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Introduction

Dark matter has a crucial role in our understanding of modern cosmology, since it dominates
the mass budget of the universe. The present work is motivated by a personal interest in this
topic and it introduces all the basic tools needed to understand how the study of the hydrogen
atom has been a turning point in astronomy in the 60s. Indeed, the advent of radio astronomy
allowed to collect robust evidences of the existence of dark matter.
In the first chapter, we summarize the standard results on the ideal hydrogen atom. The em-
phasis is particularly put on the symmetries of the system and how they can justify the high
degeneracy of the energy levels. In the second chapter, we systematically introduce all the for-
malism necessary to take into account the fine structure terms. We present the Lorentz group,
its algebra, its spinorial representation and the Dirac equation. Finally we derive the relativistic
wave equation for the electron. Using the latter equation, in the third chapter, we first discuss
the physical origin of the fine structure terms and why they partially break the degeneracy of the
energy levels. Then we compute the energy correction through perturbation theory. Even if we
do not take into account the second quantization, we qualitatively present the Lamb shift and in
more detail the hyperfine structure. In particular, we show how the famous 21cm line emerges
from an hyperfine transition. Finally in the fourth chapter, we review the principal dark matter
evidences from observational astronomy. In particular, we mention Zwicky’s pioneering work and
other more convincing evidences obtained studying the galactic rotational curves. Moreover, we
will introduce the most significant dark matter characteristics that are fundamental in order to
set up a proper experiment for its detection.

Notation The units are set so that ~ = c = 1 and also ε0 = µ0 = 1.
We will use the covariant formalism with the metric signature ηµν = (+,−,−,−).
Greek indices take values µ = 0, 1, 2, 3, whereas latin indices take values i = 1, 2, 3.
A letter in boldface denotes a spatial vector whose components have upper indices.
We define: σµ = (1, σi) and σ̄µ = (1,−σi), where σi are the Pauli matrices.
We will denote the fine structure constant α = e2

4πε0~c , where e is the electron charge (defined
negative, i.e. e < 0).
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Chapter 1

The ideal hydrogen atom

1.1 Symmetries of the system

The ideal hydrogen atom consists in a heavy proton, thus essentially motionless, with charge −e
and in a nonrelativistic electron with charge e, which orbits around the proton bounded by the
electromagnetic field. If we put the proton in the origin of the reference frame, then the potential
felt by the electron is

V (r) = − e2

4πr
= −α

r
, (1.1)

that is a central potential.
This type of potential has three important symmetries, i.e. transformations under which the
Hamiltonian is invariant. Considering the fact that the Hamiltonian is the generator of time
translations, then these three symmetries convert into three conservation laws.
First, because of the spherical symmetry of the potential, the electron Hamiltonian H is invariant
under rotations. This means that the generator of spatial rotations, i.e. the angular momentum
L, and also L2 commute with H. Indeed we have:

[H,Li] = 0 =⇒ [H,L2] = [H,LiLi] = [H,Li]Li + Li[H,Li] = 0. (1.2)

Let’s denote the Hilbert space of the electron as H = L2(R3, d3x) ' L2(R+, r
2dr)⊗ L2(S2, dΩ),

where we have exploited the spherical coordinates isomorphism.
In general {L2, L3} are a complete set of commuting observables (CSCO) for the angular part
of H, i.e. L2(S2, dΩ). It can be shown that {H} forms a CSCO for the radial part of H, thus
{H,L2, L3} is a CSCO for the entire H. Thus, {H,L2, L3} have a common basis of eigenstates
ψnlml = |nlml〉, i.e. satisfying

H |nlml〉 = E(n) |nlml〉, L2 |nlml〉 = l(l + 1) |nlml〉, L3 |nlml〉 = m |nlml〉. (1.3)

Therefore the quantum numbers n, l,ml are suitable to describe the system, as they uniquely
specify a bound state of the Hamiltonian. In particular:

n = 1, 2, . . . , l = 0, 1, . . . , n− 1, ml = −l, . . . , l. (1.4)

Secondly, since the potential scales as 1/r there is a conserved quantity called Laplace-Runge-
Lenz vector M , defined as in the classical case as

M i =
εijkpjLk − εilsLlps

2m
+ V (r) ri, (1.5)

where p and m are respectively the momentum operator and the electron mass.
One can verify that this operator has the following properties
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[H,M i] = 0, [Li,M j ] = iεijkMk, [M i,M j ] = −2i

m
εijkLkH,

M2 = α2 +
2

m
H(L2 + 1), M iLi = 0.

(1.6)

Finally, the third symmetry of the potential is its invariance under parity transformations. In
particular the parity operator P , contrary to M , commutes1 with all H,L2 and L3, so their
eigenstates are also parity eigenstates. Hence the latter must be even or odd,

P |nlml〉 = (−1)l |nlml〉. (1.7)

1.2 Schröedinger equation and energy degeneration

The Schrödinger equation for the electron in spherical coordinates (r, θ, φ) is:

− 1

2m

[
1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

(
∂2ψ

∂φ2

)]
+ V (r)ψ = Eψ. (1.8)

As well known, in this case the normalized solutions for bounded states are:

ψnlml =

√(
2

na

)3 (n− l − 1)!

2n(n+ l)!
e−r/na

(
2r

na

)l[
L2l+1
n−l−1(2r/na)

]
Y ml
l (θ, φ) (1.9)

where a is the Bohr radius defined as a = 1
mα , L

p
q are the associated Laguerre polynomials and

Y ml
l are the spherical harmonics. Besides, the allowed energies are:

E(n) = −
(

1

2ma2

)
1

n2
. (1.10)

Figure 1.1: Energy levels for ideal hydrogen. One can appreciate the degeneration at fixed principal
quantum number n.

Since the energy levels depend only on the principal quantum number n, there is a high degen-
eration of the states (see Fig.(1.1)). In particular, using Eq.(1.4), the total degeneracy d(n) of

1This fact does not contradict the previous assertion that {H,L2, L3} is a CSCO for H. It simply means that
the parity operator can be expressed in terms of these three operators, explicitly P = (−1)L.
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each level is:

d(n) =
n−1∑
l=0

(2l + 1) = n2. (1.11)

All these degenerations can be explained through the symmetries emphasized in the previous
section. The idea is that there is energy degeneration when the Hamiltonian is invariant under a
transformation, which on the other hand modifies states. This happens if there are multiple non-
commuting symmetry operators, as the impossibility of finding a common basis of eigenstates
leads to inevitable degeneracy.
From Eq.(1.7), it is clear that parity does not produce degeneration, in fact P transforms a state
into itself up to a sign. Then the degeneration is entirely contained in the other two symmetries.
Let’s consider rotations. Performing a rotation, it is possible to transform the wave function
ψnlml into another one with the same n and l, but different ml. The explicit relation is obtained
using the raising and lowering operators L± = L1 ± iL2: L±|nlml〉 ∝ |nl(ml ± 1)〉. Through
this procedure, for fixed n, it is possible to reach 2l + 1 different eigenstates, but not to jump
to different values of l. Thus, rotational symmetry alone justifies only the degeneration of the
energy levels with common m, in other terms that Eq.(1.10) does not depend on ml. As far as
rotations the remaining degeneracy is accidental.
An analogue method can be pursued with the Laplace-Runge-Lenz vector. In this case too, it is
possible to construct similar raising and lowering operators M± = M1 ± iM2. In particular, it
is sufficient to note that

