

UNIVERSITÀ DEGLI STUDI DI PADOVA DIPARTIMENTO DI INGEGNERIA CIVILE, EDILE E AMBIENTALE - ICEA CORSO DI LAUREA MAGISTRALE IN INGEGNERIA CIVILE

Analisi parametriche dinamiche non lineari degli effetti dell'irrigidimento di solai in legno in edifici in muratura ordinaria

Relatore:	Chiar.mo Prof. Ing. Roberto Scotta
Correlatori:	Ing. Davide Trutalli Ing. Luca Marchi
Controrelatore:	Chiar.mo Prof. Ing. Sergio Lagomarsino
Laureando:	Michele Mirra - matricola 1130738

Anno Accademico 2016/2017

Indice

In	trodu	ızione		2	XIII
1	Lett	eratur	ra inerente ai temi trattati		1
	1.1	Genera	alità		1
	1.2	Preced	lenti lavori di Tesi		1
	1.3	Studi	effettuati sulla muratura		2
		1.3.1	Analisi del comportamento fuori piano		2
		1.3.2	Analisi del comportamento nel piano		3
	1.4	Studi	effettuati sui solai in legno		5
	1.5	Studi	sull'interazione tra muratura e solai		7
2	Moo	dellazi	one della muratura		9
	2.1	Genera	alità		9
	2.2	Modal	ità di rottura della muratura nel piano		9
		2.2.1	Premessa		9
		2.2.2	Rottura per schiacciamento o ribaltamento		10
		2.2.3	Rottura a taglio per fessurazione diagonale		11
		2.2.4	Rottura a taglio per scorrimento		12
	2.3	Modal	ità di rottura della muratura fuori piano		13
	2.4	Macro	-modello utilizzato		14
		2.4.1	Generalità		14
		2.4.2	Modellazione del comportamento nel piano		14
		2.4.3	Comportamento fuori piano		16
	2.5	Prove	sperimentali di riferimento		16
		2.5.1	Prove sperimentali su pannelli murari semplici		16
		2.5.2	Prove sperimentali su pannelli murari con aperture		18
	2.6	Model	lazione dei maschi murari		20
		2.6.1	Generalità		20
		2.6.2	Calibrazione delle molle verticali		21
		2.6.3	Calibrazione delle molle orizzontali		23
		2.6.4	Calibrazione delle molle diagonali		25
	2.7	Valida	zione del modello per i maschi murari		26
		2.7.1	Premessa		26
		2.7.2	Validazione del maschio <i>MI2</i>		26
		2.7.3	Validazione del maschio <i>MI3</i>		27
	2.8	Model	lazione delle fasce di piano		28

		2.8.1 Generalità	28
		2.8.2 Calibrazione delle molle orizzontali delle fasce di piano	30
		2.8.3 Calibrazione delle molle verticali delle fasce di piano	30
		2.8.4 Calibrazione delle molle diagonali delle fasce di piano	30
	2.9	Validazione di un pannello con apertura	31
		2.9.1 Premessa	31
		2.9.2 Confronto tra risultati sperimentali e numerici	31
	2.10	Modellazione del comportamento fuori piano	33
3	Mod	dellazione dei solai in legno	37
	3.1	Tipologie di solai indagate	37
	3.2	Prove sperimentali di riferimento	37
		3.2.1 Modalità di esecuzione delle prove	37
		3.2.2 Solaio con tavolato semplice	38
		3.2.3 Solaio rinforzato con tavolato a 45°	39
		3.2.4 Solaio rinforzato con profili sottili in acciaio	39
		3.2.5 Solaio rinforzato con soletta in calcestruzzo armato	39
	3.3	Modello numerico implementato	40
		3.3.1 Premessa	40
		3.3.2 Procedura seguita per la calibrazione del modello	43
		3.3.3 Solaio con tavolato semplice	44
		3.3.4 Solaio consolidato con tavolato a 45°	44
		3.3.5 Solaio consolidato con profili sottili in acciaio	45
		3.3.6 Solaio consolidato con soletta in calcestruzzo armato	45
4	Cas	i studio analizzati	49
	4.1	Generalità	49
	4.2	Edifici studiati	51
		4.2.1 Caratteristiche principali e configurazioni analizzate	51
		4.2.2 Analisi dei carichi e definizione delle masse sismiche	52
	4.3	Discussione dei risultati ottenuti	55
		4.3.1 Premessa	55
		4.3.2 Edificio A	56
		4.3.3 Edificio B	63
		4.3.4 Edificio C	70
		4.3.5 Edificio D	77
		4.3.6 Confronto tra i vari casi esaminati	84
	4.4	Ulteriori valutazioni effettuate	89
		4.4.1 Periodi degli edifici esaminati	89
		4.4.2 Rischio di collasso delle pareti fuori piano	90
		4.4.3 Comportamento delle pareti nel piano	92
		4.4.4 Effetti dissipativi dei solai	92

5 Conclusioni e sviluppi futuri

\mathbf{A}	List	ati impiegati per la calibrazione	99
	A.1	Muratura	. 99
		A.1.1 Maschio <i>MI2</i> (1 macro-elemento)	. 99
		A.1.2 Maschio <i>MI3</i> (1 macro-elemento)	. 104
		A.1.3 Maschio <i>MI3</i> (3 macro-elementi)	. 109
		A.1.4 Pannello con apertura e fascia di piano tozza	. 114
	A.2	Solai in legno	. 122
		A.2.1 Solaio con tavolato semplice	. 122
		A.2.2 Solaio consolidato con tavolato a 45°	. 128
		A.2.3 Solaio consolidato con profili sottili in acciaio	. 134
		A.2.4 Solaio consolidato con soletta in calcestruzzo armato \ldots	. 140
в	List	ati di alcuni casi studio	147
D	B.1	Premessa	147
	B.2	Caso A380NS	. 147
	B.3	Caso B320TB	. 166
	B.4	Caso C380NS	. 185
	B.5	Caso D250RC	. 201
\mathbf{R} i	ngra	ziamenti	217
Bi	bliog	grafia	219

Elenco delle figure

1.1	Collasso di un edificio costruito con muratura in sasso e copertura in calcestruzzo armato [12].	4
1.2	Diverse tecniche di rinforzo ed irrigidimento dei solai in legno: (a) solaio esistente con semplice tavolato; (b) sovrapposizione di un secondo tavolato inclinato di 45° rispetto al primo per mezzo di viti d'acciaio; (c) consolidamento tramite profili sottili in acciaio; (d) consolidamento mediante lamine FRP; (e) sovrapposizione di tre strati di compensato incollati; (f) soletta in calcestruzzo realizzata secondo il metodo Turrini- Piazza [42]. Le misure riportate sono in mm [43].	6
91	Meccanismo di rottura per schiacciamento [32]	10
2.1 2.2	Meccanismi di collasso fuori piano della muratura [disegni di Logica]	10
	Soft]	14
2.3	Macro-elemento utilizzato per la modellazione del comportamen- to nel piano della muratura: (a) configurazione indeformata; (b) configurazione deformata [27]	15
2.4	Simulazione dei un macro-elemento dei meccanismi di collasso nel piano di un pannello murario: (a) rottura per schiacciamento/ri- baltamento; (b) rottura a taglio per fessurazione diagonale; (c) rottura	10
	a taglio per scorrimento [27]	15
2.5	Generico macro-elemento implementato nel modello numerico. $\ .\ .\ .$	16
2.6 2.7	Modalità di esecuzione della prova sperimentale [30]	18
	svolgimento del test. Quote espresse in mm [2]	19
2.8	Legame costitutivo per il comportamento a pressoflessione della mura-	
	tura [27]	22
2.9	Legame costitutivo per le molle verticali dei pannelli MI2 (a sinistra)	
9.10	e MI3 (a destra).	23
2.10	a MI3 (a dostra)	24
2 11	Legame costitutivo per le molle diagonali dei pannelli MI2 (a sinistra)	24
2.11	e MI3 (a destra).	26
2.12	Rappresentazione del pannello MI2 mediante il macro-elemento cali-	-
	brato e confronto tra ciclo sperimentale (in nero) e ciclo ottenuto dal	
	modello numerico (in rosso)	27

2.13	Rappresentazione del pannello MI3 mediante il macro-elemento cali- brato e confronto tra ciclo sperimentale (in nero) e ciclo ottenuto dal modello numerico (in rosso).	29
2.14	Rappresentazione del pannello MI3 mediante tre macro-elementi; il ciclo ottenuto dall'analisi numerica (in rosso) ricalca nuovamente quello sperimentale (in nero).	29
2.15	Rappresentazione del pannello murario con fascia di piano tozza mediante il macro-modello implementato e confronto tra i valori sperimentali (in nero) e numerici (in rosso).	32
2.16	Prova ciclica fuori piano su una parete di dimensioni $4000 \times 2500 \times 110$ mm soggetta a compressione $\sigma = 0.1$ MPa (a sinistra) e non compres- sa (a destra) [55]. Nei grafici sono evidenziate le rigidezze elastiche iniziali (in rosso), quelle corrispondenti al limite di spostamento del	9.4
	2% dell'altezza (in blu) e il limite stesso (in arancione)	34
3.1	Schema della prova sperimentale eseguita sui diversi tipi di sola i $\left[3\right]$.	38
3.2	Modellazione del solaio in legno tramite truss elastici infinitamente rigidi (in nero) e molle diagonali opportunamente calibrate (in blu). Le misure sono in mm.	40
3.3	Modello Pinching4 implementato nel software OpenSees [34]; la curva	
	d'inviluppo è rappresentata in nero, il ciclo di pinching in grigio	42
3.4	Confronto tra ciclo sperimentale (in nero) e numerico (in rosso) per il	46
3.5	Confronto tra ciclo sperimentale (in nero) e numerico (in rosso) per il	40
0.0	solaio consolidato con tavolato a 45° .	46
3.6	Confronto tra ciclo sperimentale (in nero) e numerico (in rosso) per il solaio consolidato con profili sottili in acciaio.	47
3.7	Confronto tra ciclo sperimentale (in nero) e numerico (in rosso) per il	
	solaio consolidato con soletta in calcestruzzo armato.	47
4.1	Parametri sismici assunti, grafico dell'accelerogramma più gravoso e sua compatibilità con lo spettro di risposta elastico in accelerazione	~
4.9	di riferimento [24].	51
4.2	ti; gli spessori dei muri sono variabili e le linee tratteggiate individuano le pareti fuori piano ricche di aperture e perciò non modellate. Tutte	59
43	Bappresentazione realistica dell'edificio tipo analizzato e corrispon-	00
1.0	dente modello numerico; negli edifici C e D il graticcio di elementi beam per simulare il comportamento fuori piano non è presente	54
4.4	Discretizzazione del solaio degli edifici analizzati; sono evidenziati i punti di controllo in cui si è misurato lo spostamento del solaio (Midfloor - MF) e dei pannelli murari (Wall 1 e Wall 2 - W1 e W2). Tutte le quote sono espresse in mm, tra parentesi sono riportate le	
	quote dell'edificio avente dimensioni in pianta 4.5×8.0 m	55

4.5	Andamenti dei massimi spostamenti dei diversi solai (MF) e dei pannelli murari nel piano (W1) registrati al crescere della PGA per la configurazione A250	. 57
4.6	Andamenti dei massimi spostamenti dei diversi solai (MF) e dei pannelli murari nel piano (W1) registrati al crescere della PGA per la configurazione A320	. 58
4.7	Andamenti dei massimi spostamenti dei diversi solai (MF) e dei pannelli murari nel piano (W1) registrati al crescere della PGA per la configurazione A380.	. 59
4.8	Andamenti degli spostamenti dei solai (MF) e dei pannelli murari nel piano (W1) in funzione del tempo per la configurazione A250 alla PGA di collasso. Nell'intervallo riportato è presente lo spostamento	
4.9	massimo registrato per entrambi	. 60
4.10	massimo registrato per entrambi	61
4.11	massimo registrato per entrambi	62 64
4.12	Andamenti dei massimi spostamenti dei diversi solai (MF) e dei pannelli murari nel piano (W1) registrati al crescere della PGA per la configurazione B320.	65
4.13	Andamenti dei massimi spostamenti dei diversi solai (MF) e dei pannelli murari nel piano (W1) registrati al crescere della PGA per la configurazione B380	66
4.14	Andamenti degli spostamenti dei solai (MF) e dei pannelli murari nel piano (W1) in funzione del tempo per la configurazione B250 alla PGA di collasso. Nell'intervallo riportato è presente lo spostamento	67
4.15	Andamenti degli spostamenti dei solai (MF) e dei pannelli murari nel piano (W1) in funzione del tempo per la configurazione B320 alla PGA di collasso. Nell'intervallo riportato è presente lo spostamento	. 07
4.16	massimo registrato per entrambi	. 68
4.17	PGA di collasso. Nell'intervallo riportato è presente lo spostamento massimo registrato per entrambi	. 69
	pannelli murari nel piano (W1) registrati al crescere della PGA per la configurazione C250.	. 71

Andamenti dei massimi spostamenti dei diversi solai (MF) e dei pannelli murari nel piano (W1) registrati al crescere della PGA per la configurazione C320.	72
Andamenti dei massimi spostamenti dei diversi solai (MF) e dei pannelli murari nel piano (W1) registrati al crescere della PGA per la configurazione C380.	73
Andamenti degli spostamenti dei solai (MF) e dei pannelli murari nel piano (W1) in funzione del tempo per la configurazione C250 alla PGA di collasso. Nell'intervallo riportato è presente lo spostamento maggine registrate per entrembi	74
Andamenti degli spostamenti dei solai (MF) e dei pannelli murari nel piano (W1) in funzione del tempo per la configurazione C320 alla PGA di collasso. Nell'intervallo riportato è presente lo spostamento massimo registrato per entrambi.	74
Andamenti degli spostamenti dei solai (MF) e dei pannelli murari nel piano (W1) in funzione del tempo per la configurazione C380 alla PGA di collasso. Nell'intervallo riportato è presente lo spostamento massimo registrato per entrambi.	76
Andamenti dei massimi spostamenti dei diversi solai (MF) e dei pannelli murari nel piano (W1) registrati al crescere della PGA per la configurazione D250.	78
Andamenti dei massimi spostamenti dei diversi solai (MF) e dei pannelli murari nel piano (W1) registrati al crescere della PGA per la configurazione D320	79
Andamenti dei massimi spostamenti dei diversi solai (MF) e dei pannelli murari nel piano (W1) registrati al crescere della PGA per la configurazione D380.	80
Andamenti degli spostamenti dei solai (MF) e dei pannelli murari nel piano (W1) in funzione del tempo per la configurazione D250 alla PGA di collasso. Nell'intervallo riportato è presente lo spostamento maggine registrate per entrembi	01
Andamenti degli spostamenti dei solai (MF) e dei pannelli murari nel piano (W1) in funzione del tempo per la configurazione D320 alla PGA di collasso. Nell'intervallo riportato è presente lo spostamento	01
massimo registrato per entrambi	82
massimo registrato per entrambi.	83
Contronto tra le PGA di collasso raggiunte dai diversi solai nelle configurazioni analizzate per gli edifici A e B. Per ciascun tipo di solaio è riportata la rigidezza nel piano nei due casi A e B	85
Confronto tra le PGA di collasso raggiunte dai diversi solai nelle configurazioni analizzate per gli edifici C e D. Per ciascun tipo di solaio è riportata la rigidezza nel piano nei due casi C e D	87
	Andamenti dei massimi spostamenti dei diversi solai (MF) e dei pannelli murari nel piano (W1) registrati al crescere della PGA per la configurazione C320

4.31	Spostamenti massimi fuori piano per le diverse configurazioni analiz-	
	zate, ordinate dal rischio di collasso minimo (colore verde) a quello	
	$massimo (colore rosso). \dots \dots$	91
4.32	Andamenti del taglio alla base in funzione dello spostamento in som-	
	mità (W1) per una singola parete nel piano; per ciascun grafico è	
	indicata la configurazione di riferimento.	93
4.33	Ingrandimento del ciclo isteretico del solaio con tavolato semplice: per	
	tutte le configurazioni riportate il solaio è snervato.	95
4.34	Ingrandimento del ciclo isteretico del solaio consolidato con tavolato a	
	45°: le configurazioni riportate che hanno raggiunto la massima PGA	
	sono quelle in cui si è avuto un marcato snervamento del solaio, mentre	
	nel caso A250NS il campo elastico viene oltrepassato solo di poco e	
	non si ha dissipazione.	95

Elenco delle tabelle

2.1	Parametri caratteristici della muratura utilizzata nelle prove speri-	17
0.0		11
2.2	mentali [2]	19
2.3	Parametri caratteristici della muratura utilizzati per calibrare le diverse molle	91
2.4	Valori ricavati per il legame costitutivo forza-spostamento delle molle vorticali per entrambi i pappelli studiati	21 93
2.5	Valori ricavati per il legame forza-spostamento delle molle orizzontali	20
2.6	per entrambi i pannelli studiati	24
-	per entrambi i pannelli studiati.	25
2.7	Snellezze delle pareti fuori piano corrispondenti alle diverse configura- zioni analizzate	35
2.8	Moduli elastici assegnati agli elementi beam verticali ed orizzontali nelle diverse configurazioni analizzate	35
4.1	Configurazioni analizzate e sigle impiegate nella presentazione dei risultati.	52
4.2	PGA di collasso registrate per l'edificio A e tipologie di rottura riscontrate.	56
4.3	PGA di collasso registrate per l'edificio B e tipologie di rottura riscontrate.	63
4.4	PGA di collasso registrate per l'edificio C e tipologie di rottura	70
4.5	PGA di collasso registrate per l'edificio D e tipologie di rottura riscontrate.	77
4.6	Periodi (in secondi) delle diverse configurazioni analizzate.	89

Introduzione

Negli ultimi anni sono state sviluppate diverse tecniche di miglioramento sismico, specie nel caso di strutture in muratura ordinaria: in particolare, il rinforzo dei solai esistenti viene normalmente annoverato tra gli interventi più utili, contribuendo a conferire un comportamento scatolare agli edifici. In questo lavoro di Tesi, a partire da alcuni studi già precedentemente effettuati, sono state condotte analisi parametriche dinamiche non lineari comparando tra loro le tipologie di irrigidimento più comuni e verificando la reale convenienza dell'intervento di rinforzo.

In Letteratura sono disponibili i risultati di svariate campagne di prove sperimentali cicliche e monotone per studiare la risposta dei solai rinforzati, il comportamento sismico dei pannelli murari e, in qualche caso, l'interazione tra orizzontamenti e pareti. A partire da tali risultati, è stato possibile implementare un modello numerico ben calibrato, analizzando diverse configurazioni di uno stesso edificio.

Alcuni risultati precedenti ottenuti da analisi statiche non lineari mostrano un miglioramento della risposta sismica di edifici in muratura ordinaria, se si procede all'irrigidimento e rinforzo dei solai. Infatti, un solaio troppo flessibile non consente di evitare il ribaltamento fuori piano dei pannelli murari, essendo questi spesso non dotati di adeguati sistemi di ammorsamento e confinamento. È evidente, tuttavia, come tale conclusione non possa essere del tutto generalizzabile, essendo questo tipo di collasso dipendente non solo dalla rigidezza del solaio, ma anche dalla rigidezza e resistenza delle pareti nel proprio piano, e dalla geometria dell'edificio. Inoltre, le analisi statiche non lineari non dimostrano una buona affidabilità nel caso di solai flessibili e piante irregolari.

È già stato dimostrato, infatti, come in alcuni casi il rinforzo dei solai esistenti possa addirittura peggiorare la risposta sismica degli edifici: un orizzontamento troppo rigido non è in grado di dissipare l'energia fornita dal sisma, pertanto le forze inerziali vengono trasferite interamente ai maschi murari, come è stato possibile osservare in singoli casi studio. Appare allora evidente come, per poter generalizzare i risultati, sia necessario ampliare la quantità di dati numerici a disposizione, conducendo analisi parametriche al variare della rigidezza delle pareti murarie o degli orizzontamenti. In tal modo, è possibile valutare quale sia la più adeguata tipologia di solaio caso per caso e giungere a risultati di più ampia applicabilità.

In questa Tesi si riportano e si discutono alcuni risultati, che verranno presentati anche al XVII Convegno ANIDIS (Pistoia, 17-21 settembre 2017), ottenuti nel caso di edifici molto semplici e regolari, in diverse configurazioni. In totale sono stati analizzati trentasei diversi casi studio, riconducibili a situazioni reali, a partire dai quali è stato possibile ottenere alcune informazioni utili circa la convenienza del rinforzo ed irrigidimento dei solai esistenti.

Introduzione

Gli obiettivi delle analisi parametriche eseguite possono così riassumersi:

- confermare quanto emerso dagli studi già effettuati da alcuni Autori;
- studiare l'influenza di diversi spessori (e quindi diverse rigidezze) dei pannelli murari sulla risposta globale degli edifici analizzati;
- studiare l'influenza di diverse rigidezze nel piano dei solai sul comportamento sismico degli edifici analizzati;
- valutare le differenze nei risultati ottenuti modellando o meno gli elementi che rappresentano le pareti fuori piano; ciò permette di ricondursi a due casi opposti, ossia rispettivamente una parete pressoché piena e una con molte aperture, avente quindi rigidezza trascurabile.

L'elaborato è stato così concepito:

- nel *primo capitolo* sono riportati alcuni risultati disponibili attualmente in Letteratura, a partire dai quali si è proceduto alla calibrazione del modello numerico implementato;
- nel *secondo capitolo* viene trattata la calibrazione degli elementi rappresentativi del comportamento dei pannelli murari;
- il *terzo capitolo* presenta il processo di calibrazione degli elementi atti a simulare il comportamento delle diverse tipologie di solaio analizzate;
- il *quarto capitolo* contiene un'ampia trattazione dei casi studio analizzati, con la relativa discussione dei risultati ottenuti;
- nel *quinto capitolo* sono presentate le conclusioni inerenti al lavoro svolto e i possibili sviluppi futuri relativi a queste tematiche.

In Appendice sono riportati tutti i listati implementati in fase di calibrazione e alcuni di quelli relativi ai diversi casi studio.

Capitolo 1

Letteratura inerente ai temi trattati

1.1 Generalità

La presente Tesi nasce come integrazione, approfondimento e sviluppo ulteriore di una serie di analisi svolte in lavori precedenti, cui si farà riferimento nel seguito. Per garantire, tuttavia, una più ampia panoramica sulle tematiche trattate, è stato necessario ricercare nella Letteratura del settore alcuni spunti ulteriori, rispetto a quelli già utilizzati nelle precedenti Tesi.

In particolare, per quanto concerne la risposta ad un carico ciclico dei solai in legno, quanto disponibile in Letteratura risulta sufficiente a formulare un corretto modello numerico, come è possibile notare anche nei precedenti elaborati. Diversa è, invece, la situazione nel caso della muratura, per la quale si è manifestata la necessità di indagare altri aspetti e ricavare maggiori informazioni, specie per il comportamento fuori piano.

1.2 Precedenti lavori di Tesi

Le analisi che verranno presentate in questo elaborato hanno origine dai risultati di precedenti Tesi di laurea, in cui via via si è affinata la modellazione numerica: per ciascun lavoro, è stato esaminato come caso studio un edificio di volta in volta più complesso.

Le prime due Tesi a trattare questi argomenti sono state redatte congiuntamente da L. DE TOMASI [17] e A. LONARDI [29]: si è proposta una modellazione preliminare, nella quale ai solai sono stati associati semplici cicli isteretici e la muratura è stata schematizzata unicamente nel piano per mezzo di opportuni elementi *beam*. Questi risultati sono stati poi discussi da R. SCOTTA et al. [46] alla XII International Conference on Structural Repair and Rehabilitation (2016).

Successivamente, allo scopo di verificare e confermare quanto ottenuto in precedenza, N. BERTIN [5] e M. TONON [50] sono pervenuti ad un notevole affinamento del modello, implementando rispettivamente i macro-elementi relativi alla muratura e il sistema di molle impiegato per schematizzare il solaio. È stato così possibile tener conto in modo più preciso della non linearità e della capacità dissipativa dei materiali: l'analisi è stata eseguita solo in una direzione e il comportamento fuori piano è stato schematizzato mediante un unico elemento *beam*, al quale è stata assegnata la rigidezza dell'intera parete. I risultati di tali analisi sono stati presentati alla World Conference on Timber Engineering di Vienna (2016) [47].

Infine, con G. CANESSO [12] si è proseguito il lavoro di affinamento, studiando un edificio più complesso nelle due direzioni e affidando il comportamento fuori piano ad un graticcio di elementi *beam* sovrapposti ai macro-elementi. Il modello così ottenuto conferma i risultati precedenti, tuttavia è risultato computazionalmente troppo oneroso, impiegando fino a trenta ore per l'elaborazione di un'analisi time-history. In quest'ultimo caso, D. TRUTALLI et al. [51] hanno presentato questi risultati alla 6^{th} Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (2017).

In questo lavoro di Tesi, la modellazione è stata semplificata e snellita, in modo da ottenere il giusto compromesso tra accuratezza ed onere computazionale, verificando in ogni caso quanto ottenuto in passato, oltre ad ampliare la panoramica dei possibili casi studio.

Nell'elaborato si farà anche riferimento al lavoro di R. FABIAN [20], con cui si è pervenuti ad alcune formule analitiche utili a valutare la rigidezza nel piano dei solai in legno, confrontandole con i risultati ottenuti dalla modellazione numerica e dalle prove sperimentali.

1.3 Studi effettuati sulla muratura

Nel caso della muratura, il riferimento per questo e per i precedenti elaborati è costituito dalle prove sperimentali eseguite da G. MAGENES e G. M. CALVI [31], i quali hanno studiato il comportamento ciclico nel piano dei pannelli murari. Tuttavia, oltre a tale pubblicazione, si è cercato di ampliare il materiale a disposizione, allo scopo di validare ulteriormente la modellazione effettuata: in particolare, sono state ricercate maggiori informazioni relativamente al comportamento fuori piano e qualche altra pubblicazione di riferimento riguardo alla risposta nel piano.

Il modello numerico è stato implementato grazie al software *OpenSees* [34], sfruttando per rappresentare il comportamento della muratura una procedura per macro-elementi simile a quella proposta da I. CALIÒ et al. [10, 11] e utilizzando i legami costitutivi suggeriti all'interno del manuale del software *3D-Macro* [27].

1.3.1 Analisi del comportamento fuori piano

Per quanto concerne il comportamento fuori piano, sono stati utili alcuni studi effettuati dall'Università di Adelaide. In particolare, J. VACULIK, M. GRIFFITH et al. [54, 55] hanno sottoposto alcuni pannelli murari a sollecitazioni fuori piano, registrandone la risposta ciclica: i risultati ottenuti mostrano una notevole capacità di spostamento fuori piano dei pannelli, con valori ben superiori a quelli cautelativamente adottati come limite nelle Tesi precedenti (pari al 2% dell'altezza del muro). Queste prove sperimentali verranno poi approfondite nella sezione dedicata alla modellazione del comportamento fuori piano (paragrafo 2.10).

Altre pubblicazioni hanno mostrato in modo chiaro l'influenza notevole delle condizioni al contorno sulla rottura fuori piano dei pannelli murari: in particolare, M. TONDELLI et al. [49] hanno recentemente valutato questo tema per le strutture in muratura dotate di solai in calcestruzzo armato. Si è esaminato un edificio di quattro piani realizzato in scala 1:2, munito di pannelli murari non armati e di setti e solai in calcestruzzo armato. In particolare, nella direzione di sollecitazione del sisma sono stati disposti due setti in calcestruzzo e due maschi murari solo appoggiati al solaio; in direzione ortogonale, a completare l'edificio, erano presenti due pareti in muratura, soggette dunque a spostamenti fuori piano. Questi ultimi, in corrispondenza del terzo e del quarto piano, hanno causato la rottura di tali pareti a metà o a tre quarti della loro altezza. La direzione di sollecitazione del sisma è rimasta la stessa durante tutte le prove, ma al variare del verso sia i setti, sia i pannelli murari nel piano sono stati sottoposti alternativamente a trazione o compressione. Gli spostamenti fuori piano registrati subivano, perciò, una forte variazione, a causa delle diverse condizioni al contorno. Infatti, quando sottoposti a trazione, i setti erano incastrati ai solai, ma i maschi murari vi erano solo appoggiati, e si sono quindi sollevati assieme alle pareti fuori piano ad essi collegate, causandone spostamenti rilevanti, fino alla rottura.

Mediante questa prova sperimentale si è quindi potuto stabilire che la risposta fuori dal piano è influenzata dal vincolo verticale costituito dai solai in calcestruzzo: gli spostamenti più elevati si sono registrati, infatti, quando i maschi murari non sono più stati in grado di trasmettere sforzo assiale a causa del loro innalzamento. Nonostante ciò, il solaio può comunque fungere da vincolo rispetto ai carichi orizzontali se ben collegato alle pareti, generando una rottura fuori piano dei pannelli murari mediante la formazione di tre fessure (in analogia al meccanismo labile di una trave verticale dotata di tre cerniere): solo se anche tali connessioni vengono meno, si ha un ribaltamento completo. Infine, anche il moto relativo tra i vari solai gioca un ruolo importante, soprattutto nel caso questi siano molto rigidi, mentre per orizzontamenti più flessibili questa influenza non risulta così significativa.

In base a quanto affermato, un adeguato sistema di collegamento tra solai e pannelli murari gioca un ruolo essenziale nella risposta sismica degli edifici. Inoltre, un irrigidimento dei solai potrebbe essere raccomandabile, allo scopo di favorire il comportamento scatolare dell'edificio. Va però precisato che, nell'effettuare tale operazione, è necessario tener conto anche della composizione della muratura: se questa è piuttosto scadente, è chiaro che un simile intervento ne possa peggiorare il comportamento, come si è potuto osservare nei recenti eventi sismici che hanno colpito l'Italia centrale: in particolare, in figura 1.1 si può osservare come la sostituzione di una copertura lignea con una in calcestruzzo armato abbia comportato il completo collasso dell'edificio, mentre la copertura stessa sia rimasta di fatto integra. Pertanto, è opportuno anche agire sulla muratura, non soltanto limitando l'intervento ai solai, per evitare situazioni simili.

1.3.2 Analisi del comportamento nel piano

Per questo tipo di comportamento, il riferimento per i precedenti elaborati e per gran parte delle pubblicazioni sul tema, è costituito dal già citato lavoro di G. MAGENES e G. M. CALVI [30, 31]. Essi hanno predisposto una serie di prove sperimentali, applicando una sollecitazione ciclica su pannelli murari di varia altezza e soggetti a differente compressione assiale. I risultati di tali indagini sono particolarmente significativi, in quanto gli Autori dichiarano di aver ottenuto delle

Figura 1.1: Collasso di un edificio costruito con muratura in sasso e copertura in calcestruzzo armato [12].

caratteristiche meccaniche tipiche di una muratura antica ma ben conservata, quindi le prove condotte possono essere considerate sufficientemente rappresentative e le valutazioni effettuate applicabili ad altri casi. In particolare, se il pannello murario risulta piuttosto snello e sufficientemente compresso, la rottura più probabile è legata alla fessurazione diagonale, se molto tozzo allo scorrimento, se snello ma poco compresso, e vincolato solo alla base, interviene il ribaltamento. Tutti i meccanismi di rottura qui elencati verranno poi ripresi ed approfonditi nel capitolo successivo, al paragrafo 2.2.

Un altro contributo allo studio del comportamento nel piano, è dato dai risultati di C. ALLEN et al. [2], utilizzati in fase di validazione del modello di questo elaborato. Le proprietà meccaniche e la geometria dei provini sono totalmente diverse da quelle precedentemente discusse, tuttavia è simile non solo la modalità di conduzione della prova sperimentale, ma anche la diversa risposta registrata in funzione dell'entità del carico assiale di compressione. Pertanto, lo studio in questione si rivela molto utile, in quanto permette di osservare se il modello riesca effettivamente a simulare anche i risultati di queste prove, verificando la sua versatilità. Questa pubblicazione è, inoltre, di grande interesse anche per il tipo di provini di cui si è analizzato il comportamento: infatti, in questo caso, è stata studiata l'influenza delle aperture (porte o finestre) all'interno delle pareti. Per tale motivo, è possibile verificare l'affidabilità della modellazione tramite macro-elementi nel rappresentare anche tale situazione.

Le due pubblicazioni appena citate verranno poi opportunamente richiamate al paragrafo 2.5, in cui si tratterà la calibrazione dei macro-elementi che dovranno simulare il comportamento della muratura nel modello numerico implementato.

Ulteriori pubblicazioni di notevole interesse sono legate sia alle modalità di rottura dei maschi murari (C. CALDERINI et al. [9]), sia a studi effettuati sulle fasce di piano (K. BEYER [7], N. GATTESCO et al. [23], G. RINALDIN et al. [45]), grazie ai quali è stato possibile tener conto anche dell'influenza dei tiranti in acciaio sulla risposta di tali elementi.

1.4 Studi effettuati sui solai in legno

Molte indagini sono di recente state effettuate sia nell'ambito dello studio del comportamento sismico dei solai lignei, sia allo scopo di testare nuove modalità di rinforzo e consolidamento (A. BRIGNOLA et al. [8], N. GATTESCO et al. [22], L. MARCHI et al. [33], M. P. NEWCOMBE et al. [37], E. ONGARETTO et al. [38], M. R. VALLUZZI et al. [56]). Per quanto concerne i temi indagati in questo elaborato e nei precedenti, di primaria importanza sono le prove sperimentali effettuate da M. PIAZZA et al. [43]: sono state confrontate diverse tecniche di consolidamento valutando di volta in volta il comportamento del solaio e la sua rigidezza nel piano. Le suddette tecniche sono già state ampiamente discusse nelle precedenti Tesi, pertanto vengono riassunte in fig. 1.2: ciascun tipo di solaio è stato poi sottoposto alla prova di laboratorio.

La campagna sperimentale effettuata è descritta e commentata in modo approfondito anche nella Tesi di Dottorato di C. BALDESSARI [3]. In ogni caso, i risultati mostrano un'elevata deformabilità del solaio realizzato mediante il tavolato semplice (com'era da attendersi) e un suo notevole irrigidimento se si utilizzano gli altri metodi, tra i quali la sovrapposizione di pannelli di compensato e la soletta in calcestruzzo armato risultano gli interventi che conferiscono la maggiore rigidezza nel piano. Anche in questo caso, viene rimarcata la primaria importanza di un idoneo sistema di connessione tra solaio e muratura, affinché la trasmissione delle forze sia il più possibile distribuita ed uniforme.

Inoltre, in aggiunta a tali valutazioni, sono dettagliatamente riportati i cicli isteretici ottenuti per le diverse tipologie di solaio analizzate: essi sono stati utilizzati in questo lavoro di Tesi per calibrare gli elementi che nel modello numerico permettono di tener conto del comportamento non lineare degli orizzontamenti.

Approfondendo questo tema, I. GIONGO [25] ha trattato nella sua Tesi di Dottorato gli effetti delle varie tecniche di rinforzo dei solai in legno sulla muratura ordinaria, svolgendo una serie di analisi statiche non lineari. Da queste simulazioni numeriche è emerso come nel caso di sollecitazioni orizzontali fortemente eccentriche il solaio rigido conferisca una resistenza d'insieme maggiore agli edifici analizzati, ma in tutte le altre situazioni le curve di capacità ottenute si sovrappongono tra loro, ossia anche irrigidendo gli orizzontamenti non si osservano miglioramenti nel comportamento globale di ogni edificio.

Un ultimo aspetto da sottolineare riguarda la corretta valutazione della rigidezza dei solai in legno. Questo tema è stato trattato da A. BRIGNOLA et al. [8]: nello studio effettuato, ripreso anche nel già citato elaborato di R. FABIAN, si suggerisce di tener conto di tre contributi essenziali per la deformabilità del solaio: la rotazione rigida delle tavole a causa dello scorrimento dei chiodi, la deformazione a taglio delle tavole e la deformazione flessionale delle stesse.

Pertanto, nel valutare la rigidezza di un orizzontamento in legno, si dovranno considerare tutte le componenti citate: sono perciò state proposte alcune formule

Figura 1.2: Diverse tecniche di rinforzo ed irrigidimento dei solai in legno: (a) solaio esistente con semplice tavolato; (b) sovrapposizione di un secondo tavolato inclinato di 45° rispetto al primo per mezzo di viti d'acciaio; (c) consolidamento tramite profili sottili in acciaio; (d) consolidamento mediante lamine FRP; (e) sovrapposizione di tre strati di compensato incollati; (f) soletta in calcestruzzo realizzata secondo il metodo Turrini-Piazza [42]. Le misure riportate sono in mm [43].

che hanno confermato i risultati ottenuti sia numerici, sia sperimentali, come già anticipato al paragrafo 1.2. In particolare, come riportato nel lavoro di R. FABIAN, è possibile definire per il solaio un modulo a taglio equivalente G_{eq} che tenga conto dei tre contributi. Considerando un solaio con tavolato semplice e con tavole interrotte in corrispondenza di ogni intersezione tra le travi e il tavolato stesso, lo spostamento totale δ dell'orizzontamento è pari a:

$$\delta = \delta_1 + \delta_2 + \delta_3 = \left(\frac{F}{k_{ser}} \cdot \frac{2}{s_n} + \frac{\chi F}{GA} + \frac{F l^2}{12 E J}\right) \cdot l \tag{1.1}$$

Da cui si ottiene:

$$G_{eq} = \frac{\chi F}{Bt} \cdot \frac{L}{\delta} = \frac{\chi}{A} \left(\frac{l}{k_{ser} s_n^2} + \frac{\chi}{GA} + \frac{l^2}{12EJ} \right)^{-1}$$
(1.2)

Nelle precedenti relazioni, F è l'azione sollecitante, k_{ser} è la rigidezza dei chiodi, s_n è l'interasse tra i chiodi stessi, χ è il fattore di taglio del tavolato, G è il modulo di taglio del tavolato, A è l'area delle singole tavole, E è il modulo di Young, l è l'interasse tra le travi principali.

Più in generale, per altri tipi di solaio vale la relazione:

$$G_{eq} = \frac{kL}{4Bt} \tag{1.3}$$

in cui $B \in L$ sono le dimensioni complessive del solaio, mentre k è il rapporto tra la forza e lo spostamento registrati nella curva sperimentale, in corrispondenza dello snervamento del solaio.

1.5 Studi sull'interazione tra muratura e solai

Negli ultimi anni sono state effettuate numerose indagini, allo scopo di valutare l'interazione tra pareti murarie e solai, specie nel caso di orizzontamenti flessibili. Oltre allo studio dell'interazione vera e propria, si è anche valutata l'affidabilità di alcuni tipi di analisi, come la statica non lineare, nel caso di edifici irregolari in pianta e dotati di solai flessibili (S. CATTARI et al. [13]).

L'argomento appare comunque di grande rilevanza ed attualità, dal momento che tale interazione continua ad essere indagata, essendo tipica degli edifici esistenti: si possono citare, ad esempio, i lavori di J. ALEMAN et al. [1], M. BETTI et al. [6], A. C. COSTLEY et al. [16], I. GIONGO et al. [26], Y. NAKAMURA et al. [36], J. PAQUETTE e M. BRUNEAU [41].

Un interessante studio di M. GALLONELLI [21] ha, invece, indagato la modellazione di un semplice edificio confrontando il diverso comportamento della muratura nel piano in presenza di solaio rigido, flessibile o intermedio tra i due. L'Autore ha effettuato sia analisi statiche non lineari (*pushover*), sia analisi dinamiche non lineari (*time-history*): i risultati del primo tipo di simulazione numerica mostrano un miglior comportamento del solaio rigido, in quanto garantisce una ripartizione equivalente delle sollecitazioni tra i vari pannelli su cui esso poggia. Tuttavia, tale solaio impegna maggiormente i muri stessi, portandoli al collasso: se, da un lato, ciò consente una maggiore dissipazione da parte dei maschi murari, dall'altro può risultare deleterio se la muratura non è sufficientemente resistente, giungendo a rottura ancor prima di iniziare il processo dissipativo, come già ricordato nel precedente paragrafo. Il solaio flessibile non viene considerato una soluzione ottimale poiché non ripartisce equamente le sollecitazioni sui pannelli, non li impegna fino alla rottura, e gli spostamenti elevati potrebbero provocare il collasso dei pannelli fuori dal piano. Tuttavia, se la muratura è dotata di tiranti o cordoli per limitare quest'ultima eventualità (come del resto consigliato dalla Normativa e dagli stessi G. MAGENES e G. M. CALVI), a un solaio più flessibile potrebbe essere affidato il compito della dissipazione energetica, preservando i maschi murari dal collasso, dal momento che questi risulterebbero sollecitati in misura minore.

Infine, C. C. SIMSIR et al. [48] hanno studiato l'interazione tra il comportamento fuori piano delle pareti murarie e i solai flessibili. Le modalità di rottura ottenute sono simili a quelle del caso di M. TONDELLI et al., e gli Autori propongono e confrontano tra loro diverse strategie possibili per modellare il comportamento fuori piano.

Capitolo 2 Modellazione della muratura

2.1 Generalità

In questo capitolo si andranno brevemente a richiamare innanzitutto le possibili modalità di rottura della muratura, sia nel piano, sia fuori piano. Successivamente, verranno esaminate in modo più approfondito le già citate prove sperimentali a disposizione, le quali verranno poi utilizzate in fase di calibrazione e validazione dei macro-elementi impiegati per modellare la muratura. Sulla base di tali risultati, si procederà infine ad utilizzare il macro-modello così calibrato per simulare il comportamento sismico della muratura nel modello completo dell'edificio studiato.

2.2 Modalità di rottura della muratura nel piano

2.2.1 Premessa

Si distinguono tre principali meccanismi di collasso nel piano, influenzati dalle condizioni di vincolo del pannello murario:

- rottura per schiacciamento o ribaltamento;
- rottura a taglio per fessurazione diagonale;
- rottura a taglio per scorrimento.

Le condizioni limite di vincolo della sezione di testa sono essenzialmente due: infatti, l'estremo superiore può essere libero o meno di ruotare. Tuttavia, la reale configurazione di vincolo sarà intermedia e diversa per ogni pannello, quando si considerano schemi strutturali complessi. Infatti, i pannelli murari caratterizzati da bassi valori del rapporto tra larghezza ed altezza (*pareti snelle*) e soggetti a piccoli carichi assiali, presentano una risposta di tipo prevalentemente flessionale, legata ad un meccanismo di rottura per schiacciamento e/o ribaltamento. In particolare, il comportamento flessionale si caratterizza per i cicli di isteresi molto stretti, e la parete non mostra un sensibile degrado di rigidezza o di resistenza.

Nel caso opposto di *pareti tozze* o soggette ad elevati carichi assiali, il comportamento è fondamentalmente di tipo tagliante. In questo caso si riscontrano cicli di isteresi piuttosto contenuti, ma solo fino al raggiungimento di un valore di picco della forza, in corrispondenza del quale avviene la formazione di fessure diagonali. Oltre tale valore, si osserva un significativo degrado sia della rigidezza, sia della resistenza, con cicli di isteresi molto ampi.

Nel seguito verranno brevemente richiamati alcuni criteri di rottura legati ai meccanismi citati in precedenza.

2.2.2 Rottura per schiacciamento o ribaltamento

Le forze orizzontali agenti sul pannello murario inducono un momento flettente che varia linearmente lungo l'altezza della parete, e a cui sono associate tensioni normali di compressione e di trazione. Esse risultano massime in corrispondenza delle sezioni di estremità della parete: quando viene superata la resistenza a compressione della muratura, si manifesta lo schiacciamento. In alcuni casi, può verificarsi il ribaltamento del pannello, o di una porzione di esso, a causa della progressiva parzializzazione della sezione, non essendo questa più in grado di sostenere ulteriori incrementi di carico.

Per quanto concerne il fenomeno dello schiacciamento, la formulazione di un criterio di rottura risulta piuttosto semplice: è sufficiente considerare un pannello soggetto ad uno sforzo assiale costante, eccentrico rispetto all'asse geometrico, e ad una forza orizzontale di taglio (fig. 2.1), schematizzando la muratura come un materiale elastico lineare fino alla rottura a compressione e non reagente a trazione.

Ammettendo tali ipotesi, la condizione di rottura coincide con il raggiungimento della tensione massima ammissibile a compressione in corrispondenza dello spigolo del pannello. L'andamento effettivo delle tensioni viene sostituito con una distribuzione uniforme di intensità ridotta (*legge stress-block*), come riportato in figura.

Figura 2.1: Meccanismo di rottura per schiacciamento [32].

Dall'equilibrio alla traslazione verticale risulta:

$$a = \frac{N}{\kappa f_u t} \tag{2.1}$$

Dall'equilibrio alla rotazione si ha, pertanto:

$$M_u = N\left(\frac{l-a}{2}\right) = \frac{Nl}{2}\left(1 - \frac{N}{\kappa f_u l t}\right) = \frac{\sigma_m l^2 t}{2}\left(1 - \frac{\sigma_m}{\kappa f_u}\right)$$
(2.2)

Nelle due precedenti espressioni, N è lo sforzo assiale complessivo alla base del pannello, a la porzione di sezione in cui le tensioni di compressione si considerano costanti, l la larghezza del pannello, t il suo spessore, f_u la resistenza a compressione della muratura ($\kappa = 0, 85 \div 1$) e $\sigma_m = N/(lt)$.

Il meccanismo di ribaltamento, invece, può avvenire secondo modalità differenti a seconda della qualità della malta:

- nel caso di una muratura realizzata con malta di buone caratteristiche, il pannello si comporta come un blocco rigido che ruota attorno ad uno spigolo posto alla base dello stesso;
- in presenza di malta di qualità scadente (o in totale assenza di quest'ultima), specie se il pannello è tozzo, il collasso è caratterizzato dal distacco e dalla rotazione di una porzione di parete, a seconda della geometria della stessa e della tessitura dei mattoni.

2.2.3 Rottura a taglio per fessurazione diagonale

Il meccanismo di rottura a taglio per fessurazione diagonale si realizza quando le sollecitazioni orizzontali provocano la formazione di fessure diagonali che si estendono progressivamente a partire dalla zona centrale del pannello. La formazione delle suddette fessure si determina lungo le direzioni principali cui corrispondono le massime tensioni di compressione, poiché alla direzione ortogonale sono invece associate quelle massime di trazione.

Uno dei criteri presenti in Letteratura per valutare la resistenza a taglio di una parete soggetta a tale meccanismo di rottura si deve a V. TURNŠEK e F. CACOVIC [52]. Scaturito dall'osservazione dei risultati di diverse prove sperimentali, tale criterio si basa sull'assunzione che la rottura avvenga quando la tensione principale di trazione, nella zona centrale del pannello, eguaglia la resistenza a trazione della muratura.

L'espressione che fornisce la tensione principale di trazione in corrispondenza dell'asse del pannello si ricava facilmente, ipotizzando una distribuzione parabolica delle tensioni tangenziali lungo la sua sezione: è sufficiente poi uguagliare tale relazione alla resistenza convenzionale a trazione della muratura. Si ottiene, perciò, il valore limite del taglio sollecitante:

$$V_{u,f} = \frac{\sigma_{t,u} \, l \, t}{1.5} \sqrt{1 + \frac{p}{\sigma_{t,u}}} \tag{2.3}$$

Capitolo 2. Modellazione della muratura

Nella relazione riportata, $\sigma_{t,u}$ è la resistenza convenzionale a trazione della muratura, l la larghezza del pannello, t il suo spessore e p la pressione media assiale agente.

L'equazione (2.3) viene spesso riscritta in funzione di τ_k , un parametro avente riscontro fisico più immediato, e che rappresenta la tensione tangenziale media in condizioni ultime e in assenza di sforzo normale, pari a $\sigma_{t,u}/1.5 = V_{u,f}/lt$. Vale quindi, equivalentemente:

$$V_{u,f} = \tau_k \, l \, t \sqrt{1 + \frac{p}{1.5 \, \tau_k}} \tag{2.4}$$

Successivamente, V. TURNŠEK e P. SHEPPARD [53] hanno proposto di sostituire al fattore 1,5 presente nelle relazioni riportate un parametro b, dipendente dal rapporto geometrico tra la larghezza l e l'altezza h del pannello. Si ha, pertanto:

$$V_{u,f} = \frac{\sigma_{t,u} l t}{b} \sqrt{1 + \frac{p}{\sigma_{t,u}}}$$
(2.5)

o, analogamente:

$$V_{u,f} = \tau_k \, l \, t \sqrt{1 + \frac{p}{b \, \tau_k}} \tag{2.6}$$

D. BENEDETTI e M. TOMAŽEVIČ [4] hanno quindi suggerito i seguenti valori da attribuire al parametro b:

- b = 1 se $h/b \le 1$;
- b = h/b se 1 < h/b < 1.5;
- b = 1.5 se $h/b \ge 1.5$.

Per la calibrazione del macro-elemento ci si riferirà all'equazione (2.6), adottando i valori del parametro b appena riportati.

2.2.4 Rottura a taglio per scorrimento

Quest'ultimo meccanismo di rottura si realizza in seguito alla formazione di piani di scorrimento lungo i letti di malta, nelle sezioni di estremità della parete. In questo caso, il criterio di rottura tradizionalmente utilizzato è quello di MOHR-COULOMB, in base al quale la tensione tangenziale limite viene espressa come somma di una costante c (coesione) e di un termine proporzionale alla tensione di compressione media $\bar{\sigma}$ nella sezione trasversale:

$$\tau_u = c + \mu \,\bar{\sigma} \tag{2.7}$$

Il fattore di proporzionalità μ prende il nome di *coefficiente di attrito*. Allo scopo di determinare il taglio ultimo corrispondente, è possibile supporre una distribuzione uniforme delle tensioni tangenziali e integrare l'equazione su tutta la zona di contatto l't, ottenendo la seguente relazione:

$$V_{u,s} = l't\left(c + \mu \frac{P}{l't}\right) \tag{2.8}$$

Per la calibrazione del macro-elemento, ci si riferirà a quest'ultima espressione per determinare il valore della forza orizzontale che comporterebbe lo scorrimento del pannello murario.

2.3 Modalità di rottura della muratura fuori piano

I meccanismi di collasso fuori piano sono essenzialmente dovuti a fenomeni locali innescati da sollecitazioni agenti in direzione ortogonale ai pannelli murari, laddove la resistenza a queste risulta sensibilmente minore. Tale fenomeno si manifesta in modo molto più probabile (e pericoloso) se mancano collegamenti adeguati lungo il perimetro dell'edificio, tra i vari pannelli, e tra i solai e gli elementi resistenti verticali.

I principali meccanismi di collasso fuori piano, riportati anche in fig. 2.2, sono legati a:

- ribaltamento semplice;
- ribaltamento composto;
- flessione orizzontale di parete;
- flessione verticale;
- ribaltamento del cantonale;
- sfondamento del timpano.

L'osservazione dei danni in edifici in muratura, a seguito di vari eventi sismici, ha confermato che i meccanismi locali di ribaltamento fuori piano si attivano molto spesso per azioni orizzontali ben inferiori alle capacità resistenti nel piano, coinvolgendo nel movimento intere pareti, porzioni di pannelli, parti sommitali ed angolate in funzione della configurazione geometrica, dei vincoli e delle azioni sollecitanti. Quest'ultimo aspetto è stato evidenziato anche da alcune prove sperimentali, con cui si è dimostrata la notevole influenza delle condizioni al contorno sul tipo di rottura e sulla resistenza, come riportato al paragrafo 1.3.1. Allo stesso tempo è stato verificato che la presenza di adeguati collegamenti tra gli elementi resistenti verticali ed orizzontali, realizzati secondo regole di buona pratica costruttiva, ha spesso evitato tali meccanismi di rottura: di rilevante efficacia, a tal proposito, si sono dimostrati anche gli usuali sistemi di rinforzo della muratura, come l'inserimento di tiranti in acciaio, di cordoli e di ammorsamenti tra le pareti.

Figura 2.2: Meccanismi di collasso fuori piano della muratura [disegni di Logical Soft].

2.4 Macro-modello utilizzato

2.4.1 Generalità

La risposta sismica di strutture in muratura può essere agevolmente valutata rappresentando il materiale mediante una serie di macro-elementi [10, 11]: un modello di questo tipo è stato recentemente implementato nel software *3D-Macro* [27] e viene sfruttato sia in ambito professionale, sia accademico.

In questa sede l'implementazione del macro-modello avverrà con l'ausilio del software *OpenSees* (*Open System for Earthquake Engineering Simulation*), sviluppato dall'Università di Berkeley (California) al fine di simulare il comportamento di sistemi strutturali e geotecnici sottoposti a terremoti, ed è quindi dedicato principalmente ad analisi non lineari sia di tipo statico, sia di tipo dinamico [34].

I modelli discreti (o macro-modelli) mirano ad una sostanziale riduzione dell'onere computazionale, in quanto l'elemento base (o macro-elemento) è concepito per rappresentare una porzione finita di muratura. Il modello globale della struttura, su cui poi saranno effettuate le simulazioni numeriche, viene perciò ottenuto tramite l'assemblaggio dei singoli macro-elementi: questo tipo di modellazione si colloca, quindi, tra i metodi semplificati tradizionali (modelli a telaio equivalente), e i metodi accurati (modelli ad elementi finiti non lineari), coniugando i vantaggi di entrambi.

2.4.2 Modellazione del comportamento nel piano

Il macro-modello concepito per simulare il comportamento nel proprio piano dei pannelli murari si compone, come precedentemente mostrato, da singoli macroelementi. In particolare, ognuno di essi è costituito da un *quadrilatero articolato*, i cui vertici sono tra loro collegati da molle diagonali non lineari, mentre i lati sono costituiti da elementi *truss* infinitamente rigidi. Nel modello proposto da I. CALIÒ et al. [10],

Figura 2.3: Macro-elemento utilizzato per la modellazione del comportamento nel piano della muratura: (a) configurazione indeformata; (b) configurazione deformata [27].

lungo i lati del macro-elemento sono presenti altre molle non lineari che assicurano il collegamento tra quest'ultimo e gli elementi adiacenti (fig. 2.3). In tal modo, il singolo pannello può interagire con gli altri lungo ciascuno dei suoi lati: ciò consente di modellare correttamente l'interfaccia tra parete e fasce di piano (considerando anche l'eventuale azione di confinamento che agisce in direzione orizzontale, per esempio ad opera dei tiranti), rende più agevole simulare il collegamento tra muratura ed altri elementi (come i cordoli di piano), ed infine permette di suddividere una parete in una *mesh* di macro-elementi.

Pertanto, essendo questo tipo di macro-modello molto versatile, esso risulta particolarmente vantaggioso in presenza di geometrie irregolari, ad esempio quando in un edificio sono presenti numerose aperture di diverse dimensioni.

Il comportamento della muratura nel piano, come ricordato nel paragrafo 2.2, è associato ai tre meccanismi di rottura citati: ognuno di essi sarà, quindi, rappresentato da una o più molle (fig. 2.4), il cui legame costitutivo dovrà essere opportunamente calibrato.

Figura 2.4: Simulazione per mezzo di un macro-elemento dei meccanismi di collasso nel piano di un pannello murario: (a) rottura per schiacciamento/ribaltamento; (b) rottura a taglio per fessurazione diagonale; (c) rottura a taglio per scorrimento [27].

Figura 2.5: Generico macro-elemento implementato nel modello numerico.

La strategia di modellazione adottata in questo lavoro di Tesi è però più semplice: sono, infatti, presenti le molle diagonali all'interno del macro-elemento, ma non quelle lungo i suoi lati, le quali vengono concentrate sugli angoli (fig. 2.5). Nonostante tale semplificazione, il modello riesce comunque a simulare in modo accurato i tre meccanismi di rottura, come si vedrà nel seguito.

2.4.3 Comportamento fuori piano

Il macro-elemento implementato all'interno del software *3D-Macro* è molto più raffinato di quello presentato, in quanto permette di tener conto anche del comportamento fuori piano mediante altre molle da calibrare: tuttavia, un elemento così concepito, essendo tridimensionale, presenta un onere computazionale più elevato, ed inoltre sarebbe necessario valutare ulteriori legami costitutivi, di più difficile stima rispetto a quelli riferiti ai meccanismi di rottura nel piano.

Per questo motivo, il macro-elemento è in grado di rappresentare molto bene il comportamento nel piano, mentre per quello fuori piano ci si può affidare ad uno o più elementi *beam* (singoli o a graticcio) per simulare questo tipo di risposta: come si vedrà (paragrafo 2.10), questa approssimazione si può considerare accettabile e semplice da gestire, sia in termini di implementazione, sia in fase di analisi. Ciò a cui si deve prestare particolare attenzione, in un modello semplificato come quello presentato, è il valore limite dello spostamento fuori piano da assegnare agli elementi *beam*, oltre il quale il muro si considera collassato: come per gli elaborati precedenti, tale valore massimo è stato valutato come il 2% dell'altezza d'interpiano.

2.5 Prove sperimentali di riferimento

2.5.1 Prove sperimentali su pannelli murari semplici

Per la calibrazione delle molle che costituiscono i macro-elementi del modello della muratura, simulando il comportamento delle pareti nel proprio piano, ci si è riferiti, come già anticipato, alle prove sperimentali effettuate da G. MAGENES e G. M. CALVI [30, 31] su pannelli murari semplici, privi di aperture: gli Autori hanno presentato un'indagine relativa al comportamento sismico di pareti in muratura, attraverso test di taglio e compressione. In particolare, nelle pubblicazioni sono illustrate quattro diverse prove sperimentali eseguite in laboratorio, su pannelli murari aventi le dimensioni seguenti:

- larghezza l = 1.5 m;
- spessore t = 0.38 m;
- altezza h = 2.0 m per due provini, h = 3.0 m per gli altri due.

Ciascun provino è stato sottoposto a due diversi carichi verticali di compressione assiale, applicando quindi due differenti pressioni su di esso, pari a $\sigma_1 = 0.4$ MPa e $\sigma_2 = 1.2$ MPa. In tabella 2.1 sono riportati i parametri caratteristici della muratura utilizzata, disponibili anche nelle pubblicazioni degli Autori.

Una volta applicato il carico assiale di compressione sui provini, mantenuto costante per tutta la durata della prova, questi sono stati sollecitati anche con una forza orizzontale ciclica, progressivamente crescente. Inoltre, ciascun pannello murario è stato vincolato in modo da bloccare ogni possibile rotazione, ottenendo così la condizione di incastro alla base e doppio pendolo in sommità (fig. 2.6).

Si riportano di seguito i risultati ottenuti in termini di tipologia di rottura per i quatto diversi provini (la nomenclatura utilizzata è la stessa riportata dagli Autori):

- Test *MI1* (h = 2.00 m, $\sigma = 1.20$ MPa): rottura per fessurazione diagonale;
- Test *MI2* (h = 2.00 m, $\sigma = 0.40$ MPa): rottura per scorrimento;
- Test MI3 (h = 3.00 m, $\sigma = 1.20$ MPa): rottura per fessurazione diagonale;
- Test *MI*4 (h = 3.00 m, $\sigma = 0.40$ MPa): rottura per fessurazione diagonale.

Per la calibrazione dei diversi tipi di molle, e la verifica del loro corretto comportamento, ci si è riferiti alle prove di laboratorio MI2 e MI3. Per quest'ultima la rottura modellata è effettivamente quella per fessurazione diagonale, mentre per il caso MI2, come si vedrà nel seguito, si è scelto di verificare la risposta del pannello a pressoflessione, per accertarsi che anche questo tipo di collasso sia ben rappresentato dal macro-elemento.

	Numero	Valore medio	Coefficiente
i ipologia di prova	di provini	[MPa]	di variazione
Compressione sul mattone f_b	28	19.72	8.82%
Trazione trasversale (splitting) sul mattone f_{bt}	29	1.26	20.28%
Compressione sulla malta f_m	15	4.33	1.84%
Trazione trasversale (splitting) sulla malta f_{mt}	14	0.66	8.44%
Modulo di rottura della malta f_{mt}^{\prime}	15	1.59	3.47%
Trazione diretta sui giunti di malta f_{jt}	13	0.073	10.53%
Compressione sulla muratura f_u	5	7.92	20.2%
Modulo elastico della muratura ${\cal E}$	4	2991	15.1%

Tabella 2.1: Parametri caratteristici della muratura utilizzata nelle prove sperimentali [30].

Capitolo 2. Modellazione della muratura

Figura 2.6: Modalità di esecuzione della prova sperimentale [30].

2.5.2 Prove sperimentali su pannelli murari con aperture

I risultati di queste prove sperimentali, svolte da C. ALLEN et al. [2], sono stati utilizzati, come già anticipato, per verificare la versatilità e l'attendibilità del macro-modello implementato. Gli Autori hanno studiato l'influenza delle aperture nella risposta nel piano di pannelli in muratura ordinaria: a tale scopo, sono stati realizzati tre diversi tipi di provini (fig. 2.7), di spessore 0.11 m. Anche in questo caso, i campioni sono stati sollecitati sia assialmente, mediante due diverse pressioni, pari a $\sigma_1 = 0.2$ MPa e $\sigma_2 = 1.0$ MPa, sia orizzontalmente, applicando via via spostamenti crescenti: grazie ad un apposito studio dell'apparecchiatura necessaria allo svolgimento dei vari test, inoltre, si è potuta lasciare la fascia di piano libera di deformarsi verticalmente, permettendo quindi di simulare piuttosto realisticamente la risposta dei pannelli.

Le proprietà caratteristiche del materiale sono riportate in tabella 2.2. I rigultati attenuti pagano aggine aggine

I risultati ottenuti possono essere così riassunti:

- il pannello con fascia di piano snella ha mostrato una rottura per pressoflessione, unita a fessurazione diagonale in presenza di carico assiale elevato;
- il pannello con fascia di piano tozza ha mostrato una rottura mista per pressoflessione e fessurazione diagonale con basso sforzo assiale, mentre con carico più elevato, pur rimanendo un collasso di tipo misto, la seconda è stata prevalente;
- il pannello con due fasce di piano ha mostrato una rottura per pressoflessione in entrambi i casi.

Tabella 2.2: Parametri caratteristici della muratura impiegata nelle prove sperimentali [2].

Figura 2.7: Tipologie di provini impiegati nella prova sperimentale: nell'ordine, pannello con fascia di piano snella, pannello con fascia di piano tozza, pannello con due fasce di piano, apparecchiatura utilizzata per lo svolgimento del test. Quote espresse in mm [2].

Si è osservato che le fasce di piano sono state maggiormente coinvolte in presenza di elevato sforzo normale di compressione, mentre i danni maggiori si sono verificati principalmente nei maschi murari quando i pannelli erano soggetti a scarso carico assiale.

Inoltre, com'era da attendersi, la propagazione delle fessure si è manifestata a partire dai vertici delle aperture, i quali costituiscono senza dubbio le zone più deboli dei provini esaminati.

Come già riscontrato nelle prove presentate al paragrafo precedente, la geometria dei pannelli e l'entità della compressione ne influenzano significativamente la risposta e le modalità di rottura.

Per la validazione del macro-modello implementato ci si riferirà al provino con fascia di piano tozza, soggetto al carico assiale di 1.0 MPa, in quanto rappresentativo dei pannelli murari costituenti l'edificio studiato.

2.6 Modellazione dei maschi murari

2.6.1 Generalità

Come accennato in precedenza (paragrafo 2.4), i pannelli murari vengono rappresentati da una serie di macro-elementi, costituiti da vari *truss* dotati di legame costitutivo lineare o non lineare, a seconda della tipologia.

In particolare, per simulare il comportamento nel piano si sono considerati i seguenti elementi, la cui calibrazione verrà approfonditamente trattata nel seguito:

- truss elastici indeformabili, cui è stata attribuita una rigidezza assiale dell'ordine di 10¹² MPa (circa 2·10⁷ volte quella degli altri elementi), utilizzati per costruire la geometria del macro-elemento e trasmettere direttamente sui truss non lineari i carichi verticali agenti, concentrando la deformazione solo in questi ultimi;
- truss con legami costitutivi isteretici (denominati Hysteretic Material nel Manuale di OpenSees [34]), che devono invece deformarsi e caratterizzare la risposta della muratura.

Grazie a quest'ultima tipologia di elemento è possibile definire un materiale dotato di una legge costitutiva *isteretica*, *bilineare* e *uniassiale*, che permette di tener conto del danno e del degrado di resistenza e rigidezza, una volta opportunamente tarati tutti i relativi parametri: come si vedrà, i risultati saranno piuttosto vicini a quelli ottenuti sperimentalmente.

Nel complesso, all'interno del modello numerico sono presenti sei diverse tipologie di molle con legame costitutivo isteretico, oltre ai *truss* infinitamente rigidi, allo scopo di simulare i differenti meccanismi di rottura (si ricordi la fig. 2.5):

- molle verticali \rightarrow pressoflessione del maschio murario;
- molle orizzontali \rightarrow scorrimento del maschio murario;
- molle diagonali \rightarrow fessurazione diagonale del maschio murario;
- molle orizzontali $spandrel \rightarrow pressoflessione della fascia di piano;$
- molle verticali $spandrel \rightarrow scorrimento della fascia di piano;$
- molle diagonali $spandrel \rightarrow$ fessurazione diagonale della fascia di piano.

Per rappresentare, invece, il comportamento fuori piano delle pareti perpendicolari alla direzione del sisma, si sono utilizzati elementi *beam* elastico-lineari.

Tutti i parametri utili alla calibrazione sono direttamente calcolati all'interno del modello implementato: in questo modo risulta possibile, eventualmente, utilizzare il listato anche per calibrazioni o validazioni successive, semplicemente cambiando le variabili iniziali. I listati utilizzati per la fase di calibrazione sono riportati in Appendice A (sezione A.1).

I parametri caratteristici della muratura utilizzati per la taratura delle diverse molle sono riassunti in tabella 2.3, in cui con $\varepsilon_{c,y} \in \varepsilon_{t,y}$ si sono indicate, rispettivamente, la deformazione a compressione e a trazione allo snervamento della muratura. La
maggior parte di questi valori derivano dalle prove sperimentali di G. MAGENES e G. M. CALVI [30, 31], mentre per quanto non specificato nelle pubblicazioni si è fatto riferimento sia alle attuali *Norme Tecniche per le Costruzioni* [35], sia alla Letteratura [14].

A differenza del modello teorico, le molle verticali e orizzontali non lineari saranno applicate solo in corrispondenza dei vertici dei macro-elementi, e non anche lungo gli spigoli. Inoltre, per un motivo puramente computazionale, si è considerato uno spazio di ampiezza unitaria (1 mm) tra i singoli macro-elementi, in modo tale da poter inserire le molle per la pressoflessione e per il taglio-scorrimento. Nel seguito, si andranno ad esaminare le procedure di calibrazione delle molle verticali, orizzontali e diagonali per i maschi murari, seguite dalla necessaria validazione. Per quanto concerne, invece, la taratura delle molle relative alle fasce di piano, essa verrà ripresa al paragrafo 2.8.

2.6.2 Calibrazione delle molle verticali

Per quanto concerne le molle verticali, con cui è possibile simulare la rottura a pressoflessione e ribaltamento della parete, si considera una legge costitutiva elastoplastica ideale in grado di rappresentare un diverso comportamento a trazione e a compressione (fig. 2.8): la muratura, infatti, si caratterizza per una resistenza a trazione molto contenuta e una più elevata resistenza a compressione. Note allora le caratteristiche meccaniche e geometriche della muratura, possono essere ricavati tutti i parametri necessari per stabilire il legame costitutivo tra tensione e deformazione e, equivalentemente, tra forza e spostamento per tali molle. Infatti, con semplici passaggi, implementati anche nel modello numerico, è possibile ricavare:

$$\varepsilon_{c,y} = f_u/E = -0.0027 \rightarrow \varepsilon_{c,u} = -0.0081 \tag{2.9}$$

$$\varepsilon_{t,y} = f_t / E = 0.00003 \to \varepsilon_{t,u} = 0.00005$$
 (2.10)

Tabella 2.3: Parametri caratteristici della muratura utilizzati per calibrare le diverse molle.

Parametro	Valore assunto
Resistenza media a compressione f_u	-7.92 MPa
Resistenza media a trazione f_t	$0.1 \mathrm{MPa}$
Modulo elastico normale E (per $\sigma = f_u/3$) 2910 MPa	
Deformazione ultima a compressione $\varepsilon_{c,u}$	$3arepsilon_{c,y}$
Deformazione ultima a trazione $\varepsilon_{t,u}$	$1.5 arepsilon_{t,y}$
Resistenza media a taglio a compressione nulla τ_0	$0.1 \mathrm{MPa}$
Modulo elastico tangenziale G	$875 \mathrm{MPa}$
Coefficiente di coesione c	$0.2 \mathrm{MPa}$
Coefficiente d'attrito ϕ	$0.5 \mathrm{MPa}$
Peso specifico della muratura \boldsymbol{w}	$24 \ \mathrm{kN/m^3}$

I valori di deformazione ultima a trazione e compressione sono stati desunti dalla Tesi di Dottorato di B. PANTÒ [40]: grazie a tali parametri, si può risalire anche ai corrispondenti spostamenti: è tuttavia necessaria una precisazione a tal proposito, in quanto questi ultimi dipendono dalle condizioni di vincolo. Se, infatti, il pannello risulta incastrato sia alla base, sia in sommità, lo spostamento si ricava moltiplicando la deformazione per metà della sua altezza, se esso è libero di ruotare in sommità si considera invece tutta l'altezza. Anche di tale aspetto si è tenuto conto nel modello implementato, mediante un opportuno coefficiente v, che va a dividere l'altezza dei singoli macro-elementi, ed assume perciò valore 1 (estremo libero) o 2 (incastro), come si osserva dall'espressione (2.11), riportata nel seguito.

Nella prima fase di calibrazione si sono rappresentati i maschi murari MI2 e MI3 mediante un unico macro-elemento: il primo verrà considerato libero di ruotare in sommità (a differenza della prova sperimentale), mentre il secondo incastrato. Il vantaggio di aver implementato tutte le formule necessarie all'interno del modello è ora evidente, potendo utilizzare lo stesso listato dopo aver effettuato soltanto alcune piccole modifiche alla geometria ed alle condizioni di vincolo del pannello. Vale allora, per ciascuno spostamento u_i , il seguente legame con la corrispondente deformazione:

$$u_i = \varepsilon_i h_s / v \tag{2.11}$$

Nell'espressione così implementata, h_s è l'altezza del sottopannello, per tener conto di una eventuale suddivisione in più macro-elementi: dapprima si è proceduto a considerare un singolo macro-elemento di altezza pari a quella del maschio murario sottoposto alle prove sperimentali (H), pertanto in questa prima fase $h_s = H$.

Essendo presenti soltanto due molle ai vertici del pannello, a ciascuna afferirà metà area di base dello stesso, pertanto si ottengono i valori delle forze e dei corrispondenti spostamenti riportati in tabella 2.4; il legame costitutivo che ne deriva è invece riportato in figura 2.9.

Si precisa che l'andamento così ricavato non è esattamente elasto-plastico ideale, in quanto il software utilizzato non può computazionalmente gestirlo, pertanto si sono aumentati in modo trascurabile i valori di snervamento, allo scopo di evitare tratti di curva a pendenza nulla.

Tutti i valori ricavati derivano dalle espressioni implementate all'interno del modello, perciò essi cambieranno modificando le dimensioni del pannello, oppure suddividendo il maschio murario in più macro-elementi, come avverrà nel seguito.

Figura 2.8: Legame costitutivo per il comportamento a pressoflessione della muratura [27].

Tabella 2.4: Valori ricavati per il legame costitutivo forza-spostamento delle molle verticali per entrambi i pannelli studiati.

Figura 2.9: Legame costitutivo per le molle verticali dei pannelli MI2 (a sinistra) e MI3 (a destra).

Questo tipo di molle è stato validato grazie al pannello MI2, il quale subisce una rottura per pressoflessione, come già anticipato: il pannello MI3, al contrario, va a coinvolgere molto meno tali elementi, collassando per fessurazione diagonale.

2.6.3 Calibrazione delle molle orizzontali

Le molle orizzontali, così come quelle diagonali, sono state calibrate in modo da tener conto dello sforzo assiale cui è soggetto il maschio murario, essendo il taglio resistente dipendente dalla compressione verticale.

Mediante le molle orizzontali è possibile simulare gli scorrimenti tra pannelli a contatto tra loro o con il suolo: si sono perciò inserite alla base di ogni macro-elemento due molle con legge costitutiva simmetrica, non dovendo così inserire un'unica molla, dotata tuttavia di caratteristiche resistenti differenti per trazione e compressione. Anche in questo caso si è utilizzato un legame elasto-plastico ideale, andando però sempre ad evitare tratti di pendenza nulla, come si è già effettuato per le molle verticali.

Poiché la rottura per taglio-scorrimento del pannello è fortemente legata al carico verticale che su di esso insiste e all'attrito, la resistenza limite è stata determinata utilizzando il criterio di MOHR-COULOMB (discusso al paragrafo 2.2.4). La resistenza ultima di ciascuna molla è, perciò, data dalla seguente relazione, implementata anch'essa nel modello:

$$V_{u,s} = \frac{c A + \phi N}{n_o} \tag{2.12}$$

I parametri $c \in \phi$ hanno il significato già definito precedentemente, A è l'area di base del pannello, N è il carico verticale totale di compressione alla base e n_o il numero di molle orizzontali alla base del maschio murario (nel caso specifico, quindi, $n_o = 2$).

Per la valutazione degli spostamenti ultimi, essi si considerano pari a quelli valutati da G. MAGENES e G. M. CALVI, ossia a circa lo 0.5% dell'altezza d'interpiano (nel nostro caso, si è assunto 0.535% per una maggiore concordanza con le prove sperimentali), mentre allo snervamento si ha in genere una grande dispersione di valori. Tuttavia, sulla base delle prove sperimentali di riferimento, lo spostamento allo snervamento è circa 1/10 di quello di collasso.

Si ottengono quindi i parametri riassunti in tabella 2.5, mentre i grafici dei legami costitutivi per entrambi i pannelli sono riportati in figura 2.10: in questo caso, il valore dello sforzo resistente risulta molto diverso, in quanto si ha una notevole differenza nell'entità della compressione cui sono sottoposti i due maschi murari. È opportuno tuttavia sottolineare che, siccome in *OpenSees* si è scelto di operare con valori di tensione e deformazione, i legami costitutivi tra forza e spostamento appena definiti saranno così modificati nel modello:

• si attribuisce a tutti gli elementi *truss* (sia quelli rigidi, sia le molle verticali, orizzontali, diagonali) un'area *unitaria*: il valore della tensione raggiunta resta dunque il medesimo della forza;

PANNELLO MI2				
Forza [kN]	Spostamento [mm]			
$F_{t,y} = -F_{c,y} = 120.84$	$u_{t,y} = -u_{c,y} = 1.07$			
$F_{t,u} = -F_{c,u} = 120.841$	$u_{t,u} = -u_{c,u} = 10.70$			
PANNEI	PANNELLO MI3			
Forza [kN]	Spostamento [mm]			
$F_{t,y} = -F_{c,y} = 238.26$	$u_{t,y} = -u_{c,y} = 1.61$			
$F_{t,u} = -F_{c,u} = 238.261$	$u_{t,u} = -u_{c,u} = 16.050$			

Tabella 2.5: Valori ricavati per il legame forza-spostamento delle molle orizzontali per entrambi i pannelli studiati.

Figura 2.10: Legame costitutivo per le molle orizzontali dei pannelli MI2 (a sinistra) e MI3 (a destra).

• tutti gli spostamenti sono ricondotti alle corrispondenti deformazioni dividendo questi per la lunghezza dell'elemento considerato.

Da quanto appena precisato si evince subito come, nel caso precedentemente discusso delle molle verticali, il legame forza-spostamento coincida con quello tensionedeformazione, in quanto anche la lunghezza di tali elementi risulta unitaria.

2.6.4 Calibrazione delle molle diagonali

Le molle diagonali simulano il meccanismo di rottura a taglio-fessurazione diagonale del pannello murario: in questo caso, come è stato già precedentemente anticipato nel paragrafo 2.2.3, per la valutazione del taglio ultimo di progetto si è adottato il criterio di TURNŠEK-CACOVIC, perciò si ha:

$$V_{u,f} = V_k \sqrt{1 + \frac{N}{b T_k}}$$
(2.13)

Nella relazione (2.13), *b* è il parametro che considera la snellezza dell'elemento (si ricorda che $1.0 \le b \le 1.5$), $V_k = \tau_0 A$ è il taglio resistente in assenza di sforzo normale e *N* è il carico verticale totale di compressione alla base.

In questo caso, il superamento dello sforzo di taglio ultimo comporta una riduzione progressiva della rigidezza e della resistenza quando la muratura è soggetta a carichi ciclici: il legame costitutivo più adeguato è dunque di tipo elasto-plastico rammollente, caratterizzato da un ramo di *softening*. Si è assunto, visti anche i risultati delle prove sperimentali disponibili, un comportamento simmetrico a trazione e compressione: in particolare, si sono ottenuti i parametri riportati in tabella 2.6, i quali danno luogo ai legami costitutivi rappresentati in figura 2.11. Il valore della forza tale per cui il degrado raggiunto è talmente elevato da portare al collasso, si è assunto pari al 70% di $V_{u,f}$ dalla semplice osservazione delle prove sperimentali: è chiaro che, se il degrado dovesse essere più contenuto o più rapido, tale valore può essere variato all'interno del modello.

Infine, è necessario specificare un ulteriore parametro β , indice del danno della muratura, il quale controlla di fatto l'ampiezza del ciclo d'isteresi: nel caso in esame, è stato scelto $\beta = 0.8$, poiché tale valore ha permesso di ottenere cicli isteretici maggiormente conformi a quelli ottenuti sperimentalmente.

Tabella 2.6: Valori ricavati per il legame forza-spostamento delle molle diagonali per entrambi i pannelli studiati.

PANNELLO MI2			
Forza [kN]	Spostamento [mm]		
$F_{t,y} = -F_{c,y} = 99.18$	$u_{t,y} = -u_{c,y} = 0.29$		
$F_{t,u} = -F_{c,u} = 69.43$	$u_{t,u} = -u_{c,u} = 6.42$		
PANNELLO MI3			
Forza [kN]	Spostamento [mm]		
$F_{t,y} = -F_{c,y} = 196.21$	$u_{t,y} = -u_{c,y} = 0.47$		
$F_{t,u} = -F_{c,u} = 137.35$	$u_{t,u} = -u_{c,u} = 7.18$		

Figura 2.11: Legame costitutivo per le molle diagonali dei pannelli MI2 (a sinistra) e MI3 (a destra).

2.7 Validazione del modello per i maschi murari

2.7.1 Premessa

La validazione del macro-modello costruito mediante gli elementi appena descritti è stata effettuata, come già sottolineato, per due diversi maschi murari sottoposti alle prove sperimentali di cui al paragrafo 2.5.1, ossia i pannelli MI2 e MI3:

- per quanto riguarda il primo, sperimentalmente si è osservata una rottura combinata per taglio-scorrimento e ribaltamento, dipendente dalle condizioni di vincolo imposte (schema incastro-bipendolo): nel caso della modellazione, si è scelto invece di mantenere libera la sommità del muro, in modo da valutare solo il comportamento a pressoflessione e la correttezza della calibrazione anche per tale meccanismo di rottura, verificando che la rigidezza elastica fosse comunque corretta;
- il secondo pannello, invece, è stato interessato da una rottura per fessurazione diagonale, ed è tra i due il più importante, viste le dimensioni che lo caratterizzano, tipiche dei maschi murari di un edificio reale.

2.7.2 Validazione del maschio MI2

Come si osserva (fig. 2.12), il ciclo ottenuto con il modello numerico presenta la medesima rigidezza in campo elastico rispetto a quello sperimentale: è noto, inoltre, che la rottura a pressoflessione comporta cicli isteretici molto stretti e con pochissima dissipazione energetica, come viene evidenziato anche dall'analisi numerica; l'unica differenza riguarda proprio la diversa tipologia di collasso, come già ricordato.

