UNIVERSITÀ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI INGEGNERIA CIVILE, EDILE E AMBIENTALE

Corso di Laurea Magistrale in Ingegneria Civile

Curriculum Strutture

TESI DI LAUREA MAGISTRALE

Instabilità Multimodale Diffusa: avanzamenti nel calcolo

autonomo con il metodo $\lambda - \chi$ per strutture qualsiasi.

Relatore:

Prof. Ing. Roberto SCOTTA

Correlatore – Partner Aziendale CIMOLAI S.p.A.: Ing. Alessandro CATANZANO

Controrelatore: Prof. Ing. Filippo BERTO

Laureando:

Erik Caprioli - Matr. N. 2057368

ANNO ACCADEMICO 2023 - 2024

Abstract

La presente tesi tratta dell'instabilità dell'equilibrio multimodale diffusa per strutture qualsiasi. In particolare si focalizza sull'avanzamento del calcolo numerico del metodo λ – χ e dell'interazione tra i diversi modi d'instabilità, tenendo in considerazione le direttive e le disposizioni fornite dalle attuali normative europee in materia di instabilità.

La prima parte si concentra sull'individuazione delle sezioni più critiche della struttura, tramite il calcolo delle variazioni tensionali nella struttura deformata secondo il modo d'instabilità preso in analisi. La seconda parte studia invece il fenomeno del compound buckling e l'influenza reciproca tra diversi modi d'instabilità con conseguente riduzione del valore di carico critico massimo di una generica struttura.

Si riportano inoltre le analisi effettuate su diversi casi applicativi tramite il codice numerico sviluppato tramite linguaggio C# e interfacciato alle *A.P.I.* del software commerciale Straus 7, che tiene conto e combina entrambi gli effetti degli argomenti trattati. L'obiettivo del codice è infatti quello di analizzare il problema dell'instabilità ed individuare i punti più suscettibili a questo fenomeno per strutture anche molto complesse.

The hereby thesis talks about multimodal buckling for any type of structures. In particular, it focuses on advancing the numerical calculation of the $\lambda - \chi$ method and the interaction between different modes of instability, taking into account the guidelines and provisions provided by current European standards on buckling of generic structures. The first part focuses on identifying the most critical sections of the structure, through the calculation of stress variations in the deformed structure according to the instability mode under analysis. The second part studies the phenomenon of compound buckling and the mutual influence between different modes of instability, resulting in a reduction of the structure's maximum critical load value.

Additionally, analyses conducted on various application cases are presented using a numerical code, developed with C# language which operates using Straus 7 *application programming interface*. The software accounts for and combines both effects of the topics discussed. The target of the code is to analyze the buckling issue and identify the points most susceptible to this phenomenon, even for very complex structures.

Sommario

1.	Introduzione7							
2. Il fenomeno dell'Instabilità								
2	2.1	Stab	pilità dell'equilibrio elastico	. 11				
2	2.2	Inst	abilità delle aste	. 12				
	2.2	.1	Asta Ideale	. 13				
	2.2	.2	Asta Reale	. 19				
2	2.3	Inst	abilità delle lastre	. 21				
	2.3	.1	Comportamento post-critico delle lastre	. 22				
	2.3	.2	Instabilità locali	. 23				
2	2.4	L'et	ffetto delle imperfezioni nell'instabilità	. 24				
2	2.5	Il fe	nomeno dell'Instabilità Composta o Compound Buckling	. 26				
	2.5	.1	Compound Buckling nelle aste	. 26				
	2.5	.2	Accoppiamento dei modi o Coupled Buckling	. 29				
	2.5	.3	Erosione del Carico Ultimo	. 29				
	2.5	.4	Interazione tra diversi modi di instabilità	. 31				
2	2.6	Nor	mativa Attuale	. 33				
3.	Met	todo d	della Snellezza Sfumata	. 37				
3	.1	La S	Snellezza Puntuale	. 37				
	3.1	.1	Approfondimento del coefficiente k _{i,j}	. 41				
3	.2	Acc	oppiamenti dei modi di instabilità	. 45				
4.	App	olicati	ivo Software e avanzamenti	. 47				
4	.1	Stru	ttura ed Interfaccia	. 47				
	4.1	.1	Modulo di Calcolo	. 47				
	4.1	.2	Modulo di Interfaccia Grafica	. 48				
4	.2	Ava	nzamenti compiuti	. 49				