M+|nll〉 ∝ |n(l + 1)(l + 1)〉, (1.12)

then when M+ acts on eigenkets with the maximum possible value of ml, it raises both the
indeces l and ml (unless l = n − 1). This result is enough to justify the remaining degeneracy.
Indeed using these transformations together with rotation, we can get all the possible eigenstates
at fixed n. Thus, on the basis of symmetry arguments alone, one can deduce that energy levels
must depend only on the principal quantum number n.
We should remark that in this final case the symmetry is not explicit2. Since [H,M i] = 0, M i

are simply the generators of such a symmetry, as Li are the generators of rotations.

2To give the idea, the symmetry group of the hydrogen atom is formally SO(4), that is the analog of the
Lorentz group, but with a Euclidean metric. Hence this is the group of linear transformations that preserve the
quantity dγ2 = w2 + x2 + y2 + z2. The transformations that leave w invariant are the spatial rotations. Instead,
the transformations that leave w2 + (xi)2 invariant are those with generators M i (they are the analog of Lorentz
boosts).
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Chapter 2

Field theory

In order to use the most formal approach in the study of the fine structure, it is important to
develop a theory consistent both with quantum mechanics and special relativity. To do so, the
first step is to understand how the Lorentz symmetry is implemented in field theory, studying
the Lorentz group and its representations. Then it is possible to synthesize these concepts for
spin 1/2 fermions into the Dirac equation.

2.1 Lorentz group and Lorentz algebra

Definition 2.1.1. The Lorentz group O(3, 1) is defined as the group of linear coordinate trans-
formations,

xµ → x′µ = Λµν x
ν

which leave invariant the quantity: ds2 = ηµν x
µxν = t2 − x2 − y2 − z2.

This definition directly implies that the matrix Λ must satisfy:

ηρσ = ηµν Λµρ Λνσ. (2.1)

Then it is straightforward to see that the Lorentz group consists of four disconnected components,
depending on the sign of detΛ and on the sign of the Λ0

0 component. The possibilities are
detΛ = ±1 and Λ0

0 ≥ 1 ∨ Λ0
0 ≤ −1. In the study of the group one can concentrate only

on the component continuously connected with the identity, that is the subgroup of proper1

(detΛ = 1) and orthochronous (Λ0
0 ≥ 1) Lorentz transformations. The other three components

can be obtained from this one through a discrete transformation, such as parity P , time inversion
T and space-time inversion PT . For this reason, every time we mention the Lorentz group we
will refer only to that component.
Let us consider now an infinitesimal transformation

Λµν = δµν + ωµν , (2.2)

therefore Eq.(2.1) gives at the leading order

ωµν = −ωνµ. (2.3)

Thus, the Lorentz group has six parameters, corresponding to three boosts and three rotations.
Having six parameters, the Lorentz group has also six generators. It is convenient to label the
generators as Jµν , with µ, ν antisymmetric indices. Using the exponential map is thus possible
to write a generic element of the group Λ as

Λ = e−
i
2
ωµνJµν . (2.4)

1The subgroup characterized by detΛ = 1 is called proper Lorentz group and it is denoted SO(3, 1).
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In general, a set of objects φi, with i = 1, ..., n, given an arbitrary n-dimensional representation
of the Lorentz group R, transforms under a Lorentz transformation as

φi →
[
e−

i
2
ωµνJ

µν
R

]i
j
φj , (2.5)

then the relation for an infinitesimal transformation is:

δφi → − i
2
ωµν
(
JµνR

)i
j
φj . (2.6)

The form of the generators JµνR depends on the specific representation. Let us consider the
four-vector representation, using Eq.(2.2) and Eq.(2.6), the explicit form for Jµν is given by:

(Jµν)ρσ = i(ηµν δνσ − ηνρ δµσ). (2.7)

Since this representation mixes all four indices, it is irreducible, i.e. it does not admit an invariant
subspace. Now it is possible to compute the Lie algebra of SO(3, 1):

[Jµν , Jρσ] = i(ηνρJµσ − ηµρJνσ − ηνσJµρ + ηµσJνρ). (2.8)

It is important to remark that the Lie algebra of a group is independent on the considered
representation, so this result is completely general.
The Lie algebra can be conveniently rewritten in terms of two spatial vectors,

J i =
1

2
εijkJ jk, Ki = J i0. (2.9)

Their commutation relations are:

[J i, J j ] = iεijkJk, [J i,Kj ] = iεijkKk, [Ki,Kj ] = −iεijkJk. (2.10)

The first relation is the Lie algebra of SU(2), so J has the physical interpretation of an angular
momentum, i.e. the generator of spatial rotations. Instead K is the boost generator and physi-
cally its conservation is connected with the motion of the CM of the system.
Introducing also other two spatial vectors, θi = 1

2ε
ijkωjk and ηi = ωi0, one can verify that a

general Lorentz transformation can be written as:

Λ = exp
{
−iθ · J + iη ·K

}
. (2.11)

2.2 Spinorial representations

In quantum mechanics it is crucial to characterize transformations that preserve transition prob-
abilities. If such transformation is the representation of a group, then that is a symmetry group
for the system. The other essential point is that the transformation2 has to be an isomorphism of
Hilbert spaces, hence it has to be unitary. It is pretty straightforward to find projective represen-
tations, but in general it is non-trivial (or even impossible) to find unitary ones. Representation
theory guarantees the following important result:

Theorem 2.2.1 (Bargmann). Assuming very loose conditions on a given connected group G,
there is a bijective function between projective representations of G and unitary representations
of its universal covering group G̃.