Appare opportuno, avendo scelto di ricondursi ad una rottura a pressoflessione, confrontare lo sforzo tagliante limite ottenuto mediante il modello numerico con quello calcolato analiticamente.

Lo sforzo assiale di compressione totale agente alla base del pannello vale:

$$N = w t l h + \sigma t l = 255.36 \text{ kN}$$
(2.14)

Infatti, $w = 24 \text{ kN/m^3}$, t = 380 mm, l = 1500 mm, h = 3000 mm, $\sigma = 0.4 \text{ MPa}$, come riportato già in precedenza. Perciò, la tensione media assiale alla base risulta:

Figura 2.12: Rappresentazione del pannello MI2 mediante il macro-elemento calibrato e confronto tra ciclo sperimentale (in nero) e ciclo ottenuto dal modello numerico (in rosso).

$$\sigma_m = N/(t\,l) = 0.45 \text{ MPa}$$
 (2.15)

Allora, utilizzando l'equazione 2.2 riportata nel paragrafo 2.2.2, si ricava:

$$M_u = 178.77 \text{ kNm} \rightarrow T_u = M_u/h = 89.39 \text{ kN}$$
 (2.16)

Si nota subito che il valore così ottenuto è minore di circa il 7% di quello numerico, pari a 95.73 kN: ciò è legato principalmente all'impossibilità del modello di considerare l'eccentricità dello sforzo normale, vista la presenza di due sole molle verticali ai vertici del macro-elemento. Essendo tuttavia la differenza molto contenuta, si ritiene la calibrazione comunque valida, in quanto riesce a rappresentare adeguatamente la rottura a pressoflessione.

Il listato completo del modello numerico con cui sono stati ottenuti i risultati appena discussi è riportato in Appendice A (paragrafo A.1.1).

2.7.3 Validazione del maschio MI3

In questo caso, la rottura per fessurazione diagonale registrata durante la prova sperimentale è stata simulata anche mediante il modello numerico, ottenendo un'ottima concordanza tra i due cicli (fig. 2.13). A conferma ulteriore di quanto riscontrato, si è osservato che le uniche molle ad entrare in campo non lineare sono state proprio quelle diagonali, mentre tutte le altre sono rimaste in campo elastico.

In seguito (fig. 2.14) si è svolta la medesima analisi, suddividendo il maschio murario in tre sottopannelli, ottenendo i medesimi risultati: si conferma, pertanto, la versatilità del modello implementato, in grado di ricalibrare tutti i parametri in funzione della nuova geometria adottata. La suddivisione in più sottopannelli dei maschi murari risulta particolarmente utile anche nelle successive analisi, in quanto permette di inserire le fasce di piano, ed è proprio per questo che si è scelto di validare il pannello *MI3* utilizzando tale configurazione. Per quest'ultimo caso, al fine di ridurre il tempo necessario all'analisi numerica e raggiungere più facilmente la convergenza, non si è utilizzato il classico *algoritmo di Newton*, bensì quello di *Krylov-Newton*, nel quale si sfrutta un'accelerazione del metodo ordinario basata sui sottospazi di Krylov [44].

Il listato completo del modello numerico con cui sono stati ottenuti i risultati appena discussi è riportato in Appendice A (paragrafi A.1.2, A.1.3).

2.8 Modellazione delle fasce di piano

2.8.1 Generalità

Le fasce di piano sono state modellate come pareti in grado di resistere ai carichi orizzontali e al solo peso proprio, dal momento che il solaio trasmette tutti i carichi verticali direttamente ai pannelli murari portanti.

Inoltre, per l'implementazione del modello numerico si è tenuto conto anche di quanto riportato nelle Norme Tecniche per le Costruzioni [35] al paragrafo 4.5.4 (Organizzazione strutturale), relativamente all'utilizzo degli incatenamenti nelle strutture in muratura:

Devono [...] essere previsti opportuni incatenamenti al livello dei solai, aventi lo scopo di collegare tra loro i muri paralleli della scatola muraria. Tali incatenamenti devono essere realizzati per mezzo di armature metalliche o altro materiale resistente a trazione, le cui estremità devono essere efficacemente ancorate ai cordoli.

Possono, in particolare, essere utilizzate le seguenti tipologie di tiranti:

- *attivi* la sollecitazione di trazione è impressa in tutto o in parte all'atto della messa in opera del tirante;
- *passivi* la sollecitazione di trazione nasce come reazione a seguito della deformazione della struttura.

Nel caso in esame, si è assunta la presenza di tiranti passivi, posti alle estremità superiore ed inferiore delle fasce di piano, allo scopo di impedirne la rottura per pressoflessione e di evitare il ribaltamento fuori piano delle pareti murarie.

Per valutare la resistenza delle fasce di piano, si è fatto riferimento ancora alle Norme Tecniche per le Costruzioni, che nel paragrafo 7.8.2.2.4 (Travi in muratura) riportano alcune formulazioni utili per trattare questi elementi: ciò che emerge è la possibilità di considerare la fascia di piano, assoggettata alla compressione orizzontale dovuta all'azione T del tirante, come un semplice maschio murario su cui insiste un carico assiale proprio pari a T.

Perciò, nel modello numerico, è sufficiente inserire semplicemente il carico orizzontale T legato ai tiranti e calcolare di conseguenza tutti i parametri relativi alle molle delle fasce di piano, come si è operato nel caso dei maschi murari, soggetti invece al carico N. Le differenze, rispetto a quanto implementato per questi ultimi, sono dovute a due fattori fondamentali:

Figura 2.13: Rappresentazione del pannello MI3 mediante il macro-elemento calibrato e confronto tra ciclo sperimentale (in nero) e ciclo ottenuto dal modello numerico (in rosso).

Figura 2.14: Rappresentazione del pannello MI3 mediante tre macro-elementi; il ciclo ottenuto dall'analisi numerica (in rosso) ricalca nuovamente quello sperimentale (in nero).

- la resistenza a compressione orizzontale è legata in genere allo sfilamento dei mattoni, ed è per questo minore di quella verticale; tale parametro viene, infatti, ragionevolmente assunto pari a $0.5 f_u$ [15];
- la resistenza allo scorrimento verticale è, invece, notevolmente maggiore di quella orizzontale a causa dell'ingranamento dei mattoni, perciò per le fasce di piano essa è stata calcolata analogamente al caso dei maschi murari, ma incrementando il valore limite del taglio di dieci volte; in questo modo è possibile tener conto, anche se approssimativamente, del fatto che una simile rottura generalmente non avvenga, in quanto subentrano meccanismi di collasso la cui resistenza è di molto inferiore, come la fessurazione diagonale o lo schiacciamento.

La presenza dei tiranti verrà considerata, tuttavia, soltanto per la modellazione dell'edificio, con uno sforzo T = 150 kN, mentre per la validazione si assumerà T = 0, in quanto la prova sperimentale di cui al paragrafo 2.5.2 è stata svolta senza l'utilizzo di alcun sistema di rinforzo.

2.8.2 Calibrazione delle molle orizzontali delle fasce di piano

Per la calibrazione di queste molle, valgono le medesime considerazioni riportate nel paragrafo 2.6.2: anche il legame costitutivo è lo stesso, ma il valore dello sforzo limite di compressione risulta dimezzato, per quanto osservato in precedenza. Inoltre, per quanto concerne il calcolo degli spostamenti ultimi, nell'implementazione di tutte le formule necessarie non si è utilizzata l'altezza dell'elemento, come per il maschio murario, bensì la sua *larghezza*, dato che in questo caso il ribaltamento è di tipo *orizzontale*.

2.8.3 Calibrazione delle molle verticali delle fasce di piano

Anche in questo caso, sia la legge costitutiva assunta, sia le modalità di valutazione del taglio resistente mediante il criterio di MOHR-COULOMB sono le stesse riportate nel paragrafo 2.6.3. Le differenze sono legate alla diversa entità dello sforzo normale (ora pari a T e non a N), all'area da considerare (in questo caso quella *trasversale* della fascia di piano) e alla maggiorazione di dieci volte del taglio ultimo ottenuto, a causa dell'ingranamento dei mattoni. Quest'ultimo incremento di resistenza è apparso ragionevole ed è stato utilizzato anche negli elaborati precedenti: peraltro, dall'osservazione di edifici in muratura danneggiati a seguito di sismi molto intensi si constata come le fasce di piano siano soggette soprattutto a fessurazione diagonale (eventualmente unita a schiacciamento) in presenza di adeguati tiranti, che quindi rendono la rottura a scorrimento verticale molto meno probabile.

2.8.4 Calibrazione delle molle diagonali delle fasce di piano

Nella taratura di queste molle si è nuovamente utilizzato il criterio di TURNŠEK-CACOVIC, con le medesime ipotesi di cui al paragrafo 2.6.4, sostituendo il valore di Tallo sforzo assiale N. Nel modello implementato, è possibile utilizzare come coefficiente di danno β un valore diverso da quello dei maschi murari, ma per semplicità non si è applicata tale differenza: le formule e le leggi costitutive impiegate per tutti i calcoli sono dunque le medesime, ma basate (come già specificato per le molle verticali delle fasce di piano) sull'area *trasversale* del pannello.

2.9 Validazione di un pannello con apertura

2.9.1 Premessa

Allo scopo di validare ulteriormente il modello, si è studiato il pannello dotato di fascia di piano tozza di cui al paragrafo 2.5.2. La muratura utilizzata per la prova sperimentale è di qualità superiore rispetto a quella impiegata per lo studio del comportamento dei maschi murari semplici, perciò nel modello si sono inseriti i nuovi parametri di resistenza e deformabilità, secondo le indicazioni degli Autori [2]: ove vi fossero caratteristiche non specificate, si sono assunti valori ragionevoli e leggermente superiori a quelli utilizzati per la validazione delle prove sperimentali di G. MAGENES e G. M. CALVI. Anche il legame costitutivo delle molle diagonali è stato tarato nuovamente, in quanto la muratura impiegata ha manifestato un degrado molto più lento. Al di là di queste variazioni nelle caratteristiche meccaniche, le formulazioni utilizzate all'interno del modello restano comunque le medesime descritte per i casi precedenti.

In Appendice A (paragrafo A.1.4) è riportato il listato del modello così implementato, che può quindi essere confrontato anche con quello del maschio murario semplice.

2.9.2 Confronto tra risultati sperimentali e numerici

Nella pubblicazione di riferimento, gli Autori indicano per il pannello con fascia di piano tozza, soggetto ad una compressione di 1.0 MPa, una rottura complessiva per fessurazione diagonale prevalente, unita a pressoflessione.

Dal confronto tra il ciclo ottenuto sperimentalmente e quello ricavato dall'analisi numerica (fig. 2.15), il modello si dimostra versatile ed affidabile, poiché risulta in grado di simulare piuttosto correttamente l'andamento della prova. Quest'ultima è un'indicazione importante, in quanto una tipologia simile di pannello con apertura verrà utilizzato nell'edificio studiato, anche se in quel caso per i parametri di resistenza e deformabilità ci si riferirà ad una muratura più scadente, ossia quella adottata in sede di calibrazione. Tuttavia, avendo provato che il modello numerico può simulare realisticamente anche un caso più complesso in cui è presente una fascia di piano, peraltro priva di tiranti, i risultati ottenuti nelle successive analisi possono ritenersi attendibili.

Infine, è bene sottolineare un accorgimento utilizzato nella modellazione allo scopo di ricondursi perfettamente alle condizioni della prova sperimentale: come si può anche osservare dal listato riportato in Appendice A (paragrafo A.1.4), i due nodi posti in sommità dei maschi murari e confinanti con le fasce di piano sono collegati da un ulteriore elemento *truss* rigido, che funge unicamente da distanziatore, poiché nei test effettuati l'applicazione dello spostamento è avvenuta su entrambi i pannelli, con la fascia di piano libera invece di ruotare (paragrafo 2.5.2).

Figura 2.15: Rappresentazione del pannello murario con fascia di piano tozza mediante il macro-modello implementato e confronto tra i valori sperimentali (in nero) e numerici (in rosso).

2.10 Modellazione del comportamento fuori piano

Il comportamento fuori piano sarà modellato, come già anticipato, mediante un graticcio di elementi *beam*: dal momento che verrà assunto il limite di spostamento pari al 2% dell'altezza d'interpiano, la rigidezza da assegnare a tali elementi dovrà essere opportunamente ridotta, in modo da tener conto della fessurazione, del comportamento post-elastico e del degrado.

In particolare, a tal proposito si sono rivelate molto utili per la valutazione della suddetta rigidezza le già citate prove sperimentali effettuate da J. VACULIK et al. [54, 55], concernenti lo studio del comportamento fuori piano della muratura non armata. I pannelli murari sono stati vincolati tenendo conto delle possibili condizioni al contorno riscontrabili nella realtà, ossia incastrati ai lati ad altri pannelli (quindi *ammorsati*), e liberi di ruotare all'estremità superiore ed inferiore. Gli elementi così concepiti sono stati sottoposti, oltre ad un test su tavola vibrante, anche ad una prova ciclica in controllo di spostamenti, la quale ha dato risultati particolarmente interessanti: le pareti testate, nonostante il degrado della muratura fosse ormai avanzato, hanno mostrato una buona capacità di spostamento (fig. 2.16), raggiungendo valori molto elevati (fino a 90 mm), specie se si considera il loro ridotto spessore.

Tuttavia, dal momento che gli elementi utilizzati nel modello sono elastico-lineari (allo scopo di ridurre l'onere computazionale), è necessario assumere come rigidezza quella cui compete lo spostamento ipotizzato: essa sarà dunque una opportuna frazione di quella elastica. Anche in questo caso la prova sperimentale può essere d'aiuto, ricordando tuttavia che essa è riferita a pannelli murari sottili (110 mm): poiché gli spessori delle pareti analizzate sono ben maggiori di tale valore, anche la rigidezza assegnata dovrà tenerne conto opportunamente.

La resistenza di una parete fuori piano dipende essenzialmente dai seguenti parametri:

- lo sforzo di compressione cui essa è soggetta;
- la sua sezione;
- il progressivo degrado che essa è in grado di sopportare.

Nel caso specifico, alcuni pannelli murari testati da J. VACULIK et al. presentano uno sforzo di compressione di 0.1 MPa, molto simile a quello cui sono soggette le pareti fuori piano degli edifici studiati nel capitolo 4. Tuttavia, tale compressione va tenuta in considerazione soltanto per gli elementi *beam* verticali, mentre è assente per quelli orizzontali, non essendo questi assoggettati ai carichi del solaio. Alcune prove degli stessi Autori sono state effettuate su pannelli murari scarichi, ed è stato perciò possibile ricondursi ad esse per la corretta assegnazione del modulo elastico degli elementi *beam*.

In particolare, poiché la compressione verticale è approssimativamente la medesima e la sezione viene semplicemente definita dal momento d'inerzia, il modulo elastico E permette di tener conto del degrado del materiale, riconducendosi alla rigidezza corrispondente allo spostamento limite assunto del 2% dell'altezza d'interpiano. Dal momento che il degrado progressivo della parete dipende dalla sua flessibilità fuori

Figura 2.16: Prova ciclica fuori piano su una parete di dimensioni $4000 \times 2500 \times 110 \text{ mm}$ soggetta a compressione $\sigma = 0.1 \text{ MPa}$ (a sinistra) e non compressa (a destra) [55]. Nei grafici sono evidenziate le rigidezze elastiche iniziali (in rosso), quelle corrispondenti al limite di spostamento del 2% dell'altezza (in blu) e il limite stesso (in arancione).

piano, per ricavare un valore coerente di E a partire dalle prove sperimentali si è scelto di confrontare la snellezza delle pareti analizzate con quella dei test effettuati.

Nella prova sperimentale, il pannello murario presenta uno spessore di 110 mm e un'altezza di 2500 mm, perciò è possibile calcolare la snellezza della parete secondo la relazione:

$$\lambda_{sperimentale} = 2500/110 = 22.73$$
 (2.17)

Invece, negli edifici studiati nel capitolo 4, le pareti presentano spessori di 250, 320 e 380 mm, altezza di 3000 mm e larghezza di 5000 o 8000 mm, a seconda dei casi. Per gli elementi *beam* verticali ci si ricondurrà alla prova sul pannello murario compresso, mentre per quelli orizzontali il riferimento sarà costituito dal test sulla parete scarica. Le snellezze orizzontali e verticali ottenute sono presentate in tabella 2.7. Successivamente, l'assegnazione del modulo elastico avviene secondo l'espressione seguente:

$$E_{beam} = E_{sperimentale} \frac{\lambda_{sperimentale}}{\lambda_{beam}}$$
(2.18)

Si sottolinea che questo metodo è sicuramente semplificato ed approssimato, perciò i valori ottenuti sono sempre stati arrotondati per difetto, in modo da non sovrastimare il valore di E. Il vantaggio di questa formulazione è però quello di tener conto del maggiore degrado cui è sottoposta una parete di spessore contenuto, in quanto più flessibile rispetto ad una più massiccia, a parità di altezza. Sono stati assegnati, perciò, i valori di modulo elastico riportati in tabella 2.8, a partire dai valori di $E_{sperimentale}$ equivalenti allo spostamento limite ricavati nelle suddette prove, pari a circa $E_{iniziale}/5$ nel caso di muro compresso e a circa $E_{iniziale}/17.5$ per la parete scarica (fig. 2.16). Si ricorda che il valore di E cui ci si riferisce in tabella è pari a 2910 MPa, in accordo con quello utilizzato durante la calibrazione dei macro-elementi. Pertanto, nei vari casi studio presentati, il modulo elastico della muratura è stato ridotto mediante i diversi fattori riportati, inserendo tali valori nel modello implementato.

Gli elementi verticali del graticcio sono stati vincolati alla base mediante cerniere cilindriche, in modo da lasciare libera la rotazione fuori piano, rispecchiando in modo realistico il comportamento delle pareti.

Un'ultima considerazione riguarda l'influenza dinamica delle pareti fuori piano sul resto della struttura: la loro massa è perciò stata sia concentrata sui soli orizzontamenti degli edifici studiati, sia distribuita sui vari nodi del graticcio di elementi *beam*.

La differenza riscontrata non è stata rilevante, e non si sono osservati fenomeni di mutua oscillazione dei nodi del graticcio, perciò si è adottata la medesima strategia di modellazione in presenza o in assenza delle pareti fuori piano, concentrando la massa delle stesse sul solaio: in questo modo si sono modellati coerentemente tutti gli edifici, ottenendo comunque una simulazione abbastanza accurata del comportamento fuori piano, quando se ne è valutata l'influenza dinamica. Quanto appena anticipato verrà poi richiamato ai paragrafi 4.2.2 e 4.3.6.

Tabella 2.7: Snellezze delle pareti fuori piano corrispondenti alle diverse configurazioni analizzate.

t	$\lambda_{verticale}$	$\lambda_{orizzontale}$	$\lambda_{orizzontale}$
[mm]	$(h=3\mathrm{m})$	$(l=5{ m m})$	$(l=8\mathrm{~m})$
250	12.00	20.00	32.00
320	9.38	16.67	25.00
380	7.89	13.16	21.05

Tabella 2.8: Moduli elastici assegnati agli elementi beam verticali ed orizzontali nelle diverse configurazioni analizzate.

t	$E_{verticale}$	$E_{orizzontale}$	$E_{orizzontale}$
[mm]	$(h=3\mathrm{~m})$	$(l=5{ m m})$	$(l=8\mathrm{~m})$
250	E/3	E/16	E/25
320	E/2.3	E/13.5	E/20
380	E/2	E/10	E/17

Capitolo 3 Modellazione dei solai in legno

3.1 Tipologie di solai indagate

In questo elaborato si è scelto di seguire l'impostazione delle Tesi precedenti, considerando tre diverse tipologie di consolidamento di solai in legno, oltre al classico orizzontamento costituito da un tavolato semplice poggiante sulle travi portanti. Queste tecniche di rinforzo sono comunemente utilizzate nelle ristrutturazioni di edifici storici, e si diversificano per il grado di irrigidimento che conferiscono al solaio.

Perciò, le quattro diverse tipologie di solaio che saranno analizzate risultano le seguenti:

- Solaio con *tavolato semplice*;
- Solaio rinforzato con tavolato a 45°;
- Solaio rinforzato con lamine in acciaio;
- Solaio rinforzato con soletta in calcestruzzo armato.

Tutte le caratteristiche degli orizzontamenti sono state desunte dalle prove sperimentali effettuate presso l'Università degli Studi di Trento da M. PIAZZA et al. [43], grazie alle quali è stato possibile calibrare opportunamente il modello numerico.

3.2 Prove sperimentali di riferimento

3.2.1 Modalità di esecuzione delle prove

Le citate prove sperimentali eseguite hanno permesso di analizzare il comportamento nel piano dei solai lignei rinforzati mediante diverse tecniche.

I campioni utilizzati per le prove hanno dimensioni 5.00×4.00 m, in modo da potersi avvicinare alle reali geometrie dei solai che spesso caratterizzano gli edifici storici, essendo gli interventi di rinforzo dedicati a questo ambito. Lo schema statico adottato nei test consiste in una piastra bloccata lateralmente da due cerniere posizionate a metà del lato minore di 4.00 m: questo permette la rotazione dei lati del solaio attorno ad esse, garantendo un comportamento simmetrico dell'orizzontamento.

Figura 3.1: Schema della prova sperimentale eseguita sui diversi tipi di solai [3].

Per tener conto dell'ancoraggio perimetrale del solaio alla muratura sono state applicate delle lamine in acciaio S 275 lungo il perimetro del provino.

La prova realizzata in laboratorio è di tipo ciclico e il carico è applicato da un martinetto idraulico in corrispondenza della testa di quattro delle undici travi principali costituenti il solaio. La forza viene impressa alle travi del solaio mediante un sistema isostatico di quattro punti, costituito da una trave principale HEB 240, avente lunghezza 2.30 m, e da due travi secondarie HEB 240, che misurano invece 1.30 m. La trave principale è direttamente collegata alla testa del martinetto, il quale applica il carico a metà della sua lunghezza: inoltre, tale trave è connessa a quelle secondarie mediante due cardini, trasferendo il carico ad esse e quindi, tramite delle piastre, alle travi lignee del solaio (fig. 3.1).

Durante la prova si sono monitorati gli spostamenti del solaio in corrispondenza delle teste delle travi principali e gli spostamenti trasversali dei suoi angoli, con l'ausilio di una serie di trasduttori di spostamento ed estensimetri.

Maggiori dettagli sull'esecuzione delle diverse prove effettuate sui solai sono riportati nel lavoro di C. BALDESSARI [3], in cui sono presenti ulteriori dati sui materiali e i risultati delle prove, oltre a quanto riportato nel seguito.

3.2.2 Solaio con tavolato semplice

Il solaio in esame, come anticipato, ha dimensioni in pianta di 5.00×4.00 m ed è definito da undici travi principali, aventi una sezione di 180×180 mm² e una lunghezza di 4.20 m, realizzate in legno GL24c di seconda categoria. L'interasse tra le travi interne è di 50 cm, mentre quello rispetto alle travi esterne misura 51 cm.

Il tavolato semplice è costituito da tavole in legno massiccio di classe C22, dotato di una sezione trasversale di 20×3 cm² e avente lunghezza variabile in funzione della posizione sul solaio; la connessione tra tavole e travi principali è garantita da viti di diametro 10 mm e altezza 160 mm, posizionate con un interasse di 30 cm.

Gli Autori hanno anche determinato la rigidezza che il solaio è in grado di garantire, pari a 1.18 kN/mm.

3.2.3 Solaio rinforzato con tavolato a 45°

Questo primo metodo di consolidamento del solaio consiste nella realizzazione di un secondo tavolato in legno al di sopra di quello iniziale, composto da tavole aventi sezione 20×3 cm², disposto però con una inclinazione di 45° rispetto alla direzione longitudinale della travatura esistente.

La connessione tra i due tavolati è stata realizzata mediante viti di diametro 6 mm e altezza 90 mm, andando a disporre due viti per ogni intersezione tra le tavole appartenenti ai due diversi livelli di tavolato.

Come si osserverà meglio nel seguito, già un semplice intervento come questo comporta un buon aumento di resistenza e rigidezza dell'orizzontamento: infatti, quest'ultima risulta ora pari a 16.16 kN/mm.

3.2.4 Solaio rinforzato con profili sottili in acciaio

La seconda tipologia di rinforzo dei solai esistenti consiste nell'utilizzo di lamine in acciaio incrociate e tra loro ortogonali, posizionate con un'inclinazione di 45° al di sopra del solaio con tavolato semplice, in modo da formare una maglia 70×70 cm. Le lamine sono realizzate in acciaio S 235 e presentano una sezione di 80×2 mm², mentre la loro lunghezza risulta variabile tra 1.55 m e 5.66 m.

Per quanto concerne le connessioni utilizzate, il collegamento di ciascuna lamina al tavolato semplice viene realizzato tramite il posizionamento di viti aventi diametro di 5 mm e lunghezza di 25 mm.

La rigidezza del solaio così consolidato risulta ulteriormente aumentata rispetto al caso precedente, attestandosi a 32.08 kN/mm.

3.2.5 Solaio rinforzato con soletta in calcestruzzo armato

L'ultima tipologia di rinforzo è stata molto utilizzata in passato e consiste nella realizzazione di una soletta in calcestruzzo armato, di spessore pari a 5 cm, al di sopra del tavolato esistente e collegata direttamente alle travi che sostengono l'orizzontamento (Metodo TURRINI-PIAZZA [42]).

Per completare l'opera è necessario ancorare la soletta alla muratura esistente disponendo barre in acciaio B 450 C aventi diametro di 16 mm, in parte annegate nel getto di calcestruzzo e in parte infisse nella muratura con angolazione negativa di 45°. In particolare, l'infissione nella muratura avviene solo dopo aver realizzato gli opportuni fori, e per il riempimento si utilizza malta bicomponente ad alta resistenza.

L'intervento è laborioso, con bassa possibilità di reversibilità, e aumenta di molto sia il peso del solaio, sia (soprattutto) la sua rigidezza: in quest'ultimo caso si ha un valore di 72.69 kN/mm, il più elevato in assoluto.

Figura 3.2: Modellazione del solaio in legno tramite truss elastici infinitamente rigidi (in nero) e molle diagonali opportunamente calibrate (in blu). Le misure sono in mm.

3.3 Modello numerico implementato

3.3.1 Premessa

La modellazione dei solai viene effettuata nuovamente con l'ausilio del software OpenSees, rappresentando gli orizzontamenti (di dimensioni in pianta 5.0×4.5 m) mediante una maglia di moduli rettangolari di ampiezza 1.0×0.75 m definiti da opportuni truss elastici indeformabili (rigidezza assiale pari a circa 10^6 volte quella degli elementi deformabili). Ogni modulo è caratterizzato dalla presenza di una molla diagonale a cui sono attribuite le caratteristiche dello specifico solaio studiato: si ha perciò una configurazione simile a quella del macro-modello impiegato per la muratura (fig. 3.2). Infine, il solaio così rappresentato è vincolato tramite l'applicazione di due cerniere nei nodi a metà del lato di 4.5 m per riprodurre fedelmente le condizioni di vincolo della prova sperimentale. Si è scelta una maglia così fitta poiché nelle successive analisi sismiche ad ogni nodo del solaio verrà associata una massa, e una buona distribuzione dei pesi sismici assicura un comportamento più realistico.

Il comportamento della specifica tipologia di solaio è dunque legato a quello delle molle diagonali, le quali sono state definite attraverso il modello denominato *Pinching4*, che ben rappresenta la risposta ciclica tipica degli orizzontamenti in legno. Questo modello non lineare, infatti, riesce a simulare ottimamente il comportamento dissipativo dei collegamenti metallici tra gli elementi che compongono il solaio ligneo, e che danno luogo proprio al cosiddetto *effetto pinching*, ossia una diminuzione dell'ampiezza del ciclo d'isteresi, dopo la prima sequenza di carico, in corrispondenza dell'origine degli assi nel diagramma tra tensione e deformazione, dovuta al rifollamento del legno.

Le connessioni utilizzate, come chiodi e viti, possiedono un'elevata resistenza e garantiscono una notevole facilità di messa in opera; inoltre, il loro impiego è possibile sia per i collegamenti diretti legno-legno, sia per giunzioni in cui sono necessarie anche apposite piastre metalliche opportunamente forate. La risposta dei collegamenti metallici è funzione del comportamento dei materiali che li compongono, ossia il legno e l'unione metallica: esistono, infatti, vari meccanismi di collasso che si possono verificare, assumendo (secondo la Teoria di K. W. JOHANSEN [28]) un comportamento *rigido-plastico* sia per il legno che per il connettore:

- rifollamento del legno davanti al connettore;
- rifollamento del legno e formazione di una cerniera plastica nel connettore;
- rifollamento del legno e formazione di due cerniere plastiche nel connettore (meccanismo in assoluto più duttile e dissipativo);
- rifollamento del legno e rotazione rigida del connettore.

In particolare, la resistenza a rifollamento del legno è funzione della sua capacità di maturare deformazioni localizzate per schiacciamento in corrispondenza della connessione: ciò dipende dalla geometria e dalla meccanica del collegamento, dalle caratteristiche del chiodo o della vite (come le dimensioni del gambo e del foro) e dalle peculiarità del legno. Per quanto concerne lo snervamento del connettore, esso dipende invece dalle proprietà geometriche del gambo (forma e sezione) e dal tipo di acciaio utilizzato.

L'*effetto pinching* è legato al fatto che, applicando ad una giunzione una sollecitazione orizzontale ciclica, si verifica il rifollamento del legno nell'immediato intorno del connettore: quest'ultimo, a causa della conseguente ovalizzazione del foro, nei successivi cicli perde il contatto diretto con il legno stesso. Pertanto, il connettore esibisce un comportamento flessionale privo di contrasto e molto meno rigido, che dà luogo al particolare fenomeno citato.

La curva utilizzata nel modello numerico per rappresentare l'*effetto pinching* è composta complessivamente da quattordici rami (fig. 3.3):

- otto rami (quattro nel primo quadrante e altri quattro nel terzo quadrante del piano cartesiano) definiscono la curva di inviluppo (*backbone curve*) che rappresenta il comportamento del materiale integro: il primo tratto costituisce il ramo elastico, il secondo e il terzo rappresentano il comportamento plastico di *hardening*, il quarto è invece di *hardening* o di *softening* fino alla rottura;
- sei rami rappresentano il ciclo di *pinching* vero e proprio, legato al degrado delle caratteristiche della connessione, con una conseguente diminuzione di energia dissipata.

Si può osservare come, dopo il primo ingresso in campo plastico, la deformazione maturata nel legno per effetto del rifollamento persista e influenzi anche i cicli di carico successivi, causando uno scorrimento tra i connettori ed il legno stesso prima che si ripristini il contatto: come già anticipato, tale fenomeno è responsabile dell'*effetto pinching* (letteralmente *pizzicamento*), che conferisce ai cicli isteretici la caratteristica configurazione *ad ali di farfalla*, legata al restringimento che si osserva nella parte centrale del ciclo.

Il modello *Pinching4* viene quindi definito dalla seguente serie di parametri (valutati per ogni tipologia di solaio a partire dai dati forniti dalle prove sperimentali):

Figura 3.3: Modello Pinching4 implementato nel software OpenSees [34]; la curva d'inviluppo è rappresentata in nero, il ciclo di pinching in grigio.

- **\$ePfi** coordinate y definite dai valori delle forze relative alla curva d'inviluppo positiva (i = 1, 2, 3, 4);
- **\$ePdi** coordinate x definite dai valori delle deformazioni relative alla curva d'inviluppo positiva (i = 1, 2, 3, 4);
- **\$eNfi** coordinate y definite dai valori delle forze relative alla curva d'inviluppo negativa (i = 1, 2, 3, 4);
- **\$eNdi** coordinate x definite dai valori delle deformazioni relative alla curva d'inviluppo negativa (i = 1, 2, 3, 4);
- rDispP valore che definisce la coordinata x, dato dal rapporto tra la deformazione alla quale si verifica il ricarico e la massima deformazione della storia di carico richiesta;
- rForceP valore che definisce la coordinata y, dato dal rapporto tra la forza alla quale si verifica l'inizio del ricarico e la forza corrispondente alla massima deformazione della storia di carico richiesta;
- $\$ valore che definisce la coordinata y, dato dal rapporto tra la forza sviluppata durante lo scarico del carico negativo e la massima forza sviluppata durante il carico monotono;
- \hat{rDispN} valore che definisce la coordinata x, dato dal rapporto tra la deformazione alla quale si verifica il ricarico e la minima deformazione della storia di carico richiesta;
- rForceN valore che definisce la coordinata y, dato dal rapporto tra la forza alla quale si verifica l'inizio del ricarico e la forza corrispondente alla minima deformazione della storia di carico richiesta;
- $\$ valore che definisce la coordinata y, dato dal rapporto tra la forza sviluppata durante lo scarico del carico negativo e la minima forza sviluppata durante il carico monotono.

I risultati ottenuti dall'analisi numerica, sono stati ricavati sotto due ipotesi fondamentali, assunte anche nei precedenti elaborati:

- 1. Si trascura la rigidezza nel piano offerta da massetti e pavimenti; si ipotizza l'utilizzo di un massetto a secco realizzato con materiali incoerenti, e quindi non in grado di creare un piano rigido;
- 2. Il comportamento ciclico del solaio è stato testato sperimentalmente solo in direzione parallela all'orditura delle travi, ma si assume sia il medesimo in direzione ortogonale ad esse, non avendo dati a disposizione in merito. In realtà, essendo tale comportamento essenzialmente legato alla risposta delle connessioni, si può facilmente immaginare come quest'ultima non possa variare di molto a seconda della direzione della sollecitazione, perciò l'ipotesi assunta è ritenuta plausibile ed è stata, inoltre, verificata da R. FABIAN nel suo elaborato di Tesi [20].

3.3.2 Procedura seguita per la calibrazione del modello

Le dimensioni del solaio sono le stesse per ciascuna tipologia analizzata, perciò le differenti caratteristiche nel comportamento e nella risposta di ciascun orizzontamento dipendono esclusivamente dalle molle diagonali, le quali possono essere facilmente calibrate basandosi sulle già citate prove di laboratorio [3, 43].

Infatti, dai grafici delle prove sperimentali riportati nel seguito, è possibile ricavare immediatamente sia i vari parametri che caratterizzano la curva d'inviluppo, sia quelli associati al ciclo di *pinching* vero e proprio. Sarà poi il modello numerico, sulla base di tali valori da inserire nel listato, a ricavare la corretta legge costitutiva che contraddistingue la singola molla.

Noti infatti i valori della curva d'inviluppo, lo spostamento u in mezzeria del solaio impresso dal martinetto si traduce in un corrispondente allungamento o accorciamento δ delle molle diagonali (la cui inclinazione è data dall'angolo ϑ), determinato mediante la seguente relazione, derivante da considerazioni geometriche (n_s è il numero di file di sottopannelli presenti in metà solaio):

$$\delta = \frac{u\,\cos\vartheta}{n_s}\tag{3.1}$$

La forza totale F applicata dal martinetto per ottenere il dato spostamento, viene suddivisa per il numero n di molle che scaricano direttamente sui bordi e per ognuna di queste, ancora tramite una proporzione geometrica, si definisce un corrispondente sforzo normale di compressione o di trazione N sulla singola molla:

$$N = \frac{F}{n\cos\vartheta} \tag{3.2}$$

Queste due relazioni saranno utilizzate nel modello numerico, in cui il particolare ciclo isteretico del solaio sarà costruito mediante un'opportuna *subroutine*, come meglio specificato nel seguito.

Per costruire le curve d'inviluppo e di *pinching* si è utilizzato il medesimo procedimento mostrato nei precedenti elaborati di Tesi di M. TONON [50] e G. CANESSO [12], andando quindi semplicemente ad individuare i punti richiesti dal modello *Pinching4* a partire dai cicli isteretici derivanti dalle prove sperimentali.

Successivamente, tali parametri così ricavati vanno inseriti all'interno del listato: a partire da questi, il modello implementato calcola autonomamente i valori da assegnare a ciascuna molla, come già anticipato in precedenza.

La disposizione delle molle scelta permette di tener conto anche di eventuali asimmetrie nelle leggi costitutive da assegnare, e proprio tale aspetto si è rivelato essenziale per ottenere risultati conformi alle prove sperimentali, essendo tutti i cicli isteretici a disposizione non perfettamente simmetrici.

Una volta in possesso del legame costitutivo pertinente alle varie molle, il modello numerico è in grado di costruire lo schema *Pinching4* così come riportato nel manuale di *OpenSees*, tramite la semplice *subroutine* solaio. Tutti i listati impiegati per queste analisi numeriche possono essere consultati in Appendice A (sezione A.2).

Nel seguito, si riportano i risultati ottenuti per le quattro tipologie di solaio analizzate, dai quali emergerà un ottimo comportamento del modello così costruito, in grado di riprodurre in modo particolarmente fedele i diversi cicli isteretici.

Si ricorda, a questo proposito, che i solai testati sperimentalmente hanno dimensioni in pianta di 4.0×5.0 m e non di 4.5×5.0 m: per questo motivo, i valori di spostamento risultano analoghi, ma le corrispondenti forze sono state incrementate di un coefficiente pari a 4.5/4.0 = 1.125: infatti, è il lato più corto ad essere parallelo alla direzione di sollecitazione. Inoltre, la discretizzazione scelta risulta la medesima per ciascun solaio: in tal modo, è sufficiente semplicemente variare i parametri relativi alle curve d'inviluppo e di *pinching* per modellare ciscun tipo di orizzontamento.

Si noterà, perciò, la buona sovrapposizione tra gli andamenti sperimentali e quelli derivanti dal modello, semplicemente dividendo i valori di forza ottenuti numericamente per questo fattore di scala. Per verificare la validità della calibrazione effettuata, nel seguito si è riportato il confronto tra il ciclo ottenuto sperimentalmente e quello derivante dall'analisi numerica.

3.3.3 Solaio con tavolato semplice

Il solaio privo di alcun rinforzo è quello che mostra i maggiori spostamenti ed è, infatti, il più flessibile tra tutti quelli esaminati. Come si può osservare in figura 3.4, il ciclo ricavato dal modello numerico segue fedelmente l'andamento di quello sperimentale, a conferma della corretta calibrazione delle molle che rappresentano il solaio.

Oltre a raggiungere spostamenti elevati, il solaio realizzato con tavolato semplice mostra anche una minore resistenza rispetto a tutti quelli rinforzati: tuttavia, essendo il ciclo isteretico molto ampio, appare opportuno valutare se sia possibile affidare una dissipazione energetica all'orizzontamento, una volta che si sia opportunamente rinforzata la muratura mediante cordoli e/o tiranti.

3.3.4 Solaio consolidato con tavolato a 45°

Per questa prima tipologia di rinforzo si osserva una sensibile riduzione degli spostamenti raggiunti e un buon incremento di resistenza. Anche in questo caso, come riportato in figura 3.5, quanto ottenuto dall'analisi numerica riproduce il ciclo sperimentale, perciò la calibrazione può ritenersi corretta.

La forma del ciclo, a meno dei valori raggiunti, ricorda tuttavia quella del caso precedente: tale aspetto verrà meno per i successivi metodi di consolidamento, poiché non sarà più presente soltanto il legno come materiale prevalente.

3.3.5 Solaio consolidato con profili sottili in acciaio

Questa seconda tipologia di rinforzo mostra un comportamento ancora più rigido e resistente, fortemente asimmetrico. Anche in questo caso, quanto ottenuto numericamente rispecchia il ciclo isteretico sperimentale, perciò la calibrazione appare appropriata (fig. 3.6).

Si può osservare anche come dei semplici profili sottili in acciaio siano in grado di incrementare notevolmente la rigidezza dell'orizzontamento, pur non aumentandone di troppo lo spessore, a differenza dell'ultimo caso, presentato di seguito. Inoltre, questa tipologia di consolidamento è sicuramente tra quelle di maggiore facilità esecutiva e reversibilità.

3.3.6 Solaio consolidato con soletta in calcestruzzo armato

L'ultima tipologia di rinforzo è in assoluto la più rigida e resistente, e va perciò valutato se l'aumento non trascurabile di peso possa essere dannoso per gli elementi esistenti verticali. Anche per quest'ultimo orizzontamento, il ciclo ottenuto dal modello numerico riproduce quello sperimentale (a meno del fattore di scala), come si osserva in figura 3.7, perciò la calibrazione può ritenersi corretta.

L'aumento di rigidezza e resistenza è, per questo tipo di solaio, legato ad un intervento con scarsa reversibilità, aumento dello spessore e del peso, come già affermato: in molti casi, potrebbe essere allora necessario valutare altre possibili alternative.

Figura 3.4: Confronto tra ciclo sperimentale (in nero) e numerico (in rosso) per il solaio con tavolato semplice.

Figura 3.5: Confronto tra ciclo sperimentale (in nero) e numerico (in rosso) per il solaio consolidato con tavolato a 45°.

Figura 3.6: Confronto tra ciclo sperimentale (in nero) e numerico (in rosso) per il solaio consolidato con profili sottili in acciaio.

Figura 3.7: Confronto tra ciclo sperimentale (in nero) e numerico (in rosso) per il solaio consolidato con soletta in calcestruzzo armato.

Capitolo 4 Casi studio analizzati

4.1 Generalità

Nei precedenti elaborati ci si è limitati allo studio di un singolo edificio, successivamente alla fase di calibrazione degli elementi: ciò che è emerso in tutti i casi, anche con strategie di modellazione differenti e diversi software utilizzati, è che un eccessivo irrigidimento dei solai comporta un peggioramento della capacità sismica degli edifici analizzati.

Si è reso necessario, tuttavia, ampliare ulteriormente la panoramica dei casi studiati per poter ottenere altre indicazioni e diversificare maggiormente le possibili casistiche reali. Pertanto, si è scelto di rifarsi nuovamente ad un edificio molto semplice, regolare e monopiano, ma variandone alcune caratteristiche salienti, come gli spessori dei muri (e, conseguentemente, la loro rigidezza), le dimensioni delle pareti fuori piano e l'influenza delle stesse.

Fra le analisi sismiche proposte dalla Normativa italiana, l'analisi dinamica non lineare (*time history*) è certamente la più completa e realistica al fine di valutare gli effetti derivanti da eventi sismici, in quanto si cerca di ricreare la reale risposta della struttura sottoposta ad azione variabile nel tempo. La non linearità entra in gioco nella valutazione della capacità della struttura di entrare in campo plastico e quindi di dissipare l'energia legata al sisma. Per effettuare questa tipologia di analisi si necessita di:

- una corretta distribuzione delle masse in gioco;
- un set di accelerogrammi in grado di definire la variazione di accelerazione al suolo, in modo da determinare con buona probabilità quale sia l'azione che porta al collasso strutturale;
- modelli isteretici per gli elementi strutturali che entrano in campo non lineare.

In particolare, gli accelerogrammi utilizzati devono essere scelti sulla base della pericolosità sismica del sito di costruzione e dello stato limite di progetto, e possono essere sia simulati artificialmente, sia legati a sismi realmente avvenuti. Gli accelerogrammi artificiali, come quelli impiegati in questo elaborato, devono presentare uno spettro di risposta elastico compatibile con quello utilizzato nella progettazione: l'ordinata spettrale media degli accelerogrammi deve mostrare uno scarto in difetto inferiore al 10% rispetto allo spettro elastico di riferimento, all'interno del maggiore tra gli intervalli 0.15-2.00 s e 0.15-2T s, dove T è il periodo fondamentale della struttura in campo elastico.

Le analisi dinamiche non lineari sono state eseguite impiegando tre accelerogrammi spettrocompatibili generati artificialmente mediante il software SIMQKE_GR [24]. Tutti i risultati riportati, ove non diversamente specificato, si riferiscono all'accelerogramma più gravoso tra i tre utilizzati. Per la determinazione degli accelerogrammi, si è fatto riferimento alla OPCM n. 3274/2003 [39], la quale fissa per ogni categoria di suolo di fondazione (A, B, C, D, E) i valori dei parametri S, T_B, T_C, T_D dello spettro di risposta elastico delle componenti orizzontali. In particolare, S corrisponde al fattore che tiene conto del profilo stratigrafico del suolo di fondazione, mentre $T_B, T_C,$ T_D sono i periodi che separano i diversi rami dello spettro, anch'essi dipendenti dal profilo stratigrafico del suolo di fondazione. In questo elaborato, per la generazione degli accelerogrammi si sono considerate le seguenti caratteristiche:

- terreno di tipo A;
- zona sismica 1;
- durata del sisma pari a 20 secondi;

Le masse sismiche sono state distribuite in modo diffuso, allo scopo di ottenere una risposta maggiormente realistica: è questo il motivo per cui, in sede di calibrazione degli elementi per simulare il comportamento dei solai, la maglia utilizzata è stata realizzata con moduli di dimensioni limitate. In figura 4.1 sono riportati i tre accelerogrammi generati dal software impiegato, insieme ai relativi spettri di risposta.

Sono quindi state svolte analisi parametriche dinamiche non lineari, allo scopo di ottenere alcune indicazioni sull'intervento ottimale da effettuare a seconda dei casi: in totale, come verrà meglio specificato nel seguito, sono state analizzate quattro differenti configurazioni di uno stesso edificio, e per ciascuna si sono considerati tre diversi spessori e tre tipologie di solaio, ossia quello originario con tavolato semplice, quello rinforzato con tavolato a 45° e quello irrigidito con soletta in calcestruzzo armato. In totale, risultano trentasei casi studio che possono costituire un buon punto di partenza per approfondire ulteriormente l'argomento e fornire già qualche informazione aggiuntiva sulla convenienza o meno dell'irrigidimento degli orizzontamenti.

In tutte le configurazioni il sisma è stato introdotto in un'unica direzione, simulando così il comportamento nel piano di maschi murari e solai nel modo più fedele possibile alle prove sperimentali cui ci si è ricondotti in sede di calibrazione del modello. Per determinare l'influenza delle pareti fuori piano si è scelto di studiare negli edifici analizzati due casi limite opposti: un muro pieno, modellato mediante un graticcio di elementi *beam* opportunamente calibrati (paragrafo 2.10), e uno molto ricco di aperture, tale da non possedere rigidezza apprezzabile. In quest'ultimo caso la parete fuori piano è stata, pertanto, trascurata anche nel modello, in cui compaiono le sole pareti nel piano (si veda, per maggiore chiarezza, il paragrafo 4.2.1), unitamente al solaio.

Figura 4.1: Parametri sismici assunti, grafico dell'accelerogramma più gravoso e sua compatibilità con lo spettro di risposta elastico in accelerazione di riferimento [24].

4.2 Edifici studiati

4.2.1 Caratteristiche principali e configurazioni analizzate

Come già anticipato, sono state effettuate analisi dinamiche non lineari su quattro semplici edifici monopiano, le cui piante sono riportate in figura 4.2. Di seguito sono riassunte le principali caratteristiche di tali edifici, ognuno dei quali è rappresentato da una lettera, utilizzata per l'identificazione in sede di presentazione dei risultati:

- A Edificio avente dimensioni 4.5×5.0 m, costituito da due pareti piene sul lato lungo (fuori piano) e due pareti con un'unica apertura su quello corto (nel piano);
- **B** Edificio di dimensioni 4.5×8.0 m, costituito anch'esso da due pareti piene sul lato lungo (fuori piano) e due pareti con un'unica apertura su quello corto (nel piano);

Capitolo 4. Casi studio analizzati

- C Edificio avente dimensioni 4.5×5.0 m, costituito da due pareti ricche di aperture sul lato lungo (fuori piano), trascurate quindi nel modello, e due pareti con un'unica apertura su quello corto (nel piano);
- **D** Edificio di dimensioni 4.5×8.0 m, costituito anch'esso da due pareti ricche di aperture sul lato lungo (fuori piano), trascurate quindi nel modello, e due pareti con un'unica apertura su quello corto (nel piano).

Per gli edifici A e B, la parete fuori piano viene modellata, come anticipato, mediante un graticcio di elementi *beam*, ai quali viene attribuita una sezione avente per lati lo spessore del muro e l'interasse tra gli elementi stessi.

Le tre tipologie di solaio in legno analizzate verranno indicate nel seguito con le seguenti sigle:

- **NS** Solaio originario con semplice tavolato (*Non-Stiffened*);
- **TB** Solaio consolidato tramite la sovrapposizione di un secondo tavolato inclinato di 45° (*Timber Boards*);
- **RC** Solaio consolidato mediante soletta in calcestruzzo armato (*Reinforced Concrete*).

Una volta definite le rispettive sigle, l'ultima variabile è costituita dai tre spessori delle pareti (250, 320 e 380 mm): si ottengono, perciò, le trentasei configurazioni riportate in tabella 4.1.

Infine, in figura 4.3 è riportata una rappresentazione realistica dell'edificio tipo analizzato, unitamente alla sua implementazione nel macro-modello precedentemente calibrato.

4.2.2 Analisi dei carichi e definizione delle masse sismiche

Le masse sismiche dell'edificio sono state distribuite sui nodi del solaio per tutte le analisi effettuate, secondo la combinazione di carico relativa all'azione sismica. Proprio per questo motivo, il solaio è stato discretizzato in modo raffinato, allo scopo di distribuire al meglio tutti i contributi di peso.

Spessore delle pareti [mm]	Tipologia di solaio	Caso A	Caso B	Caso C	Caso D
	NS	A250NS	B250NS	C250NS	D250NS
250	TB	A250TB	B250TB	C250TB	D250TB
	RC	A250RC	B250RC	C250RC	D250RC
	NS	A320NS	B320NS	C320NS	D320NS
320	TB	A320TB	B320TB	C320TB	D320TB
	RC	A320RC	B320RC	C320RC	D320RC
	NS	A380NS	B380NS	C380NS	D380NS
380	TB	A380TB	B380TB	C380TB	D380TB
	\mathbf{RC}	A380RC	B380RC	C380RC	D380RC

Tabella 4.1: Configurazioni analizzate e sigle impiegate nella presentazione dei risultati.

Figura 4.2: Piante dei quattro edifici analizzati e caratteristiche geometriche salienti; gli spessori dei muri sono variabili e le linee tratteggiate individuano le pareti fuori piano ricche di aperture e perciò non modellate. Tutte le quote sono espresse in m.

Per quanto concerne i carichi da assumere, le Norme Tecniche per le Costruzioni (§3.2.4) [35], in accordo con l'Eurocodice 0 [18], affermano:

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \sum_j \Psi_{2j} Q_{kj} \tag{4.1}$$

Il valore dei coefficienti Ψ_{2j} è pari a 0.3, assumendo che gli edifici in esame appartengano alla *Categoria A* (ambienti ad uso residenziale). Pertanto, le masse sismiche sono state definite sommando i carichi permanenti strutturali G_1 , i carichi permanenti non strutturali G_2 e una frazione del 30% dei carichi accidentali Q_k .

I primi assumono i seguenti valori per i tre tipi di solaio analizzati: 0.46 kN/m^2 per il solaio con tavolato semplice, 0.59 kN/m^2 per il solaio irrigidito con tavolato a 45° e 1.71 kN/m^2 per il solaio consolidato con soletta in calcestruzzo armato.

Figura 4.3: Rappresentazione realistica dell'edificio tipo analizzato e corrispondente modello numerico; negli edifici $C \in D$ il graticcio di elementi beam per simulare il comportamento fuori piano non è presente.

I carichi G_2 sono per ogni tipologia di solaio pari a 2.12 kN/m², comprensivi di massetto, allettamento e pavimento, per uno spessore complessivo di 15.00 cm. Tali valori sono stati assunti conformemente a quelli descritti nell'elaborato di M. TONON [50]. In totale risultano, perciò, 2.58 kN/m² per il solaio con tavolato semplice, 2.71 kN/m² per il solaio irrigidito con tavolato a 45° e 3.83 kN/m² per il solaio consolidato con soletta in calcestruzzo armato.

Infine, il carico accidentale (di calpestio) è stato assunto, in accordo con la tipologia dell'edificio scelta, pari 2.00 kN/m^2 .

Per il calcolo della massa sismica relativa ad ogni nodo della *mesh* del solaio, si è fatto riferimento all'area di influenza afferente a ciascun nodo. Per i nodi di bordo, comuni alle pareti ed al solaio, si è considerato il contributo di massa aggiuntivo dovuto alla presenza dei muri perimetrali. A tali nodi, quindi, è necessario sommare il peso del maschio murario o della fascia di piano in relazione alla loro area d'influenza. Nel modello implementato, tale calcolo viene effettuato di volta in volta automaticamente, in funzione delle caratteristiche geometriche dei macroelementi: viene assunto, come di consueto, che solo il peso di metà altezza delle pareti perimetrali sia parte della massa sismica, mentre l'altra metà non sia considerata, essendo assorbita direttamente dal suolo.

Si nota fin da subito, a parità di tutte le altre caratteristiche dell'edificio, come rinforzando il solaio il suo peso aumenti progressivamente, soprattutto nel caso della soletta in calcestruzzo armato, che incrementa in modo rilevante la massa sismica complessiva.

Infine, un'ultima osservazione riguarda la disposizione del solaio: esso è stato orientato in conformità alle prove sperimentali effettuate, pertanto le pareti nel piano risultano caricate dal loro peso proprio e solo da una piccola porzione di solaio, assunta pari a 0.5×4.5 m. Per tenere conto dell'effetto di ammorsamento delle pareti fuori piano, anche il loro peso è stato suddiviso tra i vertici dei maschi murari nel piano, poiché il graticcio di elementi *beam* non è stato caricato, dal momento che si è tenuto conto della compressione agente per mezzo della scelta del modulo elastico in direzione verticale.

Figura 4.4: Discretizzazione del solaio degli edifici analizzati; sono evidenziati i punti di controllo in cui si è misurato lo spostamento del solaio (Midfloor - MF) e dei pannelli murari (Wall 1 e Wall 2 - W1 e W2). Tutte le quote sono espresse in mm, tra parentesi sono riportate le quote dell'edificio avente dimensioni in pianta 4.5×8.0 m.

4.3 Discussione dei risultati ottenuti

4.3.1 Premessa

Nel seguito saranno riportati e discussi i risultati ottenuti dalle analisi parametriche dinamiche non lineari effettuate. Dapprima saranno commentati in modo approfondito i singoli casi studiati (A, B, C, D), mentre successivamente verrà dato ampio spazio ai confronti tra le varie configurazioni e a qualche ulteriore valutazione effettuata per alcune di esse, come l'influenza della dissipazione dei solai sulla performance sismica dei vari edifici. In Appendice B sono forniti quattro dei listati utilizzati nelle analisi (uno per edificio): in essi si è variato il tipo di solaio e lo spessore delle pareti in modo che, pur non disponendo di tutti i listati, possano essere chiariti per ogni configurazione tutti i parametri impiegati nel modello.

Gli accelerogrammi utilizzati sono stati amplificati in modo incrementale, fino a giungere alla PGA (*Peak Ground Acceleration*) di collasso: questa è stata determinata in seguito alla rottura di una delle molle dei macro-elementi, oppure al raggiungimento dello spostamento limite assoluto fuori piano del solaio, pari a 60 mm (2% dell'altezza). Nei singoli casi studio verranno forniti gli andamenti delle storie di spostamento alla PGA di collasso negli intervalli temporali in cui compaiono i massimi valori registrati, oltre ai grafici di evoluzione degli spostamenti al crescere della PGA. Tutte le notazioni utilizzate sono conformi alla simbologia precedentemente riportata, e gli spostamenti sono stati rilevati in corrispondenza della mezzeria del solaio (MF) e delle due pareti sollecitate nel loro piano (W1 e W2, i cui spostamenti coincidono per simmetria), secondo quanto riportato in figura 4.4.

4.3.2 Edificio A

L'edificio A, come anticipato, presenta dimensioni in pianta di 4.5×5.0 m e un'altezza di 3.0 m; in esso sono state modellate le pareti fuori piano, assunte piene e di lunghezza 5.0 m, mediante un graticcio di elementi *beam*, in accordo con quanto esposto al paragrafo 2.10.

In tabella 4.2 sono riportate le PGA di collasso ottenute nelle varie configurazioni analizzate: per ogni spessore della muratura è evidenziato in corsivo il tipo di solaio che garantisce la migliore performance. Per questa tipologia di edificio il collasso è avvenuto sempre per fessurazione diagonale, coinvolgendo prettamente i macro-elementi al di sotto della fascia di piano, mentre quest'ultima è rimasta in campo elastico. Perciò, in questo caso, anche il solaio più flessibile non comporta la rottura fuori piano dell'edificio: a prescindere dal tipo di orizzontamento, tutte le configurazioni manifestano un comportamento simile tra loro per quanto concerne le sollecitazioni sulle pareti nel piano, generando cicli isteretici tipici del collasso per fessurazione diagonale.

Quanto emerge dal confronto tra i valori riscontrati, è che il rinforzo non appare conveniente per edifici aventi condizioni simili a quella del caso A: qualsiasi tecnica di irrigidimento si utilizzi, comporta un peggioramento della capacità sismica. L'unica attenzione da porre riguarda il caso A250NS, in quanto, come si può osservare dai grafici spostamento-PGA, e spostamento-tempo (riportati per tutte le configurazioni nelle figure da 4.5 a 4.10), lo spostamento fuori piano raggiunto è molto vicino al limite di collasso assunto, perciò sicuramente la parete risulterebbe molto degradata e danneggiata dopo un evento sismico rilevante, seppur non comportando il collasso fuori piano dell'edificio.

Inoltre, al diminuire dello spessore (e quindi della rigidezza) delle pareti nel piano, si accentua sempre di più la differenza tra il solaio originario e quelli rinforzati, che risultano via via più rigidi rispetto ai pannelli murari. Si ha perciò un'ulteriore conferma di quanto emerso sinora, ossia un eccessivo irrigidimento risulta dannoso se si riesce a sfruttare la capacità dissipativa (in termini di maggiore capacità di spostamento) del solaio originario. Quest'ultimo è, infatti, l'unico a non comportare una eccessiva riduzione di PGA, beneficiando della maggiore flessibilità, ma anche del suo minor peso rispetto alle altre tipologie.

Configurazione	PGA di collasso [g]	Modalità di rottura
A 250NS	0.672	Fessurazione diagonale
A250TB	0.514	Fessurazione diagonale
A250RC	0.427	Fessurazione diagonale
A320NS	0.686	Fessurazione diagonale
A320TB	0.640	Fessurazione diagonale
A320RC	0.487	Fessurazione diagonale
A380NS	0.707	Fessurazione diagonale
A380TB	0.675	Fessurazione diagonale
A380RC	0.554	Fessurazione diagonale

Tabella 4.2: PGA di collasso registrate per l'edificio A e tipologie di rottura riscontrate.

Figura 4.5: Andamenti dei massimi spostamenti dei diversi solai (MF) e dei pannelli murari nel piano (W1) registrati al crescere della PGA per la configurazione A250.

Figura 4.6: Andamenti dei massimi spostamenti dei diversi solai (MF) e dei pannelli murari nel piano (W1) registrati al crescere della PGA per la configurazione A320.

Figura 4.7: Andamenti dei massimi spostamenti dei diversi solai (MF) e dei pannelli murari nel piano (W1) registrati al crescere della PGA per la configurazione A380.

Figura 4.8: Andamenti degli spostamenti dei solai (MF) e dei pannelli murari nel piano (W1) in funzione del tempo per la configurazione A250 alla PGA di collasso. Nell'intervallo riportato è presente lo spostamento massimo registrato per entrambi.

Figura 4.9: Andamenti degli spostamenti dei solai (MF) e dei pannelli murari nel piano (W1) in funzione del tempo per la configurazione A320 alla PGA di collasso. Nell'intervallo riportato è presente lo spostamento massimo registrato per entrambi.

Figura 4.10: Andamenti degli spostamenti dei solai (MF) e dei pannelli murari nel piano (W1) in funzione del tempo per la configurazione A380 alla PGA di collasso. Nell'intervallo riportato è presente lo spostamento massimo registrato per entrambi.

4.3.3 Edificio B

L'edificio B presenta dimensioni in pianta di 4.5×8.0 m e un'altezza di 3.0 m; in esso sono state modellate le pareti fuori piano, assunte piene e di lunghezza 8.0 m, mediante un graticcio di elementi *beam*, secondo quanto esposto al paragrafo 2.10.

In tabella 4.3 sono riportate le PGA di collasso ottenute nelle varie configurazioni analizzate: per ogni spessore della muratura è evidenziato in corsivo il tipo di solaio che garantisce la migliore performance. Per questa tipologia di edificio il collasso è avvenuto sia per fessurazione diagonale, sia per raggiungimento dello spostamento limite fuori piano per il solaio più flessibile. Perciò, in questo caso, il solaio originario comporta la rottura fuori piano dell'edificio nel caso di murature più flessibili e, vista l'estensione delle pareti fuori piano, il rinforzo appare sicuramente conveniente, escludendo tuttavia il consolidamento con la soletta in calcestruzzo, il quale risulta sempre il peggiore intervento in termini di capacità sismica dell'edificio.

Nelle figure da 4.11 a 4.16 sono riportati i grafici spostamento-PGA, e spostamentotempo: appare interessante il caso B380NS, nel quale il solaio originario, pur dando luogo a spostamenti fuori piano molto elevati, permette di raggiungere una PGA rilevante, con collasso per fessurazione diagonale. Gli spostamenti fuori piano sono infatti limitati dalla maggiore rigidezza del muro, essendo quest'ultimo molto spesso, e il collasso non avviene come negli altri due casi. Perciò, si ha un comportamento sostanzialmente ottimale, in quanto l'edificio riesce a dissipare l'energia fornita dal sisma sia sfruttando il meccanismo di fessurazione diagonale, sia l'elevato spostamento (e conseguente snervamento) del solaio. Va però osservato come ad un risultato pressoché identico, ma con spostamenti fuori piano più limitati, si possa pervenire mediante il rinforzo con tavolato a 45°: come verrà meglio esaminato nel seguito (paragrafo 4.4.4), anche per tale tipologia di orizzontamento si può contare sia sulla dissipazione della muratura, sia su quella legata allo snervamento del solaio.

Pertanto, la tipologia di rinforzo più opportuna appare la sovrapposizione del tavolato a 45°, in quanto non troppo rigida rispetto alle murature esaminate e piuttosto leggera. Proprio quest'ultimo aspetto giustifica le PGA più ridotte raggiunte dalla soletta in calcestruzzo: a parità di resistenza dei muri nel piano, è infatti quasi raddoppiata l'area del solaio rispetto al caso A, con conseguente aumento dei pesi sismici.

Configurazione	PGA di collasso [g]	Modalità di rottura
B250NS	0.392	Collasso fuori piano
B250TB	0.434	Fessurazione diagonale
B250RC	0.291	Fessurazione diagonale
B320NS	0.546	Collasso fuori piano
B320TB	0.539	Fessurazione diagonale
B320RC	0.340	Fessurazione diagonale
B380NS	0.714	Fessurazione diagonale
B380TB	0.707	Fessurazione diagonale
B380RC	0.403	Fessurazione diagonale

Tabella 4.3: PGA di collasso registrate per l'edificio B e tipologie di rottura riscontrate.

Figura 4.11: Andamenti dei massimi spostamenti dei diversi solai (MF) e dei pannelli murari nel piano (W1) registrati al crescere della PGA per la configurazione B250.

Figura 4.12: Andamenti dei massimi spostamenti dei diversi solai (MF) e dei pannelli murari nel piano (W1) registrati al crescere della PGA per la configurazione B320.

Figura 4.13: Andamenti dei massimi spostamenti dei diversi solai (MF) e dei pannelli murari nel piano (W1) registrati al crescere della PGA per la configurazione B380.

4.3. Discussione dei risultati ottenuti

Figura 4.14: Andamenti degli spostamenti dei solai (MF) e dei pannelli murari nel piano -0.0335704 (W1) in funzione del tempo per la configurazione B250 alla PGA di collasso. Nell'intervallo -0.0344438 riportato è presente lo spostamento massimo registrato per entrambi. -0.0353431

-0.032721 -0.0335704 -0.0344438 -0.0353431 -0.0362703 -0.0372273 -0.0382161 -0.0392384 -0.0402962

Figura 4.15: Andamenti degli spostamenti dei solai (MF) e dei pannelli murari nel piano (W1) in funzione del tempo per la configurazione B320 alla PGA di collasso. Nell'intervallo riportato è presente lo spostamento massimo registrato per entrambi.

Figura 4.16: Andamenti degli spostamenti dei solai (MF) e dei pannelli murari nel piano (W1) in funzione del tempo per la configurazione B380 alla PGA di collasso. Nell'intervallo riportato è presente lo spostamento massimo registrato per entrambi.

4.3.4 Edificio C

Nel caso dell'edificio C, avente dimensioni in pianta di 4.5×5.0 m e un'altezza di 3.0 m, non sono state modellate le pareti fuori piano, di lunghezza 5.0 m, poiché si assume che queste abbiano rigidezza trascurabile, essendo molto ricche di aperture.

In tabella 4.4 sono riportate le PGA di collasso ottenute nelle varie configurazioni analizzate: per ogni spessore della muratura è evidenziato in corsivo il tipo di solaio che garantisce la migliore performance. Per questa tipologia di edificio il collasso è avvenuto sia per fessurazione diagonale, sia per raggiungimento dello spostamento limite fuori piano per il solaio più flessibile. In tale situazione, il solaio originario comporta la rottura fuori piano dell'edificio per tutti gli spessori delle pareti e il rinforzo appare sicuramente conveniente, escludendo il consolidamento con la soletta in calcestruzzo, che anche in questo caso peggiora la capacità sismica dell'edificio.

Nelle figure da 4.17 a 4.22 sono riportati i grafici spostamento-PGA, e spostamentotempo: si osserva come il solaio originario non consenta di sfruttare la dissipazione energetica legata alla fessurazione diagonale; l'eccessiva flessibilità, infatti, comporta che le pareti nel piano restino pressoché in campo elastico. Poiché la rigidezza delle pareti fuori piano è trascurabile, lo spostamento del solaio è legato solo alla massa sismica: all'aumentare dello spessore (e del peso) della muratura, si assiste ad una diminuzione di PGA per tale tipologia di solaio, in controtendenza rispetto alle altre due, in quanto si raggiunge sempre più prematuramente lo spostamento limite fuori piano, a causa della maggiore massa progressivamente coinvolta. Viceversa, il solaio consolidato con tavolato a 45° si dimostra un intervento davvero migliorativo, specie nel caso C380TB, che permette di sfruttare sia la dissipazione fornita dalle murature, sia quella legata all'orizzontamento: il solaio può infatti deformarsi liberamente, entrare in campo plastico e sgravare i maschi murari, dissipando una quota dell'energia fornita dal sisma. Solo nel caso C250TB si assiste ad un lieve peggioramento, legato al fatto che il solaio inizia ad essere troppo rigido rispetto alle pareti.

Per quanto riguarda gli spostamenti limite raggiunti dalle pareti nel piano, i muri fuori piano hanno in questo caso rigidezza trascurabile e non influenzano, come in precedenza, la deformazione dei maschi murari: infatti, tutti i loro macro-elementi (e non solo quelli alla base delle pareti, come avveniva nei casi A e B) collaborano alla dissipazione, raggiungendo spostamenti maggiori rispetto ai precedenti casi.

Configurazione	PGA di collasso [g]	Modalità di rottura
C250NS	0.665	Collasso fuori piano
C250TB	0.619	Fessurazione diagonale
C250RC	0.497	Fessurazione diagonale
C320NS	0.634	Collasso fuori piano
C320TB	0.752	$Fessurazione \ diagonale$
C320RC	0.535	Fessurazione diagonale
C380NS	0.588	Collasso fuori piano
C380TB	0.870	Fessurazione diagonale
C380RC	0.581	Fessurazione diagonale

Tabella 4.4: PGA di collasso registrate per l'edificio C e tipologie di rottura riscontrate.

Figura 4.17: Andamenti dei massimi spostamenti dei diversi solai (MF) e dei pannelli murari nel piano (W1) registrati al crescere della PGA per la configurazione C250.

Figura 4.18: Andamenti dei massimi spostamenti dei diversi solai (MF) e dei pannelli murari nel piano (W1) registrati al crescere della PGA per la configurazione C320.

Figura 4.19: Andamenti dei massimi spostamenti dei diversi solai (MF) e dei pannelli murari nel piano (W1) registrati al crescere della PGA per la configurazione C380.

Figura 4.20: Andamenti degli spostamenti dei solai (MF) e dei pannelli murari nel piano (W1) in funzione del tempo per la configurazione C250 alla PGA di collasso. Nell'intervallo riportato è presente lo spostamento massimo registrato per entrambi.

Figura 4.21: Andamenti degli spostamenti dei solai (MF) e dei pannelli murari nel piano (W1) in funzione del tempo per la configurazione C320 alla PGA di collasso. Nell'intervallo riportato è presente lo spostamento massimo registrato per entrambi.

Figura 4.22: Andamenti degli spostamenti dei solai (MF) e dei pannelli murari nel piano (W1) in funzione del tempo per la configurazione C380 alla PGA di collasso. Nell'intervallo riportato è presente lo spostamento massimo registrato per entrambi.

4.3.5 Edificio D

Anche per l'edificio D, avente dimensioni in pianta di 4.5×8.0 m e un'altezza di 3.0 m, non sono state modellate le pareti fuori piano, di ampiezza 8.0 m, poiché si assume che queste abbiano rigidezza trascurabile, essendo molto ricche di aperture.

In tabella 4.5 sono riportate le PGA di collasso ottenute nelle varie configurazioni analizzate: per ogni spessore della muratura è evidenziato in corsivo il tipo di solaio che garantisce la migliore performance. Per questa tipologia di edificio il collasso è avvenuto sia per fessurazione diagonale, sia per raggiungimento dello spostamento limite fuori piano per il solaio più flessibile. Perciò, in questo caso, il solaio originario comporta la rottura fuori piano dell'edificio per tutti gli spessori delle pareti e il rinforzo appare sicuramente conveniente, escludendo il consolidamento con la soletta in calcestruzzo, che nuovamente peggiora la capacità sismica dell'edificio.

Nelle figure da 4.23 a 4.28 sono riportati i grafici spostamento-PGA, e spostamentotempo: si osserva come il solaio originario, analogamente al caso precedente, non consenta di sfruttare la dissipazione energetica legata alla fessurazione diagonale; l'eccessiva flessibilità, infatti, comporta che le pareti nel piano restino pressoché in campo elastico. Poiché la rigidezza delle pareti fuori piano è trascurabile, lo spostamento del solaio è legato solo alla massa sismica: all'aumentare dello spessore (e del peso) della muratura, si assiste ad una diminuzione di PGA per tale tipologia di solaio, in controtendenza rispetto alle altre due, in quanto si raggiunge sempre più prematuramente lo spostamento limite fuori piano, a causa della maggiore massa progressivamente coinvolta.

Anche in questo caso, dunque, il solaio consolidato con tavolato a 45° appare davvero un intervento migliorativo, con cui è possibile sfruttare sia la dissipazione fornita dalle murature, sia quella legata all'orizzontamento: il solaio può infatti deformarsi liberamente, entrare in campo plastico e sgravare i maschi murari, assorbendo su di sé una quota dell'energia fornita dal sisma.

Un'ultima osservazione riguarda gli spostamenti limite raggiunti dalle pareti nel piano: come per il precedente caso, i muri fuori piano hanno rigidezza trascurabile e non influenzano la deformazione dei maschi murari: infatti, tutti i loro macro-elementi (e non solo quelli alla base delle pareti, come avveniva nei casi A e B) collaborano alla dissipazione, raggiungendo spostamenti maggiori rispetto ai precedenti casi.

Configurazione	PGA di collasso [g]	Modalità di rottura
D250NS	0.466	Collasso fuori piano
D250TB	0.518	$Fessurazione \ diagonale$
D250RC	0.360	Fessurazione diagonale
D320NS	0.434	Collasso fuori piano
D320TB	0.602	Fessurazione diagonale
D320RC	0.381	Fessurazione diagonale
D380NS	0.389	Collasso fuori piano
D380TB	0.682	Fessurazione diagonale
D380RC	0.413	Fessurazione diagonale

Tabella 4.5: PGA di collasso registrate per l'edificio D e tipologie di rottura riscontrate.

Figura 4.23: Andamenti dei massimi spostamenti dei diversi solai (MF) e dei pannelli murari nel piano (W1) registrati al crescere della PGA per la configurazione D250.

Figura 4.24: Andamenti dei massimi spostamenti dei diversi solai (MF) e dei pannelli murari nel piano (W1) registrati al crescere della PGA per la configurazione D320.

Figura 4.25: Andamenti dei massimi spostamenti dei diversi solai (MF) e dei pannelli murari nel piano (W1) registrati al crescere della PGA per la configurazione D380.

Figura 4.26: Andamenti degli spostamenti dei solai (MF) e dei pannelli murari nel piano (W1) in funzione del tempo per la configurazione D250 alla PGA di collasso. Nell'intervallo riportato è presente lo spostamento massimo registrato per entrambi.

Figura 4.27: Andamenti degli spostamenti dei solai (MF) e dei pannelli murari nel piano (W1) in funzione del tempo per la configurazione D320 alla PGA di collasso. Nell'intervallo riportato è presente lo spostamento massimo registrato per entrambi.

Figura 4.28: Andamenti degli spostamenti dei solai (MF) e dei pannelli murari nel piano (W1) in funzione del tempo per la configurazione D380 alla PGA di collasso. Nell'intervallo riportato è presente lo spostamento massimo registrato per entrambi.

4.3.6 Confronto tra i vari casi esaminati

Dopo aver discusso separatamente alcuni aspetti caratteristici relativi ai singoli edifici analizzati, si procede ad un confronto tra questi, in modo da poter cogliere meglio quale sia l'intervento ottimale da effettuare di volta in volta, in funzione di tutti i parametri in esame.

Innanzitutto, si procede con il confronto tra edifici in cui si è adottata la medesima strategia di modellazione, perciò si comparano i risultati ottenuti per i casi A e B, in cui le pareti fuori piano sono presenti, e per C e D, nei quali queste ultime non sono state modellate.

Sia nel confronto tra gli edifici A e B, sia in quello tra i casi C e D, sono coinvolti i seguenti parametri:

- tre diverse rigidezze delle pareti nel piano, funzione degli spessori assegnati (250, 320 e 380 mm);
- tre diverse tipologie di solaio, con grado crescente di rigidezza: non rinforzato (NS), consolidato con tavolato a 45° (TB), irrigidito con soletta in calcestruzzo armato (RC);
- per ciascun tipo di orizzontamento, due diverse rigidezze nel piano del solaio, funzione della sua larghezza (5.0 o 8.0 m), ossia della distanza tra le due pareti sollecitate nel proprio piano.

I valori di rigidezza associati alla muratura sono stati dedotti a partire dai cicli isteretici relativi alle pareti nel piano: alcuni di essi sono riportati al paragrafo 4.4.3. Invece, nel caso dei solai, le rigidezze nel piano sono state ricavate direttamente a partire dalle prove sperimentali effettuate da C. BALDESSARI [3], utilizzando però due diversi fattori scala per tener conto delle diverse dimensioni degli orizzontamenti. Infatti, come già riportato in precedenza, nelle prove sperimentali i solai misuravano 4.0×5.0 m, mentre negli edifici analizzati le dimensioni sono di 4.5×5.0 m e di 4.5×8.0 m. Pertanto, essendo la direzione di sollecitazione parallela al lato corto, i due fattori di scala risultano:

- per i valori di sforzo, pari per ciascuna configurazione a 4.5/4.0 = 1.125, analogamente a quanto assunto in fase di calibrazione delle molle rappresentative del comportamento dei solai;
- per i valori di spostamento, pari rispettivamente a 1.0 (stessa dimensione tra prova sperimentale e modello numerico) e a 8.0/5.0 = 1.6 (il solaio è più ampio nel modello implementato e quindi dà luogo a maggiori spostamenti).

Nei grafici che seguono, tutti i valori di rigidezza sono espressi in kN/mm, in accordo con le prove sperimentali menzionate precedentemente.

Per quanto concerne il confronto tra gli edifici A e B (fig. 4.29), si osserva subito come una stessa tipologia di solaio possa rivelarsi favorevole o meno a seconda della distanza tra due pareti parallele all'azione sismica. Infatti, sia il solaio originario con tavolato semplice, sia quello consolidato con tavolato a 45° non sempre risultano contemporaneamente gli orizzontamenti ottimali per ciascuna delle configurazioni, anche se le motivazioni appaiono pressoché opposte.

Figura 4.29: Confronto tra le PGA di collasso raggiunte dai diversi solai nelle configurazioni analizzate per gli edifici $A \in B$. Per ciascun tipo di solaio è riportata la rigidezza nel piano nei due casi $A \in B$.

Nel caso del solaio con tavolato semplice, ciò che influenza maggiormente la PGA di collasso raggiunta è la sua rigidezza limitata, che con lunghe pareti fuori piano come nel caso B è sicuramente sconveniente, soprattutto se queste hanno spessori contenuti e sono quindi più flessibili (250 o 320 mm). Va però rimarcato che questa maggiore capacità di spostamento può portare anche vantaggi al comportamento sismico dell'edificio: per l'edificio A, ad esempio, nonostante la diminuzione di rigidezza delle pareti nel piano sia cospicua al calare dello spessore delle pareti, la PGA di collasso non si riduce di molto. Tale progressiva diminuzione di spessore (e aumento di flessibilità) coinvolge, infatti, anche le pareti fuori piano, perciò il solaio può maturare maggiori spostamenti: nel caso A250NS si arriva quasi al limite di rottura fuori piano, con 55 mm di spostamento in tale direzione, ma ciò consente di sgravare parzialmente i maschi murari dalle sollecitazioni sismiche, e portare l'edificio al

collasso per una PGA di poco inferiore a quella che compete ad un edificio con pareti più massicce. Per l'edificio B, il collasso fuori piano limita invece la PGA di rottura, soprattutto con murature meno rigide, anche se per il caso B320NS il collasso (fuori piano) avviene per un'accelerazione sismica simile a quella che porta a rottura la configurazione B320TB. Nel caso B380NS, invece, il collasso è nel piano, ma con spostamenti molto elevati e dissipazione energetica rilevante, tanto da superare, anche se di poco, la prestazione del solaio consolidato con tavolato a 45°, che comunque raggiunge spostamenti tali da entrare in campo plastico.

Per il solaio consolidato con tavolato a 45°, invece, è la rigidezza di quest'ultimo relativamente alle pareti nel piano a comportare un incremento o meno di capacità sismica rispetto al solaio originario. Quando, infatti, l'orizzontamento è troppo rigido rispetto alle pareti, come accade ad esempio per la configurazione A250TB, si osserva un peggioramento rispetto al tavolato semplice, mentre grazie ad una maggiore distanza tra le pareti parallele al sisma (caso B250TB), lo stesso tipo di rinforzo garantisce prestazioni migliori rispetto al solaio originario, che si rivela troppo flessibile e porta al collasso i muri fuori piano. In realtà, quindi, anche se per spessori medi e consistenti delle pareti i due solai sono equivalenti in termini di capacità sismica al collasso, il rinforzo appare comunque raccomandabile per edifici che si trovino in condizioni simili al caso B, in quanto anche un sisma di bassa intensità comporterebbe fessurazioni evidenti e degrado nelle pareti fuori piano se gli orizzontamenti non fossero irrigiditi. Tale intervento di irrigidimento può essere migliorativo solo se si riescono a coniugare contemporaneamente due caratteristiche essenziali relative al solaio:

- 1. un incremento di massa modesto legato al rinforzo, il quale dovrebbe essere anche possibilmente reversibile;
- 2. un aumento di rigidezza non eccessivo, tenendo conto anche della muratura che costituisce l'edificio.

