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Abstract

This thesis explores the application of Generative Adversarial Networks (GANs) in gen-
erating realistic cosmological maps, providing insight into their training dynamics, opti-
mization challenges, and the statistical evaluation of the generated images. We present
novel contributions through our custom GAN architecture, deep integration of coding
procedures, and focus on evaluating the quality of our generator. The results show the
promise of GANs in cosmology, while highlighting the areas requiring further investiga-
tion.
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Chapter 1

Introduction to Cosmology

1.1 Overview of Cosmology

Cosmology is the scientific study of the large-scale properties of the universe as a whole.
It encompasses the origin, evolution, and eventual fate of the universe, grounded in the
laws of physics and observations of cosmic phenomena. The modern cosmological model
is based on the theory of General Relativity, which describes gravity as the curvature of
spacetime caused by mass and energy.

At its core, cosmology seeks to answer fundamental questions: How did the universe
begin? How does it evolve over time? What are its large-scale structures, and what will
happen in the distant future? Observations, such as the cosmic microwave background
(CMB) and the distribution of galaxies, help us understand these questions. The current
framework that best explains these observations is known as the standard cosmological
model, or the Lambda Cold Dark Matter (ΛCDM) model.

1.2 The Friedmann Universe

The Friedmann universe is a model that describes the expansion of the universe under the
assumption that it is homogeneous and isotropic on large scales. This model is derived
from Einstein’s field equations of General Relativity and provides the foundation for the
modern cosmological model [1].

The dynamics of the Friedmann universe are governed by the Friedmann equations,
which describe the relationship between the expansion rate of the universe (the Hubble
parameter H(t)) and the energy content of the universe, such as matter, radiation, and
dark energy. The first Friedmann equation is given by:

H2(t) =
8ÃG

3
Ä(t)−

k

a2(t)
+

Λ

3
(1.1)

where:

• H(t) is the Hubble parameter, which measures the rate of expansion at time t.

• G is the gravitational constant.

• Ä(t) is the energy density of the universe at time t, which includes contributions
from matter, radiation, and dark energy.
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• k is the curvature parameter, which determines the geometry of the universe (k = 0
for a flat universe, k > 0 for a closed universe, and k < 0 for an open universe).

• a(t) is the scale factor, which describes how distances in the universe change with
time.

• Λ is the cosmological constant, which represents dark energy.

The second Friedmann equation, which describes the acceleration of the universe’s
expansion, is:

ä(t)

a(t)
= −

4ÃG

3
(Ä(t) + 3p(t)) +

Λ

3
(1.2)

where p(t) is the pressure associated with the energy density. These equations can
be used to describe the expansion history of the universe and predict its future evolution
based on the relative contributions of matter, radiation, and dark energy.

The Friedmann universe plays a crucial role in our understanding of the early uni-
verse, particularly during the era of inflation and the formation of large-scale structures
like galaxies and galaxy clusters. It provides a theoretical framework for the standard
cosmological model [2].

1.3 The Standard Cosmological Model

The Standard Cosmological Model, also known as the ΛCDM model, is the prevailing
theory that describes the structure and evolution of the universe. It is based on the
principles of General Relativity and is supported by a wealth of observational evidence,
including the cosmic microwave background (CMB), large-scale structure surveys, and
supernova data.

The model assumes that the universe is homogeneous and isotropic on large scales,
which means that, on average, it looks the same in all directions and at all locations. The
primary components of the universe according to the ΛCDM model are:

• Dark Energy (Λ): This mysterious form of energy makes up about 70% of the
universe’s total energy density. It is thought to be responsible for the accelerated
expansion of the universe, and is represented by the cosmological constant Λ in the
Friedmann equations.

• Cold Dark Matter (CDM): Cold Dark Matter comprises approximately 25%
of the universe’s energy density. Unlike ordinary (baryonic) matter, dark matter
does not interact with electromagnetic radiation (hence, it is ”dark”), but it plays
a critical role in the formation of cosmic structures by providing the gravitational
scaffolding for galaxies and galaxy clusters.

• Baryonic Matter: The matter that makes up stars, planets, and all visible struc-
tures constitutes only about 5% of the universe’s energy content. This ordinary
matter is composed of protons, neutrons, and electrons.

• Radiation: Although now only a small fraction of the total energy density, radi-
ation (including photons and neutrinos) dominated the energy budget of the early
universe and played a crucial role in its evolution.
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The ΛCDM model successfully explains several key observations:

• Cosmic Microwave Background (CMB): The CMB is the remnant radiation
from the Big Bang and provides a snapshot of the universe when it was only about
380,000 years old. The small fluctuations in the CMB temperature are imprints
of the initial density perturbations that later grew into galaxies and clusters of
galaxies.

• Large-Scale Structure: The distribution of galaxies and clusters on large scales
is consistent with the predictions of the ΛCDM model, which describes how dark
matter and baryons evolved from the initial density fluctuations observed in the
CMB [3].

• Expansion of the Universe: Observations of distant supernovae have shown that
the universe’s expansion is accelerating, a phenomenon attributed to the presence
of dark energy. This acceleration is well described by the cosmological constant Λ.

One of the central features of the standard cosmological model is its ability to describe
the universe’s history from the Big Bang to the present day, as well as make predictions
about its future. The evolution of the universe is governed by the Friedmann equations,
and the expansion rate is determined by the balance between dark energy, dark matter,
and radiation.

The model is not without its challenges. The nature of dark energy and dark matter
remains one of the biggest unsolved mysteries in cosmology. However, despite these
uncertainties, the ΛCDM model provides an accurate description of the universe’s large-
scale behavior and has become the foundation of modern cosmology [4].

1.4 Lensing and Lensing Maps

Gravitational lensing is a powerful tool in cosmology for studying the distribution of
matter in the universe. It occurs when massive objects, such as galaxies or clusters
of galaxies, bend the path of light from background objects due to the curvature of
spacetime, as predicted by General Relativity. This effect can distort, magnify, or create
multiple images of background objects [5].

There are two primary types of gravitational lensing:

• Strong Lensing: This occurs when the gravitational field of a foreground object is
so strong that it produces multiple images or significant distortion of the background
object. Strong lensing typically occurs in cases where the lens and source are closely
aligned, often producing striking features like Einstein rings or arcs.

• Weak Lensing: In weak lensing, the effect is more subtle, causing slight distor-
tions and shearing of the shapes of background galaxies. Although individual weak
lensing signals are small, statistical analysis of large samples of galaxies can reveal
information about the large-scale structure of the universe and the distribution of
dark matter.
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1.4.1 Weak Lensing in Cosmology

Weak lensing is particularly valuable for cosmology because it provides a direct way to
map the distribution of dark matter. Since dark matter does not emit or absorb light,
gravitational lensing is one of the few methods available to study its distribution. By
measuring the distortions in the shapes of distant galaxies, scientists can infer the total
matter distribution, including both visible and dark matter.

The weak lensing signal is typically characterized by two quantities:

• Convergence (»): The convergence measures the projected surface density of
matter along the line of sight and describes the magnification of background objects.

• Shear (µ): The shear represents the distortion in the shape of background objects
due to the tidal gravitational field of the foreground mass distribution.

The weak lensing effect on the observed shapes of background galaxies is described by
the lensing equation, which relates the observed position of a galaxy to its true position,
taking into account the gravitational deflection by the lens.

¹⃗obs = ¹⃗true + ³⃗(¹⃗), (1.3)

where ³⃗(¹⃗) is the deflection angle due to the gravitational lensing effect of the intervening
mass.

1.4.2 Lensing Maps

Lensing maps are constructed by observing the distortions in the shapes of large numbers
of background galaxies over wide areas of the sky. These maps provide a detailed picture
of the distribution of matter in the universe, including dark matter. By analyzing the
convergence and shear fields, cosmologists can study the growth of structure over cosmic
time, test models of dark energy, and constrain parameters of the standard cosmological
model.

Weak lensing surveys, such as those conducted by the Dark Energy Survey (DES) and
the Hyper Suprime-Cam (HSC) survey, have produced high-resolution lensing maps that
cover large fractions of the sky. These maps are critical for understanding the evolution of
the large-scale structure of the universe and for testing theories of gravity on cosmological
scales.

Weak lensing also provides a way to study the relationship between galaxies and dark
matter through galaxy-galaxy lensing, where the lens is a galaxy or a cluster, and the
background sources are distant galaxies. By studying the distortions around galaxies,
researchers can measure the mass distribution around galaxies and their dark matter
halos.

Lensing maps are crucial in cosmology because they allow us to probe the invisible
dark matter and test theoretical models of the universe’s evolution. With increasing data
from upcoming surveys like the Vera C. Rubin Observatory’s Legacy Survey of Space
and Time (LSST) and the Euclid mission, the quality and resolution of lensing maps
will continue to improve, providing even more precise insights into the structure of the
universe [6].
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1.5 Sunyaev-Zel’dovich (SZ) Effect and SZ Effect Maps

The Sunyaev-Zel’dovich (SZ) effect is a powerful observational tool in cosmology, provid-
ing insights into the large-scale distribution of galaxy clusters and the cosmic web. The
SZ effect occurs when cosmic microwave background (CMB) photons pass through a hot,
ionized gas, typically found in galaxy clusters, and are scattered by high-energy electrons.
This interaction changes the energy distribution of the CMB photons, which results in a
distortion of the CMB spectrum. The SZ effect is particularly useful because it allows us
to detect and study galaxy clusters, the largest gravitationally bound structures in the
universe [7].

