as a mapping from joint space
to Cartesian space.

5.1.1 Lite 6 forward kinematics

In this project, we don’t use an end-effector, therefore the forward kinematics is
used to calculate the pose of the last link based on joint angles. In order to achieve
this aim, we create a ROS action client (see move arm publisher.py file) which
subscribes to the /ufactory/lite6 traj controller/follow joint trajectory topic of Fol-
lowJointTrajectoryAction type.
Then, we define a goal to send to the action server as you can see in the following
code.

Creates the SimpleActionClient , passing the topic and its type

arm_client = actionlib.SimpleActionClient("/ufactory/

lite6_traj_controller/follow_joint_trajectory",

FollowJointTrajectoryAction)

39

40 CHAPTER 5. ROBOT KINEMATICS

Waits until the action server has started up and started

listening for goals.

arm_client.wait_for_server ()

Creates a goal to send to the action server.

arm_goal = FollowJointTrajectoryGoal ()

arm_goal.trajectory.joint_names = [’joint1 ’, ’joint2 ’,’joint3 ’ ,’

joint4 ’, ’joint5 ’, ’joint6 ’]

Create a trajectory point

point = JointTrajectoryPoint ()

Store the desired joint values

point.positions = joint_values

Set the time it should in seconds take to move the arm to the

desired joint angles

point.time_from_start = rospy.Duration (10)

Add the desired joint values to the goal

arm_goal.trajectory.points.append(point)

Define timeout values

exec_timeout = rospy.Duration (10)

prmpt_timeout = rospy.Duration (5)

Send a goal to the ActionServer and wait for the server to

finish performing the action

arm_client.send_goal_and_wait(arm_goal , exec_timeout , prmpt_timeout

)

As result, the robot moves and reaches a certain position based on the specified joint
values.
Now, we want to understand what is the pose of the reference frame attached
to the robot’s last link, after finishing the previous motion. This pose is de-
fined with respect to the robot base frame. We create another ROS node (see
link6 coord listener.py file) which subscribes to the
/rviz moveit motion planning display/robot interaction interactive marker topic/feedback
topic of InteractiveMarkerFeedback type.

def coordinateCallback(data):

print("Link 6 pose:\n")

rospy.loginfo("Position x: %f, y: %f, z: %f \n", data.pose.position

.x, data.pose.position.y, data.pose.position.z)

rospy.loginfo("Orientation x: %f, y: %f, z: %f, w: %f \n", data.

pose.orientation.x, data.pose.orientation.y,data.pose.

orientation.z, data.pose.orientation.w)

def coordinate_listener ():

rospy.init_node(’listener ’, anonymous=True)

rospy.Subscriber("/rviz_moveit_motion_planning_display/

robot_interaction_interactive_marker_topic/feedback",

InteractiveMarkerFeedback , coordinateCallback)

rospy.spin()

The coordinateCallback function is executed whenever a new message is received on
the previous topic. It takes the received data as input and prints the position and

5.2. INVERSE KINEMATICS 41

orientation information of the link 6.

If during the execution of this file, the following warnings occur

[WARN] Controller failed with error GOAL TOLERANCE VIOLATED:
[WARN] Controller handle reports status ABORTED

we have to set the value of the ”stopped velocity tolerance” parameter to 0 inside
the xarm ros/xarm controller/config/lite6 traj controller file.

5.2 Inverse kinematics

Inverse Kinematics deals with the calculation of joint angles required to achieve a
desired position and orientation of the end-effector. Inverse kinematics is crucial
for motion planning and control. It is more complex than forward kinematics, as
it involves solving mathematical equations or numerical methods to find the joint
angles.

5.2.1 Lite 6 inverse kinematics

In the case of the Lite 6 robotic arm, we don’t need to solve mathematical equations
to derive the inverse kinematics, because this is already implemented in the robot.
As a consequence, we want to verify if, given any pose for the last link of the robot
with respect to the base frame, the robot is able to move and reach it. To imple-
ment this, we create a ROS node (see moveToPose2.py file) where the following
function is defined.

def move_to_goal_pose(x, y, z, roll , pitch , yaw):

#print (" Starting setup ")

DisplayTrajectory publisher to publish trajectories for RVIZ

#display_trajectory_publisher = rospy.Publisher (’/ move_group/

display_planned_path ’, moveit_msgs.msg.DisplayTrajectory)

#print (" Wiaiting for RVIZ ...")

#rospy.sleep (10)

#print (" Starting tutorial ")

name of the reference frame for the robot

#print (" Reference frame for the robot: %s"

% move_group.get_planning_frame ())

name of the end -effector link for the group

#print (" Refernce frame for the group: %s"

% move_group.get_end_effector_link ())

list of all groups in the robot

#print ("Robot groups :")

#print(robot.get_group_names ())

print("Plannning to a pose goal ...")

target_pose = geometry_msgs.msg.Pose()

target_pose.position.x = x

42 CHAPTER 5. ROBOT KINEMATICS

target_pose.position.y = y

target_pose.position.z = z

qx = np.sin(roll /2) * np.cos(pitch /2) * np.cos(yaw /2) - np.cos(

roll /2) * np.sin(pitch /2) * np.sin(yaw /2)

qy = np.cos(roll /2) * np.sin(pitch /2) * np.cos(yaw /2) + np.sin(

roll /2) * np.cos(pitch /2) * np.sin(yaw /2)

qz = np.cos(roll /2) * np.cos(pitch /2) * np.sin(yaw /2) - np.sin(

roll /2) * np.sin(pitch /2) * np.cos(yaw /2)

qw = np.cos(roll /2) * np.cos(pitch /2) * np.cos(yaw /2) + np.sin(

roll /2) * np.sin(pitch /2) * np.sin(yaw /2)

target_pose.orientation.x = qx

target_pose.orientation.y = qy

target_pose.orientation.z = qz

target_pose.orientation.w = qw

move_group.set_pose_target(target_pose ,"link6")

move_group.set_goal_tolerance (0.0005)

plan = move_group.plan()

#print (" Waiting while RVIZ displays the plan ...")

#rospy.sleep (5)

#print (" Visualizing the plan")

#display_trajectory = moveit_msgs.msg.DisplayTrajectory ()

#display_trajectory.trajectory_start = robot.

#get_current_state ()

#display_trajectory.trajectory.append(plan)

#display_trajectory_publisher.publish(display_trajectory)

#print (" Waiting while plan is visualized (again)...")

#rospy.sleep (5)

#move_group.set_max_velocity_scaling_factor (1)

move_group.go(wait=True)

print("The robot has reached the pose goal!")

move_group.stop()

It is always good to clear your targets after planning

with poses.

move_group.clear_pose_targets ()

rospy.sleep (5)

This function initializes a geometry msgs.msg.Pose object and sets its position and
orientation based on the provided inputs. It sets the pose target for the robot’s
last link using move group.set pose target() and a goal tolerance (0.0005) to deter-
mine how close the robot needs to be to the target pose to consider it success-
ful. Then, it plans a trajectory to the target pose using move group.plan() and
stores the trajectory in the plan variable. It executes the planned trajectory using
move group.go(wait=True), causing the robot arm to move to the desired pose. Af-
ter reaching the goal pose, it stops the motion and clears the pose targets.
Once this file is executed, we can see that the robotic arm succeeds to reach the
desired pose.

Chapter 6

Trajectory recording and playback

In this chapter we describe the recording and playback steps of the robot’s trajectory
using rosservice calls and, subsequently, functions defined in a ROS node, according
to the procedure seen in Section 3.4. This involves utilizing the capabilities pro-
vided by the ROS ecosystem to record and store the robot’s movements as well as
replaying those recorded trajectories. In the second part, we develop an application
programming interface in which APIs allow us to interact with the robot and control
its movements remotely. By integrating API calls into a web application, we provide
a user-friendly interface for users to command the robot, execute pre-defined trajec-
tories and customize its behavior according to their specific needs. This allows for
seamless control and automation of the robot’s actions through the web page that
we create.

6.1 Trajectory recording and playback via rosser-

vice calls

We start this section introducing the different modes of the Lite 6 robotic arm:

• Mode 0: Position control mode
The robotic arm can execute a series of motion commands (joint motion, linear
motion, circular motion, etc.) automatically planned by the control box, which
is also the mode that the control box enters by default after startup;

• Mode 1: Servoj mode
The robotic arm can accept joint position commands sent at a fixed high fre-
quency. The robotic arm responds immediately after receiving each command
and executes at the maximum speed. If the user can complete the planning
of the motion trajectory with smooth speed and acceleration and map it to
the joint space, the servoj mode can replace the planning of the control box,
and let robot execute the user’s own or third-party (such as ROS Moveit!)
planning algorithm;

43

44 CHAPTER 6. TRAJECTORY RECORDING AND PLAYBACK

• Mode 2: Joint teaching mode
The robotic arm will enter the zero gravity mode, and the user can freely drag
the links of the robotic arm to complete the teaching function. If the drag
teaching is completed, switch back to mode 0.

• Mode 4: Joint velocity control mode

• Mode 5: Cartesian velocity control mode

The robotic arm is also characterized by motion states which are divided in:

• states that the control box can set (set state())

– State 0: Start motion
In this state, the robotic arm can normally respond to and execute motion
commands. If the robotic arm recovers from an error, power outage, or
stop state (state 4), remember to set the state to 0 before continuing to
send motion commands. Otherwise the commands sent will be discarded;

– State 3: Paused state
Pause the currently executing motion and resume the motion at the in-
terruption by setting state 0 again;

– State 4: Stop state
Terminates the current motion and clears the cached subsequent com-
mands. Need to set state 0 to continue the motion.

• states that the control box can get (get state())

– State 1: In motion
The robotic arm is executing motion commands and is not stationary;

– State 2: Standby
The control box is already in motion ready state, but no motion com-
mands are cached for execution;

– State 3: Pausing
The robotic arm is set to pause state, and the motion commands buffer
may not be empty;

– State 4: Stopping
This is the state entered by default upon power-on. Stop and on com-
mands can be executed until state is set to 0;

– State 5: System reset
The user just enters the state after the mode switch or changes some
settings (such as TCP offset, sensitivity, etc.). The above operations will
terminate the ongoing movement of the robotic arm and clear the cache
commands, which is the same as the STOP state.