Questi requisiti sono rispettati dal solaio consolidato con tavolato a 45° soprattutto nel caso B, grazie alla maggiore distanza tra le pareti parallele al sisma. Invece, la soletta in calcestruzzo costituisce a tutti gli effetti non solo un vero e proprio piano rigido, ma è responsabile anche di un notevole incremento di massa: certamente ciò è un vantaggio per la resistenza dei maschi murari su cui il solaio poggia, ma questi ultimi sono subito messi in gioco. Infatti, ad un orizzontamento così rigido non può essere affidata alcuna dissipazione, la quale si trasferisce, perciò, proprio alle pareti, causandone anticipatamente il collasso. Questo aspetto è evidenziato dalla differenza in termini di massa tra caso A e caso B: l'incremento di 1.6 volte del peso del solaio, legato alla sua maggiore estensione, comporta una diminuzione di PGA di circa il 40%.

Per quanto riguarda, invece, il confronto tra gli edifici C e D (fig. 4.30), si osserva come la presenza di pareti fuori piano ricche di aperture e di rigidezza trascurabile limiti di molto i possibili effetti benefici del solaio con tavolato semplice, che per tutte le configurazioni raggiunge rapidamente lo spostamento limite fuori piano. In entrambi i casi, dunque, il rinforzo è raccomandabile, non solo quando si hanno pareti fuori piano più lunghe, come avveniva in precedenza. Si conferma, inoltre, quanto già affermato nell'analisi dei singoli casi C e D: il solaio con tavolato semplice appare in controtendenza rispetto agli altri, diminuendo la PGA di collasso all'aumentare dello spessore delle pareti. Queste ultime, infatti, data l'elevata capacità di spostamento del solaio, non sono neppure coinvolte nel processo dissipativo, rimanendo sempre in campo elastico (paragrafo 4.4.3): è perciò solo l'incremento di massa, collegato all'aumento dello spessore delle pareti, ad influire sulla PGA raggiunta, in quanto un maggiore peso della muratura comporta inevitabilmente il raggiungimento dello spostamento limite fuori piano in anticipo rispetto ad un edificio con pareti più leggere. Nel caso D380NS, il collasso fuori piano avviene addirittura ad una PGA inferiore a quella raggiunta nella configurazione D380RC: è questa l'unica situazione in cui la soletta in calcestruzzo non si dimostra l'intervento di irrigidimento peggiore, rimanendo comunque non ottimale.

Figura 4.30: Confronto tra le PGA di collasso raggiunte dai diversi solai nelle configurazioni analizzate per gli edifici $C \in D$. Per ciascun tipo di solaio è riportata la rigidezza nel piano nei due casi $C \in D$.

Pertanto, nei casi C e D, vista la rigidezza trascurabile delle pareti fuori piano, è evidente come l'eccessiva flessibilità del solaio sia svantaggiosa, e l'irrigidimento sia necessario, sempre utilizzando il consolidamento mediante tavolato a 45°. Tuttavia, è interessante osservare come nel caso C250TB anche quest'ultimo solaio sia comunque troppo rigido, e una PGA maggiore venga invece toccata dall'orizzontamento più flessibile, in virtù della minor massa coinvolta e della maggiore dissipazione, nonostante il collasso fuori piano.

Per tutte le altre configurazioni, il solaio consolidato con tavolato a 45° rappresenta l'intervento ottimale, soprattutto con murature massicce, in cui si riesce nuovamente ad unire sia la dissipazione legata allo snervamento del solaio, sia quella connessa al meccanismo di rottura per fessurazione diagonale: accade, quindi, ciò che si era riscontrato per il solaio con tavolato semplice nei casi A380NS e B380NS. Un simile comportamento garantisce lo sfruttamento globale di tutte le riserve di resistenza dell'edificio, accrescendone notevolmente la capacità sismica: questo obiettivo deve essere perseguito, nel recupero di edifici esistenti o storici, affinché si raggiunga l'ottimale rapporto tra la rigidezza delle murature e la rigidezza dei solai, garantendo così un reale miglioramento dal punto di vista della resistenza al sisma.

Concludendo con un breve confronto generale tra i quattro casi A, B, C e D, si può notare come la PGA raggiunta per le configurazioni con la soletta in calcestruzzo sia simile, anche se leggermente superiore per i casi B e D, rispetto agli stessi edifici con pareti fuori piano piene (A e C): ciò può essere imputato all'influenza di queste ultime, che possono condizionare la dinamica dell'intero edificio. Per tale motivo, oltre alle analisi già effettuate, si è cercata una conferma di questo fatto modificando la distribuzione delle masse delle pareti fuori piano: anziché concentrare il peso del muro sul solaio, questo è stato suddiviso in più masse pertinenti a ciascun nodo del graticcio di elementi beam. Questa più accurata rappresentazione del comportamento dinamico dei muri fuori piano ha portato a raggiungere PGA inferiori del 5% circa: la strategia di modellazione utilizzata permette, dunque, di cogliere abbastanza accuratamente l'influenza di tali pareti, che va tenuta in conto se queste sono piene. Osservando anche le piante degli edifici, si può subito comprendere che con forme così compatte è inevitabile che una parete correttamente ammorsata possa influire sulla risposta globale degli edifici stessi, e questo si riscontra anche nei diversi drift cui i maschi murari sono soggetti:

- circa 12 mm (0.4%), con deformata puramente tagliante su tutta l'altezza dei maschi stessi, in assenza delle pareti fuori piano;
- circa 7-8 mm (0.3%) e con deformata tagliante solo al di sotto della fascia di piano, in presenza di pareti fuori piano piene, caratterizzate invece da una deformata flessionale che influisce sul comportamento complessivo dell'edificio.

Quanto affermato per la soletta in calcestruzzo può essere esteso anche per il solaio consolidato con tavolato a 45°, anche se in questo caso le pareti fuori piano influiscono non solo nella dinamica globale dell'edificio, ma limitano parzialmente lo spostamento dell'orizzontamento: se, per un solaio flessibile, questo è certamente un vantaggio notevole, può non esserlo per un solaio più rigido. Infatti, un minor spostamento per il solaio consolidato a 45° comporta in alcune situazioni il mancato snervamento di quest'ultimo, che quindi non ha capacità dissipative e trasferisce completamente le forze sismiche ai maschi murari, peggiorando la risposta dell'edificio. Invece, per il solaio con tavolato semplice la presenza di una parete piena è senz'altro benefica: confrontando i casi B380NS e D380NS, la differenza in termini di PGA di collasso è evidente. Nel primo caso, la parete piena può ridurre lo spostamento del solaio, anche se ci si trova vicini al limite per il collasso fuori piano, ma consente contemporaneamente una notevole dissipazione dell'energia fornita dal sisma: unitamente alla fessurazione diagonale, ciò permette di sfruttare tutte le riserve di resistenza e di pervenire ad un comportamento ottimale da parte dell'edificio. Nel secondo caso, invece, l'eccessiva flessibilità causa il collasso fuori piano dell'edificio senza neppure aver portato i maschi murari oltre il campo elastico: viene meno, perciò, il contributo dissipativo dato dal meccanismo di rottura per fessurazione diagonale.

4.4 Ulteriori valutazioni effettuate

4.4.1 Periodi degli edifici esaminati

In questo paragrafo sono riportati tutti i periodi degli edifici analizzati, restituiti dal software per le varie configurazioni. La verifica di questi valori è estremamente significativa, specialmente per due aspetti fondamentali.

- 1. Come riportato all'inizio del presente capitolo, lo spettro di risposta utilizzato nelle analisi è caratterizzato da un *plateau* racchiuso nell'intervallo di periodo 0.15-0.40 s, perciò è importante valutare se gli edifici siano effettivamente comparabili tra loro, verificando cioè che i periodi rientrino tutti all'interno di tale intervallo, o al più nelle immediate vicinanze.
- 2. È necessario controllare che il graticcio di elementi *beam* impiegato per modellare le pareti piene fuori piano non dia luogo ad un incremento eccessivo della rigidezza del sistema. D'altro canto, la condizione di vincolo scelta (cerniera cilindrica) lascia la parete libera di ruotare, al contrario di un incastro, che invece avrebbe irrigidito troppo il graticcio.

Edifici	o A	Edifici	o B	Edifici	o C	Edifici	o D
A250NS	0.18	B250NS	0.25	C250NS	0.18	D250NS	0.27
A250TB	0.15	B250TB	0.19	C250TB	0.14	D250TB	0.18
A250RC	0.15	B250RC	0.18	C250RC	0.15	D250RC	0.18
A320NS	0.17	B320NS	0.23	C320NS	0.18	D320NS	0.28
A320TB	0.14	B320TB	0.17	C320TB	0.14	D320TB	0.17
A320RC	0.14	B320RC	0.17	C320RC	0.14	D320RC	0.17
A380NS	0.16	B380NS	0.22	C380NS	0.19	D380NS	0.29
A380TB	0.13	B380TB	0.17	C380TB	0.13	D380TB	0.17
A380RC	0.13	B380RC	0.16	C380RC	0.13	D380RC	0.17

Tabella 4.6: Periodi (in secondi) delle diverse configurazioni analizzate.

Come si può osservare da quanto riportato in tabella 4.6, tutti i periodi sono compresi nell'intervallo di riferimento, o comunque non se ne discostano significativamente (lo scarto massimo è pari a 0.02 s). Inoltre, come prevedibile, si hanno periodi maggiori per gli edifici con il solaio originario, più flessibile, e progressivamente più ridotti al crescere dell'irrigidimento. Allo stesso modo, i periodi maggiori per uno stesso tipo di solaio si riscontrano nel caso in cui la distanza tra le pareti parallele al sisma misuri 8.0 m, ossia quando la rigidezza dell'orizzontamento è minore.

Alcune piccole differenze sono presenti tra il solaio consolidato con tavolato a 45° e quello irrigidito con la soletta in calcestruzzo, poiché quest'ultimo è certamente più rigido, e quindi ci si aspetterebbe un periodo minore, ma ad esso è collegato anche un considerevole aumento di massa, tale da controbilanciarne l'incremento di rigidezza: infatti, i periodi risultano sempre molto simili.

4.4.2 Rischio di collasso delle pareti fuori piano

Un altro aspetto essenziale da considerare nella scelta dell'intervento ottimale consiste nella valutazione del rischio di possibili collassi fuori piano, anche a livello locale. Sono perciò stati rappresentati in un singolo grafico di confronto (fig. 4.31) i massimi spostamenti fuori piano registrati alla PGA di collasso, il cui valore è riportato per ciascuna configurazione esaminata. Laddove il collasso è stato causato proprio dalla rottura delle pareti fuori piano, le configurazioni sono state disposte in ordine decrescente di PGA.

Dal grafico riportato, si evince subito come i problemi maggiori si abbiano, a prescindere dalla configurazione, con i solai non rinforzati, com'era da attendersi; viceversa, il minor rischio di rottura fuori piano è garantito dagli orizzontamenti consolidati con soletta in calcestruzzo armato, cioè i più rigidi.

Si è scelto di riportare i risultati con un'opportuna gradazione di colori, non solo per evidenziare i casi limite (rischio minimo e massimo), ma anche per fornire un riferimento più chiaro per tutti i casi intermedi. Come già anticipato, infatti, negli edifici in cui il solaio con tavolato semplice dà luogo a spostamenti notevoli fuori piano, pur non giungendo al collasso, potrebbe essere necessario valutare non soltanto quest'ultima condizione per scegliere il miglior intervento da effettuare, ma verificare anche se esso sia adeguato in condizioni di esercizio: si deve evitare, infatti, che anche a fronte di un sisma di intensità medio-bassa, le pareti subiscano fessurazioni, lesioni, e degrado tali da dover intervenire su di esse.

Ad esempio, anche il solaio consolidato con tavolato a 45° manifesta per alcune configurazioni una buona capacità di spostamento, che però è ben più limitata rispetto al solaio originario, perciò se in questi casi la capacità sismica dell'edificio dopo l'intervento di irrigidimento è simile (o maggiore, evidentemente), questo tipo di rinforzo è raccomandabile e ottimale anche in condizioni di esercizio.

Un'ultima considerazione riguarda le configurazioni caratterizzate dal rischio minimo di rottura fuori piano: come si può notare, si tratta degli edifici in cui è presente la soletta in calcestruzzo armato. Infatti, l'elevata rigidezza degli orizzontamenti implica spostamenti limitati, ma sono proprio questi solai a portare al collasso le pareti nel piano alle PGA più basse, a conferma del fatto che l'eccessivo irrigidimento, pur minimizzando il rischio di rottura fuori piano, è comunque dannoso.

Figura 4.31: Spostamenti massimi fuori piano per le diverse configurazioni analizzate, ordinate dal rischio di collasso minimo (colore verde) a quello massimo (colore rosso).

4.4.3 Comportamento delle pareti nel piano

In questa sezione viene discusso il comportamento manifestato dalle pareti sollecitate nel proprio piano dall'azione sismica, in funzione della tipologia dei solai. Come osservato, si sono verificate due modalità di rottura distinte:

- collasso nel piano per fessurazione diagonale;
- collasso per raggiungimento dello spostamento limite fuori piano.

Vale la pena, tuttavia, sottolineare qualche ulteriore aspetto emerso dalle analisi effettuate, a corredo dei risultati finora discussi.

In primo luogo, per quanto concerne il meccanismo di rottura per fessurazione diagonale, si osserva come questo costituisca la modalità di collasso prevalente: gli andamenti del taglio alla base, in funzione dello spostamento in sommità delle pareti nel piano (W1), evidenziano un comportamento simile tra le varie tipologie di solaio, quando anche per l'orizzontamento più flessibile si giunge a questo tipo di rottura (figg. 4.32a, 4.32b, 4.32c). Il ciclo isteretico manifesta, infatti, un degrado di rigidezza e di resistenza tipico di tale meccanismo di collasso, e questo si verifica per i tre diversi spessori, come si può notare dai grafici riportati.

Quando però, come avviene nei casi C e D, il solaio con tavolato semplice è in grado di oscillare liberamente, le pareti nel piano non sono particolarmente sollecitate (fig. 4.32d), e rimangono di fatto in campo elastico. Ciò conferma quanto in precedenza affermato relativamente all'andamento in controtendenza di questa tipologia di orizzontamento, la cui PGA di collasso diminuisce leggermente all'aumentare dello spessore per i casi C e D: non essendoci alcun coinvolgimento delle pareti, lo spostamento fuori piano dipende unicamente dalla massa sismica, all'aumentare della quale si raggiunge sempre più prematuramente il valore limite. Dal confronto tra le figure 4.32c e 4.32d, che si riferiscono ad edifici identici per dimensioni (A e C), ma in cui sono presenti o meno le pareti piene fuori piano, si può subito osservare come la presenza di queste ultime comporti un minore spostamento del solaio e un coinvolgimento molto più marcato dei maschi murari, che appaiono anch'essi impegnati nella dissipazione dell'energia fornita dal sisma. Ciò si riflette anche sulla diversa PGA raggiunta, pari a 0.71 g nel caso A e a 0.59 g nel caso C.

Perciò, se le pareti non sono sollecitate a tal punto da giungere in campo plastico, non è certamente presente il loro contributo dissipativo, su cui possono invece contare gli edifici A e B, aventi stesse dimensioni degli edifici C e D, ma in cui sono presenti anche le pareti piene fuori piano: infatti, per i casi A e B le PGA raggiunte sono rilevanti, in quanto tutto l'edificio è coinvolto nel meccanismo dissipativo (specie per i casi A250NS e B380NS), con fessurazione diagonale delle pareti nel piano e spostamenti tali da portare a snervamento il solaio. Come già rimarcato, un intervento ottimale dovrebbe portare allo sfruttamento di tutte le riserve di resistenza dell'edificio, e questi casi costituiscono un semplice esempio di tale concetto.

4.4.4 Effetti dissipativi dei solai

Un'ultimo aspetto da considerare riguarda la possibilità di affidare agli orizzontamenti una parte della dissipazione dell'energia derivante dalla sollecitazione sismica.

Figura 4.32: Andamenti del taglio alla base in funzione dello spostamento in sommità (W1) per una singola parete nel piano; per ciascun grafico è indicata la configurazione di riferimento.

Tralasciando i solai consolidati con soletta in calcestruzzo armato, per i quali tale dissipazione non può avvenire, data l'elevatissima rigidezza, è interessante osservare come, negli edifici che hanno registrato le PGA di collasso più elevate, lo spostamento relativo tra la mezzeria del solaio (MF) e le pareti nel piano (W1 e W2) sia stato tale da portare allo snervamento gli orizzontamenti: ciò è stato riscontrato per tutti i casi analizzati in cui era presente il solaio con tavolato semplice, essendo quest'ultimo in grado di maturare notevoli spostamenti, e anche per alcune configurazioni in cui era coinvolto il solaio consolidato con tavolato a 45°. Proprio quando tale tipologia di irrigidimento ha potuto garantire una certa dissipazione, si sono ottenute le PGA maggiori (ad esempio, nel caso C380TB).

In effetti, sia il solaio con tavolato semplice, sia quello irrigidito con tavolato a 45°, sono caratterizzati dalla presenza di connessioni diffuse, come viti o chiodi, le quali certamente possono contribuire alla dissipazione dell'energia legata al sisma, al contrario di sistemi più rigidi e meno duttili, come la soletta in calcestruzzo o l'incollaggio di pannelli in compensato sull'orizzontamento esistente. Va, infatti, sottolineato come lo stesso *Eurocodice 8* [19], nella sezione dedicata alle costruzioni in legno, distingua tra diaframmi chiodati e diaframmi incollati, assegnando agli edifici in cui siano presenti i primi un fattore di struttura più elevato. Ovviamente, tale indicazione è valida per la progettazione di nuovi edifici in legno, ma a partire da questa appare sensato attribuire una certa capacità dissipativa anche ai solai lignei di edifici esistenti o storici, purché dotati di connessioni adeguate e diffuse.

Nelle figure che seguono, sono riportati i cicli isteretici sperimentali del solaio con tavolato semplice e di quello consolidato con tavolato a 45°: è stato indicato nel ramo positivo il massimo spostamento relativo raggiunto per alcune configurazioni; i casi in cui si è raggiunta la PGA più elevata si sono verificati proprio quando si è superata la soglia di snervamento del solaio. Dal momento che per mostrare tale risultato si sono utilizzati i cicli sperimentali effettuati su solai aventi dimensioni 4.0×5.0 m, gli spostamenti relativi riportati per i casi B e D sono stati opportunamente ridotti del fattore di scala impiegato per gli spostamenti stessi, pari a 1.6, come precedentemente riportato. L'aspetto più interessante riguarda la possibilità di affidare la dissipazione energetica anche ad un solaio rinforzato, in quanto in alcune situazioni (presenza di murature massicce e/o di pareti fuori piano molto ampie o di rigidezza trascurabile) si raggiungono PGA talvolta di molto superiori rispetto a tutte le altre tipologie di orizzontamento: l'unica attenzione da porre è legata alla verifica della rigidezza e della qualità della muratura, in quanto se il solaio consolidato con tavolato a 45° risulta comunque troppo rigido rispetto alle pareti (caso A250TB in figura), non si ha dissipazione e l'orizzontamento si comporta come un piano rigido vero e proprio. Laddove però l'intervento di rinforzo sia giudicato raccomandabile ed opportuno, i miglioramenti sono evidenti, come si può constatare dai risultati ottenuti.

In ogni caso, tutte le storie di spostamento precedentemente riportate mostrano come il solaio con tavolato semplice sia così flessibile da oscillare in modo quasi indipendente dalle pareti, al contrario della soletta in calcestruzzo che segue gli spostamenti dei muri nel piano, data la sua elevata rigidezza. Un comportamento intermedio si ha per il solaio consolidato con tavolato a 45°, che riesce però a garantire i migliori risultati quando la sua flessibilità è sufficiente a maturare spostamenti relativi consistenti rispetto alle pareti, in analogia con il solaio originario.

Figura 4.33: Ingrandimento del ciclo isteretico del solaio con tavolato semplice: per tutte le configurazioni riportate il solaio è snervato.

Displacement [mm]

Figura 4.34: Ingrandimento del ciclo isteretico del solaio consolidato con tavolato a 45°: le configurazioni riportate che hanno raggiunto la massima PGA sono quelle in cui si è avuto un marcato snervamento del solaio, mentre nel caso A250NS il campo elastico viene oltrepassato solo di poco e non si ha dissipazione.

Capitolo 5 Conclusioni e sviluppi futuri

In questo lavoro di Tesi sono state effettuate analisi parametriche dinamiche non lineari, allo scopo di confrontare il comportamento di differenti tipologie di solai in legno in varie condizioni.

Il modello numerico è stato implementato e calibrato basandosi su alcune prove sperimentali effettuate sulla muratura e sui solai lignei, utilizzando macro-elementi opportuni per rappresentarne il comportamento non lineare.

Complessivamente, sono stati analizzati trentasei diversi casi studio, al variare dello spessore della muratura (250, 320 o 380 mm), delle dimensioni in pianta dell'edificio (4.5×5.0 m e 4.5×8.0 m) e della tipologia di solaio (tavolato semplice, irrigidimento mediante tavolato a 45° , irrigidimento tramite soletta in calcestruzzo armato). Quanto ottenuto dalle analisi può così riassumersi, limitatamente alle caratteristiche geometriche e meccaniche degli edifici studiati.

- L'intervento di irrigidimento del solaio in legno esistente *non è necessario* se si è in presenza di pareti fuori piano con poche aperture e di lunghezza limitata; in questi casi anche uno spessore limitato della muratura garantisce buone prestazioni in termini di capacità sismica.
- L'irrigidimento del solaio in legno esistente *è raccomandabile ma non deve comunque essere eccessivo* se le pareti fuori piano presentano molte aperture o hanno lunghezza rilevante. Tuttavia, la muratura deve essere dotata di resistenza e rigidezza sufficientemente elevate, in modo che il solaio possa giungere in campo plastico e non essere troppo rigido in rapporto alla muratura stessa, causando il collasso anticipato dei maschi murari.
- Un solaio flessibile è in grado di dissipare energia sgravando le pareti dalle sollecitazioni sismiche. Tuttavia, se tale limitata rigidezza dovesse dar luogo a spostamenti molto elevati anche per sismi di bassa intensità, in questo caso un irrigidimento *è preferibile*, in quanto in condizioni di esercizio vanno evitati fenomeni di fessurazione e di degrado delle murature degli edifici.

Le analisi effettuate sono relative ad un edificio monopiano molto semplice, ma è stato possibile ricavare comunque alcune utili indicazioni: sviluppi futuri su questo tema possono risultare importanti, vista l'attualità dell'argomento, poiché molti edifici storici ed esistenti necessitano di interventi di adeguamento sismico e di recupero. In particolare, i seguenti aspetti possono essere migliorati, approfonditi o sviluppati in futuro:

- esecuzione di ulteriori analisi sugli stessi edifici, confrontando i vari casi studio sulla base della media di sette accelerogrammi spettrocompatibili, come previsto anche dalla Normativa italiana;
- modellazione più raffinata delle pareti fuori piano, introducendo anche per queste ultime elementi non lineari da calibrare opportunamente; in questo modo è possibile tener conto ancor più realisticamente dell'accumulo di danneggiamento e della dissipazione energetica fornita dalle pareti stesse;
- valutazione di altre eventuali tipologie di rinforzo ed irrigidimento dei solai esistenti e relativa sperimentazione su di esse; potrebbe essere di grande interesse realizzare una tecnica di recupero reversibile e che garantisca una rigidezza intermedia tra un solaio flessibile esistente e uno consolidato a 45°, in modo da coniugare i vantaggi offerti dalla capacità di spostamento e di dissipazione energetica alla diminuzione del rischio di collasso delle pareti fuori piano;
- studio di un maggior numero di casi possibili e realistici, includendo anche edifici a più piani, valutando il comportamento dei diversi solai in presenza di irregolarità in pianta e in altezza, perseguendo come obiettivo finale la ricerca di un rapporto ottimale tra la rigidezza del solaio e quella delle pareti;
- una volta definito tale rapporto ottimale tra rigidezze, associare a ciascun tipo di solaio un valore caratteristico del rapporto di smorzamento, con cui tener conto della dissipazione degli orizzontamenti anche in analisi di tipo lineare, fornendo così uno strumento realmente utile ai professionisti per valutare l'intervento migliore da effettuare;
- definizione di una procedura semplificata che dia modo al professionista, in funzione di una serie di parametri relativi all'edificio esistente in esame, di verificare se il rinforzo sia necessario e, nel caso in cui lo sia, di scegliere la tecnica di irrigidimento che consenta realmente di incrementare la capacità sismica dell'edificio, non peggiorandone il comportamento con solai troppo rigidi.

L'obiettivo finale da perseguire consiste nella formulazione di procedure analitiche che contribuiscano all'adeguamento sismico degli edifici esistenti, suggerendo interventi che siano davvero migliorativi del loro comportamento in caso di terremoti intensi.

Appendice A

Listati impiegati per la calibrazione

A.1 Muratura

A.1.1 Maschio *MI2* (1 macro-elemento)

Description: Calibrazione del macro-elemento per il pannello MI2 *************** wipe # costruzione del modello model BasicBuilder -ndm 2 -ndf 2 file mkdir Risultati; # cartella file output # richiamo le subroutine esterne source push_PeakPts.tcl source procRCycDAns.tcl # - -# DEFINIZIONE DELLE VARIABILI -----# parametri geometrici della muratura 380.0 set t #spessore del pannello in mm set l 1500.0; #larghezza del pannello in mm 2000.0; #altezza del pannello in mm set h 1; #vincolo in sommità (1=libero, 2=incastro) 380.0; #spessore del sottopannello in mm 1500.0; #larghezza del sottopannello in mm 1; 380.0; set v set ts set ls set hs 2000.0; #altezza del sottopannello in mm # proprietà meccaniche della muratura (da prove sperimentali) -7.92; set fu #resistenza ultima a compressione della muratura in MPa set ft 0.1; #resistenza ultima a trazione della muratura in MPa set Em 2910.0; #modulo elastico della muratura in MPa 0.1; #resistenza media a taglio a compressione nulla in MPa 875.0; #modulo a taglio della muratura in MPa set tO set G 0.2; #coesione della muratura in MPa set c #angolo d'attrito della muratura in radianti set f 0.5; set gu 0.00535; #scorrimento angolare a rottura

24.0; #peso specifico della muratura in kN/m^3 set w set q 0.4: #compressione esterna cui è soggetto il pannello in MPa #sforzo assiale sul pannello in kN [expr \$q*\$t*\$1/1000.0 + \$w*\$t/1000.0*\$1/1000.0*\$h/1000.0] set N # MOLLE VERTICALI # parametri iniziali #numero di molle verticali nel pannello set nv 2: set nv 2; #numero di molle verticali nel pannello
set Am [expr \$t*\$1/\$nv]; #area afferente alla singola molla
set ecy [expr \$fu/\$Em]; #deformazione di compressione a snervamento
set ety [expr \$ft/\$Em]; #deformazione di trazione a snervamento
set etu [expr 1.5*\$ety]; #deformazione di trazione a rottura # legame costitutivo mollavert set 1 Fpp [expr \$ft*\$Am] set [expr \$ety/\$v*\$hs] set Upy Fppu [expr \$ft*\$Am + 100.0] Upu [expr \$etu/\$v*\$hs] Fultp 0.1 set set set Uultp [expr \$etu/\$v*\$hs + 0.1] set Fpc [expr \$fu*\$Am] [expr \$ecy/\$v*\$hs] set Ucy set Fpcu [expr \$fu*\$Am - 100.0] set [expr \$ecu/\$v*\$hs] set Ucu Fultc -0.1 set Uultc [expr \$ecu/\$v*\$hs - 0.1] set pinchX 0.0 pinchY 0.0 set set damage1 0.0 set damage2 0.0 set uniaxialMaterial Hysteretic \$mollavert \$Fpp \$Upy \$Fppu \$Upu \$Fultp \$Uultp \$Fpc \$Ucy \$Fpcu \$Ucu \$Fultc \$Uultc \$pinchX \$pinchY \$damage1 \$damage2 # MOLLE DIAGONALI # parametri iniziali set nd #numero molle diagonali 2; if {\$h<\$1} { #scelta del parametro b (Turnsek-Cacovic) set b 1.0 } else { if {\$h>1.5*\$1} { set b 1.5 } else {set b [expr \$h/\$1]} } #taglio ultimo a fessurazione secondo Turnsek e Cacovic in kN set vuf [expr \$t0*\$t*\$1/1000.0*sqrt(1 + \$N/(\$b*\$t0*\$t*\$1/1000.0))] #spostamento sommitale del sottopannello in mm [expr \$vuf*1000.0*\$hs/(\$G*\$ls*\$ts)] set dys #angolo della diagonale del sottopannello rispetto all'orizzontale set theta [expr atan(\$hs/\$ls)] #lunghezza della diagonale del sottopannello in mm set ldiag [expr sqrt(\$ls*\$ls + \$hs*\$hs)] #spostamento a rottura del sottopannello in mm set d2s [expr \$gu*\$hs];

```
# legame costitutivo
      molladiag
                  2
set
              [expr $vuf*1000.0/($nd*cos($theta))]
set
      Fpp
              [expr $dys*cos($theta)/$ldiag]
set
      Upy
              [expr $Fpp*0.7]
set
      Fppu
              [expr $d2s*cos($theta)/$ldiag]
set
      Upu
      Fultp
              1000.0
set
             [expr ($d2s*cos($theta) + 0.1*$d2s*cos($theta))/$ldiag]
set
      Uultp
              [expr -($vuf*1000.0)/($nd*cos($theta))]
set
      Fpc
              [expr -($dys*cos($theta))/$ldiag]
      Ucy
set
set
      Fpcu
              [expr $Fpc*0.7]
             [expr -($d2s*cos($theta))/$ldiag]
set
      Ucu
      Fultc
             -1000.0
set
      Uultc
             [expr -($d2s*cos($theta) + 0.1*$d2s*cos($theta))/$ldiag]
set
      pinchX 0.0
set
set
      pinchY 0.0
set
      damage1 0.0
      damage2 0.0
set
set
      beta
             0.8
uniaxialMaterial Hysteretic $molladiag $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2 $beta
# MOLLE ORIZZONTALI
# parametri iniziali
                              #numero molle orizzontali
set no
         2:
set dmax [expr $gu*$h];
                              #spostamento ultimo per scorrimento in mm
#taglio ultimo per scorrimento secondo Mohr e Coulomb in kN
        [expr ($c*$l*$t/1000.0 + $N*$f)/$no];
set vus
#lunghezza molla orizzontale in mm
set loriz [expr sqrt($ls*$ls + 1.0)];
# legame costitutivo
set
      mollaoriz
                 3
             [expr $vus*1000.0]
set
      Fpp
              [expr $dmax*0.1/$loriz]
      Upy
set
set
      Fppu
              [expr $vus*1000.0 + 1.0]
              [expr $dmax/$loriz]
set
      Upu
      Fultp
             0.1
set
      Uultp
set
              [expr ($dmax+0.5)/$loriz]
              [expr -($vus*1000.0)]
set
      Fpc
             [expr -($dmax*0.1)/$loriz]
set
      Ucy
set
      Fpcu
              [expr -($vus*1000.0 + 1.0)]
             [expr -($dmax/$loriz)]
      Ucu
set
set
      Fultc
             -0.1
      Uultc
             [expr -($dmax+0.5)/$loriz]
set
      pinchX 0.0
set
      pinchY 0.0
set
set
      damage1 0.0
      damage2 0.0
set
uniaxialMaterial Hysteretic $mollaoriz $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2
# TRUSS RIGIDI DEI MACRO-ELEMENTI
set truss 0
set E 6.0e12
uniaxialMaterial Elastic $truss $E
```

DEFINIZIONE DELLE COORDINATE DEI NODI #----node 1 0.0 0.0 0.0 0.0 0.0 1500.0 1500.0 node 2 1.0 2001.0 node 3 0.0 node 4 node 5 1500.0 2001.0 node 6 # DEFINIZIONE DEGLI ELEMENTI #TRUSS

 element truss 1
 2
 5
 1.0 \$truss

 element truss 2
 3
 2
 1.0 \$truss

 element truss 3
 3
 6
 1.0 \$truss

 element truss 4 6 5 1.0 \$truss #molle DIAGONALI 1.0 \$molladiag element truss 526element truss 635 1.0 \$molladiag #molle VERTICALI element truss 7 1 2 1.0 \$mollavert element truss 8 5 4 1.0 \$mollavert #molle ORIZZONTALI element truss 9 1 5 1.0 \$mollaoriz 1 - 02 - 4 element truss 10 1.0 \$mollaoriz # DEFINIZIONE DEI NODI VINCOLATI fix 1 1 1 fix 4 1 1 # DEFINIZIONE DEI CARICHI #----pattern Plain 1 Linear { load 3 0.0 [expr -\$N*1000.0/2.0]; load 6 0.0 [expr -\$N*1000.0/2.0]; } # - -# OUTPUT DEI DATI recorder Node -file Risultati/VALID_disp.txt -node 3 -dof 1 disp; recorder Node -file Risultati/VALID_react.txt -node 1 4 -dof 1 reaction; #-----# ANALISI #Gravity-analysis parameters -- load-controlled static analysis set Tol 1.0e-6 ; set Niter 1000 ; # numero massimo di iterazioni constraints Transformation; # impostazioni condiz. al contorno # minimizzazione larghezza di banda numberer RCM; system BandGeneral; # modalità risoluzione del sistema test NormDispIncr \$Tol \$Niter 0 ; # controllo sulla convergenza test EnergyIncr \$Tol \$Niter 0 ; algorithm NewtonLineSearch 0.5 ; # aggiorno tangente ad ogni iteraz. # apply gravity in 30 steps set NstepGravity 30;

```
set DGravity [expr 1./$NstepGravity]; # primo incremento di carico
integrator LoadControl $DGravity;
                                   # determine the next time step
                                   # define type of analysis
analysis Static:
analyze $NstepGravity;
                                   # apply gravity
#azzero il tempo
loadConst -time 0.0;
#APPLICAZIONE DEL CARICO CICLICO
#definizione di nodo di applicazione, valore e direzione della forza
set node_force 3;
                         #indice del nodo su cui è applicata la forza
set value_FX 1;
                         #valore della forza applicata al nodo
set dof_F 1;
                         #direzione della forza (X=1, Y=2)
push_PeakPts $node_force $value_FX $dof_F
puts "Analisi completata"
# SUBROUTINE UTILIZZATE
****************
proc push_PeakPts {node_force value_FX dof_F} {
source procRCycDAns.tcl
# define LATERAL load
# Lateral load pattern
pattern Plain 2 Linear {
       load $node_force $value_FX 0; # node#, FX FY lateral load at top node
3
# build the components for the analysis object
system ProfileSPD
constraints Plain
test NormDispIncr 1.0e-5 500
algorithm KrylovNewton
numberer RCM
#analysis type used in the procedure is Static
#spostamento del martinetto
set peakpts [list 3.0 4.16 4.16 4.16 8.17 8.17 8.17 12.8 12.8 12.8 16.0 16.0]
set increments 1000
#procedure for feeding in Reverse Cyclic loading to model by Disp. control
procRCycDAns $increments $node_force $dof_F $peakpts
puts "analysis completed"
}
#------
# procRCycDAns.tcl
# procedure for reverse cyclic disp. control analysis given the peak pts.
# analysis type used : STATIC
proc procRCycDAns { incre nodeTag dofTag peakpts} {
set x [lindex $peakpts 0]
set fir [expr $x/$incre]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
# create the analysis object
analysis Static
# perform the analysis
analyze $incre
integrator DisplacementControl $nodeTag $dofTag 0.0 1 [expr -$fir] [expr -$fir]
analyze [expr 2*$incre]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
analyze $incre
for {set j 1} {$j < [llength $peakpts]} {incr j 1} {</pre>
set tx [lindex $peakpts $j]
set tinc [expr $tx/$fir]
```

```
set rt [expr int($tinc)]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
analyze $rt
integrator DisplacementControl $nodeTag $dofTag 0.0 1 [expr -$fir] [expr -$fir]
analyze [expr 2*$rt]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
analyze $rt
}
#end procRCycDAns.tcl
}
```

A.1.2 Maschio MI3 (1 macro-elemento)

```
# Description: Calibrazione del macro-elemento per il pannello MI3
***********************
wipe
# costruzione del modello
model BasicBuilder -ndm 2 -ndf 2
file mkdir Risultati;  # cartella file output
# richiamo le subroutine esterne
source push_PeakPts.tcl
source procRCycDAns.tcl
#_____
                        _____
# DEFINIZIONE DELLE VARIABILI
# parametri geometrici della muratura
set t
      380.0
              #spessore del pannello in mm
      1500.0; #larghezza del pannello in mm
set l
set h
      3000.0; #altezza del pannello in mm
set v
      2;
              #vincolo in sommità (1=libero, 2=incastro)
             #spessore del sottopannello in mm
     380.0;
set ts
set ls
     1500.0; #larghezza del sottopannello in mm
set hs
      1000.0;
              #altezza del sottopannello in mm
# proprietà meccaniche della muratura (da prove sperimentali)
set fu
      -7.92:
              #resistenza ultima a compressione della muratura in MPa
set ft 0.1;
              #resistenza ultima a trazione della muratura in MPa
set Em
      2910.0;
              #modulo elastico della muratura in MPa
set tO
      0.1;
              #resistenza media a taglio a compressione nulla in MPa
              #modulo a taglio della muratura in MPa
set G
      875.0;
      0.2;
set c
              #coesione della muratura in MPa
set f
      0.5:
              #angolo d'attrito della muratura in radianti
     0.00535; #scorrimento angolare a rottura
set gu
              #peso specifico della muratura in kN/m^3
set w
      24.0;
set q
      1.2;
              #compressione esterna cui è soggetto il pannello in MPa
#sforzo assiale sul pannello in kN
      [expr $q*$t*$1/1000.0 + $w*$t/1000.0*$1/1000.0*$h/1000.0]
set N
```

```
# MOLLE VERTICALI
```

parametri iniziali

```
#numero di molle verticali nel pannello
set nv
        2;
        [expr $t*$1/$nv];
                            #area afferente alla singola molla
set Am
set ecy [expr $fu/$Em];
                            #deformazione di compressione a snervamento
set ecu [expr 3.0*$ecy];
                            #deformazione di compressione a rottura
        [expr $ft/$Em];
                            #deformazione di trazione a snervamento
set ety
set etu [expr 1.5*$ety];
                            #deformazione di trazione a rottura
# legame costitutivo
      mollavert
set
                 1
           [expr $ft*$Am]
set
      Fpp
              [expr $ety/$v*$hs]
set
      VqU
             [expr $ft*$Am + 100.0]
set
      Fppu
set
      Upu
              [expr $etu/$v*$hs]
      Fultp
             0.1
set
set
      Uultp
             [expr $etu/$v*$hs + 0.1]
              [expr $fu*$Am]
set
      Fpc
             [expr $ecy/$v*$hs]
set
      Ucy
             [expr $fu*$Am - 100.0]
      Fpcu
set
      Ucu
              [expr $ecu/$v*$hs]
set
             -0.1
      Fultc
set
     Uultc [expr $ecu/$v*$hs - 0.1]
pinchX 0.0
pinchY 0.0
set
set
set
      damage1 0.0
set
      damage2 0.0
set
uniaxialMaterial Hysteretic $mollavert $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2
# MOLLE DIAGONALI
# parametri iniziali
set nd
                              #numero molle diagonali
       2;
                             #scelta del parametro b (Turnsek-Cacovic)
if {$h<$1} {
set b 1.0
} else {
if {$h>1.5*$1} {
set b 1.5 } else {set b [expr $h/$1]}
}
#taglio ultimo a fessurazione secondo Turnsek e Cacovic in kN
       [expr $t0*$t*$1/1000.0*sqrt(1 + $N/($b*$t0*$t*$1/1000.0))]
set vuf
#spostamento sommitale del sottopannello in mm
        [expr $vuf*1000.0*$hs/($G*$ls*$ts)]
set dvs
#angolo della diagonale del sottopannello rispetto all'orizzontale
set theta [expr atan($hs/$ls)]
#lunghezza della diagonale del sottopannello in mm
set ldiag [expr sqrt($ls*$ls + $hs*$hs)]
#spostamento a rottura del sottopannello in mm
set d2s [expr $gu*$hs];
# legame costitutivo
set
      molladiag
                 2
              [expr $vuf*1000.0/($nd*cos($theta))]
set
      Fpp
              [expr $dys*cos($theta)/$ldiag]
set
      Upy
              [expr $Fpp*0.7]
set
      Fppu
              [expr $d2s*cos($theta)/$ldiag]
set
      Upu
      Fultp
              1000.0
set
             [expr ($d2s*cos($theta) + 0.1*$d2s*cos($theta))/$ldiag]
      Uultp
set
```

```
Fpc
             [expr -($vuf*1000.0)/($nd*cos($theta))]
set
             [expr -($dys*cos($theta))/$ldiag]
set
      Ucy
             [expr $Fpc*0.7]
      Fpcu
set
set
      Ucu
             [expr -($d2s*cos($theta))/$ldiag]
             -1000.0
set
      Fultc
set
      Uultc
             [expr -($d2s*cos($theta) + 0.1*$d2s*cos($theta))/$ldiag]
     pinchX 0.0
pinchY 0.0
set
set
      damage1 0.0
set
set
      damage2 0.0
      beta 0.8
set
uniaxialMaterial Hysteretic $molladiag $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2 $beta
# MOLLE ORIZZONTALI
# parametri iniziali
set no
         2;
                              #numero molle orizzontali
set dmax [expr $gu*$h];
                              #spostamento ultimo per scorrimento in mm
# taglio ultimo per scorrimento secondo Mohr e Coulomb in kN
        [expr ($c*$l*$t/1000.0 + $N*$f)/$no];
set vus
# lunghezza molla orizzontale in mm
set loriz [expr sqrt($ls*$ls + 1.0)];
# legame costitutivo
      mollaoriz 3
set
set
      Fpp
             [expr $vus*1000.0]
             [expr $dmax*0.1/$loriz]
set
      Upy
             [expr $vus*1000.0 + 1.0]
set
      Fppu
set
      Upu
             [expr $dmax/$loriz]
set
      Fultp
             0.1
      Uultp
            [expr ($dmax+0.5)/$loriz]
set

      Fpc
      [expr -($vus*1000.0)]

      Ucy
      [expr -($dmax*0.1)/$loriz]

      Fpcu
      [expr -($vus*1000.0 + 1.0)]

set
set
set
            [expr -($dmax/$loriz)]
set
      Ucu
            -0.1
[expr -($dmax+0.5)/$loriz]
      Fultc
set
set
      Uultc
     pinchX 0.0
set
     pinchY 0.0
set
      damage1 0.0
set
set
     damage2 0.0
uniaxialMaterial Hysteretic $mollaoriz $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2
# TRUSS RIGIDI DEI MACRO-ELEMENTI
set truss 0
set E 6.0e12
uniaxialMaterial Elastic $truss $E
# DEFINIZIONE DELLE COORDINATE DEI NODI
node 1
           0.0
                         0.0
          0.0
                        1.0
node 2
          0.0
1500.0
node 3
                         3001.0
                        0.0
node 4
          1500.0
1500.0
                         1.0
3001.0
node 5
node 6
```

```
# DEFINIZIONE DEGLI ELEMENTI
#-----
#TRUSS
element truss 1 2
element truss 2 3 2
element truss 3 3 6
truss 4 6 5
                     1.0 $truss
                  2 1.0 $truss
6 1.0 $truss
5 1.0 $truss
#molle DIAGONALI
                     1.0 $molladiag
element truss 5
              2
                6
element truss 6
              3 5
                     1.0 $molladiag
#molle VERTICALI
element truss 7
             1 2
                     1.0 $mollavert
element truss 8
                     1.0 $mollavert
              5 4
#molle ORIZZONTALI
             1
element truss 9
                5
                     1.0 $mollaoriz
              2
                      1.0 $mollaoriz
element truss 10
                  4
# DEFINIZIONE DEI NODI VINCOLATI
#-----
fix 1 1 1
fix 4 1 1
# DEFINIZIONE DEI CARICHI
pattern Plain 1 Linear {
load 3 0.0 [expr -$N*1000.0/2.0];
        0.0 [expr -$N*1000.0/2.0];
load 6
}
#-----
# OUTPUT DEI DATI
recorder Node -file Risultati/VALID_disp.txt -node 3 -dof 1 disp;
recorder Node -file Risultati/VALID_react.txt -node 1 4 -dof 1 reaction;
#-----
# ANALISI
#-----
#Gravity-analysis parameters -- load-controlled static analysis
set Tol 1.0e-6 ;
set Niter 1000 ;
                           # numero massimo di iterazioni
constraints Transformation;
                           # impostazioni condiz. al contorno
                           # minimizzazione larghezza di banda
numberer RCM:
system BandGeneral;
                           # modalità risoluzione del sistema
test NormDispIncr $Tol $Niter 0 ;
                           # controllo sulla convergenza
test EnergyIncr $Tol $Niter 0 ;
algorithm NewtonLineSearch 0.5 ;
                           # aggiorno tangente ad ogni iteraz.
                           # apply gravity in 30 steps
set NstepGravity 30;
set DGravity [expr 1./$NstepGravity]; # primo incremento di carico
integrator LoadControl $DGravity;
                           # determine the next time step
analysis Static;
                           # define type of analysis
analyze $NstepGravity;
                           # apply gravity
#azzero il tempo
loadConst -time 0.0;
#APPLICAZIONE DEL CARICO CICLICO
#definizione di nodo di applicazione, valore e direzione della forza
```

set node_force 3; #indice del nodo su cui è applicata la forza #valore della forza applicata al nodo set value_FX 1; set dof_F 1; #direzione della forza (X=1, Y=2) push_PeakPts \$node_force \$value_FX \$dof_F puts "Analisi completata" *************** # SUBROUTINE UTILIZZATE *********************** proc push_PeakPts {node_force value_FX dof_F} { source procRCycDAns.tcl # define LATERAL load # Lateral load pattern pattern Plain 2 Linear { load \$node_force \$value_FX 0; # node#, FX FY lateral load at top node # build the components for the analysis object system ProfileSPD constraints Plain test NormDispIncr 1.0e-5 500 algorithm KrylovNewton numberer RCM #analysis type used in the procedure is Static #spostamento del martinetto set peakpts [list 3.0 4.16 4.16 4.16 8.17 8.17 8.17 12.8 12.8 12.8 16.0 16.0] set increments 1000 #procedure for feeding in Reverse Cyclic loading to model by Disp. control procRCycDAns \$increments \$node_force \$dof_F \$peakpts puts "analysis completed" #-----# procRCycDAns.tcl # procedure for reverse cyclic disp. control analysis given the peak pts. # analysis type used : STATIC proc procRCycDAns { incre nodeTag dofTag peakpts} { set x [lindex \$peakpts 0] set fir [expr \$x/\$incre] integrator DisplacementControl \$nodeTag \$dofTag 0.0 1 \$fir \$fir # create the analysis object analysis Static # perform the analysis analyze \$incre integrator DisplacementControl \$nodeTag \$dofTag 0.0 1 [expr -\$fir] [expr -\$fir] analyze [expr 2*\$incre] integrator DisplacementControl \$nodeTag \$dofTag 0.0 1 \$fir \$fir analyze \$incre for {set j 1} {j < [llength \$peakpts]} {incr j 1} { set tx [lindex \$peakpts \$j] set tinc [expr \$tx/\$fir] set rt [expr int(\$tinc)] integrator DisplacementControl \$nodeTag \$dofTag 0.0 1 \$fir \$fir analyze \$rt integrator DisplacementControl \$nodeTag \$dofTag 0.0 1 [expr -\$fir] [expr -\$fir] analyze [expr 2*\$rt] integrator DisplacementControl \$nodeTag \$dofTag 0.0 1 \$fir \$fir analyze \$rt 7 #end procRCycDAns.tcl }

A.1.3 Maschio MI3 (3 macro-elementi)

```
***************
# Description: Calibrazione del macro-elemento per il pannello MI3
***************
wipe
# costruzione del modello
model BasicBuilder -ndm 2 -ndf 2
file mkdir m3;
             # cartella file output
# richiamo le subroutine esterne
source push_PeakPts.tcl
source procRCycDAns.tcl
# DEFINIZIONE DELLE VARIABILI
-----
# parametri geometrici della muratura
       380.0
               #spessore del pannello in mm
set t
      1500.0;
             #larghezza del pannello in mm
set l
set h
      3000.0;
               #altezza del pannello in mm
               #vincolo in sommità (1=libero, 2=incastro)
set v
      2;
      380.0;
              #spessore del sottopannello in mm
set ts
      1500.0;
               #larghezza del sottopannello in mm
set ls
set hs
      3000.0:
               #altezza del sottopannello in mm
# proprietà meccaniche della muratura (da prove sperimentali)
set fu
       -7.92;
               #resistenza ultima a compressione della muratura in MPa
set ft
      0.1;
               #resistenza ultima a trazione della muratura in MPa
      2910.0;
set Em
               #modulo elastico della muratura in MPa
      0.1;
               #resistenza media a taglio a compressione nulla in MPa
set tO
set G
      875.0:
              #modulo a taglio della muratura in MPa
set c
      0.2;
               #coesione della muratura in MPa
set f
               #angolo d'attrito della muratura in radianti
      0.5;
set gu
      0.00535; #scorrimento angolare a rottura
set w
      24.0;
               #peso specifico della muratura in kN/m^3
               #compressione esterna cui è soggetto il pannello in MPa
set q
      1.2;
#sforzo assiale sul pannello in kN
       [expr $q*$t*$1/1000.0 + $w*$t/1000.0*$1/1000.0*$h/1000.0]
set N
# MOLLE VERTICALT
# parametri iniziali
      2;
[expr $t*$1/$nv];
^.../$Em];
set nv
                       #numero di molle verticali nel pannello
                       #area afferente alla singola molla
set Am
set ecy [expr $fu/$Em];
                       #deformazione di compressione a snervamento
      [expr 3.0*$ecy];
                       #deformazione di compressione a rottura
set ecu
                      #deformazione di trazione a snervamento
      [expr $ft/$Em];
set ety
set etu [expr 1.5*$ety];
                       #deformazione di trazione a rottura
# legame costitutivo
     mollavert 1
set
     Fpp [expr $ft*$Am]
set
```

```
[expr $ety/$v*$hs]
set
      Upy
              [expr $ft*$Am + 100.0]
set
      Fppu
              [expr $etu/$v*$hs]
set
      Upu
set
      Fultp
             0.1
      Uultp
set
             [expr $etu/$v*$hs + 0.1]
              [expr $fu*$Am]
set
      Fpc
             [expr $ecy/$v*$hs]
set
      Ucy
             [expr $fu*$Am - 100.0]
[expr $ecu/$v*$hs]
set
      Fpcu
set
      Ucu
             -0.1
set
      Fultc
      Uultc [expr $ecu/$v*$hs - 0.1]
pinchX 0.0
set
set
      pinchY 0.0
set
      damage1 0.0
set
      damage2 0.0
set
uniaxialMaterial Hysteretic $mollavert $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2
# MOLLE DIAGONALI
# parametri iniziali
set nd
       2;
                             #numero molle diagonali
if {h<$1} {
                             #scelta del parametro b (Turnsek-Cacovic)
set b 1.0
} else {
if {$h>1.5*$1} {
set b 1.5 } else {set b [expr $h/$1]}
#taglio ultimo a fessurazione secondo Turnsek e Cacovic in kN
set vuf [expr $t0*$t*$1/1000.0*sqrt(1 + $N/($b*$t0*$t*$1/1000.0))]
#spostamento sommitale del sottopannello in mm
set dys
        [expr $vuf*1000.0*$hs/($G*$ls*$ts)]
#angolo della diagonale del sottopannello rispetto all'orizzontale
set theta [expr atan($hs/$ls)]
#lunghezza della diagonale del sottopannello in mm
set ldiag [expr sqrt($ls*$ls + $hs*$hs)]
#spostamento a rottura del sottopannello in mm
set d2s [expr $gu*$hs];
# legame costitutivo
      molladiag
set
                 2
set
      Fpp
           [expr $vuf*1000.0/($nd*cos($theta))]
              [expr $dys*cos($theta)/$ldiag]
      Upy
set
set
      Fppu
             [expr $Fpp*0.7]
              [expr $d2s*cos($theta)/$ldiag]
set
      Upu
             1000.0
      Fultp
set
      Uultp [expr ($d2s*cos($theta) + 0.1*$d2s*cos($theta))/$ldiag]
set
              [expr -($vuf*1000.0)/($nd*cos($theta))]
set
      Fpc
             [expr -($dys*cos($theta))/$ldiag]
set
      Ucy
      Fpcu [expr $Fpc*0.7]
set
             [expr -($d2s*cos($theta))/$ldiag]
      Ucu
set
set
      Fultc
              -1000.0
             [expr -($d2s*cos($theta) + 0.1*$d2s*cos($theta))/$ldiag]
set
      Uultc
      pinchX 0.0
pinchY 0.0
set
set
set
      damage1 0.0
set
      damage2 0.0
set
      beta
             0.8
uniaxialMaterial Hysteretic $molladiag $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2 $beta
# ------
```

```
# MOLLE ORIZZONTALI
# parametri iniziali
set no
       2:
                           #numero molle orizzontali
set dmax [expr $gu*$h];
                           #spostamento ultimo per scorrimento in mm
#taglio ultimo per scorrimento secondo Mohr e Coulomb in kN
      [expr ($c*$l*$t/1000.0 + $N*$f)/$no];
set vus
#lunghezza molla orizzontale in mm
set loriz [expr sqrt($ls*$ls + 1.0)];
# legame costitutivo
     mollaoriz
set
               3
         [expr $vus*1000.0]
[expr $dmax*0.1/$loriz]
set
     Fpp
set
     Upy
set
     Fppu
          [expr $vus*1000.0 + 1.0]
[expr $dmax/$loriz]
set
     Upu
     Fultp 0.1
set
set
     Uultp [expr ($dmax+0.5)/$loriz]
           [expr -($vus*1000.0)]
[expr -($dmax*0.1)/$loriz]
     Fpc
set
set
     Ucy
     Fpcu [expr -($vus*1000.0 + 1.0)]
set
           [expr -($dmax/$loriz)]
-0.1
     Ucu
set
     Fultc
set
     Uultc
           [expr -($dmax+0.5)/$loriz]
set
    pinchX 0.0
pinchY 0.0
set
set
     damage1 0.0
set
set
     damage2 0.0
uniaxialMaterial Hysteretic $mollaoriz $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2
# TRUSS RIGIDI DEI MACRO-ELEMENTI
set truss 0
set E 6.0e12
uniaxialMaterial Elastic $truss $E
# DEFINIZIONE DELLE COORDINATE DEI NODI
0.0
                      0.0
node 1
node 2
          0.0
                      1.0
         0.0
                      1001.0
node 3
                      1002.0
         0.0
0.0
node 4
node 5
                      2002.0
         0.0
                      2003.0
node 6
node 7
         0.0
                      3003.0
         1500.0
1500.0
node 8
                      0.0
                      1.0
node 9
node 10
         1500.0
                      1001.0
        1500.0
1500.0
1500.0
node 11
                      1002.0
                      2002.0
node 12
node 13
                      2003.0
node 14
          1500.0
                       3003.0
# DEFINIZIONE DEGLI ELEMENTI
#TRUSS
element truss 1231.0$trusselement truss 23101.0$truss
```

```
element truss 3 10 9 1.0 $truss
                   2 9 1.0 $truss
4 5 1.0 $truss
element truss 4
element truss 5

        element truss 6
        12
        5
        1.0
        $truss

        element truss 7
        11
        12
        1.0
        $truss

        element truss 8
        4
        11
        1.0
        $truss

element truss 9 6 7
element truss 10 7 14
element truss 11 14 13
element truss 12
                               1.0 $truss
                              1.0 $truss
1.0 $truss
element truss 12
                   6 13
                              1.0 $truss
#molle DIAGONALI
                  2 10 1.0 $molladiag
element truss 13
element truss 14 3 9 1.0 $molladiag
element truss 15 4 12 1.0 $molladiag
                   5 1.0 $molladiag
6 14 1.0 $molladiag
13 7 1.0 $molladiag
                               1.0 $molladiag
element truss 16 11 5
element truss 17
element truss 18
#molle VERTICALI
                   1 2 1.0 $mollavert
8 9 1.0 $mollavert
element truss 19
element truss 20
element truss 20891.0$mollavertelement truss 21341.0$mollavertelement truss 2210111.0$mollavertelement truss 23561.0$mollavert
element truss 24
                     12 13 1.0 $mollavert
#molle ORIZZONTALI

        1
        9
        1.0
        $mollaoriz

        2
        8
        1.0
        $mollaoriz

        3
        11
        1.0
        $mollaoriz

        10
        4
        1.0
        $mollaoriz

element truss 25
element truss 26
element truss 27
element truss 28
element truss 29
element truss 30
                    5 13 1.0 $mollaoriz
                    6
                          12
                               1.0 $mollaoriz
#_____
# DEFINIZIONE DEI NODI VINCOLATI
#-----
fix 1
       1 1
      1 1
fix 8
#-----
                        _____
# DEFINIZIONE DEI CARICHI
# - - -
                         _____
pattern Plain 1 Linear {
load 7 0.0 [expr -$N*1000.0/2.0];
           0.0 [expr -$N*1000.0/2.0];
load 14
}
# OUTPUT DEI DATI
#-----
recorder Node -file m3/disp.txt -node 7 -dof 1 disp;
recorder Node -file m3/react.txt -node 1 8 -dof 1 reaction;
# ANALISI
#-----
#Gravity-analysis parameters -- load-controlled static analysis
set Tol 1.0e-6 ;
set Niter 1000 ;
                                       # numero massimo di iterazioni
constraints Transformation;
                                       # impostazioni condiz. al contorno
numberer RCM;
                                      # minimizzazione larghezza di banda
system BandGeneral;
                                       # modalità risoluzione del sistema
test NormDispIncr $Tol $Niter 0 ;
                                       # controllo sulla convergenza
test EnergyIncr $Tol $Niter 0 ;
```

```
algorithm NewtonLineSearch 0.5 ;
                                   # aggiorno tangente ad ogni iteraz.
                                    # apply gravity in 30 steps
set NstepGravity 30;
set DGravity [expr 1./$NstepGravity]; # primo incremento di carico
integrator LoadControl $DGravity;
                                   # determine the next time step
analysis Static;
                                    # define type of analysis
analyze $NstepGravity;
                                    # apply gravity
#azzero il tempo
loadConst -time 0.0;
#APPLICAZIONE DEL CARICO CICLICO
#definizione di nodo di applicazione, valore e direzione della forza
set node_force 7;
                         #indice del nodo su cui è applicata la forza
set value_FX 1;
                         #valore della forza applicata al nodo
set dof_F 1;
                         #direzione della forza (X=1, Y=2)
push_PeakPts $node_force $value_FX $dof_F
puts "Analisi completata"
# SUBROUTINE UTILIZZATE
***************
proc push_PeakPts {node_force value_FX dof_F} {
source procRCycDAns.tcl
# define LATERAL load
# Lateral load pattern
pattern Plain 2 Linear {
       load $node_force $value_FX 0; # node#, FX FY lateral load at top node
}
# build the components for the analysis object
system ProfileSPD
constraints Plain
test NormDispIncr 1.0e-5 500
algorithm KrylovNewton
numberer RCM
#analysis type used in the procedure is Static
#spostamento del martinetto
set peakpts [list 3.0 4.16 4.16 4.16 8.17 8.17 8.17 12.8 12.8 12.8 16.0 16.0]
set increments 5000
#procedure for feeding in Reverse Cyclic loading to model by Disp. control
procRCycDAns $increments $node_force $dof_F $peakpts
puts "analysis completed"
}
# procRCvcDAns.tcl
# procedure for reverse cyclic disp. control analysis given the peak pts.
# analysis type used : STATIC
proc procRCycDAns { incre nodeTag dofTag peakpts} {
set x [lindex $peakpts 0]
set fir [expr $x/$incre]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
# create the analysis object
analysis Static
# perform the analysis
analyze $incre
integrator DisplacementControl $nodeTag $dofTag 0.0 1 [expr -$fir] [expr -$fir]
analyze [expr 2*$incre]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
analvze $incre
for {set j 1} {$j < [llength $peakpts]} {incr j 1} {</pre>
```

```
set tx [lindex $peakpts $j]
set tinc [expr $tx/$fir]
set rt [expr int($tinc)]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
analyze $rt
integrator DisplacementControl $nodeTag $dofTag 0.0 1 [expr -$fir] [expr -$fir]
analyze [expr 2*$rt]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
analyze $rt
}
#end procRCycDAns.tcl
}
```

A.1.4 Pannello con apertura e fascia di piano tozza

```
************************
# Description: Validazione di un pannello con apertura e fascia di piano #
***************
wipe
# costruzione del modello
model BasicBuilder -ndm 2 -ndf 2
file mkdir Risultati;
                   # cartella file output
# richiamo le subroutine esterne
source push_PeakPts.tcl
source procRCycDAns.tcl
_____
# DEFINIZIONE DELLE VARIABILI
#-----
# parametri geometrici della muratura
      110.0
set t
               #spessore del pannello in mm
set l
      1200.0;
               #larghezza del pannello in mm
set h
      2400.0;
               #altezza del pannello in mm
               #vincolo in sommità (1=libero, 2=incastro)
set v
      1;
set ts
      110.0;
              #spessore del sottopannello in mm
set ls
      1200.0;
               #larghezza del sottopannello in mm
set hs
      1200.0;
               #altezza del sottopannello in mm
# proprietà meccaniche della muratura (da prove sperimentali)
set fu
       -9.6;
               #resistenza ultima a compressione della muratura in MPa
set ft
      0.5;
               #resistenza ultima a trazione della muratura in MPa
set Em
       9573.0;
               #modulo elastico della muratura in MPa
               #resistenza media a taglio a compressione nulla in MPa
set tO
       0.21;
set G
      3800.0:
               #modulo a taglio della muratura in MPa (circa 40%Em)
set c
      0.3;
               #coesione della muratura in MPa
set f
      0.6:
               #angolo d'attrito della muratura in radianti
set gu
       0.0105;
               #scorrimento angolare a rottura
set w
       24.0;
               #peso specifico della muratura in kN/m^3
       1.0;
               #compressione esterna cui è soggetto il pannello in MPa
set q
#sforzo assiale sul pannello in kN
       [expr $q*$t*$1/1000.0 + $w*$t/1000.0*$1/1000.0*$h/1000.0]
set N
#sforzo di compressione indotto dalla trazione dei tiranti
set T
      0.0
```

```
# MOLLE VERTICALI
# parametri iniziali
                             #numero di molle verticali nel pannello
set nv
         2;
        2;
[expr $t*$1/$nv]; #area afferente alla singoia moria
[expr $fu/$Em]; #deformazione di compressione a snervamento
[expr 3.0*$ecy]; #deformazione di compressione a rottura
set Am
        [expr $fu/$Em];
set ecv
set ecu [expr 3.0*$ecy];
        [expr $ft/$Em];
                             #deformazione di trazione a snervamento
set ety
                            #deformazione di trazione a rottura
set etu [expr 1.5*$ety];
# legame costitutivo
set
      mollavert
                  1
             [expr $ft*$Am]
set
      Fpp
set
      Upy
              [expr $ety/$v*$hs]
              [expr $ft*$Am + 100.0]
set
      Fppu
set
      Upu
              [expr $etu/$v*$hs]
              0.1
set
      Fultp
      Uultp
              [expr $etu/$v*$hs + 0.1]
set
      Fpc
              [expr $fu*$Am]
set
set
      Ucy
              [expr $ecy/$v*$hs]
              [expr $fu*$Am - 100.0]
      Fpcu
set
              [expr $ecu/$v*$hs]
set
      Ucu
      Fultc
              -0.1
set
              [expr $ecu/$v*$hs - 0.1]
set
      Uultc
      pinchX 0.0
set
      pinchY 0.0
set
set
      damage1 0.0
set
      damage2 0.0
uniaxialMaterial Hysteretic $mollavert $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2
# MOLLE DIAGONALI
# parametri iniziali
                              #numero molle diagonali
set nd
        2;
if {$h<$1} {
                              #scelta del parametro b (Turnsek-Cacovic)
set b 1.0
} else {
if \{\$h > 1.5 * \$1\}
set b 1.5 } else {set b [expr $h/$1]}
}
\#\texttt{taglio}ultimo a fessurazione diagonale secondo Turnsek e Cacovic in k\mathbb{N}
set vuf
        [expr $t0*$t*$1/1000.0*sqrt(1 + $N/($b*$t0*$t*$1/1000.0))]
#spostamento sommitale del sottopannello in mm
        [expr $vuf*1000.0*$hs/($G*$ls*$ts)]
set dvs
#angolo della diagonale del sottopannello rispetto all'orizzontale
set theta [expr atan($hs/$ls)]
#lunghezza della diagonale del sottopannello in mm
set ldiag [expr sqrt($ls*$ls + $hs*$hs)]
#spostamento a rottura del sottopannello in mm
set d2s [expr $gu*$hs];
# legame costitutivo
       molladiag
set
                   2
              [expr $vuf*1000.0/($nd*cos($theta))]
set
      Fpp
               [expr $dys*cos($theta)/$ldiag]
set
      Upy
               [expr $Fpp*0.9]
set
       Fppu
              [expr $d2s*cos($theta)/$ldiag]
set
      Upu
```

```
Fultp
             1000.0
set
              [expr ($d2s*cos($theta) + 0.1*$d2s*cos($theta))/$ldiag]
set
      Uultp
              [expr -($vuf*1000.0)/($nd*cos($theta))]
      Fpc
set
set
      Ucy
              [expr -($dys*cos($theta))/$ldiag]
              [expr $Fpc*0.9]
set
      Fpcu
             [expr -($d2s*cos($theta))/$ldiag]
set
      Ucu
      Fultc -1000.0
set
      Uultc
             [expr -($d2s*cos($theta) + 0.1*$d2s*cos($theta))/$ldiag]
set
      pinchX 0.0
set
      pinchY 0.0
set
      damage1 0.0
set
set
      damage2 0.0
      beta 0.9
set
uniaxialMaterial Hysteretic $molladiag $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2 $beta
# MOLLE ORIZZONTALI
# parametri iniziali
                               #numero molle orizzontali
set no
         2;
set dmax [expr $gu*$h];
                               #spostamento ultimo per scorrimento in mm
#taglio ultimo per scorrimento secondo Mohr e Coulomb in kN
set vus [expr ($c*$l*$t/1000.0 + $N*$f)/$no];
#lunghezza molla orizzontale in mm
set loriz [expr sqrt($ls*$ls + 1.0)];
# legame costitutivo
set
      mollaoriz
                 3
set
      Fpp
             [expr $vus*1000.0]
set
      Upy
             [expr $dmax*0.1/$loriz]
set
      Fppu
              [expr $vus*1000.0 + 1.0]
      Upu
             [expr $dmax/$loriz]
set
      Fultp 0.1
set
      Uultp [expr ($dmax+0.5)/$loriz]
set
             [expr -($vus*1000.0)]
set
      Fpc
             [expr -($dmax*0.1)/$loriz]
set
      Ucy
             [expr -($vus*1000.0 + 1.0)]
[expr -($dmax/$loriz)]
      Fpcu
set
set
      Ucu
     Fultc -0.1
set
      Uultc [expr -($dmax+0.5)/$loriz]
pinchX 0.0
      Uulte
set
set
      pinchY 0.0
set
      damage1 0.0
set
set
      damage2 0.0
uniaxialMaterial Hysteretic $mollaoriz $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2
# ------
# MOLLE VERTICALI DELLE FASCE DI PIANO
# parametri iniziali
                          #numero molle verticali della fascia di piano
set nvf
         2;
set dmaxf [expr $gu*$ls]; #spostamento ultimo per scorrimento in mm
#taglio ultimo a scorrimento (Mohr-Coulomb) in kN (decuplicato per ingranamento)
set vusf [expr 10.0*($c*$hs*$t/1000.0 + $T*$f)/$nvf];
#lunghezza molla verticale in mm
set lvf [expr sqrt($hs*$hs + 1.0)];
# legame costitutivo
```

```
mollavertf
                       4
set
                 [expr $vusf*1000.0]
set
        Fpp
                 [expr $dmaxf*0.1/$lvf]
set
       Upy
set
        Fppu
                 [expr $vusf*1000.0 + 1.0]
                 [expr $dmaxf/$lvf]
set
        Upu
       Fultp
set
                 0.1
        Uultp
                 [expr (\frac{1}{100})/\frac{1}{100}]
set
                 [expr -($vusf*1000.0)]
[expr -($dmaxf*0.1)/$lvf]
        Fpc
set
set
        Ucv
                 [expr -($vusf*1000.0 + 1.0)]
set
        Fpcu
                 [expr -($dmaxf/$lvf)]
        Ucu
set
set
       Fultc
                 -0.1
                 [expr -($dmaxf+0.5)/$lvf]
set
        Uultc
       pinchX
                 0.0
set
        pinchY
                 0.0
set
set
        damage1
                0.0
        damage2 0.0
set
uniaxialMaterial Hysteretic $mollavertf $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2
# MOLLE DIAGONALI DELLE FASCE DI PIANO
# parametri iniziali
set ndf
         2:
                                        #numero molle diagonali della fascia di piano
#taglio ultimo a fessurazione diagonale secondo Turnsek e Cacovic in kN
set vuff [expr $t0*$t*$hs/1000.0*sqrt(1 + $T/($b*$t0*$t*$hs/1000.0))];
#spostamento sommitale del sottopannello della fascia di piano in mm
set dysf [expr $vuff*1000.0*$ls/($G*$hs*$ts)];
#angolo della diagonale del sottopannello della fascia di piano rispetto all'orizzontale
set thf
        [expr atan($ls/$hs)];
#lunghezza della diagonale del sottopannello della fascia di piano in mm
set ldf
        [expr sqrt($ls*$ls + $hs*$hs)];
#spostamento a rottura del sottopannello della fascia di piano in mm
set d2sf [expr $gu*$ls];
# legame costitutivo
set
        molladiagf
                       5
set
                   [expr $vuff*1000.0/($ndf*cos($thf))]
        Fpp
                   [expr $dysf*cos($thf)/$ldf]
set
        Upy
                   [expr $Fpp*0.9]
set
        Fppu
set
        Upu
                   [expr $d2sf*cos($thf)/$ldf]
        Fultp
                   1000.0
set
                   [expr ($d2sf*cos($thf) + 0.1*$d2sf*cos($thf))/$ldf]
set
        Uultp
                   [expr -($vuff*1000.0)/($ndf*cos($thf))]
set
        Fpc
                   [expr -($dysf*cos($thf))/$ldf]
set
       Ucy
                   [expr $Fpc*0.9]
set
        Fpcu
                  [expr -($d2sf*cos($thf))/$ldf]
set
        Ucu
       Fultc
                   -1000.0
set
        Uultc
                   [expr -($d2sf*cos($thf) + 0.1*$d2sf*cos($thf))/$ldf]
set
       pinchX
                  0.0
set
set
        pinchY
                  0.0
                   0.0
set
        damage1
                  0.0
set
       damage2
set
       beta
                   0.9
uniaxialMaterial Hysteretic $molladiagf $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2 $beta
```

```
# MOLLE ORIZZONTALI DELLE FASCE DI PIANO
# parametri iniziali
                          #numero di molle orizzontali fascia di piano
set nof 2:
set Amf [expr $t*$hs/$nof]; #area afferente alla singola molla
set ecyf [expr fu/2.0/Em]; #deformazione di compressione a snervamento (con fu/2)
set ecuf [expr 3.0*$ecy];
                        #deformazione di compressione a rottura
set etyf [expr $ft/$Em];
                         #deformazione di trazione a snervamento
set etuf [expr 1.5*$ety];
                         #deformazione di trazione a rottura
# legame costitutivo
       mollaorizf
set
                    6
set
       Fpp
               [expr $ft*$Amf]
                 [expr $etyf/$v*$ls]
set
       Upy
set
       Fppu
                 [expr $ft*$Amf + 100.0]
                 [expr $etuf/$v*$ls]
       Upu
set
set
       Fultp
                 0.1
                 [expr $etuf/$v*$ls + 0.1]
set
       Uultp
                 [expr $fu/2.0*$Amf]
      Fpc
set
      Ucy
                 [expr $ecyf/$v*$ls]
set
       Fpcu
                 [expr $fu/2.0*$Amf - 100.0]
set
                [expr $ecuf/$v*$ls]
       Ucu
set
      Fultc
                 -0.1
set
       Uultc
                 [expr $ecuf/$v*$ls - 0.1]
set
set
       pinchX
                 0.0
                0.0
set
       pinchY
                 0.0
       damage1
set
set
       damage2
                 0.0
uniaxialMaterial Hysteretic $mollaorizf $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2
# TRUSS RIGIDI DEI MACRO-ELEMENTI
set truss 0
set E 6.0e12
uniaxialMaterial Elastic $truss $E
# DEFINIZIONE DELLE COORDINATE DEI NODI
                                    -----
#-----
#maschio sinistro
node 1 0.0 0.0
node 2 0.0
              1.0
node 3
       0.0
               1201.0
              1202.0
node 4
       0.0
       0.0 2402.0
1200.0 0.0
node 5
node 6
       1200.0 1.0
node 7
node 8 1200.0 1201.0
node 9 1200.0 1202.0
node 10 1200.0 2402.0
#fascia di piano
node 11 1201.0 1202.0
node 12 1201.0 2402.0
node 13 2401.0 1202.0
node 14 2401.0 2402.0
#maschio destro
node 15 2402.0 0.0
node 16 2402.0 1.0
node 17 2402.0 1201.0
node 18 2402.0 1202.0
node 19 2402.0 2402.0
```

node	20	3602	.0	0.0			
node	21	3602	.0	1.0			
node	22	3602	.0	1201.0			
node	23	3602	.0	1202.0			
node	24	3602	.0	2402.0			
#							
# DEI	FINJ	IZIONE	DEG	LI ELEMEN	ΤI		
# ·							
#TRUS	SS						
eleme	ent	truss	1	2	3	1.0	\$truss
eleme	ent	truss	2	3	8	1.0	\$truss
eleme	ent	truss	3	8	7	1.0	\$truss
eleme	ent	truss	4	2	7	1.0	\$truss
eleme	ent	truss	5	4	5	1.0	\$truss
eleme	ent	truss	6	5	10	1.0	\$truss
eleme	ent	truss	1	10	9	1.0	\$truss
eleme	ent	truss	8	4	9	1.0	\$truss
eleme	ent	truss	9	11	14	1.0	\$truss
eleme	ent.	truss	10	12	14	1.0	
eleme	ent	truss	10	14	12	1.0	\$truss \$truss
eleme	ent ont	truce	12	16	17	1.0	
ereme	511 L 9 n +	trucc	10 1/	17	11 20	1.0	ψυιμαα \$trues
eleme	-11 U	trucc	15	21	22	1.0	\$trucc
eleme	ont	truee	16	16	22	1.0	\$trues
	ant	trues	17	18	19	1.0	\$truss
	ant	trues	18	19	24	1.0	\$truss
	ant	truss	19	23	24	1 0	\$truss
eleme	ant	truss	20	18	23	1.0	\$truss
eleme	ent	truss	55	5	24	1.0	\$truss
				-			• • • • • • • •
#mol]	le I	DIAGON	ALI				
eleme	ent	truss	21	2	8	1.0	<pre>\$molladiag</pre>
eleme	ent	truss	22	3	7	1.0	\$molladiag
eleme	ent	truss	23	4	10	1.0	\$molladiag
eleme	ent	truss	24	5	9	1.0	<pre>\$molladiag</pre>
eleme	ent	truss	25	16	22	1.0	\$molladiag
eleme	ent	truss	26	17	21	1.0	\$molladiag
eleme	ent	truss	27	18	24	1.0	\$molladiag
eleme	ent	truss	28	19	23	1.0	\$molladiag
			A T T				
# mol.	Le V	+ muaa		1	0	1 0	¢mallawant
eleme	-11 U	trucc	29	6	27	1.0	¢mollavert
eleme	ont	truee	31	3	1	1.0	\$mollavert
	ant	trues	32	8	a a	1.0	\$mollavert
	ant	trues	33	15	16	1.0	\$mollavert
eleme	ant	truss	34	20	21	1 0	\$mollavert
eleme	ent	truss	35	17	18	1.0	\$mollavert
eleme	ent	truss	36	22	23	1.0	\$mollavert
#mol]	le (ORIZZO	NTAL	I			
eleme	ent	truss	37	1	7	1.0	\$mollaoriz
eleme	ent	truss	38	2	6	1.0	\$mollaoriz
eleme	ent	truss	39	3	9	1.0	\$mollaoriz
eleme	ent	truss	40	4	8	1.0	\$mollaoriz
eleme	ent	truss	41	15	21	1.0	\$mollaoriz
eleme	ent	truss	42	16	20	1.0	\$mollaoriz
eleme	ent	truss	43	17	23	1.0	\$mollaoriz
eleme	ent	truss	44	18	22	1.0	\$mollaoriz
#~-7	1.0 7	ייסמאדר	A T T	foggin 12			
# 11 O L .	re l ant	truec	нці 45	11 11	. p: 1∕I	1 AIIO	\$molladiacf
elema	ant	truee	46	10	13	1 0	\$molladiagf
01000		51 455	10	12	10	1.0	+
#mol]	le (ORIZZO	NTAL	.I fascia	di	piano	
eleme	ent	truss	47	10	12	1.0	\$mollaorizf
eleme	ent	truss	48	9	11	1.0	\$mollaorizf

14 19 13 18 1.0 \$mollaorizf
1.0 \$mollaorizf element truss 49 element truss 50 #molle VERTICALI fascia di piano element truss 51 9 12 1.0 \$mollavertf element truss 52 10 11 1.0 \$mollavertf element truss 53 14 18 1.0 \$mollavertf element truss 54 13 19 1.0 \$mollavertf # DEFINIZIONE DEI NODI VINCOLATI fix 1 1 1 fix 6 1 1 fix 15 1 1 fix 20 1 1 #-----# DEFINIZIONE DEI CARICHI _____ pattern Plain 1 Linear { load50.0[expr -(\$N/2.0*1000.0)];load100.0[expr -(\$N/2.0*1000.0)]; load 19 0.0 [expr -(\$N/2.0*1000.0)]; load 24 0.0 [expr -(\$N/2.0*1000.0)]; 3 # OUTPUT DEI DATI recorder Node -file Risultati/disp.txt -node 5 -dof 1 disp; recorder Node -file Risultati/react.txt -node 1 6 15 20 -dof 1 reaction: # ANALTST #-----#Gravity-analysis parameters -- load-controlled static analysis set Tol 1.0e-6 ; set Niter 1000 ; # numero massimo di iterazioni constraints Transformation; # impostazioni condiz. al contorno numberer RCM; # minimizzazione larghezza di banda system BandGeneral; # modalità risoluzione del sistema test NormDispIncr \$Tol \$Niter 0 ; # controllo sulla convergenza test EnergyIncr \$Tol \$Niter 0 ; algorithm NewtonLineSearch 0.5 ; # aggiorno tangente ad ogni iteraz. set NstepGravity 30; # apply gravity in 30 steps set DGravity [expr 1./\$NstepGravity]; # primo incremento di carico integrator LoadControl \$DGravity; # determine the next time step analysis Static; # define type of analysis analyze \$NstepGravity; # apply gravity #azzero il tempo loadConst -time 0.0; #APPLICAZIONE DEL CARICO CICLICO #definizione di nodo di applicazione, valore e direzione della forza set node_force 5; #indice del nodo su cui è applicata la forza set value_FX 1; #valore della forza applicata al nodo set dof_F 1; #direzione della forza (X=1, Y=2) push_PeakPts \$node_force \$value_FX \$dof_F puts "Analisi completata"

```
A.1. Muratura
```

```
***************
# SUBROUTINE UTILIZZATE
***********************
proc push_PeakPts {node_force value_FX dof_F} {
source procRCycDAns.tcl
# define LATERAL load
# Lateral load pattern
pattern Plain 2 Linear {
       load $node_force $value_FX 0; # node#, FX FY lateral load at top node
7
# build the components for the analysis object
system ProfileSPD
constraints Plain
test NormDispIncr 1.0e-5 500
algorithm KrylovNewton
numberer RCM
#analysis type used in the procedure is Static
#spostamento del martinetto
set peakpts [list 0.5 1.0 1.5 2.0 3.0 4.0 5.0 6.0 7.0 8.0 10.0 12.0 12.5 13.0];
set increments 5000
#procedure for feeding in Reverse Cyclic loading to model by Disp. control
procRCycDAns $increments $node_force $dof_F $peakpts
puts "analysis completed"
3
# procRCycDAns.tcl
# procedure for reverse cyclic disp. control analysis given the peak pts.
# analysis type used : STATIC
proc procRCycDAns { incre nodeTag dofTag peakpts} {
set x [lindex $peakpts 0]
set fir [expr $x/$incre]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
# create the analysis object
analysis Static
# perform the analysis
analyze $incre
integrator DisplacementControl $nodeTag $dofTag 0.0 1 [expr -$fir] [expr -$fir]
analyze [expr 2*$incre]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
analyze $incre
for {set j 1} {$j < [llength $peakpts]} {incr j 1} {</pre>
set tx [lindex $peakpts $j]
set tinc [expr $tx/$fir]
set rt [expr int($tinc)]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
analyze $rt
integrator DisplacementControl $nodeTag $dofTag 0.0 1 [expr -$fir] [expr -$fir]
analyze [expr 2*$rt]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
analyze $rt
}
#end procRCycDAns.tcl
}
```