1.5.1 The Thermal SZ Effect

The thermal SZ (tSZ) effect arises when CMB photons are scattered by hot electrons in
galaxy clusters via inverse Compton scattering, transferring energy from the electrons to
the photons. This effect causes a distortion in the CMB spectrum, which can be observed
as a decrement in intensity at lower frequencies (e.g., in the microwave regime) and an
increment at higher frequencies.

The tSZ effect is described by the following equation:

∆TSZ

TCMB

= y · f(x), (1.4)

where:

• ∆TSZ is the change in temperature of the CMB due to the SZ effect.

• TCMB is the temperature of the CMB (about 2.725 K).

• y is the Compton y-parameter, which quantifies the strength of the SZ effect and
depends on the integrated pressure of the electrons along the line of sight.

• f(x) is a frequency-dependent function, where x = h¿/(kBTCMB), h is Planck’s
constant, ¿ is the observing frequency, and kB is Boltzmann’s constant.

The Compton y-parameter is given by:

y =

∫

kBTe

mec2
neÃTdl, (1.5)

where:

• Te is the electron temperature.

• ne is the electron number density.

• ÃT is the Thomson scattering cross-section.

• me is the electron mass.

• c is the speed of light.

• The integral is taken along the line of sight (dl).
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The tSZ effect provides a nearly redshift-independent method for detecting galaxy
clusters, as the SZ signal does not diminish with distance. This makes it an invaluable
tool for identifying distant and faint clusters that are otherwise challenging to detect
using optical or X-ray surveys.

1.5.2 The Kinetic SZ Effect

In addition to the thermal SZ effect, there is also a kinetic SZ (kSZ) effect. The kSZ
effect is caused by the bulk motion of galaxy clusters relative to the CMB rest frame.
When clusters move toward or away from the observer, the CMB photons are Doppler
shifted, leading to a slight temperature shift in the CMB. Unlike the tSZ effect, the kSZ
effect does not depend on the electron temperature but rather on the peculiar velocity of
the galaxy cluster.

The change in temperature due to the kSZ effect is given by:

∆TkSZ

TCMB

= −

∫

vr
c
neÃTdl, (1.6)

where vr is the radial peculiar velocity of the cluster along the line of sight. Although
the kSZ effect is much weaker than the tSZ effect, it provides valuable information about
the peculiar velocities of galaxy clusters and the overall large-scale velocity field in the
universe.

1.5.3 SZ Effect Maps

SZ effect maps are constructed by observing the distortions in the CMB caused by the
tSZ and kSZ effects. These maps allow cosmologists to study the distribution of galaxy
clusters across large areas of the sky and to probe the intracluster medium (ICM) within
these clusters. The SZ effect provides an independent way of measuring the cluster mass
and gas content, complementing other methods such as X-ray observations.

The tSZ effect is particularly sensitive to the integrated pressure of the ICM, which is
directly related to the total mass of the galaxy cluster. By constructing SZ effect maps,
cosmologists can estimate the masses of galaxy clusters, which are key tracers of the
large-scale structure of the universe. These maps are also used to constrain cosmological
parameters such as the amplitude of matter fluctuations (Ã8) and the mean density of
matter (Ωm).

1.5.4 The Role of SZ Effect Maps in Modern Cosmology

SZ effect maps are a crucial observational tool for modern cosmology. They allow for the
detection and characterization of galaxy clusters over a wide range of redshifts, providing
an important dataset for understanding the growth of structure in the universe. Moreover,
SZ effect maps complement other cosmological probes such as gravitational lensing, X-ray
observations, and CMB measurements.

In combination with machine learning techniques, SZ effect maps can be used to
rapidly identify and classify galaxy clusters in large-scale surveys. Machine learning
algorithms can analyze the complex patterns in SZ effect maps and predict properties such
as cluster mass, redshift, and temperature, making them an efficient tool for cosmological
studies.
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As future surveys like the Simons Observatory and CMB-S4 come online, the res-
olution and sensitivity of SZ effect maps will continue to improve, enabling even more
precise measurements of the properties of galaxy clusters and the large-scale structure of
the universe.

1.6 New Techniques

Machine learning (ML) has emerged as a powerful tool in many scientific disciplines,
and cosmology is no exception [8]. Cosmology, with its massive datasets from large-scale
surveys and complex models, can benefit greatly from the efficiency and predictive power
of ML algorithms. In this section, we discuss the motivations for using machine learning
in cosmology and the specific problems it can address.

1.6.1 Dealing with Large Datasets

Modern cosmological surveys, such as the Sloan Digital Sky Survey (SDSS), the Dark
Energy Survey (DES), and the upcoming Euclid and Vera C. Rubin Observatory (LSST),
collect vast amounts of data, including images of millions of galaxies and clusters. Ana-
lyzing these large datasets using traditional methods can be computationally expensive
and time-consuming. Machine learning provides a solution by automating the analysis of
these datasets, identifying patterns, and extracting useful information at unprecedented
speed and scale.

For instance, supervised learning models can be trained to classify objects in large sky
surveys, distinguishing between galaxies, stars, and other celestial bodies. Deep learning,
in particular, is well-suited for image-based tasks like galaxy morphology classification,
where convolutional neural networks (CNNs) can efficiently recognize complex structures
in images.

1.6.2 Accelerating Simulations

Cosmological simulations, such as N-body simulations and hydrodynamical simulations,
play a critical role in understanding the evolution of the universe and the formation
of large-scale structures like galaxies and galaxy clusters. However, these simulations
are computationally intensive, requiring significant time and resources to run at high
resolution.

Machine learning can help accelerate this process. By training generative models,
such as Generative Adversarial Networks (GANs) or Variational Autoencoders (VAEs),
on precomputed simulation data, it is possible to generate high-fidelity cosmological maps
and simulations in a fraction of the time. These ML-based emulators can approximate
the output of complex simulations without the need for full-scale computations, allowing
researchers to explore a wider range of cosmological models and parameters.

For example, GANs have been used to generate weak lensing convergence maps and
Sunyaev-Zel’dovich (SZ) effect maps, as discussed in previous sections. These generative
models can produce high-resolution maps that match the statistical properties of the orig-
inal simulations, providing a valuable tool for data augmentation and rapid exploration
of cosmological scenarios.
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1.6.3 Parameter Estimation and Inference

One of the key goals of cosmology is to constrain the fundamental parameters of the
universe, such as the density of dark matter (Ωm), the equation of state of dark energy
(w), and the amplitude of matter fluctuations (Ã8). Traditionally, parameter estima-
tion is done by comparing observational data with theoretical models through a process
called likelihood-based inference. This method, while accurate, can be computationally
expensive, particularly when exploring a large parameter space.

Machine learning offers a promising alternative for parameter estimation. Neural
networks, for instance, can be trained to map observational data directly to cosmological
parameters, bypassing the need for explicit likelihood calculations. Once trained, these
models can perform rapid parameter estimation, providing a fast and efficient way to
analyze large datasets.

In addition, ML-based methods, such as Bayesian neural networks or Gaussian pro-
cesses, can incorporate uncertainty estimates into their predictions, allowing for robust
parameter inference in the presence of noisy or incomplete data.

1.6.4 Improving Data Quality and Noise Reduction

Observational cosmology is often plagued by noise and other artifacts that can obscure
or distort the underlying signal. For example, weak lensing surveys are susceptible to
shape noise, which arises from the intrinsic ellipticity of galaxies and observational lim-
itations. Similarly, cosmic microwave background (CMB) measurements can be affected
by foreground contamination from galactic dust and synchrotron radiation.

Machine learning algorithms can be employed to mitigate these issues by improving
the quality of observational data. Autoencoders, a type of unsupervised learning model,
can be used to denoise cosmological images, removing noise while preserving important
features. CNNs can also be trained to identify and remove foreground contaminants from
CMB maps, enhancing the accuracy of cosmological measurements.

In weak lensing studies, machine learning can help reconstruct the underlying mass
distribution more accurately by accounting for noise and observational biases. This leads
to more precise measurements of the matter power spectrum, which is crucial for under-
standing dark matter and dark energy.

1.6.5 Why Machine Learning for Lensing and SZ Effect Maps?

The generation of weak lensing maps and SZ effect maps is computationally intensive,
especially when dealing with high-resolution simulations over large sky areas. Machine
learning, and in particular GANs, can drastically reduce the computational cost of gen-
erating these maps. Once trained, GANs can produce realistic lensing or SZ maps in
seconds, compared to hours or even days for traditional simulations.

Moreover, machine learning models can learn to replicate the statistical properties
of these maps, including their power spectra and higher-order statistics. This allows
researchers to explore different cosmological models and predict the effects of varying
parameters, such as the dark matter density or the amount of baryonic feedback, on
lensing and SZ observations.

In summary, machine learning enables faster data generation, improved accuracy in
parameter estimation, and the ability to uncover new insights from cosmological data,
making it an indispensable tool for the future of cosmological research.
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Chapter 2

Introduction to Machine Learning
and Generative Adversarial
Networks

2.1 Introduction to Machine Learning

Machine learning (ML) is a subfield of artificial intelligence (AI) that enables computers
to learn from data and make decisions or predictions without being explicitly programmed
for specific tasks. Instead of relying on hard-coded rules, machine learning algorithms
build models based on patterns detected in datasets, allowing them to generalize their
understanding and apply it to unseen data.