4.2.	1 Estensione del codice					
5. Eser	npi Applicativi 55					
5.1	Caso 1: Asta Cerniera Carrello – Modello Beam 55					
5.2	Caso 2: Asta incastrata alla base – Modello Beam 61					
5.3	Caso 3: Telaio Multipiano – Modello Beam 67					
5.4	Caso 4: Pannello d'anima con irrigidimenti longitudinali angolari – Modello					
Plate	74					
5.4.	1 Reduced Stress Method75					
5.4.	2 Metodo Annex B 78					
5.4.	3 Metodo della Snellezza Puntuale 80					
5.4.	4 Analisi non lineare con imperfezione da Annex C 87					
5.4.	5 Analisi non lineare con imperfezione da Annex B					
5.4.	6 Confronto tra i risultati ottenuti					
5.5	Caso 5: Diaframma Nave MAR01 – Modello Plate					
6. Conclusioni e Futuri Sviluppi						
6.1	Conclusioni 101					
6.2	Sviluppi Futuri					
Bibliografia						
Ringraziamenti						

1. Introduzione

Il presente lavoro ha come obiettivo approfondire il fenomeno dell'instabilità dell'equilibrio multimodale per strutture generiche, indagando in modo dettagliato le analisi a *buckling* effettuate tramite elementi numerici *beam* e *plate*. In particolare si fa riferimento ad una estensione del General Method definito al §6.3.4 dell'Eurocodice UNI EN1993-1-1 (2005), per mezzo dell'introduzione di un approccio di calcolo definito Metodo della Snellezza Sfumata (*Gradient Slenderness Method*).

Il metodo si basa sull'introduzione di un parametro di snellezza puntuale, calcolato tramite l'elaborazione dei dati derivanti dalle analisi statiche lineari (linear static analysis) e lineari d'instabilità (linear bifurcation analysis) di un modello numerico agli elementi finiti. Ciò permette di calcolare un valore di snellezza per ogni singolo punto in cui la struttura viene discretizzata, aprendo così alla possibilità di tenere conto in maniera univoca dell'interazione tra modi d'instabilità locali e globali, i quali sono generalmente trattati in maniera sperata e distinta nelle formulazioni più diffuse in letteratura.

È inoltre importante sottolineare che la presente tesi va ad inserirsi all'interno di un percorso di ricerca già avviato e sviluppato in precedenza. In particolare si fa riferimento ad alcuni lavori precedentemente pubblicati che di seguito vengono riportati:

- Ing A. F. De Vitis (A. F. De Vitis, F. Micelli, A. Catanzano) (2019) "Analisi di instabilità di anime nervate di travi da ponte in acciaio soggette a Patch Loading";
- Ing. C. Arnesano (C. Arnesano, F. Micelli, M. Urbani) (2020) "Analisi di buckling di strutture in acciaio mediante matrice di lambda equivalente – Proposta di estensione del General Method UNI EN1993-1-1 §6.3.4"
- Ing. C. Bagordo (C. Bagordo, F. Micelli, L.Maci, A. Catanzano) (2021),
 "Analisi di Buckling di membrature in acciaio tramite estensione dei metodi proposti in UNI EN-1-1 (2005) §6.3.4 e UNI EN-1-5 (2006) §10, Annex B"
- Ing. G. Maggiore (G. Maggiore, F. Micelli, A. Catanzano), (2023),
 "Validazione analitica di un metodo 'multimodal compound' per lo studio di instabilità di elementi bidimensionali in acciaio"

7

La tesi inoltre, pone particolare attenzione all'ambito delle strutture in acciaio. L'acciaio trova infatti ampio utilizzo nell'ambito dell'Ingegneria Civile, per via delle sue ottime proprietà meccaniche ma generalmente gli elementi che con esso vengono realizzati sono molto esili e sottili. A conseguenza di ciò, le strutture in acciaio tendono ad essere particolarmente sensibili al fenomeno dell'instabilità dell'equilibrio, poiché molto snelle.

Nella prima parte, in particolare al capitolo §2, viene analizzata in maniera dettagliata l'instabilità dell'equilibrio ed il fenomeno del *compound buckling*, ovvero l'accoppiamento di modi di instabilità diversi tra loro. Si approfondiscono inoltre le imperfezioni presenti nel materiale e nella struttura, e gli effetti che queste implicano nei confronti del comportamento all'instabilità di strutture reali.

Nel capitolo §3 viene introdotta la formulazione del Metodo di Snellezza Puntuale e vengono sviluppati i seguenti concetti:

- Identificazione della sezione più critica in termini di snellezza λ, fattore di riduzione χ, e fattore di utilizzo U.F.;
- L'utilizzo di più modi di buckling e le relative configurazioni deformate per la verifica ad instabilità. La sezione con coefficiente di utilizzo più alto della struttura potrebbe non corrispondere necessariamente a quella relativa al primo modo. Questo può verificarsi a causa dello stato delle sollecitazioni interne agli elementi o perché i modi di buckling superiori potrebbero mettere in luce criticità in altri punti, non prevedibili con i convenzionali metodi di verifica;
- Definizione del parametro di snellezza puntuale $k_{i,j}$.