2Here we refer to continuous transformations, in fact there exists a more general result, the Wigner theorem,
for which the operators that preserve transition probabilities are all and only those obtained through canonical
projection on the state space from unitary or anti-unitary projective representations. Since representation have
to preserve group structure for continuous symmetries, the only possibility is thus a unitary representation, but
for discrete representation there is not such constraint.
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Since S̃O(3) = SU(2), the physically relevant group for rotations is not SO(3) but SU(2). By
the definition of universal covering group, SU(2) and SO(3) are homomorphic, hence they have
the same Lie algebra,

[J i, J j ] = iεijkJk, (2.12)

so they are equivalent at the level of infinitesimal transformations.
It is well known that SO(3) representations are labeled by an index j taking integer values
0, 1, 2, . . . . Also SU(2) representations are labeled by an index j, but the latter takes both
integer and half-integer values 0, 1/2, 1, . . . . In both cases, the dimension of the representation
is given by 2j + 1. The representation with j = 1/2 is called spinorial representation, and it
is the fundamental representation of SU(2) since all representations can be obtained as tensor
products of spinors. Spinorial representations have dimension 2 and on them J i = σi

2 , where
σi are the Pauli matrices. In order to study the angular momentum of a quantum system in
a Lorentz invariant framework, it is important to construct a spinorial representation of the
Lorentz group. This possibility is more evident using the formulation of the Lorentz algebra
presented in Eq.(2.10). In fact, defining

J± =
J± iK

2
, (2.13)

the Lorentz algebra can be expressed also as:

[J+,i, J+,j ] = iεijkJ+,k, [J−,i, J−,j ] = iεijkJ−,k, [J+,i, J−,j ] = 0. (2.14)

In this form it is evident that SO(3, 1) has the same algebra of SU(2)× SU(2).
Consequently the representations of the Lorentz algebra can labeled by a pair of indeces (j−, j+),
that take both integer and half-integer values. The representation dimension will be (2j− +
1)(2j+ + 1). Since J = J+ + J−, using the addition momenta rule of quantum mechanics, the
possible spin states are in integer steps in the interval: |j+ − j−| ≤ j ≤ j+ + j−.
This shows that there are two non-equivalent spinorial representations, denoted (1

2
,0) and (0, 1

2
).

Overall, we refer to the objects belonging to these representations as Weyl spinors and we denote
them

ψL ∈
(

1

2
, 0

)
, ψR ∈

(
0,

1

2

)
. (2.15)

ψL and ψR are respectively named left-handed Weyl spinor and right-handed Weyl spinor.
The non-equivalence of these representation is evident computing directly the generators and
then the transformation relations in both cases, exploting Eqs.(2.13) and (2.11):

ψL → ΛLψL = exp
{

(−iθ − η) · σ
2

}
ψL, ψR → ΛRψR = exp

{
(−iθ + η) · σ

2

}
ψR. (2.16)

2.3 Dirac equation

UsingWeyl spinors, one can define consequently Weyl fields in order to describe spin 1/2 particles.
For example, a left-handed Weyl field ψL(x) transforms under xµ → Λµν xν as ψL(x)→ ΛLψL(x),
with ΛL given in Eq.(2.16). This is actually not sufficient for our scope. Since our final goal is
to study the Hydrogen structure, we want to implement a field theory that is invariant under
Lorentz transformations and that preserves parity. In fact the electromagnetic interaction does
not experimentally violate parity. Such a theory cannot be developed only through Weyl fields,
indeed, under a parity transformation (t,x) → (t,−x), K transforms as a vector K → −K
instead J transforms as a pseudovector J → J . Then from Eq.(2.13) it is evident that (j−, j+)→
(j+, j−), so a spinorial representation of the Lorentz group is not a representation for a parity
transformation, unless j− = j+. For these reasons, we define a Dirac field (in chiral basis)

Ψ =

(
ψL
ψR

)
. (2.17)
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The latter has the suitable properties under Lorentz and parity transformations:

Ψ→
(

ΛL 0
0 ΛR

)
Ψ(x), Ψ→

(
0 1
1 0

)
Ψ(x′) (2.18)

where ΛL and ΛR are given in Eq.(2.16) and the coordinate change under parity is denoted
xµ → x′µ. This is a reducible representation since Ψ ∈ (1

2
,0)⊕ (0, 1

2
).

Now it is possible to write the Dirac Lagrangian, that is the Lagrangian invariant both under
Lorentz and parity transformations, built with both left-handed and right-handed Weyl spinors.
The possible Lorentz scalars that can be constructed with the latter are ψ†RψL and ψ†LψR, whereas
the possible Lorentz invariants linear in the field derivatives are ψ†Lσ̄

µ∂µψL and ψ†Rσ
µ∂µψR. Then

the parity invariance constraint implies:

LD = iψ†Lσ̄
µ∂µψL + iψ†Rσ

µ∂µψR −m(ψ†RψL + ψ†LψR), (2.19)

where the i factors and the real parameter m are justified retrospectively.
In order to obtain the equation of motion, it is necessary to solve the Euler-Lagrange equations,

∂L
∂φi
− ∂µ

∂L
∂(∂µφi)

= 0, (2.20)

for LD, considering ψL, ψ∗L, ψR and ψ∗R independent. Varying3 with respect to ψ∗L and ψ∗R one
gets:

σ̄µi∂µψL = mψR, σµi∂µψR = mψL. (2.21)

Applying the operator σµi∂µ to the first equation, and exploiting the second and the identity
σµσ̄ν + σν σ̄µ = 2ηµν , we get (

� +m2
)
ψL = 0, (2.22)

and an analogous equation4 holds for ψR.
The Eqs.(2.21) can be unified in a single equation in term of a Dirac field

(iγµ∂µ −m)Ψ = 0, (2.23)

where γµ depends on the chosen representation. The most convenient in the following is the
standard representation, instead of the chiral one defined in the previous section, in which

Ψ =
1√
2

(
ψR + ψL
ψR − ψL

)
=

(
φ
χ

)
, γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
. (2.24)

2.4 Relativistic wave equation

In order to use the Dirac equation to describe the electron in the hydrogen atom, we have to
modify Eq.(2.23) to take into account the electromagnetic field. To do so, the idea is to extend
the minimal substitution carried out in analytical mechanics, when there is a particle of charge
q in an electromagnetic field. In particular, it consists in

p→ p+ qA, H(p)→ H(p) + qϕ, (2.25)

where ϕ andA are respectively the scalar and the vector potentials. After energy and momentum
quantization, i.e.

H → i
∂

∂t
, p→ −i∇, (2.26)

3The variation with respect to ψL and ψR returns the complex conjugate of the same equations.
4From this equation, it is straightforward to understand the physical meaning ofm. A solution of

(
�+m2

)
ϕ = 0

is a plane wave ϕ = ϕ0e
−ip·x. Substituting this solution into the equation, one obtains pµpµ = m2. Thus m is

the mass of the particle.
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the natural analogue of Eq.(2.25) is

i∂µ → i∂µ + qAµ. (2.27)

This procedure is called minimal coupling of the Dirac field to the electromagnetic field. It is
convenient to define Dµ = ∂µ + iqAµ. In terms of the latter, the equation of motion of a spin
1/2 charged fermion in an electromagnetic field is:

(iγµDµ −m)Ψ = 0. (2.28)

In the non-relativistic limit, the latter equation reduces to a Shröedinger equation. This is possi-
ble after the so called first quantization, i.e. after promoting the classical field to a wave function.
In the case of the hydrogen atom, Aµ = (A0, 0) with A0 = − e