For example, if we want to enable the joint teaching mode, we have to use the fol-
lowing commands:

6.2. TRAJECTORY RECORDING AND PLAYBACK VIA ROS NODE 45

$ rosservice call /ufactory/set_mode 2

$ rosservice call /ufactory/set_state 0

while to enable the servoj mode:

$ rosservice call /ufactory/set_mode 1

$ rosservice call /ufactory/set_state 0

In order to record a robot trajectory (no longer than 5 minutes) directly by using
rosservice calls, the following terminal commands are needed

$ rosservice call /ufactory/set_mode 1 (1 if you want to move the

robot by using rviz or 2 if you want to move it manually)

$ rosservice call /ufactory/set_state 0 (DO NOT set STOP state (4)

during recording or saving process)

$ rosservice call /ufactory/set_recording 1 (to start recording

trajectory)

MOVE THE ROBOT ACCORDING TO THE DESIRED MODE

$ rosservice call /ufactory/set_recording 0 (to finish recording

trajectory)

$ rosservice call /ufactory/save_traj ’my_recording.traj ’ (give

your desired name with the suffix ’.traj ’) 15 (timeout)

recalling that all the active services can be list with the ROS command

$ rosservice list

After the recording step, we can run the saved trajectory in this way:

$ rosservice call /ufactory/set_mode 0

$ rosservice call /ufactory/set_state 0

$ rosservice call /ufactory/play_traj ’my_recording.traj ’ 1 (repeat

times) 1 (speed -up factor: 1x,2x or 4x speed)

6.2 Trajectory recording and playback via ROS

node

Based on the previous commands, we implement a ROS node (gesture.py) to record
and playback trajectories for the robotic arm, as well as returning the arm to its

46 CHAPTER 6. TRAJECTORY RECORDING AND PLAYBACK

home position.
After asking the user for different arguments to perform various actions,

if __name__ == "__main__":

if len(sys.argv) <= 1 or len(sys.argv) >= 5:

print("Wtire one of the following cases (after the node

name):")

print("1. playRecord trajectoryName")

print("2. action(recording or recordingAndPlay or

recPlayHome) mode(1 or 2) trajectoryName")

print("3. home")

else:

if len(sys.argv) == 3:

name = str(sys.argv [2])

playRecord(name)

elif len(sys.argv) == 4:

name = str(sys.argv [3])

mode1 = int(sys.argv [2])

action = str(sys.argv [1])

if action == ’recording ’:

startRecording(mode1)

MOVE THE ROBOT

finishRecording(name , mode2 =0)

elif action == ’recordingAndPlay ’:

startRecording(mode1)

MOVE THE ROBOT

finishRecording(name , mode2 =0)

playRecord(name)

elif action == ’recPlayHome ’:

startRecording(mode1)

MOVE THE ROBOT

finishRecording(name , mode2 =0)

playRecord(name)

go_home ()

else:

print("Error in the written sequence")

elif len(sys.argv) == 2:

go_home ()

the code calls the corresponding functions based on the provided inputs:

• startRecording(mode1):
This function performs the necessary operations to start recording a trajectory
using the robotic arm. First of all, we initialize the rospy node and makes it
anonymous. Then, we create service proxy objects (client state, client mode,
client rec, client motion and client clear err) to call specific ROS services re-
lated to robot control. We wait for the required services to become avail-
able using rospy.wait for service(), log a warning message indicating that the
wait is over and call the service to clear any existing errors on the robot.
Subsequently, we create a SetAxisRequest object to enable motion control
and sends the request using client motion.call(srv enable). After setting the
mode (the provided ”mode1” argument) and state of the robot, we call the

6.2. TRAJECTORY RECORDING AND PLAYBACK VIA ROS NODE 47

corresponding services. Finally, we create a SetInt16Request object to start
recording a trajectory by setting its data field to 1 and call the service using
client rec.call(srv recording).

def startRecording(mode1):

rospy.init_node(’lite6_traj_plays ’, anonymous=True)

client_state = rospy.ServiceProxy("ufactory/set_state",

SetInt16)

client_mode = rospy.ServiceProxy("ufactory/set_mode",

SetInt16)

client_rec = rospy.ServiceProxy("/ufactory/set_recording",

SetInt16)

client_motion = rospy.ServiceProxy("ufactory/motion_ctrl",

SetAxis)

client_clear_err = rospy.ServiceProxy("ufactory/clear_err",

ClearErr)

rospy.wait_for_service("ufactory/motion_ctrl")

rospy.wait_for_service("ufactory/set_state")

rospy.wait_for_service("ufactory/set_mode")

rospy.wait_for_service("ufactory/save_traj")

rospy.wait_for_service("ufactory/clear_err")

rospy.logwarn("out of wait")

Clear errors

srv_clearerr = ClearErrRequest ()

client_clear_err.call(srv_clearerr)

Motion enable

srv_enable = SetAxisRequest ()

srv_enable.id = 8

srv_enable.data = 1

client_motion.call(srv_enable)

rospy.sleep (1.0)

#Setting the mode and the state

srv_mode = SetInt16Request ()

srv_mode.data = mode1

srv_state = SetInt16Request ()

srv_state.data = 0

client_mode.call(srv_mode)

client_state.call(srv_state)

rospy.loginfo("Setting mode state ...")

rospy.sleep (1.0)

srv_recording = SetInt16Request ()

srv_recording.data = 1 # to start recording

client_rec.call(srv_recording)

• finish recording(name, mode2):
This function executes several operations to finish the recording of a trajec-
tory, save it and update a JSON file with the trajectory name. We start

48 CHAPTER 6. TRAJECTORY RECORDING AND PLAYBACK

initializing the rospy node, creating service proxy objects to call specific ROS
services and waiting for the required services to become available, as before.
Then, we create a SetInt16Request object to stop the recording of the tra-
jectory by setting its data field to 0 and call the corresponding service using
client rec.call(srv recording). After that, a SetStringRequest object is created
to specify the name of the trajectory file to be saved. We call the service to
save the trajectory using client save.call(srv saving) and read the content of
a JSON file. We append the name of the saved trajectory to the loaded data
and call the service to clear any existing errors on the robot. In conclusion, we
create SetInt16Request objects to set the mode and state of the robot using
the provided ”mode2” argument and call the corresponding services.

def finishRecording(name , mode2):

rospy.init_node(’lite6_traj_plays ’, anonymous=True)

client_state = rospy.ServiceProxy("ufactory/set_state",

SetInt16)

client_mode = rospy.ServiceProxy("ufactory/set_mode",

SetInt16)

client_rec = rospy.ServiceProxy("/ufactory/set_recording",

SetInt16)

client_save = rospy.ServiceProxy("/ufactory/save_traj",

SetString)

client_clear_err = rospy.ServiceProxy("ufactory/clear_err",

ClearErr)

rospy.wait_for_service("ufactory/motion_ctrl")

rospy.wait_for_service("ufactory/set_state")

rospy.wait_for_service("ufactory/set_mode")

rospy.wait_for_service("ufactory/save_traj")

rospy.wait_for_service("ufactory/clear_err")

srv_recording = SetInt16Request ()

srv_recording.data = 0 # to finish recording

client_rec.call(srv_recording)

rospy.loginfo("Saving trajectory")

srv_saving = SetStringRequest ()

srv_saving.str_data = name + ’.traj’

srv_saving.timeout = 30.0

client_save.call(srv_saving)

Save file name in json file called "trajectories.json"

#filename = "./src/xarm_ros/project/scripts/

trajectories.json"

filename = "trajectories.json"

lst = srv_saving.str_data

with open(filename , "r") as file:

load data from the file

data = json.load(file)

data.append(lst)

with open(filename , "w") as file:

6.2. TRAJECTORY RECORDING AND PLAYBACK VIA ROS NODE 49

json.dump(data ,file)

#Clear errors and change mode

srv_clearerr = ClearErrRequest ()

client_clear_err.call(srv_clearerr)

srv_mode = SetInt16Request ()

srv_mode.data = mode2

srv_state = SetInt16Request ()

srv_state.data = 0

client_mode.call(srv_mode)

client_state.call(srv_state)

rospy.sleep (3.0)

• playRecord(name):
This function performs a series of operations to run a recorded trajectory.
After the initialization of the node, the creation of the service proxy ob-
jects and waiting for the required services to become available, we create a
SetAxisRequest object to enable motion control and send the request using
client motion.call(srv enable). Then, we create SetInt16Request objects to set
the mode and state of the robot to 0 (assuming it represents the desired mode
and state) and call the corresponding services (client mode.call(srv mode) and
client state.call(srv state)). After that, we create a PlayTrajRequest object to
specify the trajectory file to be played, the repeat times and the speed factor.
We call the service to play the trajectory using play client.call(play srv), the
service to clear any existing errors on the robot and the services to change the
mode and state of the robot back to 0 using client mode.call(srv mode) and
client state.call(srv state).

def playRecord(name):

rospy.loginfo("Run the recorded trajectory")

rospy.init_node(’lite6_traj_plays ’, anonymous=True)

play_client = rospy.ServiceProxy("ufactory/play_traj",

PlayTraj)

client_state = rospy.ServiceProxy("ufactory/set_state",

SetInt16)

client_mode = rospy.ServiceProxy("ufactory/set_mode",

SetInt16)

client_motion = rospy.ServiceProxy("ufactory/motion_ctrl",

SetAxis)

client_clear_err = rospy.ServiceProxy("ufactory/clear_err",

ClearErr)

rospy.wait_for_service("ufactory/motion_ctrl")

rospy.wait_for_service("ufactory/set_state")

rospy.wait_for_service("ufactory/set_mode")

rospy.wait_for_service("ufactory/play_traj")

rospy.wait_for_service("ufactory/clear_err")

rospy.logwarn("out of wait")

Clear errors

srv_clearerr = ClearErrRequest ()

50 CHAPTER 6. TRAJECTORY RECORDING AND PLAYBACK

client_clear_err.call(srv_clearerr)

Motion enable

srv_enable = SetAxisRequest ()

srv_enable.id = 8

srv_enable.data = 1

client_motion.call(srv_enable)

rospy.sleep (1.0)

#while not rospy.is_shutdown ():

srv_mode = SetInt16Request ()

srv_mode.data = 0

client_mode.call(srv_mode)

srv_state = SetInt16Request ()

srv_state.data = 0

client_state.call(srv_state)

rospy.loginfo("Setting mode state ...")

rospy.sleep (3.0)

play_srv = PlayTrajRequest ()

play_srv.traj_file = name + ’.traj’

play_srv.repeat_times = 1

play_srv.speed_factor = 1

if not play_client.call(play_srv):

rospy.logerr("Failed to call service play_traj")

rospy.loginfo("Trajectory performed")

Clear errors and change mode

srv_clearerr = ClearErrRequest ()

client_clear_err.call(srv_clearerr)

srv_mode = SetInt16Request ()

srv_mode.data = 0

client_mode.call(srv_mode)

srv_state = SetInt16Request ()

srv_state.data = 0

client_state.call(srv_state)

• go home():
This function is only used to move robot arm to its home position. The first
part of the code is equal to the previous ones. Subsequently, we set mode and
state of the robot and we create a MoveRequest object to specify the param-
eters for moving the robot to the home position, including velocity (mvvelo),
acceleration (mvacc) and time (mvtime). Then, we call the service to move
the robot using client home.call(srv home). In the end, we clear any existing
errors and change the mode and state of the robot back to 0.

def go_home ():

rospy.loginfo("Go home")

rospy.init_node(’lite6_traj_plays ’, anonymous=True)

client_home = rospy.ServiceProxy("ufactory/go_home", Move)

