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CHAPTER 1  
INTRODUCTION 

1.1 The He.R laboratory 

Once upon a time there was in Padua a woman named Francesca Maria Susin. She had a 

dream. She wanted to give her contribution to the research for the development of new 

technologies useful to help people with cardiac pathologies. She started to work to achieve her 

goal and she succeeded, founding the laboratory of cardiac vascular fluid dynamics He.R – Healing 

Research at the University of Padua.  

The idea was that of sharing the knowledge of both engineers and doctors, in order to find out 

new technical solutions to offer always better treatments to heal cardiac disease. To do that, it is 

important to understand how exactly the prosthesis work, and which are the effect they generate 

on the organism. Assuming the cardio circulatory system as a hydraulic system constituted by a 

series of pipes of different diameters (representing the blood vessels) and by a pump (the heart), 

the HE.R Staff could start the research by the creation of a Pulse Duplicator.  

A Pulse Duplicator is a mechanical device which enables to test cardiovascular components 

simulating the systemic circulation. It exist already some versions of the machinery but they 

decided to design a hand-made version. The advantages of fashioning a new device from scratch 

are most of all economic, and in the second place they regard the possibility to create it with the 

characteristic of the modularity; it means that each component of it can be isolated and modified 

from a geometric or a functional point of view in order to be suitable for different tests. That’s 

why, even if the first device was ready to run in November 2014 (designed and dimensioned by 

Ing. Riccardo Toninato and Luigi di Micco), it is still being modified day by day depending on the 

relative study they are focus in. 
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1.2 Goal of the thesis 

With my thesis I carry on the previous He.R’s staff research work on the Pulse Duplicator, with 

the aim of improving its efficiency and getting more information on its potential and its limits too.  

In particular my work is focused on the analysis of the working of the flow meter. Its installation 

had already been arranged, but just in this moment it could be possible to introduce it and test it. 

Instead in the second part of the thesis I will report the experimental study on the behavior of the 

pressures in the device, both in conditions of constant and pulsatile flow. 

The work is organized in five chapters, starting, as we will see in the next paragraph, from the 

description of the instrument and its components (chapter 1).  

In the chapter 2 I will show how, just with an easy modification on the configuration of the device, 

it is possible to create a closed system with a constant flow useful for our tests regarding the 

functioning of the flow meter and its sensitivity.  

A similar conformation of the pulse duplicator is kept for the analysis of the pressures trend 

carried out on the section of the device preceding the aortic valve (chapter 3), comparing the 

behaviors we  got with what it was theoretically expected. 

Hence we achieved in testing the pulse duplicator on its original setting analyzing the pressures at 

pulsatile flow (chapter 4), and concluding my elaborate with the final considerations about the 

results we obtained and the future developments the pulse duplicator will experience. 

1.3 The Pulse Duplicator 

 

So, the Pulse duplicator is a hydraulic device at pulsatile flow with pressure pipes in variable 

motion condition. It is formed by several modules linked together; each of them can be isolated 

and modified according to need. 

Here you are the photos of the device in its original configuration, which will be later partially 

changed. 
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Figure 1.1: Pulse duplicator, frontal view 

 

 

Figure 1.2: Pulse duplicator, rear view 
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 The device is composed by several parts comprising four transparent tanks representing the 

aortic, ventricular, atrial and compliance chambers respectively, plus the electromagnetic motor, 

the PVC pipes, the local resistances and the heater.  

 

The position and the connections between all the components can be easily seen in the following 

block scheme: 

 

 

 

Figure 1.3: Block scheme of the Pulse Duplicator 

 

 

In the next paragraphs I will present every single part of the device with its main characteristics.  
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1.3.1 The Pump 

 

The electromagnetic linear engine with bellow represents an artificial ventricle that reproduces 

the pulsatile heart flow.  The model chosen for its characteristics of high thermal efficiency (and 

consequent no need of adding cooling devices), lack of gears (subject to wear), maintenance ease 

and possibility to achieve great continuous peak force, is the PARKER PRA 3810S. It is connected to 

the control unit by two cables, one for its alimentation which is able to create a magnetic field, 

and the other for the transmission of the position signal. The motor fulfill the fundamental 

function of pumping the volume of fluid we want to be flowing in into the system. Practically when 

the motor moves forward, the bellow contracts and throw the flow out. The translational 

movement follows the curve of displacement that we impose to the engine through the computer, 

reproducing the real volumetric variations of blood flow during a complete cardiac cycle (systole 

and diastole). The forward shift is physiologically the period of ventricular ejection (systole’s 

phase), while when it moves backwards it represents the diastole phase.   

The motor can perform a number of beat per minute from 10 to 150, the area of the bellow is 

equal to 34.21 cm2, and the amplitude between them is of 2.9 cm, giving therefore a maximum 

volume of fluid injected of 100 ml.  

In order to establish the quantity of volume involved, and more in general to run the device and 

save the results, we use a software developed and implemented by the team He.R: LabView. By 

this program we can control the motor and manage the output data.  Initially we set the values of 

the parameters connected to the mode of operation of the motor; these are: the displacement 

curve;  the heart rate, defining the number of the beats in the unit of time, typically in a minute 

(bpm), and the stroke volume, representing the volume of fluid expelled in a pulsation (ml). The 

latter can be determined simply deciding the amplitude of the displacement the motor has to 

fulfill.  

In our experiments we decided to set the heart rate equal to 67, which corresponds to the mean 

physiologic value for a man, and the amplitude of the motor as 1.9, even if the device let us the 

possibility to choose different settings too. 
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Figure 1.4: Electromagnetic motor 

 

 

 

Figure 1.5: Bellow 

 

 

1.3.2 Ventricular  Chamber  

 

The bellow of the motor is directly connected to the ventricular chamber, a transparent 

Plexiglas tank always filled with pressurized water and whose percentage of air is easily controlled 

by a vent valve. The walls of the chamber have a great thickness (15 mm), ensuring a good 
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mechanical resistance with respect to the pressure stresses that occur in this section. The tank 

presents two branches, connecting itself either with the aortic or with the mitral chamber; the 

flow follows one way or the other one depending on the position taken by the motor at the 

moment. In particular, when the motor pushes the flow from the ventricular towards the aortic 

chamber, the aortic valve located in this section opens because of the pressure difference, and it is 

exactly what it occurs in the systole phase in the human body. On the contrary in the diastole 

phase, represented by the retraction of the motor, this valve is closed, while the mitral valve 

situated in the second connection opens, letting the flow coming from the mitral tank to the 

ventricular one. Between these two chambers, in effect, we find a cylindrical component, built of 

Teflon, in the cavity of which it is inserted the valve; I can see the photo in figure 1.7 .  

To sum up, we can say that this chamber is the crux of the device, from where the flow can take 

one direction or the opposite one, depending on time.     

 

 

 

Figure 1.6: Ventricular chamber 
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Figure 1.7: Connection of the mitral valve with the ventricular chamber 

 

1.4 Aortic Chamber 

The aortic chamber represents the key part of the pulse duplicator, as regards the objectives of 

our research. This Plexiglas tank contains several components which are all very interesting for us.  

First of all we find in a watertight chamber the flow meter, whose description will be dealt with 

directly in the next chapter, entirely dedicated to it. The flow meter is connected by a tube to the 

rest of the aortic arch. We selected a deformable tube which could be easily bended without the 

risk of narrowing. In the middle of it we find another component, the “valve holder”. It is formed 

by a straight section of a Plexiglas pipe, and it hosts the aortic valve, 23 mm of diameter, as it is 

shown on the figure 1.9.  

Before and after the valve, we installed some pressure sensors, in order to check how the 

pressures change in that stretch, as I will see in chapters 3 and 4. 

This section of the device was designed in order to put a perfect tube able to reproduce the 

morphology and the mechanical characteristics of the physiological aortic arch.  
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Figure 1.8: Aortic chamber  

 

 

 

Figure 1.9: Aortic valve, frontal and rear view 
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1.5 Compliance chamber 

The final part of the aortic arch is attached to the compliance, a Plexiglas transparent chamber 

with some additional elements, a nozzle for injecting compressed air inside, and a manometer to 

check it. This tank, together with the gate valve present at its output, has the aim to simulate the 

main characteristics of human systemic circulation, such as the elasticity of the arteries of greater 

diameter and the resistance offered by the peripheral vessels. The elasticity is very important 

because these arteries physiologically withstand the not inconsiderable radial deformations due to 

the ventricular pressure: in this way in the capillaries there is a quite constant flow with respect to 

the initial pulsatile motion generated by the heart. So the function of the compliance is that of 

exploiting the compressibility of air under pressure to absorb the pressure wave generated by the 

motion of the piston, and returning a more regular flow. In addition to this, even the second effect 

that we find in the human body, the resistance offered to the blood flow by the extremely high 

network of veins, it is important to be taken into account. That’s why we try to replicate the same 

result in our device by inserting a specific gate valve whose regulation affects the flow and 

generates concentrated losses that we can control and modify almost in real time. 

 

 

Figure 1.10: Compliance chamber 
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1.6 Atrial tank 

The gate valve outside of the compliance chamber, it is directly linked with the atrial tank, a 

free surface basin made in Plexiglas. This stilling chamber has the function of damping the 

pulsatility of the motion, since the flow rate entering inside does not change the height of the free 

surface, having been dimensioned the entire tank for this purpose. The name ‘atrial tank’ is in 

analogy with the left atrium of the heart that carries blood to the left ventricle. From this element 

the device continues through a second gate valve (figure 1.11) that simulates the localized 

dissipation of energy again and from there we get back to the ventricular chamber. 

 

 

Figure 1.11: Gate valve 

 

 

Figure 1.12: Atrial tank 
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1.7 Heater 

Along the tube connecting the atrial with the ventricular chamber, we find a heater. By passing 

through this metal heater, the fluid temperature rises to a value which we define according to our 

needs. Basically we deal with a resistance wrapped to the tube metal which supports a maximum 

power of 2000 W; starting from the mains supply (around 220 V) there is a thermostat that 

regulates the ignition resistance. When the temperature probe attached to it indicates that the 

fluid has reached the temperature that we choose, the resistance power is removed. The objective 

of this component is to bring the total fluid mass of the pulse duplicator at a temperature of 37 

degrees in order to replicate the temperature at which the blood flows physiologically. Starting 

from the room temperature, the heater takes approximately 90 minutes to bring up the fluid 

degrees at about 37.  

 

 

 

Figure 1.13: Heater 
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1.8 Control and Sensor Conditioning Unit 

The control unit LT0510 made by LabTrek srl represents the main component for the control of the 

entire pulse duplicator. It manages the operation of the electric motor, it is connected to the unit 

of conditioning from which it receives the signals and, finally, it communicates with the computer. 

This device is made internally by three major electronic components: 

-the drive of the electric motor that allows the movement of the motor on the basis of the 

information received from the computer on board, varying the voltages supplied as input to the 

motor. The driver receives a variable voltage representative of the law of displacement that we 

want to be imposed to the piston, and it converts it into the sequence of pulses that move the 

actuator; 

-the board computer, Rabbit BL 2120, that acts as an intermediary between the computer and the 

drive of the motor through the use of the software LabView; 

- the power supply circuit; 

 

The sensor conditioning unit LS0609 made by LabTrek srl acquires, amplifies, filters and conditions 

the signals coming from the sensors located along the hydraulic circuit, so as to make them 

suitable for the subsequent processing performed by the computer. The hardware module is 

essentially constituted by two electronic components: the supply and filtering circuit, and the 

amplification board of the signals. 