121

A.2 Solai in legno

A.2.1 Solaio con tavolato semplice

```
# Description: SOLAIO CON TAVOLATO SEMPLICE
****************
wipe
#-----
# costruzione del modello
model BasicBuilder -ndm 2 -ndf 2
file mkdir Risultati; #cartella file output
#_____
# richiamo le subroutine esterne
source solaio.tcl
source push_PeakPts.tcl
source procRCycDAns.tcl
# Definizione variabili del solaio
#-----
                             # parametri geometrici
set a 5000.0;
                                #lato lungo del solaio (mm)
set b 4500.0;
                                #lato corto del solaio (mm)
set as 1250.0;
                                #lato lungo del sottopannello (mm)
set bs 750.0:
                                #lato corto del sottopannello (mm)
set n 12;
                                #numero molle che scaricano sui bordi
set ds [expr sqrt($as*$as+$bs*$bs)]; #lunghezza diagonale sottopannello (mm)
set th [expr atan($as/$bs)];
                                #angolo molle rispetto alla forza
# parametri della prova sperimentale
# backbone curve
#ramo POSITIVO:
set d1p 3.0;
                                #spostamento limite elastico (mm)
set d2p 150.0;
                                #1' spostamento limite plastico (mm)
                                #2' spostamento limite plastico (mm)
set d3p 208.0;
set d4p 220.0;
                                #spostamento a rottura (mm)
set F1p 35.0;
                                #forza limite elastica (kN)
set F2p 190.0;
                                #1' forza limite plastica (kN)
set F3p 222.0;
set F4p 42.0;
                                #2' forza limite plastica (kN)
                                #forza a rottura (kN)
#ramo NEGATIVO:
set d1n -1.0;
                                #spostamento limite elastico (mm)
set d2n -130.0;
                                #1' spostamento limite plastico (mm)
                                #2' spostamento limite plastico (mm)
set d3n -208.0;
set d4n -220.0;
                                #spostamento a rottura (mm)
set F1n -10.0;
                                #forza limite elastica (kN)
set F2n -140.0;
                                #1' forza limite plastica (kN)
set F3n -180.0;
set F4n -25.0;
                                #2' forza limite plastica (kN)
                                #forza a rottura (kN)
# pinching curve (la nomenclatura corrisponde a quella del manuale OpenSees)
set d1pin 70.0;
                                #rdispP*dmax
set d2pin 140.0;
                                #dmax
set d3pin 128.0;
                                #*
set d4pin -70.0;
                                #rdispN*dmin
set d5pin -140.0;
                                #dmin
set d6pin -126.0;
                                #*
                                #rForceP*f(dmax)
set F1pin 60.0;
```

set F2pin 180.0; #f(dmax) set F3pin 37.0; #uForceN*eNf3 set F4pin -30.0; #rForceN*f(dmin) set F5pin -145.0; #f(dmin) set F6pin -10.0; #uForceP*ePf3 #fattore di scala (rapporto tra dimensione numerica e sperimentale) set fs 1.125; #numero di file di sottopannelli in cui è diviso metà lato lungo set nf 2 # parametri assegnati alla singola molla # backbone curve #ramo POSITIVO set d1pm [expr \$d1p*cos(\$th)/(\$ds*\$nf)]; #allungamento limite elastico set d2pm [expr \$d2p*cos(\$th)/(\$ds*\$nf)]; #1' allungamento limite plastico #2' allungamento limite plastico set d3pm [expr \$d3p*cos(\$th)/(\$ds*\$nf)]; set d4pm [expr \$d4p*cos(\$th)/(\$ds*\$nf)]; #allungamento a rottura set F1pm [expr \$F1p*\$fs/(\$n*cos(\$th))]; #sforzo limite elastico (kN) set F2pm [expr \$F2p*\$fs/(\$n*cos(\$th))]; #1' sforzo limite plastico (kN) #2' sforzo limite plastico (kN) set F3pm [expr \$F3p*\$fs/(\$n*cos(\$th))]; set F4pm [expr \$F4p*\$fs/(\$n*cos(\$th))]; #sforzo a rottura (kN) #ramo NEGATIVO set d1nm [expr \$d1n*cos(\$th)/(\$ds*\$nf)]; #allungamento limite elastico set d2nm [expr \$d2n*cos(\$th)/(\$ds*\$nf)]; #1' allungamento limite plastico #2' allungamento limite plastico set d3nm [expr \$d3n*cos(\$th)/(\$ds*\$nf)]; set d4nm [expr \$d4n*cos(\$th)/(\$ds*\$nf)]; #allungamento a rottura set F1nm [expr \$F1n*\$fs/(\$n*cos(\$th))]; #sforzo limite elastico (kN) set F2nm [expr \$F2n*\$fs/(\$n*cos(\$th))]; #1' sforzo limite plastico (kN) #2' sforzo limite plastico (kN) set F3nm [expr \$F3n*\$fs/(\$n*cos(\$th))]; set F4nm [expr \$F4n*\$fs/(\$n*cos(\$th))]; #sforzo a rottura (kN) # pinching curve (la nomenclatura corrisponde a quella del manuale OpenSees) set rdispP [expr \$d1pin/\$d2pin] set rdispN [expr \$d4pin/\$d5pin] set rForceP [expr \$F1pin/\$F2pin] set rForceN [expr \$F4pin/\$F5pin] set uForceP [expr \$F6pin/(-\$F3n)] set uForceN [expr \$F3pin/(-\$F3p)] # Definizione dei nodi del modello #-----0.0 0.0 node 1 node 2 0.0 750.0 0.0 1500.0 node 3 0.0 0.0 node 4 2250.0 5 3000.0 node 0.0 node 6 3750.0 node 7 0.0 4500.0 1250.0 node 8 0.0 1250.0 9 750.0 node node 10 1250.0 1500.0 1250.0 2250.0 node 11 1250.0 node 12 3000.0 node 1250.0 3750.0 13 node 14 1250.0 4500.0 node 15 2500.0 0.0 node 16 2500.0 750.0 2500.0 1500.0 node 17 18 2500.0 2250.0 node 19 2500.0 3000.0 node 2500.0 3750.0 node 20 21 2500.0 4500.0 node

22

node

3750.0

0.0

23 3750.0 750.0 node 3750.0 1500.0 node 24 25 3750.0 2250.0 node node 26 3750.0 3000.0 27 3750.0 node 3750.0 node 28 3750.0 4500.0 node 29 5000.0 0.0 node 30 5000.0 750.0 30 5000.0 31 5000.0 node 1500.0 32 5000.0 node 2250.0 33 5000.0 3000.0 node node 34 5000.0 3750.0 35 5000.0 node 4500.0 #-----# Definizione dei materiali # truss della maglia set truss O set E 1.0e10 uniaxialMaterial Elastic \$truss \$E # molle diagonali set diag 1 solaio \$diag \$F1pm \$F2pm \$F3pm \$F4pm \$d1pm \$d2pm \$d3pm \$d4pm \$F1nm \$F2nm \$F3nm \$F4nm \$d1nm \$d2nm \$d3nm \$d4nm \$rdispP \$rdispN \$rForceP \$rForceN \$uForceP \$uForceN # Definizione degli elementi #-----# reticolo di truss 1 2 1.0 element truss 2 \$truss 1 element truss 2 2 3 1.0 \$truss 3 3 4 1.0 element truss \$truss 4 5 6 4 5 6 element truss 5 1.0 \$truss 6 7 1.0 1.0 element truss \$truss element truss \$truss element truss 8 9 7 1.0 \$truss 9 10 10 11 8 1.0 \$truss element truss element truss 9 1.0 \$truss element truss 10 11 12 1.0 \$truss 13 1.0 11 12 element truss \$truss element truss 12 13 14 1.0 \$truss 13 15 1.0 element truss 16 \$truss 17 14 16 1.0 element truss \$truss 1.0 element truss 15 17 18 \$truss 18 1.0 19 element truss 16 \$truss 17 20 1.0 19 20 element truss \$truss 18 21 element truss 1.0 \$truss 1.0 22 19 23 element truss \$truss 23 24 1.0 element truss 20 \$truss 25 element truss 21 24 1.0 \$truss 25 1.0 26 element truss 22 \$truss element truss 23 26 27 1.0 \$truss 1.0 24 27 28 element truss \$truss 29 element truss 25 30 1.0 \$truss element truss 26 30 31 1.0 \$truss 1.0 27 31 32 element truss \$truss element truss 28 32 33 1.0 \$truss element truss 29 33 34 1.0 \$truss 34 35 1.0 30 element truss \$truss 31 1 8 1.0 element truss \$truss 8 1.0 15 22 element truss 32 \$truss 33 15 34 22 1.0 element truss \$truss 29 1.0 \$truss element truss 2 9 element truss 35 1.0 \$truss

	truss	36	9	16	1.0	\$truss
element	truss	37	16	23	1.0	\$truss
element	truss	38	23	30	1.0	\$truss
element	truss	39	3	10	1.0	\$truss
element	truss	40	10	17	1.0	\$truss
element	truss	41	17	24	1.0	\$truss
element	truss	42	24	31	1.0	\$truss
element	truss	43	4	11	1.0	\$truss
element	truss	44	11	18	1 0	\$truss
olomont	trucc	15	10	25	1.0	¢tiuss \$trucc
element	truss	45	10	20	1.0	ð til uss
element	truss	40	25	32	1.0	truss
element	truss	47	5	12	1.0	\$truss
element	truss	48	12	19	1.0	\$truss
element	truss	49	19	26	1.0	\$truss
element	truss	50	26	33	1.0	\$truss
element	truss	51	6	13	1.0	\$truss
element	truss	52	13	20	1.0	\$truss
element	truss	53	20	27	1.0	\$truss
element	truss	54	27	34	1.0	\$truss
element	truss	55	7	14	1.0	\$truss
element	truss	56	14	21	1.0	\$truss
element	truss	57	21	28	1 0	\$truss
element	truss	58	28	35	1 0	\$truss
erement	CIUSS	50	20	55	1.0	ψtiuss
# elemen	iti diago:	nali				
element	truss	59	1	9	1.0	\$diag
element	truss	60	2	10	1.0	\$diag
element	truss	61	3	11	1.0	\$diag
element	truss	62	4	12	1 0	\$diag
element	trues	63	5	13	1.0	\$diag
element	trucc	64	6	1/	1.0	¢diag
element	truss	65 65	0	16	1.0	¢diag
element	truss	00	0	10	1.0	bulag
element	truss	66	9	17	1.0	\$dlag
element	truss	67	10	18	1.0	\$diag
element	truss	68	11	19	1.0	\$diag
alamant	trugg	60	10	20		1 • ·
erement	ULUSS	03	12	20	1.0	\$diag
element	truss	70	13	20	1.0 1.0	\$diag \$diag
element element	truss truss	70 71	12 13 16	20 21 22	1.0 1.0 1.0	\$diag \$diag \$diag
element element element	truss truss truss	70 71 72	12 13 16 17	20 21 22 23	1.0 1.0 1.0 1.0	\$diag \$diag \$diag \$diag
element element element element	truss truss truss truss truss	70 71 72 73	12 13 16 17 18	20 21 22 23 24	1.0 1.0 1.0 1.0 1.0	\$diag \$diag \$diag \$diag \$diag
element element element element element	truss truss truss truss truss truss	70 71 72 73 74	12 13 16 17 18 19	20 21 22 23 24 25	1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$diag \$diag \$diag \$diag \$diag \$diag</pre>
element element element element element	truss truss truss truss truss truss	70 71 72 73 74 75	12 13 16 17 18 19 20	20 21 22 23 24 25 26	1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$diag \$diag \$diag \$diag \$diag \$diag \$diag \$diag</pre>
element element element element element element	truss truss truss truss truss truss truss	70 71 72 73 74 75 76	12 13 16 17 18 19 20 21	20 21 22 23 24 25 26 27	1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$diag</pre>
element element element element element element	truss truss truss truss truss truss truss	70 71 72 73 74 75 76 77	12 13 16 17 18 19 20 21 23	20 21 22 23 24 25 26 27 29	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$</pre>
element element element element element element element	truss truss truss truss truss truss truss truss	70 71 72 73 74 75 76 77	12 13 16 17 18 19 20 21 23 24	20 21 22 23 24 25 26 27 29 20	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$diag</pre>
element element element element element element element	truss truss truss truss truss truss truss truss truss	70 71 72 73 74 75 76 77 78	12 13 16 17 18 19 20 21 23 24	21 22 23 24 25 26 27 29 30	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$diad \$diag \$diad \$</pre>
element element element element element element element element	truss truss truss truss truss truss truss truss truss truss truss	70 71 72 73 74 75 76 77 78 79	12 13 16 17 18 19 20 21 23 24 25	21 22 23 24 25 26 27 29 30 31	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$</pre>
element element element element element element element element	truss truss truss truss truss truss truss truss truss truss truss truss	70 71 72 73 74 75 76 77 78 79 80	12 13 16 17 18 19 20 21 23 24 25 26	20 21 22 23 24 25 26 27 29 30 31 32	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$</pre>
element element element element element element element element element element	truss truss truss truss truss truss truss truss truss truss truss truss truss	70 71 72 73 74 75 76 77 78 79 80 81	12 13 16 17 18 19 20 21 23 24 25 26 27	20 21 22 23 24 25 26 27 29 30 31 32 33	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$</pre>
element element element element element element element element element element element	truss truss truss truss truss truss truss truss truss truss truss truss truss truss	70 71 72 73 74 75 76 77 78 79 80 81 82	12 13 16 17 18 19 20 21 23 24 25 26 27 28	20 21 22 23 24 25 26 27 29 30 31 32 33 34	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$</pre>
element element element element element element element element element element element	truss truss truss truss truss truss truss truss truss truss truss truss truss truss	70 71 72 73 74 75 76 77 78 79 80 81 82	12 13 16 17 18 19 20 21 23 24 25 26 27 28	20 21 22 23 24 25 26 27 29 30 31 32 33 34	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$</pre>
element element element element element element element element element element #	truss truss truss truss truss truss truss truss truss truss truss truss truss	70 71 72 73 74 75 76 77 78 79 80 81 82	13 13 16 17 18 19 20 21 23 24 25 26 27 28	20 21 22 23 24 25 26 27 29 30 31 32 33 34	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$</pre>
<pre>element element # # Defini</pre>	truss truss truss truss truss truss truss truss truss truss truss truss truss truss	70 71 72 73 74 75 76 77 78 79 80 81 82	13 13 16 17 18 19 20 21 23 24 25 26 27 28 vincol	20 21 22 23 24 25 26 27 29 30 31 32 33 34	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag }d }d }d </pre>
<pre>element element # # Defini #</pre>	truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss	70 71 72 73 74 75 76 77 78 79 80 81 82 82	13 13 16 17 18 19 20 21 23 24 25 26 27 28 vincol	20 21 22 23 24 25 26 27 29 30 31 32 33 34	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$</pre>
<pre>element element # # Defini #</pre>	truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss	70 71 72 73 74 75 76 77 78 79 80 81 82	13 13 16 17 18 19 20 21 23 24 25 26 27 28	20 21 22 23 24 25 26 27 29 30 31 32 33 34	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$</pre>
<pre>element element element element element element element element element element # # Defini # fix 4 1</pre>	truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss	70 71 72 73 74 75 76 77 78 79 80 81 82	13 13 16 17 18 19 20 21 23 24 25 26 27 28 vincol	20 21 22 23 24 25 26 27 29 30 31 32 33 34	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$</pre>
<pre>element element element element element element element element element element # # Defini # fix 4 1 fix 32 1</pre>	truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss	70 71 72 73 74 75 76 77 78 79 80 81 82 i nodi	13 13 16 17 18 19 20 21 23 24 25 26 27 28 vincol	20 21 22 23 24 25 26 27 29 30 31 32 33 34	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$</pre>
element element element element element element element element element element # fix 4 1 fix 32 1	truss truss	70 71 72 73 74 75 76 77 78 79 80 81 82 i nodi	13 13 16 17 18 19 20 21 23 24 25 26 27 28 vincol	21 22 23 24 25 26 27 29 30 31 32 33 34	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$</pre>
element element element element element element element element element element telement fix 4 1 fix 32 1	truss truss	70 71 72 73 74 75 76 77 78 79 80 81 82 i nodi	13 13 16 17 18 19 20 21 23 24 25 26 27 28 vinco	21 22 23 24 25 26 27 29 30 31 32 33 34	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$</pre>
element element element element element element element element element element telement fix 4 1 fix 32 1	truss truss	70 71 72 73 74 75 76 77 78 79 80 81 82 i nodi	13 13 16 17 18 19 20 21 23 24 25 26 27 28 vincol	21 21 22 23 24 25 26 27 29 30 31 32 33 34	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$</pre>
<pre>element element element element element element element element element element # fix 4 1 fix 32 1 # # Output</pre>	truss truss	70 71 72 73 74 75 76 77 78 79 80 81 82 i nodi	13 13 16 17 18 19 20 21 23 24 25 26 27 28 vincol	20 21 22 23 24 25 26 27 29 30 31 32 33 34	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$</pre>
<pre>element element element element element element element element element element element # fix 4 1 fix 32 1 # # Output #</pre>	truss truss	70 71 72 73 74 75 76 77 78 79 80 81 82 	13 13 16 17 18 19 20 21 23 24 25 26 27 28 vincol	20 21 22 23 24 25 26 27 29 30 31 32 33 34	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$</pre>
element element element element element element element element element element dement element fix 4 1 fix 32 1 # # Output	truss truss	70 71 72 73 74 75 76 77 78 79 80 81 82 i nodi	13 13 16 17 18 19 20 21 23 24 25 26 27 28 vincol	20 21 22 23 24 25 26 27 29 30 31 32 33 34	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$</pre>
element element element element element element element element element element # fix 4 1 fix 32 1 # # Output # recorder	truss truss	70 71 72 73 74 75 76 77 78 79 80 81 82 i nodi	13 13 16 17 18 19 20 21 23 24 25 26 27 28 vincol	21 22 23 24 25 26 27 29 30 31 32 33 34 Lati	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$</pre>
element element element element element element element element element element element fix 4 1 fix 32 1 # # Output # recorder	truss trus tru	70 71 72 73 74 75 76 77 78 79 80 81 82 i nodi i nodi 	13 13 16 17 18 19 20 21 23 24 25 26 27 28 vincol	20 21 22 23 24 25 26 27 29 30 31 32 33 34 Lati 	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$</pre>
element element element element element element element element element element dement element # fix 4 1 fix 32 1 # # Output # recorder	truss truss	70 71 72 73 74 75 76 77 78 79 80 81 82 i nodi 82 i nodi i	13 13 16 17 18 19 20 21 23 24 25 26 27 28 vincol	21 22 23 24 25 26 27 29 30 31 32 33 34 	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$</pre>
element element element element element element element element element element element transfirme fix 4 1 fix 32 1 # fix 4 1 fix 32 1 # recorder #	truss truss	70 71 72 73 74 75 76 77 78 79 80 81 82 i nodi 	13 13 16 17 18 19 20 21 23 24 25 26 27 28 vincol	20 21 22 23 24 25 26 27 29 30 31 32 33 34 	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$</pre>
element element element element element element element element element element element dement element # fix 4 1 fix 32 1 # recorder # # Output # recorder #	truss truss	70 71 72 73 74 75 76 77 78 79 80 81 82 i nodi i i i i i le Ri:	13 13 16 17 18 19 20 21 23 24 25 26 27 28 vincol	21 21 22 23 24 25 26 27 29 30 31 32 33 34 	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$</pre>
element element element element element element element element element element element # fix 4 1 fix 32 1 # # Output # recorder # # ANALIS #	truss truss	70 71 72 73 74 75 76 77 78 79 80 81 82 i nodi i i i le Ri: iile Ri:	13 13 16 17 18 19 20 21 23 24 25 26 27 28 vincol	20 21 22 23 24 25 26 27 29 30 31 32 33 34 lati lati	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$</pre>
element element element element element element element element element element element dement element # fix 4 1 fix 32 1 # recorder recorder # # ANALIS #	truss truss	70 71 72 73 74 75 76 77 78 79 80 81 82 i nodi i i i i e Rii iile Rii	13 13 16 17 18 19 20 21 23 24 25 26 27 28 vincol	20 21 22 23 24 25 26 27 29 30 31 32 33 34 	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$</pre>
element element element element element element element element element element element fix 4 1 fix 32 1 # # Output # recorder # # ANALIS # # Gravity	truss truss	70 71 72 73 74 75 76 77 78 79 80 81 82 i nodi i nodi 	13 13 16 17 18 19 20 21 23 24 25 26 27 28 vincol sultati sultati	20 21 22 23 24 25 26 27 29 30 31 32 33 34 i/disp i/reac: 	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$diag \$diag \$</pre>

set Tol 1.0e-5 ; set Niter 1000 ; # numero massimo di iterazioni constraints Transformation; # impostazioni condiz. al contorno numberer RCM; # minimizzazione larghezza di banda system BandGeneral; # modalità risoluzione del sistema test NormDispIncr \$Tol \$Niter 0 ; # controllo sulla convergenza test EnergyIncr \$Tol \$Niter 0 ; algorithm NewtonLineSearch 0.5; # aggiorno tangente ad ogni iteraz. set NstepGravity 5; # apply gravity in 30 steps set DGravity [expr 1./\$NstepGravity]; # primo incremento di carico integrator LoadControl \$DGravity; # determine the next time step analysis Static; # define type of analysis analyze \$NstepGravity; # apply gravity #azzero il tempo loadConst -time 0.0; #APPLICAZIONE DEL CARICO CICLICO #definizione di nodo di applicazione, valore e direzione della forza set node_force 21; #indice del nodo su cui è applicata la forza set value_FY 1; #valore della forza applicata al nodo set dof_F 2; #direzione della forza (X=1, Y=2) push_PeakPts \$node_force \$value_FX \$dof_F puts "Analisi completata" **************** # SUBROUTINE UTILIZZATE proc solaio {matID F1pm F2pm F3pm F4pm d1pm d2pm d3pm d4pm F1nm F2nm F3nm F4nm d1nm d2nm d3nm d4nm rdispP rdispN rForceP rForceN uForceP uForceN} { # Positive/Negative envelope Stress/Load # stress1 stress2 stress3 stress4 set pEnvelopeStress [list [expr \$F1pm*1000.0] [expr \$F2pm*1000.0] [expr \$F3pm*1000.0] [expr \$F4pm*1000.0]] set nEnvelopeStress [list [expr \$F1nm*1000.0] [expr \$F2nm*1000.0] [expr \$F3nm*1000.0] [expr \$F4nm*1000.0]] # Positive/Negative envelope Strain/Deformation # strain1 strain2 strain3 strain4 set pEnvelopeStrain [list \$d1pm \$d2pm \$d3pm \$d4pm] set nEnvelopeStrain [list \$d1nm \$d2nm \$d3nm \$d4nm] # Ratio of maximum deformation at which reloading begins # Pos_env. Neg_env. set rDisp [list \$rdispP \$rdispN] # Ratio of envelope force at which reloading begins # Pos_env. Neg_env. set rForce [list \$rForceP \$rForceN] # Ratio of monotonic strength developed upon unloading # Pos_env. Neg_env. set uForce [list \$uForceP \$uForceN] # Coefficients for Unloading Stiffness degradation # gammaK1 gammaK2 gammaK3 gammaK4 gammaKLimit set gammaK [list 0.0 0.0 0.0 0.0 0.0] # Coefficients for Reloading Stiffness degradation # gammaD1 gammaD2 gammaD3 gammaD4 gammaDLimit set gammaD [list 0.0 0.0 0.0 0.0 0.0] # Coefficients for Strength degradation # gammaF1 gammaF2 gammaF3 gammaF4 gammaFLimit set gammaF [list 0.25 0.0 5.0 0.0 0.275]

```
set gammaE 10.0
# damage type (option: "energy", "cycle")
set dam "cycle"
# add the material to domain
uniaxialMaterial Pinching4 $matID [lindex $pEnvelopeStress 0]
[lindex $pEnvelopeStrain 0] [lindex $pEnvelopeStress 1]
[lindex $pEnvelopeStrain 1] [lindex $pEnvelopeStress 2]
[lindex $pEnvelopeStrain 2] [lindex $pEnvelopeStress 3]
[lindex $pEnvelopeStrain 3] [lindex $nEnvelopeStress 0]
[lindex $nEnvelopeStrain 0] [lindex $nEnvelopeStress 1]
[lindex $nEnvelopeStrain 1] [lindex $nEnvelopeStress 2]
[lindex $nEnvelopeStrain 2] [lindex $nEnvelopeStress 3]
[lindex $nEnvelopeStrain 3] [lindex $rDisp 0] [lindex $rForce 0]
[lindex $uForce 0] [lindex $rDisp 1] [lindex $rForce 1]
[lindex $uForce 1] [lindex $gammaK 0] [lindex $gammaK 1]
[lindex $gammaK 2] [lindex $gammaK 3] [lindex $gammaK 4]
[lindex $gammaD 0] [lindex $gammaD 1] [lindex $gammaD 2]
[lindex $gammaD 3] [lindex $gammaD 4] [lindex $gammaF 0]
[lindex $gammaF 1] [lindex $gammaF 2] [lindex $gammaF 3]
[lindex $gammaF 4] $gammaE $dam
puts "diagonali_ok"
}
proc push_PeakPts {node_force value_FX dof_F} {
source procRCycDAns.tcl
# define LATERAL load
# Lateral load pattern
pattern Plain 2 Linear {
       load $node_force 0.0 $value_FY; # node#, FX FY lateral load at top node
ŀ
# build the components for the analysis object
system ProfileSPD
constraints Plain
test NormDispIncr 1.0e-5 500
algorithm KrylovNewton
numberer RCM
#analysis type used in the procedure is Static
#spostamento del martinetto
set peakpts [list 1.0 2.0 2.0 3.0 5.0 10.0 20.0 25.0 35.0 75.0 145.0 206.0 206.0]
set increments 30
#procedure for feeding in Reverse Cyclic loading to model by Disp. control
procRCycDAns $increments $node_force $dof_F $peakpts
puts "analysis completed"
# procRCycDAns.tcl
# procedure for reverse cyclic disp. control analysis given the peak pts.
# analysis type used : STATIC
proc procRCycDAns { incre nodeTag dofTag peakpts} {
set x [lindex $peakpts 0]
set fir [expr $x/$incre]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
# create the analysis object
analysis Static
# perform the analysis
analvze $incre
integrator DisplacementControl $nodeTag $dofTag 0.0 1 [expr -$fir] [expr -$fir]
```

```
analyze [expr 2*$incre]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
analyze $incre
for {set j 1} {$j < [llength $peakpts]} {incr j 1} {
set tx [lindex $peakpts $j]
set tinc [expr $tx/$fir]
set rt [expr int($tinc)]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
analyze $rt
integrator DisplacementControl $nodeTag $dofTag 0.0 1 [expr -$fir] [expr -$fir]
analyze [expr 2*$rt]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
analyze [expr 2*$rt]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
analyze $rt
}
#end procRCycDAns.tcl
}
```

A.2.2 Solaio consolidato con tavolato a 45°

```
*************
# Description: SOLAIO CONSOLIDATO CON TAVOLATO A 45 GRADI
wipe
# costruzione del modello
model BasicBuilder -ndm 2 -ndf 2
file mkdir Risultati; #cartella file output
# richiamo le subroutine esterne
source solaio.tcl
source push_PeakPts.tcl
source procRCycDAns.tcl
# Definizione variabili del solaio
#-----
# parametri geometrici
set a 5000.0;
set b 4500.0;
set as 1250.0;
                               #lato lungo del solaio (mm)
                               #lato corto del solaio (mm)
                               #lato lungo del sottopannello (mm)
set bs 750.0;
                               #lato corto del sottopannello (mm)
set n 12; #numero molle che scaricano sui bordi
set ds [expr sqrt($as*$as+$bs*$bs)]; #lunghezza diagonale sottopannello (mm)
set th [expr atan($as/$bs)];
                               #angolo molle rispetto alla forza
# parametri della prova sperimentale
# backbone curve
#ramo POSITIVO:
set d1p 2.0;
                               #spostamento limite elastico (mm)
set d2p 12.0;
                               #1' spostamento limite plastico (mm)
set d3p 46.0;
                               #2' spostamento limite plastico (mm)
set d4p 48.0;
                               #spostamento a rottura (mm)
set F1p 80.0;
                               #forza limite elastica (kN)
set F2p 190.0;
                               #1' forza limite plastica (kN)
                               #2' forza limite plastica (kN)
set F3p 370.0;
set F4p 30.0;
                               #forza a rottura (kN)
#ramo NEGATIVO:
set d1n -1.0;
                               #spostamento limite elastico (mm)
set d2n -10.0;
set d3n -41.0;
                               #1' spostamento limite plastico (mm)
                               #2' spostamento limite plastico (mm)
```
```
set d4n -42.0;
                                     #spostamento a rottura (mm)
set F1n -70.0;
                                     #forza limite elastica (kN)
set F2n -180.0;
                                     #1' forza limite plastica (kN)
set F3n -410.0;
                                     #2' forza limite plastica (kN)
set F4n -30.0;
                                     #forza a rottura (kN)
# pinching curve (la nomenclatura corrisponde a quella del manuale OpenSees)
set d1pin 17.0;
                                     #rdispP*dmax
set d2pin 46.0;
                                     #dmax
set d3pin 42.0;
                                     #*
set d4pin -10.0;
                                     #rdispN*dmin
set d5pin -41.0;
                                     #dmin
set d6pin -35.7;
                                     #*
set F1pin 100.0;
                                     #rForceP*f(dmax)
set F2pin 370.0;
                                     #f(dmax)
set F3pin 10.0;
                                     #uForceN*eNf3
set F4pin -100.0;
                                     #rForceN*f(dmin)
set F5pin -400.0;
set F6pin -30.0;
                                     #f(dmin)
                                     #uForceP*ePf3
#fattore di scala (rapporto tra dimensione numerica e sperimentale)
set fs 1.125:
#numero di file di sottopannelli in cui è diviso metà lato lungo
set nf 2
# parametri assegnati alla singola molla
# backbone curve
#ramo POSITIVO
set d1pm [expr $d1p*cos($th)/($ds*$nf)];
                                        #allungamento limite elastico
set d2pm [expr $d2p*cos($th)/($ds*$nf)]; #1' allungamento limite plastico
set d3pm [expr $d3p*cos($th)/($ds*$nf)]; #2' allungamento limite plastico
set d4pm [expr $d4p*cos($th)/($ds*$nf)];
                                        #allungamento a rottura
set F1pm [expr $F1p*$fs/($n*cos($th))];
                                        #sforzo limite elastico (kN)
set F2pm [expr $F2p*$fs/($n*cos($th))];
                                        #1' sforzo limite plastico (kN)
set F3pm [expr $F3p*$fs/($n*cos($th))];
                                        #2' sforzo limite plastico (kN)
set F4pm [expr $F4p*$fs/($n*cos($th))];
                                        #sforzo a rottura (kN)
#ramo NEGATIVO
set d1nm [expr $d1n*cos($th)/($ds*$nf)]; #allungamento limite elastico
set d2nm [expr $d2n*cos($th)/($ds*$nf)]; #1' allungamento limite plastico
set d3nm [expr $d3n*cos($th)/($ds*$nf)];
                                        #2' allungamento limite plastico
set d4nm [expr $d4n*cos($th)/($ds*$nf)];
                                       #allungamento a rottura
set F1nm [expr $F1n*$fs/($n*cos($th))];
                                        #sforzo limite elastico (kN)
set F2nm [expr $F2n*$fs/($n*cos($th))];
                                        #1' sforzo limite plastico (kN)
set F3nm [expr $F3n*$fs/($n*cos($th))];
                                        #2' sforzo limite plastico (kN)
set F4nm [expr $F4n*$fs/($n*cos($th))]; #sforzo a rottura (kN)
# pinching curve (la nomenclatura corrisponde a quella del manuale OpenSees)
set rdispP
           [expr $d1pin/$d2pin]
           [expr $d4pin/$d5pin]
set rdispN
set rForceP [expr $F1pin/$F2pin]
set rForceN [expr $F4pin/$F5pin]
set uForceP [expr $F6pin/(-$F3n)]
set uForceN [expr $F3pin/(-$F3p)]
#-----
# Definizione dei nodi del modello
                                  #-----
       1
             0.0
                       0.0
node
node
     2
           0.0
                      750.0
            0.0
                       1500.0
node
       3
            0.0
                       2250.0
node
       4
           0.0
      5
                       3000.0
node
           0.0
     6
                       3750.0
node
node
      7
             0.0
                       4500.0
     8
            1250.0
node
                       0.0
```

```
9
           1250.0
                    750.0
node
      10
           1250.0
                    1500.0
node
          1250.0
      11
                    2250.0
node
         1250.0
node
      12
                    3000.0
           1250.0
node
      13
                    3750.0
     14
           1250.0
node
                    4500.0
     15 2500.0
node
                    0.0
     16
17
           2500.0
                    750.0
node
         2500.0
node
                    1500.0
     18 2500.0
node
                    2250.0
     19
           2500.0
                    3000.0
node
          2500.0
node
                    3750.0
    21 2500.0
node
                    4500.0
     22 3750.0
23 3750.0
                    0.0
node
node
                    750.0
      24 3750.0
node
                    1500.0
      25 3750.0
node
                    2250.0
node
      26
           3750.0
                    3000.0
     27 3750.0
                    3750.0
node
node
     28 3750.0
29 5000.0
                    4500.0
           5000.0
node
                    0.0
     30 5000.0
                    750.0
node
node 31 5000.0
                    1500.0
node
      32
           5000.0
                    2250.0
    32 5000.1
33 5000.0
node
                    3000.0
    34 5000.0
                    3750.0
node
     35
         5000.0
                   4500.0
node
# Definizione dei materiali
#-----
# truss della maglia
set truss O
set E 1.0e10
uniaxialMaterial Elastic $truss $E
# molle diagonali
set diag 1
solaio $diag $F1pm $F2pm $F3pm $F4pm $d1pm $d2pm $d3pm $d4pm $F1nm
$F2nm $F3nm $F4nm $d1nm $d2nm $d3nm $d4nm $rdispP $rdispN $rForceP
$rForceN $uForceP $uForceN
# Definizione degli elementi
#-----
# reticolo di truss
# retice.
element truss 1 1 2
element truss 2 2 3 1.0
element truss 3 3 4 1.0
clement truss 4 4 5 1.0
5 5 6 1.0
7 1.0
                                    $truss
                                   $truss
                                   $truss
                                   $truss
                                   $truss
             6 6
7 8
8 9
                       7
                            1.0
                                   $truss
                      9
10
element truss
                             1.0
                                   $truss
                           1.0
element truss
                                   $truss
element truss
                  10 11
                            1.0
             9
                                   $truss
             10
11
                       12
13
                  11
12
                            1.0
1.0
element truss
                                   $truss
element truss
                                   $truss
            12 13
element truss
                            1.0
                       14
                                   $truss
                       16
                            1.0
             13 15
element truss
                                   $truss
element truss
              14
                   16
                        17
                             1.0
                                   $truss
element truss 15 17
                       18
                            1.0
                                   $truss
                       19
element truss
            16 18
                            1.0
                                   $truss
             17 19
18 20
                        20
                             1.0
element truss
                                   $truss
                           1.0
element truss
                      21
                                   $truss
element truss 19 22
element truss 20 23
                      23
                            1.0
                                   $truss
                        24
                             1.0
                                   $truss
                 24
                      25
            21
                            1.0
element truss
                                   $truss
```

element	truss	22	25	26	1.0	\$truss
element	truss	23	26	27	1.0	\$truss
element	truss	24	27	28	1.0	\$truss
element	truss	25	29	30	1.0	\$truss
element	truss	26	30	31	1.0	\$truss
element	truss	27	31	32	1.0	\$truss
element	truss	28	32	33	1.0	\$truss
element	truss	29	33	34	1 0	\$truss
element	truss	30	34	35	1 0	\$truss
olomont	trucc	31	1	00	1 0	\$+rugg
element	truss	20	1	0 1 F	1.0	
element	truss	32	0	15	1.0	þtruss
element	truss	33	15	22	1.0	struss
element	truss	34	22	29	1.0	\$truss
element	truss	35	2	9	1.0	\$truss
element	truss	36	9	16	1.0	\$truss
element	truss	37	16	23	1.0	\$truss
element	truss	38	23	30	1.0	\$truss
element	truss	39	3	10	1.0	\$truss
element	truss	40	10	17	1.0	\$truss
element	truss	41	17	24	1.0	\$truss
element	truss	42	24	31	1.0	\$truss
element	truss	43	4	11	1 0	\$truss
element	truee	10	11	18	1 0	\$trues
element	truss	11	10	25	1.0	\$tmuaa
element	truss	45	10	20	1.0	
element	truss	40	25	32	1.0	atruss
element	truss	47	5	12	1.0	\$truss
element	truss	48	12	19	1.0	\$truss
element	truss	49	19	26	1.0	\$truss
element	truss	50	26	33	1.0	\$truss
element	truss	51	6	13	1.0	\$truss
element	truss	52	13	20	1.0	\$truss
element	truss	53	20	27	1.0	\$truss
element	truss	54	27	34	1.0	\$truss
element	truss	55	7	14	1.0	\$truss
element	truss	56	14	21	1.0	\$truss
element	truss	57	21	28	1 0	\$truss
element	truss	58	28	35	1 0	\$truss
CICMCHU	ULUBB	00	20	00	1.0	VUUUUU
# elemen	nti diagor	nali				
element	truss	59	1	9	1.0	\$diag
alement	truee	60	- 2	10	1 0	\$diag
erement	+ rugs	61	2	11	1 0	t diam
erement		60	3	10	1.0	¢dia
element	LTUSS	0∠ 62	4 F	12	1.0	ødtag
e⊥ement	truss	03	D C	13	1.0	þalag
element	truss	64	6	14	1.0	\$dlag
element	truss	65	8	16	1.0	\$diag
element	truss	66	9	17	1.0	\$diag
element	truss	67	10	18	1.0	\$diag
element	truss	68	11	19	1.0	\$diag
element	truss	69	12	20	1.0	\$diag
element	truss	70	13	21	1.0	\$diag
element	truss	71	16	22	1.0	\$diag
element	truss	72	17	23	1.0	\$diag
element	truse	73	18	24	1 0	\$diag
alament	truse	74	19	25	1 0	\$diag
olomon+	trucc	75	20	20	1 0	t diam
erement	LIUSS	10	20	20	1.0	φuiag
e⊥ement	truss	16	21	27	1.0	\$alag
element	truss	77	23	29	1.0	\$dlag
element	truss	78	24	30	1.0	\$diag
element	truss	79	25	31	1.0	\$diag
element	truss	80	26	32	1.0	\$diag
element	truss	81	27	33	1.0	\$diag
element	truss	82	28	34	1.0	\$diag
					-	5
#						
# Dofini	izione dei	nodi	vincol	ati		
" neiill	La rome del	nour	v THCO1	Laul		
#						

fix 4 1 1

fix 32 1 1 #-----# Output dei dati #-----recorder Node -file Risultati/disp.txt -node 21 -dof 2 disp; recorder Node -file Risultati/react.txt -node 4 32 -dof 2 reaction; #-----# ANALISI #-----#Gravity-analysis parameters -- load-controlled static analysis set Tol 1.0e-5 ; set Niter 1000 ; # numero massimo di iterazioni constraints Transformation; # impostazioni condiz. al contorno numberer RCM; # minimizzazione larghezza di banda # modalità risoluzione del sistema system BandGeneral: test NormDispIncr \$Tol \$Niter 0 ; # controllo sulla convergenza test EnergyIncr \$Tol \$Niter 0 ; algorithm NewtonLineSearch 0.5 ; # aggiorno tangente ad ogni iteraz. set NstepGravity 5; # apply gravity in 30 steps set DGravity [expr 1./\$NstepGravity]; # primo incremento di carico
integrator LoadControl \$DGravity; # determine the next time step integrator LoadControl \$DGravity; analysis Static; # define type of analysis analyze \$NstepGravity; # apply gravity #azzero il tempo loadConst -time 0.0; #APPLICAZIONE DEL CARICO CICLICO #definizione di nodo di applicazione, valore e direzione della forza set node_force 21; #indice del nodo su cui è applicata la forza set value_FY 1; #valore della forza applicata al nodo set dof_F 2; #direzione della forza (X=1, Y=2) push_PeakPts \$node_force \$value_FX \$dof_F puts "Analisi completata" # SUBROUTINE UTILIZZATE **************** proc solaio {matID F1pm F2pm F3pm F4pm d1pm d2pm d3pm d4pm F1nm F2nm F3nm F4nm d1nm d2nm d3nm d4nm rdispP rdispN rForceP rForceN uForceP uForceN} { # Positive/Negative envelope Stress/Load # stress1 stress2 stress3 stress4 set pEnvelopeStress [list [expr \$F1pm*1000.0] [expr \$F2pm*1000.0] [expr \$F3pm*1000.0] [expr \$F4pm*1000.0]] set nEnvelopeStress [list [expr \$F1nm*1000.0] [expr \$F2nm*1000.0] [expr \$F3nm*1000.0] [expr \$F4nm*1000.0]] # Positive/Negative envelope Strain/Deformation # strain1 strain2 strain3 strain4 set pEnvelopeStrain [list \$d1pm \$d2pm \$d3pm \$d4pm]
set nEnvelopeStrain [list \$d1nm \$d2nm \$d3nm \$d4nm] # Ratio of maximum deformation at which reloading begins # Pos_env. Neg_env. set rDisp [list \$rdispP \$rdispN] # Ratio of envelope force at which reloading begins # Pos_env. Neg_env. set rForce [list \$rForceP \$rForceN] # Ratio of monotonic strength developed upon unloading

```
# Pos_env. Neg_env.
set uForce [list $uForceP $uForceN]
# Coefficients for Unloading Stiffness degradation
# gammaK1 gammaK2 gammaK3 gammaK4 gammaKLimit
set gammaK [list 0.0 0.0 0.0 0.0 0.0]
# Coefficients for Reloading Stiffness degradation
# gammaD1 gammaD2 gammaD3 gammaD4 gammaDLimit
set gammaD [list 0.0 0.0 0.0 0.0 0.0]
# Coefficients for Strength degradation
# gammaF1 gammaF2 gammaF3 gammaF4 gammaFLimit
set gammaF [list 0.0 0.0 0.0 0.0]
set gammaE 10.0
# damage type (option: "energy", "cycle")
set dam "cycle"
# add the material to domain
uniaxialMaterial Pinching4 $matID [lindex $pEnvelopeStress 0]
[lindex $pEnvelopeStrain 0] [lindex $pEnvelopeStress 1]
[lindex $pEnvelopeStrain 1] [lindex $pEnvelopeStress 2]
[lindex $pEnvelopeStrain 2] [lindex $pEnvelopeStress 3]
[lindex $pEnvelopeStrain 3] [lindex $nEnvelopeStress 0]
[lindex $nEnvelopeStrain 0] [lindex $nEnvelopeStress 1]
[lindex $nEnvelopeStrain 1] [lindex $nEnvelopeStress 2]
[lindex $nEnvelopeStrain 2] [lindex $nEnvelopeStress 3]
[lindex $nEnvelopeStrain 3] [lindex $rDisp 0] [lindex $rForce 0]
[lindex $uForce 0] [lindex $rDisp 1] [lindex $rForce 1]
[lindex $uForce 1] [lindex $gammaK 0] [lindex $gammaK 1]
[lindex $gammaK 2] [lindex $gammaK 3] [lindex $gammaK 4]
[lindex $gammaD 0] [lindex $gammaD 1] [lindex $gammaD 2]
[lindex $gammaD 3] [lindex $gammaD 4] [lindex $gammaF 0]
[lindex $gammaF 1] [lindex $gammaF 2] [lindex $gammaF 3]
[lindex $gammaF 4] $gammaE $dam
puts "diagonali_ok"
#-----
                            _____
proc push_PeakPts {node_force value_FX dof_F} {
source procRCycDAns.tcl
# define LATERAL load
# Lateral load pattern
pattern Plain 2 Linear {
       load $node_force 0.0 $value_FY; # node#, FX FY lateral load at top node
7
# build the components for the analysis object
system ProfileSPD
constraints Plain
test NormDispIncr 1.0e-5 500
algorithm KrylovNewton
numberer RCM
#analysis type used in the procedure is Static
#spostamento del martinetto
set peakpts [list 1.0 1.0 1.0 2.0 2.0 2.0 3.0 3.0 5.0 5.0 8.0 8.0 10.0 10.0
20.0 25.0 42.0 46.0]
set increments 100
#procedure for feeding in Reverse Cyclic loading to model by Disp. control
procRCycDAns $increments $node_force $dof_F $peakpts
puts "analysis completed"
```

```
#------
# procRCycDAns.tcl
# procedure for reverse cyclic disp. control analysis given the peak pts.
# analysis type used : STATIC
proc procRCycDAns { incre nodeTag dofTag peakpts} {
set x [lindex $peakpts 0]
set fir [expr $x/$incre]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
# create the analysis object
analysis Static
# perform the analysis
analyze $incre
integrator DisplacementControl $nodeTag $dofTag 0.0 1 [expr -$fir] [expr -$fir]
analyze [expr 2*$incre]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
analyze $incre
for {set j 1} {j < [llength $peakpts]} {incr j 1} {
set tx [lindex $peakpts $j]
set tinc [expr $tx/$fir]
set rt [expr int($tinc)]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
analvze $rt
integrator DisplacementControl $nodeTag $dofTag 0.0 1 [expr -$fir] [expr -$fir]
analyze [expr 2*$rt]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
analyze $rt
}
#end procRCycDAns.tcl
7
```

A.2.3 Solaio consolidato con profili sottili in acciaio

```
****************
# Description: SOLAIO CONSOLIDATO CON PROFILI SOTTILI IN ACCIAIO
********
wipe
# costruzione del modello
model BasicBuilder -ndm 2 -ndf 2
file mkdir Risultati;
               #cartella file output
#-----
# richiamo le subroutine esterne
source solaio.tcl
source push_PeakPts.tcl
source procRCycDAns.tcl
# Definizione variabili del solaio
#-----
                     -----
# parametri geometrici
set a 5000.0;
                          #lato lungo del solaio (mm)
set b 4500.0;
                          #lato corto del solaio (mm)
set as 1250.0;
                          #lato lungo del sottopannello (mm)
set bs 750.0:
                          #lato corto del sottopannello (mm)
                          #numero molle che scaricano sui bordi
set n 12;
set ds [expr sqrt($as*$as+$bs*$bs)];
                         #lunghezza diagonale sottopannello (mm)
set th [expr atan($as/$bs)];
                          #angolo molle rispetto alla forza
# parametri della prova sperimentale
```

backbone curve #ramo POSITIVO: set d1p 2.0; #spostamento limite elastico (mm) set d2p 8.0; #1' spostamento limite plastico (mm) set d3p 25.0; #2' spostamento limite plastico (mm) set d4p 55.0; #spostamento a rottura (mm) set F1p 100.0; #forza limite elastica (kN) set F2p 220.0; #1' forza limite plastica (kN) set F3p 350.0; #2' forza limite plastica (kN) set F4p 410.0; #forza a rottura (kN) #ramo NEGATIVO: set d1n -1.0; #spostamento limite elastico (mm) set d2n -7.0; #1' spostamento limite plastico (mm) #2' spostamento limite plastico (mm) set d3n -29.0; #spostamento a rottura (mm) set d4n -35.0; set F1n -50.0; #forza limite elastica (kN) set F2n -155.0; #1' forza limite plastica (kN) #2' forza limite plastica (kN) set F3n -310.0; set F4n -30.0; #forza a rottura (kN) # pinching curve (la nomenclatura corrisponde a quella del manuale OpenSees) set d1pin 17.0; #rdispP*dmax set d2pin 27.0; #dmax set d3pin 21.0; #* set d4pin -16.0; #rdispN*dmin set d5pin -31.0; set d6pin -25.0; #dmin #* set F1pin 160.0; #rForceP*f(dmax) set F2pin 350.0; #f(dmax) set F3pin 50.0; #uForceN*eNf3 set F4pin -90.0; #rForceN*f(dmin) set F5pin -280.0; #f(dmin) set F6pin 0.0; #uForceP*ePf3 #fattore di scala (rapporto tra dimensione numerica e sperimentale) set fs 1.125: #numero di file di sottopannelli in cui è diviso metà lato lungo set nf 2 # parametri assegnati alla singola molla # backbone curve #ramo POSITIVO set d1pm [expr \$d1p*cos(\$th)/(\$ds*\$nf)]; #allungamento limite elastico set d2pm [expr \$d2p*cos(\$th)/(\$ds*\$nf)]; #1' allungamento limite plastico #2' allungamento limite plastico set d3pm [expr \$d3p*cos(\$th)/(\$ds*\$nf)]; set d4pm [expr \$d4p*cos(\$th)/(\$ds*\$nf)]; #allungamento a rottura set F1pm [expr \$F1p*\$fs/(\$n*cos(\$th))]; #sforzo limite elastico (kN) #1' sforzo limite plastico (kN) set F2pm [expr \$F2p*\$fs/(\$n*cos(\$th))]; #2' sforzo limite plastico (kN) set F3pm [expr \$F3p*\$fs/(\$n*cos(\$th))]; set F4pm [expr \$F4p*\$fs/(\$n*cos(\$th))]; #sforzo a rottura (kN) #ramo NEGATIVO set d1nm [expr \$d1n*cos(\$th)/(\$ds*\$nf)]; #allungamento limite elastico set d2nm [expr \$d2n*cos(\$th)/(\$ds*\$nf)]; #1' allungamento limite plastico set d3nm [expr \$d3n*cos(\$th)/(\$ds*\$nf)]; #2' allungamento limite plastico set d4nm [expr \$d4n*cos(\$th)/(\$ds*\$nf)]; #allungamento a rottura set F1nm [expr \$F1n*\$fs/(\$n*cos(\$th))]; #sforzo limite elastico (kN) set F2nm [expr \$F2n*\$fs/(\$n*cos(\$th))]; #1' sforzo limite plastico (kN) set F3nm [expr \$F3n*\$fs/(\$n*cos(\$th))]; #2' sforzo limite plastico (kN) set F4nm [expr \$F4n*\$fs/(\$n*cos(\$th))]; #sforzo a rottura (kN) # pinching curve (la nomenclatura corrisponde a quella del manuale OpenSees) set rdispP [expr \$d1pin/\$d2pin] set rdispN [expr \$d4pin/\$d5pin] set rForceP [expr \$F1pin/\$F2pin] set rForceN [expr \$F4pin/\$F5pin]

set uForceP [expr \$F6pin/(-\$F3n)] set uForceN [expr \$F3pin/(-\$F3p)] #-----# Definizione dei nodi del modello 0.0 node 1 0.0 750.0 node 2 1500.0 node 3 0.0 0.0 0.0 2250.0 node 4 node 5 3000.0 6 0.0 node 3750.0 7 8 0.0 1250.0 node 4500.0 node 0.0 1250.0 node 9 750.0 node 10 1250.0 1500.0 node 11 1250.0 2250.0 12 1250.0 3000.0 node node 13 1250.0 3750.0 14 1250.0 node 4500.0 15 2500.0 0.0 node node 16 2500.0 750.0 node 17 2500.0 1500.0 18 2500.0 node 2250.0 19 2500.0 3000.0 node 202500.0212500.0 node 3750.0 node 4500.0 22 3750.0 node 0.0 23 3750.0 24 3750.0 node 750.0 node 1500.0 node 25 3750.0 2250.0 node 26 3750.0 3000.0 27 3750.0 3750.0 node 28 3750.0 node 4500.0 5000.0 node 29 0.0 node 30 5000.0 750.0 31 5000.0 1500.0 node node 32 5000.0 2250.0 33 node 5000.0 3000.0 34 5000.0 3750.0 node 35 5000.0 4500.0 node # Definizione dei materiali #-----# truss della maglia set truss 0 set E 1.0e10 uniaxialMaterial Elastic \$truss \$E # molle diagonali set diag 1 solaio \$diag \$F1pm \$F2pm \$F3pm \$F4pm \$d1pm \$d2pm \$d3pm \$d4pm \$F1nm \$F2nm \$F3nm \$F4nm \$d1nm \$d2nm \$d3nm \$d4nm \$rdispP \$rdispN \$rForceP \$rForceN \$uForceP \$uForceN #-----# Definizione degli elementi _____ #----_ _ _ _ _ _ _ # reticolo di truss 1 2 1.0 \$truss element truss 1 2 2 3 1.0 element truss \$truss 1.0 element truss 3 3 4 \$truss element truss 4 4 5 5 1.0 \$truss 5 6 1.0 \$truss element truss 7 6 element truss 6 1.0 \$truss

element	truss	7	8	9	1.0	\$truss
element	truss	8	9	10	1.0	\$truss
element	truss	9	10	11	1.0	\$truss
element	truss	10	11	12	1.0	\$truss
element	truss	11	12	13	1.0	\$truss
element	truss	12	13	14	1.0	\$truss
element	truss	13	15	16	1.0	\$truss
element	truss	14	16	17	1.0	\$truss
element	truss	15	17	18	1.0	\$truss
element	truss	16	18	19	1.0	\$truss
element	truss	17	19	20	1.0	\$truss
element	truss	18	20	21	1.0	\$truss
element	truss	19	22	23	1.0	\$truss
element	truss	20	23	24	1.0	\$truss
element	truss	21	24	25	1.0	\$truss
element	truss	22	25	26	1.0	\$truss
element	truss	23	26	27	1.0	\$truss
element	truss	24	27	28	1.0	\$truss
element	truss	25	29	30	1.0	\$truss
element	truss	26	30	31	1.0	\$truss
element	truss	27	31	32	1.0	\$truss
element	truss	28	32	33	1.0	\$truss
element	truss	29	33	34	1.0	\$truss
element	truss	30	34	35	1.0	\$truss
element	truss	31	1	8	1.0	\$truss
element	truss	32	8	15	1.0	\$truss
element	truss	33	15	22	1.0	\$truss
element	truss	34	22	29	1.0	\$truss
element	truss	35	2	9	1.0	\$truss
element	truss	36	9	16	1.0	\$truss
element	truss	37	16	23	1.0	\$truss
element	truss	38	23	30	1.0	\$truss
element	truss	39	3	10	1.0	\$truss
element	truss	40	10	17	1.0	\$truss
element	truss	41	24	24	1.0	\$truss
element	truss	42	24 4	31	1.0	\$truss
element	truss	43	4 1 1	10	1.0	¢truss
element	truss	44	10	10	1.0	\$truss \$truss
element	truss	45	10	20	1.0	\$truss \$truss
element	truss	40	5	12	1.0	\$trues
element	truss	48	12	19	1 0	\$truss
element	truss	40 49	19	26	1.0	\$truss
element	truss	50	26	33	1 0	\$truss
element	truss	51	6	13	1.0	\$truss
element	truss	52	13	20	1.0	\$truss
element	truss	53	20	27	1.0	\$truss
element	truss	54	27	34	1.0	\$truss
element	truss	55	7	14	1.0	\$truss
element	truss	56	14	21	1.0	\$truss
element	truss	57	21	28	1.0	\$truss
element	truss	58	28	35	1.0	\$truss
# elemer	nti diagon	nali				
element	truss	59	1	9	1.0	\$diag
element	truss	60	2	10	1.0	\$diag
element	truss	61	3	11	1.0	\$diag
element	truss	62	4	12	1.0	\$diag
element	truss	63	5	13	1.0	\$diag
e⊥ement	truss	64 СГ	0	14	1.0	şalag
e⊥ement	truss	65	8 0	16	1.0	\$dlag
element	truss	00 67	9	10	1.0	⊅alag ¢a÷-
element	trues	69	11	10	1.0	¢uiag ¢di∼~
element	truss	00	10	19	1.0	oulag edi
element	trues	70	⊥∠ 13	∠∪ 21	1.0	¢uiag ¢di∼~
erement	51 USS trugg	71	15 16	∠⊥ 22	1 0	gurag \$diam
element	truee	72	17	23	1 0	gurag \$diam
olomon+	truss	73	18	20	1 0	yurag \$diam
erement	UT UD D	10	10	44	1.0	wurag

25 1.0 74 19 \$diag element truss element truss 75 20 26 1.0 \$diag 1.0 element truss 76 21 27 \$diag element truss772329element truss782430 1.0 \$diag element truss 1.0 \$diag element truss 79 25 31 1.0 \$diag element truss8026321.0element truss8127331.0element truss8228341.0 \$diag \$diag 28 \$diag #-----# Definizione dei nodi vincolati #-----fix 4 1 1 fix 32 1 1 # Output dei dati #----recorder Node -file Risultati/disp.txt -node 21 -dof 2 disp; recorder Node -file Risultati/react.txt -node 4 32 -dof 2 reaction; # ANALISI #-----#Gravity-analysis parameters -- load-controlled static analysis set Tol 1.0e-5 ; set Niter 1000 ; # numero massimo di iterazioni constraints Transformation; # impostazioni condiz. al contorno numberer RCM; # minimizzazione larghezza di banda system BandGeneral; # modalità risoluzione del sistema test NormDispIncr \$Tol \$Niter 0 ; # controllo sulla convergenza test EnergyIncr \$Tol \$Niter 0 ; algorithm NewtonLineSearch 0.5; # aggiorno tangente ad ogni iteraz. set NstepGravity 5; # apply gravity in 30 steps set DGravity [expr 1./\$NstepGravity]; # primo incremento di carico integrator LoadControl \$DGravity; # determine the next time step analysis Static; # define type of analysis analyze \$NstepGravity; # apply gravity #azzero il tempo loadConst -time 0.0; #APPLICAZIONE DEL CARICO CICLICO #definizione di nodo di applicazione, valore e direzione della forza set node_force 21; #indice del nodo su cui è applicata la forza #valore della forza applicata al nodo set value_FY 1; set dof_F 2; #direzione della forza (X=1, Y=2) push_PeakPts \$node_force \$value_FX \$dof_F puts "Analisi completata" # SUBROUTINE UTILIZZATE proc solaio {matID F1pm F2pm F3pm F4pm d1pm d2pm d3pm d4pm F1nm F2nm F3nm F4nm d1nm d2nm d3nm d4nm rdispP rdispN rForceP rForceN uForceP uForceN} { # Positive/Negative envelope Stress/Load # stress1 stress2 stress3 stress4 set pEnvelopeStress [list [expr \$F1pm*1000.0] [expr \$F2pm*1000.0] [expr \$F3pm*1000.0] [expr \$F4pm*1000.0]]
set nEnvelopeStress [list [expr \$F1nm*1000.0] [expr \$F2nm*1000.0] [expr \$F3nm*1000.0] [expr \$F4nm*1000.0]]

```
# Positive/Negative envelope Strain/Deformation
# strain1 strain2 strain3 strain4
set pEnvelopeStrain [list $d1pm $d2pm $d3pm $d4pm]
set nEnvelopeStrain [list $d1nm $d2nm $d3nm $d4nm]
# Ratio of maximum deformation at which reloading begins
# Pos_env. Neg_env.
set rDisp [list $rdispP $rdispN]
# Ratio of envelope force at which reloading begins
# Pos_env. Neg_env.
set rForce [list $rForceP $rForceN]
# Ratio of monotonic strength developed upon unloading
# Pos_env. Neg_env.
set uForce [list $uForceP $uForceN]
# Coefficients for Unloading Stiffness degradation
# gammaK1 gammaK2 gammaK3 gammaK4 gammaKLimit
set gammaK [list 0.0 0.0 0.0 0.0]
# Coefficients for Reloading Stiffness degradation
# gammaD1 gammaD2 gammaD3 gammaD4 gammaDLimit
set gammaD [list 0.0 0.0 0.0 0.0 0.0]
# Coefficients for Strength degradation
# gammaF1 gammaF2 gammaF3 gammaF4 gammaFLimit
set gammaF [list 0.0 0.0 0.0 0.0]
set gammaE 10.0
# damage type (option: "energy", "cycle")
set dam "cycle"
# add the material to domain
uniaxialMaterial Pinching4 $matID [lindex $pEnvelopeStress 0]
[lindex $pEnvelopeStrain 0] [lindex $pEnvelopeStress 1]
[lindex $pEnvelopeStrain 1] [lindex $pEnvelopeStress 2]
[lindex $pEnvelopeStrain 2] [lindex $pEnvelopeStress 3]
[lindex $pEnvelopeStrain 3] [lindex $nEnvelopeStress 0]
[lindex $nEnvelopeStrain 0] [lindex $nEnvelopeStress 1]
[lindex $nEnvelopeStrain 1] [lindex $nEnvelopeStress 2]
[lindex $nEnvelopeStrain 2] [lindex $nEnvelopeStress 3]
[lindex $nEnvelopeStrain 3] [lindex $rDisp 0] [lindex $rForce 0]
[lindex $uForce 0] [lindex $rDisp 1] [lindex $rForce 1]
[lindex $uForce 1] [lindex $gammaK 0] [lindex $gammaK 1]
[lindex $gammaK 2] [lindex $gammaK 3] [lindex $gammaK 4]
[lindex $gammaD 0] [lindex $gammaD 1] [lindex $gammaD 2]
[lindex $gammaD 3] [lindex $gammaD 4] [lindex $gammaF 0]
[lindex $gammaF 1] [lindex $gammaF 2] [lindex $gammaF 3]
[lindex $gammaF 4] $gammaE $dam
puts "diagonali_ok"
7
proc push_PeakPts {node_force value_FX dof_F} {
source procRCycDAns.tcl
# define LATERAL load
# Lateral load pattern
pattern Plain 2 Linear {
        load $node_force 0.0 $value_FY; # node#, FX FY lateral load at top node
7
# build the components for the analysis object
system ProfileSPD
```

```
constraints Plain
test NormDispIncr 1.0e-5 500
algorithm KrylovNewton
numberer RCM
#analysis type used in the procedure is Static
#spostamento del martinetto
set peakpts [list 2.0 2.0 2.0 5.0 5.0 5.0 8.0 8.0 13.0 13.0 27.0 27.0
28.0 30.0 57.0]
set increments 30
#procedure for feeding in Reverse Cyclic loading to model by Disp. control
procRCycDAns $increments $node_force $dof_F $peakpts
puts "analysis completed"
3
#-----
# procRCycDAns.tcl
# procedure for reverse cyclic disp. control analysis given the peak pts.
# analysis type used : STATIC
proc procRCycDAns { incre nodeTag dofTag peakpts} {
set x [lindex $peakpts 0]
set fir [expr $x/$incre]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
# create the analysis object
analysis Static
# perform the analysis
analyze $incre
integrator DisplacementControl $nodeTag $dofTag 0.0 1 [expr -$fir] [expr -$fir]
analyze [expr 2*$incre]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
analyze $incre
for {set j 1} {j < [llength $peakpts]} {incr j 1} {
set tx [lindex $peakpts $j]
set tinc [expr $tx/$fir]
set rt [expr int($tinc)]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
analyze $rt
integrator DisplacementControl $nodeTag $dofTag 0.0 1 [expr -$fir] [expr -$fir]
analyze [expr 2*$rt]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
analyze $rt
3
#end procRCycDAns.tcl
7
```

A.2.4 Solaio consolidato con soletta in calcestruzzo armato

```
*************
# Description: SOLAIO CONSOLIDATO CON SOLETTA IN CALCESTRUZZO ARMATO
                                        #
*********
wipe
# costruzione del modello
model BasicBuilder -ndm 2 -ndf 2
file mkdir Risultati; #cartella file output
#-----
# richiamo le subroutine esterne
source solaio.tcl
source push_PeakPts.tcl
source procRCycDAns.tcl
# - - - - - -
                  -----
# Definizione variabili del solaio
```

#-----# parametri geometrici set a 5000.0; #lato lungo del solaio (mm) set b 4500.0; #lato corto del solaio (mm) set as 1250.0; #lato lungo del sottopannello (mm) set bs 750.0; #lato corto del sottopannello (mm) set n 12; #numero molle che scaricano sui bordi set ds [expr sqrt(\$as*\$as+\$bs*\$bs)]; #lunghezza diagonale sottopannello (mm) set th [expr atan(\$as/\$bs)]; #angolo molle rispetto alla forza # parametri della prova sperimentale # backbone curve #ramo POSITIVO: set d1p 0.5; #spostamento limite elastico (mm) set d2p 3.7; #1' spostamento limite plastico (mm) #2' spostamento limite plastico (mm) set d3p 7.0; set d4p 12.5; #spostamento a rottura (mm) #forza limite elastica (kN) set F1p 43.0; set F2p 280.0; #1' forza limite plastica (kN) set F3p 385.0; #2' forza limite plastica (kN) set F4p 360.0; #forza a rottura (kN) #ramo NEGATIVO: set d1n -0.3; set d2n -1.0; #spostamento limite elastico (mm) #1' spostamento limite plastico (mm) #2' spostamento limite plastico (mm) set d3n -5.2; set d4n -10.5; #spostamento a rottura (mm) set F1n -43.0; #forza limite elastica (kN) set F2n -250.0; #1' forza limite plastica (kN) set F3n -450.0; #2' forza limite plastica (kN) set F4n -360.0; #forza a rottura (kN) # pinching curve (la nomenclatura corrisponde a quella del manuale OpenSees) set d1pin 1.4; #rdispP*dmax set d2pin 7.0; #dmax set d3pin 3.0; #* set d4pin -0.9; set d5pin -5.5; #rdispN*dmin #dmin set d6pin -2.5; #* set F1pin 100.0; #rForceP*f(dmax) set F2pin 380.0; #f(dmax) set F3pin 40.0; #uForceN*eNf3 set F4pin -100.0; set F5pin -450.0; #rForceN*f(dmin) #f(dmin) set F6pin -50.0; #uForceP*ePf3 #fattore di scala (rapporto tra dimensione numerica e sperimentale) set fs 1.125; #numero di file di sottopannelli in cui è diviso metà lato lungo set nf 2 # parametri assegnati alla singola molla # backbone curve #ramo POSITIVO set d1pm [expr \$d1p*cos(\$th)/(\$ds*\$nf)]; #allungamento limite elastico set d2pm [expr \$d2p*cos(\$th)/(\$ds*\$nf)]; #1' allungamento limite plastico set d3pm [expr \$d3p*cos(\$th)/(\$ds*\$nf)]; #2' allungamento limite plastico set d4pm [expr \$d4p*cos(\$th)/(\$ds*\$nf)]; #allungamento a rottura set F1pm [expr \$F1p*\$fs/(\$n*cos(\$th))]; #sforzo limite elastico (kN) set F2pm [expr \$F2p*\$fs/(\$n*cos(\$th))]; #1' sforzo limite plastico (kN) set F3pm [expr \$F3p*\$fs/(\$n*cos(\$th))]; #2' sforzo limite plastico (kN) set F4pm [expr \$F4p*\$fs/(\$n*cos(\$th))]; #sforzo a rottura (kN) #ramo NEGATIVO set d1nm [expr \$d1n*cos(\$th)/(\$ds*\$nf)]; #allungamento limite elastico

set d2nm [expr $d2n*\cos(th)/(ds*t)$]; #1' allungamento limite plastico set d3nm [expr \$d3n*cos(\$th)/(\$ds*\$nf)]; #2' allungamento limite plastico set d3nm [expr \$d4n*cos(\$th)/(\$ds*\$nf)]; #2 arrangamento a rottura set F1nm [expr \$F1n*\$fs/(\$n*cos(\$th))]; #sforzo limite elastico (kN) set F2nm [expr \$F2n*\$fs/(\$n*cos(\$th))]; #1' sforzo limite plastico (kN)
set F3nm [expr \$F3n*\$fs/(\$n*cos(\$th))]; #2' sforzo limite plastico (kN) set F4nm [expr \$F4n*\$fs/(\$n*cos(\$th))]; #sforzo a rottura (kN) # pinching curve (la nomenclatura corrisponde a quella del manuale OpenSees) set rdispP [expr \$d1pin/\$d2pin] set rdispN [expr \$d4pin/\$d5pin] set rForceP [expr \$F1pin/\$F2pin] set rForceN [expr \$F4pin/\$F5pin] set uForceP [expr \$F6pin/(-\$F3n)] set uForceN [expr \$F3pin/(-\$F3p)] # Definizione dei nodi del modello #-----0.0 0.0 node 0.0 1 node 2 750.0 node 3 0.0 1500.0 4 0.0 node 2250.0 0.0 3000.0 node 5 6 7 0.0 0.0 node 3750.0 node 4500.0 8 1250.0 node 0.0 1250.0 9 node 750.0 node 10 1250.0 1500.0 11 1250.0 node 2250.0 12 1250.0 node 3000.0 13 14 1250.0 1250.0 3750.0 node node 4500.0 15 2500.0 node 0.0 node 16 2500.0 750.0 17 2500.0 1500.0 node node 18 2500.0 2250.0 node 19 2500.0 3000.0 20 2500.0 3750.0 node 21 2500.0 4500.0 node 22 3750.0 node 0.0 3750.0 node 23 750.0 24 3750.0 1500.0 node 25 25 3750.0 3750.0 2250.0 node node 26 3000.0 3750.0 node 27 3750.0 3750.0 28 4500.0 node node 29 5000.0 0.0 30 5000.0 750.0 node 315000.0325000.0 1500.0 node 2250.0 node 33 5000.0 node 3000.0 node 34 5000.0 3750.0 node 35 5000.0 4500.0 # Definizione dei materiali # truss della maglia set truss 0 set E 1.0e10 uniaxialMaterial Elastic \$truss \$E # molle diagonali set diag 1 solaio \$diag \$F1pm \$F2pm \$F3pm \$F4pm \$d1pm \$d2pm \$d3pm \$d4pm \$F1nm \$F2nm \$F3nm \$F4nm \$d1nm \$d2nm \$d3nm \$d4nm \$rdispP \$rdispN \$rForceP

\$rForceN \$uForceP \$uForceN

retico	lo di	truss				
Lement	truss	1	1	2	1.0	\$truss
lement	truss	2	2	3	1.0	\$truss
Lement	truss	3	3	4	1.0	\$truss
Lement	truss	4	4	5	1.0	\$truss
lement	truss	5	5	6	1.0	\$truss
lement	truss	6	6	7	1.0	\$truss
Lement	truss	7	8	9	1.0	\$truss
lement	truss	8	9	10	1.0	\$truss
Lement	truss	9	10	11	1.0	\$truss
Lement	truss	10	11	12	1.0	\$truss
Lement	truss	11	12	13	1.0	\$truss
lomont	trues	12	15	14	1.0	\$ trues
Lomont	trues	1/	16	17	1 0	\$trues
lement	truse	15	17	18	1 0	\$truss
Lement	truss	16	18	19	1.0	\$truss
Lement	truss	17	19	20	1.0	\$truss
Lement	truss	18	20	21	1.0	\$truss
Lement	truss	19	22	23	1.0	\$truss
lement	truss	20	23	24	1.0	\$truss
Lement	truss	21	24	25	1.0	\$truss
Lement	truss	22	25	26	1.0	\$truss
Lement	truss	23	26	27	1.0	\$truss
lement	truss	24	27	28	1.0	\$truss
Lement	truss	25	29	30	1.0	\$truss
Lement	truss	26	30	31	1.0	\$truss
lement	truss	27	31	32	1.0	\$truss
Lement	truss	28	32	33	1.0	\$truss
lement	truss	29	33	34	1.0	\$truss
lement	truss	30	34	35	1.0	\$truss
Lement	truss	31	1	8	1.0	\$truss
Lement	truss	32	8	15	1.0	\$truss
Lement	truss	33	15	22	1.0	\$truss
lement	truss	34	22	29	1.0	\$truss \$truss
lomont	trues	36	2	9	1.0	\$ trues
lomont	truss	37	16	23	1.0	\$truss
lomont	truss	38	23	30	1 0	\$truss
Lement.	truss	39	3	10	1.0	\$truss
Lement	truss	40	10	17	1.0	\$truss
Lement	truss	41	17	24	1.0	\$truss
Lement	truss	42	24	31	1.0	\$truss
lement	truss	43	4	11	1.0	\$truss
Lement	truss	44	11	18	1.0	\$truss
Lement	truss	45	18	25	1.0	\$truss
lement	truss	46	25	32	1.0	\$truss
lement	truss	47	5	12	1.0	\$truss
Lement	truss	48	12	19	1.0	\$truss
lement	truss	49	19	26	1.0	\$truss
lement	truss	50	26	33	1.0	\$truss
lement	truss	51	6	13	1.0	\$truss
Lement	truss	52	13	20	1.0	\$truss
Lement	truss	53	20	27	1.0	\$truss
Lement	truss	54	27	34	1.0	\$truss
Lement	truss	55	7	14	1.0	\$truss
Lement	truss	56	14	21	1.0	\$truss
lomort	truss	5/	21	28 25	1.0	φιιuss ¢truca
lement	LIUSS	58	20	35	1.0	φι1 488
.]	+ i 2:	aconali				
D D m D m		1 e vuatt				
eremen	UI UIC					

60 2 10 1.0 element truss \$diag element truss 61 3 11 1.0 \$diag 62 4 1.0 12 element truss \$diag 1.0 element truss 63 5 13 \$diag 64 6 65 8 14 16 element truss 1.0 \$diag 1.0 element truss \$diag 17 element truss 66 9 1.0 \$diag 67 10 68 11 18 19 element truss 1.0 \$diag 1.0 element truss \$diag 69 12 20 element truss 1.0 \$diag 70 13 71 16 21 22 1.0 element truss \$diag \$diag element truss 1.0 element truss 72 17 23 1.0 \$diag 73 18 24 74 19 25 1.0 element truss \$diag 74 19 25 75 20 26 element truss 1.0 \$diag 1.0 element truss \$diag element truss 76 21 27 element truss 77 23 29 1.0 \$diag element truss 1.0 \$diag 1.0 element truss 78 24 30 \$diag element truss 79 25 31 1.0 \$diag 80 26 32 element truss 1.0 \$diag 1.0 27 element truss 81 33 \$diag element truss 82 28 34 1.0 \$diag #-----# Definizione dei nodi vincolati #-----fix 4 1 1 fix 32 1 1 # Output dei dati recorder Node -file Risultati/disp.txt -node 21 -dof 2 disp; recorder Node -file Risultati/react.txt -node 4 32 -dof 2 reaction; #-----# ANALISI #Gravity-analysis parameters -- load-controlled static analysis set Tol 1.0e-5 ; set Niter 1000 ; # numero massimo di iterazioni constraints Transformation; # impostazioni condiz. al contorno numberer RCM; # minimizzazione larghezza di banda system BandGeneral; # modalità risoluzione del sistema test NormDispIncr \$Tol \$Niter 0 ; # controllo sulla convergenza test EnergyIncr \$Tol \$Niter 0 ; algorithm NewtonLineSearch 0.5 ; # aggiorno tangente ad ogni iteraz. set NstepGravity 5; # apply gravity in 30 steps set NStepGravity [expr 1./\$NstepGravity]; # primo incremento di carico integrator LoadControl \$DGravity; # determine the next time step analysis Static; # define type of analysis analyze \$NstepGravity; # apply gravity #azzero il tempo loadConst -time 0.0; #APPLICAZIONE DEL CARICO CICLICO #definizione di nodo di applicazione, valore e direzione della forza set node_force 21; #indice del nodo su cui è applicata la forza #valore della forza applicata al nodo set value_FY 1; #direzione della forza (X=1, Y=2) set dof_F 2; push_PeakPts \$node_force \$value_FX \$dof_F puts "Analisi completata"

```
***************
# SUBROUTINE UTILIZZATE
proc solaio {matID F1pm F2pm F3pm F4pm d1pm d2pm d3pm d4pm F1nm F2nm F3nm
F4nm d1nm d2nm d3nm d4nm rdispP rdispN rForceP rForceN uForceP uForceN} {
# Positive/Negative envelope Stress/Load
# stress1 stress2 stress3 stress4
set pEnvelopeStress [list [expr $F1pm*1000.0] [expr $F2pm*1000.0]
[expr $F3pm*1000.0] [expr $F4pm*1000.0]]
set nEnvelopeStress [list [expr $F1nm*1000.0] [expr $F2nm*1000.0]
[expr $F3nm*1000.0] [expr $F4nm*1000.0]]
# Positive/Negative envelope Strain/Deformation
# strain1 strain2 strain3 strain4
set pEnvelopeStrain [list $d1pm $d2pm $d3pm $d4pm]
set nEnvelopeStrain [list $d1nm $d2nm $d3nm $d4nm]
# Ratio of maximum deformation at which reloading begins
# Pos_env. Neg_env.
set rDisp [list $rdispP $rdispN]
# Ratio of envelope force at which reloading begins
# Pos_env. Neg_env.
set rForce [list $rForceP $rForceN]
# Ratio of monotonic strength developed upon unloading
# Pos_env. Neg_env.
set uForce [list $uForceP $uForceN]
# Coefficients for Unloading Stiffness degradation
# gammaK1 gammaK2 gammaK3 gammaK4 gammaKLimit
set gammaK [list 0.0 0.0 0.0 0.0 0.0]
# Coefficients for Reloading Stiffness degradation
# gammaD1 gammaD2 gammaD3 gammaD4 gammaDLimit
set gammaD [list 0.0 0.0 0.0 0.0 0.0]
# Coefficients for Strength degradation
# gammaF1 gammaF2 gammaF3 gammaF4 gammaFLimit
set gammaF [list 0.0 0.0 0.0 0.0]
set gammaE 10.0
# damage type (option: "energy", "cycle")
set dam "cycle"
# add the material to domain
uniaxialMaterial Pinching4 $matID [lindex $pEnvelopeStress 0]
[lindex $pEnvelopeStrain 0] [lindex $pEnvelopeStress 1]
[lindex $pEnvelopeStrain 1] [lindex $pEnvelopeStress 2]
[lindex $pEnvelopeStrain 2] [lindex $pEnvelopeStress 3]
[lindex $pEnvelopeStrain 3] [lindex $nEnvelopeStress 0]
[lindex $nEnvelopeStrain 0] [lindex $nEnvelopeStress 1]
[lindex $nEnvelopeStrain 1] [lindex $nEnvelopeStress 2]
[lindex $nEnvelopeStrain 2] [lindex $nEnvelopeStress 3]
[lindex $nEnvelopeStrain 3] [lindex $rDisp 0] [lindex $rForce 0]
[lindex $uForce 0] [lindex $rDisp 1] [lindex $rForce 1]
[lindex $uForce 1] [lindex $gammaK 0] [lindex $gammaK 1]
[lindex $gammaK 2] [lindex $gammaK 3] [lindex $gammaK 4]
[lindex $gammaD 0] [lindex $gammaD 1] [lindex $gammaD 2]
[lindex $gammaD 3] [lindex $gammaD 4] [lindex $gammaF 0]
[lindex $gammaF 1] [lindex $gammaF 2] [lindex $gammaF 3]
[lindex $gammaF 4] $gammaE $dam
puts "diagonali_ok"
```

```
#-----
proc push_PeakPts {node_force value_FX dof_F} {
source procRCycDAns.tcl
# define LATERAL load
# Lateral load pattern
pattern Plain 2 Linear {
       load $node_force 0.0 $value_FY; # node#, FX FY lateral load at top node
7
# build the components for the analysis object
system ProfileSPD
constraints Plain
test NormDispIncr 1.0e-5 500
algorithm KrylovNewton
numberer RCM
#analysis type used in the procedure is Static
#spostamento del martinetto
set peakpts [list 0.2 0.2 0.5 0.5 1.0 2.0 2.5 3.0 5.0 7.0 8.0 10.0 10.0 12.0]
set increments 30
#procedure for feeding in Reverse Cyclic loading to model by Disp. control
procRCycDAns $increments $node_force $dof_F $peakpts
puts "analysis completed"
}
# procRCycDAns.tcl
# procedure for reverse cyclic disp. control analysis given the peak pts.
# analysis type used : STATIC
proc procRCycDAns { incre nodeTag dofTag peakpts} {
set x [lindex $peakpts 0]
set fir [expr $x/$incre]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
# create the analysis object
analysis Static
# perform the analysis
analyze $incre
integrator DisplacementControl $nodeTag $dofTag 0.0 1 [expr -$fir] [expr -$fir]
analyze [expr 2*$incre]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
analvze $incre
for {set j 1} {$j < [llength $peakpts]} {incr j 1} {</pre>
set tx [lindex $peakpts $j]
set tinc [expr $tx/$fir]
set rt [expr int($tinc)]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
analyze $rt
integrator DisplacementControl $nodeTag $dofTag 0.0 1 [expr -$fir] [expr -$fir]
analvze [expr 2*$rt]
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir
analyze $rt
}
#end procRCycDAns.tcl
```

Appendice B Listati di alcuni casi studio

B.1 Premessa

In questa sezione vengono presentati alcuni dei listati relativi ai casi studio analizzati: i codici sono riportati in modo da mostrare tutti e quattro gli edifici, le tre tipologie di solaio e i tre diversi spessori della muratura. Perciò, è possibile a partire da questi, ricondursi a tutti gli altri casi: nel seguito verranno quindi riportati i listati che si riferiscono alle configurazioni A380NS, B320TB, C380NS, D250RC.