4πr . Then in the standard repre-
sentation (given in Eq.(2.24)) Eq.(2.28) becomes:

(i∂0 − V −m)φ = −iσ ·∇χ, (2.29)

(i∂0 − V +m)χ = −iσ ·∇φ. (2.30)

We look for positive energy solutions: φ(t,x) = e−iEtφ(x) and χ(t,x) = e−iEtχ(x). Using
Eq.(2.26) and defining ε = E −m , for the stationary solutions we have

(ε− V )φ = σ · pχ, (2.31)

(2m+ ε− V )χ = σ · pφ. (2.32)

To take the non-relativistic limit, we have to expand the Dirac equation in powers of p2/m2,
keeping corrections O(p2/m2) in both the kinetic energy and the potential. This means that we
keep terms up to O(p4/m3) and O(V p2/m2). From Eq.(2.32)

χ =
1

2m

(
1 +

ε− V
2m

)−1
σ · pφ ' 1

2m

(
1− ε− V

2m

)
σ · pφ. (2.33)

Having been promoted to a wave function, Ψ must be normalized. In order to have a direct
analogy with the Schröedinger equation, let us define the wave function in terms of a spinor φS :∫

V
d3xΨ†Ψ =

∫
V
d3x [|φ|2 + |χ|2] =:

∫
V
d3x |φS |2. (2.34)

Substituting Eq.(2.33) in the latter and keeping only the first order correction, one gets∫
V
d3x

[
|φ|2 +

1

4m2
(σ ·∇φ∗)(σ ·∇φ)

]
=

∫
V
d3x

[
|φ|2 − 1

4m2
φ∗(σ ·∇)(σ ·∇)φ

]
, (2.35)

where we have exploited (σ ·∇)(φ∗(σ ·∇φ)) = (σ ·∇φ∗)(σ ·∇φ) + φ∗(σ ·∇)(σ ·∇)φ, and the
fact that the contribution to the integral of the gradient vanishes in the limit V →∞. Using the
identity σiσj = δij+iεijkσk, we have also (σ·∇)(σ·∇) = (σi∂i)(σj∂j) = ∂i∂i+i∂i∂jεijkσk =∇2.
Then, ∫

V
d3x |φS |2 =

∫
V
d3x

[
|φ|2 − 1

4m2
φ∗∇2φ

]
=

∫
V
d3xφ∗

(
1 +

p2

4m2

)
φ. (2.36)

Thus we have

φS =

(
1 +

p2

8m2
+O

(
p4

m4

))
φ =⇒ φ =

(
1− p2

8m2
+O

(
p4

m4

))
φS . (2.37)

In order to obtain a Shröedinger-like equation, we also have to express χ in terms of φS . Keeping
as always only first order corrections

χ ' 1

2m

(
1− ε− V

2m

)
σ · p

(
1− p2

8m2

)
φS '

1

2m

[
σ · p

(
1− p2

8m2

)
− ε− V

2m
σ · p

]
φS . (2.38)
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Plugging Eqs.(2.37) and (2.38) into Eq.(2.31), and noting that p and V do not commute:[
ε− p2

2m
− V + ε

p2

8m2
+

p4

16m3
+
V p2

8m2
− 1

4m2
(σ · p)V (σ · p)

]
φS = 0. (2.39)

At the lowest order, we recover, as expected, the Schröedinger equation of the ideal hydrogen
atom (Eq.(1.8)), that in compact form reads εφS = ( p

2

2m + V )φS .
Now it is necessary to rearrange Eq.(2.39), in order to obtain corrections that have a more evident
physical meaning. Firstly, the term ε p

2

8m2 can be rewritten as

ε
p2

8m2
=

p2

8m2
ε ' p2

8m2

(
p2

2m
+ V

)
. (2.40)

The difference between a substitution ε→ p2

2m +V to the right or to the left of p2

8m2 is O(p6/m4),
that is negligible. Eq.(2.39) becomes

εφS =

[
p2

2m
+ V − p4

8m3
+

1

4m2

(
(σ · p)V (σ · p)− 1

2
(p2V + V p2)

)]
φS . (2.41)

Using components, the term involving the potential V can be rewritten as

σiσjpiV pj − 1

2
(p2V + V p2) = piV pi + iεijkσkpiV pj − 1

2
(p2V + V p2), (2.42)

where we have used again the identity σiσj = δij + iεijkσk.
Besides, since [pi, V ] = −i∂iV = ieEi, with E the electric field, then

piV pi = (V pi + [pi, V ])pi = V p2 + ieE · p. (2.43)

Thus Eq.(2.42) can be further developed

(2.42) = V p2 + ieE · p− 1

2
p2V + iεijkσk([pi, V ] + V pi)pj

= ieE · p+
1

2
(V p2 − p2V )− eεijkEipjσk

= ie(E · p− p ·E)− eεijkEipjσk = −e
2

(∇ ·E)− e(E × p) · σ.

(2.44)

Plugging this result in Eq.(2.41)

εφS =

[
p2

2m
+ V − p4

8m3
− e

4m2
σ · (E × p)− e

8m2
(∇ ·E)

]
φS . (2.45)

Since the potential is purely radial, then eE = −∇V = −rr
dV
dr , so

− e

4m2
σ · (E × p) =

1

2m2

1

r

dV

dr
S · (r × p) =

1

2m2

1

r

dV

dr
S ·L, (2.46)

where we have recognized the spin angular momentum S = σ
2 and the orbital angular momentum

L = r × p. Finally, introducing the explicit relation for the potential V (r) = −α
r , the definitive

equation for φS is:

εφS =

[
p2

2m
+ V − p4

8m3
+

α

2m2r3
S ·L+

πα

2m2
δ(3)(x)

]
φS , (2.47)

where we have used the well known fact that ∇2 1
r2

= −4πδ(3)(x).
Eq.(2.47) shows explicitly, that in the non-relativistic limit the Dirac equation reduces to a
Schröedinger equation for an Hamiltonian H = Hi + H ′, with Hi the Hamiltonian of the ideal
hydrogen atom and H ′ the perturbation. In particular H ′ = HR + HSO + HD, i.e. the pertur-
bation is given by three distinct effects, the relativistic correction, the spin-orbit coupling and
the Darwin term. Their physical meaning and the degeneracy breaking they imply are discussed
in the following. All the carried out calculations are pretty general, since we have used the fact
that the potential is purely radial and its analytic expression only in the final steps.
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Chapter 3

Fine and hyperfine splitting

3.1 Degeneracy breaking

Actually, the hydrogen atom has much more structure than as presented in the first chapter,
where we have neglected many effects. The more significant are those included in the so-called
fine structure. They lead to an energy correction which is a factor α2 smaller than the Bohr
energies in Eq.(1.10). Firstly, the electron is a spin 1/2 fermion, then, besides the orbital angular
momentum L, one has to take into account the spin angular momentum S. Indeed we have
considered this fact in the derivation of the relativistic wave equation. Now, let us analyze the
three fine structure corrections to the hydrogen Hamiltonian obtained in Eq.(2.47), in order to
explain their physical meaning and discuss if and how they break the energy degeneracy of the
ideal case. They are