6.2. TRAJECTORY RECORDING AND PLAYBACK VIA ROS NODE 51

client_state = rospy.ServiceProxy("ufactory/set_state",

SetInt16)

client_mode = rospy.ServiceProxy("ufactory/set_mode",

SetInt16)

client_clear_err = rospy.ServiceProxy("ufactory/clear_err",

ClearErr)

client_motion = rospy.ServiceProxy("ufactory/motion_ctrl",

SetAxis)

rospy.wait_for_service("ufactory/motion_ctrl")

rospy.wait_for_service("ufactory/go_home")

rospy.wait_for_service("ufactory/set_state")

rospy.wait_for_service("ufactory/set_mode")

rospy.wait_for_service("ufactory/clear_err")

rospy.logwarn("out of wait")

Clear errors

srv_clearerr = ClearErrRequest ()

client_clear_err.call(srv_clearerr)

Motion enable

srv_enable = SetAxisRequest ()

srv_enable.id = 8

srv_enable.data = 1

client_motion.call(srv_enable)

rospy.sleep (1.0)

srv_mode = SetInt16Request ()

srv_mode.data = 0

client_mode.call(srv_mode)

srv_state = SetInt16Request ()

srv_state.data = 0

client_state.call(srv_state)

rospy.loginfo("Setting mode state ...")

rospy.sleep (1.0)

srv_home = MoveRequest ()

srv_home.mvvelo = 0.6

srv_home.mvacc = 2.5

srv_home.mvtime = 0

client_home.call(srv_home)

rospy.sleep (5.0)

Clear errors and change mode

srv_clearerr = ClearErrRequest ()

client_clear_err.call(srv_clearerr)

srv_mode = SetInt16Request ()

srv_mode.data = 0

client_mode.call(srv_mode)

srv_state = SetInt16Request ()

srv_state.data = 0

client_state.call(srv_state)

52 CHAPTER 6. TRAJECTORY RECORDING AND PLAYBACK

6.3 Trajectory recording and playback via web

page

We can proceed with the creation of an application interface to be able to call the
previous functions directly from the web page. In order to do that, we need first to
install Flask.

6.3.1 Flask installation

Flask is a web application framework [2] or simply a web framework which repre-
sents a collection of libraries and modules that enable web application developers to
write applications without worrying about low-level details such as protocol, thread
management, and so on. To install Flask, the latest version of Python is recom-
mended. (Flask supports Python 3.7 and newer)
First of all we have to create an environment: a project folder and a venv folder
within:

$ mkdir myproject

$ cd myproject

$ python3 -m venv venv

Then activate the corresponding environment:

$. venv/bin/activate

and the shell prompt will change to show the name of the activated environment.
Within it, use the following command to install Flask:

$ pip install Flask

Flask is now installed.

6.3.2 Application web page

After the previous installation, we can develop the web page that allows us to make
API calls. They are requests made by one software application to another through
a defined set of rules and protocols. An API call specifies the desired action or in-
formation that the calling application wants to obtain from the API provider. The
latter processes the request and returns the requested data or performs the requested
action, allowing the two applications to communicate and exchange information ef-
fectively.
Therefore, this web page will serve as an interface to interact with the APIs and
control the desired functionalities of the system.

6.3. TRAJECTORY RECORDING AND PLAYBACK VIA WEB PAGE 53

We create a a python file (application.py) in which we import the Flask class
and create an instance of it which will be our WSGI application. Then, we use the
route() decorator to tell Flask what URL should trigger our function.
We start creating the home page by using HTML language.

Figure 6.1: Home page

The home page is divided in three sections: Recording, Play and Move to home.

• The first section permits to record a robot trajectory: after setting the initial
robot mode, we press on ”Start recording” button and the following API is
called.

API to only record the robot trajectory

@app.route("/start_recording", methods =["GET", "POST"])

def start_recording ():

initial_mode = int(request.form.get("recStart_mode"))

startRecording(mode1=initial_mode)

return render_template("record_page.html")

This function recalls startRecording(mode1) defined in the gesture.py node
and it returns a html page where we can specify the trajectory name and the
final robot mode. After moving the robot according to the initial mode, we
press on ”Finish recording” button and the following API call is executed.

API to finish recording the robot trajectory

54 CHAPTER 6. TRAJECTORY RECORDING AND PLAYBACK

@app.route("/finish_recording", methods =["GET", "POST"])

def finish_recording ():

traj = request.form.get("recTraj_name")

final_mode = int(request.form.get("recFinal_mode"))

finishRecording(name=traj ,mode2=final_mode)

return render_template("record2_page.html")

It calls the finishRecording(name, mode2) function and returns the template
we want to display in the user’s browser.

• In the second section, we can run a recorded robot trajectory by simply writing
its name. Once the ”Start playing” button is pressed, another API call is made

API to run a recorded trajectory

@app.route("/play", methods =["GET", "POST"])

def traj_play ():

traj = request.form.get("playTraj_name")

playRecord(name=traj)

return render_template("play_page.html")

during which the playRecord(name) function executes the corresponding robot
motion.

• The last section is used only to move the robot to its home pose through the
following API call.

API to move the robot to the home pose

@app.route("/move_to_home", methods =["GET", "POST"])

def move_to_home ():

go_home ()

return render_template("home_page.html")

In the application interface we also create the recorded trajectories page

Figure 6.2: Recorded trajectories page

6.3. TRAJECTORY RECORDING AND PLAYBACK VIA WEB PAGE 55

where we can find all the trajectories and we can directly run one of them. In
the end, we introduce also the robot characteristics page

Figure 6.3: Robot characteristics page

In order to run this application, we need to write the following command lines

56 CHAPTER 6. TRAJECTORY RECORDING AND PLAYBACK

in the terminal:

$ flask run

$ export FLASK_APP=application.py

$ flask run

This launches a very simple builtin server. Therefore, if we head over to local-
host:5000 (where 5000 is the port number) we can see our home page. If we want
to make a specific API call, we use localhost:5000/ followed by the name of the
function (Example: localhost:5000/go home).

The server is only accessible from our own computer, not from any other in the
network. This is the default because in debugging mode a user of the application
can execute arbitrary python code on your computer. If you have the debugger dis-
abled or trust the users on your network, we can make the server publicly available
simply by adding –host=0.0.0.0 to the command line:

$ flask run --host =0.0.0.0

This tells your operating system to listen on all public IPs.

Finally, by enabling debug mode, the server will automatically reload if code changes,
and will show an interactive debugger in the browser if an error occurs during a re-
quest.

Chapter 7

Computer vision and robotics

This chapter illustrates how to integrate computer vision with robotics. Our focus
lies in implementing the procedure leading to the object detection and localization,
followed by developing intelligent algorithms to empower the robotic arm with the
ability to autonomously move towards the detected objects. This goal is achieved
through the implementation of a ROS network and the use of a class (Operations
class) which provides a collection of useful methods for performing calculations re-
lated to pixel coordinates and coordinate transformations between different reference
frames. The class methods will be explained in detail when called in the different
nodes.

7.1 Image capture

As already seen in Section 3.5, one fundamental and crucial step to use the camera is
the calibration process in order to achieve accurate and reliable results. This involves
capturing a series of images (from various angles and positions) of a chessboard pat-
tern. The code which implements this step is in the chessboardCaptures.py file.

cap = cv2.VideoCapture (0) # 0 is the camera index

count = 0 # initialize the counter

while True:

ret , frame = cap.read() # read a frame from the camera

cv2.imshow(’frame’, frame)

check for spacebar key press

if cv2.waitKey (1) & 0xFF == ord(’ ’):

count = count + 1

Save the frame in the "Captures" folder with a

unique filename

filename = ’capture {}.jpg’.format(count)

filepath = os.path.join(’../ Captures ’, filename)

cv2.imwrite(filepath , frame)

print("Capture {} saved!".format(count))

If the user presses the ’q’ key , quit the program

elif cv2.waitKey (1) & 0xFF == ord(’\n’):

break

57

58 CHAPTER 7. COMPUTER VISION AND ROBOTICS

cap.release () # release the camera

cv2.destroyAllWindows () # destroy all windows

This code sets up the video capture using cv2.VideoCapture(0), which accesses the
default camera (if you have multiple cameras, you can change the index accord-
ingly) and a loop is initialized to continuously read frames from it. Inside this loop,
the code waits for user input. If the spacebar key is pressed, the following actions
are performed: the count of captured frames is incremented, the frame is saved as
an image file in the ”Captures” directory using cv2.imwrite(filepath, frame) and a
message is printed to the console to indicate that the capture has been saved. If
the user presses the Enter key, the loop breaks and the program terminates. After
exiting the loop, the code releases the camera using cap.release() and closes all the
OpenCV windows with cv2.destroyAllWindows(). This is essential to release the
camera resources properly and close the display windows.

7.2 Camera calibration

After the previous step, we create the chessboard node, which is responsible to
send the captured chessboard images to the calibration node in order to make
the camera calibration. The communication between these two nodes takes place
through a ROS service called chessboard captures.

Figure 7.1: chessboard captures service

In the chessboard node, we start initializing the ROS node and the service, as
we can see in the following code.

Initialize the ROS node and service

rospy.init_node(’chessBoard ’)

img_srv = rospy.Service(’chessboard_captures ’, ChessBoardCaptures ,

get_images)

Initialize the OpenCV bridge

bridge = CvBridge ()

Spin the ROS node to keep it running

rospy.spin()

Then, the get images function is assigned as the callback for the service. The latter

7.2. CAMERA CALIBRATION 59

is designed to handle requests for chessboard captures. Furthermore, the OpenCV
bridge is initialized to ensure smooth communication between OpenCV and ROS,
as it provides functions for converting images between the two environments. After
that, the script enters a loop using rospy.spin(), which is essential to keep the ROS
node running continuously. This allows the node to listen for incoming service re-
quests and respond accordingly.
The callback function is the core of the script, responsible for processing the image
captures and constructing the response.

def get_images(request):

Get the path to the folder containing the images

folder_path = request.folder_path

Get a list of image file paths in the folder

image_paths = sorted(glob.glob(folder_path + ’/*. jpg’))

Convert each image to a ROS image message and add it to

the response

images = []

for image_path in image_paths:

cv_image = cv2.imread(image_path)

ros_image = bridge.cv2_to_imgmsg(cv_image , encoding=’bgr8’)

images.append(ros_image)

Return the list of ROS image messages as the response

return ChessBoardCapturesResponse(images)

When invoked, this function expects a request object that contains the folder path,
representing the location of the images to be processed.
First, the code uses the glob module in Python to obtain a sorted list of image file
paths within the specified folder. The glob.glob() function enables pattern matching,
allowing the script to fetch all image files with a ”.jpg” extension in the specified
directory.
Next, the function iterates through the list of image paths and reads each image
using the OpenCV library’s cv2.imread() function. For each image, the code then
employs the ROS CvBridge to convert the image from the OpenCV format to a
ROS image message.
As the images are processed, they are appended to a list named images, which will
store the chessboard captures as ROS image messages. In conclusion, the function
constructs a ChessBoardCapturesResponse object, likely a custom ROS message type
that can encapsulate the list of ROS image messages as the response to the service
request.