2.1.1 Key Concepts in Machine Learning

Features and Labels

A fundamental concept in ML is the relationship between features (input variables) and
labels (target outcomes). Features represent the attributes of the data, while labels are
the outcomes we aim to predict. For instance, in a weather prediction model, features
might include temperature, humidity, and pressure, while the label could be whether it
will rain or not.

Training and Generalization

The goal of machine learning is to develop a model that can learn from a training set

and generalize well to unseen or test data. Generalization refers to the model’s ability
to apply learned patterns to new, unseen instances effectively. A key challenge in ML
is balancing the trade-off between underfitting, where the model fails to capture the
underlying structure in the data, and overfitting, where it learns the training data too
closely, capturing noise as well as signal.

Supervised Learning

Supervised learning involves training a model on labeled data, where the input-output
pairs are explicitly known. The model aims to map inputs to the correct output by min-
imizing a predefined loss function, which quantifies the difference between predicted and
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actual outcomes. Common examples include regression (predicting continuous values)
and classification (assigning discrete labels).

Example of Label Training: The MNIST Dataset

A classic example of supervised learning is training a model to recognize handwritten
digits using the MNIST dataset. The MNIST dataset consists of 70,000 grayscale images
of handwritten digits, each of size 28× 28 pixels. Each image is paired with a label that
indicates the correct digit (0–9) represented in the image.

The task for the model is to learn the mapping from the image (features) to the correct
digit (label). During training, the model sees many examples of handwritten digits with
their corresponding labels and adjusts its weights using an optimization algorithm like
gradient descent. Over time, the model becomes better at predicting the correct digit for
new, unseen images.

Figure 2.1: Example of handwritten digits from the MNIST dataset.The model learns to
associate each image with its corresponding label (digit).

The MNIST dataset is widely used in machine learning research because it is simple yet
provides valuable insights into the effectiveness of various learning algorithms. The same
principle of label training applies to more complex datasets, including the cosmological
maps used in this work.

Linear Models and Gradient Descent

A simple linear model assumes a linear relationship between the input features and the
output labels. Mathematically, this can be represented as:

y = w1x1 + w2x2 + · · ·+ wnxn + b (2.1)

where y is the predicted output, x1, x2, . . . , xn are the input features, w1, w2, . . . , wn

are the weights, and b is the bias term.
The goal is to find the weights w1, w2, . . . , wn and the bias b that minimize the dif-

ference between the predicted output y and the true output ytrue. This difference is
quantified by a loss function, typically the mean squared error (MSE):

MSE =
1

m

m
∑

i=1

(yi − ytrue,i)
2 (2.2)
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To minimize the MSE, we use an optimization technique called gradient descent.
Gradient descent iteratively adjusts the weights and bias in the direction that reduces
the loss function:

wj := wj − ³
∂MSE

∂wj

(2.3)

b := b− ³
∂MSE

∂b
(2.4)

where ³ is the learning rate, controlling the size of the steps taken during the opti-
mization.

Figure 2.2: Illustration of gradient descent optimization.

In the context of the simple model described earlier, gradient descent was used to find
the optimal weights and bias that best predicted the production of apples and oranges
based on the features.

Unsupervised Learning

In unsupervised learning, the model is not provided with labeled outputs. Instead, it tries
to learn the inherent structure of the input data. A common use case is clustering, where
the algorithm groups data points based on similarities, such as in k-means clustering.

2.1.2 Applications

Machine learning is particularly powerful in scenarios where manual feature engineering
and decision rules become impractical due to the complexity or volume of data. By lever-
aging statistical methods and computational power, ML algorithms automate pattern
recognition tasks, enabling applications like fraud detection, image recognition, natural
language processing, and, importantly for this work, generating simulations for scientific
research.
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2.2 Deep Learning and Neural Networks

2.2.1 Introduction to Deep Learning

Deep learning (DL) is a subset of machine learning that utilizes neural networks with mul-
tiple layers to model complex, high-dimensional data. These networks can automatically
learn feature representations, making them well-suited for tasks like image classification,
speech recognition, and data generation [9].

2.2.2 The Structure of Neural Networks

A neural network consists of layers of interconnected nodes, or neurons, that process data
through weighted connections. The layers between the input and output, called hidden

layers, allow the network to capture hierarchical patterns in data. Each layer applies
a transformation, typically a combination of a linear transformation and a non-linear
activation function, such as ReLU or Sigmoid.

Training Neural Networks

Neural networks are trained using backpropagation, an algorithm that computes the gra-
dient of the loss function with respect to each weight in the network. The optimizer,
commonly stochastic gradient descent (SGD), updates the weights in the direction that
minimizes the loss. The learning rate, a key hyperparameter, controls the step size for
these updates.

2.2.3 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are specialized neural networks designed for pro-
cessing grid-like data, such as images. They employ convolutional layers that apply filters
across the input data, detecting edges, shapes, and textures. Pooling layers reduce the
spatial dimensions, making the network more computationally efficient and less sensitive
to small translations in the input.

CNNs are a critical component of this thesis, as they form the backbone of the GAN
architecture used to generate cosmological maps. Both the generator and discriminator
rely on convolutional and transposed convolutional layers to create and evaluate realistic
cosmological structures.

2.3 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs), introduced by Ian Goodfellow in 2014 [10] [11],
consist of two networks—a generator (G) and a discriminator (D)—competing in a min-
imax game. The generator aims to create realistic data samples, while the discriminator
tries to distinguish between real and generated samples.

The Generator

The generator takes a random noise vector as input and transforms it into data that
mimics the real dataset. It employs deconvolutional layers to upscale the noise into a
structured output, like an image.
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The Discriminator

The discriminator, a CNN, evaluates the input data and classifies it as either real or
generated. Its goal is to become better at detecting the fake data generated by the
generator.

Training Process

GANs are trained by alternating between updating the generator and the discriminator.
The discriminator’s objective is to maximize its accuracy in distinguishing between real
and fake data, while the generator’s goal is to minimize the discriminator’s ability to
correctly identify its generated samples as fake. This interaction can be formalized as a
minimax problem:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

where:

• D(x) represents the probability assigned by the discriminator to the real image x,

• G(z) is the generator’s output based on random noise z,

• The generator G tries to minimize the probability that the discriminator correctly
identifies generated images as fake, while the discriminator D tries to maximize
the probability of correctly classifying both real and fake images.

In this setup, the generator and discriminator are locked in a zero-sum game: the
generator attempts to fool the discriminator by reducing its loss, and the discrimina-
tor works to maximize its ability to correctly distinguish between real and fake images.
Training continues until a balance, often referred to as a Nash equilibrium, is achieved,
where the discriminator can no longer easily distinguish between real and fake images,
and the generator produces realistic-looking images.

The primary challenge in training GANs lies in maintaining a balance between the
two networks. Instability can arise if either the generator or discriminator significantly
outperforms the other [12].

2.4 Why GANs for Cosmology?

GANs are well-suited for generating high-dimensional, structured data such as cosmo-
logical maps. Traditional methods for simulating cosmological data are computationally
expensive and time-consuming, making GANs an attractive alternative for efficiently
generating realistic simulations that capture the statistical properties of the universe.
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Chapter 3

Analysis of the Existing Work and
Dataset

3.1 Referral paper

In 2019, Mustafa et al. presented an innovative application of Generative Adversarial
Networks (GANs) in cosmology [13], focusing specifically on weak gravitational lensing
maps. Their work aimed to address the computational challenges posed by traditional
simulations in cosmology. By leveraging the power of deep generative models, they were
able to significantly reduce the computational cost of producing high-resolution simula-
tions while maintaining statistical fidelity to the underlying physical processes.

Weak gravitational lensing refers to the deflection of light from distant galaxies by
massive cosmic structures, such as dark matter. This bending of light allows cosmologists
to create convergence maps that depict the distribution of mass in the universe. Typically,
these maps are generated using N-body simulations, which are computationally intensive.
Mustafa et al. introduced a framework for using GANs to generate these maps more
efficiently without sacrificing the statistical accuracy required for scientific analysis.

3.2 Dataset and Simulation Procedure

The dataset used by Mustafa et al. for training the GAN was derived from high-fidelity
cosmological simulations using the Gadget2 N-body simulation code. These simulations
were designed to replicate the large-scale structure of the universe, particularly focus-
ing on weak gravitational lensing effects. The key cosmological parameters used in the
simulations were:

• Ã8 = 0.798 (amplitude of matter fluctuations)

• w = −1.0 (dark energy equation of state)

• Ωm = 0.26 (matter density parameter)

• ΩΛ = 0.74 (dark energy density parameter)

• ns = 0.96 (scalar spectral index)

• H0 = 0.72 (Hubble constant)
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A total of 45 simulations were performed, each containing 5123 particles within a box
size of 240h−1 Mpc. The simulations were processed using the Inspector Gadget ray-
tracing pipeline to generate 1000 weak lensing shear and convergence maps at a redshift
of z = 1.0. Each map covered an area of 12 square degrees and was initially rendered
at a resolution of 2048 × 2048 pixels. These maps were subsequently downsampled to
1024× 1024 pixels for analysis.

3.2.1 Weak Lensing Convergence

Weak gravitational lensing can be described by the Jacobian matrix, which maps the
distortion effects on light as it passes through matter in the universe:

A(¹) =

(

1− »− µ1 −µ2
−µ2 1− »+ µ1

)

Here, » represents the convergence (mass density) and µ represents the shear (distor-
tion). The resulting convergence maps reflect the mass distribution in the universe along
the observer’s line of sight.