HR = − p4

8m3
, HSO =

α

2m2r3
S ·L, HD =

πα

2m2
δ(3)(x), (3.1)

respectively the relativistic correction, the spin-orbit coupling and the Darwin term.
HR is due to the fact that the electron orbits around the proton with speed v ' α, thus relativis-
tic corrections have to be taken into account to have more accurate predictions. HR commutes
with L2, L3 and P , but not with M2 and M i. Therefore, there is a breaking of the degeneracy
in l, since it was justified by the conservation of the Laplace-Runge-Lenz vector.
HSO has mainly a dynamical motivation. In the electron reference frame, the proton is not at
rest and a charge in motion generates a nonzero magnetic field. The electron feels this magnetic
field that interacts with its magnetic dipole moment µ. This interaction has strong consequences
in the symmetry of the system. Indeed HSO commutes only with L2 and P , but not with Li,M2

and M i. Then, also the invariance under spatial rotation in broken. So, in order to apply the
degenerate perturbation theory, one needs to find a new basis in which the perturbations are
diagonal. On the other hand, a new symmetry emerges: the invariance under SU(2) rotations.
Indeed, J2 = (L + S)2 and J3 commute with HSO and, in general, with each contribution to
the total Hamiltonian. In particular, n, j, l, s,mj are suitable quantum numbers for the problem.
Since for a fermion s = 1/2 is fixed and mj does not appear explicitly in calculations, we will
denote this basis as |njl〉. The SU(2) rotational symmetry, through the same arguments used
in the SO(3) case, implies a complete degeneracy in mj .
Finally, since a particle cannot be localized more precisely than the Heisenberg uncertainty prin-
ciple predicts, then the electron feels the proton potential averaged over a certain region. This
effect is contained in HD. Being proportional to a Dirac delta, the first order correction of HD

is nonzero only if the wave-function is nonzero at the origin, that is only if l = 0. Also HD

commutes with P , so it is the only symmetry of the ideal case that is preserved.
The cumulative effects of these corrections lead to energy levels dependent on n and j. Thus,
besides the degeneracy in mj , there is a more hidden one. Indeed, states with fixed n and j,
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but different l, are still degenerate. This suggests the presence of another not evident conserved
quantity, which generates a symmetry transformation for the system, as M in the ideal case.

3.2 Fine structure corrections

In this section, we will compute explicitly the first order corrections to the energy levels of the
hydrogen atom using the perturbation theory. The unperturbed eigenkets are denoted |njl〉.

3.2.1 Relativistic correction HR

In this case, we have to compute 〈njl|− p4

8m |njl〉. The Schröedinger equation of the unperturbed
system reads ( p

2

2m + V )|njl〉 = E(n)|njl〉. Then using Eqs.(1.10) and (1.1):

p2

2m
|njl〉 =

(
− mα2

2n2
+
α

r

)
|njl〉. (3.2)

This observation allows to simplify the calculation:

〈njl| p
4

8m
|njl〉 =

1

2m
〈njl|

(
−mα

2

2n2
+
α

r

)2

|njl〉 =
mα4

8n4
+
α2

2m
〈njl| 1

r2
|njl〉+ α3

4n2
〈njl|1

r
|njl〉. (3.3)

At this step, the quickest way to obtain the expected values of 1/r and 1/r2 is exploiting a rather
simple but extremely useful result, the Feynman-Hellman theorem.

Theorem 3.2.1 (Feynman-Hellman). Consider a quantum system with Hamiltonian H(λ),
where λ is a generic parameter. Let En(λ) and ψn(λ) be respectively the eigenvalues and eigen-
functions of H(λ). Then, assuming that the ψn form a basis in which H(λ) is diagonal,

∂En
∂λ

= 〈ψn|
∂H

∂λ
|ψn〉.

Proof. Let H(λ0) be an unperturbed Hamiltonian. If we consider an infinitesimal perturbing
Hamiltonian H ′ then, H ′ = H(λ0 + dλ) −H(λ0) = ∂H

∂λ

∣∣
λ=λ0

dλ. From perturbation theory, the
energy correction is dEn = 〈ψn|∂H∂λ |ψn〉dλ =⇒ ∂En

∂λ = 〈ψn|∂H∂λ |ψn〉.

Let’s apply the latter result to the unperturbed Hamiltonian of the hydrogen atom radial wave
function with the Bohr energies (Eq.(1.10)):

Hr =
1

2m

(
d2

dr2
+
l(l + 1)

r2

)
− α

r
, En = − mα2

2(N + l)2
, (3.4)

where the energy levels are rewritten in the most convenient way for subsequent calculations and
N is a fixed integer number (for which of course n = N + l).
Setting λ = α, we get:

∂En
∂α

= 〈njl|∂Hr

∂α
|njl〉 =⇒ 〈njl|1

r
|njl〉 =

mα

n2
. (3.5)

Setting λ = l, we obtain:

∂En
∂l

= 〈njl|∂Hr

∂l
|njl〉 =⇒ 〈njl| 1

r2
|njl〉 = − m2α2

n3(l + 1
2)
. (3.6)

Plugging Eqs.(3.5) and (3.6) in Eq.(3.3) and taking into account an extra minus sign, the rela-
tivistic correction finally is

∆ER =
mα4

2

(
− 3

4n2
+

1

n3(l + 1
2)

)
. (3.7)

As explained in Sec.(3.1), the relativistic contribution breaks only the degeneracy in l.
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3.2.2 Spin-orbit coupling HSO

In this case, the expected value to be computed is 〈njl| α
2m2r3

S ·L|njl〉. It is convenient to rewrite
S ·L as 1

2(J2 −L2 − S2). Then,

α

4m2
〈njl|(J

2 −L2 − S2)

r3
|njl〉 =

α[j(j + 1)− l(l + 1)− 3
4 ]

4m2
〈njl| 1

r3
|njl〉. (3.8)

In order to evaluate the expectation of 1/r3, one can use the Kramers’ relation:

s+ 1

n2
〈rs〉 − (2s+ 1)

mα
〈rs−1〉+

s

4m2α2
[(2l + 1)2 − s2]〈rs−2〉 = 0, (3.9)

where s is an integer and in the expected values the basis kets are implicit.
Setting s = −1 and exploiting Eq.(3.6),

1

mα
〈njl| 1

r2
|njl〉 − l(l + 1)

m2α2
〈njl| 1

r3
|njl〉 = 0 =⇒ 〈njl| 1

r3
|njl〉 =

m3α3

n3l(l + 1
2)(l + 1)

. (3.10)

The fact that the previous equation is not defined for l = 0 is not a problem. Indeed from
Eq.(3.8) it is evident that in that case 〈njl|S ·L|njl〉 = 0. Thus, plugging Eq.(3.10) in Eq.(3.8),
the correction due to the spin-orbit coupling is:

∆ESO = (1− δl,0)
mα4

4n3l(l + 1
2)(l + 1)

[
j(j + 1)− l(l + 1)− 3

4

]
, (3.11)

where δl,0 is a Kronecker delta.