On the other hand, the calibration node acts as client to request chessboard images
and compute the calibration parameters through the computeCalibrationParams()
function.

def computeCalibrationParams ():

60 CHAPTER 7. COMPUTER VISION AND ROBOTICS

get_images = rospy.ServiceProxy(’chessboard_captures ’,

ChessBoardCaptures)

Call the service to get the images

folder_path = ’./src/xarm_ros/project/Captures ’ # path as

request message

response = get_images(folder_path)

CAMERA CALIBRATION PART

Defining the dimensions of checkerboard

chessboard_size = (10,7) # (number of inner points in a row ,

number of inner points in a column)

criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER ,

30, 0.001)

Creating vector to store vectors of 3D points for each

chessboard image

objpoints = [] # 3D points in real world space

Creating vector to store vectors of 2D points for each

checkerboard image

imgpoints = [] # 2D points in image plane

Defining the world coordinates for 3D points

objp = np.zeros((np.prod(chessboard_size), 3), dtype=np.float32

)

objp [:,:2] = np.mgrid [0: chessboard_size [0], 0: chessboard_size

[1]].T.reshape(-1, 2)*2 # 2cm is the dimension of the squares

in the chessboard

gray_img = np.zeros ((480 ,640 ,3), dtype=np.uint8)

bridge = CvBridge ()

Process the images in the response

for image in response.images:

cv_image = bridge.imgmsg_to_cv2(image , desired_encoding=’

passthrough ’)

#img = cv2.imread(cv_image)

gray_img = cv2.cvtColor(cv_image , cv2.COLOR_BGR2GRAY)

Find the chess board corners

ret , corners = cv2.findChessboardCorners(gray_img ,

chessboard_size , None)

If desired number of corner are detected , we refine the

pixel coordinates and display

them on the images of chessboard

if ret == True:

objpoints.append(objp)

refining pixel coordinates for given 2d points.

corners2 = cv2.cornerSubPix(gray_img , corners , (11 ,11)

,(-1,-1), criteria)

imgpoints.append(corners2)

Draw and display the corners

img = cv2.drawChessboardCorners(cv_image ,

chessboard_size , corners2 , ret)

7.2. CAMERA CALIBRATION 61

ret , mtx , dist , rvecs , tvecs = cv2.calibrateCamera(objpoints ,

imgpoints , gray_img.shape [::-1], None , None)

return mtx , dist , rvecs , tvecs , cv_image

This function establishes a connection to the service using rospy.ServiceProxy() to
create a proxy for calling the service. After connecting to the service, it requests
images of the chessboard from the specified folder path. The response is stored in
the variable response, which contains a list of ROS image messages representing the
captured chessboard images.
Next, it proceeds to define the dimensions of the chessboard and create the world
coordinates corresponding to the 3D points on the chessboard (objp). These are es-
sential inputs for the camera calibration process. Each image in the response is con-
verted from a ROS image message to an OpenCV image using the imgmsg to cv2()
method. The OpenCV library is then used to find the corners of the chessboard
in the image using cv2.findChessboardCorners(). If the corners are successfully de-
tected, the object points and refined image points are appended to separate lists
(objpoints and imgpoints, respectively). Subsequently, the function proceeds to per-
form the camera calibration using cv2.calibrateCamera(), which returns the following
parameters:

• ret : the value of the root mean square error (reprojection error) after calibra-
tion. A lower value indicates a better calibration;

• mtx : the 3x3 camera matrix (intrinsic parameters) which contains parameters
such as focal length, optical center and other internal camera factors;

• dist : the vector of distortion coefficients. They describe the distortion of the
camera lens;

• rvecs : a vector of rotation vectors. Each element of rvecs is a rotation vector
representing the orientation of the camera in the coordinate system of the 3D
world;

• tvecs : a vector of translation vectors. Each element of tvecs is a translation
vector representing the position of the camera in the coordinate system of the
3D world.

The calibration node is also a server to handle another ROS service called getCali-
brationParams, which is responsible for providing camera calibration parameters and
the last chessboard image to the service client, calibrationValidation and markerDetection
node, which performs camera calibration validation and marker detection.
To implement the getCalibrationParams service server, we define the following func-
tion

def get_params(mtx , dist , rvecs , tvecs , img):

params_srv = rospy.Service (" getCalibrationParams",

CalibrationParams , params_callback)

rospy.spin()

62 CHAPTER 7. COMPUTER VISION AND ROBOTICS

which takes the camera calibration parameters (mtx, dist, rvecs, tvecs) and the last
chessboard image (img) as inputs.
The callback function params callback is set as the handler, ensuring that this func-
tion is executed whenever a request is made to the service.

def params_callback(request):

req = request.params

bridge = CvBridge ()

if req == "params ":

array_mtx = mtx.flatten ().astype(np.float32)

array_dist = dist.flatten ().astype(np.float32)

array_rvec = rvecs [-1]

array_tvec = tvecs [-1]

ros_image = bridge.cv2_to_imgmsg(img , encoding=’bgr8 ’)

return CalibrationParamsResponse(array_mtx , array_dist ,

array_rvec , array_tvec , ros_image)

When the service is called, it expects a request that contains certain parameters.
After extracting the necessary field from the request, the function checks it. If it is
correct, it proceeds to prepare the response message to be sent back to the service
caller.
The calibration parameters and the chessboard image are used to create appropriate
response variables: array mtx, array dist, array rvec, array tvec, and ros image. In
particular, the calibration parameters are flattened and converted to the appropriate
data types (np.float32) to facilitate serialization, the last element of the rvecs and
tvecs lists is taken and assigned respectively to array rvec and array tvec (this is
done because we are interested only in the last element of the two lists) and the img
(OpenCV image) is converted to a ROS image message using the cv2 to imgmsg()
method, ensuring compatibility with the ROS communication framework. In the
end, the function returns a CalibrationParamsResponse message to the service caller,
containing the calibration parameters and the image.

7.3 Calibration validation

The calibration validation process is implemented in the calibrationValidation
and markerDetection node. As a first step in achieving this goal, we need to
retrieve the camera calibration parameters from the calibration node. This is
done through the getCalibrationParams() function which initiates a service client
(params client) to request the needed parameters from the ROS service named get-
CalibrationParams. The following figure shows the communication between the two
involved nodes.

7.3. CALIBRATION VALIDATION 63

Figure 7.2: getCalibrationParams service

The response contains the camera matrix (mtx), distortion coefficients (dist), ro-
tation vector (rvec), translation vector (tvec) and the chessboard image (img). The
latter is converted from ROS image format to OpenCV format using the CvBridge
library.

def getCalibrationParams ():

params_client = rospy.ServiceProxy(’getCalibrationParams ’,

CalibrationParams)

message_request = "params"

response = params_client(message_request)

mtx = np.array(response.mtx).reshape ((3,3))

dist = np.array(response.dist).reshape ((1 ,5))

rvec = np.array(response.rvec).reshape ((3 ,1))

tvec = np.array(response.tvec).reshape ((3 ,1))

img = response.image

Initialize CvBridge object for converting between OpenCV

and ROS image formats

bridge = CvBridge ()

img = bridge.imgmsg_to_cv2(img , desired_encoding=’

passthrough ’)

return mtx , dist , rvec , tvec , img

After receiving the desired parameters, we set up an object (obj) of the Operations
class and initialize the camera attributes with the retrieved calibration parameters
through the set camera attributes() method.

class Operations:

mtx = None # Camera matrix

dist = None # Distortion parameter

rvec = None # Rotation vector

tvec = None # Translation vector

chess_image = None

scalingFactor = 0

def __init__(self):

pass

def set_camera_attributes(self , mtx , dist , rvec , tvec):

Operations.mtx = mtx

Operations.dist = dist

Operations.rvec = rvec

64 CHAPTER 7. COMPUTER VISION AND ROBOTICS

Operations.tvec = tvec

The obj object is used to execute class functions for the validation process according
to the two steps described in the Section 3.6.
Considering the camera matrix equationsusv

s

 = s

uv
1

 = K R | t

X
Y
Z
1

 =

=

fx 0 cx
0 fy cy
0 0 1

 R | t

X
Y
Z
1

 =

=

fx 0 cx
0 fy cy
0 0 1

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

X
Y
Z
1

(7.1)

• the first step is to validate the real-world-to-pixel coordinates transforma-
tion. In order to do that, we define the pixelCoordsValidation(mtx, dist, r wc,
t wc, chess image) function which calculates the pixel coordinates for three
3D points in the world space (0, 0, 0), (2, 0, 0), and (0, 2, 0) using the camera
calibration parameters. In particular, the second and third point are used to
create the word reference frame. Then, the function draws points and lines on
the chessboard image corresponding to these calculated pixel coordinates as
we can see in the following figure

Figure 7.3: World reference frame

where the z axis enters the plane. As we can see from the figure, the obtained
result is satisfactory. In fact, the 3D point (0, 0, 0) corresponds to one of the

7.3. CALIBRATION VALIDATION 65

inner angles while the other two (2, 0, 0) and (0, 2, 0) are transformed in the
green and blue points. This is an expected result since the square side on the
chessboard is 2 (cm).

def pixelCoordsValidation(mtx , dist , r_wc , t_wc , chess_image):

According the formula s * [u, v, 1]’ = K * [R|t] *

[X, Y, Z, 1]’ , we can validate the camera calibration

considering a point in the 3D world space of coordinates

(0, 0, 0). If we obtain one of the inner corner of the

chessboard we can state that the camera is well

calibrated. Moreover , I choose other 2 points , (2,0,0)

and (0,2,0) to create the world reference frame.

point3D_list = ([0,0,0], [2, 0, 0], [0, 2 , 0])

pixel2D_list = []

for i in point3D_list:

x = i[0]

y = i[1]

z = i[2]

pixel_coords , scalingFactor = obj.

getPixelCoord_from_3Dcoord(x, y, z)

print("Real 3D coordinates:", i)

print("Pixel coordinates:", pixel_coords)

pixel2D_list.append(pixel_coords)

for j in pixel2D_list:

Draw a point at the (x=u, y=v) coordinates

cv2.circle(chess_image , (j[0],j[1]), 5, (0, 0, 0), -1)

Define the color and thickness of the line

color_green = (0, 255, 0) # Green

color_red = (0, 0, 255) # Red

thickness = 2

Draw the lines on the image

cv2.line(cv_image , (pixel2D_list [0][0] , pixel2D_list [0][1])

, (pixel2D_list [1][0] , pixel2D_list [1][1]) , color_green ,

thickness)

cv2.line(cv_image , (pixel2D_list [0][0] , pixel2D_list [0][1])