3.2.2 Data Preprocessing

To prepare the dataset for GAN training, each of the 1000 original maps was cropped
into 200 smaller maps, each with a resolution of 256×256 pixels. This provided a total of
200,000 individual maps for training. The preprocessing steps also included the following:

• Normalization: Pixel values were checked, but as the probability of a pixel value
falling outside the [−1.0, 1.0] range was less than 0.9%, the data was used in its
natural format without normalization.

• Data Augmentation: Maps were rotated and flipped randomly to augment the
dataset and improve generalization during training.

• Dataset Splitting: The dataset was divided into training, validation, and testing
sets, where 70% of the maps were used for training, 15% for validation, and 15%
for testing.

3.3 GAN Breakdown

In GANs, the generator is tasked with producing fake data samples, while the discrim-
inator evaluates whether a given sample is real or generated. The objective is for the
generator to create data that is indistinguishable from the real dataset, thus ”fooling”
the discriminator.

Mustafa et al. implemented a Deep Convolutional GAN (DCGAN) for generating
weak lensing convergence maps. The DCGAN architecture is designed to handle grid-like
data, such as images, and employs convolutional layers for both the generator and the
discriminator.
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3.4 Generator and Discriminator Architecture

3.4.1 Discriminator Architecture

The discriminator is tasked with differentiating real cosmological maps from those gen-
erated by the GAN. It functions as a binary classifier, outputting a probability that the
input map is real.

Convolutional Layers: These layers progressively reduce the spatial dimensions
of the input, extracting increasingly complex features. A convolution operation can be
mathematically expressed as:

y(i, j) =
∑

m

∑

n

x(i−m, j − n)w(m,n)

where x(i, j) is the input image, w(m,n) is the filter, and y(i, j) is the output feature
map. This allows the discriminator to learn hierarchical features from the input maps.

Batch Normalization: After the second, third, and fourth convolutional layers,
batch normalization is applied to stabilize the training and prevent overfitting.

Leaky ReLU Activation: The Leaky ReLU activation function is used after each
convolutional layer. Unlike ReLU, Leaky ReLU allows a small gradient for negative
inputs, defined as:

f(x) =

{

x if x > 0,

0.2x otherwise

This prevents the network from ”dying” by ensuring that some gradient information
passes even when the input is negative.

Fully Connected Layer: The final layer of the discriminator is a fully connected
layer that outputs a scalar value representing the probability that the input map is real.

The discriminator’s architecture is detailed in Table 3.1.

Layer Input Size Output Size Kernel Size Stride Padding
Conv Layer 1 (1, 256, 256) (64, 128, 128) 5x5 2 2
Conv Layer 2 (64, 128, 128) (128, 64, 64) 5x5 2 2
Conv Layer 3 (128, 64, 64) (256, 32, 32) 5x5 2 2
Conv Layer 4 (256, 32, 32) (512, 16, 16) 5x5 2 2

Fully Connected (512 * 16 * 16) (1) - - -

Table 3.1: Discriminator architecture detailing layer dimensions, kernel sizes, strides, and
padding.

Both the generator and discriminator utilize batch normalization and activation func-
tions strategically to improve convergence, avoid gradient-related issues, and stabilize
training in the context of GANs.

Kernel Size: The kernel size refers to the dimensions of the filter applied during the
convolution. For example, a 5x5 kernel means the filter covers a 5x5 region of the input
at a time. The kernel slides over the input data, performing element-wise multiplications
to extract features from the image.

Stride: The stride is the number of pixels by which the filter moves across the input
data. A stride of 1 means the filter moves one pixel at a time, while a stride of 2 skips
every other pixel, effectively downsampling the input.
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Padding: Padding refers to the addition of extra pixels around the input data, usually
to control the output dimensions after the convolution. ’Same’ padding keeps the output
size the same as the input by adding zeros around the edges, while ’valid’ padding means
no padding is applied, resulting in a smaller output.

3.4.2 Generator Architecture

The generator is designed to transform a random noise vector sampled from the latent
space into a realistic cosmological map. This transformation is achieved progressively
through a series of transposed convolutional layers (also referred to as deconvolutional
layers), which upsample the input noise into a high-resolution image. Each layer increases
the spatial dimensions, moving from a latent vector to a final 256x256 output map.

Transposed Convolutional Layers: These layers perform the reverse of regular
convolutions, increasing the spatial size of the input. For example, the first transposed
convolutional layer transforms the input from a 16x16 representation to a 32x32 represen-
tation. The kernel size and stride control the amount of upscaling, while padding ensures
the correct output dimensions.

Batch Normalization: After each transposed convolution, batch normalization is
applied to normalize the activations. This improves the training speed and helps prevent
overfitting.

ReLU Activation: Each transposed convolutional layer (except the last one) is
followed by the ReLU activation function, defined as:

f(x) = max(0, x)

This activation prevents negative values and mitigates the vanishing gradient problem.
Tanh Activation: The final layer uses the Tanh activation function, which scales

the output values between -1 and 1:

f(x) =
ex − e−x

ex + e−x

This ensures the output values match the range of the real data after preprocessing.
The generator’s architecture is summarized in Table 3.2.

Layer Input Size Output Size Kernel Size Stride Padding
Latent Vector (z) (64) (512, 16, 16) Fully Connected - -
Deconv Layer 1 (512, 16, 16) (256, 32, 32) 5x5 2 2
Deconv Layer 2 (256, 32, 32) (128, 64, 64) 5x5 2 2
Deconv Layer 3 (128, 64, 64) (64, 128, 128) 5x5 2 2
Deconv Layer 4 (64, 128, 128) (1, 256, 256) 5x5 2 2

Table 3.2: Generator architecture detailing layer dimensions, kernel sizes, strides, and
padding.

3.4.3 Training Procedure

The GAN was trained using the Adam optimizer with a learning rate of 2 × 10−4 and
´1 = 0.5. A batch size of 64 maps was used during training. The networks were trained
for 45 epochs, during which the generator and discriminator were updated alternately.
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To prevent the discriminator from overpowering the generator early in the training
process, label flipping was employed, where real labels were occasionally assigned to fake
samples and vice versa with a 1% probability. This technique helped balance the training
dynamics between the two networks.

One of the main challenges in GAN training is its inherent instability, particularly in
the later stages of training. Mustafa et al. noted that the training process often led to
oscillatory behavior, where the performance of the generator would vary unpredictably.
To address this, they employed early stopping based on statistical tests, such as the KS
test, and careful tuning of the learning rate.

3.5 Evaluation Metrics

To evaluate the performance of the GAN, Mustafa et al. used several key metrics, focusing
on both Gaussian and non-Gaussian statistical properties of the generated maps.

3.5.1 Pixel Intensity Distribution

The pixel intensity distribution of the generated maps was compared to that of the
real maps using the Kolmogorov-Smirnov (KS) test. The generated maps showed an
excellent match to the real maps, with a KS p-value greater than 0.999, indicating that
the generator successfully captured the underlying distribution of pixel intensities.

3.5.2 Power Spectrum

The power spectrum, which measures the correlation of matter density fluctuations at
different length scales, is a critical tool in cosmology. Mustafa et al. evaluated the power
spectra of the generated and real maps at 248 Fourier modes. The results showed that
the GAN was able to reproduce the power spectrum of the real maps with high accuracy,
especially at large scales. Deviations at smaller scales were minimal and within acceptable
statistical bounds.

3.5.3 Minkowski Functionals

Minkowski functionals provide a non-Gaussian statistical analysis of the generated maps.
These functionals (area, perimeter, and Euler characteristic) measure the topological
properties of the maps and offer insights into their geometrical structure. Mustafa et
al. evaluated the Minkowski functionals of the generated maps and found that they
closely matched those of the real maps, further validating the GAN’s ability to replicate
non-Gaussian features.

3.6 Comments

Looking forward, Mustafa et al. suggested several avenues for future research, including
the development of conditional GANs that can generate maps based on specific cos-
mological parameters. This would allow for more targeted simulations and a deeper
understanding of how different parameters affect the structure of the universe.
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Mustafa et al.’s work represents a significant advancement in the use of GANs for
cosmological simulations. By demonstrating that GANs can generate high-fidelity weak
lensing maps that match the statistical properties of fully simulated maps, they have
laid the groundwork for future research into the use of machine learning models as com-
putationally efficient alternatives to traditional simulations. While challenges remain,
particularly in terms of training stability and capturing small-scale structures, their re-
sults show great promise for the future of cosmological simulations.
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Chapter 4

New Implementation

4.1 Transition from TensorFlow to PyTorch

While the initial approach was to use the original GAN implementation in TensorFlow, it
quickly became clear that this was not feasible due to the significant advances in machine
learning frameworks over the past few years. The original code, written in 2019, was
outdated and incompatible with modern GPU drivers and CUDA versions provided by
CloudVeneto. After several attempts to create a suitable environment, including setting
up virtual environments with older TensorFlow versions, the CUDA and NVIDIA driver
issues persisted, causing crashes and compatibility problems.

Recognizing the limitations of continuing with TensorFlow, we decided to rewrite the
entire codebase using PyTorch, a more modern and flexible framework widely supported
by the latest hardware and software environments. This transition required a learning
curve as we undertook the task of mastering PyTorch from scratch. To achieve this,
we relied on online resources and tutorials, where I learnt to manipulate tensors, create
linear models, and build convolutional neural networks (CNNs) for image processing.
This foundational knowledge of CNNs directly translated to our GAN implementation
since both generators and discriminators rely heavily on convolutional layers to process
and create images.