3.2.3 Darwin term HD

We have to compute 〈njl| πα
2m2 δ

(3)(x)|njl〉. In this case it is possible to go through the integral,
since it involves a Dirac delta,

〈njl| πα
2m2

δ(3)(x)|njl〉 =
πα

2m2

∫
d3x|ψnjl(x)|2δ(3)(x) =

πα

2m2
|ψnjl(0)|2. (3.12)

The states that are nonzero at the origin are all and only those characterized by l = 0. Then
using Eq.(1.9), one gets:

|ψnjl(0)|2 =
m3α3

πn3
δl,0. (3.13)

These results imply that the Darwin term correction is:

∆ED =
mα4

2n3
δl,0. (3.14)

3.2.4 Overall fine correction

Adding up all the computed corrections (Eqs.(3.7), (3.11) and (3.14)), we obtain the total fine
structure correction ∆EFS :

∆EFS = −mα
4

2n3

[
1

j + 1
2

− 3

4n

]
. (3.15)

It is remarkable that there is no separate dependence on l. The spin-orbit coupling and the
Darwin term together produce a shift, which is smooth in l.
Fig.(3.1) can be compared with Fig.(1.1), we see that all the states are negatively shifted and as
anticipated there remains some degeneracy.
Since the electron has a spin s = 1/2, then using the angular momenta addition rule |l− 1

2 | ≤ j ≤
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Figure 3.1: Fine structure energy levels for hydrogen. One can appreciate the presence of much less
degeneracy at fixed principal quantum number n.

l + 1
2 . Except for the case of maximal value of j, there is the possibility to choose two different

values for l that return the same j at fixed n. For this reason, Fig.(3.1) exhibits that pattern.
Let us point out that it would not be physically relevant to compute further order corrections.
Indeed, starting from the second order of perturbation, the quantum nature of the electromag-
netic field and the presence of the proton spin are significant. Taking into account these effects,
even more structure emerges: the Lamb shift and the hyperfine structure. These effects are three
orders of magnitude smaller than fine splitting. The detailed study of these effects needs more
advanced tools than those presented in this work, for this reason in the following section we will
present only the results, that are crucial for astronomical applications.

3.3 Hyperfine splitting

3.3.1 Lamb shift

The Lamb shift is purely due to the quantum nature of the electromagnetic field, then the proper
framework in which it is justified is QED. Just qualitatively, the physical origin of this effect
has three contributions. First, the spontaneous pair production in the vicinity of the nucleus,
that produces a partial screening of the nuclear charge. Secondly, the interaction between the
electron and the vacuum fluctuations and finally the quantum modification of the magnetic dipole
moment. Precise computations lead to:

∆ELamb =


α5m

4n3
k(n, 0) for l = 0

α5m

4n3
[
k(n, l)± 1

π(j + 1
2)(l + 1

2)

]
for l 6= 0 ∧ j = l ± 1

2
.

(3.16)

k(n, l) is a real number depending on n and l. In general, it picks very small values (less than
0.05), except in the case l = 0 in which it is about 10 and the correction is about 10% of the
fine structure one. Depending on l, Lamb shift removes the degeneracy between states with the
same n and j, but different l.
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3.3.2 Hyperfine correction

The hyperfine structure is entirely due to the proton spin. It interacts with both the electron
angular momentum and spin, producing the proton spin-orbit coupling and the spin-spin cou-
pling. In order to obtain the hyperfine perturbing Hamiltonian, one can proceed with a classical
analogy, even if it is not a formal and systematic approach. The proton spin-orbit coupling
HPSO, in analogy with the previously calculated one, is:

HPSO =
gpα

2

mmpr3
L · Sp, (3.17)

where gp1 is the proton g-factor, m the electron mass, mp the proton mass and Sp the proton
spin. On the other hand, the spin-spin coupling HSS can be evaluated as HSS = −µe ·Bp, where
Bp is the magnetic field due to the proton’s magnetic dipole moment and µe is the electron’s
magnetic dipole moment. From classical electrodynamics2 we have:

µp =
gpe

2mp
Sp, µp = − e

m
Se, Bp =

3(µp · r̂)r̂ − µp
4πr3

+
2

3
µpδ

(3)(x). (3.18)

Plugging these equations in the relation for HSS , we get:

HSS =
gpα

2mmpr3
[3(Sp · r̂)(Se · r̂)− Sp · Se] +

gpe
2

3mmp
Sp · Seδ(3)(x). (3.19)

Overall the hyperfine perturbing Hamiltonian isHHS = HPSO+HSS . Using perturbation theory,
it is possible to compute explicitly the energy correction ∆EHS obtaining,

∆EHS =

(
m

mp

)
α4mgp

2n3
±1

(f + 1
2)(l + 1

2)
for f = j ± 1

2
, (3.20)

where we have denoted the quantum number of the total angular momentum of the system as
f . Thus, from Eq.(3.20), it is clear that the hyperfine correction splits each energy level into a
singlet and a triplet.

3.3.3 21cm line

The study of the hydrogen hyperfine structure has been extremely important, particularly for
its implications in astrophysics. The transition between the fundamental state of singlet and the
one of triplet produce a photon in the radiowave spectrum, with a wavelenght of nearly 21cm.
This radiation penetrates interstellar clouds for very large distances and had a key role in the
discovery of dark matter, as we will discuss in the next chapter.
Let’s analyze in greater detail the transition

1S1/2,triplet −→ 1S1/2,singlet.

Since we are only interested in the energy of the emitted photon, we can neglect the Lamb shift
that does not affect the energy difference between the two states. Thus, the splitting is due
only to proton spin-orbit coupling and to the spin-spin coupling (see Subsec.3.3.2). The photon
energy Eγ is simply

Eγ = ∆EHS,triplet −∆EHS,singlet =
4gpα

4m2

3mp
. (3.21)

Thus the wavelength of the photon is

λ =
2π

Eγ
' 21.1cm. (3.22)

1In the previous derivation of the spin-orbit coupling we have not specified explicitly ge, i.e. the electron
g-factor, indeed it is implicitly predicted in the Dirac equation that ge = 2. For the proton the measured value is
gp ' 5.59, this is an indication that the proton is a composite particle.

2Except for the introduction of the g-factors.
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Chapter 4

Dark matter evidences from
observational astronomy

As we have just mentioned, the study of hydrogen structure has been crucial in finding consistent
dark matter (DM) evidences in the 70s. This chapter aims at reviewing the principal astronomical
observations that led to such a discovery and at pointing out the essential properties of DM.