, (pixel2D_list [2][0] , pixel2D_list [2][1]) , color_red ,

thickness)

print("In the image you can see the world reference frame:"

)

print("Green line: x axis")

print("Red line: y axis")

print("z axis enter on the screen")

cv2.imshow("img", chess_image)

cv2.waitKey (0)

return (pixel2D_list [0][0] , pixel2D_list [0][1]) , (

pixel2D_list [1][0] , pixel2D_list [1][1]) , scalingFactor

Within the previous function, the computation of pixel coordinates is carried

66 CHAPTER 7. COMPUTER VISION AND ROBOTICS

out through the getPixelCoord from 3Dcoord() method of the Operations class.

def getPixelCoord_from_3Dcoord(self , x, y, z):

point3D = np.array([x, y, z , 1]).reshape (4,1)

Computation of Rotation matrix

self.R_wc ,_ = cv2.Rodrigues(self.rvec)

Computation of the Roto -translation mtx

rotoTranslmtx = Operations.compute_rotoTransl_mtx(self ,

self.R_wc , self.tvec)

Computation of the vector containing the pixel

coordinates s*[u, v, 1]

pixel_2Dcoord = np.dot(np.dot(self.mtx , rotoTranslmtx),

point3D)

scalingFactor = pixel_2Dcoord [2]

self.scalingFactor = scalingFactor

pixel_2Dcoord = pixel_2Dcoord/ self.scalingFactor

Pixel coordinates

u = pixel_2Dcoord [0]

v = pixel_2Dcoord [1]

pixel_coordinates = np.array ([u,v])

return pixel_coordinates , scalingFactor

It takes three input parameters: x, y and z, representing the 3D coordinates
of a point in the real-world space. The function creates 4x1 NumPy array
point3D with the provided coordinates and an additional 1 appended at the
end. This last value is necessary for performing the homogeneous coordinate
transformation. Then, we compute the rotation matrix Rwc from the rota-
tion vector rvec using the cv2.Rodrigues() function. After combining properly
the rotation matrix Rwc and the translation vector tvec to create the roto-
translation matrix, we perform the transformation of the 3D point to pixel
coordinates on the camera image plane. This is done by computing the ma-
trix product of the camera matrix and the roto-translation matrix with the
3D point (Equation 7.1). Subsequently, we extract the scaling factor which
is used to normalize the pixel coordinates and u and v from the normalized
pixel 2Dcoord array. In the end, we store the scaling factor in the class at-
tribute for potential future use and return the computed pixel coordinates as
a NumPy array [u, v], along with the scaling factor.

• The second step consists in validating the accuracy of the inverse transforma-
tion formula, specifically from pixel coordinates to real-world coordinates.fx 0 cx

0 fy cy
0 0 1

−1 susv
s1

 =

r11 r12 t1
r21 r22 t2
r31 r32 t3

XY
1

XY
1

 =

r11 r12 t1
r21 r22 t2
r31 r32 t3

−1 fx 0 cx
0 fy cy
0 0 1

−1 susv
s

(7.2)

This process is performed by considering two points: the origin and the end-

7.3. CALIBRATION VALIDATION 67

point of one axis of the world reference frame.
We define the realCoordsValidation(point1, point2) function

def realCoordsValidation(point1 , point2):

In order to validate the inverse formula , we consider

2 points:

- point 1: origin of the world ref frame

- point 2: endpoint of one axis of the world ref frame

We compute the corresponding real -world 3D coords

(with z = 0) and calculate the distance between them.

This distance has to be equal to 2 (cm), named the

dimension of the square side in the chessboard

point_3Dcoord = obj.get3Dcoord_from_pixelCoord(point1 [0],

point1 [1])

point2_3Dcoord = obj.get3Dcoord_from_pixelCoord(point2 [0],

point2 [1])

dist = obj.get_distance(point_3Dcoord , point2_3Dcoord)

dist = float(dist [0])

print("The distance between the origin of the world ref

frame and the axis endpoint is")

print(dist)

in which the get3Dcoord from pixelCoord() method of the Operations class,
that we will describe later, is called to obtain the 3D real-world coordinates
for the two points passed as inputs. The function then calculates the Euclidean
distance between the two obtained 3D coordinates using the get distance(point 3Dcoord,
point2 3Dcoord) method. This represents the physical distance between the
origin and the endpoint of the reference axis. By comparing the calculated
distance between two reference points in the real-world space to the known di-
mension of the chessboard’s square side, the function provides a way to validate
that the pixel-to-real-world coordinate conversion is functioning as expected
and accurately represents the physical world measurements.

The class method get3Dcoord from pixelCoord() converts pixel coordinates
from the camera’s image plane into corresponding real-world 3D coordinates,
according to the Equation 7.2.

def get3Dcoord_from_pixelCoord(self , u, v):

This function returns the pixel coordinates starting

from the 3D coordinates of a real point (real point

has z coord = 0)

pixelPoint = np.array ([u, v, 1]).reshape (3,1)

pixelPoint = pixelPoint * self.scalingFactor [0]

inv_mtx = np.linalg.inv(self.mtx)

self.R_wc ,_ = cv2.Rodrigues(self.rvec)

modified_rotoTranslmtx = Operations.

compute_modified_rotoTransl_mtx(self , self.R_wc , self.tvec)

inv_modifRotoTransmtx = np.linalg.inv(

modified_rotoTranslmtx)

68 CHAPTER 7. COMPUTER VISION AND ROBOTICS

point3Dcoord = np.dot(np.dot(inv_modifRotoTransmtx ,

inv_mtx), pixelPoint)

x = point3Dcoord [0]

y = point3Dcoord [1]

real_coordinates = np.array([x, y])

return real_coordinates

It takes two parameters, u and v, which represent the pixel coordinates of a
point in the camera’s image plane. Then, a pixel coordinate vector pixelPoint
is created by concatenating the input values along with a constant value of 1.
The resulting vector is multiplied by the scalingFactor attribute stored in the
Operations class to scale the pixel coordinates. This is applied to account for
any scaling factor used during the pixel-to-3D coordinate conversion.
Next, we compute the inverse of the camera matrix mtx (intrinsic calibration
matrix) using np.linalg.inv(self.mtx) and the rotation matrix Rwc from the ro-
tation vector rvec using the OpenCV function cv2.Rodrigues().
Then, we compute the modified roto-translation matrix through the following
class method.

def compute_modified_rotoTransl_mtx(self , R, t):

select the first column of R

firstColumn = R[: ,0]. reshape (3,1)

select the second column of R

secondColumn = R[:,1]. reshape (3,1)

modifiedRotoTranslmtx = np.concatenate ((firstColumn ,

secondColumn , t), axis =1)

return modifiedRotoTranslmtx

The resulting matrix is simplified with respect to the one obtained in the pre-
vious step because we assume that the real-world points lie on a plane with a
known depth (z coordinate) of 0.

After that, the inverse of the modified roto-translation matrix is computed
and the real-world 3D coordinates are obtained by performing a series of ma-
trix multiplications:

– The inverse modified roto-translation matrix is pre-multiplied with the
inverse camera matrix;

– The result is then post-multiplied by the scaled pixel coordinate vector.

The resulting 3D point coordinates are extracted from the matrix, with the x
and y values representing the real-world coordinates of the point in the plane
(with z equal to 0).
Finally, the calculated real-world coordinates are returned by the function.

7.4. MARKER DETECTION 69

7.4 Marker detection

After validating the camera calibration, we can carry out the marker detection. This
process involves using computer vision techniques to identify specific visual patterns
or markers in images or video streams captured by a camera. These markers are de-
signed to be easily recognizable and distinguishable from their surroundings because
they serve as reference points that help the robot to determine its own position and
orientation.
The calibrationValidation and markerDetection node implements this pro-
cess. In order to do that, this node needs a frame captured by the camera, in
which the ArUco markers are present (Figure 3.9). Therefore, we create a node
called camera which acts as server to provide the desired captured image through
the following service.

Figure 7.4: /logitech camera/image service

We start describing the service server in which the frame publisher() function initial-
izes two service publishers using the /logitech camera/image and /logitech camera/image2
service names. Both publishers use the get image callback function to handle service
requests. At the moment, we only consider the first service.

def frame_publisher ():

Initialize publishers

image_pub = rospy.Service(’/logitech_camera/image ’, CameraFrame

, get_image)

image_pub2 = rospy.Service(’/logitech_camera/image2 ’,

CameraFrame , get_image)

Spin the ROS node to keep it running

rospy.spin()

if __name__ == ’__main__ ’:

Initialize ROS node

rospy.init_node(’camera ’, anonymous=True)

frame_publisher ()

The callback function takes a ROS service request as its argument and initializes
a video capture object named cap using OpenCV’s VideoCapture class. The argu-
ment 0 specifies that the default camera (usually the first camera available) should
be used. Optionally, we can also set a specific resolution for the captured frames.
Then, a CvBridge object is created to enable the conversion between OpenCV im-
ages and ROS image messages.

70 CHAPTER 7. COMPUTER VISION AND ROBOTICS

If the received request req is equal to the string ”frame”, the function captures a
single frame from the camera using cap.read(). The returned values ret (a boolean
indicating if the frame was captured successfully) and frame (the captured frame)
are assigned. If the frame capture was successful (ret is True), the frame is converted
into a ROS image message, ros image, and assigned to the variable image.
In the end, the function returns a ROS service response using the CameraFrameRe-
sponse class, containing the image message.

def get_image(request):

req = request.message

Initialize video capture from Logitech camera

cap = cv2.VideoCapture (0)

Set camera resolution

#cap.set(cv2.CAP_PROP_FRAME_WIDTH , 640)

#cap.set(cv2.CAP_PROP_FRAME_HEIGHT , 480)

Initialize CvBridge object for converting between OpenCV

and ROS image formats

bridge = CvBridge ()

if req == "frame":

ret , frame = cap.read()

if ret:

Convert theimage to a ROS image message and add it

to the response

#cv_image = cv2.imread(frame)

ros_image = bridge.cv2_to_imgmsg(frame , encoding=’bgr8’

)

image = ros_image

Return the list of ROS image messages as the response

return CameraFrameResponse(image)

Now, we consider the service client where the marker detection process takes place.
The focal function is getMarkerCoordinates() which fetches camera frames, detects
ArUco markers, extracts inner corner coordinates and returns the detected marker
corner coordinates along with the image.

def getMarkerCoordinates ():

get_image = rospy.ServiceProxy(’/logitech_camera/image ’,

CameraFrame)

message = "frame"

response = get_image(message)

img = response.image

Initialize CvBridge object for converting between OpenCV and

ROS image formats

bridge = CvBridge ()

marker_image = bridge.imgmsg_to_cv2(img , desired_encoding=’

passthrough ’)

7.4. MARKER DETECTION 71

corner1 = 0

corner2 = 0

corner3 = 0

corner4 = 0

Define the Aruco dictionary to use

aruco_dict = aruco.Dictionary_get(aruco.DICT_4X4_250)