The beauty of the GAN framework is its versatility. The same code that could be used
to generate number images (e.g., MNIST dataset) in basic tutorials could be seamlessly
adapted to generate cosmological lensing maps. The architecture itself does not ”know”
what kind of images it is working with; it simply learns the underlying patterns in the
data it is provided with.

4.1.1 Developing Original Code

The goal in developing the PyTorch code was to build a system that was flexible, modular,
and easy to experiment with. We used several key features that are state of the art:

• Adjustable Learning Rate: We have control over the learning rate, the most
important parameter. We experimented with tools like ReduceLROnPlateau to
adjust the learning rate dynamically, but more often than not, we manually adjusted
it as the situation required. This feature is essential, allowing us to stabilize the
generator and prevent mode collapse.
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• Model Saving and Checkpointing: We implemented a system that saved model
checkpoints after each epoch, allowing recovery from crashes or disconnections and
facilitating experimentation with different stages of the model’s development. This
feature was crucial for long training runs spanning multiple days, ensuring that we
didn’t lose progress in case of hardware failures or other issues.

• Loss Monitoring and Logging: We developed a comprehensive system to log
the generator and discriminator losses after each step. This feature allowed us to
closely monitor the training process, diagnose problems like vanishing gradients,
and detect mode collapse early on. By tracking the losses over time, we could make
informed decisions about when to intervene in the training process.

These features made the code ready for experimentation, hyperparameter fine-tuning
and extended training periods.

4.2 Challenges and Adjustments

• Strong Discriminator: One of the key challenges was the discriminator becom-
ing too strong, pushing the generator out of the game early on. The increased
label flipping, as mentioned, helped to mitigate this by occasionally confusing the
discriminator and giving the generator a chance to ”catch up.”

• Learning Rate Tuning: We avoided using a single, static learning rate throughout
the training process. Instead, we dynamically adjusted the learning rate, especially
when we detected mode collapse or instability. This fine-tuning was necessary
to maintain a balance between the generator and discriminator. While the original
paper trained for 45 epochs at a fixed learning rate, our approach was more dynamic.
We trained for fewer epochs, with the learning rate gradually decreasing over time.
Of course though, stopping training too early led to suboptimal results, so patience
was required for the model to fully converge.

• Time and computational optimization: We also settled on a batch size of
64 to make the best use of available GPU memory and speed up the training
process. While we experimented with label smoothing, it either slowed down the
training too much or led to balanced losses without improving image quality. Our
framework, combined with the hardware resources available, reduced the training
time significantly. Where the original paper required 100 hours for a complete
training cycle, we were able to complete 45–50 epochs in just 28 hours.

4.2.1 Instability

The GAN training process is inherently unstable. The generator and discriminator are
constantly ”competing,” and in this adversarial setup, the generator tries to fool the
discriminator, while the discriminator tries to become better at detecting fakes. During
our training experiments, the discriminator often became too strong too quickly, leading
to poor-quality images from the generator.

To address this, we increased the label flipping probability from 1% (as suggested
in the original paper) to 3%. Label flipping involves intentionally mislabeling some real
images as fake and vice versa, which forces the discriminator to learn in a more robust
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manner. By increasing the flipping probability, we gave the generator more breathing
room to learn and prevented the discriminator from overpowering it too early.

The Delicate Balance: This dynamic, however, was not without its own risks.
A high label-flipping probability could destabilize the discriminator, causing it to get
”confused” and potentially allow poor-quality images to pass as real. This is what we ex-
perienced with trial and error, first with a label flipping probability of 5%. The challenge
was to balance both networks’ strengths and ensure that neither side ”won” too quickly.
This adversarial process is what makes GANs so powerful but also challenging to train.

4.2.2 Hyperparameter Tuning

One of the main challenges in implementing GANs is choosing the right hyperparameters,
particularly the learning rate. In the original paper by Mustafa et al., the learning rate
for both the generator and discriminator was set at 2×10−4. However, we found that this
rate was unsuitable for our implementation. With this high learning rate, the generator
produced poor-quality images, and the discriminator became too powerful, leading to
unstable training.

After extensive experimentation, we settled on a starting learning rate of 2 × 10−5.
This change allowed the generator to produce more stable and realistic results. However,
learning rate tuning was not a one-time adjustment; throughout the training process,
we needed to manually adjust the rate depending on the behavior of the GAN. For
example, we occasionally had to lower the learning rate further to prevent mode collapse
or instability.

Another recurring issue was mode collapse, where the generator would produce
images that were visually similar with little variation. Already at early epochs, if the
learning rate was not carefully chosen or too high, like the one suggested by the original
paper, we could see signs of total mode collapse. To combat this, we manually adjusted
the learning rate whenever we detected mode collapse. Sometimes, extending the training
time allowed the generator to escape mode collapse and produce more diverse images,
but this required careful monitoring. Additionally, overtraining at a low learning rate
could cause overfitting, where the generator simply memorized the training data without
generating novel variations.
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Figure 4.1: Mode collapse examples: repeated features after several epochs stop the
improvement of the generator.
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(a) Noise (b) Early Training

(c) Intermediate Training (d) Late Training

(e) Final Quality

Figure 4.2: Improvement in generated images over time, from noise (top-left) to best
results (bottom).
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4.2.3 Techniques and Experiments

In this section, we present and discuss several techniques that were experimented with
during the training of our GAN model. These techniques were aimed at stabilizing
training and improving convergence.

Label Flipping

Label flipping involves intentionally mislabeling a small percentage of real and generated
samples during training. Specifically, we flipped the labels of real images to fake and vice
versa with a small probability. This technique prevents the discriminator from becoming
too confident early in training, encouraging the generator to improve. Label flipping
adds noise to the learning process, making it harder for the discriminator to perfectly
distinguish between real and fake data

Label Smoothing

Label smoothing is used to soften the labels provided to the discriminator. Instead of
labeling real images as 1 and fake images as 0, real labels are smoothed to values close to 1
(e.g., 0.9), and fake labels can be slightly greater than 0 (e.g., 0.1). This helps prevent the
discriminator from becoming overconfident and can also mitigate overfitting. In addition,
it encourages the discriminator to maintain some uncertainty in its predictions, promoting
a more balanced training process. After several attempts, we did not settle with label
smoothing because it made the generator overpower the discriminator

Learning Rate Scheduler

During our experimentation, we implemented a learning rate scheduler to dynamically
adjust the learning rate throughout the training process. The logic behind this approach
is that reducing the learning rate as training progresses can help the model converge more
smoothly. Early on, larger updates enable the model to explore the solution space more
freely, while later in training, smaller updates can help fine-tune the model.

However, in our specific case, using a learning rate scheduler did not lead to any
noticeable improvement. In fact, it sometimes accelerated issues like mode collapse, par-
ticularly when the learning rate was reduced too quickly. The idea behind the scheduler
is to adjust the learning rate based on fixed steps or certain triggers (such as validation
loss), but for our GAN, these adjustments failed to provide a more comprehensive view
of the training dynamics.

One reason for this could be that the training process of GANs is highly sensitive and
complex. A steady reduction in learning rate, especially when following a pre-determined
schedule, doesn’t necessarily correspond to the rapidly changing dynamics between the
generator and discriminator. In some instances, reducing the learning rate prematurely
might have restricted the generator’s ability to adapt, leading to poor performance or
mode collapse.

For this reason, we opted not to include a learning rate scheduler in our final model.
Instead, we maintained a constant learning rate for the majority of the training, which
allowed for more stability across the process. This decision highlighted the need for more
sophisticated adaptive strategies tailored specifically to the unique challenges of GAN
training, namely fine tune it following the logic we mentioned.
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Different Learning Rates for Generator and Discriminator

In some of our experiments, we tried using different learning rates for the generator and
discriminator, often assigning a lower learning rate to the generator and a higher one
to the discriminator. The idea behind this approach is rooted in the typical imbalance
between the two networks: the discriminator tends to learn faster than the generator,
especially in the early stages of training. By giving the generator a lower learning rate,
we aimed to slow down the discriminator’s learning and give the generator more time to
catch up.

However, this technique did not lead to any significant improvements in our case. In
fact, the results often showed greater instability, with the model converging to suboptimal
equilibria or experiencing premature mode collapse. The key issue seemed to be that
introducing an artificial imbalance in the learning rates exaggerated the already delicate
dynamics between the generator and discriminator.

In GAN training, a fine balance between the two networks is crucial. If the discrim-
inator becomes too strong too quickly, the generator can struggle to make meaningful
progress, producing low-quality outputs or collapsing altogether. On the other hand, if
the generator improves too fast, the discriminator may not have enough time to adjust,
leading to poor classification performance. Finding the right balance is difficult, and
adjusting the learning rates separately added more complexity without yielding better
results.

For these reasons, we ultimately decided to keep the learning rates equal for both
networks, as it provided more stable training dynamics.

4.2.4 Overfitting and Underfitting

In machine learning, overfitting and underfitting are common challenges when training
models. Overfitting in the context of GANs refers to the phenomenon where the generator
begins to produce images that are too closely tailored to the training data, failing to
generalize to new unseen examples. While early stages of training focus on generating
realistic images that align with the true data distribution, prolonged training can lead
to a degradation in performance, as the generator effectively ”memorizes” the training
data and loses its ability to produce diverse and general representations of the target
distribution. Overfitting was particularly noticeable when the generated images lacked
variation or the GAN produced similar structures repeatedly.