 

 

 

Figure 1.14: Control and Sensor Conditioning Unit 
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The description of the main characteristics of the components of the pulse duplicator is 

concluded. Further technical information and designed procedures can be found in the work thesis 

both of Silvia Bellio (1) and Luigi Di Micco (2). 
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CHAPTER 2  
THE FLOWMETER 

In this chapter I will describe in the details the measurement instrument that we use to monitor 

the flow rate flowing in the loop; after the illustration of all the components of the flow meter, I 

will depict the new configuration of the pulse duplicator used to test the efficiency of the above-

mentioned device. The results of the experiment will be finally report with its sensitivity analysis. 

2.1 The flow meter 

 

The flow meter is an ultrasonic device which measures the flow rate of a fluid moving. The 

instrument is a Transonic Systems Inc. composed by two parts:  

 

- The tubing flow module TS410, which measures volume flow in most non-aerated liquids. In 

particular it can be suitable for various fluids such as blood, saline water, cell culture, 

physiological buffers, blood analogs such as glycerin/water solutions, and even diesel fuel, 

with high resolution and low zero offset;  

 

- the In-line ME-19PXN flowsensor, characterized  by the highest sensitivity for low flow 

applications. It utilizes a scheme of ultrasonic illumination that makes it possible to 

manufacture a flow-through sensor with a smooth, cylindrical interior without 

compromising measurement accuracy; the four transducer sensor design offers precise and 

accurate flow measurement for low or high flow rates, steady state or pulsatile flows. Flow 

resolution is scaled to sensor size, and flow is measured accurately across the sensor’s full 

dynamic range with little effect from turbulence. The sensor’s smooth round flow channel is 

easy to clean and does not trap air bubbles that can degrade ultrasonic performance. 
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As I said this sensor we can have many fluids flowing inside, but it needs to be calibrated, 

and in our case the sensor results working properly with the saline solution. But this is not 

the only parameter that needs to be arranged; in effect, since temperature alter the transit 

time of the ultrasound signal and affect the acoustic properties of the tubing, we calibrate 

the sensor specifically for this parameter too. In particular, in this situation is either equal to 

20°C, corresponding to the room temperature, or to 37°C, which is the physiologic body 

temperature, and the company told us the operational fluid temperature should be within 

     of the specified calibration temperature. The sensor is supplied with a certificate of 

calibration for specified use valid for one year.  

It is important to underline that the external case cannot be in touch with the water, so it 

was inserted in the watertight tank in between the ventricular basin and the aortic valve; 

 

Here below I report the photos of the components followed by the data sheet: 

 

 

 

  

Figure 2.1: Transonic tubing module TS410 (on the left), and inline ME19PXN flow sensor (on the right) 
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Figure 2.2: Data sheet of the flow sensor 

 

 

Figure 2.3: Second data sheet of the flow meter; 
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2.2 The configuration of the pulse duplicator for the costant flow 

The original configuration of the pulse duplicator has a pump which allows having a pulsatile 

flow. However for this experiment we needed a constant flow, in order to be able to control the 

exact quantity of water flowing through the instrument; that’s why we had to modify the setting 

of the device, passing from the standard block scheme reported in figure 1.3 to the new one, 

shown below.  

 

 

 

Figure 2.4: Block scheme of the new configuration 

 

 

Basically we kept out the motor, the heater and the compliance chamber, and we added a 

pump able to maintain the water continuously flowing through the device. The pump was put in a 

container (figure 2.5), from which the water goes directly towards the ventricular chamber. 
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Figure 2.5: water tank with the pump 

 

From this tank, the water is collected and it can follow two paths. This possibility to change 

direction is possible thanks to another component that we added for this experiment, a diverter. 

During the flow meter test, in fact, we needed not only a constant flow, but also the possibility to 

make the system open in some moments, as I will explain. 

So, from the container where the pump is, the water is extracted and goes directly towards the 

aortic chamber flowing in the closed system, or, changing the position of the valve of the diverter, 

it is possible to change again the configuration obtaining an open system. In this case the water 

overflows in another tank.  

 

 
Figure 2.6: closed loop in constant flow 
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2.3 Density calculation and flow meter test 

The goal of the experiment is that of testing the flow meter and having an idea of the 

percentage of error that we can commit using it.  

Substantially the test consists in comparing the flow rate recorded by the flow meter and the one 

obtained calculating mathematically its value. 

The recorded flow rate is obtained by the input file coming from the flow meter and processed by 

the computer through the program LabView. Hence the value we took as ‘recorded flow rate’ 

comes from the mean of all the values recorded in the time interval. 

As regards the calculated flow rate, the procedure is quite easy but little bit longer. Immediately 

after the utilization of the flow meter we changed the configuration of the system into an open 

one, just by turning the valve of the diverter (figure 2.7), 

 

 

Figure 2.7: diverter 

 

and letting the water flowing outside in a holding tank. The time employed to fill it was clocked, 

and then the container was weighted. Knowing the tare of the container we could obtained its net 

weight, and knowing the density of the solution, we can immediately calculate the volume of the 

tank. Therefore a data indispensable for our calculation is the density, which is not known a priori, 

since the fluid we use in the device is not simple water but a saline solution. Thus we needed to 

find out its value.  
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We proceeded with taking a sample of it in a measuring cup and weighing it taking into account 

the tare of the container; then, knowing the volume occupied by the liquid, we could obtain its 

density. We repeated the proof several times to obtain a quite precise number of its density. I 

resume all the calculation in the following charts: 

 

 

T
E

S
T

 1 

WEIGHT 
P [g] P [Kg]       

ρ [Kg/m3] =  1100.96 
393.86 0.39386       

VOLUME 
d [cm] A [cmq] h [cm] V [cmq] V [mq] 

6.65 34.73227 10.3 357.7424 0.000358 

Figure 2.8: Density calculation, test 1 

 

T
E

S
T

  2 

WEIGHT 
P [g] P [Kg]       

ρ [Kg/m3] = 1070.063 
791.63 0.79163       

VOLUME 
d [cm] A [cmq] h [cm] V [cmq] V [mq] 

6.65 34.73227 21.3 739.7974 0.00074 

Figure 2.9: Density calculation, test 2 

 

T
E

S
T

 3 

WEIGHT 
P [g] P [Kg]       

ρ [Kg/m3] = 1021.777 
984.81 0.98481       

VOLUME 
d [cm] A [cmq] h [cm] V [cmq] V [mq] 

6.65 34.73227 27.75 963.8205 0.000964 

Figure 2.10: Density calculation, test 3 
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T
E

S
T

 4 

WEIGHT 
P [g] P [Kg]       

ρ [Kg/m3] = 1015.17 
1096.56 1.09656       

VOLUME 
d [cm] A [cmq] h [cm] V [cmq] V [mq] 

6.65 34.73227 31.1 1080.174 0.00108 

Figure 2.11: Density calculation, test 4 

 

From all the numbers of density we obtained in each test we took the mean value, equal to: 

     
           

 
            

At this point just by dividing the net weight of the solution for the density, we could obtain the 

volume of the tank. The latter, divided by the filling time, gave us the calculated flow rate. 

 

Here below I report the values I measured, from which I could extend my considerations over 

the efficiency of the instrument, comparing (figure 2.12 ) the recorded flow rate with the calculate 

one.  

We repeated the test at different ranges of flow rate.  

 

 

Recorded 
flow rate 
[l/min] 

T 
[°C] 

Filling 
time 
[s] 

Gross 
weight 

[kg] 

Tare 
[kg] 

Net 
weight 

[kg] 

Density 
[Kg/m3] 

Volume [l] 
Calculated 
flow rate 
[l/min] 

7.1094 19.6 222 30.9 3.1 27.8 1052 26.4259 7.1421 

13.8456 20.5 118 31.4 3.1 28.3 1052 26.9011 13.6785 

22.0181 20.8 88 36.7 3.1 33.6 1052 31.9392 21.7767 

32.9281 21.1 68 40.4 3.1 37.3 1052 35.4563 31.2849 

43.3561 21.6 54 42.2 3.1 39.1 1052 37.1673 41.2970 

Table 2.1: calculation of the flow rate 
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Figure 2.12: Recorded versus calculated flow rate 

 

 

I could verify that the error between the flux measured by the flow meter and the real one 

grows progressively increasing the flow rate.  

In fact, as you can see in the following table, for low flow rates the two values almost coincide, 

while when we start to have around 30 litres per minute, the error becomes about 5 per cent 

(acceptable anyway).  

 

Recorded flow rate [l/min]  Calculated flow rate [l/min] Error (%) 

7.1094 7.1421 -0.4610 

13.8456 13.6785 1.2069 

22.0181 21.7767 1.0965 

32.9281 31.2849 4.9902 

43.3561 41.2970 4.7493 

Table 2.2: differences between the recorded and calculated flow rates 
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One of the reason for which we could have this difference is related to the characteristics of the 

flow meter itself, calibrated to properly work with a temperature either of 20°C or 37°C. In our 

tests we started with a quite exact value but we could not avoid reaching the temperature of fast 

22°C, due to the effect of the pump working which heated the water up. 

 

 

 

Figure 2.13: Recorded and calculated  flow rate, function of the temperature; 

 

2.4 Sensitivity Analysis and evaluation of the errors 

Obviously we have to consider that, carrying out the measurements, we may have made some 

mistakes too, and we take it into account in the next graphs. They concern our ability to take the 

exact periods in which the water is discharged that is the time employed to fill the tank, which in 

our opinion could vary of more or less 1 second, and the weight of the tank filled, which depends 

on the sensitivity of our scale, equal to +/- 200 grams; all the 8 combinations are shown below. 
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 The first case is that in which the filling time remains constant and we suppose to add 0.2 

kilograms to the weight of the tank.  

 

 

CONSTANT TIME, WEIGHT +0.2Kg 

Recorded flowrate 
[l/min] 

T 
[°C] 

Filling time 
[s] 

Net weight 
[kg] 

Density 
[Kg/m3] 

Volume 
[l] 

Calculated flow rate 
[l/min] 

Error 
(%) 

7.1094 19.6 222 28.0 1052 26.6160 7.1935 -1.1837 

13.8456 20.5 118 28.5 1052 27.0913 13.7752 0.5087 

22.0181 20.8 88 33.8 1052 32.1293 21.9063 0.5078 

32.9281 21.1 68 37.5 1052 35.6464 31.4527 4.4808 

43.3561 21.6 54 39.3 1052 37.3574 41.5082 4.2621 

Table 2.3: calculation of the flow rate, changing the weight of the tank of +200 grams 

 

It seems that the flow meter works perfectly with the temperature of 20°C indeed, while a lower 

or higher value tends to create some differences, even if they result slightly smaller than the 

standard case; 

 

 

 

Figure 2.14: Recorded versus calculated flow rate, weight +200g 
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 The second one is that in which we suppose to remove 0.2 Kilograms to the weight of the 

tank, while the filling time remains the same. 

 

 

CONSTANT TIME, WEIGHT -0.2Kg 

Recorded flowrate 
[l/min]  

T 
[°C] 

Filling time 
[s] 

Net weight 
[kg] 

Density 
[Kg/m3] 

Volume 
[l] 

Calculated flow rate 
[l/min] 

Error 
(%) 

7.1094 19.6 222 27.6 1052 26.2357 7.0907 0.2618 

13.8456 20.5 118 28.1 1052 26.7110 13.5819 1.9051 

22.0181 20.8 88 33.4 1052 31.7490 21.6471 1.6852 

32.9281 21.1 68 37.1 1052 35.2662 31.1172 5.4997 

43.3561 21.6 54 38.9 1052 36.9772 41.0858 5.2366 

Table 2.4: calculation of the flow rate, changing the weight of the tank of -200 grams 

 

This time it exceeds lightly the threshold of 5 per cent which is the number we do not want to 

surpass; so we notice that considering a smaller weight influences the measurement more than 

the previous case. 