Define the Aruco parameters

aruco_params = aruco.DetectorParameters_create ()

Detect the Aruco markers in the frame

corners , ids , rejectedImgPoints = aruco.detectMarkers(

marker_image , aruco_dict , parameters=aruco_params)

Draw the marker on the frame

aruco.drawDetectedMarkers(cv_image , corners , ids)

Select and draw a circle on the inner corner of each marker

Check if any markers were detected

if ids is not None:

Get the index of the first detected marker

index = np.squeeze(np.where(ids == 1))

Check if the first marker was detected

if index.size > 0:

Get the corners of the first marker

marker_corners = corners[index [0]]

Get the right -bottom corner of the first marker

corner = marker_corners [0][2]

corner1 = (int(corner [0]), int(corner [1]))

Draw a circle on the right -bottom corner of the

#first marker

cv2.circle(marker_image , (int(corner [0]), int(corner

[1])), 3, (0, 0, 255), -1)

if ids is not None:

Get the index of the second detected marker

index = np.squeeze(np.where(ids == 2))

Check if the second marker was detected

if index.size > 0:

Get the corners of the second marker

marker_corners = corners[index [0]]

Get the left -bottom corner of the second marker

corner = marker_corners [0][3]

corner2 = (int(corner [0]), int(corner [1]))

Draw a circle on the left -bottom corner of

the second marker

cv2.circle(marker_image , (int(corner [0]), int(corner

[1])), 3, (0, 0, 255), -1)

if ids is not None:

Get the index of the third detected marker

index = np.squeeze(np.where(ids == 3))

Check if the third marker was detected

if index.size > 0:

72 CHAPTER 7. COMPUTER VISION AND ROBOTICS

Get the corners of the third marker

marker_corners = corners[index [0]]

Get the up-right corner of the third marker

corner = marker_corners [0][1]

corner3 = (int(corner [0]), int(corner [1]))

Draw a circle on the up-right corner of

the third marker

cv2.circle(marker_image , (int(corner [0]), int(corner

[1])), 3, (0, 0, 255), -1)

if ids is not None:

Get the index of the fourth detected marker

index = np.squeeze(np.where(ids == 4))

Check if the fourth marker was detected

if index.size > 0:

Get the corners of the fourth marker

marker_corners = corners[index [0]]

Get the up-left corner of the fourth marker

corner = marker_corners [0][0]

corner4 = (int(corner [0]), int(corner [1]))

Draw a circle on the up-letf corner of

the fourth marker

cv2.circle(marker_image , (int(corner [0]), int(corner

[1])), 3, (0, 0, 255), -1)

cv2.imshow("img", marker_image)

cv2.waitKey (0)

return corner1 , corner2 , corner3 , corner4 , marker_image

This function starts by setting up a service proxy named get image to call the service
named /logitech camera/image using the message ”frame” as a request to obtain a
camera frame response. The obtained image data is then converted from the ROS
image message format to an OpenCV image format using the CvBridge object.
The function proceeds to perform marker detection using the ArUco library. In
particular, it initializes the ArUco dictionary with its parameters and then it detects
the markers in the received image, extracting their corners and IDs (Figure 3.10).
For each detected marker, the function:

• draws the marker outlines on the image using the aruco.drawDetectedMarkers()
function;

• extracts the corners of the marker and specifically the coordinates of its inner
corners;

• draws small circles at the detected inner corners using the cv2.circle() function.

In the end, the function returns the coordinates of the detected inner corners (cor-
ner1, corner2, corner3, corner4), along with the modified image containing the
drawn markers and circles.

7.4. MARKER DETECTION 73

At this stage, we implement the following function in the same node.

def getCentralPointCoords(corner1 , corner2 , corner3 , corner4 ,

marker_image):

midpoint_u = corner1 [0] + (np.sqrt((corner1 [0]- corner2 [0]) **2 +

(corner1 [1]- corner2 [1]) **2))/2

midpoint_v = corner1 [1] + (np.sqrt((corner1 [0]- corner3 [0]) **2 +

(corner1 [1]- corner3 [1]) **2))/2

midpoint = (round(midpoint_u), round(midpoint_v))

cv2.circle(marker_image , (int(midpoint [0]), int(midpoint [1])),

3, (0, 0, 255), -1)

print("Coordinates of the central point:")

print("Midpoint:", midpoint)

convert midpoint from tuple to array

midpoint = np.array ([midpoint [0], midpoint [1]])

cv2.imshow("img", marker_image)

cv2.waitKey (0)

cv2.destroyAllWindows ()

compute the translation vector t_wp

t_wp = obj.get3Dcoord_from_pixelCoord(midpoint [0], midpoint [1])

t_wp = np.append(t_wp , [[0]], axis =0)

obj.set_t_wp(t_wp)

return midpoint

It calculates the coordinates of the central point within the detected ArUco markers
identified by their inner corner coordinates. The central point is determined by
finding the midpoint between the four corner coordinates. The following figure
shows the result.

74 CHAPTER 7. COMPUTER VISION AND ROBOTICS

Figure 7.5: Detected ArUco markers with the midpoint

The calculation of the midpoint coordinates is fundamental to compute the trans-
lation vector twp of the plane frame with respect to the world reference frame using
the get3Dcoord from pixelCoord() function. The plane reference frame is the one
centered on the midpoint

Figure 7.6: Plane reference frame

with z axis exiting the plane.

7.5. OBJECT DETECTION AND LOCALIZATION 75

7.5 Object detection and localization

Object detection and localization are fundamental tasks in the field of computer vi-
sion. The ability to accurately identify and precisely locate objects within images or
video streams is paramount for numerous domains, including autonomous driving,
surveillance, robotics and augmented reality, among others.
In this section, we will explore the underlying principles behind these two tasks which
are implemented in the object detection and localization node. The latter relies
on some parameters provided by the calibrationValidation and markerDetection
node and, additionally, it requires the image of the plane, which is provided by the
camera node. This image is captured and transmitted once some objects have been
randomly placed on the plane as in the Figure 3.11. In the following, we can see
how the three nodes mentioned above communicate with each other.

Figure 7.7: /logitech camera/image2 and getParams services

In light of our understanding, the object detection and localization node
acts as client towards the other nodes through two functions. The first one is
get params(), which plays a crucial role in retrieving the necessary parameters us-
ing a service called getParams. This function serves as a client to the service and
its purpose is to gather specific calibration and transformation parameters that are
required for the two desired tasks.

def get_params ():

params_client = rospy.ServiceProxy(’getParams ’, Params)

message_request = "params"

response = params_client(message_request)

mtx = np.array(response.mtx).reshape ((3,3))

dist = np.array(response.dist).reshape ((1 ,5))

r_wc = np.array(response.rvec).reshape ((3 ,1))

t_wc = np.array(response.tvec).reshape ((3 ,1))

scaling_factor = response.scaling_factor

midpoint = np.array(response.midpoint).reshape ((2 ,1))

76 CHAPTER 7. COMPUTER VISION AND ROBOTICS

return mtx , dist , r_wc , t_wc , scaling_factor , midpoint

The function establishes a service client named params client and it prepares a mes-
sage request to query the service for the required parameters. Then, it sends the
message request to the service and captures the response which contains several
parameters: camera matrix, distortion coefficients, rotation vector from camera to
world frame, translation vector from camera to world frame, scaling factor and the
midpoint’s pixel coordinates.

The second function is getImage() wich serves the purpose of acquiring an image
from the camera using another ROS service named /logitech camera/image2.

def getImage ():

get_image = rospy.ServiceProxy(’/logitech_camera/image2 ’,

CameraFrame)

message = "frame"

response = get_image(message)

img = response.image

Initialize CvBridge object for converting between OpenCV and

ROS image formats

bridge = CvBridge ()

cv_image = bridge.imgmsg_to_cv2(img , desired_encoding=’

passthrough ’)

return cv_image

This function establishes a service client which is configured to communicate with the
service. Then, a message request with the content ”frame” is prepared. This mes-
sage informs the service to provide a camera frame. The function sends the message
request to the service using the get image client and captures the response, which
contains an image in ROS format. In the end, the ROS image is converted to an
OpenCV-compatible format using the imgmsg to cv2() function from the CvBridge
object and returned.

The server of the getParams service is the calibrationValidation and markerDetection
node, in which we implement the following function.

def get_params(mtx , dist , r_wc , t_wc , scaling_factor , midpoint):

parameters_srv = rospy.Service("getParams", Params ,

params_callback)

rospy.spin()

After initializing the ROS service with the provided matrices, values and parame-
ters, it enters a loop to keep the node running and listening for incoming service
requests. The params callback() function is invoked when the service is requested

7.5. OBJECT DETECTION AND LOCALIZATION 77

and it checks for a specific request message (”params”). If the request matches, it
converts various matrices and values (such as camera matrix, distortion parameters,
rotation and translation vectors, midpoint coordinates and scaling factor) into flat-
tened numpy arrays of float32 type and then packages them into a ParamsResponse
object to be sent back as a response to the service request.

def params_callback(request):

req = request.message

if req == "params":

array_mtx = mtx.flatten ().astype(np.float32)

array_dist = dist.flatten ().astype(np.float32)

array_r_wc = r_wc.flatten ().astype(np.float32)

array_t_wc = t_wc.flatten ().astype(np.float32)

array_midpoint = midpoint.flatten ().astype(np.float32)

return ParamsResponse(array_mtx , array_dist , array_r_wc ,

array_t_wc , array_midpoint , scaling_factor)

Regarding the /logitech camera/image2 service, the relative server is the camera
node which has been describe in the previous section.

Once all the requisite elements have been obtained, we create an instance of the
Operations class to use set camera attributes() and set scaling factor() methods to
set the camera attributes and the scaling factor. Before proceeding with the imple-
mentation of the function that allows us to determine the position of the midpoint in
the base reference frame, we show all the reference frames and the transformations
between them.

Figure 7.8: Reference frames and relative transformations

The base reference frame is centered on the robot base. The following table
defines all the transformations symbols.

78 CHAPTER 7. COMPUTER VISION AND ROBOTICS

Symbols Definition Value

Rwp Rotation matrix of the plane wrt world frame

 0 −1 0
−1 0 0
0 0 −1

twp Translation vector of the plane wrt the world frame Computed in Sec 7.4

Rpb Rotation matrix of the base wrt the plane frame

1 0 0
0 1 0
0 0 1

tpb Translation vector of the base wrt the plane frame

−0.3
0
0

Table 7.1: Definition and value of the transformations symbols

The translation vector tpb indicates the distance between the robot base centre and
the midpoint within the ArUco markers. Its value has negative x because the vector
is defined with respect to the plane reference frame.

As anticipated, we can now compute the midpoint position through the follow-
ing function. The primary purpose of it is to validate the transformations between
different reference frames and, in particular, verify if the computed midpoint is ex-
actly 30 cm from the base frame.

def midpoint_position_in_baseFrame(u, v):

This function is used to verify if the midpoint seen by

the camera is exactly at x = 0.3 from the base frame.