B.2 Caso A380NS

```
********
# Description: CASO A380NS
****************
wipe
#_____
# costruzione del modello
model BasicBuilder -ndm 3 -ndf 6
file mkdir Risultati; #cartella file output
#-----
# richiamo le subroutine esterne
source solaio.tcl
#-----
# Definizione variabili del solaio
#carichi solaio
set gk1 2.58;
                             #peso proprio solaio (kN/m^2)
set qk1 2.0;
                             #carico accidentale (kN/m^2)
# parametri geometrici
set a 5000.0;
set b 4500.0;
                          #lato lungo del solaio (mm)
                          #lato corto del solaio (mm)
set as 1250.0;
                          #lato lungo del sottopannello (mm)
set bs 750.0;
                          #lato corto del sottopannello (mm)
set n 12;
                          #numero molle che scaricano sui bordi
set ds [expr sqrt($as*$as+$bs*$bs)]; #lunghezza diagonale sottopannello (mm)
set th [expr atan($as/$bs)];
                          #angolo molle rispetto alla forza
```

parametri della prova sperimentale

backbone curve

```
#ramo POSITIVO:
set d1p 3.0;
                                         #spostamento limite elastico (mm)
set d2p 150.0;
                                         #1' spostamento limite plastico (mm)
                                         #2' spostamento limite plastico (mm)
set d3p 208.0;
set d4p 220.0;
                                         #spostamento a rottura (mm)
set F1p 35.0;
                                         #forza limite elastica (kN)
set F2p 190.0;
                                         #1' forza limite plastica (kN)
set F3p 222.0;
                                         #2' forza limite plastica (kN)
set F4p 42.0;
                                         #forza a rottura (kN)
#ramo NEGATIVO:
set d1n -1.0;
                                         #spostamento limite elastico (mm)
set d2n -130.0;
                                         #1' spostamento limite plastico (mm)
                                         #2' spostamento limite plastico (mm)
set d3n -208.0;
set d4n -220.0;
                                         #spostamento a rottura (mm)
set F1n -10.0;
                                         #forza limite elastica (kN)
set F2n -140.0;
                                         #1' forza limite plastica (kN)
set F3n -180.0;
                                         #2' forza limite plastica (kN)
set F4n -25.0;
                                         #forza a rottura (kN)
# pinching curve (la nomenclatura corrisponde a quella del manuale OpenSees)
set d1pin 70.0;
                                         #rdispP*dmax
set d2pin 140.0;
                                         #dmax
set d3pin 128.0;
                                         #*
set d4pin -70.0;
set d5pin -140.0;
                                         #rdispN*dmin
                                         #dmin
set d6pin -126.0;
                                         #*
set F1pin 60.0;
                                         #rForceP*f(dmax)
set F2pin 180.0;
                                         #f(dmax)
set F3pin 37.0;
                                         #uForceN*eNf3
set F4pin -30.0;
                                         #rForceN*f(dmin)
set F5pin -145.0;
                                         #f(dmin)
set F6pin -10.0;
                                         #uForceP*ePf3
#fattore di scala (rapporto tra dimensione numerica e sperimentale)
set fs 1.125:
#numero di file di sottopannelli in cui è diviso metà lato lungo
set nf 2
# parametri assegnati alla singola molla
# backbone curve
#ramo POSITIVO
set d1pm [expr $d1p*cos($th)/($ds*$nf)]; #allungamento limite elastico
set d2pm [expr $d2p*cos($th)/($ds*$nf)]; #1' allungamento limite plastico
set d3pm [expr $d3p*cos($th)/($ds*$nf)]; #2' allungamento limite plastico
set d4pm [expr $d4p*cos($th)/($ds*$nf)];
                                           #allungamento a rottura
set F1pm [expr $F1p*$fs/($n*cos($th))];
                                           #sforzo limite elastico (kN)
set F2pm [expr $F2p*$fs/($n*cos($th))];
                                           #1' sforzo limite plastico (kN)
set F3pm [expr $F3p*$fs/($n*cos($th))];
set F4pm [expr $F4p*$fs/($n*cos($th))];
                                           #2' sforzo limite plastico (kN)
                                           #sforzo a rottura (kN)
#ramo NEGATIVO
set d1nm [expr $d1n*cos($th)/($ds*$nf)]; #allungamento limite elastico
set d2nm [expr $d2n*cos($th)/($ds*$nf)]; #1' allungamento limite plastico
set d3nm [expr $d3n*cos($th)/($ds*$nf)];
                                           #2' allungamento limite plastico
set d4nm [expr $d4n*cos($th)/($ds*$nf)];
                                           #allungamento a rottura
set F1nm [expr $F1n*$fs/($n*cos($th))];
                                           #sforzo limite elastico (kN)
set F2nm [expr $F2n*$fs/($n*cos($th))];
                                           #1' sforzo limite plastico (kN)
set F3nm [expr $F3n*$fs/($n*cos($th))];
                                           #2' sforzo limite plastico (kN)
set F4nm [expr $F4n*$fs/($n*cos($th))];
                                           #sforzo a rottura (kN)
# pinching curve (la nomenclatura corrisponde a quella del manuale OpenSees)
set rdispP [expr $d1pin/$d2pin]
set rdispN [expr $d4pin/$d5pin]
set rForceP [expr $F1pin/$F2pin]
set rForceN [expr $F4pin/$F5pin]
```

```
set uForceP [expr $F6pin/(-$F3n)]
set uForceN [expr $F3pin/(-$F3p)]
# Definizione dei parametri della muratura
#-----
# parametri geometrici del singolo maschio murario
       380.0;
set t
                         #spessore del pannello in mm
        1500.0;
                         #larghezza del pannello in mm
set l
set h
       3000.0;
                        #altezza del pannello in mm
set v
        1;
                        #vincolo in sommità (1=libero, 2=incastro)
       380.0;
set ts
                        #spessore del sottopannello in mm
set ls
       1500.0:
                         #larghezza del sottopannello in mm
set hs
        1000.0:
                         #altezza del sottopannello in mm
#proprietà meccaniche (da prove sperimentali)
set fu
        -7.92;
                         #resistenza ultima a compressione della muratura in MPa
       0.2;
                        #resistenza ultima a trazione della muratura in MPa
set ft
set Em
       2910.0;
                        #modulo elastico della muratura in MPa
set t0
       0.1;
                        #resistenza media a taglio a compressione nulla in MPa
set G
                        #modulo a taglio della muratura in MPa
       875.0:
set c
        0.2;
                        #coesione della muratura in MPa
set f
       0.5;
                        #angolo d'attrito della muratura in radianti
       0.00535;
                        #scorrimento angolare a rottura
set gu
                        #peso specifico della muratura in kN/m^3
set w
        24.0;
#peso della porzione di solaio afferente in kN
        [expr ($gk1 + 0.3*$qk1)*0.5*$b/1000.0];
set a
#sforzo assiale sul singolo maschio murario in kN
       [expr ($q + 4.0*$w*$t/1000.0*$1/1000.0*$h/1000.0 +
set N
              2.0*$w*$t/1000.0*$1/1000.0*$hs/1000.0)/4.0];
set T
        150.0:
                        #sforzo generato dal singolo tirante (kN)
# MOLLE VERTICALI
# parametri iniziali
                           #numero di molle verticali nel pannello
set nv
        2:
        [expr $t*$1/$nv];
                           #area afferente alla singola molla
set Am
set ecy [expr $fu/$Em];
                           #deformazione di compressione a snervamento
       [expr 3.0*$ecy];
                           #deformazione di compressione a rottura
set ecu
set ety
        [expr $ft/$Em];
                           #deformazione di trazione a snervamento
set etu [expr 1.5*$ety];
                           #deformazione di trazione a rottura
# legame costitutivo
set
      mollavert
                 1
           [expr $ft*$Am]
set
      Fpp
             [expr $ety/$v*$hs]
set
      Upy
set
             [expr $ft*$Am + 100.0]
      Fppu
             [expr $etu/$v*$hs]
set
      Upu
      Fultp
             0.1
set
      Uultp
             [expr $etu/$v*$hs + 0.1]
set
             [expr $fu*$Am]
set
      Fpc
             [expr $ecy/$v*$hs]
set
      Ucy
             [expr $fu*$Am - 100.0]
set
      Fpcu
             [expr $ecu/$v*$hs]
      Ucu
set
set
      Fultc
             -0.1
set
      Uultc
            [expr $ecu/$v*$hs - 0.1]
      pinchX 0.0
pinchY 0.0
set
set
      damage1 0.0
set
set
      damage2 0.0
uniaxialMaterial Hysteretic $mollavert $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2
```

```
# MOLLE DIAGONALI
# parametri iniziali
set nd
                             #numero molle diagonali
       2:
if {$h<$1} {
                             #scelta del parametro b (Turnsek-Cacovic)
set b 1.0
} else {
if {$h>1.5*$1} {
set b 1.5 } else {set b [expr $h/$1]}
}
#taglio ultimo a fessurazione diagonale secondo Turnsek e Cacovic in kN
        [expr $t0*$t*$1/1000.0*sqrt(1 + $N/($b*$t0*$t*$1/1000.0))]
set vuf
#spostamento sommitale del sottopannello in mm
       [expr $vuf*1000.0*$hs/($G*$ls*$ts)]
set dys
#angolo della diagonale del sottopannello rispetto all'orizzontale
set theta [expr atan($hs/$ls)]
#lunghezza della diagonale del sottopannello in mm
set ldiag [expr sqrt($ls*$ls + $hs*$hs)]
#spostamento a rottura del sottopannello in mm
set d2s
       [expr $gu*$hs];
# legame costitutivo
      molladiag
                 2
set
             [expr $vuf*1000.0/($nd*cos($theta))]
set
      Fpp
              [expr $dys*cos($theta)/$ldiag]
set
      Upy
             [expr $Fpp*0.9]
set
      Fppu
            [expr $d2s*cos($theta)/$ldiag]
1000.0
set
      Upu
set
      Fultp
      Uultp [expr ($d2s*cos($theta) + 0.1*$d2s*cos($theta))/$ldiag]
set
     Fpc [expr -($vuf*1000.0)/($nd*cos($theta))]
Ucy [expr -($dys*cos($theta))/$ldiag]
Fpcu [expr $Fpc*0.9]
set
set
set
             [expr -($d2s*cos($theta))/$ldiag]
set
      Ucu
      Fultc
             -1000.0
set
             [expr -($d2s*cos($theta) + 0.1*$d2s*cos($theta))/$ldiag]
set
      Uultc
     pinchX 0.0
set
     pinchY 0.0
set
set
      damage1 0.0
set
     damage2 0.0
      beta
             0.9
set
uniaxialMaterial Hysteretic $molladiag $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2 $beta
# MOLLE ORIZZONTALI
# parametri iniziali
         2;
                               #numero molle orizzontali
set no
set dmax [expr $gu*$h];
                              #spostamento ultimo per scorrimento in mm
#taglio ultimo per scorrimento secondo Mohr e Coulomb in kN
         [expr ($c*$l*$t/1000.0 + $N*$f)/$no];
set vus
#lunghezza molla orizzontale in mm
set loriz [expr sqrt($ls*$ls + 1.0)];
# legame costitutivo
     mollaoriz 3
set
```

```
[expr $vus*1000.0]
set
      Fpp
              [expr $dmax*0.1/$loriz]
set
      Upy
              [expr $vus*1000.0 + 1.0]
set
      Fppu
set
      Upu
              [expr $dmax/$loriz]
set
      Fultp
              0.1
set
      Uultp
              [expr ($dmax+0.5)/$loriz]
              [expr -($vus*1000.0)]
set
      Fpc
              [expr -($dmax*0.1)/$loriz]
[expr -($vus*1000.0 + 1.0)]
      Ucy
set
set
      Fpcu
             [expr -($dmax/$loriz)]
set
      Ucu
             -0.1
      Fultc
set
             [expr -($dmax+0.5)/$loriz]
set
      Uultc
      pinchX 0.0
set
      pinchY 0.0
set
      damage1 0.0
set
set
      damage2 0.0
uniaxialMaterial Hysteretic $mollaoriz $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2
# MOLLE VERTICALI DELLE FASCE DI PIANO
# parametri iniziali
                          #numero molle verticali della fascia di piano
set nvf
        2;
set dmaxf [expr $gu*$ls]; #spostamento ultimo per scorrimento in mm
#taglio ultimo a scorrimento (Mohr-Coulomb) in kN (decuplicato per ingranamento)
set vusf [expr 10.0*($c*$hs*$t/1000.0 + $T*$f)/$nvf];
#lunghezza molla verticale in mm
set lvf [expr sqrt($hs*$hs + 1.0)];
# legame costitutivo
       mollavertf
set
                      4
              [expr $vusf*1000.0]
       Fpp
set
set
                [expr $dmaxf*0.1/$lvf]
       Upv
                [expr $vusf*1000.0 + 1.0]
set
       Fppu
                [expr $dmaxf/$lvf]
set
       Upu
       Fultp
                0.1
set
       Uultp
                [expr ($dmaxf+0.5)/$lvf]
set
                [expr -($vusf*1000.0)]
set
       Fpc
               [expr -($dmaxf*0.1)/$lvf]
set
       Ucy
               [expr -($vusf*1000.0 + 1.0)]
       Fpcu
set
               [expr -($dmaxf/$lvf)]
set
       Ucu
       Fultc
               -0.1
set
               [expr -($dmaxf+0.5)/$lvf]
       Uultc
set
set
       pinchX
                0.0
       pinchY
                0.0
set
set
       damage1
                0.0
                0.0
set
       damage2
uniaxialMaterial Hysteretic $mollavertf $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2
# MOLLE DIAGONALI DELLE FASCE DI PIANO
# parametri iniziali
set ndf
         2;
                                      #numero molle diagonali della fascia di piano
#taglio ultimo a fessurazione diagonale secondo Turnsek e Cacovic in kN
set vuff [expr $t0*$t*$hs/1000.0*sqrt(1 + $T/($b*$t0*$t*$hs/1000.0))];
#spostamento sommitale del sottopannello della fascia di piano in mm
set dysf [expr $vuff*1000.0*$ls/($G*$hs*$ts)];
```

#angolo della diagonale del sottopannello della fascia di piano rispetto all'orizzontale set thf [expr atan(\$ls/\$hs)]; #lunghezza della diagonale del sottopannello della fascia di piano in mm [expr sqrt(\$ls*\$ls + \$hs*\$hs)]; set ldf #spostamento a rottura del sottopannello della fascia di piano in mm set d2sf [expr \$gu*\$ls]; # legame costitutivo set molladiagf 5 [expr \$vuff*1000.0/(\$ndf*cos(\$thf))] set Fpp [expr \$dysf*cos(\$thf)/\$ldf] set Upy [expr \$Fpp*0.9] set Fppu Upu [expr \$d2sf*cos(\$thf)/\$ldf] set 1000.0 Fultp set set Uultp [expr (\$d2sf*cos(\$thf) + 0.1*\$d2sf*cos(\$thf))/\$ldf] [expr -(\$vuff*1000.0)/(\$ndf*cos(\$thf))] set Fpc set Ucy [expr -(\$dysf*cos(\$thf))/\$ldf] [expr \$Fpc*0.9] set Fpcu [expr -(\$d2sf*cos(\$thf))/\$ldf] Ucu set -1000.0 Fultc set Uultc [expr -(\$d2sf*cos(\$thf) + 0.1*\$d2sf*cos(\$thf))/\$ldf] set pinchX 0.0 set 0.0 set pinchY damage1 0.0 set set damage2 0.0 set beta 0.9 uniaxialMaterial Hysteretic \$molladiagf \$Fpp \$Upy \$Fppu \$Upu \$Fultp \$Uultp \$Fpc \$Ucy \$Fpcu \$Ucu \$Fultc \$Uultc \$pinchX \$pinchY \$damage1 \$damage2 \$beta # MOLLE ORIZZONTALI DELLE FASCE DI PIANO # parametri iniziali #numero di molle orizzontali fascia di piano set nof 2; [expr \$t*\$hs/\$nof]; #area afferente alla singola molla set Amf set ecyf [expr fu/2.0, Em]; #deformazione di compressione a snervamento (con fu/2) set ecuf [expr 3.0*\$ecy]; #deformazione di compressione a rottura set etyf [expr \$ft/\$Em]; #deformazione di trazione a snervamento #deformazione di trazione a rottura set etuf [expr 1.5*\$ety]; # legame costitutivo mollaorizf 6 set [expr \$ft*\$Amf] set Fpp [expr \$etyf/\$v*\$ls] set Upy [expr \$ft*\$Amf + 100.0] Fppu set set Upu [expr \$etuf/\$v*\$ls] set Fultp 0.1 [expr \$etuf/\$v*\$ls + 0.1] set Uultp [expr \$fu/2.0*\$Amf] set Fpc Ucy [expr \$ecyf/\$v*\$ls] set [expr \$fu/2.0*\$Amf - 100.0] set Fpcu Ucu [expr \$ecuf/\$v*\$ls] set Fultc -0.1 set set Uultc [expr \$ecuf/\$v*\$ls - 0.1] set pinchX 0.0 pinchY set 0.0 0.0 set damage1 0.0 set damage2 uniaxialMaterial Hysteretic \$mollaorizf \$Fpp \$Upy \$Fppu \$Upu \$Fultp \$Uultp

```
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2
```

TRUSS RIGIDI DEI MACRO-ELEMENTI set truss 0 set E 6.0e12 uniaxialMaterial Elastic \$truss \$E # MOLLE DIAGONALI DEI SOLAI set diag 7 solaio \$diag \$F1pm \$F2pm \$F3pm \$F4pm \$d1pm \$d2pm \$d3pm \$d4pm \$F1nm \$F2nm \$F3nm \$F4nm \$d1nm \$d2nm \$d3nm \$d4nm \$rdispP \$rdispN \$rForceP \$rForceN \$uForceP \$uForceN # Definizione dei nodi del modello #-----# solaio (z = 3003 mm) – i nodi commentati sono sovrapposti con la muratura 0.0 3003.0 corrisp. a nodo 106 0.0 #node 1 750.0 node 2 0.0 3003.0 0.0 1500.0 3003.0 corrisp. a nodo 115 #node 3 3003.0 0.0 2250.0 node 4 0.0 #node 5 3000.0 3003.0 corrisp. a nodo 124 node 6 0.0 3750.0 3003.0 0.0 3003.0 corrisp. a nodo 131 #node 7 4500.0 1250.0 0.0 3003.0 node 8 1250.0 1250.0 node 9 750.0 3003.0 node 10 1500.0 3003.0 11 1250.0 2250.0 3003.0 node 1250.0 12 3000.0 3003.0 node node 13 1250.0 3750.0 3003.0 14 1250.0 node 4500.0 3003.0 3003.0 node 15 2500.0 0.0 2500.0 750.0 3003.0 node 16 17 2500.0 node 1500.0 3003.0 18 2500.0 node 2250.0 3003.0 node 19 2500.0 3000.0 3003.0 20 2500.0 3750.0 3003.0 node node 21 2500.0 4500.0 3003.0 node 22 3750.0 0.0 3003.0 3750.0 23 750.0 3003.0 node 3750.0 1500.0 3003.0 node 24 25 3750.0 2250.0 3003.0 node 3750.0 node 26 3000.0 3003.0 27 3750.0 3750.0 3003.0 node 3750.0 3003.0 node 28 4500.0 #node 29 5000.0 0.0 3003.0 corrisp. a nodo 206 node 30 5000.0 750.0 3003.0 1500.0 $3003.0\ corrisp.$ a nodo 215#node 31 5000.0 node 32 5000.0 2250.0 3003.0 3003.0 corrisp. a nodo 224 33 5000.0 3000.0 #node 3003.0 node 34 5000.0 3750.0 35 5000.0 4500.0 3003.0 corrisp. a nodo 231 #node # portale sinistro (x = 0 mm) node 100 0.0 0.0 0.0 0.0 101 0.0 node 1.0 node 102 0.0 0.0 1001.0 0.0 0.0 node 103 0.0 1002.0 2002.0 node 104 0.0 105 0.0 0.0 2003.0 node node 106 0.0 0.0 3003.0 node 107 0.0 1499.0 0.0 node 108 0.0 1499.0 1.0 1499.0 109 1001.0 node 0.0 110 0.0 1499.0 1002.0 node 0.0 1499.0 2002.0 node 111 112 1499.0 2003 0 node 0.0 node 113 0.0 1499.0 3003.0 0.0 1500.0 2003.0 114 node

node	115	0.0	1500.0	3003.0
node	116	0.0	2999.0	2003.0
node	117	0.0	2999.0	3003.0
node	118	0.0	3000.0	0.0
node	119	0.0	3000.0	1.0
node	120	0.0	3000.0	1001.0
node	121	0.0	3000.0	1002.0
node	122	0.0	3000.0	2002.0
node	123	0.0	3000.0	2003.0
node	124	0.0	3000.0	3003.0
node	125	0.0	4500.0	0.0
node	126	0.0	4500.0	1.0
node	127	0.0	4500.0	1001.0
node	128	0.0	4500.0	1002.0
node	129	0 0	4500 0	2002 0
node	130	0 0	4500 0	2003 0
node	131	0.0	4500 0	3003 0
# portal	le destr	• o (x =	5000 mm)	
node	200	5000.0	0.0	0.0
node	201	5000.0	0.0	1.0
node	202	5000.0	0.0	1001.0
node	203	5000.0	0.0	1002.0
node	204	5000.0	0.0	2002.0
node	205	5000.0	0.0	2003.0
node	206	5000.0	0.0	3003.0
node	207	5000.0	1499.0	0.0
node	208	5000 0	1499 0	1 0
node	209	5000 0	1499 0	1001 0
node	210	5000 0	1499 0	1002 0
node	210	5000.0	1499 0	2002.0
node	211	5000.0	1499 0	2002.0
node	212	5000.0	1/99 0	3003.0
node	210	5000.0	1500 0	2003.0
node	214	5000.0	1500.0	2003.0
node	215	5000.0	2000.0	
node	210	5000.0	2999.0	2003.0
node	217	5000.0	2999.0	0.0
node	210	5000.0	3000.0	1.0
node	210	5000.0	3000.0	1001 0
node	220	5000.0	2000.0	1001.0
node	221	5000.0	3000.0	2002.0
node	222	5000.0	3000.0	2002.0
node	223	5000.0	3000.0	2003.0
node	224	5000.0	4500.0	0.0
node	220	5000.0	4500.0	1.0
node	220	5000.0	4500.0	1001 0
node	221	5000.0	4500.0	1002.0
node	220	5000.0	4500.0	2002.0
node	229	5000.0	4500.0	2002.0
node	230	5000.0	4500.0	2003.0
node	231	5000.0	4500.0	3003.0
#				
# Defini	izione d	م الم	sso sismic	-he
#				
set o C	9806 O·			#accelerazione gravità (mm/s^2)
#masse r	nodi cer	ntrali s	olaio	"accororaziono gravita (mm/b 2/
set m1 [fernr (§	Sok1 + \$	ak1*0 3)*1	1000 0*\$as/1000 0*\$bs/1000 0/\$g]
Set mi (Levbi (4	, dvi , d	QK1 #0.37#1	1000.0*#48/1000.0*#05/1000.0/#g]
#masse r	nodi lat	erali s	solaio non	poggianti sulle pareti (v = 0: v = 4500)
#(compre	endono a	anche pe	so di stri	iscia di parete fuori piano secondo a. influenza)
set m2 [[expr \$m	1/2.0 +	\$w*1000.0)*\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0]
	- r- v.	, • .		
#masse r	nodi lat	erali s	olaio pogg	gianti sulle pareti (x = 0: x = 5000):
#peso po	ortale (diviso	per 7 nodi	e per 2 perché metà muro) + peso solaio afferente
set m3 1	[expr \$m	1/2.0 +	\$w*1000.0)*(\$t/1000.0*\$1/1000.0*\$h/1000.0 +
1	• • • •	/1000.0	*\$ls/1000.	0*\$hs/1000.0)/\$g/6.0]

#masse r	iodi d	angolo					
set m4	[expr \$	\$m1/4.0	+ \$w*10	00.0*((\$t/100	0.0*\$1/10	00.0*\$h/1000.0 +
	5	\$t/1000	.0*\$ls/1	000.0*	\$hs/10)00.0)/\$g/	6.0/2.0 +
	5	\$w*1000	.0*\$a/10	00.0*\$	\$h/1000).0*\$t/100	0.0/2.0/\$g/4.0/2.0]
mass	106	0.0	\$m4	0.0 0.	0 0.0	0.0	
mass	2	0.0	\$m3 ቀ ን	0.0 0.	0.0	0.0	
mass	115	0.0	\$m3 ቀ2	0.0 0.	0.0.0	0.0	
mass	4	0.0	ቅጠ3 ቀ ლ 2	0.0 0.	0 0.0	0.0	
mass	124	0.0	ቅጠ3 ቀ ლ 2	0.0 0.		0.0	
mass	131	0.0	фШЗ Фт/	0.0 0.		0.0	
mass	8	0.0	գшգ \$mΩ	0.0 0.		0.0	
mass	9	0.0	⊈ Գա1	0.0 0.		0.0	
mass	10	0.0	φ1 \$m.1	0.0 0.		0.0	
mass	11	0.0	φ1 \$m.1	0.0 0.	0 0 0	0.0	
mass	12	0.0	\$m1	0.0 0.	0 0 0	0.0	
mass	13	0.0	φ1 \$m1	0.0 0.	0 0 0	0.0	
mass	14	0.0	\$m2	0.0 0.	0 0 0	0.0	
mass	15	0.0	\$m2	0.0 0.	0 0 0	0.0	
mass	16	0 0	\$m1	0 0 0	0 0 0	0.0	
mass	17	0 0	\$m1	0 0 0	0 0 0	0.0	
mass	18	0 0	\$m1	0 0 0	0 0 0	0.0	
mass	19	0.0	\$m1	0.0 0	0 0 0	0.0	
mass	20	0 0	\$m1	0 0 0	0 0 0	0.0	
mass	20	0 0	\$m2	0 0 0	0 0 0	0.0	
mass	22	0 0	\$m2	0 0 0	0 0 0	0.0	
mass	23	0.0	\$m1	0.0 0.	0 0.0	0.0	
mass	24	0.0	\$m1	0.0 0.	0 0.0	0.0	
mass	25	0 0	\$m1	0 0 0	0 0 0	0.0	
mass	26	0.0	\$m1	0.0 0.	0 0 0	0.0	
mass	27	0 0	\$m1	0 0 0	0 0 0	0.0	
mass	28	0.0	\$m2	0.0 0.	0 0.0	0.0	
mass	206	0.0	\$m4	0.0 0.	0 0.0	0.0	
mass	30	0.0	\$m3	0.0 0.	0 0.0	0.0	
mass	215	0.0	\$m3	0.0 0.	0 0.0	0.0	
mass	32	0.0	\$m3	0.0 0.	0 0.0	0.0	
mass	224	0.0	\$m3	0.0 0.	0 0.0	0.0	
mass	34	0.0	\$m3	0.0 0.	0 0.0	0.0	
mass	231	0.0	\$m4	0 0 0	0 0.0	0.0	
			φ	0.0 0.			
			¥	0.0 0.			
#							
# # Defini	 Izione	degli	elementi				
# # Defini #	izione	degli	elementi				
# # Defini #	izione	degli	elementi				
# # Defini #	izione	degli	elementi				
<pre># # Defini # # solaic element</pre>	izione truss	degli 	elementi 	2	1.0	\$truss	
<pre># # Defini # # solaic element element</pre>	izione truss	degli 1 2	elementi 106 2	2 115	1.0 1.0	\$truss \$truss	
<pre># # Defini # # solaic element element element</pre>	truss truss	degli 1 2 3	elementi 106 2 115	2 115 4	1.0 1.0 1.0	\$truss \$truss \$truss \$truss	
<pre># Defini # Defini # solaic element element element element</pre>	truss truss truss truss truss	degli 1 2 3 4	elementi 106 2 115 4	2 115 4 124	1.0 1.0 1.0 1.0	\$truss \$truss \$truss \$truss \$truss	
<pre># Defini # Defini # solaic element element element element element</pre>	truss truss truss truss truss truss truss	degli 1 2 3 4 5	elementi 106 2 115 4 124	2 115 4 124 6	1.0 1.0 1.0 1.0 1.0	\$truss \$truss \$truss \$truss \$truss \$truss	
<pre># Defini # Defini # solaic element element element element element element</pre>	truss truss truss truss truss truss truss truss	degli 1 2 3 4 5 6	elementi 106 2 115 4 124 6	2 115 4 124 6 131	1.0 1.0 1.0 1.0 1.0 1.0 1.0	\$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss	
<pre># Defini # Defini # solaic element element element element element element</pre>	truss truss truss truss truss truss truss truss truss truss	degli 1 2 3 4 5 6 7	elementi 106 2 115 4 124 6 8	2 115 4 124 6 131 9	1.0 1.0 1.0 1.0 1.0 1.0 1.0	\$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss	
<pre># # Defini # # solaic element element element element element element element element</pre>	truss truss truss truss truss truss truss truss truss truss	degli 1 2 3 4 5 6 7 8	106 2 115 4 124 6 8 9	2 115 4 124 6 131 9 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	\$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss	
<pre># Defini # Defini # solaic element element element element element element element element</pre>	truss truss truss truss truss truss truss truss truss truss truss	degli 1 2 3 4 5 6 7 8 9	106 2 115 4 124 6 8 9 10	2 115 4 124 6 131 9 10 11	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }truss </pre>	
<pre># Defini # Defini # solaid element element element element element element element element element</pre>	truss truss truss truss truss truss truss truss truss truss truss truss	degli 1 2 3 4 5 6 7 8 9 10	106 2 115 4 124 6 8 9 10 11	2 115 4 124 6 131 9 10 11 12	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }truss </pre>	
<pre># Defini # Defini # solaic element element element element element element element element element element</pre>	truss truss truss truss truss truss truss truss truss truss truss truss truss	degli 1 2 3 4 5 6 7 8 9 10 11	106 2 115 4 124 6 8 9 10 11 12	2 115 4 124 6 131 9 10 11 12 13	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }truss </pre>	
<pre># Defini # Defini # solaic element element element element element element element element element element element</pre>	truss truss truss truss truss truss truss truss truss truss truss truss truss	degli 1 2 3 4 5 6 7 8 9 10 11 12	106 2 115 4 124 6 8 9 10 11 12 13	2 115 4 124 6 131 9 10 11 12 13 14	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }truss </pre>	
<pre># Defini # Defini # solaid element element element element element element element element element element element element</pre>	truss truss truss truss truss truss truss truss truss truss truss truss truss truss	degli 1 2 3 4 5 6 7 8 9 10 11 12 13	106 2 115 4 124 6 8 9 10 11 12 13 15	2 115 4 124 6 131 9 10 11 12 13 14 16	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }truss }truss </pre>	
<pre># Defini # Defini # solaid element element element element element element element element element element element element</pre>	truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss	degli 1 2 3 4 5 6 7 8 9 10 11 12 13 14	106 2 115 4 124 6 8 9 10 11 12 13 15 16 6	2 115 4 124 6 131 9 10 11 12 13 14 16 17	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }truss \$truss \$truss }truss \$truss }truss </pre>	
<pre># # Defini # element element element element element element element element element element element element</pre>	truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss	degli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	106 2 115 4 124 6 8 9 10 11 12 13 15 16 17	2 115 4 124 6 131 9 10 11 12 13 14 16 17 18	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }truss }truss }truss </pre>	
<pre># # Defini # element element element element element element element element element element element element element</pre>	truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss	degli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	106 2 115 4 124 6 8 9 10 11 12 13 15 16 17 18	2 115 4 124 6 131 9 10 11 12 13 14 16 17 18 19	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }truss }truss }truss </pre>	
<pre># # Defini # element element element element element element element element element element element element element element</pre>	truss truss	degli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1	106 2 115 4 124 6 8 9 10 11 12 13 15 16 17 18 19	2 115 4 124 6 131 9 10 11 12 13 14 16 17 18 19 20	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }truss }truss }</pre>	
<pre># # Defini # # solaid element element</pre>	truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss	degli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	elementi 106 2 115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 20	2 115 4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }truss }truss }</pre>	
<pre># # Defini # element element element element element element element element element element element element element element element element</pre>	truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss	degli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	elementi 106 2 115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 22	2 115 4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }truss }truss }</pre>	
<pre># # Defini # element element element element element element element element element element element element element element element element</pre>	truss truss	degli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20	elementi 106 2 115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 23	2 115 4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }truss }truss }truss </pre>	
<pre># Defini # Defini # solaic element</pre>	truss truss	degli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	elementi 106 2 115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25	2 115 4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25 26	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }truss }trus } </pre>	
<pre># Defini # Defini # solaid element</pre>	truss truss	degli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22	elementi 106 2 115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25 25	2 115 4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25 26 27	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }truss }trus } </pre>	
<pre># Defini # Defini # solaid element</pre>	truss truss	degli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 23	elementi 106 2 115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25 26 27	2 115 4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25 26 27 20	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }truss }truss } </pre>	

element	truss	25	206	30	1.0	\$truss
element	truss	26	30	215	1.0	\$truss
element	truss	27	215	32	1 0	\$truss
olomont	trucc	20	210	224	1.0	¢truss \$truss
element	truss	20	004	224	1.0	φιιuss Φ+
erement	truss	29	224	34	1.0	\$ truss
element	truss	30	34	231	1.0	\$truss
element	truss	31	106	8	1.0	\$truss
element	truss	32	8	15	1.0	\$truss
element	truss	33	15	22	1.0	\$truss
element	truss	34	22	206	1.0	\$truss
element	truss	35	2	9	1.0	\$truss
element	truss	36	9	16	1 0	\$truss
element	truss	37	16	23	1 0	\$trues
element	tiuss	20	10	20	1.0	φtiuss Φt
element	truss	38	23	30	1.0	\$truss
element	truss	39	115	10	1.0	\$truss
element	truss	40	10	17	1.0	\$truss
element	truss	41	17	24	1.0	\$truss
element	truss	42	24	215	1.0	\$truss
element	truss	43	4	11	1.0	\$truss
element	truss	44	11	18	1.0	\$truss
element	truss	45	18	25	1 0	\$truss
alamant	+ ~ ~ ~ ~	10	25	20	1.0	¢truss ¢truss
element	truss	40	20	32	1.0	φtruss Φt
element	truss	47	124	12	1.0	\$truss
element	truss	48	12	19	1.0	\$truss
element	truss	49	19	26	1.0	\$truss
element	truss	50	26	224	1.0	\$truss
element	truss	51	6	13	1.0	\$truss
element	truss	52	13	20	1.0	\$truss
element	truss	53	20	27	1 0	\$truss
alamant	+ ~ ~ ~ ~	E /	20	21	1.0	¢truss ¢truss
element	truss	54	21	34	1.0	φtruss Φt
element	truss	55	131	14	1.0	\$truss
element	truss	56	14	21	1.0	\$truss
element	truss	57	21	28	1.0	\$truss
element	truss	58	28	231	1.0	\$truss
element	truss	59	106	9	1.0	\$diag
element	truss	60	2	10	1.0	\$diag
element	truss	61	115	11	1.0	\$diag
element	truss	62	4	12	1 0	\$diag
olomont	trucc	63	10/	12	1.0	¢diag
element	tiuss	03	124	10	1.0	φulag Φιίου
element	truss	64	6	14	1.0	\$diag
element	truss	65	8	16	1.0	\$diag
element	truss	66	9	17	1.0	\$diag
element	truss	67	10	18	1.0	\$diag
element	truss	68	11	19	1.0	\$diag
element	truss	69	12	20	1.0	\$diag
element	truss	70	13	21	1.0	\$diag
element	truss	71	16	22	1 0	\$diag
clement	+ 22 2 2 2	70	17	22	1.0	¢diag
element	truss	72	10	23	1.0	aurag
element	truss	13	18	24	1.0	\$diag
element	truss	74	19	25	1.0	\$diag
element	truss	75	20	26	1.0	\$diag
element	truss	76	21	27	1.0	\$diag
element	truss	77	23	206	1.0	\$diag
element	truss	78	24	30	1.0	\$diag
element	truss	79	25	215	1 0	\$diag
clement	+ 22 2 2 2	00	20	210	1.0	¢diag
element	truss	00	20	32	1.0	aurag
element	truss	81	27	224	1.0	\$diag
element	truss	82	28	34	1.0	\$diag
# portal	Le sinist:	ro				
element	truss	100	101	102	1.0	\$truss
element	truss	101	102	109	1.0	\$truss
element	truss	102	109	108	1.0	\$truss
element	truss	103	108	101	1.0	\$truss
element	truss	104	103	104	1 0	\$trues
	+ - 100	105	104	111	1.0	¢+
erement	CIUSS	100	104	111	1.0	φtruss
e⊥ement	truss	100	111	110	1.0	\$truss
e⊥ement	truss	107	110	103	1.0	\$truss
element	truss	108	105	106	1.0	\$truss
element	truss	109	106	113	1.0	\$truss

element	truss	110	113	112	1.0	\$truss
element	truss	111	112	105	1.0	\$truss
element	truss	112	114	115	1.0	\$truss
element	truss	113	115	117	1.0	\$truss
element	truss	114	117	116	1.0	\$truss
element	truss	115	116	114	1.0	\$truss
element	truss	116	119	120	1.0	\$truss
element	truss	117	120	127	1.0	\$truss
element	truss	118	127	126	1.0	\$truss
element	truss	119	126	119	1.0	\$truss
element	truss	120	121	122	1.0	\$truss
element	truss	121	122	129	1.0	\$truss
element	truss	122	129	128	1.0	\$truss
element	truss	123	128	121	1.0	\$truss
element	truss	124	123	124	1.0	\$truss
element	truss	125	124	131	1.0	\$truss
element	truss	126	131	130	1.0	\$truss
element	truss	127	130	123	1.0	\$truss
element	truss	128	100	101	1.0	\$mollavert
element	truss	129	102	103	1.0	\$mollavert
element	truss	130	104	105	1.0	\$mollavert
element	truss	131	107	108	1.0	\$mollavert
element	truss	132	109	110	1.0	\$mollavert
element	truss	133	111	112	1.0	\$mollavert
element	truss	134	118	119	1.0	\$mollavert
element	truss	135	120	121	1.0	\$mollavert
element	truss	136	122	123	1.0	\$mollavert
element	truss	137	125	126	1.0	\$mollavert
element	truss	138	127	128	1.0	\$mollavert
element	truss	139	129	130	1.0	\$mollavert
element	truss	140	101	109	1.0	\$molladiag
element	truss	141	102	111	1.0	¢molladiag
element	truss	142	103	110	1.0	¢molladiag
element	trues	143	104	113	1.0	\$molladiag
element	trues	1/5	106	112	1.0	¢molladiag \$molladiag
element	truss	146	119	127	1.0	\$molladiag
element	truss	140	120	126	1 0	\$molladiag
element	truss	148	121	129	1.0	\$molladiag
element	truss	149	122	128	1.0	\$molladiag
element	truss	150	123	131	1.0	\$molladiag
element	truss	151	124	130	1.0	\$molladiag
element	truss	152	100	108	1.0	\$mollaoriz
element	truss	153	101	107	1.0	\$mollaoriz
element	truss	154	103	109	1.0	\$mollaoriz
element	truss	155	102	110	1.0	\$mollaoriz
element	truss	156	105	111	1.0	\$mollaoriz
element	truss	157	104	112	1.0	\$mollaoriz
element	truss	158	118	126	1.0	\$mollaoriz
element	truss	159	119	125	1.0	\$mollaoriz
element	truss	160	121	127	1.0	\$mollaoriz
element	truss	161	120	128	1.0	\$mollaoriz
element	truss	162	123	129	1.0	\$mollaoriz
element	truss	163	122	130	1.0	\$mollaoriz
element	truss	164	114	117	1.0	\$molladiagf
element	truss	165	115	116	1.0	\$molladiagi
element	truss	100	113	115	1.0	\$mollaorizi
element	truss	167	112	114	1.0	\$mollaorizi
element	trues	160	117	123	1.0	¢molloomief
element	trues	170	112	115	1.0	¢mollovor+f
erement	trues	171	112	11/	1 0	¢mollovor+f
erement	truss	172	116	194	1 0	\$mollsvertf
element	truse	173	117	123	1 0	\$mollaver+f
	31 400	1.0	± ± 1	120	1.0	4m011016101
<pre># portal</pre>	Le destro					A .
e⊥ement	truss	200	201	202	1.0	struss
element	truss	201	202	209	1.0	φτruss \$trucc
element	truee	202	202	200	1 0	strues
CTOWCH0	31 40 D	200	200	~~ 1	±.0	+ 01 UDD

element	truss	204	203	204	1.0	\$truss
element	truss	205	204	211	1.0	\$truss
element	truss	206	211	210	1.0	\$truss
element	truss	207	210	203	1.0	\$truss
element	truss	208	205	206	1.0	\$truss
element	truss	209	206	213	1.0	\$truss
element	truss	210	213	212	1.0	\$truss
element	truss	211	212	205	1.0	\$truss
element	truss	212	214	215	1.0	\$truss
element	truss	213	215	217	1.0	\$truss
element	truss	214	217	216	1.0	\$truss
element	truss	215	216	214	1.0	\$truss
element	truss	216	219	220	1 0	\$truss
element	trues	210	220	220	1 0	\$trues
element	trucc	217	220	221	1.0	¢truss ¢truss
element	truss	210	221	220	1.0	¢tiuss ¢tavaa
element	truss	219	220	219	1.0	¢truss
element	truss	220	221	222	1.0	atings
element	truss	221	222	229	1.0	\$truss
element	truss	222	229	228	1.0	\$truss
element	truss	223	228	221	1.0	\$truss
element	truss	224	223	224	1.0	\$truss
element	truss	225	224	231	1.0	\$truss
element	truss	226	231	230	1.0	\$truss
element	truss	227	230	223	1.0	\$truss
element	truss	228	200	201	1.0	\$mollavert
element	truss	229	202	203	1.0	\$mollavert
element	truss	230	204	205	1.0	\$mollavert
element	truss	231	207	208	1.0	\$mollavert
element	truss	232	209	210	1.0	\$mollavert
element	truss	233	211	212	1.0	<pre>\$mollavert</pre>
element	truss	234	218	219	1.0	<pre>\$mollavert</pre>
element	truss	235	220	221	1.0	\$mollavert
element	truss	236	222	223	1.0	\$mollavert
element	truss	237	225	226	1 0	\$mollavert
element	truss	238	220	228	1 0	\$mollavert
element	truss	239	221	220	1 0	\$mollavert
element	truss	200	201	200	1 0	\$molladiag
element	trues	240 2/1	201	200	1 0	¢molladiag
element	truss	241	202	200	1.0	\$molladiag
element	truss	242	203	211	1.0	¢molladiag
element	truss	243	204	210	1.0	¢molladiag
element	truss	244	205	213	1.0	\$molladiag
element	truss	245	200	212	1.0	\$molladiag
element	truss	246	219	227	1.0	\$molladiag
element	truss	247	220	226	1.0	\$molladiag
element	truss	248	221	229	1.0	\$molladiag
element	truss	249	222	228	1.0	\$molladiag
element	truss	250	223	231	1.0	\$molladiag
element	truss	251	224	230	1.0	\$molladiag
element	truss	252	200	208	1.0	\$mollaoriz
element	truss	253	201	207	1.0	\$mollaoriz
element	truss	254	203	209	1.0	\$mollaoriz
element	truss	255	202	210	1.0	\$mollaoriz
element	truss	256	205	211	1.0	\$mollaoriz
element	truss	257	204	212	1.0	\$mollaoriz
element	truss	258	218	226	1.0	\$mollaoriz
element	truss	259	219	225	1.0	\$mollaoriz
element	truss	260	221	227	1.0	\$mollaoriz
element	truss	261	220	228	1.0	\$mollaoriz
element	truss	262	223	229	1.0	\$mollaoriz
element	truss	263	222	230	1.0	\$mollaoriz
element	truss	264	214	217	1.0	\$molladiagf
element	truss	265	215	216	1.0	\$molladiaof
element	truss	266	213	215	1.0	\$mollaorizf
element	truse	267	212	214	1 0	\$mollaorizf
	truse	268	216	223	1 0	\$molleorief
olomont	trucc	200	210	220	1 0	¢molloomi-f
erement	truss	209	211 010	224 015	1 0	¢mollow
element		∠1U 071	212	∠10 014	1.0	φщоιlaverti
e⊥ement	cruss	211	213	214	1.0	φmo⊥laverti
e⊥ement	truss	272	216	224	1.0	\$mo⊥⊥avertf
element	truss	273	217	223	1.0	\$mollavertf

#		 Aggli eleme	nti beam	ner il fi	ori n	 iano					
#											
	1	0									
# noai node	1000	= 0 mm 1250.0	0.0	0.0							
node	1001	2500.0	0.0	0.0							
node	1002	3750.0	0.0	0.0							
node	1003	1250.0	0.0	1002.0							
node	1004	2500.0	0.0	1002.0							
node	1005	3750.0	0.0	1002.0							
node	1000	2500.0	0.0	2003.0							
node	1008	3750.0	0.0	2003.0							
node	1009	1250.0	0.0	1001.0							
node	1010	2500.0	0.0	1001.0							
node	1011	3750.0	0.0	1001.0							
node	1012	1250.0	0.0	2002.0							
node	1013	2500.0	0.0	2002.0							
node	1014	1250 0	0.0	1 0							
node	1016	2500.0	0.0	1.0							
node	1017	3750.0	0.0	1.0							
# nodi	lungo y	= 4500 mm	4500 0								
node	2000	1250.0	4500.0	0.0							
node	2001	3750 0	4500.0	0.0							
node	2002	1250.0	4500.0	1002.0							
node	2004	2500.0	4500.0	1002.0							
node	2005	3750.0	4500.0	1002.0							
node	2006	1250.0	4500.0	2003.0							
node	2007	2500.0	4500.0	2003.0							
node	2008	3750.0	4500.0	2003.0							
node	2009	2500.0	4500.0	1001.0							
node	2010	3750.0	4500.0	1001.0							
node	2012	1250.0	4500.0	2002.0							
node	2013	2500.0	4500.0	2002.0							
node	2014	3750.0	4500.0	2002.0							
node	2015	1250.0	4500.0	1.0							
node	2016	2500.0	4500.0	1.0							
noue	2017	3730.0	4000.0	1.0							
# cambi	io coordi	nate da si	stema loc	cale a glo	bale						
set tra	ansfTag1	1 geomTran	sf Linear	s \$transf]	Tag1 O	1 0					
set tra	ansfTag2	2 geomTran	sf Linear	s \$transf]	[ag2 0	0 1					
# 00]04	ala dai m	amanti dii	nongio fr								
# Calco set I1	fevor \$2	as*\$t*\$t*\$t	10121a It	uori piano # 1 be): Dam ve	rt sed	condo a i	nfluer	173		
set I2	[expr \$h	1s*\$t*\$t*\$t	/12.0/2.0)]; # J be	eam or	iz. sec	condo a. i	nfluer	iza		
	-										
# il mo	odulo ela	astico vien	le ridotto	per tene	er con	to di d	degrado/fe	ssura	zione		
#	ango do v										
# seque # eleme	enza da u ent elast	isare: .icBeamColu	mn \$eleTa	ag \$iNode	\$iNod	e \$A \$I	5. \$G \$J \$T	v \$Tz	\$trai	nsfTag	J
. 010				-6 +1uu	¢ j li o u	• • • • •		J +12	+ • 1 u.		5
# beam	lungo y	= 0 mm									
element	t elastic	BeamColumn	301 100	00 1015	1.0	[expr	\$Em/2.0]	1.0	1.0	\$I1	1.0
\$transi	fTag1	D		- 1000		r	AT (0 0]			AT 4	
e⊥ement \$tranct	t elastic fTag1	звеаmColumn	332 101	1009	1.0	Lexpr	φEm/2.0]	1.0	1.0	φ 11	1.0
element	t elastic	BeamColumn	318 100	9 1003	1.0	[expr	\$Em/2.0]	1.0	1.0	\$I1	1.0
\$transi	fTag1			- 1000	1.0	Lowbr	·/2·VJ			→ → →	
element	t elastic	BeamColumn	302 100	03 1012	1.0	[expr	\$Em/2.0]	1.0	1.0	\$I1	1.0
\$transf	fTag1					_					
element	t elastic	BeamColumn	319 101	1006	1.0	[expr	\$Em/2.0]	1.0	1.0	\$I1	1.0
\$trans1	tTag1										

element elasticBeamColumn \$transfTag1	303	1006	8	1.0	[expr	\$Em/2.0]	1.0	1.0	\$I1	1.0
element elasticBeamColumn	304	1001	1016	1.0	[expr	\$Em/2.0]	1.0	1.0	\$I1	1.0
<pre>\$transflag1 element elasticBeamColumn</pre>	333	1016	1010	1.0	[expr	\$Em/2.0]	1.0	1.0	\$I1	1.0
<pre>\$transfTag1 element_elasticBeamColumn</pre>	320	1010	1004	1 0	[evpr	\$Fm / 2 በ]	1 0	1 0	¢т1	1 0
\$transfTag1	320	1010	1004	1.0	Lerbi	φΕΠ/2.0]	1.0	1.0	φιι	1.0
element elasticBeamColumn \$transfTag1	305	1004	1013	1.0	[expr	\$Em/2.0]	1.0	1.0	\$I1	1.0
element elasticBeamColumn	321	1013	1007	1.0	[expr	\$Em/2.0]	1.0	1.0	\$I1	1.0
<pre>\$transfTag1 element elasticBeamColumn</pre>	306	1007	15	1.0	[expr	\$Em/2.0]	1.0	1.0	\$I1	1.0
<pre>\$transfTag1</pre>					- 1					
<pre>element elasticBeamColumn \$transfTag1</pre>	307	1002	1017	1.0	Lexpr	\$Em/2.0]	1.0	1.0	\$11	1.0
element elasticBeamColumn	334	1017	1011	1.0	[expr	\$Em/2.0]	1.0	1.0	\$I1	1.0
element elasticBeamColumn	322	1011	1005	1.0	[expr	\$Em/2.0]	1.0	1.0	\$I1	1.0
<pre>\$transfTag1 element elasticBeamColumn</pre>	308	1005	1014	1.0	[expr	\$Em/2.0]	1.0	1.0	\$T1	1.0
<pre>\$transfTag1</pre>		1000		1.0	-	·, 2	1.0	1.0		1
element elasticBeamColumn \$transfTag1	323	1014	1008	1.0	Lexpr	\$Em/2.0]	1.0	1.0	\$I1	1.0
element elasticBeamColumn	309	1008	22	1.0	[expr	\$Em/2.0]	1.0	1.0	\$I1	1.0
element elasticBeamColumn	310	103	1003	1.0	[expr	\$Em/10.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element_elasticBeamColumn</pre>	311	1003	1004	1 0	[expr	\$Em /10 0]	1 0	1 0	1 0	\$T2
<pre>\$transfTag2</pre>	011	1000	1001	1.0	- Compi	↓ <u></u> , <u>_</u>	1.0	1.0	1.0	¥12
<pre>element elasticBeamColumn \$transfTag2</pre>	312	1004	1005	1.0	[expr	\$Em/10.0]	1.0	1.0	1.0	\$12
element elasticBeamColumn	313	1005	203	1.0	[expr	\$Em/10.0]	1.0	1.0	1.0	\$12
element elasticBeamColumn	314	105	1006	1.0	[expr	\$Em/10.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element_elasticBeamColumn</pre>	315	1006	1007	1 0	[expr	\$Em/10 0]	1 0	1 0	1 0	\$T2
<pre>\$transfTag2</pre>	010	1000	1001	1.00	-	+, 1000j	1.0	1.0	1.0	+
element elasticBeamColumn \$transfTag2	316	1007	1008	1.0	Lexpr	\$Em/10.0]	1.0	1.0	1.0	\$12
element elasticBeamColumn	317	1008	205	1.0	[expr	\$Em/10.0]	1.0	1.0	1.0	\$12
element elasticBeamColumn	324	102	1009	1.0	[expr	\$Em/10.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element elasticBeamColumn</pre>	325	1009	1010	1.0	[expr	\$Em/10.0]	1.0	1.0	1.0	\$T2
<pre>\$transfTag2</pre>	010	1000	1010	1.00	-	+, 1000j	1.0	1.0	1.0	+
element elasticBeamColumn \$transfTag2	326	1010	1011	1.0	Lexpr	\$Em/10.0]	1.0	1.0	1.0	\$12
element elasticBeamColumn	327	1011	202	1.0	[expr	\$Em/10.0]	1.0	1.0	1.0	\$12
element elasticBeamColumn	328	104	1012	1.0	[expr	\$Em/10.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element elasticBeamColumn</pre>	329	1012	1013	1.0	[expr	\$Em/10.0]	1.0	1.0	1.0	\$T2
<pre>\$transfTag2</pre>	020	1012	1010	1.0	- Compi	↓1m,10.0]	1.0	1.0	1.0	¥12
<pre>element elasticBeamColumn \$transfTag2</pre>	330	1013	1014	1.0	[expr	\$Em/10.0]	1.0	1.0	1.0	\$12
element elasticBeamColumn	331	1014	204	1.0	[expr	\$Em/10.0]	1.0	1.0	1.0	\$12
element elasticBeamColumn	335	101	1015	1.0	[expr	\$Em/10.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element_elasticBeamColumn</pre>	336	1015	1016	1 0	[evnr	\$Fm/10 0]	1 0	1 0	1 0	\$T2
<pre>\$transfTag2</pre>	000	1010	1010	1.0	- Compi	↓1m,10.0]	1.0	1.0	1.0	¥12
<pre>element elasticBeamColumn \$transfTag2</pre>	337	1016	1017	1.0	Lexpr	\$Em/10.0]	1.0	1.0	1.0	\$12
element elasticBeamColumn	338	1017	201	1.0	[expr	\$Em/10.0]	1.0	1.0	1.0	\$12
φιιαΠSIlag∠										
<pre># beam lungo y = 4500 mm element elasticBeamColumn</pre>	401	2000	2015	1.0	[expr	\$Em/2 01	1 0	1.0	\$T1	1 0
\$transfTag1	101	2000	2010	1.0	revhi	ΨΔШ/Ζ.V]	1.0	1.0	ΨΤΤ	1.0

.]	400	0015	0000	1 0	F		1 0	1 0	ΦΤ 4	1 0
element elasticBeamColumn \$transfTag1	432	2015	2009	1.0	Lexpr	\$Em/2.0]	1.0	1.0	\$11	1.0
element elasticBeamColumn	418	2009	2003	1.0	[expr	\$Em/2.0]	1.0	1.0	\$I1	1.0
\$transfTag1	400	0000	0010	1 0	F	ф	1 0	1 0	ф.т.4	1 0
<pre>element elasticBeamColumn \$transfTag1</pre>	402	2003	2012	1.0	Lexpr	\$Em/2.0]	1.0	1.0	\$11	1.0
element elasticBeamColumn	419	2012	2006	1.0	[expr	\$Em/2.0]	1.0	1.0	\$I1	1.0
<pre>\$transfTag1</pre>					_					
element elasticBeamColumn	403	2006	14	1.0	Lexpr	\$Em/2.0]	1.0	1.0	\$I1	1.0
element elasticBeamColumn	404	2001	2016	1.0	[expr	\$Em/2.0]	1.0	1.0	\$I1	1.0
<pre>\$transfTag1</pre>					-					
element elasticBeamColumn	433	2016	2010	1.0	[expr	\$Em/2.0]	1.0	1.0	\$I1	1.0
element elasticBeamColumn	420	2010	2004	1.0	[expr	\$Em/2.0]	1.0	1.0	\$I1	1.0
<pre>\$transfTag1</pre>					- 1					
element elasticBeamColumn	405	2004	2013	1.0	[expr	\$Em/2.0]	1.0	1.0	\$I1	1.0
<pre>\$transilagi element elasticBeamColumn</pre>	421	2013	2007	1.0	[expr	\$Em/2.0]	1.0	1.0	\$T1	1.0
\$transfTag1		2010	2001	2	Loubt	+1m, 1.0]	1.00	1.0	*	1.0
element elasticBeamColumn	406	2007	21	1.0	[expr	\$Em/2.0]	1.0	1.0	\$I1	1.0
<pre>\$transfTag1 element elasticBeamColumn</pre>	407	2002	2017	1 0	[evnr	\$Fm / 2 0]	1 0	1 0	\$T1	1 0
\$transfTag1	101	2002	2011	1.0	LCXPI	ΨLm/2.0]	1.0	1.0	ΨΙΙ	1.0
element elasticBeamColumn	434	2017	2011	1.0	[expr	\$Em/2.0]	1.0	1.0	\$I1	1.0
<pre>\$transfTag1 element elasticBeamColumn</pre>	422	2011	2005	1 0	[evnr	\$Fm / 2 0]	1 0	1 0	\$T1	1 0
\$transfTag1	122	2011	2000	1.0	LCXPI	ψ Δ m/2.0]	1.0	1.0	ΨΙΙ	1.0
element elasticBeamColumn	408	2005	2014	1.0	[expr	\$Em/2.0]	1.0	1.0	\$I1	1.0
<pre>\$transfTag1 element elasticBeamColumn</pre>	423	2014	2008	1 0	Fernr	\$Fm/2 0]	1 0	1 0	\$T1	1 0
\$transfTag1	420	2014	2000	1.0	LCXPI	ΨLm/2.0]	1.0	1.0	ΨΙΙ	1.0
element elasticBeamColumn	409	2008	28	1.0	[expr	\$Em/2.0]	1.0	1.0	\$I1	1.0
<pre>\$transfTag1 element elasticBeamColumn</pre>	410	128	2003	1 0	Fernr	\$Fm/10 0]	1 0	1 0	1 0	\$T2
\$transfTag2	410	120	2000	1.0	LCXPI	ΨLm/10.0]	1.0	1.0	1.0	ΨΙΖ
element elasticBeamColumn	411	2003	2004	1.0	[expr	\$Em/10.0]	1.0	1.0	1.0	\$I2
<pre>\$transfTag2 element elasticBeamColumn</pre>	412	2004	2005	1 0	[eynr	\$Em/10 0]	1 0	1 0	1 0	\$T2
\$transfTag2	112	2001	2000	1.0	Lowbr	ΨLm, 10.0]	1.0	1.0	1.0	¥12
element elasticBeamColumn	413	2005	228	1.0	[expr	\$Em/10.0]	1.0	1.0	1.0	\$I2
<pre>\$transflag2 element elasticBeamColumn</pre>	414	130	2006	1 0	[eynr	\$Em /10 0]	1 0	1 0	1 0	\$T2
\$transfTag2		100	2000	1.0	Lowbi	ΨLm, 10.0]	1.0	1.0	1.0	¥12
element elasticBeamColumn	415	2006	2007	1.0	[expr	\$Em/10.0]	1.0	1.0	1.0	\$I2
<pre>\$transflag2 element elasticBeamColumn</pre>	416	2007	2008	1 0	[eynr	\$Em /10 0]	1 0	1 0	1 0	\$T2
\$transfTag2		2001	2000	1.0	Loubt	+2m, 1010]	1.00	1.0	1	+
element elasticBeamColumn	417	2008	230	1.0	[expr	\$Em/10.0]	1.0	1.0	1.0	\$I2
<pre>\$transflag2 element elasticBeamColumn</pre>	424	127	2009	1 0	[eynr	\$Em /10 0]	1 0	1 0	1 0	\$T2
\$transfTag2			2000	1.0	Loubt	+2m, 1010]	1.00	1.0	1	+
element elasticBeamColumn	425	2009	2010	1.0	[expr	\$Em/10.0]	1.0	1.0	1.0	\$12
<pre>\$transflag2 element elasticBeamColumn</pre>	426	2010	2011	1.0	[expr	\$Em/10.0]	1.0	1.0	1.0	\$T2
\$transfTag2		2010	2011	1.0	Loubt	+, 1010]	1.00	1.0	1.0	+
element elasticBeamColumn	427	2011	227	1.0	[expr	\$Em/10.0]	1.0	1.0	1.0	\$12
<pre>\$transflag2 element elasticBeamColumn</pre>	428	129	2012	1.0	[expr	\$Em/10.0]	1.0	1.0	1.0	\$T2
\$transfTag2		120	2012	2	Loubt	+2m, 1010]	1.00	1.0	1	+
element elasticBeamColumn	429	2012	2013	1.0	[expr	\$Em/10.0]	1.0	1.0	1.0	\$I2
<pre>\$transflag2 element_elasticBeamColumn</pre>	430	2013	2014	1 0	[eynr	\$Em /10 0]	1 0	1 0	1 0	\$T2
\$transfTag2					P -	,_0,0]				
element elasticBeamColumn	431	2014	229	1.0	[expr	\$Em/10.0]	1.0	1.0	1.0	\$12
<pre>ptransIlag2 element elasticBeamColumn</pre>	435	126	2015	1.0	ſexpr	\$Em/10.0]	1.0	1.0	1.0	\$12
\$transfTag2			. = =		r-	. ,]				
element elasticBeamColumn	436	2015	2016	1.0	[expr	\$Em/10.0]	1.0	1.0	1.0	\$12
ətransılag2										

Appendice B. Listati di alcuni casi studio

fix	216	1	0	0	1	1	1		
fix	217	1	0	0	1	1	1		
fix	219	1	0	0	1	1	1		
fix	220	1	0	0	1	1	1		
fix	221	1	0	0	1	1	1		
fix	222	1	0	0	1	1	1		
fix	223	1	0 0	Õ	1	1	- 1		
fix	220	1	0	0	1	1	1		
fix	226	1	0	0	1	1	1		
fiv	220	1	0	0	1	1	1		
fiv	221	1	0	0	1	1	1		
fiv	220	1	0	0	1	1	1		
1 1 A f :	229	1	0	0	1	1	1		
1 1 A f :	230	1	0	0	1	1	1		
TTX	231	T	0	0	1	1	1		
# 80	laio (ca	rrol	li fuo	ri n'	iano)				
# 50. fiv	2 10 (Ca 2	1	0	1 P.	1	1	1		
fiv	1	1	0	1	1	1	1		
1 1 A f i v	4	1	0	1	1	1	1		
1 1 A f i v	0	1	0	1	1	1	1		
11X f:	0	0	0	1	1	1	1		
1 1 X	9	0	0	1	1	1	1		
IIX	10	0	0	1	1	1	1		
IIX	11	0	0	1	1	1	1		
11X	12	0	0	1	1	1	1		
fix	13	0	0	1	1	1	1		
fix	14	0	0	1	1	1	1		
fix	15	0	0	1	1	1	1		
fix	16	0	0	1	1	1	1		
fix	17	0	0	1	1	1	1		
fix	18	0	0	1	1	1	1		
fix	19	0	0	1	1	1	1		
fix	20	0	0	1	1	1	1		
fix	21	0	0	1	1	1	1		
fix	22	0	0	1	1	1	1		
fix	23	0	0	1	1	1	1		
fix	24	0	0	1	1	1	1		
fix	25	0	0	1	1	1	1		
fix	26	0	0	1	1	1	1		
fix	27	0	0	1	1	1	1		
fix	28	0	0	1	1	1	1		
fix	30	1	0	1	1	1	1		
fix	32	1	0	1	1	1	1		
fix	34	1	0	1	1	1	1		
#									
# De:	finizion	e de:	i cari	chi					
#									
patte	ern Plai	n 1	Linear	{		#	Cari	chi	i verticali applicati ai portali
load	106 0.0	0.0	[expr	-\$N;	×1000.	0/2.	.0 -	\$w*\$	*\$t*\$h*\$a/4000000.0] 0.0 0.0 0.0;
load	115 0.0	0.0	[expr	-\$N;	*1000.	0/2.	.0 -	\$w*\$	*\$t*\$h*\$a/4000000.0] 0.0 0.0 0.0;
load	124 0.0	0.0	[expr	-\$N;	×1000.	0/2.	.0 -	\$w*3	*\$t*\$h*\$a/4000000.0] 0.0 0.0 0.0;
load	131 0.0	0.0	[expr	-\$N 3	*1000.	0/2.	.0 -	\$w*3	*\$t*\$h*\$a/4000000.0] 0.0 0.0 0.0;
load	206 0.0	0.0	[expr	-\$N 3	*1000.	0/2.	.0 -	\$w*\$	*\$t*\$h*\$a/4000000.0] 0.0 0.0 0.0;
load	215 0.0	0.0	[expr	-\$N;	*1000.	0/2.	.0 -	\$w*\$	*\$t*\$h*\$a/4000000.0] 0.0 0.0 0.0;
load	224 0.0	0.0	[expr	-\$N;	×1000.	0/2.	0 -	\$w*3	*\$t*\$h*\$a/4000000.0] 0.0 0.0 0.0;
load	231 0.0	0.0	[expr	-\$N;	×1000.	0/2.	.0 -	\$w*\$	*\$t*\$h*\$a/4000000.0] 0.0 0.0 0.0;
			-						
# Car	richi or	izzo	ntali (dovut	ci ai	tira	anti		
load	105 0.0	[e:	xpr \$T	*1000	0.0]	0.0	0.0	0.0	0.0;
load	106 0.0	[e:	xpr \$T	*1000	0.0]	0.0	0.0	0.0	0.0;
load	130 0.0	Гe	xpr -\$	Γ*100	0.01	0.0	0.0	0.0	0.0;
load	131 0.0	Гe	xpr -\$'	Γ*100	0.01	0.0	0.0	0.0	0.0;
load	205 0.0	[e	xpr \$T	*1000	0.01	0.0	0.0	0.0	0.0;
load	206 0.0	[e:	xpr \$T	*1000	0.01	0.0	0.0	0.0	0.0;
load	230 0.0	[e	xpr -\$'	F *100	0.01	0.0	0.0	0.0	0.0:
load	231 0.0	[e	xpr -\$"	Γ*100	0.01	0.0	0.0	0.0	0.0:
}		20	r- •					•	· · · · · ·

Appendice B. Listati di alcuni casi studio

Output dei dati #----recorder Node -file Risultati/disp_port1.txt -node 106 -dof 2 disp; recorder Node -file Risultati/disp_port2.txt -node 206 -dof 2 disp; recorder Node -file Risultati/disp_sol.txt -node 21 -dof 2 disp; recorder Node -file Risultati/disp_fp_1004.txt -node 1004 -dof 2 disp; recorder Node -file Risultati/disp_fp_1007.txt -node 1007 -dof 2 disp; recorder Node -file Risultati/disp_fp_2004.txt -node 2004 -dof 2 disp; recorder Node -file Risultati/disp_fp_2007.txt -node 2007 -dof 2 disp; recorder Node -file Risultati/react_port1.txt -node 100 107 118 125 -dof 2 reaction; recorder Node -file Risultati/react_port2.txt -node 200 207 218 225 -dof 2 reaction; recorder Element -file Risultati/axial_sol.txt -ele 70 axialForce; recorder Node -file Risultati/disp_vertbase.txt -node 108 -dof 3 disp; recorder Element -file Risultati/axial_vertbase.txt -ele 131 axialForce; recorder Node -file Risultati/disp_orizbase.txt -node 101 -dof 2 disp; recorder Element -file Risultati/axial_orizbase.txt -ele 153 axialForce; recorder Node -file Risultati/disp_diagbase.txt -node 102 -dof 2 disp; recorder Element -file Risultati/axial_diagbase.txt -ele 141 axialForce; #-----# ANALISI #----_____ puts "SOLVING..." startTime [clock clicks -milliseconds] set # Gravity-analysis parameters set Tol 1.0e-5 ; set Niter 1000 ; # numero massimo di iterazioni Newton constraints Transformation; # how it handles boundary conditions numberer RCM; # renumber dof's to minimize band-width system BandGeneral; # how to store and solve the system of equations test NormDispIncr \$Tol \$Niter 0 ; # determine if convergence has been achieved test EnergyIncr \$Tol \$Niter 0 ; test NormUnbalance \$Tol \$Niter 0 ; algorithm NewtonLineSearch 0.5 ; # updates tangent stiffness at every iteration set NstepGravity 10; # apply gravity in 10 steps set DGravity [expr 1./\$NstepGravity]; # first load increment; # determine the next time step for an analysis integrator LoadControl \$DGravity; analysis Static; # define type of analysis static or transient analyze \$NstepGravity; # apply gravity #TIME HISTORY loadConst -time 0.0; # hold gravity constant and restart time # convergence tolerance for test # numero massimo di iterazioni Newton set Tol 1.0e-6; set Niter 10000: wipeAnalysis; # clear previously-define analysis parameters
constraints Plain; # how it handles boundary conditions
numberer Plain; # renumber dof's to minimize band-width (optimization) system BandGeneral; # how to store and solve the system of equations test NormDispIncr \$Tol \$Niter 0 ; #test NormUnbalance \$Tol \$Niter 0 ; #test EnergyIncr \$Tol \$Niter 0 ; algorithm KrylovNewton; integrator Newmark 0.5 0.25 # define damping set xDamp 0.02; # 2% damping ratio set lambda1 [eigen 1]; # eigenvalue mode 1 set omega1 [expr pow(\$lambda1,0.5)]; # due Hz più del 1' modo set offset 4: set omega2 [expr (\$omega1/6.28+\$offset)*6.28] ; puts "1a frequenza =[expr \$omega1/6.28]"; # plotta la prima frequenza puts "2a frequenza =[expr \$omega2/6.28]"; # plotta la seconda frequenza set alphaM [expr (\$omega1*\$omega2*2*\$xDamp)/(\$omega1+\$omega2)] ; # K-proportional damping +betaKcurr*KCurrent set betaKcurr 0.0; set betaKcomm [expr (2*\$xDamp)/(\$omega1+\$omega2)] ;
```
puts "alphaM = $alphaM"
puts "betaKcomm = $betaKcomm"
set betaKinit 0.0;
                     # initial-stiffness proportional damping + betaKinit*Kini
# define damping
rayleigh $alphaM $betaKcurr $betaKinit $betaKcomm; # RAYLEIGH damping
analysis Transient
set AccelY "Series -dt 0.01 -filePath sisma3.th -factor 2.02";
pattern UniformExcitation 4000 2 -accel $AccelY;
set DtAnalysis 0.001
set TmaxAnalysis 25
set Nsteps [expr int($TmaxAnalysis/$DtAnalysis)];
analyze $Nsteps $DtAnalysis
puts "Analisi completata"
set finishTime [clock clicks -milliseconds];
set timeSeconds [expr ($finishTime-$startTime)/1000];
set timeMinutes [expr ($timeSeconds/60)];
set timeHours [expr ($timeSeconds/3600)];
set timeMinutes [expr ($timeMinutes - $timeHours*60)];
set timeSeconds [expr ($timeSeconds - $timeMinutes*60 - $timeHours*3600)];
puts "\n-----
                     -----":
puts "TOTAL TIME TAKEN $timeHours:$timeMinutes:$timeSeconds";
# SUBROUTINE UTILIZZATE
**************
proc solaio {matID F1pm F2pm F3pm F4pm d1pm d2pm d3pm d4pm F1nm F2nm F3nm
F4nm d1nm d2nm d3nm d4nm rdispP rdispN rForceP rForceN uForceP uForceN} {
# Positive/Negative envelope Stress/Load
# stress1 stress2 stress3 stress4
set pEnvelopeStress [list [expr $F1pm*1000.0] [expr $F2pm*1000.0]
[expr $F3pm*1000.0] [expr $F4pm*1000.0]]
set nEnvelopeStress [list [expr $F1nm*1000.0] [expr $F2nm*1000.0]
[expr $F3nm*1000.0] [expr $F4nm*1000.0]]
# Positive/Negative envelope Strain/Deformation
# strain1 strain2 strain3 strain4
set pEnvelopeStrain [list $d1pm $d2pm $d3pm $d4pm]
set nEnvelopeStrain [list $d1nm $d2nm $d3nm $d4nm]
# Ratio of maximum deformation at which reloading begins
# Pos_env. Neg_env.
set rDisp [list $rdispP $rdispN]
# Ratio of envelope force at which reloading begins
# Pos_env. Neg_env.
set rForce [list $rForceP $rForceN]
# Ratio of monotonic strength developed upon unloading
# Pos_env. Neg_env.
set uForce [list $uForceP $uForceN]
# Coefficients for Unloading Stiffness degradation
# gammaK1 gammaK2 gammaK3 gammaK4 gammaKLimit
set gammaK [list 0.0 0.0 0.0 0.0 0.0]
# Coefficients for Reloading Stiffness degradation
# gammaD1 gammaD2 gammaD3 gammaD4 gammaDLimit
set gammaD [list 0.0 0.0 0.0 0.0 0.0]
# Coefficients for Strength degradation
# gammaF1 gammaF2 gammaF3 gammaF4 gammaFLimit
set gammaF [list 0.0 0.0 0.0 0.0 0.0]
```

set gammaE 10.0

```
# damage type (option: "energy", "cycle")
set dam "cycle"
# add the material to domain
uniaxialMaterial Pinching4 $matID [lindex $pEnvelopeStress 0]
[lindex $pEnvelopeStrain 0] [lindex $pEnvelopeStress 1]
[lindex $pEnvelopeStrain 1] [lindex $pEnvelopeStress 2]
[lindex $pEnvelopeStrain 2] [lindex $pEnvelopeStress 3]
[lindex $pEnvelopeStrain 3] [lindex $nEnvelopeStress 0]
[lindex $nEnvelopeStrain 0] [lindex $nEnvelopeStress 1]
[lindex $nEnvelopeStrain 1] [lindex $nEnvelopeStress 2]
[lindex $nEnvelopeStrain 2] [lindex $nEnvelopeStress 3]
[lindex $nEnvelopeStrain 3] [lindex $rDisp 0] [lindex $rForce 0]
[lindex $uForce 0] [lindex $rDisp 1] [lindex $rForce 1]
[lindex $uForce 1] [lindex $gammaK 0] [lindex $gammaK 1]
[lindex $gammaK 2] [lindex $gammaK 3] [lindex $gammaK 4]
[lindex $gammaD 0] [lindex $gammaD 1] [lindex $gammaD 2]
[lindex $gammaD 3] [lindex $gammaD 4] [lindex $gammaF 0]
[lindex $gammaF 1] [lindex $gammaF 2] [lindex $gammaF 3]
[lindex $gammaF 4] $gammaE $dam
```

```
puts "diagonali_ok"
```

B.3 Caso B320TB

```
*************
# Description: CASO B320TB
*********
wipe
#-----
# costruzione del modello
model BasicBuilder -ndm 3 -ndf 6
file mkdir Risultati; #cartella file output
#-----
# richiamo le subroutine esterne
source solaio.tcl
# Definizione variabili del solaio
#-----
#carichi solaio
set gk1 2.71;
                                #peso proprio solaio (kN/m^2)
                                #carico accidentale (kN/m^2)
set qk1 2.0;
# parametri geometrici
set a 8000.0;
                            #lato lungo del solaio (mm)
set b 4500.0;
                            #lato corto del solaio (mm)
set as 2000.0;
                            #lato lungo del sottopannello (mm)
set bs 750.0;
                            #lato corto del sottopannello (mm)
set n 12;
                            #numero molle che scaricano sui bordi
set ds [expr sqrt($as*$as+$bs*$bs)];
                            #lunghezza diagonale sottopannello (mm)
set th [expr atan($as/$bs)];
                            #angolo molle rispetto alla forza
# parametri della prova sperimentale
# backbone curve
#ramo POSITIVO:
set d1p 2.0;
                            #spostamento limite elastico (mm)
set d2p 12.0;
                            #1' spostamento limite plastico (mm)
set d3p 46.0;
                            #2' spostamento limite plastico (mm)
set d4p 48.0;
                            #spostamento a rottura (mm)
set F1p 80.0;
                            #forza limite elastica (kN)
```

set F2p 190.0; #1' forza limite plastica (kN) set F3p 370.0; #2' forza limite plastica (kN) set F4p 30.0; #forza a rottura (kN) #ramo NEGATIVO: set d1n -1.0; #spostamento limite elastico (mm) set d2n -10.0; #1' spostamento limite plastico (mm) set d3n -41.0; set d4n -42.0; #2' spostamento limite plastico (mm) #spostamento a rottura (mm) set F1n -70.0; #forza limite elastica (kN) set F2n -180.0; set F3n -410.0; #1' forza limite plastica (kN) #2' forza limite plastica (kN) #forza a rottura (kN) set F4n -30.0; # pinching curve (la nomenclatura corrisponde a quella del manuale OpenSees) set d1pin 17.0; #rdispP*dmax set d2pin 46.0; #dmax set d3pin 42.0; set d4pin -10.0; #rdispN*dmin set d5pin -41.0; #dmin set d6pin -35.7; #* set F1pin 100.0; #rForceP*f(dmax) set F2pin 370.0; #f(dmax) set F3pin 10.0; #uForceN*eNf3 #rForceN*f(dmin) set F4pin -100.0; set F5pin -400.0; #f(dmin) set F6pin -30.0; #uForceP*ePf3 #fattore scala (dim. numerica/dim. sperim.) per le forze (4500/4000) set fsf 1.125; #fattore di scala (dim. numerica/dim. sperim.) per gli spost. (8000/5000) set fss 1.6; #numero di file di sottopannelli in cui è diviso metà lato lungo set nf 2 # parametri assegnati alla singola molla # backbone curve #ramo POSITIVO set d1pm [expr \$d1p*\$fss*cos(\$th)/(\$ds*\$nf)]; #allungamento limite elastico set d2pm [expr \$d2p*\$fss*cos(\$th)/(\$ds*\$nf)]; #1' allungamento limite plastico set d3pm [expr \$d3p*\$fss*cos(\$th)/(\$ds*\$nf)]; #2' allungamento limite plastico set d4pm [expr \$d4p*\$fss*cos(\$th)/(\$ds*\$nf)]; #allungamento a rottura set F1pm [expr \$F1p*\$fsf/(\$n*cos(\$th))]; #sforzo limite elastico (kN) set F2pm [expr \$F2p*\$fsf/(\$n*cos(\$th))]; #1' sforzo limite plastico (kN) #2' sforzo limite plastico (kN) set F3pm [expr \$F3p*\$fsf/(\$n*cos(\$th))]; set F4pm [expr \$F4p*\$fsf/(\$n*cos(\$th))]; #sforzo a rottura (kN) #ramo NEGATIVO set d1nm [expr \$d1n*\$fss*cos(\$th)/(\$ds*\$nf)]; #allungamento limite elastico set d2nm [expr \$d2n*\$fss*cos(\$th)/(\$ds*\$nf)]; #1' allungamento limite plastico set d3nm [expr \$d3n*\$fss*cos(\$th)/(\$ds*\$nf)]; #2' allungamento limite plastico set d4nm [expr \$d4n*\$fss*cos(\$th)/(\$ds*\$nf)]; #allungamento a rottura set F1nm [expr \$F1n*\$fsf/(\$n*cos(\$th))]; #sforzo limite elastico (kN) #1' sforzo limite plastico (kN) set F2nm [expr \$F2n*\$fsf/(\$n*cos(\$th))]; set F3nm [expr \$F3n*\$fsf/(\$n*cos(\$th))]; #2' sforzo limite plastico (kN) set F4nm [expr \$F4n*\$fsf/(\$n*cos(\$th))]; #sforzo a rottura (kN) # pinching curve (la nomenclatura corrisponde a quella del manuale OpenSees) set rdispP [expr \$d1pin/\$d2pin] set rdispN [expr \$d4pin/\$d5pin] set rForceP [expr \$F1pin/\$F2pin] set rForceN [expr \$F4pin/\$F5pin] set uForceP [expr \$F6pin/(-\$F3n)] set uForceN [expr \$F3pin/(-\$F3p)]