Pixel Intensity Distribution: Evidence of Overfitting

The provided plots 4.8 depict the pixel intensity distribution of generated images com-
pared to real images over several epochs. These distributions provide insight into how
well the generator is capturing the overall statistical properties of the real images. The
horizontal axis represents the pixel intensity, while the vertical axis shows the density on
a log scale.

• Initial Improvement: In the first four plots, we observe that the generated images
gradually improve in matching the pixel intensity distribution of the real images.
Earlier epochs show larger discrepancies between generated and real images, partic-
ularly in the higher intensity ranges (right side of the plot). As training progresses,
these discrepancies reduce, and the generator starts producing images that better
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align with the real data distribution. This is the desired effect of training where
the generator is effectively learning the underlying patterns in the dataset.

• Peak Alignment: At a certain point in training (visible in the mid-range epochs),
the generator achieves a close match to the real data. The pixel intensity distribu-
tions of the generated and real images nearly overlap, indicating that the generator
has successfully learned to mimic the real data’s characteristics. This can be con-
sidered the optimal point of training where the generator is generalizing well.

• Degradation: However, after this point, the later epochs begin to show signs of
degradation. The last few plots reveal that the generator starts to diverge from the
real data distribution again. This could be due to overfitting—where the generator
has over-optimized for specific patterns in the training data, leading to a failure
to generalize. The generated images now exhibit a pixel intensity distribution that
no longer aligns with the real data, particularly in the high-intensity ranges. This
indicates that the generator has memorized certain aspects of the data instead of
learning the underlying distribution, a classic sign of overfitting.

Impact of Overfitting on Image Quality

The visual representation of this degradation is subtle but significant. The quality of
the generated images may appear to improve initially, but as overfitting sets in, the
variability and richness of the generated images decrease. This is reflected in the pixel
intensity distribution plots, where the generated images start producing overly smooth
or repetitive patterns, and the diversity of pixel intensities diminishes.

In summary, these plots clearly demonstrate the challenge of overfitting in GAN train-
ing. The early stages show improvement and alignment with real data, while later epochs
exhibit the negative effects of prolonged training, where the generator diverges from the
true data distribution. This reinforces the importance of careful monitoring during train-
ing and the need for stopping criteria or regularization techniques to prevent overfitting.

In addition to the visual degradation observed in the pixel intensity distributions, the
Kolmogorov-Smirnov (KS) statistic provides a quantitative metric to evaluate the simi-
larity between the pixel intensity distributions of the generated and validation maps. The
KS statistic measures the maximum difference between the cumulative distribution func-
tions (CDFs) of two datasets, which in our case are the pixel intensities of the generated
maps and the validation maps.

Mathematically, the KS statistic is defined as follows:

Dn,m = sup
x

|Fn(x)− Fm(x)|

where Fn(x) and Fm(x) are the empirical cumulative distribution functions (CDFs)
of the pixel intensities of the generated and validation maps, respectively, and supx de-
notes the supremum (or maximum) value over all points x in the pixel intensity range.
Essentially, this measures the largest vertical distance between the two CDFs.

The CDF of a distribution is given by:

F (x) = P (X f x)

where X represents a random variable (in this case, pixel intensity), and P (X f x)
is the probability that X takes a value less than or equal to x.
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A smaller KS statistic, i.e., a smaller Dn,m, indicates that the pixel intensity distri-
butions of the generated maps are closer to those of the validation maps, implying that
the generator has successfully captured the distribution of real data. A KS statistic of
0.036, as observed in our best-performing generator, suggests a high degree of similarity
between the pixel intensity distributions of the generated and validation maps, indicating
that the generator is effectively reproducing the true data characteristics.

During training, the KS statistic initially declined, reflecting improvements in the
generator’s ability to approximate the validation data distribution. However, as the model
trained further, the KS statistic started to increase, signifying overfitting. This trend
suggests that while the generator learned to replicate certain features of the validation
data, it eventually began to memorize specific details rather than generalizing well.

Even after adjusting the learning rate, the KS statistic worsened at later stages of
training, highlighting that the generator was producing images that diverged from the
true data distribution. Mathematically, this increase in the KS statistic, Dn,m, implies
that the CDFs of the pixel intensities between the generated and validation maps grew
further apart, indicating that the generator’s outputs were less faithful to the real data
distribution.

Therefore, the KS statistic, combined with visual and other statistical measures, serves
as a powerful tool for detecting overfitting and assessing the model’s generalization ability.

Underfitting

Underfitting happens when the model fails to capture the underlying patterns in the data.
This is often due to insufficient training or an overly simple model. Underfitting in our
GAN manifested when the generator produced blurry or low-quality images, indicating
that it had not learned enough detail from the data.

Balancing between overfitting and underfitting required a careful adjustment of the
learning rate, training epochs, and the regular use of validation data to monitor the
model’s performance on unseen images. Additionally, early stopping mechanisms and
careful monitoring of the validation loss were used to prevent the model from overfitting.

In summary, our journey to fine-tune the GAN involved numerous iterations, adjust-
ments, and careful monitoring of hyperparameters. While GANs offer incredible flexibility
in generating realistic data, their training is an art that requires constant balancing be-
tween the competing forces of the generator and discriminator. Through dynamic learning
rate adjustments, label flipping, and improved loss monitoring, we were able to generate
realistic cosmological maps with greater time efficiency than the older implementation.
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Figure 4.3: Pixel Intensity Distribution
- Epoch 30

Figure 4.4: Pixel Intensity Distribution
- Epoch 40

Figure 4.5: Pixel Intensity Distribution
- Epoch 45

Figure 4.6: Pixel Intensity Distribution
- Epoch 50

Figure 4.7: Pixel Intensity Distribution
- Epoch 55

Figure 4.8: Pixel Intensity Distribution
- Epoch 60
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Chapter 5

Results

5.1 Our generator

In this section, we present the results of our trained GAN model, focusing on the qual-
itative and quantitative performance, as well as statistical analyses. The results were
achieved after extensive training and fine-tuning over several epochs to ensure a mean-
ingful comparison between generated and validation maps.

The architecture of our generator was based on the model used by Mustafa et al., as
previously described, with key adjustments made for label flipping and training stability.
Specifically, we implemented a label flipping probability of 3%, as discussed earlier, to
prevent the discriminator from overpowering the generator during the early stages of
training. This adjustment helped balance the dynamics between the two networks and
contributed to more stable training.

The GAN model was trained using a NVIDIA Tesla T4 GPU, which provided the
necessary computational power for efficient training. The training process was carried
out over a total of 50 epochs, with a decreasing learning rate to gradually fine-tune the
model as follows:

• 30 epochs at an initial learning rate of 2× 10−5,

• 5 epochs at a reduced learning rate of 5× 10−6,

• 5 epochs at 2× 10−6,

• 5 epochs at 1× 10−6,

• and the final 5 epochs at 5× 10−7.

This gradual reduction in the learning rate was implemented to allow the model to
converge more smoothly towards an optimal solution, reducing the risk of instability or
mode collapse during the later stages of training. This strategy also helped fine-tune the
generator’s ability to produce realistic maps by making smaller, more refined updates to
the model parameters as training progressed.

5.1.1 Training Dynamics and Stability

The training process highlighted several challenges related to the stability of the GAN.
Given the complexity of the training, some degree of instability is expected, and, as noted
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in the original paper, determining the optimal stopping point is somewhat arbitrary. This
is because, in this architecture, the discriminator tends to surpass the generator over time,
leading to diminishing improvements with prolonged training.

Figure 5.1 illustrates the loss curves for both the generator and discriminator through-
out the training epochs. Notably, at epoch 45, the generator’s loss spiked significantly,
indicating potential overfitting. By continuously monitoring the loss curves, we were able
to intervene and halt the training if such instability occurred. To select the best gen-
erator, we applied the KS test, analyzed the pixel intensity distribution, evaluated the
power spectrum, and visually inspected the generated images for overall quality.

Figure 5.1: Training dynamics for generator and discriminator losses over epochs.

Figure 5.2: Going back to previous stable point and trying different hyperparameters.
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5.1.2 Visual Quality of Generated Images

The visual quality of the generated images provides the first indication of the model’s
performance. Our generator successfully replicated the complex structures seen in cos-
mological maps. Despite the challenges, we observe that the core features of the maps
are well-preserved and the generated maps achieve a high level of fidelity when compared
to the validation set.

Figure 5.3: Random samples from validation dataset (top row) and generated images
(bottom row).
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5.1.3 Pixel Intensity Distribution

One important quantitative metric is the pixel intensity distribution, which gives insight
into the overall fidelity of the generator. Figure 5.4 shows that the generated maps’ pixel
intensity distribution closely matches the validation maps. Small deviations, particularly
at the tails of the distribution, suggest that the GAN may overfit certain regions. This
issue was also reported in the original paper. In some instances, our generator achieved
higher concordance in the high-intensity pixel regions compared to the 2019 results, al-
though this was accompanied by a slight deterioration in other statistics. In the end we
decided to present this version of it.

Figure 5.4: Pixel intensity distribution comparison between validation and generated
maps.