4.1 Pioneering Zwicky’s work

Since the nineteenth century the mechanism of inferring a mass distribution from the dynamics,
dictated by the gravitational interaction, of a nearby system has been used to discover new
astronomical objects. The first who used the latter idea to point out the presence of great
amount of non-luminous matter in the universe was Fritz Zwicky. In 1933, he studied the
redshift of several galaxy clusters, i.e. systems of gravitationally bounded galaxies, and noticed
a large scatter in the apparent velocities of eight galaxies in the Coma Cluster. In particular,
he applied the virial theorem in order to estimate the average speed of a galaxy in the cluster.
Between the theoretical estimate he obtained and the experimental one there is a gap of an order
of magnitude. In his further studies, he calculated the mass-to-light ratio of the cluster too. Also
in this case he found a value at least one order of magnitude greater than the typical values.
In order to fix these discrepancies, Zwicky hypothesized the existence of a great amount of DM
in the cluster that permitted to maintain the system gravitationally bounded and provided the
mass to justify such a large mass-to-light ratio. Nevertheless, at that time, astronomers thought
that DM was likely to consist of faint stars and other invisible inter-galactic material, so these
observations were not perceived as problematic yet.

4.2 Galactic rotation curves

The rotation curves of spiral galaxies, i.e. the velocity profile of the stars and gas in a galaxy as
a function of their distance from the galactic center, were historically the second relevant proof
of the presence of a huge amount of non-luminous matter in the universe.
The study of these curves increased in the 50s, when Hendrik C. van de Hulst predicted the exis-
tence of a 21 cm hyperfine line of neutral interstellar hydrogen. This radio frequency permitted
to map the distribution of interstellar hydrogen, called HI region, that is a component of the
interstellar medium that was previously invisible, since these regions do not emit in other observa-
tional widows. The advent of radio astronomy was revolutionary because radio waves, compared
with other wavelengths, are much less affected by adsorption in the interstellar medium, and
propagate to a very large distance. Atomic hydrogen has also two crucial properties, first it is
cold, i.e. the ratio of its random kinetic energy and its ordered kinetic energy is much smaller
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than one, then its dynamics allow to perform accurate measurements of the gravitational field.
Second, the HI region often extends well beyond the optical disk, permitting to obtain data at
larger radii.
In the 70s, Kent Ford and Vera Rubin collected very precise optical data for the M31 rotation
curve, that were then compared with subsequent radio measurements performed by Ford and
Whitehurst. Even if M31 is a spiral galaxy, in order to have a theoretical estimate for the velocity
profile at very small and very large radii, it is possible to use Gauss’ law as if the galaxy were
spherical. In such a case:

v(r) =

√
GM(r)

r
, (4.1)

where M(r) is the radial mass distribution, v(r) is the velocity profile and r is the distance from
the galactic centre. The luminous part of M31 has a radius of about rl ' 5− 10 kpc, meanwhile
the data for galactic rotation curves extended up to 24 kpc1. Thus, the theoretical estimate is:

v(r) ∝

{
r r � rl

r−1/2 r � rl .
(4.2)

Indeed, assuming that all the mass is contained within rl and that for r � rl the mass has a
uniform density, then M(r) ∝ r3, so Eq.(4.1) implies v(r � rl) ∝ r. On the other hand, for
r � rl, M(r) is a constant, hence v(r � rl) ∝ r−1/2.
In contrast to this prediction, it was observed, both from photometry and radio observations, an
approximately flat rotation curve at large galactocentric distances, i.e. for r > rl.

Figure 4.1: M31 rotation curve. The superposition of optical (triangles) and radio (dots) data are showed.
The cumulative mass is also reported. As expected from Eq.(4.3), it is approximatively proportional to
the radial distance.

By Eq.(4.1), the flattening implies that the mass distribution in the outer regions should be
M(r) ∝ r. So one can infer that the density distribution of DM is:

ρDM ∝
1

r2
, (4.3)

that is called isothermal mass distribution. It is relevant to notice the implicit assumption
that DM has spherical symmetry. Indeed, as we cannot observe it, DM cannot have significant
interaction with baryonic matter. Besides, it is likely that DM has at most a very feeble self-
interaction, so it is not dissipative and its dynamics is governed primarily by gravity. This
argument allows to approximate the DM distribution with a spherical halo around the galaxy.
The Eq.(4.3) is also supported by more recent numerical simulations, in particular we simulate

1The above mentioned radio measurements reach 30 kpc, while current data go beyond 200 kpc.
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the process of galaxy formation including a gas of collisionless DM particles. The DM halo, for
spiral galaxies, turns out to be spherical as predicted with respect to the previous argument.
These simulations also provide more precise relations for the radial density respect to Eq.(4.3).
Two common distributions are the Navarro-Frenk-White profile ρNFWDM and the Einasto one ρEDM ,

ρNFWDM (r) =
ρn

( r
rn

)(1 + r
rn

)2
, ρEDM = ρe exp

[
− 2

γ

((
r

re

)γ
− 1

)]
, (4.4)

where rj and ρj are parameters depending on the particular galaxy and γ ' 0.17 is a fit parameter
of the Einasto profile.

Figure 4.2: Results from the analysis of the
five galaxies, M33, NGC2403, IC342, M101 and
NGC6946, by Rogstad and Shostak. R80 is the
radius containing 80% of the HI region.

Right after the work by Rubin and Ford, Rogstad
and Shostak performed an analysis of the ro-
tation curves of five galaxies exploiting the HI
observations. The idea of their work was to
compare the surface density of neutral hydro-
gen in each galaxy with the corresponding ro-
tation curve. In the first case, they measured
the intensity of the 21cm line, whereas in the
second case its Doppler shift. The comparison
shows that the flattening of the rotation curve
is present far beyond the radius at which the HI
density is strongly decreasing. The results are
presented in Fig.(4.2). In the same years a lot
of rotation curves of spiral galaxies were mea-
sured and all presented the same trend. These
results convinced the scientific community that
large amounts of DM were present in the outer re-
gions of galaxies. Nowadays, thanks to the tech-
nology development, we have rotation curves up
to 200kpc. In order to build proper detectors
for DM particles, the study of the rotation curve
of the Milky Way has been particularly intensi-
fied, since it is important to quantify the amount
of DM present in our galaxy. The task of re-
constructing the rotation curve of our galaxy is
particularly difficult, since we are inside the sys-
tem that we want to study. Some recent results