Therefore , it is used to validate the trasformations between

the different ref frames.

Moreover , it is used to set the translation vector t_wp.

midpoint_3Dcoord = operation_obj.get3Dcoord_from_pixelCoord(u,

v) # pixel coordinates of the midpoint among the markers

midpoint_3Dcoord = np.array(midpoint_3Dcoord).reshape (2,1)

null_value = np.array ([[0]])

midpoint_3Dcoord = np.append(midpoint_3Dcoord , null_value , axis

=0)

operation_obj.set_t_wp(midpoint_3Dcoord)

midpoint_planeframe = operation_obj.

getCoord_planeframe_from_worldframe(operation_obj.R_wp ,

operation_obj.t_wp , midpoint_3Dcoord)

midpoint_planeframe = midpoint_planeframe.reshape ((3,1))

print("Coords of the midpoint with respect to the plane frame:

\n")

print(midpoint_planeframe)

midpoint_baseframe = operation_obj.

get3DCoord_baseframe_from_planeframe(operation_obj.R_pb ,

operation_obj.t_pb , midpoint_planeframe)

print("Coordinates of plane frame ’s origin with respect to the

7.5. OBJECT DETECTION AND LOCALIZATION 79

base frame: \n")

print(midpoint_baseframe)

The function takes the midpoint’s pixel coordinates in the camera’s image as the
inputs and it starts by calculating the 3D coordinates of the midpoint using the
get3Dcoord from pixelCoord() method of the Operations class. This calculated 3D
coordinate is then extended with a null value to create a 3D coordinate in the format
required for the transformation calculations.
Next, we apply transformations to determine the midpoint’s coordinates in the plane
reference frame and subsequently in the base reference frame. These transformations
involve using the rotation and translation matrices shown in the previous table. The
result, midpoint baseframe, represents the coordinates of the midpoint in the base
reference frame.

After having confirmed the accuracy of the previous step’s outcome, we shift our fo-
cus to the function that enables the calculation of object positions, given the image
provided by the camera.

def object_position(img):

Define the range of color to threshold in HSV

lower_green = np.array ([40, 50, 50])

upper_green = np.array ([80, 255, 255])

lower_yellow = np.array ([20, 100, 100])

upper_yellow = np.array ([30, 255, 255])

lower_red = np.array ([150 , 100, 100])

upper_red = np.array ([190 , 255, 255])

Convert the image from the RGB color space to the HSV

color space

hsv = cv2.cvtColor(img , cv2.COLOR_BGR2HSV)

Create a binary mask by thresholding the image based on the

desired color range

green_mask = cv2.inRange(hsv , lower_green , upper_green)

yellow_mask = cv2.inRange(hsv , lower_yellow , upper_yellow)

Apply morphological operations to the binary mask to remove

noise and smooth the edges

kernel = np.ones ((5 ,5), np.uint8)

green_mask = cv2.erode(green_mask , kernel , iterations =1)

green_mask = cv2.dilate(green_mask , kernel , iterations =1)

yellow_mask = cv2.erode(yellow_mask , kernel , iterations =1)

yellow_mask = cv2.dilate(yellow_mask , kernel , iterations =1)

Find contours in the filtered binary mask

contours1 , hierarchy = cv2.findContours(green_mask ,cv2.

RETR_TREE ,cv2.CHAIN_APPROX_SIMPLE) # green contours

contours2 , hierarchy = cv2.findContours(yellow_mask ,cv2.

RETR_TREE ,cv2.CHAIN_APPROX_SIMPLE) # yellow contours

80 CHAPTER 7. COMPUTER VISION AND ROBOTICS

centers_list = [] # list of all computed centers

greenCenters_list = []

yellowCenters_list = []

Define the threshold for grouping close centers

center_threshold = 2.5

In the following two cycles , I do the same procedure for

both colors. First of all , I compute the center for each

contour.

It can happen that the algorithm determines two or more

centers very closer. For each center , I compute the distance

between it and other centers. If it is less than a

particular threshold , I consider them as a unique center ,

computing their mean.

Initialize the list of centers found

centers = []

close_centers = []

Draw a circle at the center of mass of each green object

for cnt in contours1:

M = cv2.moments(cnt)

if M[’m00’] > 0:

cx = int(M[’m10’]/M[’m00’])

cy = int(M[’m01’]/M[’m00’])

#cv2.circle(img , (cx, cy), 5, (0, 0, 0), -1)

Check if the current center is close to a previous

center

close_center = False

for center in centers:

distance = np.sqrt((cx-center [0]) **2 + (cy-center

[1]) **2)

if distance < center_threshold:

close_center = True

close_centers.append ([cx, cy])

break

If the current center is not close to any previous

center , add it to the list of centers

if not close_center:

centers.append ([cx , cy])

Draw a circle at each center of mass

for center in centers:

greenCenters_list.append(center)

cv2.circle(img , (center [0], center [1]), 5, (0, 255, 0), -1)

Draw a circle at the center of mass for any close centers

#if len(close_centers) > 0:

x_mean = int(np.mean([center [0]

for center in close_centers]))

y_mean = int(np.mean([center [1]

for center in close_centers]))

greenCenters_list.append ([x_mean , y_mean])

cv2.circle(img , (x_mean , y_mean), 5, (0, 0, 0), -1)

Show the frame with the detected objects

7.5. OBJECT DETECTION AND LOCALIZATION 81

#cv2.imshow(’Camera frame ’, img)

print("The center coordinates of the green objects are: \n")

print(greenCentres_list)

Initialize the list of centers found

centers = []

close_centers = []

Draw a circle at the center of mass of each yellow object

for cnt in contours2:

M = cv2.moments(cnt)

if M[’m00’] > 0:

cx = int(M[’m10’]/M[’m00’])

cy = int(M[’m01’]/M[’m00’])

#cv2.circle(img , (cx, cy), 5, (0, 120, 150), -1)

Check if the current center is close to a previous

center

close_center = False

for center in centers:

distance = np.sqrt((cx-center [0]) **2 + (cy-center

[1]) **2)

if distance < center_threshold:

close_center = True

close_centers.append ([cx, cy])

break

If the current center is not close to any previous

center , add it to the list of centers

if not close_center:

centers.append ([cx , cy])

Draw a circle at each center of mass

for center in centers:

yellowCenters_list.append(center)

cv2.circle(img , (center [0], center [1]), 5, (0, 120, 150),

-1)

Draw a circle at the center of mass for any close centers

#if len(close_centers) > 0:

x_mean = int(np.mean([center [0]

for center in close_centers]))

y_mean = int(np.mean([center [1]

for center in close_centers]))

yellowCenters_list.append ([x_mean , y_mean])

cv2.circle(img , (x_mean , y_mean), 5, (0, 0, 0), -1)

Show the frame with the detected objects

#cv2.imshow(’Camera frame ’, img)

print("The center coordinates of the yellow objects are: \n")

print(yellowCenters_list)

Show the frame with the detected objects

cv2.imshow(’Camera frame’, img)

cv2.waitKey (0)

#cv2.destroyAllWindows ()

82 CHAPTER 7. COMPUTER VISION AND ROBOTICS

return greenCenters_list , yellowCenters_list

This function starts defining the HSV color ranges for the desired colors (green and
yellow) using lower and upper bounds. Subsequently, the input image is converted
from the RGB color space to the HSV color space. This color space transformation
allows the creation of binary masks through thresholding within the specified color
ranges. These masks effectively separate the regions of the image containing the
desired colors.
Following this step, we apply morphological operations (erosion and dilation) to the
binary masks to reduce noise and smooth the mask edges. After that, the function
identifies contours in the binary masks using the cv2.findContours() function. Each
contour corresponds to a detected object.
For each detected contour, the center of mass (centroid) is computed using the con-
tour moments. In cases where multiple contours are close to each other, their centers
are grouped together trough the center threshold. Circles are then drawn around
the centers of the detected green and yellow objects on the input image.
Finally, the function returns lists that hold the coordinates of the detected centers
for both green and yellow objects.

The resulting image with the marked object centers is like Figure 3.12 where it
can be observed that a few points (in this case only one) are not exactly at the cen-
ter of their respective objects. The accuracy of the object centers can be influenced
by several factors in the computer vision system. Some of them include:

• object position relative to the camera: the precise position of objects in relation
to the camera plays a crucial role. Variations in distance, angle and orientation
can affect the accuracy of center calculations;

• color mask definitions: the definition of color masks used in the detection
process can impact the accuracy. Fine-tuning the color thresholds and filters
may be necessary to distinguish objects effectively, especially in cases with
similar or varying colors;

• lighting conditions: ambient lighting conditions at the time of image capture
can introduce variations in object appearance. Changes in brightness, shadows
or reflections can challenge the detection algorithm and affect the accuracy of
center calculations;

• thresholding parameters: the choice of thresholding parameter can impact the
accuracy of the calculated centers. Adjusting these parameter may be required
to achieve more precise results.

• camera calibration: a poorly calibrated camera can cause geometric distortions
in images, affecting localization accuracy;

• image resolution: it can impact accuracy. High-resolution images can allow
for more precise localization of object details.

7.6. ROBOT MOTION 83

The next important stride involves transforming the object centers from pixel coor-
dinates to well-defined coordinates with respect to the base reference frame. This
conversion is essential as the robot employs the base reference frame for its move-
ments.

def objectPosition_in_baseFrame(point_list):

This function takes the list of center positions and

compute them with respect to the base frame

and returns them.

centresBaseFrame_list = [] # list of centres with respect to

the base frame

for point in point_list:

u = point [0]

v = point [1]

objPosition_3Dcoord = operation_obj.

get3Dcoord_from_pixelCoord(u, v)

objPosition_3Dcoord = np.array(objPosition_3Dcoord).reshape

(2,1)

null_value = np.array ([[0]])

objPosition_3Dcoord = np.append(objPosition_3Dcoord ,

null_value , axis =0)

objPosition_planeframe = operation_obj.

getCoord_planeframe_from_worldframe(operation_obj.R_wp ,

operation_obj.t_wp , objPosition_3Dcoord)

objPosition_planeframe = objPosition_planeframe.reshape

((3,1))

objPosition_planeframe = objPosition_planeframe /100 # in

order to match the units of measure between plane

and base ref frames

objPosition_baseframe = operation_obj.

get3DCoord_baseframe_from_planeframe(operation_obj.R_pb ,

operation_obj.t_pb , objPosition_planeframe)

centresBaseFrame_list.append(objPosition_baseframe)

return centresBaseFrame_list

This function iterates through each point of the list taken as input (object centers
list) and computes the real-world 3D coordinates of the object’s position based on
its pixel coordinates. The coordinates are then transformed from the world frame
to the plane frame and further to the base frame using the provided transformation
matrices. The resulting positions are stored in a list and returned. Additionally,
the units of measure between the plane and base reference frames are matched by
dividing the computed positions by 100.