5.1.4 Power Spectrum Analysis

The power spectrum is a fundamental statistical tool in cosmology that quantifies the
distribution of matter and energy in the universe across different scales. More specifically,
it measures the variance of fluctuations in the map as a function of spatial scale. These
fluctuations are typically expressed in terms of their Fourier modes, which break down
the spatial variations of the map into components with different wavelengths. Large-
scale structures (e.g., cosmic voids, superclusters) correspond to low-frequency (large-
wavelength) modes, while smaller-scale structures correspond to high-frequency (small-
wavelength) modes.

The power spectrum P (k) quantifies the variance in the field as a function of wave
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number k, where k is related to the spatial frequency:

P (k) = ï¶̃(k)¶̃∗(k)ð

where:

• ¶̃(k) is the Fourier transform of the density contrast ¶(x), which represents fluctu-
ations in the map.

• ï·ð denotes the ensemble average.

In terms of multipole moments l for a 2D map (as is typical in cosmological weak
lensing studies), the angular power spectrum Cl is often used:

Cl =
1

2l + 1

l
∑

m=−l

|alm|
2

where alm are the spherical harmonic coefficients of the field. The multipole moment l
is related to the angular scale of the features in the map, with larger l corresponding to
smaller angular scales.

To evaluate the performance of the GAN, we computed the power spectrum for
both the generated and validation maps. This was done using 6400 samples from each
set, comparing the Fourier modes according to the procedure outlined in the reference
article. We used LensTools to calculate the power spectra for a range of multipole
moments l, focusing on scales from l ≈ 103 to l ≈ 5× 104.

Figure 5.5: Power spectrum comparison between validation and generated maps.
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The power spectrum comparison reveals that the generated maps align well with
the validation maps on large scales (corresponding to low l or low-frequency modes).
This suggests that the GAN is successfully capturing the broad, large-scale structures of
the universe, such as cosmic voids and superclusters, as these are easier to reproduce.

However, discrepancies become apparent at smaller scales (high l or high-frequency
modes), where the generated maps begin to deviate from the validation maps. These
small-scale deviations could be attributed to a few potential causes:

• Overfitting: The generator may overfit certain features, leading to unrealistic
patterns at high frequencies (small scales), which are harder to model correctly.
The smaller-scale structures, such as galaxy clusters, are more sensitive to the fine
details of the underlying cosmology.

• Resolution Limitations: At higher values of l, we are probing finer details in
the maps, and the GAN may struggle to reproduce these details accurately due to
limitations in resolution or training complexity.

It is well known that small scales are inherently more difficult to probe due
to noise, finite resolution, and the complexity of the underlying physics. In this first
attempt, we did not surpass the accuracy achieved in the original paper for small-scale
structures, despite efforts to fine-tune the training and learning rates.

The power spectrum remains one of the most direct and robust ways to compare the
statistical properties of generated and real cosmological maps. While the GAN success-
fully replicates large-scale structures, the small-scale discrepancies indicate areas where
further work is needed to improve the generator’s capacity to model fine details. Fu-
ture work could explore regularization techniques or alternative architectures to mitigate
overfitting and enhance the accuracy at small scales.

The power spectrum comparison reveals that the generated maps generally match
the validation maps well, particularly on large scales (low Fourier modes). However,
discrepancies appear at smaller scales, where generated maps exhibit a small deviation,
probably due to overfitting. It is reported that the smaller scales are more difficult to
probe and we didn’t find a useful solution in this first attempt of ours to get a better
result than the original paper.

5.1.5 Visual Comparisons Based on Euclidean Distance

To ensure that the GAN does not simply memorize the training dataset, we performed
a Euclidean distance-based comparison between the generated images and their closest
validation counterparts. This method confirms that the generator is producing novel
outputs, not duplicates of the validation maps. We present 10 pairs of generated and
validation images with their power spectra.
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(a)

(b)

Figure 5.6: Visual comparison between validation maps (top) and generated maps (bot-
tom), selected by minimum Euclidean distance.
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5.1.6 Non-Gaussian Analysis via Minkowski Functionals

Minkowski functionals provide a powerful statistical tool for quantifying the geometrical
and topological features of cosmological maps. In the context of cosmological data, they
are particularly useful for detecting non-Gaussianities in the large-scale structure of the
universe, as Gaussian statistics alone are insufficient to describe the complex, non-linear
processes that give rise to the observed structures.

For a two-dimensional field, such as the convergence maps used in our analysis, there
are three Minkowski functionals:

• V0: the Area,

• V1: the Perimeter,

• V2: the Euler Characteristic.

These functionals are calculated over excursion sets, which are regions where the field
exceeds a certain threshold, ¿. As we vary ¿, the functionals provide a way to track
how the morphology of the field changes at different intensity levels, thus offering insight
into the underlying geometry of the field. Each of the Minkowski functionals provides a
specific type of geometric information:

• Area (V0): The area of the excursion set is the simplest Minkowski functional and
is defined as:

V0(¿) =
1

A

∫

Σ(ν)

dA

where A is the total area of the map, and Σ(¿) is the region where the field exceeds
the threshold ¿. This functional essentially measures the fraction of the map area
covered by regions where the field exceeds the threshold.

• Perimeter (V1): The perimeter of the excursion set is given by the length of the
boundary between regions above and below the threshold:

V1(¿) =
1

4A

∫

∂Σ(ν)

ds

where ∂Σ(¿) represents the boundary of the excursion set and ds is the differential
length element. This functional quantifies the complexity of the boundary, which
reflects the level of small-scale structures.

• Euler Characteristic (V2): The Euler characteristic is a topological invariant that
counts the number of connected regions minus the number of holes in the excursion
set:

V2(¿) =
1

2ÃA

∫

∂Σ(ν)

»ds

where » is the curvature of the boundary. The Euler characteristic tracks the
topological complexity of the field and reveals information about the connectivity
and holes in the structure.
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Figure 5.7: Minkowski functional comparison (V0, V1, and V2) between validation and
generated maps.

The Minkowski functionals are computed for a range of threshold values ¿, and their
dependence on ¿ provides a detailed characterization of the structure of the field. For a
perfectly Gaussian field, the Minkowski functionals follow well-defined analytical forms.
Deviations from these forms can indicate the presence of non-Gaussian features, which
are important for understanding non-linear gravitational evolution and the physics of
structure formation.

In our case, the Minkowski functional analysis demonstrates that the GAN captures
many of the key geometrical structures found in the validation maps. However, slight
deviations occur, particularly in the perimeter (V1) and Euler characteristic (V2) at higher
threshold values. These discrepancies point to missing fine-scale details and differences in
the topological structure of the generated maps compared to the real data. For example,
the higher Euler characteristic values at large thresholds suggest that the generated maps
contain more disconnected regions or isolated structures than the validation maps.

Therefore, Minkowski functionals provide a robust way to assess the quality of the
generated maps, complementing other metrics such as the power spectrum and pixel
intensity distribution. The combined use of these tools offers a comprehensive picture of
how well the GAN replicates the true cosmological structures.

5.1.7 Efficiency and Scalability

Our training pipeline was optimized to significantly improve efficiency and scalability.
By utilizing advanced hardware (such as NVIDIA Tesla T4 GPUs) and optimizing our
codebase for parallelization and faster data loading, we reduced the training time for 50
epochs from the previously reported 100 hours to just 28 hours. These improvements
were achieved without sacrificing the quality or features of the generated maps, allowing
the GAN to converge more quickly while maintaining high fidelity.

Additionally, the scalability of our model is noteworthy. The generator can produce
thousands of unique cosmological maps within seconds, which is crucial for large-scale
cosmological simulations where many realizations of the universe are required. This ca-
pability demonstrates that our approach can be efficiently scaled to handle even larger
datasets or more complex tasks, such as incorporating additional physical effects or gen-
erating higher-resolution maps in future studies
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5.2 Conclusions

This thesis set out with the ambitious goal of generating cosmological maps using GANs,
focusing on weak lensing maps with the eventual hope of adapting the model to generate
SZ effect maps. While we initially aimed to diversify the range of cosmological phenomena
our GAN could simulate, we found that working with weak lensing maps alone provided
enough challenges to focus our efforts on a single objective. The generation of high-quality
weak lensing maps represents a crucial first step, demonstrating the power and flexibility
of generative models in a field like cosmology, where data is often expensive to obtain or
simulate.

The process was not without its difficulties, especially in stabilizing the training pro-
cess of the GAN. We employed various techniques, and adjusted the architecture and
training parameters to ensure that both the generator and discriminator developed the
necessary sophistication to produce realistic images. Despite these adjustments, the re-
sults show certain limitations, especially when it comes to fine-scale features as seen in
the power spectrum and Minkowski functional comparisons. This indicates that while our
GAN framework was successful in many ways, it could benefit from further refinement,
particularly through even more regularization methods.

Nevertheless, this work has achieved its core objective: the generation of weak lensing
maps that not only approximate real cosmological data but also offer a promising path
forward for future research. These results could serve as a base for more advanced studies,
including the generation of SZ effect maps, as originally envisioned.

Looking back, the effort invested in understanding and adapting the GAN to cosmo-
logical applications has been rewarding, not just in terms of the maps generated but in
the insights gained into how machine learning can interface with complex scientific data.
The progress made here, while representing a first attempt, lays the groundwork for more
sophisticated models and more diverse datasets in future research.