(2015) obtained by Iocco et al. are reported in Fig.(4.3). These measurements confirm that the
DM halo extends at least tens of kiloparsec more than the galactic disk, indeed in the case of
the Milky Way the galactic disk has a radius of approximately 16 kpc.
The fact that all the galaxy rotation curves exhibit flat rotation curves at large radii requires
fine-tuning between the DM halo and the galactic disk. The unknown mechanism that ensures
such a fine-tuning is called conspiracy.
One important point has to be emphasized: it is quite reasonable that at galactic scale the
stars, and thus galactic rotation curves, are adequate tracers for DM. In fact, they are in first
approximation collisionless and their interactions are governed solely by gravity, as should be for
DM as far as we know so far. In order to verify this fact, one can evaluate the mean free time
τ for a star in a galaxy, e.g. the Milky Way. It can be obtained as the mean free path λ over
the typical velocity of a star v. In particular, the Milky Way has the following characterizing
properties:

V ' 0.2Tpc3 , N ' 1011 , v = 50 km/s , 〈R?〉 ' R� , (4.5)

20



Figure 4.3: Milky Way rotation curve observations. The data obtained from gas kinematics, star kine-
matics and masers respectively are drawn with different colors. R0 is the approximate radial position of
the Solar system in the Milky Way and v0 is its circular velocity around the center of the galaxy.

where V indicates its volume, N its number of stars, v the typical star velocity, and 〈R?〉 the
average radius of a single star. The mean free path is by definition λ = N

V σ , with σ the cross
section of the interaction that in this case is given by σ ' π〈R?〉2. Therefore, plugging in the
values (4.5), one gets:

τ ' N

πV v〈R?〉2
' 1021 yr . (4.6)

This results is far bigger than the lifespan of the Universe, so the not collisionality hypothesis is
satisfied.

4.3 From mass distribution to velocity distribution

Using the results presented in the previous section, a natural step forward in characterizing
DM is understanding whether it is relativistic or not and its velocity distribution. For the sake
of simplicity we will consider Eq.(4.3) as the mass distribution ρ(r) of the DM halo, assumed
spherical as before. In order to estimate the mean velocity 〈v〉 of the DM in the halo, let us
consider experimental data from the Milky Way. The estimated mass of its halo isMh ' 1012M�,
whereas the estimated radius of the halo is Rh ' 100 kpc. Applying the virial theorem, the mean
velocity can be evaluated as

〈v〉 =

√
GMh

Rh
' 200 km/s. (4.7)

Although it is a rough estimate, it tells us that DM is non-relativistic. This result is useful both
in studying the velocity distribution of the halo and the particle physics candidates for DM.
Since DM is collisionless and non-relativistic, the one-particle distribution function f(x,v, t)
satisfies the collisionless Boltzmann equation

d

dt
f(x,v, t) =

∂f

∂t
+ v

∂f

∂x
+ v̇

∂f

∂v
= 0, (4.8)

i.e. f(x,v, t) is conserved over time. Let us focus on steady state solutions, i.e. those satisfying
∂f
∂t = 0. In this case, a general theorem holds:

Theorem 4.3.1 (Jeans). Any steady state solution of the collisionless Boltzmann equation can
only be function of integrals of motion of the system.

21



Conversely, from the definition of integral of motion, any function of such integrals is a solution
to Eq.(4.8). Requiring an additional reasonable condition, i.e. the velocity dispersion tensor of
the system 〈vivj〉− 〈vi〉〈vj〉 is isotropic, i.e. it is a multiple of the identity, then f = f(E), where
E is the total energy of the system. E is certainly a integral of motion, indeed the system is
non-dissipative. In the standard thermodynamic limit, all the relevant integrals are exponentials
of a dimensionless energy, so we expect that f has this form. For this reason, let us consider
the distribution f(E) ∝ exp(− E

σ2 ), where E is the energy per unit mass and σ is the velocity
dispersion. Consequently, for the mass distribution we have

ρ(r) ∝
∫ ∞
0

dv v2f(E) =

∫ ∞
0

dv v2 exp

(
− v2/2 + V (r)

σ2

)
∝ exp

(
− V (r)

σ2

)
, (4.9)

where V (r) is the gravitational potential and we have used the known fact that
∫∞
0 dxx2e−x

2

converges. In order to obtain an explicit relation for ρ(r), we exploit the Poisson equation for the
gravitational field ∇2V (r) = 4πGρ(r). Rewriting the Laplace operator in spherical coordinates,

1

r2
d

dr

(
r2
d log ρ(r)

dr

)
=

4πG

σ2
ρ(r) =⇒ ρ(r) =

σ2

2πGr2
(4.10)

Thus, for the velocity distribution we have

f(v) ∝ exp

(
− 3v2

2σ2

)
, (4.11)

where we have used the virial theorem. Then, the initial ansatz on the distribution function was
right, a Maxwellian velocity distribution implies an isothermal mass distribution, that is what
we wanted to reproduce. Both the mass and velocity distributions obtained are proportional to
those of a self-gravitating isothermal gas sphere.

Figure 4.4: Velocity distribution of the Milky Way. In red it is represented the distribution obtained
through simulation, in light green its the standard deviation, in dark green the maximum possible range
and in dotted black the Maxwell-Boltzmann fit.

Even if the model developed following the initial assumptions explains effectively the qualitative
behavior of the system, as we can see from Fig.(4.4), it is important to clarify the limits of
those hypothesis. First, Eq.(4.10) implies an infinitely extended and massive DM halo, that is
absurd. Indeed, we expect that there exists a radius at which rotation curves are no longer flat.
Secondly, the steady state assumption excludes all the collision effects, such as galaxy merging.
The impact of these two effects explain, for instance, the presence of clumps and a high-velocity
tail in the results of the simulations presented in Fig.(4.4). Primarily for these two reasons, the
reference velocity distribution for our galaxy is a Mawellian truncated at the escape velocity of
the Milky Way.
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Conclusion

The study of hydrogen atom has been important in modern physics for many reasons. Indeed,
this is one of the few physically relevant systems that at an ideal level can be solved exactly. The
presence of symmetries allows the clear understanding of the degeneration of the energy levels
and simplifies calculations. In order to have a systematic way to study this system beyond the
ideal case, one has to build a theory that is consistent with both quantum mechanics and special
relativity. Such a theory for 1/2 spin fermions is synthesized in the Dirac equation. In this way it
is possible to take into account the fine structure terms and to compute the energy corrections.
Considering further effects, i.e. the second quantization and the proton spin couplings, in a
systematic way is more involved. The result of the study of these contributions allows to analyze
hyperfine transitions of the hydrogen that are fundamental in radio astronomy.
This thesis can be considered an introduction to the fundamental tools that are needed to treat
relativistic wave equations, complemented with the calculations for the non-relativistic limit in
the case of the hydrogen atom. Finally, we have pointed out the relation between hyperfine
structure of hydrogen and the dark matter evidences obtained with rotation curves, giving a re-
view of astronomical dark matter evidences and of its main features such as its mass and velocity
distributions. The velocity distribution was found via a pretty general approach that allows to
study collisionless and non-relativistic systems.
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