 

 

 

Figure 2.15: Recorded versus calculated flow rate, weight -200 grams 
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 The third case is that in which we suppose, keeping the weight as constant, that the tank 

took 1 second more to be filled.   

 

 

CONSTANT WEIGHT, FILLING TIME +1s 

Recorded flowrate 
[l/min]  

T 
[°C] 

Filling time 
[s] 

Net weight 
[kg] 

Density 
[Kg/m3] 

Volume 
[l] 

Calculated flow rate 
[l/min] 

Error 
(%) 

7.1094 19.6 223 27.8 1052 26.4259 7.1101 -0.0105 

13.8456 20.5 119 28.3 1052 26.9011 13.5636 2.0371 

22.0181 20.8 89 33.6 1052 31.9392 21.5320 2.2078 

32.9281 21.1 69 37.3 1052 35.4563 30.8315 6.3672 

43.3561 21.6 55 39.1 1052 37.1673 40.5461 6.4812 

Table 2.5: calculation of the flow rate, changing the filling time of +1 second 

 

Considering a longer time to discharge the water from the circuit, it rather influences the results in 

a negative way, leading the differences between the recorded and calculated flow rates to reach 

fast the 6.5 %;  

 

    

 

Figure 2.16: Recorded versus calculated flow rate, filling time +1second 
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 The fourth case is that in which we suppose, still keeping the weight as constant , that the 

tank took 1 second less to be filled.   

 

 

CONSTANT WEIGHT, FILLING TIME -1s 

Recorded flowrate 
[l/min]  

T 
[°C] 

Filling time 
[s] 

Net weight 
[kg] 

Density 
[Kg/m3] 

Volume 
[l] 

Calculated flow rate 
[l/min] 

Error 
(%) 

7.1094 19.6 221 27.8 1052 26.4259 7.1744 -0.9155 

13.8456 20.5 117 28.3 1052 26.9011 13.7955 0.3625 

22.0181 20.8 87 33.6 1052 31.9392 22.0270 -0.0403 

32.9281 21.1 67 37.3 1052 35.4563 31.7519 3.5722 

43.3561 21.6 53 39.1 1052 37.1673 42.0762 2.9522 

Table 2.6: calculation of the flow rate, changing the filling time of -1 second 

 

In contrast with the previous situation, here the errors decrease resulting fast null for flow rates 

lower than 30 litres per minute; 

 

 

 

Figure 2.17: Recorded versus calculated flow rate, filling time -1second 
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 In this situation we start to combine the effects due to the change of both the filling time 

and of the weight, increased of one second and 200 grams, respectively. 

  

 

WEIGHT +0.2Kg, FILLING TIME +1s 

Recorded flowrate 
[l/min]  

T 
[°C] 

Filling time 
[s] 

Net weight 
[kg] 

Density 
[Kg/m3] 

Volume 
[l] 

Calculated flow rate 
[l/min] 

Error 
(%) 

7.1094 19.6 223 28.0 1052 26.6160 7.1612 -0.7300 

13.8456 20.5 119 28.5 1052 27.0913 13.6595 1.3448 

22.0181 20.8 89 33.8 1052 32.1293 21.6602 1.6257 

32.9281 21.1 69 37.5 1052 35.6464 30.9969 5.8651 

43.3561 21.6 55 39.3 1052 37.3574 40.7535 6.0028 

Table 2.7: calculation of the flow rate, changing the filling time of +1 second and the weight of +200 grams 

 

This case shows the different import the two modifications have. We combined an heavier 

weight, which before showed to help the gap between recorded and calculated flow rates to 

decrease, with a longer filling time which on the contrary had the opposite effect, and which 

results being the most influent. 

 

 

 

Figure 2.18: Recorded versus calculated flow rate (weight +200g, filling time +1second) 
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 Keeping the weight equal to the previous case, we remove here one second to the basic 

filling time. 

 

 

WEIGHT +0.2kg, FILLING TIME -1s 

Recorded flowrate 
[l/min]  

T 
[°C] 

Filling time 
[s] 

Net weight 
[kg] 

Density 
[Kg/m3] 

Volume 
[l] 

Calculated flow rate 
[l/min] 

Error 
(%) 

7.1094 19.6 221 28.0 1052 26.6160 7.2261 -1.6416 

13.8456 20.5 117 28.5 1052 27.0913 13.8930 -0.3417 

22.0181 20.8 87 33.8 1052 32.1293 22.1581 -0.6358 

32.9281 21.1 67 37.5 1052 35.6464 31.9221 3.0551 

43.3561 21.6 53 39.3 1052 37.3574 42.2914 2.4558 

Table 2.8: calculation of the flow rate, changing the filling time of -1 second and the weight of +200 grams 

 

As we expected, here is it the best situation. Summing the variations we found out being the 

most positive, we reach in achieving the lowest distance between the two values of the flow rates, 

the recorded and the calculated one, with a maximum error of 3%, more than acceptable.  

 

 

 

Figure 2.19: Recorded versus calculated flow rate, weight +200g filling time -1second 
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 In the last but one case we combine a lighter tank filled in a longer time 

 

 

WEIGHT -0.2kg, FILLING TIME +1s 

Recorded flowrate 
[l/min]  

T 
[°C] 

Filling time 
[s] 

Net weight 
[kg] 

Density 
[Kg/m3] 

Volume 
[l] 

Calculated flow rate 
[l/min] 

Error 
(%) 

7.1094 19.6 223 27.6 1052 26.2357 7.0589 0.7090 

13.8456 20.5 119 28.1 1052 26.7110 13.4677 2.7294 

22.0181 20.8 89 33.4 1052 31.7490 21.4039 2.7899 

32.9281 21.1 69 37.1 1052 35.2662 30.6662 6.8692 

43.3561 21.6 55 38.9 1052 36.9772 40.3387 6.9595 

Table 2.9: calculation of the flow rate, changing the filling time of +1 second and the weight of -200 grams 

 

This is the worst situation, achieving the biggest distance between the values of the two flow 

rates, giving an error of fast 7% 

 

  

 

Figure 2.20: Recorded versus calculated flow rate, weight -200g filling time +1second 
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 The last situation regards the combination between having weighed a lighter tank filled in a 

smaller time. 

 

 

WEIGHT -0.2kg, FILLING TIME -1s 

Recorded flowrate 
[l/min]  

T 
[°C] 

Filling time 
[s] 

Net weight 
[kg] 

Density 
[Kg/m3] 

Volume 
[l] 

Calculated flow rate 
[l/min] 

Error 
(%) 

7.1094 19.6 221 27.6 1052 26.2357 7.1228 -0.1895 

13.8456 20.5 117 28.1 1052 26.7110 13.6980 1.0666 

22.0181 20.8 87 33.4 1052 31.7490 21.8959 0.5552 

32.9281 21.1 67 37.1 1052 35.2662 31.5816 4.0892 

43.3561 21.6 53 38.9 1052 36.9772 41.8610 3.4486 

Table 2.10: calculation of the flow rate, changing the filling time of -1 second and the weight of -200 grams 

 

Even if having a lighter tank influence negatively in the calculation to get the value of the real 

flow rate, imaging having discharge the water in a faster time avoid in reaching a gap too high 

between the two values, staying below the limit of 5% of error; 

 

 

 

Figure 2.21: Recorded versus calculated flow rate, weight -200g filling time -1second 
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2.5 Results 

To sum up here there are the total results comparing the values of the test from which we 

started up and the modifications giving the lowest and highest errors, respectively. 

 

 

Recorded flowrate 
[l/min] 

Calculated flow rate 
[l/min] 

Error  
(%) 

BASIC TEST 

7.1094 7.1421 -0.4610 

13.8456 13.6785 1.2069 

22.0181 21.7767 1.0965 

32.9281 31.2849 4.9902 

43.3561 41.2970 4.7493 

WEIGHT +0.2kg, FILLING TIME -1s 

7.1094 7.2261 -1.6416 

13.8456 13.8930 -0.3417 

22.0181 22.1581 -0.6358 

32.9281 31.9221 3.0551 

43.3561 42.2914 2.4558 

WEIGHT -0.2kg, FILLING TIME +1s 

7.1094 7.0589 0.7090 

13.8456 13.4677 2.7294 

22.0181 21.4039 2.7899 

32.9281 30.6662 6.8692 

43.3561 40.3387 6.9595 

Table 2.11: resuming tests 
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Figure 2.22: Recorded versus calculated flow rate comparing the tests 

 

 

 

Figure 2.23: Recorded flow rate function of the errors comparing the tests 

 

In the worst situation the error is near 7% but we think that this case is not realistic because we 

paid attention in taking the measurements and it is really difficult that we committed this 

combination of mistakes together. So, taking everything into account I can say that my test to 

proof the efficiency of the flow meter was satisfactory, and I can consider the values the 

instrument records as corresponding to the reality. 
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CHAPTER 3  
PRESSURE TESTS – CONSTANT FLOW 

In this chapter we are interested in investigating the trend of pressure in the section of the 

device situated upstream respect to the aortic valve. After the explanation of the experiment and 

the description of the instruments used for it, I will report the theoretical lines of the problem, to 

which I will refer in order to judge the results I obtained from the test. 

3.1 Description of the experiment 

For the following experiment we kept the same configuration of the device prepared for the 

previous tests on the flow meter. This means that, even in this situation, we will not use the 

engine because we need to have a constant flow. Our goal is to study how the pressures change at 

different distances along the section preceding the aortic valve.  

In figure 3.1 I report the scheme of the area interested with the relative positions of the probes:  

 

 

 

Figure 3.1: Section of the pulse duplicator interested by the pressure tests at constant flow 
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The fact of analyzing the trend of pressures in this part, at constant flow, is a fundamental field 

to study mainly for two causes.  

First of all the normative EN 5840 outlines some points that need to be follow for the verification 

of hydrodynamic performance of a pulse duplicator (3). In fact, in order to ensure that the device 

meets the design intent and the minimum performance requirements, it is important to proceed 

with the tests in steady forward state, in addition and before of the pulsatile flow conditions.  

But, beyond this more formal motivation, it is for us really a key subject to be investigated. The 

reason can be easily understood if we think about what we explained in the last chapter talking 

about the flow meter.  The inline flowsensor that was chosen to fit at best our device has a size of 

19 mm, hence it was inserted in a tube of that width. On the contrary the part of the pipe forming 

the aortic arch, and where the valve is inserted in, has a diameter of 30 mm corresponding to the 

mean dimension of the aorta. Consequently, we had to create a junction between the two tubes, 

which will probably cause some dissipation and thus it will inevitably influence the behavior of the 

pressures. Precisely through this test we want to quantify the disturbance created by this problem 

to understand to what extent it affects the operation of the pulse duplicator. 

To conduct this experiment we need some pressure sensors that I am going to present in the 

next section. 

3.2 Pressure transducers and transmittance 

There are some instruments whose sensitivity is fundamental to obtain significant data: these 

are the pressure sensors. In particular for this work we used three PCB Piezotronics sensors from 

the series 1500, in particular the models 1760, 1761 and 1762, which are measuring instruments 

characterized by high performance and reliability. In effect, it is just thanks to them that it can be 

possible to measure the pressures in the aortic tract in real time; these data are thus provided first 

to the conditioning unit and then to the computer, which is able to read the signals by means of 

the Software LabView.  