#_____ # Definizione dei parametri della muratura #-----# parametri geometrici del singolo maschio murario 320.0; set t #spessore del pannello in mm 1500.0; #larghezza del pannello in mm set l 3000.0; 1; set h #altezza del pannello in mm #vincolo in sommità (1=libero, 2=incastro) set v 320.0; set ts #spessore del sottopannello in mm 1500.0; 1000.0; set ls #larghezza del sottopannello in mm set hs #altezza del sottopannello in mm #proprietà meccaniche (da prove sperimentali) #resistenza ultima a compressione della muratura in MPa set fu -7.92; set ft 0.2; #resistenza ultima a trazione della muratura in MPa set Em 2910.0; #modulo elastico della muratura in MPa set tO 0.1; #resistenza media a taglio a compressione nulla in MPa #modulo a taglio della muratura in MPa set G 875.0: set c 0.2; #coesione della muratura in MPa set f 0.5: #angolo d'attrito della muratura in radianti 0.00535; #scorrimento angolare a rottura set gu #peso specifico della muratura in kN/m^3 set w 24.0; #peso della porzione di solaio afferente in kN set q [expr (\$gk1 + 0.3*\$qk1)*0.5*\$b/1000.0]; #sforzo assiale sul singolo maschio murario in kN [expr (\$q + 4.0*\$w*\$t/1000.0*\$1/1000.0*\$h/1000.0 + set N 2.0*\$w*\$t/1000.0*\$1/1000.0*\$hs/1000.0)/4.0]; set T 150.0; #sforzo generato dal singolo tirante (kN) # MOLLE VERTICALI # parametri iniziali set nv 2; #numero di molle verticali nel pannello 2; #numero un morre verticul ner pannero
[expr \$t*\$1/\$nv]; #area afferente alla singola molla
[expr \$fu/\$Em]; #deformazione di compressione a snervamento
[expr \$ft/\$Em]; #deformazione di trazione a snervamento
[expr 1.5*\$ety]; #deformazione di trazione a rottura set Am set ecy [expr \$fu/\$Em]; set ecu set ety set etu [expr 1.5*\$ety]; # legame costitutivo mollavert set 1 Fpp [expr \$ft*\$Am] set [expr \$ety/\$v*\$hs] Upy set [expr \$ft*\$Am + 100.0] [expr \$etu/\$v*\$hs] set Fppu set Upu Fultp 0.1 set Uultp [expr \$etu/\$v*\$hs + 0.1] set Fpc set [expr \$fu*\$Am] [expr \$ecy/\$v*\$hs] set Ucy Fpcu [expr \$fu*\$Am - 100.0] set [expr \$ecu/\$v*\$hs] -0.1 Ucu set set Fultc [expr \$ecu/\$v*\$hs - 0.1] set Uultc pinchX 0.0 pinchY 0.0 set set set damage1 0.0 set damage2 0.0 uniaxialMaterial Hysteretic \$mollavert \$Fpp \$Upy \$Fppu \$Upu \$Fultp \$Uultp \$Fpc \$Ucy \$Fpcu \$Ucu \$Fultc \$Uultc \$pinchX \$pinchY \$damage1 \$damage2

```
# MOLLE DIAGONALT
# parametri iniziali
                             #numero molle diagonali
set nd
       2:
if {$h<$1} {
                             #scelta del parametro b (Turnsek-Cacovic)
set b 1.0
} else {
if {$h>1.5*$1} {
set b 1.5 } else {set b [expr $h/$1]}
}
#taglio ultimo a fessurazione diagonale secondo Turnsek e Cacovic in kN
set vuf [expr $t0*$t*$1/1000.0*sqrt(1 + $N/($b*$t0*$t*$1/1000.0))]
#spostamento sommitale del sottopannello in mm
        [expr $vuf*1000.0*$hs/($G*$ls*$ts)]
set dys
#angolo della diagonale del sottopannello rispetto all'orizzontale
set theta [expr atan($hs/$ls)]
#lunghezza della diagonale del sottopannello in mm
set ldiag [expr sqrt($ls*$ls + $hs*$hs)]
#spostamento a rottura del sottopannello in mm
set d2s [expr $gu*$hs];
# legame costitutivo
set
      molladiag
                 2
             [expr $vuf*1000.0/($nd*cos($theta))]
      Fpp
set
set
      Upy
              [expr $dys*cos($theta)/$ldiag]
             [expr $Fpp*0.9]
set
      Fppu
             [expr $d2s*cos($theta)/$ldiag]
set
      Upu
              1000.0
set
      Fultp
      Uultp
set
             [expr ($d2s*cos($theta) + 0.1*$d2s*cos($theta))/$ldiag]
             [expr -($vuf*1000.0)/($nd*cos($theta))]
set
      Fpc
set
      Ucy
              [expr -($dys*cos($theta))/$ldiag]
      Fpcu [expr $Fpc*0.9]
set
set
      Ucu
             [expr -($d2s*cos($theta))/$ldiag]
              -1000.0
set
      Fultc
             [expr -($d2s*cos($theta) + 0.1*$d2s*cos($theta))/$ldiag]
      Uultc
set
      pinchX 0.0
pinchY 0.0
set
set
      damage1 0.0
set
      damage2 0.0
set
      beta 0.9
set
uniaxialMaterial Hysteretic $molladiag $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2 $beta
# MOLLE ORIZZONTALI
# parametri iniziali
set no
         2:
                               #numero molle orizzontali
set dmax [expr $gu*$h];
                               #spostamento ultimo per scorrimento in mm
#taglio ultimo per scorrimento secondo Mohr e Coulomb in kN
        [expr ($c*$l*$t/1000.0 + $N*$f)/$no];
set vus
#lunghezza molla orizzontale in mm
set loriz [expr sqrt($ls*$ls + 1.0)];
# legame costitutivo
      mollaoriz
                 3
set
             [expr $vus*1000.0]
set
      Fpp
              [expr $dmax*0.1/$loriz]
set
      Upy
      Fppu
             [expr $vus*1000.0 + 1.0]
set
```

```
Upu
              [expr $dmax/$loriz]
set
set
      Fultp
              0.1
      Uultp
              [expr ($dmax+0.5)/$loriz]
set
set
      Fpc
              [expr -($vus*1000.0)]
set
      Ucy
              [expr -($dmax*0.1)/$loriz]
              [expr -($vus*1000.0 + 1.0)]
set
      Fpcu
             [expr -($dmax/$loriz)]
set
      Ucu
      Fultc
              -0.1
set
             [expr -($dmax+0.5)/$loriz]
set
      Uultc
      pinchX 0.0
set
      pinchY 0.0
set
set
      damage1 0.0
      damage2 0.0
set
uniaxialMaterial Hysteretic $mollaoriz $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2
# MOLLE VERTICALI DELLE FASCE DI PIANO
# parametri iniziali
set nvf
                          #numero molle verticali della fascia di piano
         2;
set dmaxf [expr $gu*$ls];
                          #spostamento ultimo per scorrimento in mm
#taglio ultimo a scorrimento (Mohr-Coulomb) in kN (decuplicato per ingranamento)
set vusf [expr 10.0*($c*$hs*$t/1000.0 + $T*$f)/$nvf];
#lunghezza molla verticale in mm
set lvf
        [expr sqrt($hs*$hs + 1.0)];
# legame costitutivo
set
       mollavertf
                     4
               [expr $vusf*1000.0]
       Fpp
set
set
       Upy
                [expr $dmaxf*0.1/$lvf]
set
       Fppu
                [expr $vusf*1000.0 + 1.0]
                [expr $dmaxf/$lvf]
       Upu
set
       Fultp
                0.1
set
       Uultp
                [expr ($dmaxf+0.5)/$lvf]
set
                [expr -($vusf*1000.0)]
set
       Fpc
                [expr -($dmaxf*0.1)/$lvf]
set
       Ucy
                [expr -($vusf*1000.0 + 1.0)]
[expr -($dmaxf/$lvf)]
       Fpcu
set
set
       Ucu
       Fultc
                -0.1
set
       Uultc
                [expr -($dmaxf+0.5)/$lvf]
set
       pinchX
                0.0
set
       pinchY
                0.0
set
set
       damage1 0.0
set
       damage2
                0.0
uniaxialMaterial Hysteretic $mollavertf $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2
# ------
# MOLLE DIAGONALI DELLE FASCE DI PIANO
# parametri iniziali
set ndf
       2:
                                      #numero molle diagonali della fascia di piano
#taglio ultimo a fessurazione diagonale secondo Turnsek e Cacovic in kN
set vuff [expr $t0*$t*$hs/1000.0*sqrt(1 + $T/($b*$t0*$t*$hs/1000.0))];
#spostamento sommitale del sottopannello della fascia di piano in mm
set dysf [expr $vuff*1000.0*$ls/($G*$hs*$ts)];
#angolo della diagonale del sottopannello della fascia di piano rispetto all'orizzontale
set thf
       [expr atan($ls/$hs)];
```

```
#lunghezza della diagonale del sottopannello della fascia di piano in mm
         [expr sqrt($ls*$ls + $hs*$hs)];
set ldf
#spostamento a rottura del sottopannello della fascia di piano in mm
set d2sf [expr $gu*$ls];
# legame costitutivo
set
       molladiagf
                     5
                  [expr $vuff*1000.0/($ndf*cos($thf))]
set
       Fpp
                  [expr $dysf*cos($thf)/$ldf]
       Upy
set
set
       Fppu
                  [expr $Fpp*0.9]
                  [expr $d2sf*cos($thf)/$ldf]
set
       Upu
       Fultp
                  1000.0
set
       Uultp
                  [expr ($d2sf*cos($thf) + 0.1*$d2sf*cos($thf))/$ldf]
set
                  [expr -($vuff*1000.0)/($ndf*cos($thf))]
set
       Fpc
                  [expr -($dysf*cos($thf))/$ldf]
set
       Ucy
set
       Fpcu
                  [expr $Fpc*0.9]
                  [expr -($d2sf*cos($thf))/$ldf]
       Ucu
set
set
       Fultc
                  -1000.0
                  [expr -($d2sf*cos($thf) + 0.1*$d2sf*cos($thf))/$ldf]
set
       Uultc
       pinchX
                  0.0
set
       pinchY
                  0.0
set
       damage1
                  0.0
set
set
       damage2
                  0.0
set
       beta
                  0.9
uniaxialMaterial Hysteretic $molladiagf $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2 $beta
# MOLLE ORIZZONTALI DELLE FASCE DI PIANO
# parametri iniziali
set nof
        2;
                           #numero di molle orizzontali fascia di piano
        [expr $t*$hs/$nof]; #area afferente alla singola molla
set Amf
set ecyf [expr fu/2.0, Em]; #deformazione di compressione a snervamento (con fu/2)
set ecuf [expr 3.0*$ecy];
                           #deformazione di compressione a rottura
set etyf [expr $ft/$Em];
                           #deformazione di trazione a snervamento
set etuf [expr 1.5*$ety];
                           #deformazione di trazione a rottura
# legame costitutivo
set
       mollaorizf
                      6
                  [expr $ft*$Amf]
set
       Fpp
set
       Upy
                  [expr $etyf/$v*$ls]
       Fppu
                  [expr $ft*$Amf + 100.0]
set
set
       Upu
                  [expr $etuf/$v*$ls]
       Fultp
                  0.1
set
                  [expr $etuf/$v*$ls + 0.1]
       Uultp
set
set
                  [expr $fu/2.0*$Amf]
       Fpc
set
       Ucy
                  [expr $ecyf/$v*$ls]
                  [expr $fu/2.0*$Amf - 100.0]
set
       Fpcu
                  [expr $ecuf/$v*$ls]
set
       Ucu
       Fultc
                  -0.1
set
                  [expr $ecuf/$v*$ls - 0.1]
set
       Uultc
       pinchX
                  0.0
set
       pinchY
                  0.0
set
       damage1
                  0.0
set
       damage2
                  0.0
set
uniaxialMaterial Hysteretic $mollaorizf $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2
```

TRUSS RIGIDI DEI MACRO-ELEMENTI

set truss 0 set E 6.0e12 uniaxialMaterial Elastic \$truss \$E # MOLLE DIAGONALI DEI SOLAI set diag 7 solaio \$diag \$F1pm \$F2pm \$F3pm \$F4pm \$d1pm \$d2pm \$d3pm \$d4pm \$F1nm \$F2nm \$F3nm \$F4nm \$d1nm \$d2nm \$d3nm \$d4nm \$rdispP \$rdispN \$rForceP \$rForceN \$uForceP \$uForceP #------# Definizione dei nodi del modello _____ #-----# solaio (z = 3003 mm) - i nodi commentati sono sovrapposti con la muratura #node 1 0.0 0.0 3003.0 corrisp. a nodo 106 2 0.0 750.0 3003.0 node #node 3 0.0 1500.0 3003.0 corrisp. a nodo 115 2250.0 node 0.0 3003.0 4 #node 5 0.0 3000.0 3003.0 corrisp. a nodo 124 3750.0 3003.0 node 6 0.0 4500.0 3003.0 corrisp. a nodo 131 7 0.0 #node node 8 2000.0 0.0 3003.0 node 9 2000.0 750.0 3003.0 2000.0 1500.0 3003.0 node 10 2000.0 2250.0 3003.0 node 11 node 12 2000.0 3000.0 3003.0 2000.0 node 13 3750.0 3003.0 2000.0 4500.0 3003.0 node 14 0.0 node 4000.0 3003.0 15 node 16 4000.0 750.0 3003.0 node 17 4000.0 1500.0 3003.0 18 4000.0 node 2250.0 3003.0 4000.0 3000.0 3003.0 node 19 node 20 4000.0 3750.0 3003.0 node 21 4000.0 4500.0 3003.0 node 22 6000.0 0.0 3003.0 6000.0 750.0 3003.0 23 node node 24 6000.0 1500.0 3003.0 node 25 6000.0 2250.0 3003.0 6000.0 26 3000.0 3003.0 node 6000.0 3750.0 3003.0 node 27 28 6000.0 4500.0 3003.0 node #node 29 8000.0 0.0 3003.0 corrisp. a nodo 206 30 8000.0 750.0 3003.0 node 3003.0 corrisp. a nodo 215 8000.0 1500.0 31 #node node 32 8000.0 2250.0 3003.0 #node 33 8000.0 3000.0 3003.0 corrisp. a nodo 224 node 8000.0 34 3750.0 3003.0 #node 35 8000.0 4500.0 3003.0 corrisp. a nodo 231 # portale sinistro (x = 0 mm) 100 0.0 0.0 0.0 node node 101 0.0 0.0 1.0 node 102 0.0 0.0 1001.0 node 103 0.0 0.0 1002.0 104 0.0 0.0 2002.0 node node 105 0.0 0.0 2003.0 106 0.0 0.0 3003.0 node 1499.0 node 107 0.0 0.0 108 0.0 1499.0 1.0 node 109 0.0 1499.0 1001.0 node node 110 0.0 1499.0 1002.0 node 111 0.0 1499.0 2002.0 112 node 0.0 1499.0 2003.0 113 0.0 1499.0 3003.0 node 114 0.0 1500.0 2003.0 node 1500.0 node 115 0.0 3003.0 116 0.0 2999.0 2003.0 node 0.0 2999.0 117 3003.0 node

node	118	0.0	3000.0	0.0	
node	119	0.0	3000.0	1.0	
node	120	0.0	3000.0	1001.0	
node	121	0.0	3000.0	1002.0	
node	122	0.0	3000.0	2002.0	
node	123	0.0	3000.0	2003.0	
node	124	0.0	3000.0	3003.0	
node	125	0.0	4500.0	0.0	
node	126	0.0	4500.0	1.0	
node	127	0.0	4500.0	1001.0	
node	128	0.0	4500.0	1002.0	
node	129	0.0	4500.0	2002.0	
node	130	0.0	4500.0	2003.0	
node	131	0.0	4500.0	3003.0	
# porta	le dest	tro (x =	5000 mm)		
node	200	8000 0	0 0	0.0	
node	200	8000.0	0.0	1.0	
node	201	8000.0	0.0	1001 0	
node	202	8000 0	0.0	1002.0	
node	204	8000 0	0 0	2002 0	
node	204	8000.0	0.0	2002.0	
node	200	8000 0	0.0	3003_0	
node	200	8000 0	1499 0	0 0	
node	208	8000 0	1499 0	1 0	
node	200	8000 0	1499 0	1001 0	
node	210	8000.0	1499.0	1002.0	
node	211	8000.0	1499.0	2002.0	
node	212	8000.0	1499.0	2003.0	
node	213	8000.0	1499.0	3003.0	
node	214	8000.0	1500.0	2003.0	
node	215	8000.0	1500.0	3003.0	
node	216	8000.0	2999.0	2003.0	
node	217	8000.0	2999.0	3003.0	
node	218	8000.0	3000.0	0.0	
node	219	8000.0	3000.0	1.0	
node	220	8000.0	3000.0	1001.0	
node	221	8000.0	3000.0	1002.0	
node	222	8000.0	3000.0	2002.0	
node	223	8000.0	3000.0	2003.0	
node	224	8000.0	3000.0	3003.0	
node	225	8000.0	4500.0	0.0	
node	226	8000.0	4500.0	1.0	
node	227	8000.0	4500.0	1001.0	
node	220	8000.0	4500.0	2002.0	
node	229	8000.0	4500.0	2002.0	
node	231	8000.0	4500.0	3003.0	
	201		1000.0		
#					
# Defin	izione	delle ma	asse sismio	che	
#					
set g	9806.0	;		#accelerazione gravità (mm/s^2)	
#masse	nodi ce	entrali :	solaio		
set m1	[expr	(\$gk1 + \$	\$qk1*0.3)*:	1000.0*\$as/1000.0*\$bs/1000.0/\$g]	
#masse	nodi la	aterali :	solaio non	poggianti sulle pareti (y = 0; y = 4500)	
#(compr	endono	anche po	eso di str	iscia di parete fuori piano secondo a. influenza)	
set m2	Lexpr 8	\$m1/2.0 -	⊦ \$₩*1000.0	J*\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0]	
#=====	nod- 1	at ame 1 -		rianti gulla paneti (r = 0; r = 5000);	
#masse	noai la	dierall :	nor 7 1	granti suite pareti $(x = 0; x = 5000)$:	. + -
"peso p	forme ((u1V1SO)	her (1100]	r e her 5 herche mera mnio) + beso soraro gileiei D*(«+/1000 0*«)/1000 0*«P/1000 0 +	ьсе
set m3	Lexpr 3	ФШ1/2.U ° Ф+/1000 /	r ⊅w≉luuu.()≁¢i² /1000.(/* (@c/1000.0*@1/1000.0*@1/1000.0 +	
	;	φι/ΙΟΟΟ.()≁ ΦTR \ 1000	· 0 + 612 / 1000 · 01 / 48 / 0 · 01	
#macce	nodi d	'angolo			
set m4	[expr 9	$\frac{115010}{3m1/4}$ 0 -	⊦\$₩*1000 ()*(\$t./1000.0*\$1/1000.0*\$b/1000_0_+	

\$t/1000.0*\$ls/1000.0*\$hs/1000.0)/\$g/6.0/2.0 +

\$w*1000.0*\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0/2.0]

mass	106	0.0	\$m4	0.0 0	.0 0.0	0.0	
mass	2	0.0	\$m3	0.0 0	.0 0.0	0.0	
magg	115	0 0	\$m3	0 0 0	0 0 0	0 0	
	110	0.0	ф	0.00		0.0	
mass	4	0.0	\$M3	0.0 0	.0 0.0	0.0	
mass	124	0.0	\$m3	0.0 0	.0 0.0	0.0	
mass	6	0.0	\$m3	0.0 0	.0 0.0	0.0	
mass	131	0.0	\$m4	0.0 0	.0 0.0	0.0	
mass	8	0.0	\$m2	0.0 0	.0 0.0	0.0	
mass	9	0.0	\$m1	0.0 0	.0 0.0	0.0	
mass	10	0 0	\$m1	0 0 0		0 0	
mass	11	0.0	ቀጠ1	0.0 0		0.0	
mass	11	0.0	фШI Ф. 4	0.0 0	.0 0.0	0.0	
mass	12	0.0	\$m1	0.0 0	.0 0.0	0.0	
mass	13	0.0	\$m1	0.0 0	.0 0.0	0.0	
mass	14	0.0	\$m2	0.0 0	.0 0.0	0.0	
mass	15	0.0	\$m2	0.0 0	.0 0.0	0.0	
mass	16	0.0	\$m1	0.0 0	.0 0.0	0.0	
mass	17	0.0	\$m1	0.0 0	.0 0.0	0.0	
magg	18	0 0	\$m1	0 0 0	0 0 0	0 0	
mass	10	0.0	ФШ1 Фт1			0.0	
mass	19	0.0	фШI Ф. 4	0.0 0	.0 0.0	0.0	
mass	20	0.0	\$m1	0.0 0	.0 0.0	0.0	
mass	21	0.0	\$m2	0.0 0	.0 0.0	0.0	
mass	22	0.0	\$m2	0.0 0	.0 0.0	0.0	
mass	23	0.0	\$m1	0.0 0	.0 0.0	0.0	
mass	24	0.0	\$m1	0.0 0	.0 0.0	0.0	
mass	25	0.0	\$m1	0.0 0	.0 0.0	0.0	
mass	26	0 0	\$m1	0 0 0		0 0	
mass	20	0.0	Фш1 Ф1	0.0 0	.0 0.0	0.0	
mass	21	0.0	\$m1	0.0 0	.0 0.0	0.0	
mass	28	0.0	\$m2	0.0 0	.0 0.0	0.0	
mass	206	0.0	\$m4	0.0 0	.0 0.0	0.0	
mass	30	0.0	\$m3	0.0 0	.0 0.0	0.0	
mass	215	0.0	\$m3	0.0 0	.0 0.0	0.0	
mass	32	0.0	\$m3	0.0 0	.0 0.0	0.0	
mass	224	0 0	\$m3	0 0 0	0 0 0	0 0	
mass	3/	0.0	\$m3	0 0 0		0.0	
mass	54	0.0	ψΠΟ	0.0 0	.0 0.0	0.0	
	001	<u> </u>	ф 4	0 0 0	0 0 0	A A	
mass	231	0.0	\$m4	0.0 0	.0 0.0	0.0	
mass	231	0.0	\$m4	0.0 0	.0 0.0	0.0	
mass #	231	0.0	\$m4	0.0 0	.0 0.0	0.0	
mass # # Defini	231 izione	0.0 degli	\$m4	0.0 0 	.0 0.0	0.0	
mass # # Defini #	231 izione	0.0 degli	\$m4 element: 	0.0 0 i	.0 0.0	0.0	
mass # # Defini #	231 izione	0.0 degli	\$m4 element: 	0.0 0 i 	.0 0.0	0.0	
mass # # Defini #	231 izione	0.0 degli	\$m4 element: 	0.0 0 i 	.0 0.0	0.0	
mass # # Defini #	231 izione	0.0 degli 	\$m4	0.0 0 i 	.0 0.0	0.0 	
mass # # Defini # element	231 izione truss	0.0 degli 1	\$m4 element 106	0.0 0	.0 0.0 1.0	0.0 \$truss	
mass # # Defini # # solaic element element	231 izione truss truss	0.0 degli 1 2	\$m4 element 106 2	0.0 0 i 2 115	1.0 1.0	0.0 \$truss \$truss	
mass # # Defini # element element element	231 izione truss truss truss	0.0 degli 1 2 3	\$m4 element: 106 2 115	0.0 0 i 2 115 4	1.0 1.0 1.0	0.0 \$truss \$truss \$truss \$truss	
mass # Defini # Defini # solaic element element element	231 izione truss truss truss truss truss	0.0 degli 1 2 3 4	\$m4 element. 106 2 115 4	0.0 0 i 2 115 4 124	1.0 1.0 1.0 1.0 1.0	0.0 \$truss \$truss \$truss \$truss \$truss	
mass # # Defini # element element element element	231 izione truss truss truss truss truss	0.0 degli 1 2 3 4 5	\$m4 element 106 2 115 4 124	0.0 0 i 2 115 4 124 6	1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 \$truss \$truss \$truss \$truss \$truss \$truss	
<pre>mass # # Defini # # solaic element element element element element element</pre>	231 izione truss truss truss truss truss truss truss	0.0 degli 1 2 3 4 5 6	\$m4 element 106 2 115 4 124 6	0.0 0 i 115 4 124 6 131	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss	
mass # # Defini # element element element element element element	231 izione truss truss truss truss truss truss truss	0.0 degli 1 2 3 4 5 6 7	\$m4 element 106 2 115 4 124 6 8	0.0 0 i 115 4 124 6 131 9	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss	
mass # # Defini # solaic element element element element element element	231 izione truss truss truss truss truss truss truss	0.0 degli 1 2 3 4 5 6 7 8	\$m4 element 106 2 115 4 124 6 8 9	0.0 0 i 115 4 124 6 131 9 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss	
mass # Defini # Defini # solaic element element element element element element element	231 izione truss truss truss truss truss truss truss truss	0.0 degli 1 2 3 4 5 6 7 8	\$m4 element. 106 2 115 4 124 6 8 9 10	0.0 0 1 1 1 1 4 124 6 131 9 10 11	1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss	
mass # # Defini # element element element element element element element	231 izione truss truss truss truss truss truss truss truss truss truss	0.0 degli 1 2 3 4 5 6 7 8 9	\$m4 element 106 2 115 4 124 6 8 9 10	0.0 0 i 2 115 4 124 6 131 9 10 11 10	1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss	
mass # # Defini # element element element element element element element element element	231 izione truss truss truss truss truss truss truss truss truss truss truss	0.0 degli 1 2 3 4 5 6 7 8 9 10	\$m4 element: 106 2 115 4 124 6 8 9 10 11	0.0 0 i 2 115 4 124 6 131 9 10 11 12	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss	
mass # # Defini # element element element element element element element element element element element	231 izione truss truss truss truss truss truss truss truss truss truss	0.0 degli 1 2 3 4 5 6 7 8 9 10 11	\$m4 element 106 2 115 4 124 6 8 9 10 11 12	0.00 i 2 115 4 124 6 131 9 10 11 12 13	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss	
mass # # Defini # solaic element element element element element element element element element element element element	231 izione truss truss truss truss truss truss truss truss truss truss truss truss	0.0 degli 1 2 3 4 5 6 7 8 9 10 11 12	\$m4 element 106 2 115 4 124 6 8 9 10 11 12 13	0.00 i 2 115 4 124 6 131 9 10 11 12 13 14	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss	
mass # Defini # Defini # solaic element element element element element element element element element element element element element	231 izione truss truss truss truss truss truss truss truss truss truss truss truss truss	0.0 degli 1 2 3 4 5 6 7 8 9 10 11 12 13	\$m4 element. 106 2 115 4 124 6 8 9 10 11 12 13 15	0.00 2 115 4 124 6 131 9 10 11 12 13 14 16	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 \$truss	
mass # # Defini # element element element element element element element element element element element element	231 izione truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss	0.0 degli 1 2 3 4 5 6 7 8 9 10 11 12 13 14	<pre>\$m4 element 106 2 115 4 124 6 8 9 10 11 12 13 15 16</pre>	0.00 i 2 115 4 124 6 131 9 10 11 12 13 14 16 17	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 \$truss	
mass # # Defini # element element element element element element element element element element element element element	231 izione truss truss truss truss truss truss truss truss truss truss truss truss truss truss	0.0 degli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	\$m4 element. 106 2 115 4 124 6 8 9 10 11 12 13 15 16 17	0.00 i 2 115 4 124 6 131 9 10 11 12 13 14 16 17 18	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 \$truss	
mass # # Defini # element	231 izione truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss	0.0 degli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	\$m4 element: 106 2 115 4 124 6 8 9 10 11 12 13 15 16 17 18	0.00 i 2 115 4 124 6 131 9 10 11 12 13 14 16 17 18 19	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 \$truss	
mass # # Defini # element	231 izione truss truss truss truss truss truss truss truss truss truss truss truss truss truss	0.0 degli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	\$m4 element 106 2 115 4 124 6 8 9 10 11 12 13 15 16 17 18 10	0.00 i 2 115 4 124 6 131 9 10 11 12 13 14 16 17 18 19 20	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 \$truss	
mass # # Defini # element	231 izione truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss	0.0 degli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0	\$m4 ====================================	0.00 i 2 115 4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 \$truss	
mass # Defini # Defini # solaic element	231 izione truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss	0.0 degli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	<pre>\$m4 element 106 2 115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20</pre>	0.00 2 115 4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 \$truss	
mass # # Defini # element	231 izione truss	0.0 degli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	\$m4 element. 106 2 115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22	0.00 i 2 115 4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23	1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 \$truss	
mass # # Defini # element	231 izione truss	0.0 degli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	<pre>\$m4 element 106 2 115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23</pre>	0.00 i 2 115 4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 \$truss	
mass # # Defini # element	231 izione truss	0.0 degli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	<pre>\$m4 element: 106 2 115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24</pre>	0.00 i 2 115 4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 \$truss	
mass # # Defini # element	231 izione truss	0.0 degli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	<pre>\$m4 element 106 2 115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25</pre>	0.00 i 2 115 4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25 26	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 \$truss	
mass # # Defini # element	231 izione truss	0.0 degli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	<pre>\$m4 element 106 2 115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25 26</pre>	0.00 i 2 115 4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25 26 27	1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 \$truss	
mass # # Defini # element	231 izione truss	0.0 degli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 24	<pre>\$m4 element 106 2 115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25 26 27</pre>	0.00 i 2 115 4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25 26 27 28	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 \$truss	
mass # # Defini # element	231 izione truss	0.0 degli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	<pre>\$m4 element 106 2 115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25 26 27 206</pre>	0.00 i 2 115 4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25 26 27 28 30	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 \$truss	
mass # # Defini # element	231 izione truss	0.0 degli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 25 25 25 25 25 25 25 25	<pre>\$m4 element 106 2 115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25 26 27 206 27 206</pre>	0.00 i 2 115 4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25 26 27 28 30 215	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 \$truss	
mass # # Defini # element	231 izione truss	0.0 degli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 26	<pre>\$m4 element: 106 2 115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25 26 27 206 30 c</pre>	0.00 i 2 115 4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25 26 27 28 30 215 26 27 28 30 215 26 27 28 30 215 26 27 28 30 215 26 27 28 30 215 20 20 215 20 215 20 215 20 20 215 20 20 215 20 215 20 20 215 20 215 20 215 20 215 20 20 215 20 215 20 215 20 20 215 20 215 20 20 215 20 215 20 215 20 215 20 215 20 20 20 215 20 215 20 215 20 20 215 20 215 20 20 215 20 215 20 215 20 215 215 215 215 215 215 215 215	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 \$truss	

		~ ~	~ ~			
element	truss	28	32	224	1.0	\$truss
element	truss	29	224	34	1.0	\$truss
~1~~~+	+	20	24	021	1 0	¢+
erement	LIUSS	30	54	231	1.0	φιιμδδ
element	truss	31	106	8	1.0	\$truss
element	truss	32	8	15	1 0	\$truss
		20	4 5	20	1.0	+ · · ·
element	truss	33	15	22	1.0	\$truss
element	truss	34	22	206	1.0	\$truss
~1~~~+	+	25	0	0	1 0	¢+
erement	LIUSS	35	Z	9	1.0	φLIUSS
element	truss	36	9	16	1.0	\$truss
alamant	truss	37	16	23	1 0	\$trues
	UT USS	01	10	20	1.0	φυ1 u 5 5
element	truss	38	23	30	1.0	\$truss
element	truss	39	115	10	1.0	\$truss
~1~~~+	+	10	10	17	1 0	¢+
erement	LIUSS	40	10	17	1.0	φtiuss
element	truss	41	17	24	1.0	\$truss
alamant	trucc	10	24	215	1 0	¢+rucc
erement	LIUSS	42	24	210	1.0	φιιμδδ
element	truss	43	4	11	1.0	\$truss
element	truss	44	11	18	1.0	\$truss
				20	1.0	+ · · ·
element	truss	45	18	25	1.0	\$truss
element	truss	46	25	32	1.0	\$truss
alamant	trucc	17	10/	10	1 0	¢+rucc
стещени	UT UD D	11	124	14	1.0	ψυτμδδ
element	truss	48	12	19	1.0	\$truss
element	truss	49	19	26	1 0	\$truss
-1		50		20	1.0	φ σ τ α δ δ
element	truss	50	26	224	1.0	\$truss
element	truss	51	6	13	1.0	\$truss
010000	+ = = =	50	12	20	1 0	\$ + rucc
erement	truss	52	13	20	1.0	ə truss
element	truss	53	20	27	1.0	\$truss
alamant	trucc	F /	27	31	1 0	¢+rucc
erement	LIUSS	54	21	34	1.0	φLIUSS
element	truss	55	131	14	1.0	\$truss
element	truss	56	14	21	1 0	\$truss
				21	1.0	\$ 01 GDD
element	truss	57	21	28	1.0	\$truss
element	truss	58	28	231	1.0	\$truss
~1~~~+	+	EO	106	0	1 0	¢diam
erement	LIUSS	59	100	9	1.0	aurag
element	truss	60	2	10	1.0	\$diag
alamant	truss	61	115	11	1 0	\$diag
	UT USS	01	110	11	1.0	φuiug
element	truss	62	4	12	1.0	\$diag
element	truss	63	124	13	1.0	\$diag
-1	*****	6.4	6	1 4	1 0	¢ J :
element	truss	64	6	14	1.0	\$dlag
element	truss	65	8	16	1.0	\$diag
alamant	trucc	66	0	17	1 0	¢diag
erement	LIUSS	00	9	17	1.0	aurag
element	truss	67	10	18	1.0	\$diag
element	truss	68	11	19	1 0	\$diag
		00		10	1.0	• • • •
element	truss	69	12	20	1.0	\$diag
element	truss	70	13	21	1.0	\$diag
~1~~~+	+	71	16	<u></u>	1 0	¢diam
erement	LIUSS	11	10	22	1.0	aurag
element	truss	72	17	23	1.0	\$diag
element	truss	73	18	24	1 0	\$diag
	UT USS	10	10	21	1.0	φuiug
e⊥ement	truss	14	19	25	1.0	\$diag
element	truss	75	20	26	1.0	\$diag
element	trucc	76	21	27	1 0	\$diam
erement	LUDD	10	Z 1	21	1.0	yurag
element	truss	77	23	206	1.0	\$diag
element	truss	78	24	30	1.0	\$diag
.]		70	~ ·	015	1.0	+ u - u 5
e⊥ement	truss	19	25	215	1.0	<pre>\$d1ag</pre>
element	truss	80	26	32	1.0	\$diag
010mc=+	+ = = = = =	01	27	201	1 0	¢diam
erement	LIUSS	01	21	224	1.0	φurag
element	truss	82	28	34	1.0	\$diag
						-
#						
# portal	le sinist:	Ľ 0				
element	truss	100	101	102	1.0	\$truss
element	truee	101	100	100	1 0	\$+rucc
erement	LUDD	TOT	TOZ	109	1.0	φιταδδ
element	truss	102	109	108	1.0	\$truss
element	truss	103	108	101	1 0	\$truss
2200000		100	100	101	1.0	φυταδο
e⊥ement	truss	104	103	104	1.0	\$truss
element	truss	105	104	111	1.0	\$truss
	+	100		110	1 0	¢±
erement	LIUSS	TOO	111	110	1.0	russ
element	truss	107	110	103	1.0	\$truss
olomon+	truse	108	105	106	1 0	\$+
STEWEIL	UT UD D	100	100	100	1.0	φιταδδ
e⊥ement	truss	109	106	113	1.0	\$truss
element	truss	110	113	112	1.0	\$truss
	+	111	110	105	1 0	¢±
erement	LIUSS	111	112	105	1.0	¢ truss
element	truss	112	114	115	1.0	\$truss

Appendice B. Listati di alcuni casi studio

element	truss	113	115	117	1.0	\$truss
alamant	truss	114	117	116	1 0	\$truss
element	trues	115	116	110	1 0	\$trues
olomont	trucc	116	110	120	1.0	¢trucc
element	truss	110	119	120	1.0	atings
element	truss	117	120	127	1.0	\$truss
element	truss	118	127	126	1.0	\$truss
element	truss	119	126	119	1.0	\$truss
element	truss	120	121	122	1.0	\$truss
element	truss	121	122	129	1.0	\$truss
element	truss	122	129	128	1.0	\$truss
element	truss	123	128	121	1 0	\$truss
element	trues	120	123	124	1 0	\$trues
element	truss	105	120	121	1.0	¢tiuss ¢tauga
erement	LIUSS	125	124	131	1.0	acinss
element	truss	126	131	130	1.0	\$truss
element	truss	127	130	123	1.0	\$truss
element	truss	128	100	101	1.0	\$mollavert
element	truss	129	102	103	1.0	\$mollavert
element	truss	130	104	105	1.0	\$mollavert
element	truss	131	107	108	1.0	<pre>\$mollavert</pre>
element	truss	132	109	110	1.0	\$mollavert
element	truss	133	111	112	1 0	\$mollavert
olomont	trucc	134	110	110	1.0	¢mollavort
element	truss	134	110	115	1.0	¢mollavert ¢mollavert
element	truss	135	120	121	1.0	\$mollavert
element	truss	136	122	123	1.0	\$mollavert
element	truss	137	125	126	1.0	\$mollavert
element	truss	138	127	128	1.0	\$mollavert
element	truss	139	129	130	1.0	\$mollavert
element	truss	140	101	109	1.0	\$molladiag
element	truss	141	102	108	1.0	\$molladiag
element	truss	142	103	111	1.0	\$molladiag
element	truss	143	104	110	1 0	\$molladiag
olomont	trucc	111	105	112	1.0	¢molladiag
element	truss	144	105	110	1.0	¢molladiag ¢molladiam
element	truss	145	106	112	1.0	\$molladiag
element	truss	146	119	127	1.0	\$molladiag
element	truss	147	120	126	1.0	\$molladiag
element	truss	148	121	129	1.0	\$molladiag
element	truss	149	122	128	1.0	\$molladiag
element	truss	150	123	131	1.0	\$molladiag
element	truss	151	124	130	1.0	\$molladiag
element	truss	152	100	108	1.0	\$mollaoriz
element	truss	153	101	107	1 0	\$mollaoriz
olomont	trucc	150	103	100	1.0	¢mollaoriz ¢mollaoriz
element	truss	104	100	110	1.0	¢mollaoriz ¢mollaoriz
element	truss	155	102	110	1.0	
element	truss	156	105	111	1.0	\$mollaoriz
element	truss	157	104	112	1.0	\$mollaoriz
element	truss	158	118	126	1.0	\$mollaoriz
element	truss	159	119	125	1.0	\$mollaoriz
element	truss	160	121	127	1.0	\$mollaoriz
element	truss	161	120	128	1.0	\$mollaoriz
element	truss	162	123	129	1.0	\$mollaoriz
element	truss	163	122	130	1.0	\$mollaoriz
element	truss	164	114	117	1 0	\$molladiagf
element	trues	165	115	116	1 0	\$molladiagf
element	tiuss	105	110	110	1.0	¢mollaulagi
element	truss	166	113	115	1.0	\$mollaorizi
element	truss	167	112	114	1.0	\$mollaorizf
element	truss	168	116	123	1.0	\$mollaorizf
element	truss	169	117	124	1.0	\$mollaorizf
element	truss	170	112	115	1.0	<pre>\$mollavertf</pre>
element	truss	171	113	114	1.0	<pre>\$mollavertf</pre>
element	truss	172	116	124	1.0	<pre>\$mollavertf</pre>
element	truss	173	117	123	1.0	\$mollavertf
<pre># portal</pre>	Le destro					
element	truss	200	201	202	1.0	\$truss
element	truss	201	202	209	1.0	\$truss
element	truss	202	209	208	1.0	\$truss
element	truss	203	208	201	1.0	\$truss
element	truse	204	203	204	1 0	\$truss
alement	truse	205	204	211	1 0	\$truse
		200	201	210	1 0	¢trucc
erement	LIUSS	200	Z I I	210	1.0	φιταρε

element	truss	207	210	203	1.0	\$truss
element	truss	208	205	206	1.0	\$truss
element	truss	209	206	213	1.0	\$truss
element	truss	210	213	212	1.0	\$truss
element	truss	211	212	205	1.0	\$truss
element	truss	212	214	215	1.0	\$truss
element	truss	213	215	217	1.0	\$truss
element	truss	214	217	216	1 0	\$truss
element	truss	215	216	210	1 0	\$truss
alamant	+ 22 4 5 5	210	210	214	1.0	¢truss ¢truss
element	truss	210	219	220	1.0	φtruss Φtruss
element	truss	217	220	221	1.0	\$truss
element	truss	218	227	226	1.0	\$truss
element	truss	219	226	219	1.0	\$truss
element	truss	220	221	222	1.0	\$truss
element	truss	221	222	229	1.0	\$truss
element	truss	222	229	228	1.0	\$truss
element	truss	223	228	221	1.0	\$truss
element	truss	224	223	224	1.0	\$truss
element	truss	225	224	231	1.0	\$truss
element	truss	226	231	230	1.0	\$truss
element	truss	227	230	223	1.0	\$truss
element	truss	228	200	201	1 0	\$mollavert
element	truss	220	200	203	1 0	\$mollavert
element	trucc	220	202	205	1.0	¢mollavert
element	truss	230	204	200	1.0	¢mollavert
element	truss	231	207	208	1.0	\$mollavert
element	truss	232	209	210	1.0	\$mollavert
element	truss	233	211	212	1.0	\$mollavert
element	truss	234	218	219	1.0	\$mollavert
element	truss	235	220	221	1.0	\$mollavert
element	truss	236	222	223	1.0	\$mollavert
element	truss	237	225	226	1.0	\$mollavert
element	truss	238	227	228	1.0	\$mollavert
element	truss	239	229	230	1.0	\$mollavert
element	truss	240	201	209	1.0	\$molladiag
element	truss	241	202	208	1.0	\$molladiag
element	truss	242	203	211	1.0	\$molladiag
element	truss	243	204	210	1.0	\$molladiag
element	truss	244	205	213	1 0	\$molladiag
element	trues	244	200	210	1 0	¢molladiag
element	trucc	240	200	212	1.0	¢molladiag ¢molladiag
element	truss	240	219	221	1.0	¢molladiag
element	truss	241	220	220	1.0	\$molladiag
element	truss	248	221	229	1.0	\$molladiag
element	truss	249	222	228	1.0	\$molladiag
element	truss	250	223	231	1.0	\$molladiag
element	truss	251	224	230	1.0	\$molladiag
element	truss	252	200	208	1.0	\$mollaoriz
element	truss	253	201	207	1.0	\$mollaoriz
element	truss	254	203	209	1.0	\$mollaoriz
element	truss	255	202	210	1.0	\$mollaoriz
element	truss	256	205	211	1.0	\$mollaoriz
element	truss	257	204	212	1.0	\$mollaoriz
element	truss	258	218	226	1.0	\$mollaoriz
element	truss	259	219	225	1.0	\$mollaoriz
alamant	truss	260	221	227	1 0	\$mollaoriz
element	trues	261	221	221	1 0	\$mollaoriz
element	truss	201	220	220	1.0	¢mollaoriz ¢mollaoriz
element	truss	202	223	229	1.0	
element	LIUSS	203	222	230	1.0	
e⊥ement	truss	204	214	211	1.0	<pre>pmolladiagf</pre>
e⊥ement	truss	265	215	216	1.0	\$molladiagf
element	truss	266	213	215	1.0	\$mollaorizf
element	truss	267	212	214	1.0	\$mollaorizf
element	truss	268	216	223	1.0	\$mollaorizf
element	truss	269	217	224	1.0	\$mollaorizf
element	truss	270	212	215	1.0	<pre>\$mollavertf</pre>
element	truss	271	213	214	1.0	<pre>\$mollavertf</pre>
element	truss	272	216	224	1.0	<pre>\$mollavertf</pre>
element	truss	273	217	223	1.0	<pre>\$mollavertf</pre>

#_____

```
# Definizione degli elementi beam per il fuori piano
#-----
# nodi lungo y = 0 mm
       1000
node
              2000.0
                        0.0
                                 0.0
       1001
               4000.0
                        0.0
                                 0.0
node
       1002
              6000.0
                       0.0
                                 0.0
node
       1003
                                 1002.0
node
              2000.0
                       0.0
       1004
              4000.0
node
                        0.0
                                 1002.0
       1005
              6000.0
                       0.0
                                 1002.0
node
node
       1006
              2000.0
                       0.0
                                 2003.0
node
       1007
              4000.0
                       0.0
                                 2003.0
              6000.0
       1008
                       0.0
                                 2003.0
node
       1009
              2000.0
                       0.0
                                 1001.0
node
node
       1010
              4000.0
                       0.0
                                 1001.0
       1011
              6000.0
node
                       0.0
                                 1001.0
node
       1012
              2000.0
                        0.0
                                 2002.0
       1013
              4000.0
                       0.0
                                 2002.0
node
node
       1014
              6000.0
                       0.0
                                 2002.0
       1015
node
              2000.0
                       0.0
                                 1.0
       1016
              4000.0
                       0.0
                                 1.0
node
      1017
              6000.0
                       0.0
node
                                 1.0
# nodi lungo y = 4500 \text{ mm}
       2000 2000.0
                        4500.0
                                0.0
node
       2001
              4000.0
                        4500.0
                                 0.0
node
node
       2002
              6000.0
                        4500.0
                                 0.0
       2003
              2000.0
                       4500.0
                                 1002.0
node
                                 1002.0
       2004
              4000.0
                       4500.0
node
node
       2005
              6000.0
                       4500.0
                                 1002.0
node
       2006
              2000.0
                       4500.0
                                 2003.0
node
       2007
              4000.0
                       4500.0
                                 2003.0
       2008
              6000.0
                       4500.0
                                 2003.0
node
node
       2009
              2000.0
                       4500.0
                                 1001.0
node
       2010
              4000.0
                       4500.0
                                 1001.0
node
       2011
              6000.0
                        4500.0
                                 1001.0
       2012
              2000.0
                       4500.0
                                 2002.0
node
node
       2013
              4000.0
                       4500.0
                                 2002.0
node
       2014
              6000.0
                       4500.0
                                 2002.0
       2015
              2000.0
                       4500.0
node
                                1.0
       2016
               4000.0
                        4500.0
node
                                1.0
       2017
              6000.0
                        4500.0
node
                                 1.0
# cambio coordinate da sistema locale a globale
set transfTag1 1 geomTransf Linear $transfTag1 0 1 0
set transfTag2 2 geomTransf Linear $transfTag2 0 0 1
# calcolo dei momenti d'inerzia fuori piano:
set I2 [expr $hs*$t*$t/12.0/2.0]; # J beam oriz. secondo a. influenza
# il modulo elastico viene ridotto per tener conto di degrado/fessurazione
# sequenza da usare:
# element elasticBeamColumn $eleTag $iNode $jNode $A $E $G $J $Iy $Iz $transfTag
# beam lungo y = 0 mm
element elasticBeamColumn 301 1000 1015
                                       1.0 [expr $Em/2.3] 1.0 1.0 $I1 1.0
$transfTag1
element elasticBeamColumn 332 1015 1009
                                       1.0 [expr $Em/2.3] 1.0 1.0 $I1 1.0
$transfTag1
element elasticBeamColumn 318 1009 1003
                                       1.0 [expr $Em/2.3] 1.0 1.0 $I1 1.0
$transfTag1
element elasticBeamColumn 302 1003 1012
                                        1.0 [expr $Em/2.3] 1.0 1.0 $I1 1.0
$transfTag1
element elasticBeamColumn 319 1012 1006
                                        1.0 [expr $Em/2.3] 1.0 1.0 $I1 1.0
$transfTag1
element elasticBeamColumn 303 1006 8
                                        1.0 [expr $Em/2.3] 1.0 1.0 $I1 1.0
$transfTag1
```

element elasticBeamColumn \$transfTag1	304	1001	1016	1.0	[expr	\$Em/2.3]	1.0	1.0	\$I1	1.0
element elasticBeamColumn	333	1016	1010	1.0	[expr	\$Em/2.3]	1.0	1.0	\$I1	1.0
<pre>\$transiTag1 element elasticBeamColumn \$transfTag1</pre>	320	1010	1004	1.0	[expr	\$Em/2.3]	1.0	1.0	\$I1	1.0
element elasticBeamColumn	305	1004	1013	1.0	[expr	\$Em/2.3]	1.0	1.0	\$I1	1.0
element elasticBeamColumn	321	1013	1007	1.0	[expr	\$Em/2.3]	1.0	1.0	\$I1	1.0
element elasticBeamColumn	306	1007	15	1.0	[expr	\$Em/2.3]	1.0	1.0	\$I1	1.0
element elasticBeamColumn	307	1002	1017	1.0	[expr	\$Em/2.3]	1.0	1.0	\$I1	1.0
stransflagi element elasticBeamColumn	334	1017	1011	1.0	[expr	\$Em/2.3]	1.0	1.0	\$I1	1.0
stransflagi element elasticBeamColumn	322	1011	1005	1.0	[expr	\$Em/2.3]	1.0	1.0	\$I1	1.0
<pre>\$transflag1 element elasticBeamColumn </pre>	308	1005	1014	1.0	[expr	\$Em/2.3]	1.0	1.0	\$I1	1.0
<pre>\$transiTag1 element elasticBeamColumn</pre>	323	1014	1008	1.0	[expr	\$Em/2.3]	1.0	1.0	\$I1	1.0
<pre>\$transfTag1 element elasticBeamColumn</pre>	309	1008	22	1.0	[expr	\$Em/2.3]	1.0	1.0	\$I1	1.0
<pre>\$transfTag1 element elasticBeamColumn</pre>	310	103	1003	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element elasticBeamColumn</pre>	311	1003	1004	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element elasticBeamColumn</pre>	312	1004	1005	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element elasticBeamColumn</pre>	313	1005	203	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element elasticBeamColumn</pre>	314	105	1006	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element elasticBeamColumn</pre>	315	1006	1007	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element elasticBeamColumn</pre>	316	1007	1008	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element elasticBeamColumn</pre>	317	1008	205	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element elasticBeamColumn</pre>	324	102	1009	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element elasticBeamColumn</pre>	325	1009	1010	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element elasticBeamColumn</pre>	326	1010	1011	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element elasticBeamColumn</pre>	327	1011	202	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element elasticBeamColumn</pre>	328	104	1012	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element elasticBeamColumn</pre>	329	1012	1013	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element elasticBeamColumn</pre>	330	1013	1014	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element elasticBeamColumn</pre>	331	1014	204	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element elasticBeamColumn</pre>	335	101	1015	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element elasticBeamColumn</pre>	336	1015	1016	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element elasticBeamColumn</pre>	337	1016	1017	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element elasticBeamColumn</pre>	338	1017	201	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2</pre>					1	-				
# beam lungo y = 4500 mm										
element elasticBeamColumn	401	2000	2015	1.0	[expr	\$Em/2.3]	1.0	1.0	\$I1	1.0
<pre>\$transfTag1 element elasticBeamColumn</pre>	432	2015	2009	1.0	[expr	\$Em/2.3]	1.0	1.0	\$I1	1.0
\$transfTag1										

element elasticBeamColumn \$transfTag1	418	2009	2003	1.0	[expr	\$Em/2.3]	1.0	1.0	\$I1	1.0
element elasticBeamColumn	402	2003	2012	1.0	[expr	\$Em/2.3]	1.0	1.0	\$I1	1.0
<pre>\$transfTag1 element elasticBeamColumn</pre>	419	2012	2006	1.0	ſexpr	\$Em/2.3]	1.0	1.0	\$I1	1.0
<pre>\$transfTag1</pre>					- 1					
element elasticBeamColumn \$transfTag1	403	2006	14	1.0	Lexpr	\$Em/2.3]	1.0	1.0	\$11	1.0
element elasticBeamColumn	404	2001	2016	1.0	[expr	\$Em/2.3]	1.0	1.0	\$I1	1.0
element elasticBeamColumn	433	2016	2010	1.0	[expr	\$Em/2.3]	1.0	1.0	\$I1	1.0
<pre>\$transfTag1 element_elasticBeamColumn</pre>	420	2010	2004	1 0	[evnr	\$Fm/2 3]	1 0	1 0	\$T1	1 0
<pre>\$transfTag1</pre>	120	2010	2004	1.0	LONDI	ψΔm/2.0]	1.0	1.0	ΨΙΙ	1.0
element elasticBeamColumn \$transfTag1	405	2004	2013	1.0	[expr	\$Em/2.3]	1.0	1.0	\$I1	1.0
element elasticBeamColumn	421	2013	2007	1.0	[expr	\$Em/2.3]	1.0	1.0	\$I1	1.0
<pre>\$transfTag1 element elasticBeamColumn</pre>	406	2007	21	1.0	[expr	\$Em/2.3]	1.0	1.0	\$I1	1.0
<pre>\$transfTag1</pre>	407	0000	0017	1 0	-	ф.т (о. о.)	1 0	1 0	ф.Т.4	1 0
<pre>\$transfTag1</pre>	407	2002	2017	1.0	Lexpr	\$Em/2.3]	1.0	1.0	\$11	1.0
element elasticBeamColumn	434	2017	2011	1.0	[expr	\$Em/2.3]	1.0	1.0	\$I1	1.0
element elasticBeamColumn	422	2011	2005	1.0	[expr	\$Em/2.3]	1.0	1.0	\$I1	1.0
<pre>\$transfTag1 element elasticBeamColumn</pre>	408	2005	2014	1.0	[expr	\$Em/2.3]	1.0	1.0	\$T1	1.0
\$transfTag1	100	2000	2011	1.0	-	↓1m,2.0]	1.0	1.0	*11	1.0
element elasticBeamColumn \$transfTag1	423	2014	2008	1.0	Lexpr	\$Em/2.3]	1.0	1.0	\$I1	1.0
element elasticBeamColumn	409	2008	28	1.0	[expr	\$Em/2.3]	1.0	1.0	\$I1	1.0
<pre>\$transfTag1 element elasticBeamColumn</pre>	410	128	2003	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 alement_alecticPeerColumn</pre>	111	2002	2004	1 0	- -	¢Em /00 0]	1 0	1 0	1 0	¢το
\$transfTag2	411	2003	2004	1.0	Lexbi	фЕШ/20.0]	1.0	1.0	1.0	φιΖ
element elasticBeamColumn \$transfTag2	412	2004	2005	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
element elasticBeamColumn	413	2005	228	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element elasticBeamColumn</pre>	414	130	2006	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2</pre>					- 1					
<pre>element elasticBeamColumn \$transfTag2</pre>	415	2006	2007	1.0	Lexpr	\$Em/20.0]	1.0	1.0	1.0	\$12
element elasticBeamColumn	416	2007	2008	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
element elasticBeamColumn	417	2008	230	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element_elasticBeamColumn</pre>	424	127	2009	1 0	[expr	\$Em/20 0]	1 0	1 0	1 0	\$T2
<pre>\$transfTag2</pre>			2000	1.0	-	+2m, 2000]	1.0	1.0	1.0	
element elasticBeamColumn \$transfTag2	425	2009	2010	1.0	Lexpr	\$Em/20.0]	1.0	1.0	1.0	\$12
element elasticBeamColumn	426	2010	2011	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element elasticBeamColumn</pre>	427	2011	227	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 alement_alecticReemCalumn</pre>	100	100	2012	1 0	- -	¢Em /00 0]	1 0	1 0	1 0	¢το
\$transfTag2	420	125	2012	1.0	Lerbi	φΕΠ/20.0]	1.0	1.0	1.0	φιΖ
element elasticBeamColumn \$transfTag2	429	2012	2013	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
element elasticBeamColumn	430	2013	2014	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2 element elasticBeamColumn</pre>	431	2014	229	1.0	ſexpr	\$Em/20.0]	1.0	1.0	1.0	\$12
\$transfTag2	405	100	2015	1 0	. <u>т</u>	φ <u>μ</u>	1 0	1 0	1 0	ф.т. с
element elasticBeamColumn \$transfTag2	435	126	2015	1.0	Lexpr	\$Em/20.0]	1.0	1.0	1.0	\$12
element elasticBeamColumn	436	2015	2016	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
element elasticBeamColumn	437	2016	2017	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
<pre>\$transfTag2</pre>										

eleme: \$tran	nt elas sfTag2	ticBe	amCol	umn 4	38 2	2017	226	1.0	[expr	\$Em/20.0]	1.0	1.0	1.0	\$12
#														
" # Def #	inizion	e dei	nodi	vinc	olati	i 								
# nod	i dei b	eam p	er fu	lori p	iano	(cer	niere	cilind	riche)					
fix	1000	1	1	1	0	1	1							
fix	1001	1	1	1	0	1	1							
fix	1002	1	1	1	0	1	1							
fix	2000	1	1	1	0	1	1							
fix	2001	1	1	1	0	1	1							
fix	2002	1	1	1	0	1	1							
# por	tale si	nistr	o (in	castr	i + 0	carre	lli fu	ıori pi	ano)					
fix	100	1	1	1	1	1	1							
fix	107	1	1	1	1	1	1							
fix	118	1	1	1	1	1	1							
fix	125	1	1	1	1	1	1							
I 1 X	101	1	0	0	1	1	1							
11X	102	1	0	0	1	1	1							
I 1 X	103	1	0	0	1	1	1							
11X f:	104	1	0	0	1	1	1							
11X 4:	105	1	0	0	Ţ	1	1							
11X	106	1	0	0	1	1	1							
I 1 X	108	1	0	0	1	1	1							
11X f:	109	1	0	0	1	1	1							
11X f:	110	1	0	0	1	1	1							
I 1 X	111	1	0	0	1	1	1							
11X f:	112	1	0	0	1	1	1							
11X f;v	113	1	0	0	1	1	1							
11X fiv	115	1	0	0	1	1	1							
fiv	116	1	0	0	1	1	1							
fiv	117	1	0	0	1	1	1							
fix	119	1	õ	0	1	1	1							
fix	120	1	0	0	1	- 1	1							
fix	121	1	õ	0	1	1	1							
fix	122	1	0	0	1	1	1							
fix	123	1	0	0	1	1	1							
fix	124	1	0	0	1	1	1							
fix	126	1	0	0	1	1	1							
fix	127	1	0	0	1	1	1							
fix	128	1	0	0	1	1	1							
fix	129	1	0	0	1	1	1							
fix	130	1	0	0	1	1	1							
fix	131	1	0	0	1	1	1							
# por	tale de	stro	(inca	stri	+ cai	rrell	i fuor	i pian	0)					
fix	200	1	1	1	1	1	1	-						
fix	207	1	1	1	1	1	1							
fix	218	1	1	1	1	1	1							
fix	225	1	1	1	1	1	1							
fix	201	1	0	0	1	1	1							
fix	202	1	0	0	1	1	1							
fix	203	1	0	0	1	1	1							
fix	204	1	0	0	1	1	1							
fix	205	1	0	0	1	1	1							
fix	206	1	0	0	1	1	1							
fix	208	1	0	0	1	1	1							
fix	209	1	0	0	1	1	1							
fix	210	1	0	0	1	1	1							
fix	211	1	0	0	1	1	1							
fix	212	1	0	0	1	1	1							
fix	213	1	0	0	1	1	1							
fix	214	1	0	0	1	1	1							
fix	215	1	0	0	1	1	1							
fix	216	1	0	0	1	1	1							
fix	217	1	0	0	1	1	1							

Appendice B. Listati di alcuni casi studio

fix	219	1	0	0	1	1	1										
fix	220	1	0	0	1	1	1										
fix	221	1	0	0	1	1	1										
fix	222	1	0	0	1	1	1										
fix	223	1	0	0	1	1	1										
 fiv	220	1	Ô	Ô	1	1	1										
1 1 A f :	224	1	0	0	1	1	1										
1 1 X	220	1	0	0	1	1	1										
İlX	227	1	0	0	1	1	1										
fix	228	1	0	0	1	1	1										
fix	229	1	0	0	1	1	1										
fix	230	1	0	0	1	1	1										
fix	231	1	0	0	1	1	1										
# sol	aio (ca	rrell	i fud	ori pi	ano)												
fix	2	1	0	1	1	1	1										
fix	4	1	0	1	1	1	1										
fiv	6	1	Õ	1	1	1	1										
1 1 A	0	1 0	0	1	1	1											
IIX	8	0	0	1	1	1	1										
İlx	9	0	0	1	1	1	1										
fix	10	0	0	1	1	1	1										
fix	11	0	0	1	1	1	1										
fix	12	0	0	1	1	1	1										
fix	13	0	0	1	1	1	1										
fix	14	0	0	1	1	1	1										
fix	15	0	0	1	1	1	1										
fiv	16	Ô	Ô	1	1	1	1										
1 1 A f :	17	0	0	1	1	1	1										
1 1 X	17	0	0	1	1	1	1										
IIX	18	0	0	1	1	1	1										
fix	19	0	0	1	1	1	1										
fix	20	0	0	1	1	1	1										
fix	21	0	0	1	1	1	1										
fix	22	0	0	1	1	1	1										
fix	23	0	0	1	1	1	1										
fix	24	0	0	1	1	1	1										
fix	25	0	0	1	1	1	1										
1 1 A f i v	20	õ	õ	1	1	1	1										
1 I X	20	0	0	1	1	1	1										
IIX	27	0	0	1	1	1	1										
fix	28	0	0	1	1	1	1										
fix	30	1	0	1	1	1	1										
fix	32	1	0	1	1	1	1										
fix	34	1	0	1	1	1	1										
#																	
" # Def	inizion	e dei	cari	chi													
# 001	. 1112101	c uci	u cui														
#																	
				~													
patte	ern Plai	n 1 I	linear	: {		# (ari	chi v	rerti	ıca.	Lı	app	lic	cati	. ai	port	tali
load	106 0.0	0.0	Lexpi	: -\$N*	1000.	0/2.0	-	\$w*\$t	*\$h*	*\$a.	/40	0000	000.	.0]	0.0	0.0	0.0;
load	115 0.0	0.0	[expi	: -\$N*	1000.	0/2.0	-	\$w*\$t	*\$h*	*\$a.	/40	000	00.	.0]	0.0	0.0	0.0;
load	124 0.0	0.0	[expi	- \$N *	1000.	0/2.0	-	\$w*\$t	*\$h*	*\$a.	/40	000	00.	.0]	0.0	0.0	0.0;
load	131 0.0	0.0	[expi	- \$N*	1000.	0/2.0	-	\$w*\$t	*\$h*	×\$a.	/40	000	00.	. 0]	0.0	0.0	0.0;
load	206 0.0	0.0	Гехри	- \$ N*	1000.	0/2.0	_	\$w*\$t	*\$h*	⊧\$a	/40	000	000.	. 01	0.0	0.0	0.0:
load	215 0 0	0 0	[ovn	• _\$N*	1000	0/2 0	_	\$17*\$+	*\$h	κ\$a	/40	000	00	01	0 0	0 0	0 0.
load	210 0.0	0.0	Lowpi	-φΝ·	1000.	0/2.0		φw·φυ ΦΦ+		· ψα. • Φ.	/ 10			. 0]	0.0	0.0	0.0,
load	224 0.0	0.0	Lexpi		1000.	0/2.0	-	⊅ ₩*⊅t	* • • • •	гра. 	/40		.000	.0]	0.0	0.0	0.0;
load	231 0.0	0.0	Lexpi	-\$N*	1000.	0/2.0	-	\$W*\$t	*\$n*	*\$a	/40	0000	000.	.0]	0.0	0.0	0.0;
# Car	richi or	izzor	ntali	dovut	i ai	tiran	ti										
load	105 0.0	[eː	(pr \$1	*1000	.0]	0.0 0	0.0	0.0 0).0;								
load	106 0.0	[eː	(pr \$1	*1000	.0]	0.0 0	0.0	0.0 0).0;								
load	130 0.0	[ez	cpr - S	ST * 100	0.0]	0.0 0	0.0	0.0 0).0;								
load	131 0.0	[ez	cpr - S	ST * 100	0.01	0.0 0	0.0	0.0 0	.0:								
load	205 0 0	Гез	י מסי \$1	*1000	.01	0.0 0	0.0	0.0 0).0.								
1024	206 0 0	Го-	-r- Ψι πr Φη	* 1000	01		0	0 0 0) <u>0</u> ,								
loci	200 0.0	Le3	ישיי אין אין אין אין אין אין אין אין אין אין	· 1 0 0 0				0.00	· · · ;								
Toad	230 0.0	Lez	cpr -8	0UT+100				0.00	,.0;								
⊥oad	231 0.0	Lei	(pr -	51*100	0.0]	U.U C	0.0	0.0 0	0.0;								
}																	
#																	
# Out	put dei	dati	Ĺ														
#	-																

```
recorder Node -file Risultati/disp_port1.txt -node 106 -dof 2 disp;
recorder Node -file Risultati/disp_port2.txt -node 206 -dof 2 disp;
recorder Node -file Risultati/disp_sol.txt -node 21 -dof 2 disp;
recorder Node -file Risultati/disp_fp_1004.txt -node 1004 -dof 2 disp;
recorder Node -file Risultati/disp_fp_1007.txt -node 1007 -dof 2 disp;
recorder Node -file Risultati/disp_fp_2004.txt -node 2004 -dof 2 disp;
recorder Node -file Risultati/disp_fp_2007.txt -node 2007 -dof 2 disp;
recorder Node -file Risultati/react_port1.txt -node 100 107 118 125 -dof 2 reaction;
recorder Node -file Risultati/react_port2.txt -node 200 207 218 225 -dof 2 reaction;
recorder Element -file Risultati/axial_sol.txt -ele 70 axialForce;
recorder Node -file Risultati/disp_vertbase.txt -node 108 -dof 3 disp;
recorder Element -file Risultati/axial_vertbase.txt -ele 131 axialForce;
recorder Node -file Risultati/disp_orizbase.txt -node 101 -dof 2 disp;
recorder Element -file Risultati/axial_orizbase.txt -ele 153 axialForce;
recorder Node -file Risultati/disp_diagbase.txt -node 102 -dof 2 disp;
recorder Element -file Risultati/axial_diagbase.txt -ele 141 axialForce;
#-----
# ANALISI
#----
           _____
puts "SOLVING..."
         startTime [clock clicks -milliseconds]
set
# Gravity-analysis parameters set Tol 1.0e-5 ;
set Niter 1000 ;
                               # numero massimo di iterazioni Newton
constraints Transformation;
                                  # how it handles boundary conditions
                                  # renumber dof's to minimize band-width
numberer RCM;
system BandGeneral;
                                  # how to store and solve the system of equations
test NormDispIncr $Tol $Niter 0 ; # determine if convergence has been achieved
test EnergyIncr $Tol $Niter 0 ;
test NormUnbalance $Tol $Niter 0 ;
algorithm NewtonLineSearch 0.5 ;
                                      # updates tangent stiffness at every iteration
set NstepGravity 10;
                                       # apply gravity in 10 steps
set DGravity [expr 1./$NstepGravity]; # first load increment;
integrator LoadControl $DGravity;
                                      # determine the next time step for an analysis
analysis Static;
                                       # define type of analysis static or transient
analyze $NstepGravity;
                                       # apply gravity
#TIME HISTORY
loadConst -time 0.0; # hold gravity constant and restart time
set Tol 1.0e-6; # convergence tolerance for test
set Niter 10000; # numero massimo di iterazioni Newton
wipeAnalysis; # clear previously-define analysis parameters
constraints Plain; # how it handles boundary conditions
numberer Plain; # renumber dof's to minimize band-width (optimization)
system BandGeneral; # how to store and solve the system of equations
test NormDispIncr $Tol $Niter 0 ;
#test NormUnbalance $Tol $Niter 0 ;
#test EnergyIncr $Tol $Niter 0 ;
algorithm KrylovNewton;
integrator Newmark 0.5 0.25
# define damping
set xDamp 0.02;
                                                  # 2% damping ratio
set lambda1 [eigen 1];
                                                  # eigenvalue mode 1
set omega1 [expr pow($lambda1,0.5)];
set offset 4;
                                                  # due Hz più del 1' modo
set omega2 [expr ($omega1/6.28+$offset)*6.28];
puts "1a frequenza =[expr $omega1/6.28]";
                                                 # plotta la prima frequenza
puts "2a frequenza =[expr $omega2/6.28]";
                                                  # plotta la seconda frequenza
set alphaM [expr ($omega1*$omega2*2*$xDamp)/($omega1+$omega2)] ;
set betaKcurr 0.0;
                     # K-proportional damping +betaKcurr*KCurrent
set betaKcomm [expr (2*$xDamp)/($omega1+$omega2)] ;
puts "alphaM = $alphaM"
puts "betaKcomm = $betaKcomm"
```

```
set betaKinit 0.0; # initial-stiffness proportional damping + betaKinit*Kini
# define damping
rayleigh $alphaM $betaKcurr $betaKinit $betaKcomm; # RAYLEIGH damping
analysis Transient
set AccelY "Series -dt 0.01 -filePath sisma3.th -factor 1.54";
pattern UniformExcitation 4000 2 -accel $AccelY;
set DtAnalysis 0.001
set TmaxAnalysis 25
set Nsteps [expr int($TmaxAnalysis/$DtAnalysis)];
analyze $Nsteps $DtAnalysis
puts "Analisi completata"
set finishTime [clock clicks -milliseconds];
set timeSeconds [expr ($finishTime-$startTime)/1000];
set timeMinutes [expr ($timeSeconds/60)];
set timeHours [expr ($timeSeconds/3600)];
set timeMinutes [expr ($timeMinutes - $timeHours*60)];
set timeSeconds [expr ($timeSeconds - $timeMinutes*60 - $timeHours*3600)];
puts "\n-----";
puts "TOTAL TIME TAKEN $timeHours:$timeMinutes:$timeSeconds";
# SUBROUTINE UTILIZZATE
********************
proc solaio {matID F1pm F2pm F3pm F4pm d1pm d2pm d3pm d4pm F1nm F2nm F3nm
F4nm d1nm d2nm d3nm d4nm rdispP rdispN rForceP rForceN uForceP uForceN} {
# Positive/Negative envelope Stress/Load
# stress1 stress2 stress3 stress4
set pEnvelopeStress [list [expr $F1pm*1000.0] [expr $F2pm*1000.0]
[expr $F3pm*1000.0] [expr $F4pm*1000.0]]
set nEnvelopeStress [list [expr $F1nm*1000.0] [expr $F2nm*1000.0]
[expr $F3nm*1000.0] [expr $F4nm*1000.0]]
# Positive/Negative envelope Strain/Deformation
# strain1 strain2 strain3 strain4
set pEnvelopeStrain [list $d1pm $d2pm $d3pm $d4pm]
set nEnvelopeStrain [list $d1nm $d2nm $d3nm $d4nm]
# Ratio of maximum deformation at which reloading begins
# Pos_env. Neg_env.
set rDisp [list $rdispP $rdispN]
# Ratio of envelope force at which reloading begins
# Pos_env. Neg_env.
set rForce [list $rForceP $rForceN]
# Ratio of monotonic strength developed upon unloading
# Pos_env. Neg_env.
set uForce [list $uForceP $uForceN]
# Coefficients for Unloading Stiffness degradation
# gammaK1 gammaK2 gammaK3 gammaK4 gammaKLimit
set gammaK [list 0.0 0.0 0.0 0.0 0.0]
# Coefficients for Reloading Stiffness degradation
# gammaD1 gammaD2 gammaD3 gammaD4 gammaDLimit
set gammaD [list 0.0 0.0 0.0 0.0 0.0]
# Coefficients for Strength degradation
# gammaF1 gammaF2 gammaF3 gammaF4 gammaFLimit
set gammaF [list 0.0 0.0 0.0 0.0 0.0]
set gammaE 10.0
# damage type (option: "energy", "cycle")
set dam "cycle"
```

```
# add the material to domain
uniaxialMaterial Pinching4 $matID [lindex $pEnvelopeStress 0]
[lindex $pEnvelopeStrain 0] [lindex $pEnvelopeStress 1]
[lindex $pEnvelopeStrain 1] [lindex $pEnvelopeStress 2]
[lindex $pEnvelopeStrain 2] [lindex $pEnvelopeStress 3]
[lindex $pEnvelopeStrain 3] [lindex $nEnvelopeStress 0]
[lindex $nEnvelopeStrain 0] [lindex $nEnvelopeStress 1]
[lindex $nEnvelopeStrain 1] [lindex $nEnvelopeStress 2]
[lindex $nEnvelopeStrain 2] [lindex $nEnvelopeStress 3]
[lindex $nEnvelopeStrain 3] [lindex $rDisp 0] [lindex $rForce 0]
[lindex $uForce 0] [lindex $rDisp 1] [lindex $rForce 1]
[lindex $uForce 1] [lindex $gammaK 0] [lindex $gammaK 1]
[lindex $gammaK 2] [lindex $gammaK 3] [lindex $gammaK 4]
[lindex $gammaD 0] [lindex $gammaD 1] [lindex $gammaD 2]
[lindex $gammaD 3] [lindex $gammaD 4] [lindex $gammaF 0]
[lindex $gammaF 1] [lindex $gammaF 2] [lindex $gammaF 3]
[lindex $gammaF 4] $gammaE $dam
puts "diagonali_ok"
```

B.4 Caso C380NS

3

```
# Description: CASO C380NS
****************
wipe
#------
# costruzione del modello
model BasicBuilder -ndm 3 -ndf 6
file mkdir Risultati; #cartella file output
#-----
# richiamo le subroutine esterne
source solaio.tcl
#_____
# Definizione variabili del solaio
# - - -
#carichi solaio
set gk1 2.58;
                                   #peso proprio solaio (kN/m^2)
set qk1 2.0;
                                   #carico accidentale (kN/m^2)
# parametri geometrici
                               #lato lungo del solaio (mm)
set a 5000.0;
set b 4500.0;
                               #lato corto del solaio (mm)
set as 1250.0;
                               #lato lungo del sottopannello (mm)
set bs 750.0;
                               #lato corto del sottopannello (mm)
set n 12;
                               #numero molle che scaricano sui bordi
set ds [expr sqrt($as*$as+$bs*$bs)];
                               #lunghezza diagonale sottopannello (mm)
set th [expr atan($as/$bs)];
                               #angolo molle rispetto alla forza
# parametri della prova sperimentale
# backbone curve
#ramo POSITIVO:
set d1p 3.0;
                                #spostamento limite elastico (mm)
set d2p 150.0;
                                #1' spostamento limite plastico (mm)
set d3p 208.0;
                                #2' spostamento limite plastico (mm)
set d4p 220.0;
                                #spostamento a rottura (mm)
set F1p 35.0;
                                #forza limite elastica (kN)
set F2p 190.0;
                                #1' forza limite plastica (kN)
                                #2' forza limite plastica (kN)
set F3p 222.0;
set F4p 42.0;
                                #forza a rottura (kN)
```