7.6 Robot motion

The final crucial step involves transmitting the previously computed object centers
to the node responsible for maneuvering the robot, moveToPose. The service
which allows this operation is the following.

84 CHAPTER 7. COMPUTER VISION AND ROBOTICS

Figure 7.9: move to service

As we can understand from the previous figure, the object detection and localization
node acts as a server through the implementation of the get coords function

def get_coords(goal_poses):

moveTo_srv = rospy.Service(’move_to ’, MoveTo , coords_callback)

rospy.spin()

which sets up the service and utilizes the coords callback() function to respond to
service requests with the appropriate goal poses.

def coords_callback(request):

req = request.message

if req == "coords":

array_goal_pose = goal_poses.flatten ().astype(np.float32)

return MoveToResponse(array_goal_pose)

If the request message is ”coords”, the callback function flattens the provided
goal poses array and returns it as a response.

In order to make the final objective more engaging and distinctive, we allow the
user to select which type of objects the robot should move towards: green, yellow
or all.

value = input("Write 1 (green obj), 2 (yellow obj) or 3 (all obj)

to move the robot towards green , yellow or all objects: ")

if str(value) == "1":

goal_poses = np.array(greenCentersBaseFrame_list)

get_coords(goal_poses)

elif str(value) == "2":

goal_poses = np.array(yellowCentersBaseFrame_list)

get_coords(goal_poses)

elif str(value) == "3":

goal_poses = np.array(complete_list)

get_coords(goal_poses)

else:

print("Wrong input!")

Based on the user choice, the get coords() function is called with the corresponding
goal positions.

7.6. ROBOT MOTION 85

In the client node, we start by retrieving the list of goal poses through the fol-
lowing function.

def get_coords ():

moveTo_client = rospy.ServiceProxy(’move_to ’, MoveTo)

message_request = "coords"

response = moveTo_client(message_request)

goal_poses = np.array(response.goal_poses)

return goal_poses

In particular, it creates a client for the move to service and prepares a request mes-
sage with the content ”coords” to be sent to the previous server. After receiving the
response, it extracts the goal poses attribute from the response, which contains an
array of goal pose values.

After that, we initialize the ROS node and MoveIt! interfaces are created for both
the robot and the MoveGroupCommander.

moveit_commander.roscpp_initialize(sys.argv)

rospy.init_node(’move_to_pose ’, anonymous=True)

instantiate a MoveGroupCommander object

robot = moveit_commander.RobotCommander ()

instantiate a RobotCommander object

move_group = moveit_commander.MoveGroupCommander("lite6")

Subsequently, we iterate over the list of goal poses retrieved and processed from the
service response.

for i in range(0, len(goal_poses), 3):

consider the single goal pose

goal_pose = [goal_poses[i], goal_poses[i+1], goal_poses[i

+2]]

print("")

print("The robot moves to the following goal pose: \n")

print(goal_pose)

x = float(goal_pose [0])

y = float(goal_pose [1])

z = 0.15 # Based on the object and end -effector ’s height

move_to_goal_pose(x, y ,z)

go_gome ()

For each goal pose, we first extract the x and y coordinates. Next, we set a fixed
value for the z-coordinate, taking into account both the height of the objects and
that of the custom-made wooden end-effector.

86 CHAPTER 7. COMPUTER VISION AND ROBOTICS

Figure 7.10: Custom-made end-effector

This is built to better verify the accuracy of the robot’s achieved position after its
movements. In the end, we call the move to goal pose() function with the extracted
x, y and z coordinates and the go home() function.

def move_to_goal_pose(x, y, z):

print("Plannning to a pose goal ...")

target_pose = geometry_msgs.msg.Pose()

target_pose.position.x = x

target_pose.position.y = y

target_pose.position.z = z

qx = 1

qy = 0

qz = 0

qw = 0

target_pose.orientation.x = qx

target_pose.orientation.y = qy

target_pose.orientation.z = qz

target_pose.orientation.w = qw

move_group.set_pose_target(target_pose ,"link6")

move_group.set_goal_tolerance (0.0005)

plan = move_group.plan()

move_group.go(wait=True)

print("The robot has reached the pose goal!")

move_group.stop()

move_group.clear_pose_targets ()

rospy.sleep (5)

This function creates a target pose object of type geometry msgs.msg.Pose() and

7.6. ROBOT MOTION 87

assigns the given values x, y and z to its position attributes. This defines the po-
sition where the robot should move. The orientation of the target pose is defined
using the quaternions. Since we are not concerned about the robot reaching the
objects with a specific orientation, we define it in a way that the robot accom-
plishes its goal. Then, we use move group.set pose target() to set the desired pose
goal for the robot’s movement, specifying that it is associated with ”link6”. More-
over, we set a tolerance for how close the robot needs to reach to the goal pose
using move group.set goal tolerance(). After planning the trajectory, we execute it
by calling move group.go(wait=True), where the parameter wait=True means the
function will wait until the movement is completed before proceeding. In conclusion,
we stop the robot’s movement and clear the pose targets.

The result of this first operation can be seen in the following figures.

Figure 7.11: Robot goal poses

The go home() function is defined to move the robot back to its home position.

def go_gome ():

print("Plannning to home pose ...")

target_pose = geometry_msgs.msg.Pose()

target_pose.position.x = 0.087

target_pose.position.y = 0

target_pose.position.z = 0.1542

88 CHAPTER 7. COMPUTER VISION AND ROBOTICS

roll = m.pi

pitch = 0.0

yaw = 0.0

qx = np.sin(roll /2)*np.cos(pitch /2)*np.cos(yaw /2) - np.cos(roll

/2)*np.sin(pitch /2)*np.sin(yaw/2)

qy = np.cos(roll /2)*np.sin(pitch /2)*np.cos(yaw /2) + np.sin(roll

/2)*np.cos(pitch /2)*np.sin(yaw/2)

qz = np.cos(roll /2)*np.cos(pitch /2)*np.sin(yaw /2) - np.sin(roll

/2)*np.sin(pitch /2)*np.cos(yaw/2)

qw = np.cos(roll /2)*np.cos(pitch /2)*np.cos(yaw /2) + np.sin(roll

/2)*np.sin(pitch /2)*np.sin(yaw/2)

target_pose.orientation.x = qx

target_pose.orientation.y = qy

target_pose.orientation.z = qz

target_pose.orientation.w = qw

move_group.set_pose_target(target_pose ,"link6")

move_group.set_goal_tolerance (0.0005)

plan = move_group.plan()

move_group.go(wait=True)

print("The robot has reached the home pose!")

move_group.stop()

move_group.clear_pose_targets ()

It creates the target pose using the geometry msgs.msg.Pose() class. The position
coordinates (x, y and z) are set to specific values, provided by the xArm Studio soft-
ware of UFactory. Regarding the orientation, we set the Euler angles (roll, pitch,
and yaw) which are used to calculate the quaternions. Subsequently, we set the
pose target and the goal tolerance as in the previous function. Then, the trajec-
tory plan is generated and the robot is instructed to execute it. Finally, the robot’s
motion is stopped and the target pose information is cleared from the MoveIt group.

The following figures show the result of this function.

7.6. ROBOT MOTION 89

Figure 7.12: Robot home pose

90 CHAPTER 7. COMPUTER VISION AND ROBOTICS

Chapter 8

Conclusions

In this thesis we have successfully achieved the predefined objectives, marking a
significant step forward in the integration of computer vision with robotics. The
development of an intuitive and user-friendly framework for the UFactory Lite 6
robotic arm, controlled through the ROS architecture, has paved the way for seam-
less interaction with the robot in various applications, especially for those who will
use it in the automotive field.

One of the primary accomplishments of this work is the creation of a framework
that simplifies the utilization of the robotic arm, offering a versatile platform for
a wide range of projects. This framework not only facilitates trajectory recording
and playback but also provides the capability to incorporate computer vision tech-
niques. By integrating object detection and localization within the ROS framework,
this work demonstrates the potential of the system to perceive and interact with its
environment intelligently.

The successful deployment of an external camera for capturing the visual scene and
extracting object positions is a crucial component of the project. This achievement
enables the robotic arm to execute precise movements towards detected objects, ex-
emplifying the potential of this technology in real-world applications.

The outcomes of this thesis project hold promise for various industries, particu-
larly in the field of automation and robotics. The combination of computer vision
and robotics provides a powerful toolset for enhancing flexibility, intelligence and
adaptability in automation systems. This work serves as a testament to the poten-
tial of such integration and opens up new avenues for innovation and development.

As we move forward, further refinements and enhancements to the framework can
be explored, expanding its capabilities and applications. The synergy between com-
puter vision and robotics continues to be a dynamic and evolving field, and this
work is a valuable contribution to its advancement. With the foundation laid by
this thesis, the future looks promising for the integration of advanced robotic sys-
tems into a wide array of projects and industries, driving innovation and efficiency
in automation.

91

92 CHAPTER 8. CONCLUSIONS

References

[1] Peter I Corke, Witold Jachimczyk, and Remo Pillat. Robotics, vision and control:
fundamental algorithms in MATLAB, volume 73. Springer, 2011.

[2] Flask. https://flask.palletsprojects.com/en/2.3.x/.

[3] OpenCV. https://opencv.org/.

[4] UFactory Lite 6 robotic arm. https://www.ufactory.cc/

lite-6-collaborative-robot/.

[5] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. Force
control. Springer, 2009.

[6] Logitech Streamcam. https://www.logitech.com/it-it/products/webcams/
streamcam.960-001281.html.

[7] ROS: Robot Operating System. https://www.ros.org/.

93

https://flask.palletsprojects.com/en/2.3.x/
https://opencv.org/
https://www.ufactory.cc/lite-6-collaborative-robot/
https://www.ufactory.cc/lite-6-collaborative-robot/
https://www.logitech.com/it-it/products/webcams/streamcam.960-001281.html
https://www.logitech.com/it-it/products/webcams/streamcam.960-001281.html
https://www.ros.org/

	Introduction
	State of the art
	Materials and methods
	ROS: Robot Operating System
	UFactory Lite 6 robotic arm
	Logitech Streamcam
	Trajectory recording and playback
	Camera calibration
	Calibration validation
	Marker detection
	Object detection and localization

	Initial setup
	ROS installation
	Robot installation
	UFactory Lite 6 repository installation
	OpenCV installation
	ArUco module installation

	Robot kinematics
	Forward kinematics
	Lite 6 forward kinematics

	Inverse kinematics
	Lite 6 inverse kinematics

	Trajectory recording and playback
	Trajectory recording and playback via rosservice calls
	Trajectory recording and playback via ROS node
	Trajectory recording and playback via web page
	Flask installation
	Application web page

	Computer vision and robotics
	Image capture
	Camera calibration
	Calibration validation
	Marker detection
	Object detection and localization
	Robot motion

	Conclusions