Here below you can have a look at the data sheet of one sensor, farther than seeing its photo.  
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Figure 3.2: Specifications of one Piezometrics sensor, provided by the manufacturer; 

 

 

 

 

Figure 3.3: Piezotronics sensor with its transmission cable (to the left) and pressure transducer installed in the device; 

 

 

For their utilization we need to have the calibration line of each sensors, which gives us the 

conversion and the relationship between the voltages measured and the height in mmHg to which 

the Volts corresponds in terms of pressure.  
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Here you are one of the calibration lines, provided by PCB Piezotronics factory: 

 

 

Figure 3.4: Calibration curve of one piezotronics sensor, provided by the company; 

 

As I can see from the table this instrument is able of detecting a voltage varying linearly between 0 

and 10 V, equivalent to a capacity of full scale equal to 10 psi, corresponding to 68.95 kPa and to 

571.17 mmHg. 

The factory provides these data, but this is not enough. Indeed, precisely because we are 

talking about very precise tools, the same turn out to be also very delicate. You should pay 

attention to handle them, in particular during the installation and when you change their positions 

in case of need. Neglecting to always check the conditions at which they can work, or using them 

inappropriately can quite easily lend them to go out of calibration, which results immediately into 

an incorrect measurement.  

That’s why we preferred to verify the values we had been giving by the PCB Piezotronics company 

to add in the block scheme of LabView. In order to totally avoid this problem, we paid attention in 

repeating the calibration tests quite often, each time that we displaced some ‘structural element’ 

of the device or when we did not use them for a long time, at least. 

The procedure for this experiment is quite easy. We did not even need to work with the 

mercury, water was enough for us, at the end it was just sufficient to convert the centimeter of 

water into millimeter of mercury, according to this relation: 

                                  ( 3.1 ) 
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To sum up, we used a column about 4 meters high, inside which we applied a metric scale for 

the detection of the measurement. The lower extremity of the cylindrical tube was connected via 

a three-way conduit, necessary for the entry of water (from a tube connected to the aqueduct), 

for its release, and for the attachment to the pressure sensors which were directly connected by 

the transmitter cables to the conditioning unit to get the measure in volts of the 

height of the water. At this point it was sufficient to open the tap to bring up the 

water in the column, and after taking note of the measure in centimeters, it was 

detected the voltage for each of the sensors. The operation was repeated at 

different heights to obtain the calibration curve. 

 

 
Figure 3.5: attachment of the pressure sensors 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Particular of the connection between the column, the sensors 
and the conditioning unit; 

Figure 3.6: column for the calibration 
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It’s a matter of a series of static measurements necessary to compare the measurement of the 

sensor and the data read via the piezometer. 

Below I report one of the several tests carried out: the table shows the liquids levels taken into 

account and the relative values measured in volts; the measurements taken allow determining the 

conversion line between Volt and mmHg, which is then implemented in the program LabView 

developed.  

 

 

Height read [cmH2O] h - cm h - mmHg Sensor 1 [V] Sensor 2 [V] Sensor 3 [V] 

33.0 32.6 23.979 -2.288 -1.250 -2.174 
64.4 64.0 47.076 -0.352 0.663 -0.322 
91.6 91.2 67.083 1.345 2.336 1.315 
120.0 119.6 87.973 3.168 4.110 3.051 
161.9 161.5 118.793 5.728 6.630 5.521 
199.7 199.3 146.560 8.060 8.920 7.780 
247.2 246.8 181.536 10.990 11.790 10.610 
210.7 210.3 154.688 8.740 9.590 8.450 
182.2 181.8 133.725 6.980 7.870 6.760 
152.1 151.7 111.584 5.121 6.053 4.965 
126.4 126.0 92.680 3.525 4.486 3.431 
97.7 97.3 71.570 1.720 2.723 1.711 
78.3 77.9 57.300 0.509 1.534 0.558 
52.8 52.4 38.543 -1.084 -0.034 -0.977 
30.1 29.7 21.846 -2.489 -1.420 -2.330 

Table 3.1: Data of the calibration test of the three Piezotronics sensors  

 

In the graphs below I found out the calibration curve for each sensor: 

 

 

Figure 3.8: Sensor 1 output versus pressure, with the calibration line resulting; 
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Figure 3.9: Sensor 2 output versus pressure, with the calibration line resulting; 

 

 

 

Figure 3.10: Sensor 3 output versus pressure, with the calibration line resulting; 

 

Once the calibration procedure is completed, I can proceed with the installation of the sensors in 

the device and with their utilization. 
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3.3 Theoretical Overview 

Going back to our experiment, in this chapter we want to study the pressure trend in the aortic 

chamber resulting from a change in a cross-sectional area. In particular in the configuration of our 

device we have an enlargement of the pipe, whose diameter of 19 mm becomes equal to 30 mm.  

 Of course we already expect the pressures to behave in a certain way, due to the knowledge of 

hydrodynamics that we have; in this paragraph in fact I report the theory that underlies the 

problem and on which we rely. 

Generally speaking, one of the most important statement in fluid dynamics belong to Bernoulli, 

who stated that for an ideal flow of a non-conducting fluid, an increase in the speed of the fluid 

occurs simultaneously with a decrease in pressure or a decrease in the fluid's potential energy.  

The basis form of Bernoulli's principle is valid for incompressible flows (their density is constant)  

and it can be derived from the principle of conservation of energy which states that, in a steady 

flow, the sum of all forms of energy in a fluid along a streamline is the same at all points on that 

streamline.   

As a result, the common form of Bernoulli's equation for an incompressible flow is: 

 

 
   

  

  
             ( 3.2) 

Therefore, between two points of the trajectory we have: 

     

 
         

  
    

 

  
      ( 3.3) 

where: 

→   is the potential energy of a unit weight of fluid with respect to the reference plane represented by the 

elevation of the point above a reference plane; 

→ 
  

  
 is the kinetic energy of the mass corresponding to the unit weight (kinetic height); 

→ 
 

 
 is the piezometric height, that is the work that must fulfill the unit of weight of the fluid, i.e. the energy that 

the pressure forces can provide; 

 

Moreover I can say the constant of the equation 3.2 represents the sum of the three forms of 

mechanical energy: the kinetic energy, potential energy and internal energy remains constant. 

Thus an increase in the speed of the fluid, implying an increase in both its dynamic pressure and 

https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Thermal_conduction
https://en.wikipedia.org/wiki/Pressure
https://en.wikipedia.org/wiki/Fluid
https://en.wikipedia.org/wiki/Potential_energy
https://en.wikipedia.org/wiki/Incompressible_flow
https://en.wikipedia.org/wiki/Conservation_of_energy
https://en.wikipedia.org/wiki/Streamlines,_streaklines,_and_pathlines
https://en.wikipedia.org/wiki/Elevation
https://en.wikipedia.org/wiki/Kinetic_energy
https://en.wikipedia.org/wiki/Potential_energy
https://en.wikipedia.org/wiki/Internal_energy
https://en.wikipedia.org/wiki/Dynamic_pressure
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kinetic energy, occurs with a simultaneous decrease in the sum of its static pressure, potential 

energy and internal energy.   

This total energy is called Specific Energy E of the fluid: 

  
 

 
   

  

  
            ( 3.4) 

This is the theory that underlies the problem, of course in our case we must pay attention to the 

conditions in which we work, which differs from the basic problem and involves the concept of the 

modifications of the equation due to the geometry that we have.  

Specifically in reality we cannot consider the formula of Bernoulli as correct if we do not take into 

account the fact that there are some energy losses along the flow path. Through the pipe there 

are in fact continuous losses of energy due to the friction of the water along the wall, which in our 

case we consider negligible. In addition to these, however, there are some localized losses due to 

the change in the geometry of the section, and in this case particularly to the enlargement of the 

tube, which is important to consider for a correct evaluation of the influence that this 

configuration has on our analysis. 

When the water flow through a sudden expansion in a piping system, as you can see in figure 3.11, 

there are some mechanical energy losses of the fluid. 

 

 

 

Figure 3.11: change in geometry, sudden expansion 

 

 

https://en.wikipedia.org/wiki/Static_pressure
https://en.wikipedia.org/wiki/Mechanical_work#Mechanical_energy
https://en.wikipedia.org/wiki/Fluid
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In order to consider these effects we refer to the theory of Borda – Carnot, whose equation gives 

the decrease in the constant of the Bernoulli equation. 

In particular for an incompressible flow the equation becomes:  

     

 
         

  
    

 

  
       ( 3.5) 

that is  

              ( 3.6) 

 

where ΔE is the fluid's mechanical energy loss, quantified by Borda as (4): 

   
  
 

  
   

  

  
    

 
    ( 3.7) 

 

Besides of the sudden expansion described by Borda, another geometry can depict even better 

the configuration of our device by considering the transition from a smaller flow passage to a 

larger one as gradual. This can be possible by the use of a diffuser (figure 3.12), whose primary 

purpose is to recover fluid static pressure with minimal loss of total pressure while reducing the 

flow velocity.  

 

 

Figure 3.12: Example of a diffuser 

 

https://en.wikipedia.org/wiki/Bernoulli%27s_principle
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The increase in the cross-sectional area of the diffuser causes a drop in the average flow 

velocity, and a portion of the kinetic energy of the flow is converted into the potential energy of 

pressure. An efficient diffuser is one that converts the highest possible percentage of kinetic 

energy into pressure energy within a given limitation on diffuser length or divergence angle α. (2) 

The coefficient of dissipation of a diffuser depends, in addition to the opening angle α, even on the 

ratio of the enlargement  
  

  
 , on the shape of the profile, on the distribution of the velocities, and 

on the Reynolds’ number of the current. 

The loss of energy in the diffuser can theoretically be assessed as the sum of two contributes: one 

due to the tangential friction,     and the other due to the separation of the current,    , that is: 

                    
  
 

  
   

  
 

  
    ( 3.8 ) 

The first coefficient can be calculated by the formula: 

    
 

     
    

  

  
 
 
      ( 3.9 ) 

where   is the number of resistance which, for a smooth tube and a number of Reynolds 

      , it can be calculated by the formula of H. Blasius: 

   
      

             ( 3.10 ) 

Going back to the equation (3.8), the second coefficient,   , can be evaluated by the experimental 

data  of A. Gibson integrated by I.E. Idel’cik through the following diagram: 

 
Figure 3.13: Diagram for the calculation of   , given α and (d1/d2)2 
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Now we have all the information that we need to calculate the influence of the geometry of our 

device on the flow of pressures; in the next paragraph I am going to apply the theory to the reality 

of our experiment.  

3.4 Experimental Analysis  

Finally in this paragraph I present the heart of the experiment, which consists in measuring the 

pressures at different distances in order to verify what is the effect of the diffuser; in particularly 

we want to study their behavior to check if, even with the energy dissipation given by the 

geometry, the veins reattach. This happens if the pressure trend shows us that in the final part the 

pressures keep a constant value. The test will be repeated for different ranges of flow rate, in 

particular for 25, 35 and 50 liters per minute;  

 

As regards the points chosen to install the sensors, we called: 

 pressure 8 (corresponding to the sensor number 8), the one measured in a point of the 

pipe immediately outside of the flowmeter, characterized by a diameter of 19 mm. For us 

it will be the first point, that we set at distance 0; 

 pressure 7, the first sensor located in the point of the device where the geometry changes 

increasing the diameter to 30 mm; it is situated at a distance of 45 m from the first;  

 pressure 3, at a distance of 115 mm;  

 pressure2, at a distance of 145 mm; 

 pressure 1, at a distance of 175 mm; 

 

In the next pages I will report the results. 
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 TEST 1, Q = 25 l/min 

 

Test with Q = 25 l/min 

Position Distance [mm] Pressure [mmHg] 

1 175 19.48740386 

2 145 19.08177307 

3 115 19.09361535 

7 45 16.39095274 

8 0 13.39416061 

Table 3.2: Results of test 1 

 

 

Figure 3.14: Pressures versus distance, Q=25 l/min 

 

 

 TEST 2, Q = 35 l/min 

 

Test with Q = 35 l/min 

Position Distance [mm] Pressure [mmHg] 

1 175 43.93911969 
2 145 43.63812982 
3 115 43.91934536 
7 45 38.46009929 

8 0 32.1946911 

Table 3.3: Results of test 2 
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Figure 3.15: Pressures versus distance, Q=35 l/min 

 

 

 TEST 3, Q = 50 l/min 

 

Test with Q = 50 l/min 

Position Distance [mm] Pressure [mmHg] 

1 175 88.17877321 
2 145 88.27641783 
3 115 87.96787642 
7 45 80.28428873 

8 0 66.92349874 

Table 3.4: Results of test 3 

 

 

Figure 3.16: Pressures versus distance, Q=50 l/min 
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To sum up, I report the results in the same diagram, in order to compare the values: 

 

 

Figure 3.17: Pressures versus distances, at different flow rates 

 

Taking everything into account, we verified that effectively the veins reattach, in particular it 

happens from the third position. 