#ramo NEGATIVO:

```
set d1n -1.0;
                                         #spostamento limite elastico (mm)
set d2n -130.0;
                                         #1' spostamento limite plastico (mm)
                                         #2' spostamento limite plastico (mm)
set d3n -208.0;
set d4n -220.0;
                                         #spostamento a rottura (mm)
set F1n -10.0;
                                         #forza limite elastica (kN)
set F2n -140.0;
                                         #1' forza limite plastica (kN)
set F3n -180.0;
set F4n -25.0;
                                         #2' forza limite plastica (kN)
                                         #forza a rottura (kN)
# pinching curve (la nomenclatura corrisponde a quella del manuale OpenSees)
set d1pin 70.0;
                                         #rdispP*dmax
set d2pin 140.0;
                                         #dmax
set d3pin 128.0;
                                         #*
set d4pin -70.0;
                                         #rdispN*dmin
set d5pin -140.0;
                                         #dmin
set d6pin -126.0;
                                         #*
set F1pin 60.0;
                                         #rForceP*f(dmax)
set F2pin 180.0;
                                        #f(dmax)
set F3pin 37.0;
                                         #uForceN*eNf3
set F4pin -30.0;
                                         #rForceN*f(dmin)
set F5pin -145.0;
                                         #f(dmin)
set F6pin -10.0;
                                         #uForceP*ePf3
#fattore di scala (rapporto tra dimensione numerica e sperimentale)
set fs 1.125;
#numero di file di sottopannelli in cui è diviso metà lato lungo
set nf 2
# parametri assegnati alla singola molla
# backbone curve
#ramo POSITIVO
set d1pm [expr $d1p*cos($th)/($ds*$nf)]; #allungamento limite elastico
set d2pm [expr $d2p*cos($th)/($ds*$nf)]; #1' allungamento limite plastico
set d3pm [expr $d3p*cos($th)/($ds*$nf)];
                                           #2' allungamento limite plastico
set d4pm [expr $d4p*cos($th)/($ds*$nf)]; #allungamento a rottura
set F1pm [expr $F1p*$fs/($n*cos($th))];
                                           #sforzo limite elastico (kN)
set F2pm [expr $F2p*$fs/($n*cos($th))]; #1' sforzo limite plastico (kN)
set F3pm [expr $F3p*$fs/($n*cos($th))]; #2' sforzo limite plastico (kN)
set F4pm [expr $F4p*$fs/($n*cos($th))];
                                           #sforzo a rottura (kN)
#ramo NEGATIVO
set d1nm [expr $d1n*cos($th)/($ds*$nf)]; #allungamento limite elastico
set d2nm [expr $d2n*cos($th)/($ds*$nf)]; #1' allungamento limite plastico
                                          #2' allungamento limite plastico
set d3nm [expr $d3n*cos($th)/($ds*$nf)];
set d4nm [expr $d4n*cos($th)/($ds*$nf)];
                                           #allungamento a rottura
set F1nm [expr $F1n*$fs/($n*cos($th))];
                                           #sforzo limite elastico (kN)
set F2nm [expr $F2n*$fs/($n*cos($th))]; #1' sforzo limite plastico (kN)
set F3nm [expr $F3n*$fs/($n*cos($th))]; #2' sforzo limite plastico (kN)
set F4nm [expr $F4n*$fs/($n*cos($th))];
                                           #sforzo a rottura (kN)
# pinching curve (la nomenclatura corrisponde a quella del manuale OpenSees)
set rdispP [expr $d1pin/$d2pin]
set rdispN
           [expr $d4pin/$d5pin]
set rForceP [expr $F1pin/$F2pin]
set rForceN [expr $F4pin/$F5pin]
set uForceP [expr $F6pin/(-$F3n)]
set uForceN [expr $F3pin/(-$F3p)]
#-----
# Definizione dei parametri della muratura
                                            # parametri geometrici del singolo maschio murario
set t 380.0;
                          #spessore del pannello in mm
         1500.0;
set l
                           #larghezza del pannello in mm
set h
         3000.0;
                           #altezza del pannello in mm
set v
                           #vincolo in sommità (1=libero, 2=incastro)
         1:
```

```
380.0:
set ts
                           #spessore del sottopannello in mm
set ls
         1500.0;
                           #larghezza del sottopannello in mm
       1000.0;
set hs
                           #altezza del sottopannello in mm
#proprietà meccaniche (da prove sperimentali)
       -7.92;
set fu
                           #resistenza ultima a compressione della muratura in MPa
        0.2;
                           #resistenza ultima a trazione della muratura in MPa
set ft
set Em
        2910.0;
                          #modulo elastico della muratura in MPa
       0.1;
                          #resistenza media a taglio a compressione nulla in MPa
set tO
set G
                          #modulo a taglio della muratura in MPa
        875.0;
set c
        0.2:
                          #coesione della muratura in MPa
set f
        0.5;
                          #angolo d'attrito della muratura in radianti
       0.00535;
set gu
                          #scorrimento angolare a rottura
        24.0:
                          #peso specifico della muratura in kN/m^3
set w
#peso della porzione di solaio afferente in kN
        [expr ($gk1 + 0.3*$qk1)*0.5*$b/1000.0];
set q
#sforzo assiale sul singolo maschio murario in kN
        [expr ($q + 4.0*$w*$t/1000.0*$1/1000.0*$h/1000.0 +
set N
                2.0*$w*$t/1000.0*$1/1000.0*$hs/1000.0)/4.0];
set T
         150.0;
                           #sforzo generato dal singolo tirante (kN)
# MOLLE VERTICALI
# parametri iniziali
set nv
         2;
                              #numero di molle verticali nel pannello
        [expr $t*$1/$nv]; #area afferente alla singola molla
[expr $fu/$Em]; #deformazione di compressione a snervamento
[expr 3.0*$ecy]; #deformazione di compressione a rottura
[expr $ft/$Em]; #deformazione di trazione a snervamento
set Am
set ecy [expr $fu/$Em];
set ecu
set ety [expr $ft/$Em];
set etu [expr 1.5*$ety];
                            #deformazione di trazione a rottura
# legame costitutivo
      mollavert
set
                  1
      Fpp [expr $ft*$Am]
set
              [expr $ety/$v*$hs]
set
       Upy
              [expr $ft*$Am + 100.0]
set
      Fppu
              [expr $etu/$v*$hs]
set
      Upu
      Fultp 0.1
set
      Uultp
              [expr $etu/$v*$hs + 0.1]
set
set
      Fpc
               [expr $fu*$Am]
             [expr $ecy/$v*$hs]
set
      Ucy
              [expr $fu*$Am - 100.0]
set
      Fpcu
set
      Ucu
              [expr $ecu/$v*$hs]
      Fultc
              -0.1
set
      Uultc [expr $ecu/$v*$hs - 0.1]
pinchX 0.0
set
set
      pinchY 0.0
set
set
      damage1 0.0
set
      damage2 0.0
uniaxialMaterial Hysteretic $mollavert $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2
# MOLLE DIAGONALI
# parametri iniziali
set nd
                               #numero molle diagonali
         2;
if {$h<$1} {
                              #scelta del parametro b (Turnsek-Cacovic)
set b 1.0
} else {
if {$h>1.5*$1} {
```

```
set b 1.5 } else {set b [expr $h/$1]}
#taglio ultimo a fessurazione diagonale secondo Turnsek e Cacovic in kN
set vuf
         [expr $t0*$t*$1/1000.0*sqrt(1 + $N/($b*$t0*$t*$1/1000.0))]
#spostamento sommitale del sottopannello in mm
        [expr $vuf*1000.0*$hs/($G*$ls*$ts)]
set dys
#angolo della diagonale del sottopannello rispetto all'orizzontale
set theta [expr atan($hs/$ls)]
#lunghezza della diagonale del sottopannello in mm
set ldiag [expr sqrt($ls*$ls + $hs*$hs)]
#spostamento a rottura del sottopannello in mm
set d2s [expr $gu*$hs];
# legame costitutivo
set
       molladiag
                 2
      Fpp
              [expr $vuf*1000.0/($nd*cos($theta))]
set
              [expr $dys*cos($theta)/$ldiag]
set
       Upy
              [expr $Fpp*0.9]
set
       Fppu
      Upu
              [expr $d2s*cos($theta)/$ldiag]
set
              1000.0
set
      Fultp
      Uultp [expr ($d2s*cos($theta) + 0.1*$d2s*cos($theta))/$ldiag]
set
              [expr -($vuf*1000.0)/($nd*cos($theta))]
[expr -($dys*cos($theta))/$ldiag]
set
      Fpc
set
      Ucy
             [expr $Fpc*0.9]
set
      Fpcu
              [expr -($d2s*cos($theta))/$ldiag]
      Ucu
set
      Fultc
set
              -1000.0
             [expr -($d2s*cos($theta) + 0.1*$d2s*cos($theta))/$ldiag]
      Uultc
set
      pinchX 0.0
pinchY 0.0
set
set
      damage1 0.0
set
set
      damage2 0.0
set
      beta
             0.9
uniaxialMaterial Hysteretic $molladiag $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2 $beta
# MOLLE ORIZZONTALI
# parametri iniziali
set no
         2;
                                #numero molle orizzontali
set dmax [expr $gu*$h];
                                #spostamento ultimo per scorrimento in mm
#taglio ultimo per scorrimento secondo Mohr e Coulomb in kN
        [expr ($c*$l*$t/1000.0 + $N*$f)/$no];
set vus
#lunghezza molla orizzontale in mm
set loriz [expr sqrt($ls*$ls + 1.0)];
# legame costitutivo
       mollaoriz
set
                 3
              [expr $vus*1000.0]
set
      Fpp
              [expr $dmax*0.1/$loriz]
set
       Upy
              [expr $vus*1000.0 + 1.0]
set
       Fppu
              [expr $dmax/$loriz]
set
      Upu
set
      Fultp
              0.1
set
      Uultp
              [expr ($dmax+0.5)/$loriz]
              [expr -($vus*1000.0)]
set
      Fpc
              [expr -($dmax*0.1)/$loriz]
set
      Ucy
              [expr -($vus*1000.0 + 1.0)]
set
      Fpcu
              [expr -($dmax/$loriz)]
set
      Ucu
      Fultc
               -0.1
set
      Uultc [expr -($dmax+0.5)/$loriz]
set
```

```
pinchX 0.0
set
             0.0
set
      pinchY
      damage1 0.0
set
      damage2 0.0
set
uniaxialMaterial Hysteretic $mollaoriz $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2
# MOLLE VERTICALI DELLE FASCE DI PIANO
# parametri iniziali
       2;
set nvf
                          #numero molle verticali della fascia di piano
set dmaxf [expr $gu*$ls]; #spostamento ultimo per scorrimento in mm
#taglio ultimo a scorrimento (Mohr-Coulomb) in kN (decuplicato per ingranamento)
set vusf [expr 10.0*($c*$hs*$t/1000.0 + $T*$f)/$nvf];
#lunghezza molla verticale in mm
set lvf [expr sqrt($hs*$hs + 1.0)];
# legame costitutivo
       mollavertf
                      4
set
              [expr $vusf*1000.0]
set
       Fpp
               [expr $dmaxf*0.1/$lvf]
       Upy
set
               [expr $vusf*1000.0 + 1.0]
set
       Fppu
               [expr $dmaxf/$lvf]
set
       Upu
       Fultp
               0.1
set
set
       Uultp
               [expr ($dmaxf+0.5)/$lvf]
               [expr -($vusf*1000.0)]
set
       Fpc
set
       Ucy
               [expr -($dmaxf*0.1)/$lvf]
              [expr -($vusf*1000.0 + 1.0)]
[expr -($dmaxf/$lvf)]
set
       Fpcu
set
       Ucu
set
       Fultc
               -0.1
set
       Uultc
               [expr -($dmaxf+0.5)/$lvf]
       pinchX
               0.0
set
       pinchY
               0.0
set
set
       damage1
               0.0
       damage2 0.0
set
uniaxialMaterial Hysteretic $mollavertf $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2
# ------
# MOLLE DIAGONALI DELLE FASCE DI PIANO
# parametri iniziali
set ndf
                                     #numero molle diagonali della fascia di piano
         2:
#taglio ultimo a fessurazione diagonale secondo Turnsek e Cacovic in kN
set vuff [expr $t0*$t*$hs/1000.0*sqrt(1 + $T/($b*$t0*$t*$hs/1000.0))];
#spostamento sommitale del sottopannello della fascia di piano in mm
set dysf [expr $vuff*1000.0*$ls/($G*$hs*$ts)];
#angolo della diagonale del sottopannello della fascia di piano rispetto all'orizzontale
       [expr atan($ls/$hs)];
set thf
#lunghezza della diagonale del sottopannello della fascia di piano in mm
       [expr sqrt($ls*$ls + $hs*$hs)];
set ldf
#spostamento a rottura del sottopannello della fascia di piano in mm
set d2sf [expr $gu*$ls];
# legame costitutivo
      molladiagf
                      5
set
```

```
[expr $vuff*1000.0/($ndf*cos($thf))]
set
       Fpp
                  [expr $dysf*cos($thf)/$ldf]
set
       Upy
                  [expr $Fpp*0.9]
set
       Fppu
set
       Upu
                  [expr $d2sf*cos($thf)/$ldf]
                  1000.0
set
       Fultp
       Uultp
                  [expr ($d2sf*cos($thf) + 0.1*$d2sf*cos($thf))/$ldf]
set
                  [expr -($vuff*1000.0)/($ndf*cos($thf))]
[expr -($dysf*cos($thf))/$ldf]
set
       Fpc
       Ucy
set
                  [expr $Fpc*0.9]
set
       Fpcu
                 [expr -($d2sf*cos($thf))/$ldf]
set
       Ucu
       Fultc
                  -1000.0
set
set
       Uultc
                  [expr -($d2sf*cos($thf) + 0.1*$d2sf*cos($thf))/$ldf]
       pinchX
set
                 0.0
       pinchY
                  0.0
set
       damage1
                  0.0
set
set
       damage2
                  0.0
                  0.9
set
       beta
uniaxialMaterial Hysteretic $molladiagf $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2 $beta
 ------
# MOLLE ORIZZONTALI DELLE FASCE DI PIANO
# parametri iniziali
set nof 2;
                           #numero di molle orizzontali fascia di piano
        [expr $t*$hs/$nof]; #area afferente alla singola molla
set Amf
set ecyf [expr fu/2.0/Em]; #deformazione di compressione a snervamento (con fu/2)
set ecuf [expr 3.0*$ecy]; #deformazione di compressione a rottura
set etyf [expr $ft/$Em];
set etuf [expr 1.5*$ety];
                           #deformazione di trazione a snervamento
                         #deformazione di trazione a rottura
# legame costitutivo
set
       mollaorizf
                      6
                  [expr $ft*$Amf]
       Fpp
set
                  [expr $etyf/$v*$ls]
set
       Upy
                  [expr $ft*$Amf + 100.0]
set
       Fppu
       Upu
                  [expr $etuf/$v*$ls]
set
set
       Fultp
                  0.1
       Uultp
                  [expr $etuf/$v*$ls + 0.1]
set
                  [expr $fu/2.0*$Amf]
       Fpc
set
set
       Ucy
                  [expr $ecyf/$v*$ls]
                  [expr $fu/2.0*$Amf - 100.0]
set
       Fpcu
                  [expr $ecuf/$v*$ls]
       Ucu
set
set
       Fultc
                  -0.1
       Uultc
                  [expr $ecuf/$v*$ls - 0.1]
set
set
       pinchX
                  0.0
       pinchY
                  0.0
set
set
       damage1
                  0.0
       damage2
                  0.0
set
uniaxialMaterial Hysteretic $mollaorizf $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2
# TRUSS RIGIDI DEI MACRO-ELEMENTI
set truss 0
set E 6.0e12
uniaxialMaterial Elastic $truss $E
# MOLLE DIAGONALI DEI SOLAI
set diag 7
solaio $diag $F1pm $F2pm $F3pm $F4pm $d1pm $d2pm $d3pm $d4pm $F1nm $F2nm $F3nm $F4nm
$d1nm $d2nm $d3nm $d4nm $rdispP $rdispN $rForceP $rForceN $uForceP $uForceN
```

# solai	lo (z =	3003 mm)) - i nodi	commenta	ti sono s	ov	rappos	sti con	la	muratura
#node	1	0.0	0.0	3003.0	corrisp.	a	nodo	106		
node	2	0.0	750.0	3003.0						
#node	3	0.0	1500.0	3003.0	corrisp.	a	nodo	115		
node	4	0.0	2250.0	3003.0						
‡node	5	0.0	3000.0	3003.0	corrisp.	a	nodo	124		
ıode	6	0.0	3750.0	3003.0						
‡node	7	0.0	4500.0	3003.0	corrisp.	a	nodo	131		
node	8	1250.0	0.0	3003.0						
ıode	9	1250.0	750.0	3003.0						
lode	10	1250.0	1500.0	3003.0						
lode	11	1250.0	2250.0	3003.0						
lode	12	1250.0	3000.0	3003.0						
lode	13	1250.0	3750.0	3003.0						
lode	14	1250.0	4500.0	3003.0						
lode	15	2500.0	0.0	3003.0						
lode	10	2500.0	150.0	3003.0						
lode	10	2500.0	1500.0	3003.0						
loue	10	2500.0	2250.0	3003.0						
loue	19	2500.0	3000.0	3003.0						
loue	20	2500.0	4500.0	3003.0						
loue	21	3750.0	4300.0	3003.0						
node	22	3750.0	750 0	3003.0						
iode	20	3750 0	1500 0	3003 0						
node	25	3750.0	2250.0	3003.0						
ode	26	3750.0	3000.0	3003.0						
node	27	3750.0	3750.0	3003.0						
ode	28	3750.0	4500.0	3003.0						
node	29	5000.0	0.0	3003.0	corrisp.	a	nodo	206		
ode	30	5000.0	750.0	3003.0	1					
node	31	5000.0	1500.0	3003.0	corrisp.	a	nodo	215		
node	32	5000.0	2250.0	3003.0	-					
node	33	5000.0	3000.0	3003.0	corrisp.	a	nodo	224		
node	34	5000.0	3750.0	3003.0						
node	35	5000.0	4500.0	3003.0	corrisp.	a	nodo	231		
t porta	ale sin	istro (x	= 0 mm)							
lode	100	0.0	0.0	0.0						
lode	101	0.0	0.0	1.0						
lode	102	0.0	0.0	1001.0						
lode	103	0.0	0.0	1002.0						
lode	104	0.0	0.0	2002.0						
lode	105	0.0	0.0	2003.0						
lode	100	0.0	1/00 0	3003.0						
ode	107	0.0	1499.0	1 0						
ode	100	0.0	1499 0	1001 0						
	110	0.0	1/99 0	1001.0						
ode	111	0.0	1499 0	2002.0						
iode	112	0.0	1499 0	2002.0						
ode	113	0.0	1499.0	3003.0						
ode	114	0.0	1500.0	2003.0						
lode	115	0.0	1500.0	3003.0						
ode	116	0.0	2999.0	2003.0						
ode	117	0.0	2999.0	3003.0						
ode	118	0.0	3000.0	0.0						
ode	119	0.0	3000.0	1.0						
ode	120	0.0	3000.0	1001.0						
ode	121	0.0	3000.0	1002.0						
ode	122	0.0	3000.0	2002.0						
ode	123	0.0	3000.0	2003.0						
ode	124	0.0	3000.0	3003.0						
ode	125	0.0	4500.0	0.0						
ode	126	0.0	4500.0	1.0						

node	127	0.0	4500.0	1001.0
node	128	0.0	4500.0	1002.0
node	129	0.0	4500.0	2002.0
node	130	0.0	4500.0	2003.0
node	131	0.0	4500.0	3003.0
# porta	le dest	tro (x =	5000 mm)	
node	200	5000.0	0.0	0.0
node	201	5000.0	0.0	1.0
node	202	5000.0	0.0	1001.0
node	203	5000.0	0.0	1002.0
node	204	5000.0	0.0	2002.0
node	205	5000.0	0.0	3003.0
node	200	5000.0	1499 0	0 0
node	208	5000.0	1499.0	1.0
node	209	5000.0	1499.0	1001.0
node	210	5000.0	1499.0	1002.0
node	211	5000.0	1499.0	2002.0
node	212	5000.0	1499.0	2003.0
node	213	5000.0	1499.0	3003.0
node	214	5000.0	1500.0	2003.0
node	215	5000.0	1500.0	3003.0
node	216	5000.0	2999.0	2003.0
node	217	5000.0	2999.0	3003.0
node	218	5000.0	3000.0	0.0
node	219	5000.0	3000.0	1.0
node	220	5000.0	3000.0	1001.0
node	221	5000.0	3000.0	1002.0
node	222	5000.0	3000.0	2002.0
node	223	5000.0	3000.0	2003.0
node	224	5000.0	3000.0	3003.0
node	225	5000.0	4500.0	0.0
node	226	5000.0	4500.0	1.0
node	227	5000.0	4500.0	1001.0
node	220	5000.0	4500.0	2002.0
node	229	5000.0	4500.0	2002.0
node	230	5000.0	4500.0	3003.0
nouc	201	0000.0	4000.0	0000.0
# # Defin #	izione	delle ma	asse sismic	che
set g	9806.0	;		#accelerazione gravità (mm/s^2)
#masse	nodi ce	entrali s	solaio	
set m1	[expr	(\$gk1 + \$	Sqk1*0.3)*1	1000.0* \$as/1000.0* \$bs/1000.0/ \$g]
#Masse #(compr	endono	anche pe	eso di stri	iscia di parete fuori piano secondo a, influenza)
set m2	[expr 8	\$m1/2.0 +	- \$w*1000.0	0*\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0]
#masse	nodi la	aterali s	solaio pogg	gianti sulle pareti (x = 0; x = 5000):
#peso p	ortale	(diviso	per 7 nodi	i e per 2 perché metà muro) + peso solaio afferente
set m3	[expr 8	\$m1/2.0 + \$t/1000.0	- \$w*1000.0)*\$ls/1000.	0*(\$t/1000.0*\$1/1000.0*\$h/1000.0 + .0*\$hs/1000.0)/\$g/6.0]
#masse	nodi d	'angolo		
set m4	[expr \$	\$m1/4.0 +	- \$w*1000.0	0*(\$t/1000.0*\$1/1000.0*\$h/1000.0 +
	-	\$t/1000.0 \$w*1000.0)*\$ls/1000.)*\$a/1000.0	.0*\$hs/1000.0)/\$g/6.0/2.0 + 0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0/2.0]
mage	106	0 0 4	8m4 0.0	
mass	2	0.0 4	Sm3 0.0	0.0 0.0 0.0
mass	- 115	0.0 \$	Sm3 0.0	0.0 0.0 0.0
mass	4	0.0 \$	\$m3 0.0	0.0 0.0 0.0
mass	124	0.0 \$	\$m3 0.0	0.0 0.0 0.0
mass	6	0.0 \$	\$m3 0.0	0.0 0.0 0.0
mass	131	0.0 \$	§m4 0.0	0.0 0.0 0.0

	0	0.0	φm∠	0.0 0	.0 0.0	0.0	
mass	9	0.0	\$m1	0.0 0	.0 0.0	0.0	
mass	10	0.0	\$m1	0.0 0	.0 0.0	0.0	
mass	11	0.0	\$m1	0.0 0	.0 0.0	0.0	
mass	12	0.0	\$m1	0.0 0	.0 0.0	0.0	
mass	13	0.0	\$m1	0.0 0	.0 0.0	0.0	
mass	14	0.0	\$m2	0.0 0	.0 0.0	0.0	
mass	15	0.0	\$m2	0.0 0	.0 0.0	0.0	
mass	16	0.0	\$m1	0.0 0	.0 0.0	0.0	
mass	17	0.0	\$m1	0.0 0	.0 0.0	0.0	
mass	18	0 0	\$m1	0 0 0		0 0	
mass	19	0.0	\$m1	0.0 0		0.0	
mass	20	0.0	Փш1 \$m1			0.0	
mass	20	0.0	ФШ1 ФтО	0.0 0		0.0	
mass	21	0.0	ቅጠ∠ ¢0	0.0 0	.0 0.0	0.0	
mass	22	0.0	⊅m∠ Φ1	0.0 0	.0 0.0	0.0	
mass	23	0.0	ቅጠ፤ ው1	0.0 0	.0 0.0	0.0	
mass	24	0.0	\$m1	0.0 0	.0 0.0	0.0	
mass	25	0.0	\$m1	0.0 0	.0 0.0	0.0	
mass	26	0.0	\$m1	0.0 0	.0 0.0	0.0	
mass	27	0.0	\$m1	0.0 0	.0 0.0	0.0	
mass	28	0.0	\$m2	0.0 0	.0 0.0	0.0	
mass	206	0.0	\$m4	0.0 0	.0 0.0	0.0	
mass	30	0.0	\$m3	0.0 0	.0 0.0	0.0	
mass	215	0.0	\$m3	0.0 0	.0 0.0	0.0	
mass	32	0.0	\$m3	0.0 0	.0 0.0	0.0	
mass	224	0.0	\$m3	0.0 0	.0 0.0	0.0	
mass	34	0.0	\$m3	0.0 0	.0 0.0	0.0	
mass	231	0.0	\$m4	0.0 0	.0 0.0	0.0	
щ							
#							
# Defin	izione	degli	element	1			
#							
# solai	0						
element	truss	1	106	2	1.0	\$truss	
element	truss	2	2	115	1 0	Q + ru c c	
					1.0	φιταδδ	
element	truss	3	115	4	1.0	\$truss	
element element	truss truss	3 4	115 4	4 124	1.0 1.0 1.0	\$truss \$truss \$truss	
element element element	truss truss truss	3 4 5	115 4 124	4 124 6	1.0 1.0 1.0	\$truss \$truss \$truss \$truss	
element element element	truss truss truss truss	3 4 5 6	115 4 124 6	4 124 6 131	1.0 1.0 1.0 1.0	\$truss \$truss \$truss \$truss \$truss	
element element element element	truss truss truss truss truss	3 4 5 6 7	115 4 124 6 8	4 124 6 131 9	1.0 1.0 1.0 1.0 1.0	\$truss \$truss \$truss \$truss \$truss \$truss	
element element element element element	truss truss truss truss truss truss	3 4 5 6 7 8	115 4 124 6 8 9	4 124 6 131 9 10	1.0 1.0 1.0 1.0 1.0 1.0	\$truss \$truss \$truss \$truss \$truss \$truss \$truss	
element element element element element element	truss truss truss truss truss truss truss	3 4 5 7 8 9	115 4 124 6 8 9 10	4 124 6 131 9 10 11	1.0 1.0 1.0 1.0 1.0 1.0 1.0	\$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss	
element element element element element element element	truss truss truss truss truss truss truss truss	3 4 5 7 8 9 10	115 4 124 6 8 9 10 11	4 124 6 131 9 10 11 12	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	\$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss	
element element element element element element element	truss truss truss truss truss truss truss truss truss	3 4 5 6 7 8 9 10 11	115 4 124 6 8 9 10 11 12	4 124 6 131 9 10 11 12 13	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	\$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss \$truss	
element element element element element element element element	truss truss truss truss truss truss truss truss truss truss	3 4 5 6 7 8 9 10 11 12	115 4 124 6 8 9 10 11 12 13	4 124 6 131 9 10 11 12 13 14	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }</pre>	
element element element element element element element element element	truss truss truss truss truss truss truss truss truss truss truss	3 4 5 6 7 8 9 10 11 11 12 13	115 4 124 6 8 9 10 11 12 13 15	4 124 6 131 9 10 11 12 13 14 16	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }</pre>	
element element element element element element element element element element	truss truss truss truss truss truss truss truss truss truss truss	3 4 5 6 7 8 9 10 11 12 13 14	115 4 124 6 8 9 10 11 12 13 15 16	4 124 6 131 9 10 11 12 13 14 16 17	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }</pre>	
element element element element element element element element element element	truss truss truss truss truss truss truss truss truss truss truss truss	3 4 5 6 7 8 9 10 11 12 13 14 15	115 4 124 6 8 9 10 11 12 13 15 16 17	124 6 131 9 10 11 12 13 14 16 17 18	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }truss \$truss }</pre>	
element element element element element element element element element element element	truss truss truss truss truss truss truss truss truss truss truss truss	3 4 5 6 7 8 9 10 11 12 13 14 15 16	115 4 124 6 8 9 10 11 12 13 15 16 17 18	124 6 131 9 10 11 12 13 14 16 17 18 19	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }truss \$truss }truss </pre>	
element element element element element element element element element element element	truss truss truss truss truss truss truss truss truss truss truss truss truss	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	115 4 124 6 8 9 10 11 12 13 15 16 17 18 19	124 6 131 9 10 11 12 13 14 16 17 18 19 20	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }truss \$truss }truss </pre>	
element element element element element element element element element element element element	truss truss truss truss truss truss truss truss truss truss truss truss truss	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20	4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }</pre>	
element element element element element element element element element element element element element element	truss truss truss truss truss truss truss truss truss truss truss truss truss	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22	124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }truss \$truss }truss </pre>	
element element element element element element element element element element element element element element	truss truss truss truss truss truss truss truss truss truss truss truss truss truss	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 22	124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }truss }</pre>	
element element element element element element element element element element element element element element	truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24	124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }truss \$truss }truss }truss </pre>	
element element element element element element element element element element element element element element element	truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 24	4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25 5 26	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }truss \$truss \$truss }truss \$truss }truss \$truss }truss </pre>	
element element element element element element element element element element element element element element element	truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25 5 25	124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25 26 6 7	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }truss }</pre>	
element element element element element element element element element element element element element element element element	truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25 26	4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25 26 27 7	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$truss \$truss }truss \$truss \$truss \$truss }truss \$truss }truss </pre>	
element element element element element element element element element element element element element element element element element	truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25 26 27	4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25 26 27 28	$\begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$	<pre>\$truss \$truss }truss }truss } </pre>	
element element element element element element element element element element element element element element element element element element	truss truss	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25 26 27 206	4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25 26 27 28 30	$\begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$	<pre>\$truss \$truss }truss } </pre>	
element element	truss truss	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25 26 27 206 30	4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25 26 27 28 30 215	$\begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$	<pre>\$truss \$truss }truss } </pre>	
element element	truss truss	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25 26 27 206 30 215	4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25 26 27 28 30 215 32	$\begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$	<pre>\$truss \$truss }truss }</pre>	
element element	truss truss	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25 26 27 206 30 215 32	4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25 26 27 28 30 215 32 224	$\begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$	<pre>\$truss \$truss }truss }</pre>	
element element	truss truss	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25 26 27 206 30 215 32 224	4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25 26 27 28 30 215 32 224 34	$\begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$	<pre>\$truss \$truss }truss }</pre>	
element element	truss truss	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24 25 26 27 28 29 30	115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25 26 27 206 30 215 32 224 34	4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25 26 27 28 30 215 32 224 34 231	$\begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$	<pre>\$truss \$truss }truss }</pre>	
element element	truss truss	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25 26 27 206 30 215 32 224 34 106	124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25 26 27 28 30 215 32 224 34 231 8	$\begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$	<pre>\$truss \$truss }truss }</pre>	
element element	truss truss	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25 26 27 206 30 215 32 224 34 106 8	4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25 26 27 28 30 215 32 224 34 231 8 15	1.0 1.0	<pre>\$truss \$truss }truss }</pre>	
element element	truss truss	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25 26 27 206 30 215 32 224 34 106 8 15	4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25 26 27 28 30 215 32 224 34 231 8 15 22	1.0 1.0	<pre>\$truss \$truss }truss } }</pre>	
element element	truss truss	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25 26 27 206 30 215 32 224 34 106 8 15 22	4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25 26 27 28 30 215 32 224 34 231 8 15 22 206	1.0 1.0	<pre>\$truss \$truss }truss } </pre>	
element element	truss truss	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25 26 27 206 30 215 32 224 34 106 8 15 22 22 2	4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25 26 27 28 30 215 32 224 34 231 8 15 22 206 9	1.0 1.0	<pre>\$truss \$truss }truss }</pre>	
element element	truss truss	$ \begin{array}{r} 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ \end{array} $	115 4 124 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25 26 27 206 30 215 32 224 34 106 8 15 22 22 9	4 124 6 131 9 10 11 12 13 14 16 17 18 19 20 21 23 24 25 26 27 28 30 215 32 224 34 231 8 15 22 206 9 16	1.0 1.0	<pre>\$truss \$truss }truss } </pre>	

element	truss	37	16	23	1.0	\$truss
element	truss	38	23	30	1.0	\$truss
element	truss	39	115	10	1.0	\$truss
element	truss	40	10	17	1.0	\$truss
element	truss	41	17	24	1.0	\$truss
element	truss	42	24	215	1 0	\$truss
element	truas	12	2- 1 1	11	1 0	¢tiuss \$trugg
element	truss	43	4 1 1	10	1.0	¢truss
element	truss	44	11	10	1.0	φtruss
element	truss	45	18	25	1.0	\$truss
element	truss	46	25	32	1.0	\$truss
element	truss	47	124	12	1.0	\$truss
element	truss	48	12	19	1.0	\$truss
element	truss	49	19	26	1.0	\$truss
element	truss	50	26	224	1.0	\$truss
element	truss	51	6	13	1.0	\$truss
element	truss	52	13	20	1.0	\$truss
element	truss	53	20	27	1.0	\$truss
alement	truss	54	27	34	1 0	\$trues
element	trues	55	131	1/	1 0	\$trues
element	truss	55	14	21	1.0	¢tiuss ¢truss
erement	truss	50	14	21	1.0	φtruss Φt
element	truss	57	21	28	1.0	\$truss
element	truss	58	28	231	1.0	\$truss
element	truss	59	106	9	1.0	\$diag
element	truss	60	2	10	1.0	\$diag
element	truss	61	115	11	1.0	\$diag
element	truss	62	4	12	1.0	\$diag
element	truss	63	124	13	1.0	\$diag
element	truss	64	6	14	1.0	\$diag
element	truss	65	8	16	1.0	\$diag
element	truss	66	9	17	1 0	\$diag
element	truss	67	10	18	1 0	\$diag
olomont	trucc	69	11	10	1.0	¢diag
element	truss	60	10	19	1.0	¢diag
erement	LIUSS	09	12	20	1.0	aurag
element	truss	70	13	21	1.0	\$diag
element	truss	71	16	22	1.0	\$diag
element	truss	72	17	23	1.0	\$diag
element	truss	73	18	24	1.0	\$diag
element	truss	74	19	25	1.0	\$diag
element	truss	75	20	26	1.0	\$diag
element	truss	76	21	27	1.0	\$diag
element	truss	77	23	206	1.0	\$diag
element	truss	78	24	30	1.0	\$diag
element	truss	79	25	215	1.0	\$diag
element	truss	80	26	32	1 0	\$diag
element	truss	81	27	224	1 0	\$diag
olomont	trucc	80	21	224	1 0	¢diag
erement	LIUSS	02	20	34	1.0	a urag
# portal	le sinisti		4.0.4	4.0.0		• ·
erement	cruss	100	101	102	1.0	\$truss
element	truss	101	102	109	1.0	\$truss
element	truss	102	109	108	1.0	\$truss
element	truss	103	108	101	1.0	\$truss
element	truss	104	103	104	1.0	\$truss
element	truss	105	104	111	1.0	\$truss
element	truss	106	111	110	1.0	\$truss
element	truss	107	110	103	1.0	\$truss
element	truss	108	105	106	1.0	\$truss
element	truss	109	106	113	1 0	\$trues
element	truas	110	112	110	1.0	¢truss \$truss
erement	trues	111	110	105	1.0	φιιuss ¢+
erement	UTUSS	110	112	105	1.0	φτruss Φ
e⊥ement	truss	112	114	115	1.0	\$truss
e⊥ement	truss	113	115	117	1.0	\$truss
element	truss	114	117	116	1.0	\$truss
element	truss	115	116	114	1.0	\$truss
element	truss	116	119	120	1.0	\$truss
element	truss	117	120	127	1.0	\$truss
element	truss	118	127	126	1.0	\$truss
element	truss	119	126	119	1.0	\$truss
element	truss	120	121	122	1.0	\$truss
element	truss	121	122	129	1.0	\$truss

element	truss	122	129	128	1.0	\$truss
element	truss	123	128	121	1.0	\$truss
element	truss	124	123	124	1.0	\$truss
element	truss	125	124	131	1.0	\$truss
element	truss	126	131	130	1.0	\$truss
element	truss	127	130	123	1.0	\$truss
element	truss	128	100	101	1.0	\$mollavert
element	truss	129	102	103	1 0	\$mollavert
olomont	trucc	120	102	105	1.0	¢mollavert
element	truss	100	104	100	1.0	
element	truss	131	107	108	1.0	\$mollavert
element	truss	132	109	110	1.0	\$mollavert
element	truss	133	111	112	1.0	\$mollavert
element	truss	134	118	119	1.0	\$mollavert
element	truss	135	120	121	1.0	\$mollavert
element	truss	136	122	123	1.0	\$mollavert
element	truss	137	125	126	1.0	\$mollavert
element	truss	138	127	128	1.0	\$mollavert
element	truss	139	129	130	1.0	<pre>\$mollavert</pre>
element	truss	140	101	109	1.0	\$molladiag
element	truss	141	102	108	1.0	\$molladiag
element	truss	142	103	111	1 0	\$molladiag
olomont	trucc	1/2	104	110	1 0	¢molladiag
element	truss	143	104	110	1.0	¢molladiag
element	truss	144	105	113	1.0	\$molladiag
element	truss	145	106	112	1.0	\$molladiag
element	truss	146	119	127	1.0	\$molladiag
element	truss	147	120	126	1.0	\$molladiag
element	truss	148	121	129	1.0	\$molladiag
element	truss	149	122	128	1.0	\$molladiag
element	truss	150	123	131	1.0	\$molladiag
element	truss	151	124	130	1.0	\$molladiag
element	truss	152	100	108	1.0	\$mollaoriz
element	truss	153	101	107	1.0	\$mollaoriz
element	truss	154	103	109	1 0	\$mollaoriz
alamant	truss	164	100	110	1.0	¢mollaoriz ¢mollaoriz
element	truss	155	102	110	1.0	¢mollaoriz ¢mollaoriz
element	truss	150	105	111	1.0	\$mollaoriz
element	truss	157	104	112	1.0	\$mollaoriz
element	truss	158	118	126	1.0	\$mollaoriz
element	truss	159	119	125	1.0	\$mollaoriz
element	truss	160	121	127	1.0	\$mollaoriz
element	truss	161	120	128	1.0	\$mollaoriz
element	truss	162	123	129	1.0	\$mollaoriz
element	truss	163	122	130	1.0	\$mollaoriz
element	truss	164	114	117	1.0	<pre>\$molladiagf</pre>
element	truss	165	115	116	1.0	\$molladiagf
element	truss	166	113	115	1.0	\$mollaorizf
alement	truss	167	112	114	1 0	\$mollaorizf
element	trues	168	116	103	1 0	\$mollaorizf
element	truss	160	117	123	1.0	¢mollaorizi ¢mollaorizi
element	truss	109	117	124	1.0	
element	truss	170	112	115	1.0	\$mollaverti
element	truss	171	113	114	1.0	\$mollavertf
element	truss	172	116	124	1.0	\$mollavertf
element	truss	173	117	123	1.0	\$mollavertf
# portal	Le destro					
element	truss	200	201	202	1.0	\$truss
element	truss	201	202	209	1.0	\$truss
element	truss	202	209	208	1.0	\$truss
element	truss	203	208	201	1.0	\$truss
element	truss	204	203	204	1.0	\$truss
element	truse	205	204	211	1 0	\$truss
	+r1100	206	201	210	1 0	\$trues
erement	+ mua -	200	211	202	1.0	ψυ1 USS
erement	truss	201	210	203	1.0	φtruss Φtouss
e⊥ement	truss	208	205	206	1.0	φtruss
e⊥ement	truss	209	206	213	1.0	\$truss
element	truss	210	213	212	1.0	\$truss
element	truss	211	212	205	1.0	\$truss
element	truss	212	214	215	1.0	\$truss
element	truss	213	215	217	1.0	\$truss
element	truss	214	217	216	1.0	\$truss
element	truss	215	216	214	1.0	\$truss

Appendice B. Listati di alcuni casi studio

	t trues	216	219	220	1 0	\$trues
-1		210	210	220	1.0	\$ + = -
eremen		217	220	221	1.0	
elemen	it truss	218	227	226	1.0	\$truss
elemen	nt truss	219	226	219	1.0	\$truss
elemen	it truss	220	221	222	1.0	\$truss
elemen	nt truss	221	222	229	1.0	\$truss
elemen	nt truss	222	229	228	1.0	\$truss
	1 + + rugg	223	228	221	1 0	\$+ rues
1	10 01455	220	220	221	1.0	\$ + = -
remen	it truss	224	223	224	1.0	5 truss
lemen	it truss	225	224	231	1.0	\$truss
lemen	nt truss	226	231	230	1.0	\$truss
lemen	nt truss	227	230	223	1.0	\$truss
lemen	nt truss	228	200	201	1.0	<pre>\$mollavert</pre>
lemen	nt truss	229	202	203	1.0	<pre>\$mollavert</pre>
lomon	t trues	230	204	205	1 0	\$mollavert
elemen -lemen	it tiuss	200	204	200	1.0	
eremen	it truss	231	207	208	1.0	\$mollavert
elemen	it truss	232	209	210	1.0	\$mollavert
elemen	nt truss	233	211	212	1.0	\$mollavert
elemen	nt truss	234	218	219	1.0	<pre>\$mollavert</pre>
lemen	nt truss	235	220	221	1.0	<pre>\$mollavert</pre>
lemen	nt truss	236	222	223	1.0	\$mollavert
		200		220	1 0	\$mollayert
. remen	it truss	231	220	220	1.0	
. 1 emen	it truss	238	227	228	1.0	\$mollavert
elemen	it truss	239	229	230	1.0	\$mollavert
elemen	nt truss	240	201	209	1.0	<pre>\$molladiag</pre>
elemen	nt truss	241	202	208	1.0	<pre>\$molladiag</pre>
elemen	nt truss	242	203	211	1.0	\$molladiag
lemen	t truss	243	204	210	1 0	\$molladiag
	t truce	240	204	210	1.0	¢molladiag
eremen		244	205	215	1.0	
elemen	it truss	245	206	212	1.0	\$molladiag
elemen	it truss	246	219	227	1.0	\$molladiag
elemen	nt truss	247	220	226	1.0	\$molladiag
lemen	nt truss	248	221	229	1.0	<pre>\$molladiag</pre>
lemen	nt truss	249	222	228	1.0	\$molladiag
lomon	t truss	250	223	231	1 0	\$molladiag
lomon	+ $+$ $-$	200	220	201	1.0	¢molladiag ¢molladiag
lemen	it truss	251	224	230	1.0	
lemen	it truss	252	200	208	1.0	\$mollaoriz
lemen	it truss	253	201	207	1.0	\$mollaoriz
elemen	nt truss	254	203	209	1.0	\$mollaoriz
lemen	nt truss	255	202	210	1.0	\$mollaoriz
lemen	nt truss	256	205	211	1.0	\$mollaoriz
lomon	t trues	257	204	212	1 0	\$mollaoriz
	+ $+$ $-$	201	204	212	1.0	¢mollaoriz ¢mollaoriz
eremen	it truss	250	218	220	1.0	\$mollaoriz
elemen	it truss	259	219	225	1.0	\$mollaoriz
elemen	nt truss	260	221	227	1.0	\$mollaoriz
elemen	nt truss	261	220	228	1.0	\$mollaoriz
elemen	nt truss	262	223	229	1.0	\$mollaoriz
lemen	nt truss	263	222	230	1 0	\$mollaoriz
lomon	+ $+$ $-$	200	222	200	1.0	¢molladiarf
, stemen	it truss	204	214	217	1.0	
elemen	it truss	265	215	216	1.0	\$molladiagi
elemen	it truss	266	213	215	1.0	\$mollaorizf
elemen	nt truss	267	212	214	1.0	\$mollaorizf
elemen	nt truss	268	216	223	1.0	\$mollaorizf
elemen	nt truss	269	217	224	1.0	\$mollaorizf
lomon	t trues	270	212	215	1 0	\$mollavertf
elemen	it tiuss	270	212	210	1.0	
elemen	it truss	271	213	214	1.0	\$mollaverti
elemen	it truss	272	216	224	1.0	\$mollavertf
elemen	nt truss	273	217	223	1.0	<pre>\$mollavertf</pre>
# # Defi #	inizione	dei nodi	vincol			
⊧ port	ale sin	istro (in	castri	+ carre	elli fuo	ri piano)
ix	100	1 1	1	1 1	1	
ix	107	1 1	1	1 1	1	
fiv	118		1	 1 1	- 1	
. I A F i	105	1 1	1	1 1 1	1	
L I Å E =	101	1 1	1	1 1 1	Ţ	
- 1 V	TOT	т О	U	ı 1	T	
			~			

İlX	103	1	0	0	1	1	1	
fix	104	1	0	0	1	1	1	
fix	105	1	0	0	1	1	1	
fix	106	1	0	0	1	1	1	
fix	108	1	0	0	1	1	1	
fix	109	1	0	0	1	1	1	
fix	110	1	0	0	1	1	1	
fiv	111	1	Õ	0	1	1	1	
1 1 A f i v	110	1	0	õ	1	1	1	
1 1 X	112	1	0	0	1	1	1	
11X	115	1	0	0	1	1	1	
İlX	114	1	0	0	1	1	1	
fix	115	1	0	0	1	1	1	
fix	116	1	0	0	1	1	1	
fix	117	1	0	0	1	1	1	
fix	119	1	0	0	1	1	1	
fix	120	1	0	0	1	1	1	
fix	121	1	0	0	1	1	1	
fix	122	1	0	0	1	1	1	
fiv	103	1	Õ	Õ	1	1	1	
1 1 A f :	104	1	0	0	1	1	1	
1 1 X	124	1	0	0	1	1	1	
11X	120	1	0	0	1	1	1	
fix	127	1	0	0	1	1	1	
fix	128	1	0	0	1	1	1	
fix	129	1	0	0	1	1	1	
fix	130	1	0	0	1	1	1	
fix	131	1	0	0	1	1	1	
# por	tale de	estro	(inca	stri	+ car	relli	fuori	piano)
fiv	200	1	1	1	1	1	1	pruno,
1 1 A f i v	200	1	1	1	1	1	1	
1 1 X	207	1	1	1	1	1	1	
11X	210	1	1	1	1	1	1	
fix	225	1	1	1	1	1	1	
fix	201	1	0	0	1	1	1	
fix	202	1	0	0	1	1	1	
fix	203	1	0	0	1	1	1	
fix	204	1	0	0	1	1	1	
fix	205	1	0	0	1	1	1	
fix fix	205 206	1 1	0 0	0 0	1 1	1 1	1 1	
fix fix fix	205 206 208	1 1 1	0 0 0	0 0 0	1 1 1	1 1 1	1 1 1	
fix fix fix fix	205 206 208 209	1 1 1	0 0 0	0 0 0	1 1 1	1 1 1 1	1 1 1	
fix fix fix fix	205 206 208 209 210	1 1 1 1	0 0 0	0 0 0	1 1 1 1	1 1 1 1	1 1 1 1	
fix fix fix fix fix	205 206 208 209 210	1 1 1 1 1	0 0 0 0		1 1 1 1	1 1 1 1 1	1 1 1 1	
fix fix fix fix fix fix	205 206 208 209 210 211	1 1 1 1 1	0 0 0 0 0	0 0 0 0 0	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	
fix fix fix fix fix fix fix	205 206 208 209 210 211 212	1 1 1 1 1 1	0 0 0 0 0 0	0 0 0 0 0 0	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213	1 1 1 1 1 1 1			1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213 214	1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213 214 215	1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213 214 215 216	1 1 1 1 1 1 1 1 1 1		0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213 214 215 216 217	1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213 214 215 216 217 219	1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213 214 215 216 217 219 220	1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213 214 215 216 217 219 220 221	1 1 1 1 1 1 1 1 1 1 1 1 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213 214 215 216 217 219 220 221 222	1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213 214 215 216 217 219 220 221 222 223	1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213 214 215 216 217 219 220 221 222 223	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213 214 215 216 217 219 220 221 222 223 224	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213 214 215 216 217 219 220 221 222 223 224 226	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213 214 215 216 217 219 220 221 222 223 224 226 227	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213 214 215 216 217 219 220 221 222 223 224 226 227 228	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213 214 215 216 217 219 220 221 222 223 224 226 227 228 229	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213 214 215 216 217 219 220 221 222 223 224 226 227 228 229 230	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213 214 215 216 217 219 220 221 222 223 224 226 227 228 229 230 231	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213 214 215 216 217 219 220 221 222 223 224 226 227 228 229 230 231	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213 214 215 216 217 219 220 221 222 223 224 226 227 228 229 230 231	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213 214 215 216 217 219 220 221 222 223 224 226 227 228 229 230 231 aio (ca	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213 214 215 216 217 219 220 221 222 223 224 226 227 228 229 230 231 aio (ca	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213 214 215 216 217 219 220 221 222 223 224 226 227 228 229 230 231 aio (ca	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213 214 215 216 217 219 220 221 222 223 224 226 227 228 229 230 231 aio (ca 2 4 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213 214 215 216 217 219 220 221 222 223 224 226 227 228 229 230 231 aio (ca 2 4 6 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213 214 215 216 217 219 220 221 222 223 224 226 227 228 229 230 231 aio (ca 8 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213 214 215 216 217 219 220 221 222 223 224 226 227 228 229 230 231 aio (ca 8 9 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	
fix fix fix fix fix fix fix fix fix fix	205 206 208 209 210 211 212 213 214 215 216 217 219 220 221 222 223 224 226 227 228 229 230 231 aio (ca 8 9 10 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	

```
fix
               0
     13
           0
                   1
                         1
                             1
                                  1
fix
      14
           0
               0
                    1
                         1
                              1
                                  1
fix
     15
           0
               0
                              1
                    1
                         1
                                  1
fix
     16
          0
               0
                   1
                        1
                              1
                                  1
fix
      17
           0
               0
                    1
                         1
                              1
                                  1
                   1
                        1
fix
     18
          0
               0
                             1
                                  1
     19
fix
          0
               0
                  1
                        1
                             1
                                  1
fix
      20
          0
               0
                    1
                         1
                              1
                                  1
                        1
fix
     21
          0
               0
                   1
                              1
                                  1
fix
     22
          0
               0
                   1
                        1
                             1
                                  1
          0
      23
fix
               0
                   1
                             1
                         1
                                  1
fix
      24
          0
               0
                    1
                         1
                              1
                                  1
         0
fix
     25
              0 1
                        1
                             1
                                  1
         0
fix
     26
               0 1
                         1
                             1
                                  1
fix
      27
          0
               0
                    1
                         1
                              1
                                  1
                   1
         0
fix
     28
               0
                         1
                             1
                                  1
         1
     30
                             1
fix
               0 1
                         1
                                  1
fix
      32
           1
               0
                    1
                         1
                              1
                                  1
         1
                  1
fix
     34
               0
                             1
                         1
                                  1
# Definizione dei carichi
pattern Plain 1 Linear {
                             # Carichi verticali applicati ai portali
load 106 0.0 0.0 [expr -$N*1000.0/2.0 - $w*$t*$h*$a/4000000.0] 0.0 0.0 0.0;
load 115 0.0 0.0 [expr -$N*1000.0/2.0 - $w*$t*$h*$a/4000000.0] 0.0 0.0 0.0;
load 124 0.0 0.0 [expr -$N*1000.0/2.0 - $w*$t*$h*$a/4000000.0] 0.0 0.0 0.0;
load 131 0.0 0.0 [expr -$N*1000.0/2.0 - $w*$t*$h*$a/4000000.0] 0.0 0.0 0.0;
load 206 0.0 0.0 [expr -$N*1000.0/2.0 - $w*$t*$h*$a/4000000.0] 0.0 0.0 0.0;
load 215 0.0 0.0 [expr -$N*1000.0/2.0 - $w*$t*$h*$a/4000000.0] 0.0 0.0 0.0;
load 224 0.0 0.0 [expr -$N*1000.0/2.0 - $w*$t*$h*$a/4000000.0] 0.0 0.0 0.0;
load 231 0.0 0.0 [expr -$N*1000.0/2.0 - $w*$t*$h*$a/4000000.0] 0.0 0.0 0.0;
# Carichi orizzontali dovuti ai tiranti
load 105 0.0 [expr $T*1000.0] 0.0 0.0 0.0 0.0;
load 106 0.0 [expr $T*1000.0] 0.0 0.0 0.0 0.0;
load 130 0.0 [expr -$T*1000.0] 0.0 0.0 0.0 0.0;
load 131 0.0[expr -$T*1000.0]0.0 0.0 0.0 0.0;load 205 0.0[expr $T*1000.0]0.0 0.0 0.0 0.0;load 206 0.0[expr $T*1000.0]0.0 0.0 0.0 0.0;
load 230 0.0 [expr -$T*1000.0] 0.0 0.0 0.0 0.0;
load 231 0.0 [expr -$T*1000.0] 0.0 0.0 0.0 0.0;
3
# Output dei dati
recorder Node -file Risultati/disp_port1.txt -node 106 -dof 2 disp;
recorder Node -file Risultati/disp_port2.txt -node 206 -dof 2 disp;
recorder Node -file Risultati/disp_sol.txt -node 21 -dof 2 disp;
recorder Node -file Risultati/react_port1.txt -node 100 107 118 125 -dof 2 reaction;
recorder Node -file Risultati/react_port2.txt -node 200 207 218 225 -dof 2 reaction;
recorder Element -file Risultati/axial_sol.txt -ele 70 axialForce;
recorder Node -file Risultati/disp_vertbase.txt -node 108 -dof 3 disp;
recorder Element -file Risultati/axial_vertbase.txt -ele 131 axialForce;
recorder Node -file Risultati/disp_orizbase.txt -node 101 -dof 2 disp;
recorder Element -file Risultati/axial_orizbase.txt -ele 153 axialForce;
recorder Node -file Risultati/disp_diagbase.txt -node 102 -dof 2 disp;
recorder Element -file Risultati/axial_diagbase.txt -ele 141 axialForce;
#-----
# ANALISI
puts "SOLVING..."
set startTime [clock clicks -milliseconds]
# Gravity-analysis parameters set Tol 1.0e-5 ;
                 # numero massimo di iterazioni Newton
rmation; # how it handles boundary conditions
set Niter 1000 ;
constraints Transformation:
```

```
# renumber dof's to minimize band-width
numberer RCM:
                                    # how to store and solve the system of equations
system BandGeneral;
test NormDispIncr $Tol $Niter 0 ; # determine if convergence has been achieved
test EnergyIncr $Tol $Niter 0 ;
test NormUnbalance $Tol $Niter 0 ;
algorithm NewtonLineSearch 0.5 ;
                                        # updates tangent stiffness at every iteration
                                        # apply gravity in 10 steps
set NstepGravity 10;
set DGravity [expr 1./$NstepGravity]; # first load increment;
integrator LoadControl $DGravity;
                                        # determine the next time step for an analysis
                                        # define type of analysis static or transient
analysis Static;
analyze $NstepGravity;
                                        # apply gravity
#TIME HISTORY
loadConst -time 0.0; \# hold gravity constant and restart time
set Tol 1.0e-6; # convergence tolerance for test
set Niter 10000; # numero massimo di iterazioni Newton
                    # clear previously-define analysis parameters
wipeAnalysis;
constraints Plain; # how it handles boundary conditions
                     # renumber dof's to minimize band-width (optimization)
numberer Plain:
system BandGeneral; # how to store and solve the system of equations
test NormDispIncr $Tol $Niter 0 ;
#test NormUnbalance $Tol $Niter 0 ;
#test EnergyIncr $Tol $Niter 0 ;
algorithm KrylovNewton;
integrator Newmark 0.5 0.25
# define damping
                                                    # 2% damping ratio
set xDamp 0.02;
set lambda1 [eigen 1];
                                                    # eigenvalue mode 1
set omega1 [expr pow($lambda1,0.5)];
set offset 4;
                                                    # due Hz più del 1' modo
set omega2 [expr ($omega1/6.28+$offset)*6.28] ;
puts "1a frequenza =[expr $omega1/6.28]";
                                                   # plotta la prima frequenza
puts "2a frequenza =[expr $omega2/6.28]";
                                                   # plotta la seconda frequenza
set alphaM [expr ($omega1*$omega2*2*$xDamp)/($omega1+$omega2)] ;
set betaKcurr 0.0;
                       # K-proportional damping +betaKcurr*KCurrent
set betaKcomm [expr (2*$xDamp)/($omega1+$omega2)] ;
puts "alphaM = $alphaM"
puts "betaKcomm = $betaKcomm"
set betaKinit 0.0;
                      # initial-stiffness proportional damping + betaKinit*Kini
# define damping
rayleigh $alphaM $betaKcurr $betaKinit $betaKcomm; # RAYLEIGH damping
analysis Transient
set AccelY "Series -dt 0.01 -filePath sisma3.th -factor 1.68";
pattern UniformExcitation 4000 2 -accel $AccelY;
set DtAnalysis 0.001
set TmaxAnalysis 25
set Nsteps [expr int($TmaxAnalysis/$DtAnalysis)];
analyze $Nsteps $DtAnalysis
puts "Analisi completata"
set finishTime [clock clicks -milliseconds];
set timeSeconds [expr ($finishTime-$startTime)/1000];
set timeMinutes [expr ($timeSeconds/60)];
set timeHours [expr ($timeSeconds/3600)];
set timeMinutes [expr ($timeMinutes - $timeHours*60)];
set timeSeconds [expr ($timeSeconds - $timeMinutes*60 - $timeHours*3600)];
puts "\n-----
                    -----";
puts "TOTAL TIME TAKEN $timeHours:$timeMinutes:$timeSeconds";
```

```
***************
# SUBROUTINE UTILIZZATE
*************************
proc solaio {matID F1pm F2pm F3pm F4pm d1pm d2pm d3pm d4pm F1nm F2nm F3nm
F4nm d1nm d2nm d3nm d4nm rdispP rdispN rForceP rForceN uForceP uForceN} {
# Positive/Negative envelope Stress/Load
# stress1 stress2 stress3 stress4
set pEnvelopeStress [list [expr $F1pm*1000.0] [expr $F2pm*1000.0]
[expr $F3pm*1000.0] [expr $F4pm*1000.0]]
set nEnvelopeStress [list [expr $F1nm*1000.0] [expr $F2nm*1000.0]
[expr $F3nm*1000.0] [expr $F4nm*1000.0]]
# Positive/Negative envelope Strain/Deformation
# strain1 strain2 strain3 strain4
set pEnvelopeStrain [list $d1pm $d2pm $d3pm $d4pm]
set nEnvelopeStrain [list $d1nm $d2nm $d3nm $d4nm]
# Ratio of maximum deformation at which reloading begins
# Pos_env. Neg_env.
set rDisp [list $rdispP $rdispN]
# Ratio of envelope force at which reloading begins
# Pos_env. Neg_env.
set rForce [list $rForceP $rForceN]
# Ratio of monotonic strength developed upon unloading
# Pos_env. Neg_env.
set uForce [list $uForceP $uForceN]
# Coefficients for Unloading Stiffness degradation
# gammaK1 gammaK2 gammaK3 gammaK4 gammaKLimit
set gammaK [list 0.0 0.0 0.0 0.0 0.0]
# Coefficients for Reloading Stiffness degradation
# gammaD1 gammaD2 gammaD3 gammaD4 gammaDLimit
set gammaD [list 0.0 0.0 0.0 0.0 0.0]
# Coefficients for Strength degradation
# gammaF1 gammaF2 gammaF3 gammaF4 gammaFLimit
set gammaF [list 0.0 0.0 0.0 0.0 0.0]
set gammaE 10.0
# damage type (option: "energy", "cycle")
set dam "cycle"
# add the material to domain
uniaxialMaterial Pinching4 $matID [lindex $pEnvelopeStress 0]
[lindex $pEnvelopeStrain 0] [lindex $pEnvelopeStress 1]
[lindex $pEnvelopeStrain 1] [lindex $pEnvelopeStress 2]
[lindex $pEnvelopeStrain 2] [lindex $pEnvelopeStress 3]
[lindex $pEnvelopeStrain 3] [lindex $nEnvelopeStress 0]
[lindex $nEnvelopeStrain 0] [lindex $nEnvelopeStress 1]
[lindex $nEnvelopeStrain 1] [lindex $nEnvelopeStress 2]
[lindex $nEnvelopeStrain 2] [lindex $nEnvelopeStress 3]
[lindex $nEnvelopeStrain 3] [lindex $rDisp 0] [lindex $rForce 0]
[lindex $uForce 0] [lindex $rDisp 1] [lindex $rForce 1]
[lindex $uForce 1] [lindex $gammaK 0] [lindex $gammaK 1]
[lindex $gammaK 2] [lindex $gammaK 3] [lindex $gammaK 4]
[lindex $gammaD 0] [lindex $gammaD 1] [lindex $gammaD 2]
[lindex $gammaD 3] [lindex $gammaD 4] [lindex $gammaF 0]
[lindex $gammaF 1] [lindex $gammaF 2] [lindex $gammaF 3]
[lindex $gammaF 4] $gammaE $dam
puts "diagonali_ok"
```
B.5 Caso D250RC

Description: CASO D250RC ************** wipe # costruzione del modello model BasicBuilder -ndm 3 -ndf 6 #cartella file output file mkdir Risultati; #------# richiamo le subroutine esterne source solaio.tcl #-----# Definizione variabili del solaio #-----#carichi solaio set gk1 3.83; #peso proprio solaio (kN/m^2) set qk1 2.0; #carico accidentale (kN/m^2) # parametri geometrici set a 8000.0; #lato lungo del solaio (mm) set b 4500.0; #lato corto del solaio (mm) set as 2000.0; #lato lungo del sottopannello (mm) set bs 750.0; #lato corto del sottopannello (mm) set n 12; #numero molle che scaricano sui bordi set ds [expr sqrt(\$as*\$as+\$bs*\$bs)]; #lunghezza diagonale sottopannello (mm) set th [expr atan(\$as/\$bs)]; #angolo molle rispetto alla forza # parametri della prova sperimentale # backbone curve #ramo POSITIVO: set d1p 0.5; #spostamento limite elastico (mm) set d2p 3.7; #1' spostamento limite plastico (mm) #2' spostamento limite plastico (mm) set d3p 7.0; set d4p 12.5; #spostamento a rottura (mm) set F1p 43.0; #forza limite elastica (kN) set F2p 280.0; #1' forza limite plastica (kN) #2' forza limite plastica (kN) #forza a rottura (kN) set F3p 385.0; set F4p 360.0; #ramo NEGATIVO: #spostamento limite elastico (mm) set d1n -0.3; set d2n -1.0; #1, spostamento limite plastico (mm) set d3n -5.2; #2' spostamento limite plastico (mm) set d4n -10.5; #spostamento a rottura (mm) set F1n -43.0; #forza limite elastica (kN) set F2n -250.0; #1' forza limite plastica (kN) set F3n -450.0; #2' forza limite plastica (kN) set F4n -360.0; #forza a rottura (kN) # pinching curve (la nomenclatura corrisponde a quella del manuale OpenSees) set d1pin 1.4; #rdispP*dmax set d2pin 7.0; #dmax set d3pin 3.0; #* set d4pin -0.9; #rdispN*dmin set d5pin -5.5; #dmin set d6pin -2.5; #* set F1pin 100.0; #rForceP*f(dmax) set F2pin 380.0; #f(dmax) set F3pin 40.0; #uForceN*eNf3 set F4pin -100.0; #rForceN*f(dmin)

set F5pin -450.0; #f(dmin) set F6pin -50.0; #uForceP*ePf3 #fattore scala (dim. numerica/dim. sperim.) per le forze (4500/4000) set fsf 1.125: #fattore di scala (dim. numerica/dim. sperim.) per gli spost. (8000/5000) set fss 1.6; #numero di file di sottopannelli in cui è diviso metà lato lungo set nf 2 # parametri assegnati alla singola molla # backbone curve #ramo POSITIVO set d1pm [expr \$d1p*\$fss*cos(\$th)/(\$ds*\$nf)]; #allungamento limite elastico set d2pm [expr \$d2p*\$fss*cos(\$th)/(\$ds*\$nf)]; #1' allungamento limite plastico set d3pm [expr \$d3p*\$fss*cos(\$th)/(\$ds*\$nf)]; #2' allungamento limite plastico set d4pm [expr \$d4p*\$fss*cos(\$th)/(\$ds*\$nf)]; #allungamento a rottura set F1pm [expr \$F1p*\$fsf/(\$n*cos(\$th))]; #sforzo limite elastico (kN)
set F2pm [expr \$F2p*\$fsf/(\$n*cos(\$th))]; #1' sforzo limite plastico (kN) set F2pm [expr \$F2p*\$fsf/(\$n*cos(\$th))]; #2' sforzo limite plastico (kN) set F3pm [expr \$F3p*\$fsf/(\$n*cos(\$th))]; set F4pm [expr \$F4p*\$fsf/(\$n*cos(\$th))]; #sforzo a rottura (kN) #ramo NEGATIVO set d1nm [expr \$d1n*\$fss*cos(\$th)/(\$ds*\$nf)]; #allungamento limite elastico set d2nm [expr \$d2n*\$fss*cos(\$th)/(\$ds*\$nf)]; #1' allungamento limite plastico set d3nm [expr \$d3n*\$fss*cos(\$th)/(\$ds*\$nf)]; #2' allungamento limite plastico set d4nm [expr \$d4n*\$fss*cos(\$th)/(\$ds*\$nf)]; #allungamento a rottura set F1nm [expr \$F1n*\$fsf/(\$n*cos(\$th))]; #sforzo limite elastico (kN) set F2nm [expr \$F2n*\$fsf/(\$n*cos(\$th))]; #1' sforzo limite plastico (kN) set F3nm [expr \$F3n*\$fsf/(\$n*cos(\$th))]; #2' sforzo limite plastico (kN)
set F4nm [expr \$F4n*\$fsf/(\$n*cos(\$th))]; #sforzo a rottura (kN) set F4nm [expr \$F4n*\$fsf/(\$n*cos(\$th))]; # pinching curve (la nomenclatura corrisponde a quella del manuale OpenSees) set rdispP [expr \$d1pin/\$d2pin] set rdispN [expr \$d4pin/\$d5pin] set rForceP [expr \$F1pin/\$F2pin] set rForceN [expr \$F4pin/\$F5pin] set uForceP [expr \$F6pin/(-\$F3n)] set uForceN [expr \$F3pin/(-\$F3p)] # Definizione dei parametri della muratura #-----# parametri geometrici del singolo maschio murario set t 250.0; #spessore del pannello in mm #larghezza del pannello in mm 1500.0; set l set h 3000.0; #altezza del pannello in mm #vincolo in sommità (1=libero, 2=incastro) set v 1: set ts 250.0; #spessore del sottopannello in mm set ls 1500.0; #larghezza del sottopannello in mm set hs 1000.0: #altezza del sottopannello in mm #proprietà meccaniche (da prove sperimentali) #resistenza ultima a compressione della muratura in MPa -7.92; set fu set ft 0.2: #resistenza ultima a trazione della muratura in MPa set Em 2910.0; #modulo elastico della muratura in MPa set tO 0.1; #resistenza media a taglio a compressione nulla in MPa set G 875.0; #modulo a taglio della muratura in MPa set c 0.2; #coesione della muratura in MPa 0.5; #angolo d'attrito della muratura in radianti set f 0.00535; #scorrimento angolare a rottura set gu #peso specifico della muratura in kN/m^3 24.0; set w #peso della porzione di solaio afferente in kN set q [expr (\$gk1 + 0.3*\$qk1)*0.5*\$b/1000.0];

```
#sforzo assiale sul singolo maschio murario in kN
        [expr ($q + 4.0*$w*$t/1000.0*$1/1000.0*$h/1000.0 +
set N
                2.0*$w*$t/1000.0*$1/1000.0*$hs/1000.0)/4.0];
set T
        150.0:
                           #sforzo generato dal singolo tirante (kN)
# MOLLE VERTICALI
# parametri iniziali
                               #numero di molle verticali nel pannello
set nv
         2:
set Am [expr $t*$1/$nv]; #area afferente alla singola molla
set ecy [expr $fu/$Em]; #deformazione di compressione a snervamento
set ecu [expr $ft/$Em]; #deformazione di trazione a snervamento
set etu [expr 1.5*$ety]; #deformazione di trazione a rottura
# legame costitutivo
set
       mollavert
                    1
       Fpp [expr $ft*$Am]
Upy [expr $ety/$v*$hs]
set
set
      Fppu [expr $ft*$Am + 100.0]
Upu [expr $etu/$v*$hs]
Fultp 0.1
set
set
set
       Uultp [expr $etu/$v*$hs + 0.1]
set
              [expr $fu*$Am]
[expr $ecy/$v*$hs]
      Fpc
set
set
       Ucy
      Fpcu [expr $fu*$Am - 100.0]
set
              [expr $ecu/$v*$hs]
set
      Ucu
       Fultc
               -0.1
set
      Uultc [expr $ecu/$v*$hs - 0.1]
set
     pinchX 0.0
pinchY 0.0
set
set
      damage1 0.0
set
set
     damage2 0.0
uniaxialMaterial Hysteretic $mollavert $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2
# MOLLE DIAGONALI
# parametri iniziali
set nd
                                #numero molle diagonali
       2;
if {$h<$1} {
                                #scelta del parametro b (Turnsek-Cacovic)
set b 1.0
} else {
if {$h>1.5*$1} {
set b 1.5 } else {set b [expr $h/$1]}
3
#taglio ultimo a fessurazione diagonale secondo Turnsek e Cacovic in kN
set vuf [expr $t0*$t*$1/1000.0*sqrt(1 + $N/($b*$t0*$t*$1/1000.0))]
#spostamento sommitale del sottopannello in mm
set dys [expr $vuf*1000.0*$hs/($G*$ls*$ts)]
#angolo della diagonale del sottopannello rispetto all'orizzontale
set theta [expr atan($hs/$ls)]
#lunghezza della diagonale del sottopannello in mm
set ldiag [expr sqrt($ls*$ls + $hs*$hs)]
#spostamento a rottura del sottopannello in mm
set d2s [expr $gu*$hs];
```

```
# legame costitutivo
      molladiag
                  2
set
             [expr $vuf*1000.0/($nd*cos($theta))]
set
      Fpp
             [expr $dys*cos($theta)/$ldiag]
set
      Upy
             [expr $Fpp*0.9]
set
      Fppu
             [expr $d2s*cos($theta)/$ldiag]
set
      Upu
      Fultp
             1000.0
set
             [expr ($d2s*cos($theta) + 0.1*$d2s*cos($theta))/$ldiag]
set
      Uultp
             [expr -($vuf*1000.0)/($nd*cos($theta))]
set
      Fpc
             [expr -($dys*cos($theta))/$ldiag]
      Ucy
set
set
      Fpcu
             [expr $Fpc*0.9]
             [expr -($d2s*cos($theta))/$ldiag]
set
      Ucu
      Fultc
             -1000.0
set
      Uultc
             [expr -($d2s*cos($theta) + 0.1*$d2s*cos($theta))/$ldiag]
set
      pinchX 0.0
set
set
      pinchY 0.0
set
      damage1 0.0
      damage2 0.0
set
set
      beta
             0.9
uniaxialMaterial Hysteretic $molladiag $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2 $beta
# MOLLE ORIZZONTALI
# parametri iniziali
                              #numero molle orizzontali
set no
         2:
                              #spostamento ultimo per scorrimento in mm
set dmax [expr $gu*$h];
#taglio ultimo per scorrimento secondo Mohr e Coulomb in kN
       [expr ($c*$l*$t/1000.0 + $N*$f)/$no];
set vus
#lunghezza molla orizzontale in mm
set loriz [expr sqrt($ls*$ls + 1.0)];
# legame costitutivo
set
      mollaoriz
                3
            [expr $vus*1000.0]
set
      Fpp
             [expr $dmax*0.1/$loriz]
      Upy
set
set
      Fppu
             [expr $vus*1000.0 + 1.0]
             [expr $dmax/$loriz]
set
      Upu
      Fultp
set
             0.1
      Uultp
set
             [expr ($dmax+0.5)/$loriz]
             [expr -($vus*1000.0)]
set
      Fpc
             [expr -($dmax*0.1)/$loriz]
set
      Ucy
set
      Fpcu
             [expr -($vus*1000.0 + 1.0)]
             [expr -($dmax/$loriz)]
      Ucu
set
set
      Fultc
             -0.1
             [expr -($dmax+0.5)/$loriz]
set
      Uultc
      pinchX 0.0
set
      pinchY 0.0
set
set
      damage1 0.0
set
      damage2 0.0
uniaxialMaterial Hysteretic $mollaoriz $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2
# MOLLE VERTICALI DELLE FASCE DI PIANO
# parametri iniziali
set nvf
                         #numero molle verticali della fascia di piano
         2:
set dmaxf [expr $gu*$ls]; #spostamento ultimo per scorrimento in mm
#taglio ultimo a scorrimento (Mohr-Coulomb) in kN (decuplicato per ingranamento)
```

```
set vusf [expr 10.0*($c*$hs*$t/1000.0 + $T*$f)/$nvf];
#lunghezza molla verticale in mm
set lvf
        [expr sqrt($hs*$hs + 1.0)];
# legame costitutivo
        mollavertf
                       4
set
                 [expr $vusf*1000.0]
set
        Fpp
                 [expr $dmaxf*0.1/$lvf]
set
        Upy
                 [expr $vusf*1000.0 + 1.0]
set
        Fppu
set
        Upu
                 [expr $dmaxf/$lvf]
set
        Fultp
                0.1
       Uultp
                [expr ($dmaxf+0.5)/$lvf]
set
                 [expr -($vusf*1000.0)]
set
        Fpc
                 [expr -($dmaxf*0.1)/$lvf]
set
       Ucy
                 [expr -($vusf*1000.0 + 1.0)]
set
       Fpcu
set
       Ucu
                 [expr -($dmaxf/$lvf)]
       Fultc
                -0.1
set
set
       Uultc
                [expr -($dmaxf+0.5)/$lvf]
       pinchX
set
                0.0
       pinchY
                0.0
set
        damage1
                0.0
set
        damage2
                0.0
set
uniaxialMaterial Hysteretic $mollavertf $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2
# _____
# MOLLE DIAGONALI DELLE FASCE DI PIANO
# parametri iniziali
set ndf
                                        #numero molle diagonali della fascia di piano
         2;
#taglio ultimo a fessurazione diagonale secondo Turnsek e Cacovic in kN
set vuff [expr $t0*$t*$hs/1000.0*sqrt(1 + $T/($b*$t0*$t*$hs/1000.0))];
#spostamento sommitale del sottopannello della fascia di piano in mm
set dysf [expr $vuff*1000.0*$ls/($G*$hs*$ts)];
#angolo della diagonale del sottopannello della fascia di piano rispetto all'orizzontale
set thf [expr atan($ls/$hs)];
#lunghezza della diagonale del sottopannello della fascia di piano in mm
set ldf [expr sqrt($ls*$ls + $hs*$hs)];
#spostamento a rottura del sottopannello della fascia di piano in mm
set d2sf [expr $gu*$ls];
# legame costitutivo
        molladiagf
set
                       5
                   [expr $vuff*1000.0/($ndf*cos($thf))]
set
        Fpp
set
       Upy
                   [expr $dysf*cos($thf)/$ldf]
set
        Fppu
                   [expr $Fpp*0.9]
                   [expr $d2sf*cos($thf)/$ldf]
set
        Upu
        Fultp
                   1000.0
set
                   [expr ($d2sf*cos($thf) + 0.1*$d2sf*cos($thf))/$ldf]
        Uultp
set
                   [expr -($vuff*1000.0)/($ndf*cos($thf))]
set
        Fpc
                   [expr -($dysf*cos($thf))/$ldf]
set
        Ucy
                   [expr $Fpc*0.9]
[expr -($d2sf*cos($thf))/$ldf]
set
        Fpcu
set
       Ucu
set
        Fultc
                   -1000.0
                   [expr -($d2sf*cos($thf) + 0.1*$d2sf*cos($thf))/$ldf]
set
       Uultc
       pinchX
set
                   0.0
       pinchY
                  0.0
set
set
        damage1
                  0.0
        damage2
                   0.0
set
                   0.9
       beta
set
```

uniaxialMaterial Hysteretic \$molladiagf \$Fpp \$Upy \$Fppu \$Upu \$Fultp \$Uultp

```
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2 $beta
# MOLLE ORIZZONTALI DELLE FASCE DI PIANO
# parametri iniziali
                         #numero di molle orizzontali fascia di piano
set nof
       2:
set Amf [expr $t*$hs/$nof]; #area afferente alla singola molla
set ecyf [expr fu/2.0/ Em]; #deformazione di compressione a snervamento (con fu/2)
set ecuf [expr 3.0*$ecy]; #deformazione di compressione a rottura
                         #deformazione di trazione a snervamento
set etyf [expr $ft/$Em];
set etuf [expr 1.5*$ety];
                         #deformazione di trazione a rottura
# legame costitutivo
       mollaorizf
set
                    6
                [expr $ft*$Amf]
set
       Fpp
       Upy
                [expr $etyf/$v*$ls]
set
                [expr $ft*$Amf + 100.0]
set
       Fppu
                [expr $etuf/$v*$ls]
set
       Upu
       Fultp
                0.1
set
set
       Uultp
                [expr $etuf/$v*$ls + 0.1]
                [expr $fu/2.0*$Amf]
set
       Fpc
                [expr $ecyf/$v*$ls]
       Ucy
set
set
       Fpcu
                 [expr $fu/2.0*$Amf - 100.0]
                [expr $ecuf/$v*$ls]
       Ucu
set
                -0.1
set
       Fultc
                [expr $ecuf/$v*$ls - 0.1]
set
       Uultc
set
       pinchX
                0.0
set
       pinchY
                0.0
set
       damage1
                0.0
       damage2
                0.0
set
uniaxialMaterial Hysteretic $mollaorizf $Fpp $Upy $Fppu $Upu $Fultp $Uultp
$Fpc $Ucy $Fpcu $Ucu $Fultc $Uultc $pinchX $pinchY $damage1 $damage2
# TRUSS RIGIDI DEI MACRO-ELEMENTI
set truss 0
set E 6.0e12
uniaxialMaterial Elastic $truss $E
# MOLLE DIAGONALI DEI SOLAI
set diag 7
solaio $diag $F1pm $F2pm $F3pm $F4pm $d1pm $d2pm $d3pm $d4pm $F1nm $F2nm $F3nm $F4nm
$d1nm $d2nm $d3nm $d4nm $rdispP $rdispN $rForceP $rForceN $uForceP $uForceN
#-----
# Definizione dei nodi del modello
#-----
# solaio (z = 3003 mm) - i nodi commentati sono sovrapposti con la muratura
                             3003.0 corrisp. a nodo 106
#node
     1
            0.0
                     0.0
node
       2
            0.0
                     750.0
                             3003.0
                             3003.0 corrisp. a nodo 115
#node
       3
           0.0
                     1500.0
node
       4
           0.0
                     2250.0
                             3003.0
#node
       5
           0.0
                    3000.0
                             3003.0 corrisp. a nodo 124
                             3003.0
                     3750.0
node
       6
           0.0
       7
            0.0
                     4500.0
                             3003.0 corrisp. a nodo 131
#node
      8
            2000.0
                     0.0
                              3003.0
node
            2000.0
                     750.0
                              3003.0
node
      9
node
      10
            2000.0
                     1500.0
                             3003.0
    11
            2000.0
                     2250.0
                             3003.0
node
```

node	12	2000.0	3000.0	3003.0				
node	13	2000.0	3750.0	3003.0				
node	14	2000.0	4500.0	3003.0				
node	15	4000.0	0.0	3003.0				
node	16	4000.0	750.0	3003.0				
node	17	4000.0	1500.0	3003.0				
node	18	4000.0	2250.0	3003.0				
node	19	4000.0	3000.0	3003.0				
node	20	4000.0	3750.0	3003.0				
node	21	4000.0	4500.0	3003.0				
node	22	6000.0	0.0	3003.0				
node	23	6000.0	750.0	3003.0				
node	24	6000.0	1500.0	3003.0				
node	25	6000.0	2250.0	3003.0				
node	26	6000.0	3000.0	3003.0				
node	27	6000.0	3750.0	3003.0				
node	28	6000.0	4500.0	3003.0				
#node	29	8000.0	0.0	3003.0	corrisp.	a	nodo	206
node	30	8000.0	750.0	3003.0				045
#node	31	8000.0	1500.0	3003.0	corrisp.	a	nodo	215
node	32	8000.0	2250.0	3003.0				
#node	33	8000.0	3000.0	3003.0	corrisp.	a	nodo	224
node	34	8000.0	3750.0	3003.0				0.04
#node	35	8000.0	4500.0	3003.0	corrisp.	a	nodo	231
# norto	lo gin	istro (r	- 0 mm)					
mode	100			0 0				
node	101	0.0	0.0	1 0				
node	102	0 0	0.0	1001 0				
node	103	0 0	0 0	1002 0				
node	104	0.0	0.0	2002.0				
node	105	0.0	0.0	2003.0				
node	106	0.0	0.0	3003.0				
node	107	0.0	1499.0	0.0				
node	108	0.0	1499.0	1.0				
node	109	0.0	1499.0	1001.0				
node	110	0.0	1499.0	1002.0				
node	111	0.0	1499.0	2002.0				
node	112	0.0	1499.0	2003.0				
node	113	0.0	1499.0	3003.0				
node	114	0.0	1500.0	2003.0				
node	115	0.0	1500.0	3003.0				
node	116	0.0	2999.0	2003.0				
node	110	0.0	2999.0	3003.0				
node	110	0.0	3000.0	1.0				
node	120	0.0	3000.0	1001 0				
node	120	0.0	3000.0	1001.0				
node	121	0.0	3000.0	2002.0				
node	122	0.0	3000.0	2002.0				
node	120	0.0	3000 0	3003 0				
node	125	0.0	4500.0	0.0				
node	126	0.0	4500.0	1.0				
node	127	0.0	4500.0	1001.0				
node	128	0.0	4500.0	1002.0				
node	129	0.0	4500.0	2002.0				
node	130	0.0	4500.0	2003.0				
node	131	0.0	4500.0	3003.0				
# porta	le des	tro (x =	5000 mm)					
node	200	8000.0	0.0	0.0				
node	201	8000.0	0.0	1.0				
node	202	8000.0	0.0	1001.0)			
node	203	8000.0	0.0	1002.0)			
node	204	8000.0	0.0	2002.0)			
node	205	8000.0	0.0	2003.0)			
node	206	8000.0	0.0	3003.0)			
	200							
node	200	8000.0	1499.0	0.0				