The challenge now is to ensure that these generated maps are scientifically ”safe” and
useful for real-world applications. Their potential lies not just in augmenting datasets for
machine learning but in offering new ways to simulate and explore the universe. However,
this is still a model that generates maps based on what it has learned from existing data,
and this data-driven process must be critically examined in future studies. What are the
limitations of using GAN-generated maps in a scientific framework? This remains a key
question for future exploration.

In conclusion, while the future applications still lie ahead, this thesis marks a suc-
cessful first venture into applying GANs to cosmology. The results, though imperfect,
demonstrate both the promise of generative models and the opportunities for further re-
search and refinement. As GANs continue to evolve, so too will their ability to contribute
meaningfully to cosmology.
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Appendix A

Training Code

A.1 Training Code

The following code shows the full process for training the GAN used in this project:

1

2

3 import os

4 import numpy as np

5 import torch

6 from torch.utils.data import Dataset , DataLoader , Subset

7 from torchvision.utils import make_grid , save_image

8 import matplotlib.pyplot as plt

9 import torch.nn.functional as F

10 import torch.nn as nn

11 import torch.optim as optim

12 import time

13

14 data_dir = ’/mnt/new_volume/gan_training/data ’

15 dataset_files = [f’cosmogan_maps_256_8k_{i}.npy ’ for i in range(1,

16)]

16 sample_dir = ’/mnt/new_volume/gan_training/generated ’

17 os.makedirs(sample_dir , exist_ok=True)

18

19 class CosmoDataset(Dataset):

20 def __init__(self , data_dir , dataset_files):

21 self.data_dir = data_dir

22 self.dataset_files = dataset_files

23 self.data_lengths = []

24 self.total_length = 0

25

26 for dataset_file in dataset_files:

27 data = np.load(os.path.join(data_dir , dataset_file),

mmap_mode=’r’)

28 length = data.shape [0]

29 self.data_lengths.append(length)

30 self.total_length += length

31

32 def __len__(self):

33 return self.total_length

34

35 def __getitem__(self , idx):

36 cumulative_length = 0
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37 for i, length in enumerate(self.data_lengths):

38 if idx < cumulative_length + length:

39 file_idx = i

40 sample_idx = idx - cumulative_length

41 break

42 cumulative_length += length

43

44 dataset_file = os.path.join(self.data_dir , self.

dataset_files[file_idx ])

45 data = np.load(dataset_file , mmap_mode=’r’)

46 sample = data[sample_idx]

47 sample = torch.tensor(np.array(sample[np.newaxis , :, :]),

dtype=torch.float32)

48 return sample

49

50 def show_images(images , nmax =64):

51 fig , ax = plt.subplots(figsize =(8, 8))

52 ax.set_xticks ([]); ax.set_yticks ([])

53 ax.imshow(make_grid(images.detach ()[:nmax], nrow =8).permute(1,

2, 0), cmap=’gray ’)

54 plt.show()

55

56 def get_default_device ():

57 return torch.device(’cuda ’) if torch.cuda.is_available () else

torch.device(’cpu ’)

58

59 device = get_default_device ()

60

61 def to_device(data , device):

62 if isinstance(data , (list , tuple)):

63 return [to_device(x, device) for x in data]

64 return data.to(device , non_blocking=True)

65

66 class DeviceDataLoader ():

67 def __init__(self , dl , device):

68 self.dl = dl

69 self.device = device

70

71 def __iter__(self):

72 for b in self.dl:

73 yield to_device(b, self.device)

74

75 def __len__(self):

76 return len(self.dl)

77

78 class Discriminator(nn.Module):

79 def __init__(self):

80 super(Discriminator , self).__init__ ()

81 self.conv1 = nn.Conv2d(1, 64, kernel_size =5, stride=2,

padding=2, bias=False)

82 self.conv2 = nn.Conv2d (64, 128, kernel_size =5, stride=2,

padding=2, bias=False)

83 self.bn2 = nn.BatchNorm2d (128)

84 self.conv3 = nn.Conv2d (128, 256, kernel_size =5, stride=2,

padding=2, bias=False)

85 self.bn3 = nn.BatchNorm2d (256)

86 self.conv4 = nn.Conv2d (256, 512, kernel_size =5, stride=2,

padding=2, bias=False)
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87 self.bn4 = nn.BatchNorm2d (512)

88 self.flatten = nn.Flatten ()

89 self.fc = nn.Linear (512 * 16 * 16, 1)

90

91 def forward(self , x):

92 x = F.leaky_relu(self.conv1(x), 0.2, inplace=True)

93 x = F.leaky_relu(self.bn2(self.conv2(x)), 0.2, inplace=True

)

94 x = F.leaky_relu(self.bn3(self.conv3(x)), 0.2, inplace=True

)

95 x = F.leaky_relu(self.bn4(self.conv4(x)), 0.2, inplace=True

)

96 x = self.flatten(x)

97 x = self.fc(x)

98 return x

99

100 class Generator(nn.Module):

101 def __init__(self , latent_size):

102 super(Generator , self).__init__ ()

103 self.fc = nn.Linear(latent_size , 512 * 16 * 16, bias=False)

104 self.bn1 = nn.BatchNorm1d (512 * 16 * 16)

105 self.relu = nn.ReLU(True)

106

107 self.deconv1 = nn.ConvTranspose2d (512, 256, kernel_size =5,

stride=2, padding=2, output_padding =1, bias=False)

108 self.bn2 = nn.BatchNorm2d (256)

109 self.deconv2 = nn.ConvTranspose2d (256, 128, kernel_size =5,

stride=2, padding=2, output_padding =1, bias=False)

110 self.bn3 = nn.BatchNorm2d (128)

111 self.deconv3 = nn.ConvTranspose2d (128, 64, kernel_size =5,

stride=2, padding=2, output_padding =1, bias=False)

112 self.bn4 = nn.BatchNorm2d (64)

113 self.deconv4 = nn.ConvTranspose2d (64, 1, kernel_size =5,

stride=2, padding=2, output_padding =1, bias=False)

114 self.tanh = nn.Tanh()

115

116 def forward(self , x):

117 x = self.fc(x)

118 x = self.bn1(x)

119 x = self.relu(x)

120 x = x.view(-1, 512, 16, 16)

121 x = self.relu(self.bn2(self.deconv1(x)))

122 x = self.relu(self.bn3(self.deconv2(x)))

123 x = self.relu(self.bn4(self.deconv3(x)))

124 x = self.tanh(self.deconv4(x))

125 return x

126

127 latent_size = 100

128 batch_size = 64

129

130 discriminator = to_device(Discriminator (), device)

131 generator = to_device(Generator(latent_size), device)

132

133 loss_fn = nn.BCEWithLogitsLoss ()

134

135 lr = 1e-7

136 opt_d = optim.Adam(discriminator.parameters (), lr=lr, betas =(0.5 ,

0.999))
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137 opt_g = optim.Adam(generator.parameters (), lr=lr, betas =(0.5 ,

0.999))

138

139 def train_discriminator(real_images , opt_d):

140 opt_d.zero_grad ()

141

142 real_images = real_images.to(device)

143 real_preds = discriminator(real_images)

144 real_targets = torch.ones(real_images.size (0), 1, device=device

)

145 real_loss = loss_fn(real_preds , real_targets)

146 real_score = torch.mean(torch.sigmoid(real_preds)).item()

147

148 latent = torch.randn(batch_size , latent_size , device=device)

149 fake_images = generator(latent).detach ()

150 fake_preds = discriminator(fake_images)

151 fake_targets = torch.zeros(fake_images.size (0), 1, device=

device)

152 fake_loss = loss_fn(fake_preds , fake_targets)

153 fake_score = torch.mean(torch.sigmoid(fake_preds)).item()

154

155 loss = real_loss + fake_loss

156 loss.backward ()

157 opt_d.step()

158

159 return loss.item(), real_score , fake_score

160

161 def train_generator(opt_g):

162 opt_g.zero_grad ()

163 latent = torch.randn(batch_size , latent_size , device=device)

164 fake_images = generator(latent)

165 preds = discriminator(fake_images)

166 targets = torch.ones(batch_size , 1, device=device)

167 loss = loss_fn(preds , targets)

168 loss.backward ()

169 opt_g.step()

170 return loss.item()

171

172 generator.load_state_dict(torch.load(’/mnt/new_volume/gan_training/

generated/generator_final4p1.pth ’, map_location=device))

173 discriminator.load_state_dict(torch.load(’/mnt/new_volume/

gan_training/generated/discriminator_final4p1.pth ’, map_location

=device))

174

175 train_dataloader = DataLoader(CosmoDataset(data_dir , dataset_files)

, batch_size=batch_size , shuffle=True , num_workers =8)

176 train_device_dataloader = DeviceDataLoader(train_dataloader , device

)

177

178 def fit(epochs , lr , train_dataloader):

179 history = []

180 start_time = time.time()

181

182 for epoch in range(epochs):

183 for i, real_images in enumerate(train_dataloader):

184 loss_d , real_score , fake_score = train_discriminator(

real_images , opt_d)

185 loss_g = train_generator(opt_g)

49



186

187 if (i+1) % 100 == 0:

188 elapsed_time = time.time() - start_time

189 latent_tensors = torch.randn(batch_size ,

latent_size , device=device)

190 save_samples(epoch*len(train_dataloader) + i,

latent_tensors)

191

192 val_loss = validate(generator , train_dataloader , device)

193 history.append ((loss_d , loss_g , real_score , fake_score ,

val_loss))

194

195 return history

196

197 fit(epochs =30, lr=lr , train_dataloader=train_device_dataloader)
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