3.5 Theoretical Experimental Analysis 

Taking everything into account we are finally ready to apply the theoretical knowledge to our 

case study in order to see if the results that we find out from our test agree with what we were 

expected studying the theoretical solution. In particular we will start from the geometrical data of 

our device to be able to calculate all the coefficients we need and find out the results in terms of 

energy and pressure. I will repeat this study for all the three flow rates that we took as 

exemplifying flow conditions, which are approximately 25, 35, and 50 liters per minute. I say 

‘approximately’ because these are the values we started with, but in order to use the quite exact 

value we extract the data from the flow meter and we took the average value;   
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For each flow rate all the calculations are summarized in a table followed by the diagrams showing 

the results: 

 

 Flow rate = 24.7 liters per minute 

 

GEOMETRY OF THE SECTIONS 1 and 2 

 

Diameter 
      0.01900 

      0.03000 

Radius 
      0.00950 

      0.01500 

Area 
    

       
  0.00028 

    
       

  0.00071 

Flow rate         
 

Velocity 

         
  

 
 1.45185 

         
  

 
 0.58235 

Table 3.5: Geometry of the sections 1 and 2 

 

SPECIFIC ENERGY and PRESSURE, section 1 

Acceleration of gravity g [m/s2] 9.806 
    

Kinetic energy 

  
 

  
    0.1075 

  
 

  
        107.479 

  
 

  
       7.906 

  
 

  
    0.0173 

  
 

  
        17.292 

  
 

  
       1.272 

Density                1052 
    

Specific weight               10315.9 
    

Measured Pressure           1784.528           182.095          13.394 

Piezometric Height 
  

 
    0.173 

  

 
        172.988 

  

 
       12.724 

Specific Energy 

     
 

 
 

  
 

  
 

(           

      0.2805           280.467          20.630 

Table 3.6: Calculations in terms of energy and pressure for the section 1 
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THEORY OF BORDA 

THEORETICAL PRESSURE in section 2 

Theoretical pressure          2317.216           236.290          17.381 

Theoretical piezometric pressure 
  

 
    0.225 

  

 
        224.625 

  

 
       16.523 

THEORETICAL ENERGY in section 2 

Energy Loss 

   
  

 

  
   

  

  
    

 

 
      0.039           38.549          2.836 

Specific Energy 
         

      0.242           241.918          17.795 

Table 3.7: Calculation of the theoretical values of energy and pressure in section 2, according to the theory of Borda 

 

THE THEORY OF THE DIFFUSER 

THEORETICAL  PRESSURE in section 2 

Theoretical pressure           2533.575           258.353          19.004 

Theoretical Piezometric 
Height  

  

 
    0.246 

  

 
        245.599 

  

 
       18.065 

THEORETICAL ENERGY in section 2 

Divergence angle  α [°C] 11 α [rad] 0.192 
 

  

Diameters Ratio  
  

  
 
 

    0.401 
   

  

Coefficient of separation  ζs (from figure) 0.150 
   

  

Friction coefficient  
(H. Blasius) 

   
 

     
    

  

  
 
 

  0.014 
   

  

Number of Resistance   
      

      
 0.025 

   
  

Number of Reynolds    
   

 
 

  

 
  27312.111 

   
  

Kinematic viscosity               
  

    

Energy Loss 
 

            

         
  

 

  
 

 

        0.018            17.576             1.293 

Specific Energy 
         

      0.263           262.891          19.337 

Table 3.8: Calculation of the theoretical values of energy and pressure in section 2, according to the theory of the diffuser 
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So, starting from the initial value of Pressure P1 measured in section 1 (in the previous 

paragraph we called it pressure 8), and from the calculations inherent the geometry of the pipe, 

we could obtain the results attended in terms of Pressure and Energy both considering to use the 

equations of Borda (fig. 3.18), and the one characterizing a diffuser (fig. 3.19).  

You can see them in the following graphs: 

 

 

Figure 3.18: Variation of Energy and Pressure from section 1 to section 2, considering Borda; 

 

 

 

Figure 3.19: Variation of Energy and Pressure from section 1 to section 2, considering the diffuser; 
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Of course we must underline that the values calculated by the equations represent what, from 

a theoretical point of view, it would happen passing from the section 1 (of 19 mm) to the section 2 

(of 30 mm). I considered this situation as coinciding with the first sensor situated at the beginning 

of the 30 mm diameter, but I am not sure about it, that’s why I am going to compare these 

theoretical results with the real one.  

Therefore in order to verify if the real pressure trend measured in my experiment is coherent with 

the result obtained from the theoretical analysis, I compare both the solutions summarizing the 

resulting values (table 3.9) which are then reported in the graph (figure 3.20 ). 

 

 

Position 
Distance  

[mm] 
Pressure Test  

[mmHg] 
Theoretical Pressure 

Borda [mmHg] 
Theoretical Pressure 

Diffuser [mmHg] 

8 0 13.39416061 13.39416061 13.39416061 

7 45 16.39095274 17.38130666 19.00420257 

3 115 19.09361535 17.38130666 19.00420257 

2 145 19.08177307 17.38130666 19.00420257 

1 175 19.48740386 17.38130666 19.00420257 

Table 3.9: Comparison between the real and theoretical pressures 

 

 

 

Figure 3.20: Pressures trend from section 1 to section 2, comparison between the theoretical and real values 
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 Flow rate = 35.7 liters per minute 

 

 

GEOMETRY OF THE SECTIONS 1 and 2 

 

Diameter 
      0.019 

      0.03 

Radius 
      0.0095 

      0.015 

Area 
    

       
  0.00028 

    
       

  0.00071 

Flow rate         0.00059512 

Velocity 

         
  

 
 2.099 

         
  

 
 0.842 

Table 3.10: Geometry of the sections 1 and 2 

 

 

SPECIFIC ENERGY and PRESSURE, section 1 

Acceleration of gravity g [m/s2] 9.806 
    

Kinetic energy 

  
 

  
    0.225   

 

  
        224.643   

 

  
       16.524 

  
 

  
    0.036   

 

  
        36.143   

 

  
       2.659 

Density                1052 
    

Specific weight               10315.9 
    

Measured Pressure          4289.357           437.690          32.195 

Piezometric Height 
  

 
    0.416   

 
        415.800   

 
       30.585 

Specific Energy 

     
 

 
 

  
 

  
 

(           

      0.640           640.443          47.108 

Table 3.11: Calculations in terms of energy and pressure for the section 1 
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THEORY OF BORDA 

THEORETICAL PRESSURE in section 2 

Theoretical pressure          5402.731           550.925          40.526 

Theoretical piezometric pressure 
  

 
    0.524   

 
        523.728   

 
       38.523 

THEORETICAL ENERGY in section 2 

Energy Loss 

   
  

 

  
   

  

  
    

 

 
      0.081           80.572          5.927 

Specific Energy 
         

      0.560           559.871          41.182 

Table 3.12: Calculation of the theoretical values of energy and pressure in section 2, according to the theory of Borda 

 

THE THEORY OF THE DIFFUSER 

THEORETICAL  PRESSURE in section 2 

Theoretical pressure          5857.704           597.320          43.938 

Theoretical Piezometric 
Height 

  

 
    0.568   

 
        567.832   

 
       41.767 

THEORETICAL ENERGY in section 2 

Divergence angle α [°C] 11 α [rad] 0.192 
  

Diameters Ratio  
  

  
 
 

    0.401 
    

Coefficient of separation ζs (from figure) 0.15 
    

Friction coefficient 
(H. Blasius) 

   
 

     
    

  

  
 
 

  0.012 
    

Number of Resistance   
      

      
 0.022 

    

Number of Reynolds    
   

 
 

  

 
 39485.659 

    

Kinematic viscosity              
    

Energy Loss 
 

            

         
  

 

  
 

 

       0.036            36.468           2.682 

Specific Energy 
         

      0.604           603.975          44.426 

Table 3.13: Calculation of the theoretical values of energy and pressure in section 2, according to the theory of the diffuser 
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As before, starting from the initial value of Pressure P1 measured in section 1 (pressure 8), and 

from the calculations inherent the geometry of the pipe, we could obtain the results attended in 

terms of Pressure and Energy both considering to use the equations of Borda (fig. 3.21), and the 

one characterizing a diffuser (fig. 3.22).  

You can see them in the following graphs: 

 

 

Figure 3.21: Variation of Energy and Pressure from section 1 to section 2, considering Borda; 

 

 

 

Figure 3.22: Variation of Energy and Pressure from section 1 to section 2, considering the diffuser; 
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Keeping as valid the consideration that I did in the previous case, again I compare the real 

pressure trend with the result obtained from the theoretical analysis to verify if they are still 

congruent. Have a look at the next table followed by the graph (figure 3.23). 

 

 

Position 
Distance 

 [mm] 
Pressure Test 

[mmHg] 
Theoretical Pressure  

Borda [mmHg] 
Theoretical Pressure 

diffuser [mmHg] 

8 0 32.1946911 32.1946911 32.1946911 

7 45 38.46009929 40.52557811 43.93830548 

3 115 43.91934536 40.52557811 43.93830548 

2 145 43.63812982 40.52557811 43.93830548 

1 175 43.93911968 40.52557811 43.93830548 

Table 3.14: Comparison between real and theoretical pressures 

 

 

 

Figure 3.23: Pressures trend from section 1 to section 2, comparison between the theoretical and real values 
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 Flow rate = 49.5 liters per minute 

 

 

GEOMETRY OF THE SECTIONS 1 and 2 

 

Diameter 
      0.019 

      0.03 

Radius 
      0.00950 

      0.01500 

Area 
    

       
  0.00028 

    
       

  0.00071 

Flow rate         0.00083 

Velocity 

         
  

 
 2.91051 

         
  

 
 1.16744 

Table 3.15: Geometry of the sections 1 and 2 

 

SPECIFIC ENERGY and PRESSURE, section 1 

Acceleration of gravity g [m/s2] 9.806 
    

Kinetic energy 

  
 

  
    0.432   

 

  
        431.933   

 

  
       31.771 

  
 

  
    0.069   

 

  
        69.494   

 

  
       5.112 

Density                1052 
    

Specific weight               10315.9 
    

Measured Pressure          8916.340           909.831          66.923 

Piezometric Height 
  

 
    0.864   

 
        864.329   

 
       63.577 

Specific Energy 

     
 

 
 

  
 

  
 

(           

      1.296           1296.262          95.348 

Table 3.16: Calculations in terms of energy and pressure for the section 1 
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THEORY OF BORDA 

THEORETICAL PRESSURE in section 2 

Theoretical pressure          11057.085           1127.509          82.939 

Theoretical piezometric pressure 
  

 
    1.072   

 
        1071.848   

 
       78.841 

THEORETICAL ENERGY in section 2 

Energy Loss 

   
  

 

  
   

  

  
    

 

 
      0.155           154.920          11.395 

Specific Energy 
         

      1.141           1141.341          83.952 

Table 3.17: Calculation of the theoretical values of energy and pressure in section 2, according to the theory of Borda 

 

THE THEORY OF THE DIFFUSER 

THEORETICAL  PRESSURE in section 2 

Theoretical pressure          11936.201           1217.154          89.533 

Theoretical Piezometric 
Height 

  

 
    1.157   

 
        1157.067   

 
       85.109 

THEORETICAL ENERGY in section 2 

Divergence angle α [°C] 11 α [rad] 0.192 
  

Diameters Ratio  
  

  
 
 

    0.401 
    

Coefficient of 
separation 

ζs (from figure) 0.15 
    

Friction coefficient 
(H. Blasius) 

  

 
 

     
    

  

  
 
 

  
0.011 

    

Number of Resistance   
      

      
 0.021 

    

Number of Reynolds    
   

 
 

  

 
 54752.171 

    

Kinematic viscosity              
    

Energy Loss 
 

            

         
  

 

  
 

       0.070            69.701           5.127 

Specific Energy 
         

      1.227           1226.561          90.221 

Table 3.18: Calculation of the theoretical values of energy and pressure in section 2, according to the theory of the diffuser 
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Again, starting from the initial value of Pressure P1 measured in section 1 (pLV), and from the 

calculations inherent the geometry of the pipe, we could obtain the results attended in terms of 

Pressure and Energy both considering to use the equations of Borda (fig. 3.22), and the one 

characterizing a diffuser (fig. 3.23).  