node	209	8000.0	1499.0	1001.0
node	210	8000.0	1499.0	1002.0
node	211	8000.0	1499.0	2002.0
node	212	8000.0	1499.0	2003.0
node	213	8000.0	1499.0	3003.0
node	214	8000.0	1500.0	2003.0
node	215	8000.0	1500.0	3003.0
node	216	8000.0	2999.0	2003.0
node	217	8000.0	2999.0	3003.0
node	218	8000.0	3000.0	0.0
node	219	8000.0	3000.0	1.0
node	220	8000.0	3000.0	1001.0
node	221	8000.0	3000.0	1002.0
node	222	8000.0	3000.0	2002.0
node	223	8000.0	3000.0	2003.0
node	224	8000.0	4500.0	0.0
node	220	8000.0	4500.0	1 0
node	220	8000.0	4500.0	1001 0
node	221	8000.0	4500.0	1002 0
node	229	8000.0	4500.0	2002.0
node	230	8000.0	4500.0	2003.0
node	231	8000.0	4500.0	3003.0
#				
# Defin	nizione	e delle m	asse sismich	he
#				
set g	9806.0);		#accelerazione gravità (mm/s^2)
#masse	nodi d	centrali	solaio	
set m1	Lexpr	(\$gk1 +	\$qk1*0.3)*10	000.0*\$as/1000.0*\$bs/1000.0/\$g]
#masse	nodi l	Laterali	solaio non p	poggianti sulle pareti (y = 0; y = 4500)
#(compr	rendono	ancho n	a = a = a = a = a = a = a = a = a = a =	acio di noroto fuori niono accondo o influongo)
	Γ			$\frac{1}{2}$
set m2	[expr	\$m1/2.0	+ \$w*1000.0*	*\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0]
set m2	[expr	\$m1/2.0	+ \$w*1000.0*	scia di parete idoli plano secondo a. inituenza) * $a/1000.0* h/1000.0* t/1000.0/2.0/ g/4.0]$
set m2 #masse	[expr nodi]	\$m1/2.0	+ \$w*1000.0*	<pre>scia di parete idoii piano secondo a. inituenza) *\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0] ianti sulle pareti (x = 0; x = 5000): </pre>
set m2 #masse #peso p	[expr nodi] portale	\$m1/2.0 \$m1/2.0 aterali (diviso	<pre>solaio poggi per 7 nodi </pre>	<pre>*\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0] ianti sulle pareti (x = 0; x = 5000): e per 2 perché metà muro) + peso solaio afferente *(\$t (1000.0*\$) (1000.0*\$) (1000.0*1)</pre>
set m2 #masse #peso p set m3	[expr nodi] portale [expr	\$m1/2.0 (diviso \$m1/2.0	+ \$w*1000.0* solaio poggi per 7 nodi + \$w*1000.0*	<pre>scla d1 parete 10011 plano secondo a. 11110en2a) *\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0] ianti sulle pareti (x = 0; x = 5000): e per 2 perché metà muro) + peso solaio afferente *(\$t/1000.0*\$l/1000.0*h/1000.0 + 0*\$bc(1000.0)/\$r/6.0]</pre>
set m2 #masse #peso p set m3	[expr nodi] portale [expr	<pre>\$m1/2.0 laterali (diviso \$m1/2.0 \$t/1000.</pre>	<pre>+ \$w*1000.0* solaio poggi per 7 nodi + \$w*1000.0* 0*\$ls/1000.0</pre>	<pre>scla d1 parete 10011 plano secondo a. 1111den2a) *\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0] ianti sulle pareti (x = 0; x = 5000): e per 2 perché metà muro) + peso solaio afferente *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0]</pre>
set m2 #masse #peso p set m3	[expr nodi] portale [expr	<pre>\$m1/2.0 laterali (diviso \$m1/2.0 \$t/1000.</pre>	<pre>+ \$w*1000.0* solaio poggi per 7 nodi + \$w*1000.0* 0*\$ls/1000.0</pre>	<pre>*\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0] ianti sulle pareti (x = 0; x = 5000): e per 2 perché metà muro) + peso solaio afferente *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0]</pre>
set m2 #masse #peso p set m3 #masse	[expr nodi] portale [expr nodi d	<pre>\$m1/2.0 laterali e (diviso \$m1/2.0 \$t/1000. l'angolo \$m1/4.0</pre>	<pre>+ \$w*1000.0* solaio poggi per 7 nodi + \$w*1000.0* 0*\$ls/1000.0* + \$u*1000.0*</pre>	<pre>*\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0] ianti sulle pareti (x = 0; x = 5000): e per 2 perché metà muro) + peso solaio afferente *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0] *(\$t/1000.0*\$l/1000.0 +</pre>
set m2 #masse #peso p set m3 #masse set m4	[expr nodi] portale [expr nodi d [expr	<pre>\$m1/2.0 \$m1/2.0 \$m1/2.0 \$m1/2.0 \$t/1000. \$'angolo \$m1/4.0 \$t/1000</pre>	<pre>+ \$w*1000.0* solaio poggi per 7 nodi + \$w*1000.0* 0*\$ls/1000.0* + \$w*1000.0* 0*\$ls/1000.0*</pre>	<pre>\$</pre>
set m2 #masse #peso p set m3 #masse set m4	[expr nodi] portale [expr nodi d [expr	<pre>\$m1/2.0 \$m1/2.0 \$aterali (diviso \$m1/2.0 \$t/1000. \$m1/4.0 \$m1/4.0 \$t/1000. \$w*1000.</pre>	<pre>+ \$w*1000.0* solaio poggi per 7 nodi + \$w*1000.0* 0*\$ls/1000.0* + \$w*1000.0* 0*\$ls/1000.0* 0*\$ls/1000.0*</pre>	<pre>\$\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$</pre>
set m2 #masse #peso p set m3 #masse set m4	[expr nodi] portale [expr nodi d [expr	<pre>\$m1/2.0 \$m1/2.0 \$aterali (diviso \$m1/2.0 \$t/1000. \$m1/4.0 \$t/1000. \$t/1000. \$w*1000.</pre>	<pre>solaio poggi per 7 nodi + \$w*1000.0* ov*\$ls/1000.0* + \$w*1000.0* + \$w*1000.0* 0*\$ls/1000.0* 0*\$ls/1000.0*</pre>	<pre>\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</pre>
set m2 #masse #peso p set m3 #masse set m4 mass	[expr nodi] portale [expr nodi d [expr 106	<pre>\$m1/2.0 \$m1/2.0 \$aterali (diviso \$m1/2.0 \$t/1000. \$m1/4.0 \$m1/4.0 \$t/1000. \$w*1000. 0.0</pre>	<pre>solai stris + \$w*1000.0* solaio poggi per 7 nodi + \$w*1000.0* 0*\$ls/1000.0 + \$w*1000.0* 0*\$ls/1000.0 0*\$a/1000.0* \$m4 0.0 0</pre>	<pre>\$\$ *\$ a / 1000.0*\$ h / 1000.0*\$ t / 1000.0/2.0/\$ g / 4.0] ianti sulle pareti (x = 0; x = 5000): e per 2 perché metà muro) + peso solaio afferente *(\$t / 1000.0*\$ l / 1000.0*\$ h / 1000.0 + 0*\$ hs / 1000.0) / \$ g / 6.0] *(\$t / 1000.0*\$ l / 1000.0*\$ h / 1000.0 + 0*\$ hs / 1000.0) / \$ g / 6.0/2.0 + *\$ h / 1000.0*\$ t / 1000.0/2.0/\$ g / 4.0/2.0] 0.0 0.0 0.0</pre>
set m2 #masse #peso p set m3 #masse set m4 mass mass	[expr nodi] portale [expr nodi d [expr 106 2	<pre>\$m1/2.0 \$m1/2.0 \$aterali (diviso \$m1/2.0 \$t/1000. \$t/1000. \$m1/4.0 \$t/1000. \$v*1000. 0.0 0.0</pre>	<pre>solai stris + \$w*1000.0* solaio poggi per 7 nodi + \$w*1000.0* 0*\$ls/1000.0* 0*\$ls/1000.0* 0*\$ls/1000.0* \$m4 0.0 (\$m3 0.0 ()</pre>	<pre>\$\$ *\$ a / 1000.0*\$ h / 1000.0*\$ t / 1000.0/2.0/\$ g / 4.0] ianti sulle pareti (x = 0; x = 5000): e per 2 perché metà muro) + peso solaio afferente *(\$t / 1000.0*\$ l / 1000.0*\$ h / 1000.0 + 0*\$ hs / 1000.0) / \$ g / 6.0] *(\$t / 1000.0*\$ l / 1000.0*\$ h / 1000.0 + 0*\$ hs / 1000.0) / \$ g / 6.0 / 2.0 + *\$ h / 1000.0*\$ t / 1000.0/2.0 / \$ g / 4.0 / 2.0] 0.0 0.0 0.0 0.0 0.0 0.0</pre>
set m2 #masse #peso p set m3 #masse set m4 mass mass mass	[expr nodi] portale [expr nodi d [expr 106 2 115	<pre>\$ m1/2.0 \$ m1/2.0 \$ argolo \$ m1/2.0 \$ t/1000. \$ m1/4.0 \$ m1/4.0 \$ t/1000. \$ w*1000. 0.0 0.0 0.0 0.0</pre>	<pre>solaio poggi per 7 nodi + \$w*1000.0* ov*\$ls/1000.0* + \$w*1000.0* 0*\$ls/1000.0* 0*\$ls/1000.0* 0*\$ls/1000.0* \$m4 0.0 (\$m3</pre>	<pre>sta ui parete iuoii plano secondo a. inituenza) *\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0] ianti sulle pareti (x = 0; x = 5000): e per 2 perché metà muro) + peso solaio afferente *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0] *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0/2.0 + *\$h/1000.0*\$t/1000.0/2.0/\$g/4.0/2.0] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>
set m2 #masse #peso p set m3 #masse set m4 mass mass mass mass	[expr nodi] portale [expr nodi d [expr 106 2 115 4	<pre>\$ m1/2.0 \$ m1/2.0 \$ argolo \$ m1/2.0 \$ t/1000. \$ m1/4.0 \$ m1/4.0 \$ t/1000. \$ w*1000. 0.0 0.0 0.0 0.0 0.0 0.0</pre>	<pre>solaio poggi per 7 nodi + \$w*1000.0* ov*\$ls/1000.0* + \$w*1000.0* 0*\$ls/1000.0* 0*\$ls/1000.0* 0*\$ls/1000.0* \$m4 0.0 (\$m3</pre>	<pre>\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</pre>
set m2 #masse #peso p set m3 #masse set m4 mass mass mass mass mass	[expr nodi] portale [expr nodi d [expr 106 2 115 4 124	<pre>\$ m1/2.0 \$ m1/2.0 \$ argolo \$ m1/2.0 \$ t/1000. \$ m1/4.0 \$ m1/4.0 \$ t/1000. \$ w*1000. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	<pre>solaio poggi per 7 nodi + \$w*1000.0* absolut still solaio poggi per 7 nodi + \$w*1000.0* 0*\$ls/1000.0* + \$w*1000.0* 0*\$ls/1000.0* \$m4 0.0 (\$m3 0.0 (\$m</pre>	<pre>\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</pre>
set m2 #masse #peso p set m3 #masse set m4 mass mass mass mass mass mass	[expr nodi] portale [expr nodi d [expr 106 2 115 4 124 6	<pre>\$ m1/2.0 \$ m1/2.0 \$ argolo \$ m1/2.0 \$ t/1000. \$ m1/4.0 \$ t/1000. \$ t/1000. \$ w*1000. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	<pre>solaio poggi per 7 nodi + \$w*1000.0* absolut still solaio poggi per 7 nodi + \$w*1000.0* 0*\$ls/1000.0* 0*\$ls/1000.0* 0*\$ls/1000.0* \$m4 0.0 0 \$m3 0.0 0 \$</pre>	<pre>sta u1 parete 10011 plano secondo a. 11110en2a) *\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0] ianti sulle pareti (x = 0; x = 5000): e per 2 perché metà muro) + peso solaio afferente *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0] *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0/2.0 + *\$h/1000.0*\$t/1000.0/2.0/\$g/4.0/2.0] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>
set m2 #masse #peso p set m3 #masse set m4 mass mass mass mass mass mass mass	[expr nodi] portale [expr nodi d [expr 106 2 115 4 124 6 131	<pre>\$ m1/2.0 \$ m1/2.0 \$ angolo \$ m1/2.0 \$ t/1000. \$ t/1000. \$ m1/4.0 \$ t/1000. \$ w*1000. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	<pre>solaio poggi per 7 nodi + \$w*1000.0* ov*\$ls/1000.0* + \$w*1000.0* ov*\$ls/1000.0* ov*\$ls/1000.0* sm4 0.0 0 \$m3 0.</pre>	<pre>sta u1 parete 10011 plano secondo a. 11110en2a) *\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0] ianti sulle pareti (x = 0; x = 5000): e per 2 perché metà muro) + peso solaio afferente *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0] *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0/2.0 + *\$h/1000.0*\$t/1000.0/2.0/\$g/4.0/2.0] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>
set m2 #masse #peso p set m3 #masse set m4 mass mass mass mass mass mass mass ma	[expr nodi] portale [expr nodi d [expr 106 2 115 4 124 6 131 8	<pre>\$ m1/2.0 \$ m1/2.0 \$ m1/2.0 \$ m1/2.0 \$ t/1000. \$ m1/4.0 \$ t/1000. \$ m1/4.0 \$ t/1000. \$ w*1000. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	<pre>solaio poggi per 7 nodi + \$w*1000.0* ov*\$ls/1000.0* + \$w*1000.0* ov*\$ls/1000.0* ov*\$ls/1000.0* sm4 0.0 0 \$m3 0.</pre>	<pre>sta ui parete iutii plano secondo a. influenza) *\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0] ianti sulle pareti (x = 0; x = 5000): e per 2 perché metà muro) + peso solaio afferente *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0] *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0/2.0 + *\$h/1000.0*\$t/1000.0/2.0/\$g/4.0/2.0] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>
set m2 #masse #peso p set m3 #masse set m4 mass mass mass mass mass mass mass ma	[expr nodi] portale [expr nodi d [expr 106 2 115 4 124 6 131 8 9	<pre>\$ m1/2.0 \$ m1/2.0 \$ m1/2.0 \$ m1/2.0 \$ t/1000. \$ m1/4.0 \$ t/1000. \$ m1/4.0 \$ t/1000. \$ w*1000. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	<pre>solaio poggi per 7 nodi + \$w*1000.0* ov*\$ls/1000.0* + \$w*1000.0* 0*\$ls/1000.0* 0*\$ls/1000.0* 0*\$ls/1000.0* \$m4 0.0 0 \$m3</pre>	<pre>sta u1 parete 10011 plano secondo a. 11110en2a) *\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0] ianti sulle pareti (x = 0; x = 5000): e per 2 perché metà muro) + peso solaio afferente *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0] *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0/2.0 + *\$h/1000.0*\$t/1000.0/2.0/\$g/4.0/2.0] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>
set m2 #masse #peso p set m3 #masse set m4 mass mass mass mass mass mass mass ma	[expr nodi] portale [expr nodi d [expr 106 2 115 4 124 6 131 8 9 10	<pre>\$ m1/2.0 \$ m1/2.0 \$ m1/2.0 \$ m1/2.0 \$ t/1000. \$ t/1000. \$ t/1000. \$ m1/4.0 \$ t/1000. \$ w *1000. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	<pre>solaio poggi per 7 nodi + \$w*1000.0* + \$w*1000.0* + \$w*1000.0* + \$w*1000.0* 0*\$ls/1000.0* + \$w*1000.0* \$m4 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m4 0.0 0 \$m4 0.0 0 \$m1 0.0</pre>	<pre>sta ui parete iutii plano secondo a. influenza) *\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0] ianti sulle pareti (x = 0; x = 5000): e per 2 perché metà muro) + peso solaio afferente *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0] *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0/2.0 + *\$h/1000.0*\$t/1000.0/2.0/\$g/4.0/2.0] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>
set m2 #masse #peso p set m3 #masse set m4 mass mass mass mass mass mass mass ma	[expr nodi] portale [expr nodi d [expr 106 2 115 4 124 6 131 8 9 10 11	<pre>\$ m1/2.0 \$ m1/2.0 \$ argolo \$ m1/2.0 \$ t/1000. \$ t/1000. \$ t/1000. \$ t/1000. \$ w*1000. \$ w*1000. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	<pre>solaio poggi per 7 nodi + \$w*1000.0* + \$w*1000.0* + \$w*1000.0* + \$w*1000.0* 0*\$ls/1000.0* + \$w*1000.0* \$m4 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m1 0.0</pre>	<pre>sta ui parete iutii plano secondo a. influenza) *\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0] ianti sulle pareti (x = 0; x = 5000): e per 2 perché metà muro) + peso solaio afferente *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0] *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0/2.0 + *\$h/1000.0*\$t/1000.0/2.0/\$g/4.0/2.0] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>
set m2 #masse #peso p set m3 #masse set m4 mass	[expr nodi] portale [expr nodi d [expr 106 2 115 4 124 6 131 8 9 10 11 12	<pre>\$ m1/2.0 \$ m1/2.0 \$ argolo \$ m1/2.0 \$ t/1000. \$ t/1000. \$ t/1000. \$ t/1000. \$ w*1000. \$ w*1000. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	<pre>solaio poggi per 7 nodi + \$w*1000.0* + \$w*1000.0* + \$w*1000.0* + \$w*1000.0* + \$w*1000.0* 0*\$ls/1000.0* * \$u*1000.0* \$m4 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m1 0</pre>	<pre>sta ui parete iutii plano secondo a. influenza) *\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0] ianti sulle pareti (x = 0; x = 5000): e per 2 perché metà muro) + peso solaio afferente *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0] *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0/2.0 + *\$h/1000.0*\$t/1000.0/2.0/\$g/4.0/2.0] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>
set m2 #masse #peso p set m3 #masse set m4 mass	[expr nodi] portale [expr nodi d [expr 106 2 115 4 124 6 131 8 9 10 11 12 13 14	<pre>\$ m1/2.0 \$ m1/2.0 \$ argolo \$ m1/2.0 \$ t/1000. \$ t/1000. \$ t/1000. \$ m1/4.0 \$ t/1000. \$ w *1000. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	<pre>solaio poggi per 7 nodi + \$w*1000.0* + \$w*1000.0* + \$w*1000.0* + \$w*1000.0* 0*\$ls/1000.0* + \$w*1000.0* \$m4 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m1 0.0</pre>	<pre>sta u1 parete 10011 plano secondo a. 11110en2a) *\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0] ianti sulle pareti (x = 0; x = 5000): e per 2 perché metà muro) + peso solaio afferente *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0] *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0/2.0 + *\$h/1000.0*\$t/1000.0/2.0/\$g/4.0/2.0] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>
set m2 #masse #peso p set m3 #masse set m4 mass	[expr nodi] portale [expr nodi d [expr 106 2 115 4 124 6 131 8 9 10 11 12 13 14	<pre>\$ m1/2.0 \$ m1/2.0 \$ argolo \$ m1/2.0 \$ t/1000. \$ t/1000. \$ t/1000. \$ t/1000. \$ w*1000. \$ w*1000. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	<pre>solaio poggi per 7 nodi + \$w*1000.0* solaio poggi per 7 nodi + \$w*1000.0* 0*\$ls/1000.0* + \$w*1000.0* 0*\$ls/1000.0* * \$u*1000.0* \$m4 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m1</pre>	<pre>sta uf parete fubil plano secondo a. filluenza) *\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0] ianti sulle pareti (x = 0; x = 5000): e per 2 perché metà muro) + peso solaio afferente *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0] *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0/2.0 + *\$h/1000.0*\$t/1000.0/2.0/\$g/4.0/2.0] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>
set m2 #masse #peso p set m3 #masse set m4 mass	[expr nodi] portale [expr nodi d [expr 106 2 115 4 124 6 131 8 9 10 11 12 13 14 15 16	<pre>\$ m1/2.0 \$ m1/2.0 \$ argolo \$ m1/2.0 \$ t/1000. \$ t/1000. \$ t/1000. \$ t/1000. \$ w*1000. \$ w*1000. \$ w*1000. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	<pre>solaio poggi per 7 nodi + \$w*1000.0* + \$w*1000.0* + \$w*1000.0* + \$w*1000.0* 0*\$ls/1000.0* + \$w*1000.0* \$m4 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m1 0.0</pre>	<pre>sta u1 parete 10011 plano secondo a. 11110en2a) *\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0] ianti sulle pareti (x = 0; x = 5000): e per 2 perché metà muro) + peso solaio afferente *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0] *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0/2.0 + *\$h/1000.0*\$t/1000.0/2.0/\$g/4.0/2.0] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>
set m2 #masse #peso p set m3 #masse set m4 mass	[expr nodi] portale [expr nodi d [expr 106 2 115 4 124 6 131 8 9 10 11 12 13 14 15 16 17	<pre>\$ m1/2.0 \$ m1/2.0 \$ angolo \$ m1/2.0 \$ t/1000. \$ t/1000. \$ t/1000. \$ t/1000. \$ w*1000. \$ w*1000. \$ w*1000. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	<pre>solaio poggi per 7 nodi + \$w*1000.0* + \$w*1000.0* + \$w*1000.0* + \$w*1000.0* 0*\$ls/1000.0* + \$w*1000.0* \$m4 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m1 0.0</pre>	<pre>sta u1 parete 10011 plano secondo a. 11110en2a) *\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0] ianti sulle pareti (x = 0; x = 5000): e per 2 perché metà muro) + peso solaio afferente *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0] *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0/2.0 + *\$h/1000.0*\$t/1000.0/2.0/\$g/4.0/2.0] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>
set m2 #masse #peso p set m3 #masse set m4 mass	[expr nodi] portale [expr nodi d [expr 106 2 115 4 124 6 131 8 9 10 11 12 13 14 15 16 17 18	<pre>\$ m1/2.0 \$ m1/2.0 \$ angolo \$ m1/2.0 \$ t/1000. \$ t/1000. \$ t/1000. \$ t/1000. \$ w*1000. \$ w*1000. \$ w*1000. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	<pre>solai strik + \$w*1000.0* solaio poggi per 7 nodi + \$w*1000.0* 0*\$ls/1000.0* 0*\$ls/1000.0* 0*\$ls/1000.0* \$m4 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m1 0.0</pre>	<pre>sta uf parete fubil plano secondo a. filluenza) *\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0] ianti sulle pareti (x = 0; x = 5000): e per 2 perché metà muro) + peso solaio afferente *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0] *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0/2.0 + *\$h/1000.0*\$t/1000.0/2.0/\$g/4.0/2.0] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>
set m2 #masse #peso p set m3 #masse set m4 mass	[expr nodi] portale [expr nodi d [expr 106 2 115 4 124 6 131 8 9 10 11 12 13 14 15 16 17 18 19	<pre>\$ m1/2.0 \$ m1/2.0 \$ angolo \$ m1/2.0 \$ t/1000. \$ t/1000. \$ t/1000. \$ t/1000. \$ w*1000. \$ w*1000. \$ w*1000. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	<pre>solaio poggi per 7 nodi + \$w*1000.0* + \$w*1000.0* + \$w*1000.0* + \$w*1000.0* 0*\$ls/1000.0* + \$w*1000.0* 0*\$ls/1000.0* * \$m4 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m1 0.0 0 \$m</pre>	<pre>sta uf parete fubil plano secondo a. filluenza) *\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0] ianti sulle pareti (x = 0; x = 5000): e per 2 perché metà muro) + peso solaio afferente *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0] *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0/2.0 + *\$h/1000.0*\$t/1000.0/2.0/\$g/4.0/2.0] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>
set m2 #masse #peso p set m3 #masse set m4 mass	[expr nodi] portale [expr nodi d [expr 106 2 115 4 124 6 131 8 9 10 11 12 13 14 15 16 17 18 19 20	<pre>\$ m1/2.0 \$ m1/2.0 \$ angolo \$ m1/2.0 \$ t/1000. \$ t/1000. \$ t/1000. \$ t/1000. \$ w*1000. \$ w*1000. \$ w*1000. \$ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>	<pre>solai strik + \$w*1000.0* solaio poggi per 7 nodi + \$w*1000.0* 0*\$ls/1000.0* 0*\$ls/1000.0* 0*\$ls/1000.0* 0*\$a/1000.0* \$m4 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m1 0.0 0 0 \$m1 0.0 0 \$m1 0.0 0 \$m1 0.0 0 \$m1 pre>	<pre>start up priete full plane secondo a. fillenza/ *\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0] ianti sulle pareti (x = 0; x = 5000): e per 2 perché metà muro) + peso solaio afferente *(\$t/1000.0*\$1/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0] *(\$t/1000.0*\$1/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0/2.0 + *\$h/1000.0*\$t/1000.0/2.0/\$g/4.0/2.0] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>
set m2 #masse #peso p set m3 #masse set m4 mass	[expr nodi] portale [expr nodi d [expr 106 2 115 4 124 6 131 8 9 10 11 12 13 14 15 16 17 18 19 20 21	<pre>\$ m1/2.0 \$ m1/2.0 \$ angolo \$ m1/2.0 \$ t/1000. \$ t/1000. \$ t/1000. \$ t/1000. \$ w*1000. \$ w*1000. \$ w*1000. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	<pre>solaio poggi per 7 nodi + \$w*1000.0* solaio poggi per 7 nodi + \$w*1000.0* 0*\$ls/1000.0* + \$w*1000.0* 0*\$ls/1000.0* * \$w*1000.0* * \$a/1000.0* * \$m4 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m1 0.0</pre>	<pre>sta di parete fuori piano secondo a. finitenza/ *\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0] ianti sulle pareti (x = 0; x = 5000): e per 2 perché metà muro) + peso solaio afferente *(\$t/1000.0*\$1/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0] *(\$t/1000.0*\$1/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0/2.0 + *\$h/1000.0*\$t/1000.0/2.0/\$g/4.0/2.0] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>
set m2 #masse #peso p set m3 #masse set m4 mass	[expr nodi] portale [expr nodi d [expr 106 2 115 4 124 6 131 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	<pre>\$m1/2.0 \$m1/2.0 Laterali (diviso \$m1/2.0 \$t/1000. \$t/1000. \$m1/4.0 \$t/1000. \$w*1000. \$w*1000. \$w*1000. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	<pre>solaio poggi per 7 nodi + \$w*1000.0* solaio poggi per 7 nodi + \$w*1000.0* 0*\$ls/1000.0* + \$w*1000.0* 0*\$ls/1000.0* * \$w*1000.0* * \$a/1000.0* * \$m4 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m1 0.0</pre>	<pre>sta u1 parete fubil plant second a. finitenza) *\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0] ianti sulle pareti (x = 0; x = 5000): e per 2 perché metà muro) + peso solaio afferente *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0] *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0/2.0 + *\$h/1000.0*\$t/1000.0/2.0/\$g/4.0/2.0] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>
set m2 #masse #peso p set m3 #masse set m4 mass	[expr nodi] portale [expr nodi d [expr 106 2 115 4 124 6 131 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	<pre>\$ m1/2.0 \$ m1/2.0 \$ argolo \$ m1/2.0 \$ t/1000. \$ m1/2.0 \$ t/1000. \$ m1/4.0 \$ m1/4.0 \$ t/1000. \$ m1/4.0 \$ t/1000. \$ m1/4.0 \$ t/1000. \$ m1/4.0 \$ m1/4.0 \$ m1/4.0 \$ m1/4.0 \$ m1/4.0 \$ m1/4.0 \$ m1/4.0 \$ m1/4.0 \$ m1/4.0 \$ m1/4.0 \$ m1/4.0 \$ m1/4.0 \$ m1/4.0 \$ m1/4.0 \$ m1/4.0 \$ m1/4.0 \$ m1/4.0 \$ m1/4.0 \$ m1/2.0 \$</pre>	<pre>solaio poggi per 7 nodi + \$w*1000.0* solaio poggi per 7 nodi + \$w*1000.0* + \$w*1000.0* 0*\$ls/1000.0* + \$w*1000.0* 0*\$ls/1000.0* \$m4 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m3 0.0 0 \$m1</pre>	<pre>sta u1 parete fubil plant second a. finitenza) *\$a/1000.0*\$h/1000.0*\$t/1000.0/2.0/\$g/4.0] ianti sulle pareti (x = 0; x = 5000): e per 2 perché metà muro) + peso solaio afferente *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0] *(\$t/1000.0*\$l/1000.0*\$h/1000.0 + 0*\$hs/1000.0)/\$g/6.0/2.0 + *\$h/1000.0*\$t/1000.0/2.0/\$g/4.0/2.0] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>

mass	25	0.0	\$m1	0.0 0.	.0 0.0	0.0	
 magg	26	0 0	\$m1	0 0 0	0 0 0	0 0	
mass	20	0.0	φm1	0.0 0		0.0	
mass	21	0.0	ф 0	0.0 0	.0 0.0	0.0	
mass	28	0.0	\$m2	0.0 0	.0 0.0	0.0	
mass	206	0.0	\$m4	0.0 0.	.0 0.0	0.0	
mass	30	0.0	\$m3	0.0 0.	.0 0.0	0.0	
mass	215	0.0	\$m3	0.0 0.	.0 0.0	0.0	
mass	32	0.0	\$m3	0.0 0.	.0 0.0	0.0	
mass	224	0.0	\$m3	0.0 0.	.0 0.0	0.0	
mass	34	0 0	\$m3	0 0 0	0 0 0	0 0	
magg	231	0.0	\$m/	0 0 0		0.0	
mass	201	0.0	ψшч	0.0 0	.0 0.0	0.0	
#							
#							
# Defin	izione	degli	element	i			
#							
# solai	0						
element	truss	1	106	2	1.0	\$truss	
element	truss	2	2	115	1.0	\$truss	
element	truss	3	115	4	1.0	\$truss	
element	truss	4	4	124	1.0	\$truss	
element	+ - 100	5	12/	6	1 0	\$+ruee	
element	+	6	6	121	1.0	¢tiuss ¢truss	
erement	LIUSS	0	U C	131	1.0	φιruss	
e⊥ement	truss	7	×	Э	1.0	struss	
e⊥ement	truss	8	9	10	1.0	\$truss	
element	truss	9	10	11	1.0	\$truss	
element	truss	10	11	12	1.0	\$truss	
element	truss	11	12	13	1.0	\$truss	
element	truss	12	13	14	1.0	\$truss	
element	truss	13	15	16	1.0	\$truss	
element	truss	14	16	17	1.0	\$truss	
element	truge	15	17	18	1 0	\$truss	
olomont	trucc	16	19	10	1 0	¢truss ¢+russ	
element	truss	10	10	19	1.0	φtruss	
element	truss	17	19	20	1.0	\$truss	
element	truss	18	20	21	1.0	\$truss	
element	truss	19	22	23	1.0	\$truss	
element	truss	20	23	24	1.0	\$truss	
element	truss	21	24	25	1.0	\$truss	
element	truss	22	25	26	1.0	\$truss	
element	truss	23	26	27	1.0	\$truss	
element	truss	24	27	28	1.0	\$truss	
alamant	trugg	25	206	30	1 0	\$trues	
olomont	trucc	20	200	215	1 0	¢truss ¢+russ	
element	truss	20	215	210	1.0	¢truss	
element	truss	21	215	32	1.0	φιiuss	
element	truss	28	32	224	1.0	\$truss	
element	truss	29	224	34	1.0	\$truss	
element	truss	30	34	231	1.0	\$truss	
element	truss	31	106	8	1.0	\$truss	
element	truss	32	8	15	1.0	\$truss	
element	truss	33	15	22	1.0	\$truss	
element	truss	34	22	206	1.0	\$truss	
element	truss	35	2	9	1.0	\$truss	
element	truss	36	9	16	1.0	\$truss	
element	truss	37	16	23	1.0	\$truss	
alament	trues	30	70	30	1 0	\$++	
erement	trucc	20	20 11E	10	1 0	¢+~~~~	
erement	truss	39	110	10	1.0	φιι USS Φ+	
erement	truss	40	10	1/	1.0	atruss	
e⊥ement	truss	41	17	24	1.0	\$truss	
element	truss	42	24	215	1.0	\$truss	
element	truss	43	4	11	1.0	\$truss	
element	truss	44	11	18	1.0	\$truss	
element	truss	45	18	25	1.0	\$truss	
element	truss	46	25	32	1.0	\$truss	
element	truss	47	124	12	1.0	\$truss	
element	truss	48	12	19	1.0	\$truss	
alamon+	trues	10	10	26	1 0	\$trues	
erement	trucc	49 EA	19	20	1 0	¢+~~~~	
erement	truss	50	20	40	1.0	φιι USS Φ+	
erement	truss	51	b	13	1.0	ətruss	
e⊥ement	truss	52	13	20	1.0	\$truss	
element	truss	53	20	27	1.0	\$truss	

element	truss	54	27	34	1.0	\$truss
element	truss	55	131	14	1.0	\$truss
element	truss	56	14	21	1.0	\$truss
element	truss	57	21	28	1.0	\$truss
element	truss	58	28	231	1.0	\$truss
element	truss	59	106	9	1.0	\$diag
element	truss	60	2	10	1.0	\$diag
element	truss	61	115	11	1.0	\$diag
element	truss	62	4	12	1.0	\$diag
element	truss	63	124	13	1.0	\$diag
element	truss	64	6	14	1.0	\$diag
element	truss	65	8	16	1 0	\$diag
element	truss	66	9	17	1 0	\$diag
element	truss	67	10	18	1 0	\$diag
element	truss	68	11	19	1 0	\$diag
element	trues	69	10	20	1.0	¢diag
element	trues	70	13	20	1.0	Quiag Sdiag
element	truss	70	16	21	1.0	¢diag
element	truss	71	17	22	1.0	¢diag
element	truss	12	10	23	1.0	¢diag
element	truss	73	10	24	1.0	¢diag
element	truss	74	19	25	1.0	\$diag
element	truss	15	20	26	1.0	\$dlag
element	truss	/6	21	27	1.0	\$diag
element	truss	77	23	206	1.0	\$diag
element	truss	78	24	30	1.0	\$diag
element	truss	79	25	215	1.0	\$diag
element	truss	80	26	32	1.0	\$diag
element	truss	81	27	224	1.0	\$diag
element	truss	82	28	34	1.0	\$diag
<pre># portal</pre>	le sinisti	ro				
element	truss	100	101	102	1.0	\$truss
element	truss	101	102	109	1.0	\$truss
element	truss	102	109	108	1.0	\$truss
element	truss	103	108	101	1.0	\$truss
element	truss	104	103	104	1.0	\$truss
element	truss	105	104	111	1.0	\$truss
element	truss	106	111	110	1.0	\$truss
element	truss	107	110	103	1.0	\$truss
element	truss	108	105	106	1.0	\$truss
element	truss	109	106	113	1.0	\$truss
element	truss	110	113	112	1.0	\$truss
element	truss	111	112	105	1.0	\$truss
element	truss	112	114	115	1.0	\$truss
element	truss	113	115	117	1.0	\$truss
element	truss	114	117	116	1.0	\$truss
element	truss	115	116	114	1.0	\$truss
element	truss	116	119	120	1.0	\$truss
element	truss	117	120	127	1.0	\$truss
element	truss	118	127	126	1.0	\$truss
element	truss	119	126	119	1.0	\$truss
element	truss	120	121	122	1.0	\$truss
element	truss	121	122	129	1.0	\$truss
element	truss	122	129	128	1.0	\$truss
element	truss	123	128	121	1.0	\$truss
element	truss	120	123	121	1 0	\$truss
element	truss	125	120	131	1 0	\$truss
clement	trucc	126	121	120	1.0	¢truss \$truss
element	trucc	107	130	102	1.0	¢truss \$truss
element	truss	100	100	101	1.0	¢uiuss ¢mollovort
element	truss	120	100	101	1.0	¢mollavert
erement	trucc	120	104	105	1.0	¢mollavert ¢molla
element		124	104	105	1.0	φmollavert Φmellevert
element		120	107	1108	1.0	φmollavert Φmellevert
e⊥ement	cruss	132	109	110	1.0	omo⊥⊥avert
e⊥ement	cruss	133	111	112	1.0	omo⊥⊥avert
e⊥ement	truss	134	118	119	1.0	\$mollavert
e⊥ement	truss	135	120	121	1.0	\$mollavert
e⊥ement	truss	136	122	123	1.0	\$mollavert
e⊥ement	truss	137	125	126	1.0	\$mollavert
element	truss	138	127	128	1.0	\$mollavert

element	truss	139	129	130	1.0	\$mollavert
element	truss	140	101	109	1.0	\$molladiag
element	truss	141	102	108	1.0	\$molladiag
element	truss	142	103	111	1.0	\$molladiag
element	truss	143	104	110	1.0	\$molladiag
element	truss	144	105	113	1.0	\$molladiag
element	truss	145	106	112	1.0	\$molladiag
element	truss	146	119	127	1.0	\$molladiag
element	truss	147	120	126	1.0	\$molladiag
element	truss	148	121	129	1.0	\$molladiag
element	truss	149	122	128	1.0	\$molladiag
element	truss	150	123	131	1.0	\$molladiag
element	truss	151	124	130	1.0	\$molladiag
element	truss	152	100	108	1.0	\$mollaoriz
element	truss	153	101	107	1.0	\$mollaoriz
element	truss	154	103	109	1.0	\$mollaoriz
element	truss	155	102	110	1.0	\$mollaoriz
element	truss	156	105	111	1.0	\$mollaoriz
element	truss	157	104	112	1.0	\$mollaoriz
element	truss	158	118	126	1.0	\$mollaoriz
element	truss	159	119	125	1.0	\$mollaoriz
element	truss	160	121	127	1.0	\$mollaoriz
element	truss	161	120	128	1.0	\$mollaoriz
element	truss	162	123	129	1.0	\$mollaoriz
element	truss	163	122	130	1.0	\$mollaoriz
element	truss	164	114	117	1.0	\$molladiagf
element	truss	165	115	116	1.0	\$molladiagf
element	truss	166	113	115	1.0	\$mollaorizf
element	truss	167	112	114	1.0	\$mollaorizf
element	truss	168	116	123	1.0	\$mollaorizf
element	truss	169	117	124	1.0	\$mollaorizf
element	truss	170	112	115	1.0	\$mollavertf
element	truss	171	113	114	1.0	\$mollavertf
element	truss	172	116	124	1.0	\$mollavertf
element element	truss truss	172 173	116 117	124 123	1.0 1.0	\$mollavertf \$mollavertf
element element	truss truss	172 173	116 117	124 123	1.0 1.0	\$mollavertf \$mollavertf
element element # portal	truss truss le destro	172 173	116 117	124 123	1.0	<pre>\$mollavertf \$mollavertf</pre>
element element # portal element	truss truss le destro truss	172 173 200	116 117 201	124 123 202	1.0 1.0	<pre>\$mollavertf \$mollavertf \$truss \$truss</pre>
element element # porta element element	truss truss le destro truss truss	172 173 200 201	116 117 201 202	124 123 202 209	1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$truss \$truss \$truss</pre>
element element # porta element element	truss truss le destro truss truss truss	172 173 200 201 202	116 117 201 202 209	124 123 202 209 208	1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$ truss \$truss \$truss \$ truss \$ t</pre>
element element # porta element element element	truss truss le destro truss truss truss truss	172 173 200 201 202 203 203	116 117 201 202 209 208	124 123 202 209 208 201	1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$ truss \$truss \$truss \$truss \$ truss e>
element # porta element element element element	truss truss le destro truss truss truss truss	172 173 200 201 202 203 204 205	116 117 201 202 209 208 203 203	124 123 202 209 208 201 204 201	1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$ truss \$truss \$truss \$truss \$truss \$truss \$ truss pre>
element # porta element element element element element	truss truss le destro truss truss truss truss truss truss	172 173 200 201 202 203 204 205 206	116 117 201 202 209 208 203 204 201	124 123 202 209 208 201 204 211 210	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$ truss \$truss \$ truss } </pre>
element # porta element element element element element element element	truss truss le destro truss truss truss truss truss truss truss	172 173 200 201 202 203 204 205 206 207	116 117 201 202 209 208 203 204 211 210	124 123 202 209 208 201 204 211 210 203	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$ mollavertf \$ truss } truss \$ truss } </pre>
<pre>element element # porta element element element element element element element element element</pre>	truss truss le destro truss truss truss truss truss truss truss truss	172 173 200 201 202 203 204 205 206 207 208	116 117 201 202 209 208 203 204 211 210 205	124 123 202 209 208 201 204 211 210 203 206	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$truss }truss \$truss }truss \$truss \$truss }truss }truss </pre>
element # porta element element element element element element element element	truss truss le destro truss truss truss truss truss truss truss truss truss	172 173 200 201 202 203 204 205 206 207 208 209	116 117 201 202 209 208 203 204 211 210 205 206	124 123 202 209 208 201 204 211 210 203 206 213	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$ truss \$truss }truss \$truss } </pre>
element # portal element element element element element element element element element	truss truss le destro truss truss truss truss truss truss truss truss truss truss	172 173 200 201 202 203 204 205 206 207 208 209 210	116 117 201 202 209 208 203 204 211 210 205 206 213	124 123 202 209 208 201 204 211 210 203 206 213 212	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$mollavertf \$truss }truss }</pre>
element # portal element element element element element element element element element element	truss truss truss truss truss truss truss truss truss truss truss truss truss truss	172 173 200 201 202 203 204 205 206 207 208 209 210 211	116 117 201 202 209 208 203 204 211 210 205 206 213 212	124 123 202 209 208 201 204 211 210 203 206 213 212 205	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$mollavertf \$truss }truss }</pre>
element # portal element element element element element element element element element element	truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss	172 173 200 201 202 203 204 205 206 207 208 209 210 211 212	116 117 201 202 209 208 203 204 211 210 205 206 213 212 214	124 123 202 209 208 201 204 211 210 203 206 213 215	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$mollavertf \$truss }truss }</pre>
<pre>element element /pre>	truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss	172 173 200 201 202 203 204 205 206 207 208 209 210 211 212 213	116 117 201 202 209 208 203 204 211 210 205 206 213 212 214 215	124 123 202 209 208 201 204 211 210 203 206 213 212 205 215 217	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$mollavertf \$truss }truss }</pre>
<pre>element element # porta element element element element element element element element element element element element element element element element</pre>	truss truss le destro truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss	172 173 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214	116 117 201 202 209 208 203 204 211 210 205 206 213 212 214 215 217	124 123 202 209 208 201 204 211 210 203 206 213 212 205 215 217 216	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$mollavertf \$truss }truss \$truss \$truss }truss }</pre>
<pre>element element # porta element element element element element element element element element element element element element element element element element</pre>	truss truss le destro truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss truss	172 173 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215	116 117 201 202 209 208 203 204 211 210 205 206 213 212 214 215 217 216	124 123 202 209 208 201 204 211 210 203 206 213 212 205 215 217 216 214	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$mollavertf \$truss }truss }truss \$truss }truss \$truss }truss </pre>
<pre>element element # porta element element element element element element element element element element element element element element element element element element</pre>	truss truss le destro truss	172 173 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216	116 117 201 202 209 208 203 204 211 210 205 206 213 212 214 215 217 216 219	124 123 202 209 208 201 204 211 210 203 206 213 212 205 215 217 216 214 220	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$mollavertf \$truss }truss }</pre>
<pre>element element # porta element element element element element element element element element element element element element element element element</pre>	truss truss	172 173 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217	116 117 201 202 209 208 203 204 211 210 205 206 213 212 214 215 217 216 219 220	124 123 202 209 208 201 204 211 210 203 206 213 212 205 215 217 216 214 220 227	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$mollavertf \$truss }truss }</pre>
<pre>element element # porta element element element element element element element element element element element element element element element element element element</pre>	truss truss le destro truss	172 173 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218	116 117 201 202 209 208 203 204 211 210 205 206 213 212 214 215 217 216 219 220 227	124 123 202 209 208 201 204 211 210 203 206 213 212 205 215 217 216 214 220 227 226	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$mollavertf \$truss }truss }</pre>
<pre>element element # porta element</pre>	truss truss le destro truss	172 173 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219	116 117 201 202 209 208 203 204 211 210 205 206 213 212 214 215 217 216 219 220 227 226	124 123 202 209 208 201 204 211 210 203 206 213 212 205 215 217 216 214 220 227 226 219	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$mollavertf \$truss }truss }truss \$truss }truss </pre>
<pre>element element # porta element</pre>	truss truss le destro truss	172 173 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220	116 117 201 202 209 208 203 204 211 210 205 206 213 212 214 215 217 216 219 220 227 226 221	124 123 202 209 208 201 204 211 210 203 206 213 212 205 215 217 216 214 220 227 226 219 222	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$mollavertf \$truss }truss }truss } </pre>
<pre>element element # porta element</pre>	truss truss le destro truss	172 173 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221	116 117 201 202 209 208 203 204 211 210 205 206 213 212 214 215 217 216 219 220 227 226 221 222	124 123 202 209 208 201 204 211 210 203 206 213 212 205 215 217 216 214 220 227 226 219 222 229	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$mollavertf \$truss }truss \$truss }truss }truss </pre>
<pre>element element # porta element</pre>	truss truss le destro truss	172 173 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222	116 117 201 202 209 208 203 204 211 210 205 206 213 212 214 215 217 216 219 220 227 226 221 222 229	124 123 202 209 208 201 204 211 210 203 206 213 212 205 215 217 216 214 220 227 226 219 222 229 228	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$mollavertf \$truss }truss }truss } </pre>
<pre>element element # porta element</pre>	truss truss	172 173 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223	116 117 201 202 209 208 203 204 211 210 205 206 213 212 214 215 217 216 219 220 227 226 221 229 228	124 123 202 209 208 201 204 211 210 203 206 213 212 205 215 217 216 214 220 227 226 219 222 229 228 221	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$mollavertf \$truss }truss }truss } </pre>
<pre>element element # porta element</pre>	truss truss	172 173 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 221 222 223 224	116 117 201 202 209 208 203 204 211 210 205 206 213 212 214 215 217 216 217 220 227 226 221 229 228 223	124 123 202 209 208 201 204 211 210 203 206 213 212 205 215 217 216 214 220 227 226 219 222 229 228 221 224	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$mollavertf \$truss }truss }truss } </pre>
<pre>element element # porta element</pre>	truss truss le destro truss	172 173 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225	116 117 201 202 209 208 203 204 211 210 205 206 213 212 214 215 217 216 219 220 227 226 221 222 229 228 223 224	124 123 202 209 208 201 204 211 210 203 206 213 212 205 215 217 216 214 220 227 226 219 222 229 228 221 224 231	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$mollavertf \$truss }truss }truss } </pre>
<pre>element element # porta element</pre>	truss truss le destro truss	172 173 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226	116 117 201 202 209 208 203 204 211 210 205 206 213 212 214 215 217 216 219 220 227 226 221 229 228 229 228 223 224 231	124 123 202 209 208 201 204 211 210 203 206 213 212 205 215 217 216 214 220 227 226 219 222 229 228 221 224 231 230	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$mollavertf \$truss }truss }truss }</pre>
<pre>element element # porta element</pre>	truss truss le destro truss	172 173 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 221 222 223 224 225 226 227	116 117 201 202 209 208 203 204 211 210 205 206 213 212 214 215 217 216 219 220 227 226 221 229 228 223 224 231 230	124 123 202 209 208 201 204 211 210 203 206 213 212 205 215 217 216 214 220 227 226 219 222 229 228 221 224 231 230 223	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$mollavertf \$truss }truss }truss }</pre>
<pre>element element # porta element e</pre>	truss truss le destro truss	172 173 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228	116 117 201 202 209 208 203 204 211 210 205 206 213 212 214 215 217 216 219 220 227 226 221 222 229 228 223 224 231 230 200	124 123 202 209 208 201 204 211 210 203 206 213 212 205 215 217 216 214 220 227 226 219 222 229 228 221 224 231 230 223 201	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$mollavertf \$truss }truss \$truss }truss }truss }</pre>
<pre>element element # porta element e</pre>	truss truss le destro truss	172 173 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229	116 117 201 202 209 208 203 204 211 210 205 206 213 212 214 215 217 216 219 220 227 226 221 229 228 223 224 231 230 200 202	124 123 202 209 208 201 204 211 210 203 206 213 212 205 215 217 216 214 220 227 226 219 222 229 228 221 229 228 221 224 231 230 223 201 203	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$mollavertf \$truss }truss }truss }</pre>
<pre>element element # porta element e</pre>	truss truss le destro truss	172 173 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230	116 117 201 202 209 208 203 204 211 210 205 206 213 212 214 215 217 216 219 220 227 226 221 229 228 223 224 231 230 200 202 204	124 123 202 209 208 201 204 211 210 203 206 213 212 205 215 217 216 214 220 227 226 219 222 229 228 221 229 228 221 224 231 230 203 203 205	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$mollavertf \$truss \$tr</pre>
<pre>element element # porta element e</pre>	truss truss le destro truss	172 173 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231	116 117 201 202 209 208 203 204 211 210 205 206 213 212 214 215 217 216 219 220 227 226 221 229 228 221 229 228 223 224 231 230 200 202 204 207	124 123 202 209 208 201 204 211 210 203 206 213 212 205 215 217 216 214 220 227 226 219 222 229 228 221 224 231 230 223 201 203 205 208	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	<pre>\$mollavertf \$mollavertf \$mollavertf \$truss \$tr</pre>

Appendice B. Listati di alcuni casi studio

element	truss	233	211	212	1.0	<pre>\$mollavert</pre>
element	truss	234	218	219	1.0	<pre>\$mollavert</pre>
alamant	truge	235	220	221	1 0	\$mollawert
element	truss	200	220	221	1.0	
element	truss	230	222	223	1.0	\$mollavert
element	truss	237	225	226	1.0	\$mollavert
element	truss	238	227	228	1.0	<pre>\$mollavert</pre>
element	truss	239	229	230	1.0	<pre>\$mollavert</pre>
element	truss	240	201	209	1.0	\$molladiag
alamant	truge	2/1	202	208	1 0	tmolladian
erement		241	202	200	1.0	
element	truss	242	203	211	1.0	\$molladiag
element	truss	243	204	210	1.0	\$molladiag
element	truss	244	205	213	1.0	\$molladiag
element	truss	245	206	212	1.0	\$molladiag
alamant	trugg	246	219	227	1 0	\$molladiag
element	truss	240	213	221	1.0	¢molladiag
element	truss	247	220	226	1.0	
element	truss	248	221	229	1.0	\$molladiag
element	truss	249	222	228	1.0	\$molladiag
element	truss	250	223	231	1.0	<pre>\$molladiag</pre>
element	truss	251	224	230	1 0	\$molladiag
olomont	trucc	201	200	200	1 0	¢mollooriz
element	LIUSS	252	200	208	1.0	
element	truss	253	201	207	1.0	\$mollaoriz
element	truss	254	203	209	1.0	\$mollaoriz
element	truss	255	202	210	1.0	\$mollaoriz
element	truss	256	205	211	1.0	\$mollaoriz
element	truce	257	204	210	1 0	\$mollaoriz
-lan - · ·	01 USS	201	204	212	1.0	
e⊥ement	truss	258	218	226	1.0	<pre>pmullaor1z</pre>
element	truss	259	219	225	1.0	\$mollaoriz
element	truss	260	221	227	1.0	\$mollaoriz
element	truss	261	220	228	1.0	\$mollaoriz
element	truss	262	223	229	1 0	\$mollaoriz
alamant	+ = = = = = = = = = = = = = = = = = = =	202	220	220	1.0	¢mollaoniz ¢mollaoniz
element	LIUSS	203	222	230	1.0	
element	truss	264	214	217	1.0	\$molladiagf
element	truss	265	215	216	1.0	\$molladiagf
element	truss	266	213	215	1.0	\$mollaorizf
element	truss	267	212	214	1.0	\$mollaorizf
alamant	trugg	268	216	223	1 0	\$mollaorizf
element	truss	200	210	220	1.0	
erement	truss	269	217	224	1.0	\$mollaor121
element	truss	270	212	215	1.0	\$mollavertf
element	truss	271	213	214	1.0	<pre>\$mollavertf</pre>
element	truss	272	216	224	1.0	<pre>\$mollavertf</pre>
element	truss	273	217	223	1.0	<pre>\$mollavertf</pre>
0100000	01 400	210		220	1.0	¥m011010101
ш						
#						
# Defin	izione	dei nodi	vinco	lati		
#						
# norta	lo sini	stro (in	castri	+ carre	lli fuo	ri niano)
# porta	100					II PIANO)
IIX	100	1 1	1	1 1	1	
İlX	107	1 1	1	1 1	1	
fix	118	1 1	1	1 1	1	
fix	125	1 1	1	1 1	1	
fix	101	1 0	0	1 1	1	
 fiv	102	1 0	õ	 1 1	1	
1 1 X	102	1 0	0	1 I	1	
İlX	103	1 0	0	1 1	1	
fix	104	1 0	0	1 1	1	
fix	105	1 0	0	1 1	1	
fix	106	1 0	0	1 1	1	
 f i v	108	1 0	Ô		-	
1 1 A	100	1 O	0	1 I	1	
IIX	103	T 0	U	1 1	1	
fix	110	1 0	0	1 1	1	
fix	111	1 0	0	1 1	1	
fix	112	1 0	0	1 1	1	
fiv	113	1 0	0		-	
 	110	· · ·	0	1 I	1 1	
IIX		т 0	U	1 1	Ţ	
	114		-	1 1	1	
fix	114 115	1 0	0	1 1	1	
fix fix	114 115 116	1 0 1 0	0 0	1 1 1 1	1	
fix fix fix	114 115 116 117	1 0 1 0 1 0	0 0 0	$\begin{array}{ccc} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array}$	1	
fix fix fix fix	114 115 116 117 119	1 0 1 0 1 0	0 0 0	$ 1 1 1 \\ 1 1 1 \\ 1 1 1 \\ 1 1 $	1 1 1	
fix fix fix fix	114 115 116 117 119	1 0 1 0 1 0 1 0		$ 1 1 1 \\ 1 1 1 \\ 1 1 1 \\ 1 1 1 \\ 1 1 1 $	1 1 1	
fix fix fix fix fix	114 115 116 117 119 120	1 0 1 0 1 0 1 0 1 0	0 0 0 0	1 1 1 1 1 1 1 1 1 1	1 1 1 1	

fix	122	1	0	0	1	1	1	
fix	123	1	0	0	1	1	1	
fiv	124	1	0	0	1	1	1	
£ :	100	-	õ	0	-	-	1	
IIX	120	1	0	0	1	1	1	
fix	127	1	0	0	1	1	1	
fix	128	1	0	0	1	1	1	
fix	129	1	0	0	1	1	1	
fiv	130	1	0	0	1	1	1	
1 1 X	101	4	õ	0	1	4	1	
IIX	131	T	0	0	1	T	I	
# porta	ale des	stro ((incas	stri +	carr	elli	fuori	piano)
fix	200	1	1	1	1	1	1	
fiv	207	1	1	1	1	1	1	
1 1 X	201	-	-	-	1	-	1	
IIX	218	T	T	1	1	T	T	
fix	225	1	1	1	1	1	1	
fix	201	1	0	0	1	1	1	
fix	202	1	0	0	1	1	1	
fiv	203	1	0	0	1	1	1	
1 1 A	200	1	0	0	1	1	1	
IIX	204	T	0	0	1	T	T	
fix	205	1	0	0	1	1	1	
fix	206	1	0	0	1	1	1	
fix	208	1	0	0	1	1	1	
fiv	200	1	0	0	1	1	1	
1 1 A	203	1	0	0	1	1	1	
İlX	210	1	0	0	1	1	1	
fix	211	1	0	0	1	1	1	
fix	212	1	0	0	1	1	1	
fix	213	1	0	0	1	1	1	
 fiv	214	1	Ô	ů.	1	1	1	
111	214	1	0	0	1	1	1	
İlX	215	1	0	0	1	1	1	
fix	216	1	0	0	1	1	1	
fix	217	1	0	0	1	1	1	
fix	219	1	0	0	1	1	1	
 fiv	220	1	Ô	ů.	1	1	1	
117	220	1	0	0	1	1	1	
fix	221	1	0	0	1	1	1	
fix	222	1	0	0	1	1	1	
fix	223	1	0	0	1	1	1	
fix	224	1	0	0	1	1	1	
 fi	222	-	0	Ô	-	-	1	
IIX	220	1	0	0	1	1	1	
fix	227	1	0	0	1	1	1	
fix	228	1	0	0	1	1	1	
fix	229	1	0	0	1	1	1	
fix	230	1	0	0	1	1	1	
1 1 X	200	4	õ	0	1	4	1	
11X	231	T	0	0	T	T	T	
# sola:	io (can	rrelli	i fuor	ri piam	no)			
fix	2	1	0	1	1	1	1	
fiv	1	1	0	1	1	1	1	
1 1 A	т С	1	0	1	1	1	1	
IIX	6	1	0	1	1	T	T	
fix	8	0	0	1	1	1	1	
fix	9	0	0	1	1	1	1	
fix	10	0	0	1	1	1	1	
fiv	11	0	0	1	1	1	1	
1 1 A	10	0	0	1	1	1	1	
IIX	12	0	0	T	1	T	T	
fix	13	0	0	1	1	1	1	
fix	14	0	0	1	1	1	1	
fix	15	0	0	1	1	1	1	
fiv	16	0	0	1	1	1	1	
117	10	0	0	1	1	1	1	
İlX	17	0	0	1	1	1	1	
fix	18	0	0	1	1	1	1	
fix	19	0	0	1	1	1	1	
fix	20	0	0	1	1	1	1	
fiv	21	0	0	1	1	1	1	
4	21	0	0	1	1	1	1	
IIX	22	U	U	T	T	T	T	
fix	23	0	0	1	1	1	1	
fix	24	0	0	1	1	1	1	
fix	25	0	0	1	1	1	1	
fiv	26	0	0	-	-	1	1	
A 	20	0	0	1	1	1	- 1	
TTX	21	0	0	T	T	T	T	
fix	28	0	0	1	1	1	1	
fix	30	1	0	1	1	1	1	

fix 32 1 fix 34 1 #----_____ # Definizione dei carichi #_____ pattern Plain 1 Linear { # Carichi verticali applicati ai portali load 106 0.0 0.0 [expr -\$N*1000.0/2.0 - \$w*\$t*\$h*\$a/4000000.0] 0.0 0.0 ; load 115 0.0 0.0 [expr -\$N*1000.0/2.0 - \$w*\$t*\$h*\$a/4000000.0] 0.0 0.0 0.0; load 124 0.0 0.0 [expr -\$N*1000.0/2.0 - \$w*\$t*\$h*\$a/4000000.0] 0.0 0.0 0.0; load 131 0.0 0.0 [expr -\$N*1000.0/2.0 - \$w*\$t*\$h*\$a/4000000.0] 0.0 0.0 0.0; load 206 0.0 0.0 [expr -\$N*1000.0/2.0 - \$w*\$t*\$h*\$a/4000000.0] 0.0 0.0 0.0; load 215 0.0 0.0 [expr -\$N*1000.0/2.0 - \$w*\$t*\$h*\$a/4000000.0] 0.0 0.0 0.0; load 224 0.0 0.0 [expr -\$N*1000.0/2.0 - \$w*\$t*\$h*\$a/4000000.0] 0.0 0.0 0.0; load 231 0.0 0.0 [expr -\$N*1000.0/2.0 - \$w*\$t*\$h*\$a/4000000.0] 0.0 0.0 0.0; # Carichi orizzontali dovuti ai tiranti load 105 0.0 [expr \$T*1000.0] 0.0 0.0 0.0 0.0; load 106 0.0 [expr \$T*1000.0] 0.0 0.0 0.0 0.0; load 130 0.0 [expr -\$T*1000.0] 0.0 0.0 0.0 0.0; load 131 0.0 [expr -\$T*1000.0] 0.0 0.0 0.0 0.0; load2050.0[expr\$T*1000.0]0.0< load 231 0.0 [expr -\$T*1000.0] 0.0 0.0 0.0 0.0; } #-----_____ # Output dei dati # - - - -_____ recorder Node -file Risultati/disp_port1.txt -node 106 -dof 2 disp; recorder Node -file Risultati/disp_port2.txt -node 206 -dof 2 disp; recorder Node -file Risultati/disp_sol.txt -node 21 -dof 2 disp; recorder Node -file Risultati/react_port1.txt -node 100 107 118 125 -dof 2 reaction; recorder Node -file Risultati/react_port2.txt -node 200 207 218 225 -dof 2 reaction; recorder Element -file Risultati/axial_sol.txt -ele 70 axialForce; recorder Node -file Risultati/disp_vertbase.txt -node 108 -dof 3 disp; recorder Element -file Risultati/axial_vertbase.txt -ele 131 axialForce; recorder Node -file Risultati/disp_orizbase.txt -node 101 -dof 2 disp; recorder Element -file Risultati/axial_orizbase.txt -ele 153 axialForce; recorder Node -file Risultati/disp_diagbase.txt -node 102 -dof 2 disp; recorder Element -file Risultati/axial_diagbase.txt -ele 141 axialForce; #-----# ANALISI #----puts "SOLVING..." set startTime [clock clicks -milliseconds] # Gravity-analysis parameters set Tol 1.0e-5 ; set Niter 1000 ; # numero massimo di iterazioni Newton constraints Transformation; # how it handles boundary conditions numberer RCM: # renumber dof's to minimize band-width system BandGeneral; # how to store and solve the system of equations test NormDispIncr \$Tol \$Niter 0 ; # determine if convergence has been achieved test EnergyIncr \$Tol \$Niter 0 ; test NormUnbalance \$Tol \$Niter 0 ; algorithm NewtonLineSearch 0.5 ; # updates tangent stiffness at every iteration set NstepGravity 10; # apply gravity in 10 steps set DGravity [expr 1./\$NstepGravity]; # first load increment; integrator LoadControl \$DGravity; # determine the next time step for an analysis analysis Static; # define type of analysis static or transient analyze \$NstepGravity; # apply gravity #TIME HISTORY loadConst -time 0.0; # hold gravity constant and restart time set Tol 1.0e-6; # convergence tolerance for test set Niter 10000; # numero massimo di iterazioni Newton # clear previously-define analysis parameters wipeAnalysis;

```
constraints Plain; # how it handles boundary conditions
                    # renumber dof's to minimize band-width (optimization)
numberer Plain:
system BandGeneral; # how to store and solve the system of equations
test NormDispIncr $Tol $Niter 0 ;
#test NormUnbalance $Tol $Niter 0 ;
#test EnergyIncr $Tol $Niter 0 ;
algorithm KrylovNewton;
integrator Newmark 0.5 0.25
# define damping
set xDamp 0.02;
                                               # 2% damping ratio
set lambda1 [eigen 1];
                                               # eigenvalue mode 1
set omega1 [expr pow($lambda1,0.5)];
                                               # due Hz più del 1' modo
set offset 4;
set omega2 [expr ($omega1/6.28+$offset)*6.28];
                                              # plotta la prima frequenza
puts "1a frequenza =[expr $omega1/6.28]";
puts "2a frequenza =[expr $omega2/6.28]";
                                              # plotta la seconda frequenza
set alphaM [expr ($omega1*$omega2*2*$xDamp)/($omega1+$omega2)] ;
set betaKcurr 0.0;
                    # K-proportional damping +betaKcurr*KCurrent
set betaKcomm [expr (2*$xDamp)/($omega1+$omega2)] ;
puts "alphaM = $alphaM"
puts "betaKcomm = $betaKcomm"
set betaKinit 0.0;
                    # initial-stiffness proportional damping + betaKinit*Kini
# define damping
rayleigh $alphaM $betaKcurr $betaKcinit $betaKcomm; # RAYLEIGH damping
analysis Transient
set AccelY "Series -dt 0.01 -filePath sisma3.th -factor 1.03";
pattern UniformExcitation 4000 2 -accel $AccelY;
set DtAnalysis 0.001
set TmaxAnalysis 25
set Nsteps [expr int($TmaxAnalysis/$DtAnalysis)];
analyze $Nsteps $DtAnalysis
puts "Analisi completata"
set finishTime [clock clicks -milliseconds];
set timeSeconds [expr ($finishTime-$startTime)/1000];
set timeMinutes [expr ($timeSeconds/60)];
                [expr ($timeSeconds/3600)];
set timeHours
set timeMinutes [expr ($timeMinutes - $timeHours*60)];
set timeSeconds [expr ($timeSeconds - $timeMinutes*60 - $timeHours*3600)];
puts "\n-----";
puts "TOTAL TIME TAKEN $timeHours:$timeMinutes:$timeSeconds";
# SUBROUTINE UTILIZZATE
**********************
proc solaio {matID F1pm F2pm F3pm F4pm d1pm d2pm d3pm d4pm F1nm F2nm F3nm
F4nm d1nm d2nm d3nm d4nm rdispP rdispN rForceP rForceN uForceP uForceN} {
# Positive/Negative envelope Stress/Load
# stress1 stress2 stress3 stress4
set pEnvelopeStress [list [expr $F1pm*1000.0] [expr $F2pm*1000.0]
[expr $F3pm*1000.0] [expr $F4pm*1000.0]]
set nEnvelopeStress [list [expr $F1nm*1000.0] [expr $F2nm*1000.0]
[expr $F3nm*1000.0] [expr $F4nm*1000.0]]
# Positive/Negative envelope Strain/Deformation
# strain1 strain2 strain3 strain4
set pEnvelopeStrain [list $d1pm $d2pm $d3pm $d4pm]
set nEnvelopeStrain [list $d1nm $d2nm $d3nm $d4nm]
# Ratio of maximum deformation at which reloading begins
# Pos_env. Neg_env.
```

```
set rDisp [list $rdispP $rdispN]
# Ratio of envelope force at which reloading begins
# Pos_env. Neg_env.
set rForce [list $rForceP $rForceN]
# Ratio of monotonic strength developed upon unloading
# Pos_env. Neg_env.
set uForce [list $uForceP $uForceN]
# Coefficients for Unloading Stiffness degradation
# gammaK1 gammaK2 gammaK3 gammaK4 gammaKLimit
set gammaK [list 0.0 0.0 0.0 0.0]
# Coefficients for Reloading Stiffness degradation
# gammaD1 gammaD2 gammaD3 gammaD4 gammaDLimit
set gammaD [list 0.0 0.0 0.0 0.0 0.0]
# Coefficients for Strength degradation
# gammaF1 gammaF2 gammaF3 gammaF4 gammaFLimit
set gammaF [list 0.0 0.0 0.0 0.0]
set gammaE 10.0
# damage type (option: "energy", "cycle")
set dam "cycle"
# add the material to domain
uniaxialMaterial Pinching4 $matID [lindex $pEnvelopeStress 0]
[lindex $pEnvelopeStrain 0] [lindex $pEnvelopeStress 1]
[lindex $pEnvelopeStrain 1] [lindex $pEnvelopeStress 2]
[lindex $pEnvelopeStrain 2] [lindex $pEnvelopeStress 3]
[lindex $pEnvelopeStrain 3] [lindex $nEnvelopeStress 0]
[lindex $nEnvelopeStrain 0] [lindex $nEnvelopeStress 1]
[lindex $nEnvelopeStrain 1] [lindex $nEnvelopeStress 2]
[lindex $nEnvelopeStrain 2] [lindex $nEnvelopeStress 3]
[lindex $nEnvelopeStrain 3] [lindex $rDisp 0] [lindex $rForce 0]
[lindex $uForce 0] [lindex $rDisp 1] [lindex $rForce 1]
[lindex $uForce 1] [lindex $gammaK 0] [lindex $gammaK 1]
[lindex $gammaK 2] [lindex $gammaK 3] [lindex $gammaK 4]
[lindex $gammaD 0] [lindex $gammaD 1] [lindex $gammaD 2]
[lindex $gammaD 3] [lindex $gammaD 4] [lindex $gammaF 0]
[lindex $gammaF 1] [lindex $gammaF 2] [lindex $gammaF 3]
[lindex $gammaF 4] $gammaE $dam
puts "diagonali_ok"
```

}

Ringraziamenti

Un primo, doveroso, ringraziamento va subito al Prof. Ing. Roberto Scotta per i consigli, le correzioni e il sostegno vigoroso che ha fornito per il completamento di questo lavoro e nella ricerca di possibilità future per poterlo ampliare ed arricchire. Ringrazio però sinceramente anche l'Ing. Davide Trutalli e l'Ing. Luca Marchi per le preziose revisioni della Tesi e per i suggerimenti, sempre puntuali, che ho ricevuto per il suo svolgimento. Sono stato onorato di poter collaborare con questo gruppo di ricerca, perché in questi mesi ho potuto confrontarmi prima di tutto con delle *persone* vere e proprie, che uniscono la professione all'umanità, creando un ambiente sempre positivo e stimolante.

Un ringraziamento particolare va anche al Prof. Ing. Sergio Lagomarsino e alla Prof.ssa Ing. Serena Cattari dell'Università degli Studi di Genova per aver gentilmente accettato di revisionare questa Tesi ed esserne controrelatori.

Infine, giunto al traguardo di questi cinque anni, non vanno dimenticate le persone che mi hanno sostenuto in questo tempo un po' faticoso, ma sempre appassionante e formativo. Perciò, grazie a tutta la mia famiglia per i consigli, il sostegno, l'affetto, l'energia e il vigore trasmessi per andare avanti anche nelle situazioni più difficili: sento di essere sempre molto fortunato nell'avere alle mie spalle tutti loro. Grazie a tutti i colleghi ed amici, sia a chi ha condiviso con me questi anni di duro lavoro, sia a chi invece ha reso le mie estati un po' più vivaci: spero che questi rapporti possano accrescersi ed approfondirsi in futuro, perché ancora molto è da costruire...in tutti i sensi!

Bibliografia

- J. Aleman, G. Mosqueda, A. Whittaker, Seismic Analysis of multi-storey unreinforced masonry buildings with flexible diaphragms, Technical Report MCEER-15-0001, 2015
- [2] C. Allen, M. J. Masia, A. W. Page, M. C. Griffith, H. Derakhshan, Cyclic in-plane shear testing of unreinforced masonry walls with openings, Proceedings of the 10th Pacific Conference on Earthquake Engineering, Sydney, 2015
- [3] C. Baldessari, *In-plane behaviour of differently refurbished timber floors*, Tesi di Dottorato, Università degli Studi di Trento, 2010
- [4] D. Benedetti, M. Tomazevic, Sulla verifica sismica di costruzioni in muratura, Ingegneria sismica, 1, 9-16, 1984
- [5] N. Bertin, Effetti del rinforzo di solai in legno nel miglioramento sismico di edifici esistenti in muratura. Modellazione numerica delle pareti, Tesi di Laurea, Università degli Studi di Padova, 2015
- [6] M. Betti, L. Galano, A. Vignoli, Comparative Analysis on the seismic behaviour of unreinforced masonry buildings with flexible diaphragms, Engineering structures, 61, 195-208, 2014
- [7] K. Beyer, Peak and residual strengths of brick masonry spandrels, Engineering structures, 41, 533-547, 2012
- [8] A. Brignola, S. Podestà, S. Pampanin, *In-plane stiffness of wooden floors*, NZSEE Conference, 2008
- C. Calderini, S. Cattari, S. Lagomarsino, In-plane strength of unreinforced masonry piers, Earthquake Engineering and Structural Dynamics, 38, 243-267, 2008
- [10] I. Caliò, M. Marletta, B. Pantò, Un macro-elemento in grado di cogliere il comportamento nel piano e fuori piano di pareti murarie, XII Convegno ANIDIS, Pisa, 2007
- [11] I. Caliò, M. Marletta, B. Pantò, A new discrete element model for the evaluation of the seismic behaviour of unreinforced masonry buildings, Engineering Structures, Vol. 40, 327-338, 2012

- [12] G. Canesso, Simulazioni numeriche degli effetti del rinforzo di solai in legno nel miglioramento sismico di edifici in muratura, Tesi di Laurea, Università degli Studi di Padova, 2016
- [13] S. Cattari, D. Camilletti, S. Marino, S. Lagomarsino, Valutazione della risposta sismica di edifici in muratura irregolari in pianta e con solai flessibili, XVI Convegno ANIDIS, L'Aquila 2015
- [14] P. Cirone, Restauro strutturale delle murature. Manuale di riparazione e consolidamento, Dario Flaccovio Editore, 2011
- [15] Consiglio Nazionale delle Ricerche, CNR-DT 200 R1, Istruzioni per la progettazione, l'esecuzione ed il controllo di interventi di consolidamento statico mediante l'utilizzo di compositi fibrorinforzati, 2013
- [16] A. C. Costley, D. P. Abrams, Dynamic response of unreinforced masonry buildings with flexible diaphragms, Technical Report NCEER-96-0001, 1996
- [17] L. De Tomasi, Modelli numerici per l'analisi sismica di edifici in muratura con solai lignei, Tesi di Laurea, Università degli Studi di Padova, 2015
- [18] European Committee for Standardization (CEN), EN 1990 Eurocode Basis of structural design
- [19] European Committee for Standardization (CEN), EN 1998 Eurocode Design of structures for earthquake resistance
- [20] R. Fabian, Valutazione numerica e analitica della rigidezza nel piano di solai in legno, Tesi di Laurea, Università degli Studi di Padova, 2016
- [21] M. Gallonelli, Dynamic response of masonry buildings with rigid or flexible floors, Tesi di Laurea, Università degli Studi di Pavia, 2007
- [22] N. Gattesco, L. Macorini, F. Benussi, Retrofit of wooden floors for the seismic adjustment of historical buildings with high reversible techniques, XII Convegno ANIDIS, Pisa, 2007
- [23] N. Gattesco, L. Macorini, A. Dudine, Experimental response of brick-masonry spandrels under in-plane cyclic loading, Journal of Structural Engineering, 142
 (2), DOI: 10.1061/(ASCE)ST.1943-541X.0001418, 2016
- [24] P. Gelfi, SIMQKE_GR Version 2.7, Università degli Studi di Brescia, 2012. Disponibile al link: http://dicata.ing.unibs.it/gelfi
- [25] I. Giongo, Role of timber diaphragms in the seismic response of unreinforced masonry (URM) buildings, Tesi di Dottorato, Università degli Studi di Trento, 2013
- [26] I. Giongo, D. Dizhur, R. Tomasi, J. M. Ingham, Field testing of flexible timber diaphragms in an existing vintage URM building, Journal of Structural Engineering, 141 (1), DOI: 10.1061/(ASCE)ST.1943-541X.0001045, 2015

- [27] Gruppo Sismica s.r.l., Manuale teorico 3D-Macro, 2010
- [28] K. W. Johansen, Theory of timber connections, International Association of Bridge and Structural Engineering, 249–262, 1949
- [29] A. Lonardi, Effetti del consolidamento dei solai lignei sulla risposta sismica di edifici in muratura, Tesi di Laurea, Università degli Studi di Padova, 2015
- [30] G. Magenes, G.M. Calvi, Cyclic behaviour of brick masonry walls, Proceedings of the 10th World Conference on Earthquake Engineering, 1992
- [31] G. Magenes, G.M. Calvi, In-plane seismic response of brick masonry walls, Earthquake Engineering and Structural Dynamics, 26, 1091-1112, 1997
- [32] G. Magenes, *Edifici con struttura in muratura*, IX corso di aggiornamento professionale dell'Ordine degli Ingegneri della Provincia di Bergamo, 2003
- [33] L. Marchi, R. Scotta, L. Pozza, Experimental and theoretical evaluation of TCC connections with inclined self-tapping screws, Materials and Structures, DOI: 10.1617/s11527-017-1047-1, 2017
- [34] S. Mazzoni, F. McKenna, M. H. Scott, G. L. Fenves et al., Open System for Earthquake Engineering Simulation. User command-language manual, Università di Berkeley, 2009
- [35] Norme Tecniche per le Costruzioni (D.M. 14/01/2008) e relativa Circolare di applicazione 2/02/2009
- [36] Y. Nakamura, H. Derakhshan, G. Magenes, M. C. Griffith, Influence of diaphragm flexibility on seismic response of unreinforced masonry buildings, Journal of Earthquake Engineering, 26, DOI: 10.1080/13632469.2016.1190799, 2016
- [37] M. P. Newcombe, W. A. van Beerschoten, D. Carradine, S. Pampanin, A. H. Buchanan, *In-Plane Experimental Testing of Timber-Concrete Composite Floor Diaphragms*, Journal of Structural Engineering, 136 (11), 1461-1468, 2010
- [38] E. Ongaretto, L. Pozza, M. Savoia, Wood-based solutions to improve quality and safety against seismic events in conservation of historical buildings, International Journal for Quality Research, 10 (1), 17-46, 2016
- [39] Ordinanza del Presidente del Consiglio dei Ministri, n. 3274/2003
- [40] B. Pantò, La modellazione sismica degli edifici in muratura. Un approccio innovativo basato su un macro-elemento spaziale, Tesi di dottorato, Università degli Studi di Catania, 2006
- [41] J. Paquette, M. Bruneau, Pseudo-dynamic testing of unreinforced masonry building with flexible diaphragm, Journal of Structural Engineering, 129 (6), 708-716, 2003
- [42] M. Piazza, G. Turrini, Una tecnica di recupero statico dei solai in legno, Recuperare, 5, 224-237, Milano, 1983

- [43] M. Piazza, C. Baldessari, R. Tomasi, The role of in-plane floor stiffness in the seismic behaviour of traditional buildings, 14th World Conference on Earthquake Engineering, Pechino, 2008
- [44] M. H. Scott, G. L. Fenves. A Krylov subspace accelerated Newton algorithm: application to dynamic progressive collapse simulation of frames, Journal of Structural Engineering, 473-480, 2010
- [45] G. Rinaldin, C. Amadio, N. Gattesco, Review of experimental cyclic tests on unreinforced and strengthened masonry spandrels and numerical modelling of their cyclic behaviour, Engineering structures, 132, 609-623, 2017
- [46] R. Scotta, D. Trutalli, L. Marchi, L. Pozza, Seismic response of masonry buildings with alternative techniques for in-plane strengthening of timber floors, XII International Conference on Structural Repair and Rehabilitation (CINPAR), Porto, 2016
- [47] R. Scotta, D. Trutalli, L. Marchi, L. Pozza, Effects of in-plane strengthening of timber floors in the seismic response of existing masonry buildings, World Conference on Timber Engineering (WCTE), Vienna, 2016
- [48] C. C. Simsir, M. A. Aschheim, D. P. Abrams, Out-of-plane dynamic response of unreinforced masonry bearing walls attached to flexible diaphragms, 13th World Conference on Earthquake Engineering, 2004
- [49] M. Tondelli, K. Beyer, M. DeJong, Influence of boundary conditions on the outof-plane response of brick masonry walls in buildings with RC slabs, Earthquake Engineering and Structural Dynamics, DOI: 10.1002/eqe.2710, 2016
- [50] M. Tonon, Effetti dell'utilizzo di diverse tecniche di recupero dei solai lignei sulla risposta sismica di edifici esistenti in muratura, Tesi di Laurea, Università degli Studi di Padova, 2016
- [51] D. Trutalli, L. Marchi, R. Scotta, L. Pozza, Dynamic simulation of an irregular masonry building with different rehabilitation methods applied to timber floors. 6th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Rodi, 2017.
- [52] V. Turnšek, F. Cacovic, Some experimental results on the strength of brick masonry walls, Proceedings of the 2nd International Brick Masonry Conference, Stoke-on-Trent, 149-156, 1971
- [53] V. Turnšek, P. Sheppard, The shear and flexural resistence of masonry walls, Proceedings of the International Research Conference on Earthquake Engineering, 517-573, 1980
- [54] J. Vaculik, M. Griffith, Shaketable tests on masonry walls in two-way bending, Australian Earthquake Engineering Society Conference, Wollongong, NSW, Australia, 2007

- [55] J. Vaculik, E. Lumantarna, M.C. Griffith, N.T.K. Lam, J. Wilson, Out-of-plane seismic response of unreinforced masonry walls: an overview of research in Australia, Proceedings of the 14th International Brick Masonry Conference, Sydney, 2008
- [56] M. R. Valluzzi, E. Garbin, M. Dalla Benetta, C. Modena, *In-plane strengthening of timber floors for the seismic improvement of masonry buildings*, Proceedings of the World Conference on Timber Engineering (WCTE), Riva del Garda, 2010.