You can see them in the following graphs: 

 

 

Figure 3.24: Variation of Energy and Pressure from section 1 to section 2, considering Borda; 

 

 

 

Figure 3.25: Variation of Energy and Pressure from section 1 to section 2, considering the diffuser; 
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Once again I compare the real pressure trend with the result obtained from the theoretical 

analysis to verify if they are still congruent. The results are reported in next table followed by the 

graph (figure 3.26). 

 

 

Position Distance [mm] Pressure Test [mmHg] 
Theoretical Pressure - 

Borda [mmHg] 
Theoretical Pressure - 

diffuser [mmHg] 

8 0 66.9235 66.92349874 66.92349874 

7 45 80.28429 82.93856016 89.5327576 

3 115 87.96788 82.93856016 89.5327576 

2 145 88.27642 82.93856016 89.5327576 

1 175 88.17877 82.93856016 89.5327576 

Table 3.19: Comparison between real and theoretical pressures 

 

 

 

Figure 3.26: Pressures trend from section 1 to section 2, comparison between the theoretical and real values 
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theory of the diffuser as correct for my device. The data correspond to the fast exact behaviour I 

was attended for the pressures in the section 2, after the expansion of the pipe. The only 

difference is that in the reality the vein takes a little longer distance to reattach. I detect the 

reattachment of the vein in the position 3, situated at a distance of 115 mm from the first pressure 

sensor. I can suppose that maybe this phenomenon could be fulfilled even at a shorter distance, in 

a region between the position 7 and 3, but I cannot know it because it was not possible to take 

farther measurement in that area. 
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CHAPTER 4  
PRESSURES – PULSATILE FLOW 

As I already said, the pulse duplicator is designed to assess heart valve prosthesis performance 

under simulated cardiac conditions. The system replicates the function of the heart’s ventricle 

which generates pulsatile flow through a heart valve in the model left Heart. The purpose of the 

device is thus to simulate the mechanical and hemodynamic functions of the left ventricle of the 

human heart to investigate the flow regimes through and around artificial heart valves. In this 

chapter I will analyze the behavior of pressures in this area, upstream and downstream of the 

aortic valve. 

4.1 Introduction to the physiological system 

In order to understand the importance of studying the trend of pressures around the aortic valve 

and to be able to compare the physiological reality with the functionality of the experimental 

model, I frame the human systemic circulation briefly. 

 

The cardiovascular (or circulatory) system provides a transport mechanism for oxygen through the 

body as a fuel source for cellular respiration, and then the return transport of carbon dioxide, a by-

product of cellular respiration, that the body expels as waste through breathing. It also provides 

for the transport of amino acids, nutrients, hormones, and the other components that make up 

blood. It is composed of the heart and blood vessels, including arteries, veins, and capillaries. Our 

bodies actually have two circulatory systems: the pulmonary circulation is a short loop from the 

heart to the lungs and back again, and the systemic circulation sends blood from the heart to all 

the other parts of our bodies and back again.  

The heart is the key organ in the circulatory system. It provides the driving force as it acts as the 

hydraulic pump for the body constantly moving the blood in a continuous flow though the various 

http://kidshealth.org/parent/general/body_basics/lungs.html
http://kidshealth.org/parent/general/body_basics/blood.html
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vessels. The heart has four chambers, each isolated by a set of four valves. In the upper 

hemisphere of the heart are the atria, and the lower hemisphere are the ventricles.  

 

 

 

Figure 4.1: human heart and circulation 

 

 

Oxygen-poor and carbon dioxide-rich blood flows into the right atrium from the body and is 

contained there momentarily until the opening of the tricuspid valve, which allows it to travel into 

the right ventricle (this process happens during diastole, one part of a complete cardiac cycle). 

During systole, the second part of the cardiac cycle, the heart muscles contract. The atrium 

contracts first, producing an additional blood flow from the right atrium to the right ventricle. 

Once the right ventricle fills completely the ventricle contracts allowing for a rush of blood up 

through the pulmonary valve and into the pulmonary artery where the blood will be transported 

to the lungs in order to allow the carbon dioxide to exit the blood and allow for an intake of 

oxygen. The structure of the heart with its valves allows for the heart to work while preventing 

backflow into the chambers due to low pressure drops when certain chambers are empty or filled. 

This process is repeated as oxygen rich blood returns to the left atrium from the lungs via the 

pulmonary veins. When the mitral valve opens, blood flows into the left ventricle. During the same 
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beat which previously allowed the right ventricle to contract (systole) the left ventricle contracts 

pushing the blood through the aortic valve and into the aorta. The aorta carries oxygen rich blood 

to the systemic circulation, which provides the entire body oxygen. 

The heart usually beats from 60 to 100 times per minute, but can go much faster when 

necessary.  For example when humans exercise the increase in the heart rate is a direct result of 

the cells needing oxygen at a faster rate and therefore the blood must deliver it at a higher flow 

rate through the body. 

Blood pressure measured is recorded in millimeters (mm) of mercury (Hg). Average air pressure is 

760 mm of Hg. Average blood pressure is 120 mmHg over 80 mmHg, with the first number 

representing systole, and the second measuring diastole. The numbers represent the relative 

pressure in the blood, which is above atmospheric pressure. This means that the actual pressure in 

the body is 760mm of Hg plus the systole or the diastole number. 

Blood pressure is generated by the rhythmic pumping of the heart. Here, I focus on the action of 

the left side of the heart. Figure 4.2 shows the cardiac cycle. The length of time for the cardiac 

cycle is 0.8 seconds for a person with an average heartbeat of 72-74 beats per minutes. As blood 

flows into the heart from the lungs it enters the left atrium and is prevented from entering the left 

ventricle by the closed mitral valve. The mitral valve opens as the upper hemisphere of the heart 

contracts forcing the blood into the ventricle. Contraction of the muscle in the ventricle forces 

blood up through the aortic valve and into the aorta at high pressure. The pressure produces 

blood flow through the body. As the ventricle relaxes, the aortic valve closes, preventing backflow 

into the ventricle.  

In the figure, the top picture follows the cardiac cycle starting in late diastole. The graph below the 

diagram emphasizes changes in pressure in different regions of the heart. The aortic pressure goes 

through a periodic increase and decrease in pressure, between diastole and systole, with its 

lowest (diastole) being about 40 mm of Hg less than the greatest (systole). Blood pressure 

measured by your doctor reflects the pressure changes in the aorta. (6) 
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Figure 4.2: Cardiac circle 

 

4.2 Analysis upstream of the aortic valve 

In the following paragraphs we will analyse the pressures upstream of the valve; beyond this, I 

will focus on the effect of the ventricular pressures in some fundamental parameters for the 

verification of the hydrodynamics performance of the valves, referring directly to the guidelines 

given in the normative. 

 

4.2.1 Experimental Analysis - Pressure Trend in physiological working conditions 

  

In chapter 3 we investigated the behavior of the pressures at different distances from the aortic 

valve finding out that after the dissipation zone due to the geometry of the pipe, in the last three 

measurement points before the valve the flow resumes its layout occupying the whole area and 

showing a constant trend of pressures. That experiment was carried out at constant flow, while in 



Analysis upstream of the aortic valve 
 

67 
 

order to understand what does it happen in the reality around the aortic valve we need to 

reproduce the same conditions we find in the heart, that is operating with a pulsatile flow.  

Thanks to the pulse duplicator we could thus measure the pressures at different distances before 

and immediately after the valve, evaluating the differences respect to the previous case. 

  

I measure the pressures in three points, two upstream and one downstream of the aortic valve; 

first of all keeping the latter fixed, we analyze the pressures at 1 and 2 diameters before the valve. 

We choose these two points because, investigating the pressures trend in steady condition for the 

different flow rates, we verified that in that positions the vein reattached, that is, after the 

disturbances given by the geometry changing in diameter, the liquid section reoccupied the entire 

pipe diameter, as I can see in figures 3.11, 3.12, 3.13. Therefore we selected these points to test 

how the situation change having a pulsatile flow which represents the physiologic condition.  

 

We decided to record the flow for different values in terms of peaks of flow rates 

corresponding to 20, 25, 30, and 35 liters per minute, each of them taken together with the 

respective pressures in the same three points at one and two diameters upstream (1D and 2D), 

and immediately downstream of the aortic valve. I reported all the results in the following graphs. 

 

 

Figure 4.3: Flow of peak around 20 l/min, (0.33 l/s) with the pressures at 1D, 2D (pLV1D, pLV2D) upstream and   
       the one downstream of the aortic valve (pAO) 
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Figure 4.4: Flow of peak around 25 l/min, (0.41 l/s) with the pressures at 1D, 2D (pLV1D, pLV2D) upstream and   
       the one downstream of the aortic valve (pAO) 

 

 

 

Figure 4.5: Flow of peak around 30 l/min, (0.5 l/s) with the pressures at 1D, 2D (pLV1D, pLV2D) upstream and   
       the one downstream of the aortic valve (pAO) 
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Figure 4.6: Flow of peak around 35 l/min, (0.58 l/s) with the pressures at 1D, 2D (pLV1D, pLV2D) upstream and   
       the one downstream of the aortic valve (pAO) 

 

 

So as you can see from the previous figures, we recorded four different flows with peaks of 20, 

25, 30, and 35 liters per minute, and for each one we measured the pressures in the points of 

interest. 

Let’s see the differences between all the flows in figure 4.5: 

 

 

4.7: Pulsatile flows characterised by peaks of 20, 25, 30 and 35 l/min 
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The next step consists in analysing the effect of the acceleration of the flow on the pressures for 

the different sections and for the different flow rates recorded. Since the acceleration   is the 

derivative of the velocity   in time, we easily find that for a constant area A it is given by the 

derivative of the flow rate Q in time: 

 

   
  

  
             ( 4.1) 

               ( 4.2) 

  

  
 

      

  
   

  

  
            ( 4.3) 

 

 

Let’s study the problem fixing from time to time the value of the flow rate we want in every 

flow, investigating the relationship between their derivatives and pressures.  

 

 

 Reference flow rate = 20 l/min 

 

I start fixing the flow rate equal to 20 l/min. It coincide with the peak value of the first flow I 

recorded, so that the respective derivative will be of course zero (yellow dot in figure 4.6): 

 

 

Figure 4.8: pulsatile flow with peak of 20 l/min (red line) with its derivative (purple line); 
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The value in the flow curve corresponding to the fixed one (always 20 l/min) is characterised by 

a time in the x-axis, called ‘tpeak20’. Hence I verify the relations between the accelerations and the 

pressures at that time highlighted also in figure 4.1. The same operation will be repeat for all the 

other curves, calculating for every one the derivatives and the pressures.  

Going back to the flows I recorded, I find all the moments in which I have the value of 20 l/min, 

 

 

 

Figure 4.9: Pulsatile flow rate curves of peaks equal to 20, 25, 30 and 35 litres per minute crossed by the line Q=20l/min 

 

and for each point crossed by the line equal to 20 l/min I report the relations of the respective 

acceleration with the pressure measured, for both the two points upstream of the aortic valve, at 

1D and 2D from it (figures 4.8 and 4.9).  

 

In practice, keeping the value of 20 l/min (0.36 l/s) as fixed, we take for every curve the 

correspondent values of pressures.  

We caught indeed the pressure recorded at 7 time steps which are: 

- the peak time, moment at which the Q=20 l/min peak curve records its higher value; 

- the 2 times at which the flow rate is 0.36 l/s in the curve of 25 l/min peak; 

- the 2 times at which the flow rate is 0.36 l/s in the curve of 30 l/min peak; 

- the 2 times at which the flow rate is 0.36 l/s in the curve of 35 l/min peak 
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Figure 4.10: Pressures at 1 diameter (1D) upstream of the aortic valve, function of the acceleration of the flow, fixed Q=20l/min 

 

 

 

Figure 4.11: Pressures at 2 diameters (2D) upstream of the aortic valve, function of the acceleration of the flow, fixed 
Q=20l/min 
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 Reference flow rate = 25 l/min 

 

In this case I repeat all the previous operations by fixing the flow rate equal to 25 l/min. Of 

course I will not consider the first flow recorded which never reaches this value, being its peak 

equal to 20 l/min. In this situation the value of 25 coincides with the peak value of the second flow 

I recorded, so that the respective derivative will be of course zero (yellow dot in figure 4.10): 

 

 

Figure 4.12: pulsatile flow with peak of 25 l/min (red line) with its derivative (purple line); 

 

Even in this case I find out all the points in the curves characterised by a value of 25 l/min (that 

is 0.4 l/s): 

 

 

Figure 4.13: Pulsatile flow rate curves of peaks equal to 20, 25, 30 and 35 litres per minute crossed by the line Q=25l/min 
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and for each of these points I report the relations of the respective acceleration with the pressure 

measured at 1D and 2D from the valve (figures 4.12 and 4.13).  

 

 

 

Figure 4.14: Pressures at one diameter (1D) upstream of the aortic valve, function of the acceleration of the flow, fixed Q=25l/min 

 

 

 

Figure 4.15: Pressures at 2 diameters (2D) upstream of the aortic valve, function of the acceleration of the flow, fixed Q=25l/min 
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 Reference flow rate = 15 l/min 

 

Even if we don’t have the peak flow equal to 15 l/min, we decided to fix this value and evaluate 

the derivatives and pressures to obtain additional data and be able to compare the results.   

 

 

 

Figure 4.16: Pulsatile flow rate curves of peaks equal to 20, 25, 30 and 35 litres per minute crossed by the line Q=15l/min 

 

 

 

Figure 4.17: Pressures at 1 diameter (1D) upstream of the aortic valve, function of the acceleration of the flow, fixed Q=15l/min 
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Figure 4.18: Pressures at 2 diameters (2D) upstream of the aortic valve, function of the acceleration of the flow, fixed Q=15l/min 

 

 

 Final Results  

 

In the following charts I gathered the data on the relationship between acceleration and 

pressure found for the three values of flow rates of 20, 25 and 15 litres per minute for both the 

two sections of 1D and 2D. 

 

 

Figure 4.19: Pressure trend function of the acceleration of the flow in the section at 1D upstream of the valve for the three flow 
rates of 20, 25 and 15 litres per minute; 
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Figure 4.20: Pressure trend function of the acceleration of the flow in the section at 2D upstream of the valve for the three flow 
rates of 20, 25 and 15 litres per minute; 

 

As I can see from the graphs, the pressures for the different flow rates follow the same trend, 

they decrease with the increase of the acceleration, while, keeping the acceleration as constant, 

they decrease for lower values of the flow rate; 
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5,0 l/min, mean aortic pressure = 100 mmHg, and systolic duration = 35%.  
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Figure 4.21: Minimum performance requirements given by the normative for the in vitro test; 

 

In our case we refer to the aortic valve, characterized by a diameter of 23 millimeters.  

The first important parameter to control is thus the effective orifice area (EOA or AEO), why is it so 

important? The aortic valve is fundamental for the functioning of the heart and the systemic 

circulation, and its malfunctioning always affects the wellness of the organism. One of the most 

common consequences of the pathologies concerning the heart valves is the stenosis, in which the 

valve, in its maximum opening, has an orifice through which blood flows in a lower amount 

respect to the physiological one. The flow pattern across an aortic stenosis can be compared to 

the one occurring in a circular pipe of assigned diameter, inside which it flows a 

one-dimensional current. The latter has to cross the stenotic valve, which hydraulically looks like a 

contraction of the pipe, passing through a smaller diameter respect to the initial one. In particular 

as the flows passes through the stenotic valve, a jet is produced. The flow accelerates from some 

distance upstream from the stenosis in the left ventricular outflow tract (location 1 in figure 4.22) 

as far downstream as the vena contracta (location 2). The vena contracta corresponds to the 

location where the cross sectional area of the jet is minimal. The area is named EOA. Beyond the 

vena contracta, the fluid decelerates as the area occupied by the flow increases to fill the cross-
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section of the ascending aorta. The jet is rapidly lost in a region of turbulent mixing which involves 

significant fluid energy dissipation. In this region, the pressure increases until it reaches a 

maximum at the location where the reattachment of the flow occurs (location 3). The difference 

between the ventricular pressure and the aortic one is the so-called transvalvular pressure 

gradient.  (7) 

 

 

4.22: Schema of a systolic flow through an aortic stenosis 

 

 

As I can see in the previous figure the value of EOA is linked to other parameters that it is 

important to analyze. To describe their meaning I refer to one of the previous pressure-graph, 

highlighting the points of interest. 
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4.23: Aortic pressure (pAO) and ventricular pressure (pLV) crossing; 

 

The main parameters of interest are: 

 Pressure 1 and 2 cross: they represents the two moments at which the curve of the 

ventricular pressure crosses the one of the aortic.  

In particular the first cross correspond to the instant at which the valve opens, while the 

second correspond to that of its closure; 

 Time crossing: it is the period of time in which the valve stay open, that is the time 

between the two crosses; 

 Time Crossing percent: it is the percentage of the time crossing in the total period of a 

cycle; 

 TransAortic Max Pressure: it is the maximum difference in terms of pressure between the 

two curves; 

 TransAortic Mean Pressure [CT]: it is the mean value of the pressure between the two 

pressure curves (aortic and ventricular one); 

 TransAortic Mean Pressure [CP]: it is the mean value between the aortic and ventricular 

pressures, by just considering their positive value respect to the total mean; 

 

Taking everything into account let’s go back to the analysis of the results in our tests. We will 

compare, the operative conditions being equal, the differences involving these parameters 

between the two upstream sections 1D and 2D for different flow rates (20, 25, 30 and 35 l/min).  
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All the test are carried out with a physiological heart rate of 67 bpm (beats per minute). 

 

 Reference flow rate = 20 l/min 

 

 

Figure 4.24: differences in hydrodynamics valve performance between the sections 1D and 2D for the pulsatile flow of 20 l/min; 

 

 Reference flow rate = 25 l/min 

 

 

Figure 4.25: differences in hydrodynamics valve performance between the sections 1D and 2D for the pulsatile flow of 25 l/min; 
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 Reference flow rate = 30 l/min 

 

 

Figure 4.26: differences in hydrodynamics valve performance between the sections 1D and 2D for the pulsatile flow of 30 l/min; 

 

 

 Reference flow rate = 35 l/min 

 

 

Figure 4.27: differences in hydrodynamics valve performance between the sections 1D and 2D for the pulsatile flow of 35 l/min; 
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Analysing the results in terms of the parameters correlated to the hydrodynamics valve 

performance we can say that we recorded fast the same values in the two sections of 1 and 2 

diameters upstream of the valve. The most important factor we wanted to verify was the EOA, 

that for all the tests we carried on, verified the demand of the normative of being higher than 1.  

4.3 Pressure trend downstream of the aortic valve 

By working in physiological conditions of pulsatile motion, the response in terms of pressure 

downstream of the valve shows values that are not properly physiological. As it was already 

highlighted in the charts 4.3-4.6, a problem involving the birth of high pressure peaks had arisen. If 

we refer to the physiological chart we are expected to obtain (figure 4.2), it is evident that the 

results recorded are far from the reality. Hence, we diverted the analysis from which we began, to 

study a solution to fix it.  

We decided to act on the system by inserting a damper represented by an aortic compliance. The 

following photos show the original configuration, without the compliance chamber, and the 

second one represents the situation after its installation: 

 

 

   

Figure 4.28: Pulse duplicator with the aortic compliance (right), and before its installation (left)  
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The function of this tank is to simulate the capability of the blood vessel volume to increase as 

the blood pressure increases. In the human body, in effect, following closure of the aortic valve, 

tension forms in the dilated aorta because of the sudden force increase against the aortic wall due 

to the abrupt change in blood volume and pressure. This tension of the elastic vessel wall propels 

blood through the circulatory system after it is pumped from the heart. A similar effect is obtained 

by using a trapped volume of air above the circulatory fluid. When the pulsatile pump delivers 

water to the chamber, during systole, the fluid is temporarily stored inside the chamber until the 

valve closes to allow the pump to fill, during diastole. The stored energy then pushes the fluid 

through the loop. Therefore the compliance chamber we added to the system emulates the 

elasticity of all blood vessels.  

 

The Normative (3) suggests the use of a compliance chamber and gives us a formula to indicate 

how to proceed with its dimensions. 

The recommended definition of compliance, over the pulse pressure, to be used in testing and 

reporting values is: 

       
       

          
 

 

 

where: 

- C is the compliance, 
 

    
, that is the relation between the variation in volume and the 

variation in pressure. The normative suggests some values, equal to     
 

    
. It 

means that for every change in pressure of 1 mmHg, it changes its volume by 0.32 per 

cent; 

- p1 is the diastolic pressure, in mmHg. Physiologically it corresponds to a value of around 

80 mmHg (figure 4.2); 

- p2 is the systolic pressure, in mmHg. Physiologically it corresponds to a value of around 

120 mmHg (figure 4.2); 

- d1 is the outside diameter at p1, in millimetres 

- d2 is the outside diameter at p2, in millimetres 
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Fixed the diameter d1 of the aortic arch in diastolic pressure, we can find out the value of d2 

from the formula as: 

 

                   

 

This number gives us the diameter of the vessels when they expand to contain the increase of 

pressures. The difference between the two areas considering the length of the portion of the arch 

considered, gives us the volumetric gradient of the flow that the aortic compliance needs to be 

able to contain. 

 

             
 

 
    

    
     

 

The goal of the compliance will thus be that of absorbing all the expansion we need in order to 

maintain the flow constant, as much as possible. 

In the follow I report the test we made for the aortic pressure before (figure 4.22) and after the 

installation of the compliance (figure 4.23): 

 

 

 

Figure 4.29: Aortic pressure without the compliance; 
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Figure 4.30: Aortic Pressure after the addition of the compliance; 

 

Comparing the situation in terms of pressures, we verified that the adoption of the solution of 

the compliance was useful to improve the reliability of the device. As a matter of fact the peak of 

the aortic pressure decreases of fast 120 mmHg after the installation of the compliance, which 

means that the solution was correct. However we still record a value which is too high respect to 

what it is expected from the physiological pressure, so that we need to work to completely 

remove the problem. 
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understand its effect on the behavior of the pressures. The test confirmed that in the area we use 

to take the measurement of the pressures, the vein of the flow already attached so the idea of 
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linking the two parts with the diffuser resulted being a good solution. After the analysis of the 

pressures in conditions of constant flow, we passed to study their behavior in pulsatile flow; this 

situation is important because it finally replicates the function of the heart’s ventricle which 

generates pulsatile flow through a heart valve in the left Heart. In particular we investigate the 

trend of pressures up upstream and downstream of the aortic valve. First of all, fixed the aortic 

pressure, we took the measurements in two sections at one diameter and two diameters before 

the valve. The test highlighted that the differences in terms of hydraulic parameters such as the 

transAortic mean pressure and the effective orifice area between the two sections are negligible, 

so that it does not matter whenever we choose the first or the second point as reference for the 

value of the pressure upstream of the valve. Moreover we analysed the relation between these 

pressures and the acceleration of the flow, in particular they decreases with the increasing of the 

acceleration. It will be a theme to examine more in detail in the next future. 

Talking about the study of the pressure downstream of the aortic valve, a problem involving the 

birth of high pressure not physiological peaks had arisen. Hence, we diverted the analysis from 

which we began, to study a solution to fix it. To solve the problem we inserted a damper 

represented by an aortic compliance, with which the peak of the aortic pressure decreases 

consistently. Even if we still need to work to completely remove the problem, it resulted being a 

good idea to follow.  

Taking everything into account I can be satisfactory of the work done on the pulse duplicator, 

which confirmed to be an excellent device with great possibility for improvement.  

  



Flow and Pressure behaviour in a pulse duplicator loop: experimental analysis 

88 
 

BIBLIOGRAPHY 

1. Bellio, Silvia. Messa a punto di un dispositivo Pulse Duplicator per l'analisi sperimentale di 

protesi cardiovascolari. aa. 2014-2015. Tesi di laurea in bioingegneria, Università degli studi di 

Padova. 

2. Di Micco, Luigi. Messa a punto di un circuito idraulico che simula la circolazione 

cardiovascolare sistemica umana. aa. 2013.2014. Tesi di laurea in ingegneria civilie, Università 

degli Studi di Padova. 

3. CEN, European Committee for Standardization. European Standard for Cardiovascular 

Implants - Cardiac valve protheses. Brussels 2009 : s.n. 

4. Ghetti, A. Idraulica. s.l. : edizioni libreria cortina, 2006. 

5. Donald C. Rennels, Hobart M. Hudson. Pipe Flow: A Practical and Comprehensive Guide.  

6. Rushmer, Robert F. Structure and Function of the Cardiovascular System. Handbook of 

Research Methods in Cardiovascular Behavioral Medicine.  

7. Damien Garcia, Philippe Pibarot, Louis-Gilles Durand. Analytical modeling of the 

instantaneous pressure gradient across the aortic valve. Journal of Biomechanics.  

8. [Online] http://www.transonic.com/resources/research/ts410-tubing-flow-module-

specifications/. 

 

 



Conclusion of the work 
 

89 
 

LIST OF FIGURES 

Figure 2.1: Transonic tubing module TS410 (on the left), and inline ME19PXN flow sensor (on the right) 16 

Figure 2.2: Data sheet of the flow sensor 17 

Figure 2.3: Second data sheet of the flow meter; 17 

Figure 2.4: Block scheme of the new configuration 18 

Figure 2.5: water tank with the pump 19 

Figure 2.6: closed loop in constant flow 19 

Figure 2.7: diverter 20 

Figure 2.8: Density calculation, test 1 21 

Figure 2.9: Density calculation, test 2 21 

Figure 2.10: Density calculation, test 3 21 

Figure 2.11: Density calculation, test 4 22 

Figure 2.12: Recorded versus calculated flow rate 23 

Figure 2.13: Recorded and calculated  flow rate, function of the temperature; 24 

Figure 2.14: Recorded versus calculated flow rate, weight +200g 25 

Figure 2.15: Recorded versus calculated flow rate, weight -200 grams 26 

Figure 2.16: Recorded versus calculated flow rate, filling time +1second 27 

Figure 2.17: Recorded versus calculated flow rate, filling time -1second 28 

Figure 2.18: Recorded versus calculated flow rate (weight +200g, filling time +1second) 29 

Figure 2.19: Recorded versus calculated flow rate, weight +200g filling time -1second 30 

Figure 2.20: Recorded versus calculated flow rate, weight -200g filling time +1second 31 

Figure 2.21: Recorded versus calculated flow rate, weight -200g filling time -1second 32 

Figure 2.22: Recorded versus calculated flow rate comparing the tests 34 

Figure 2.23: Recorded flow rate function of the errors comparing the tests 34 

Figure 3.1: Section of the pulse duplicator interested by the pressure tests at constant flow 35 

Figure 3.2: Specifications of one Piezometrics sensor, provided by the manufacturer; 37 

Figure 3.3: Piezotronics sensor with its transmission cable (to the left) and pressure transducer installed in the device; 37 

Figure 3.4: Calibration curve of one piezotronics sensor, provided by the company; 38 

Figure 3.5: attachment of the pressure sensors 39 

Figure 3.7: Particular of the connection between the column, the sensors and the conditioning unit; 39 

Figure 3.6: column for the calibration 39 

Figure 3.8: Sensor 1 output versus pressure, with the calibration line resulting; 40 

Figure 3.9: Sensor 2 output versus pressure, with the calibration line resulting; 41 

Figure 3.10: Sensor 3 output versus pressure, with the calibration line resulting; 41 

Figure 3.11: change in geometry, sudden expansion 43 

Figure 3.12: Example of a diffuser 44 

Figure 3.13: Diagram for the calculation of   , given α and (d1/d2)2 45 

file:///G:/Tesi.docx%23_Toc432285100


Flow and Pressure behaviour in a pulse duplicator loop: experimental analysis 

90 
 

Figure 3.14: Pressures versus distance, Q=25 l/min 47 

Figure 3.15: Pressures versus distance, Q=35 l/min 48 

Figure 3.16: Pressures versus distance, Q=50 l/min 48 

Figure 3.17: Pressures versus distances, at different flow rates 49 

Figure 3.18: Variation of Energy and Pressure from section 1 to section 2, considering Borda; 52 

Figure 3.19: Variation of Energy and Pressure from section 1 to section 2, considering the diffuser; 52 

Figure 3.20: Pressures trend from section 1 to section 2, comparison between the theoretical and real values 53 

Figure 3.21: Variation of Energy and Pressure from section 1 to section 2, considering Borda; 56 

Figure 3.22: Variation of Energy and Pressure from section 1 to section 2, considering the diffuser; 56 

Figure 3.23: Pressures trend from section 1 to section 2, comparison between the theoretical and real values 57 

Figure 3.24: Variation of Energy and Pressure from section 1 to section 2, considering Borda; 60 

Figure 3.25: Variation of Energy and Pressure from section 1 to section 2, considering the diffuser; 60 

Figure 3.26: Pressures trend from section 1 to section 2, comparison between the theoretical and real values 61 

Figure 4.1: human heart and circulation 64 

Figure 4.2: Cardiac circle 66 

Figure 4.3: Flow of peak around 20 l/min, (0.33 l/s) with the pressures at 1D, 2D (pLV1D, pLV2D) upstream and         the one 

downstream of the aortic valve (pAO) 67 

Figure 4.4: Flow of peak around 25 l/min, (0.41 l/s) with the pressures at 1D, 2D (pLV1D, pLV2D) upstream and         the one 

downstream of the aortic valve (pAO) 68 

Figure 4.5: Flow of peak around 30 l/min, (0.5 l/s) with the pressures at 1D, 2D (pLV1D, pLV2D) upstream and         the one 

downstream of the aortic valve (pAO) 68 

Figure 4.6: Flow of peak around 35 l/min, (0.58 l/s) with the pressures at 1D, 2D (pLV1D, pLV2D) upstream and         the one 

downstream of the aortic valve (pAO) 69 

4.7: Pulsatile flows characterised by peaks of 20, 25, 30 and 35 l/min 69 

Figure 4.8: pulsatile flow with peak of 20 l/min (red line) with its derivative (purple line); 70 

Figure 4.9: Pulsatile flow rate curves of peaks equal to 20, 25, 30 and 35 litres per minute crossed by the line Q=20l/min 71 

Figure 4.10: Pressures at 1 diameter (1D) upstream of the aortic valve, function of the acceleration of the flow, fixed Q=20l/min 72 

Figure 4.11: Pressures at 2 diameters (2D) upstream of the aortic valve, function of the acceleration of the flow, fixed Q=20l/min 72 

Figure 4.12: pulsatile flow with peak of 25 l/min (red line) with its derivative (purple line); 73 

Figure 4.13: Pulsatile flow rate curves of peaks equal to 20, 25, 30 and 35 litres per minute crossed by the line Q=25l/min 73 

Figure 4.14: Pressures at one diameter (1D) upstream of the aortic valve, function of the acceleration of the flow, fixed Q=25l/min

 74 

Figure 4.15: Pressures at 2 diameters (2D) upstream of the aortic valve, function of the acceleration of the flow, fixed Q=25l/min 74 

Figure 4.16: Pulsatile flow rate curves of peaks equal to 20, 25, 30 and 35 litres per minute crossed by the line Q=15l/min 75 

Figure 4.17: Pressures at 1 diameter (1D) upstream of the aortic valve, function of the acceleration of the flow, fixed Q=15l/min 75 

Figure 4.18: Pressures at 2 diameters (2D) upstream of the aortic valve, function of the acceleration of the flow, fixed Q=15l/min 76 

Figure 4.19: Pressure trend function of the acceleration of the flow in the section at 1D upstream of the valve for the three flow 

rates of 20, 25 and 15 litres per minute; 76 

Figure 4.20: Pressure trend function of the acceleration of the flow in the section at 2D upstream of the valve for the three flow 

rates of 20, 25 and 15 litres per minute; 77 

Figure 4.21: Minimum performance requirements given by the normative for the in vitro test; 78 

4.22: Schema of a systolic flow through an aortic stenosis 79 

4.23: Aortic pressure (pAO) and ventricular pressure (pLV) crossing; 80 



Conclusion of the work 
 

91 
 

Figure 4.24: differences in hydrodynamics valve performance between the sections 1D and 2D for the pulsatile flow of 20 l/min; 81 

Figure 4.25: differences in hydrodynamics valve performance between the sections 1D and 2D for the pulsatile flow of 25 l/min; 81 

Figure 4.26: differences in hydrodynamics valve performance between the sections 1D and 2D for the pulsatile flow of 30 l/min; 82 

Figure 4.27: differences in hydrodynamics valve performance between the sections 1D and 2D for the pulsatile flow of 35 l/min 82 

Figure 4.28: Pulse duplicator with the aortic compliance (right), and before its installation (left) 83 

Figure 4.29: Aortic pressure without the compliance; 85 

Figure 4.30: Aortic Pressure after the addition of the compliance; 86 

 