Successivamente, al capitolo §5 si presentano alcuni esempi applicativi del metodo, fornendo in un caso dei paragoni con gli attuali metodi di verifica presenti all'interno dell'attuale normativa in materia di instabilità.

I modelli portati come esempio vengono analizzati attraverso un software numerico, scritto in linguaggio C# che si interfaccia al software commerciale Straus7 tramite l'utilizzo delle Application Programming Interface, ovvero un set di strumenti di programmazione che permette l'interazione tra i due codici. Questo software sfrutta i

metodi ed i solutori presenti all'interno di Straus7 per poter generare modelli numerici deformati ed eseguire le analisi lineari che il metodo della snellezza puntuale prevede.

In conclusione, vengono riportate alcune considerazioni sul metodo e sui risultati ottenuti tramite la sua applicazione. Si discute inoltre di alcuni punti chiave che possono essere ulteriormente sviluppati per migliorare il metodo stesso ed il software, al fine di poter sfruttare appieno il potenziale che questi hanno.

2. Il fenomeno dell'Instabilità

2.1 Stabilità dell'equilibrio elastico

Nella meccanica dei solidi, si considera un corpo rigido in stato di equilibrio se questo, in seguito alle azioni che su di esso agiscono, rimane nel suo stato di quiete. Quando si studiano problemi di stabilità dell'equilibrio di sistemi continui, l'equilibrio del sistema viene descritto in funzione della configurazione iniziale, ovvero quella indeformata. Il Teorema dell'unicità dell'equilibrio elastico infatti, sancisce che la soluzione del problema è unica, nell'ipotesi di piccoli spostamenti.

Tuttavia, se si esce da quest'ultima ipotesi, a parità di condizioni del sistema sono possibili più configurazioni diverse rispetto a quella iniziale, perciò le equazioni che governano il nuovo stato saranno diverse rispetto a quelle dello stato di partenza.

Se si confrontano le con le configurazioni derivate dall'introduzione di una perturbazione con la configurazione iniziale, si individuano tre diverse casistiche:

- *Condizione di Equilibrio Stabile:* il sistema ritorna alla sua configurazione originale, prima dell'introduzione della perturbazione;
- *Condizione di Equilibrio Instabile:* a causa dell'effetto della perturbazione, il sistema subisce dei cambiamenti nel suo equilibrio, allontanandosi dalla configurazione iniziale;
- *Condizione di Equilibrio Indifferente:* il sistema né torna né si allontana dalla condizione iniziale, ma va ad assumerne una nuova.

Per analizzare il comportamento di tale sistema all'introduzione di una perturbazione, ci si rifà a tre diversi metodi (o criteri):

- Metodo Statico: si formulano le condizioni di equilibrio per la configurazione variata, andando ad introdurre un'equazione differenziale omogenea che descriva l'equilibrio tra sollecitazioni interne ed esterne in questo stato del sistema;
- *Metodo Dinamico:* si studiano le piccole oscillazioni nell'intorno della configurazione di equilibrio a seguito di una piccola perturbazione, individuando il valore di carico critico che innesca il moto del sistema;

 Metodo Energetico: si definisce l'energia potenziale del sistema, andando ad individuare il minimo valore di carico critico che comporti una variazione di secondo grado dell'energia potenziale complessiva.

Quando si studia il comportamento a stabilità di una struttura, in linea generale ci si riferisce a tre diverse tipologie di instabilità, in base all'estensione del fenomeno, ovvero quante parti della struttura vengono coinvolte da esso:

- Instabilità Globale: coinvolge l'intero elemento e dipende dalla sua snellezza.
 Si può manifestare in modo flessionale, torsionale, flesso-torsionale o lateroflessionale;
- *Instabilità Locale:* coinvolge una specifica parte dell'elemento, come per esempio l'imbozzamento dell'anima di una trave;
- *Instabilità Distorsionale:* avviene quando vi è una deformazione traslazionale e rotazionale della sezione trasversale dell'elemento.

Figura 2.1 - Instabilità di un elemento laminato a freddo. Da sinistra a destra: instabilità locale, distorsionale, flessionale, flesso-torsionale. (Veljkovic, 2015)

2.2 Instabilità delle aste

Sotto un carico assiale di compressione, una colonna sufficientemente snella arriva a rottura a causa della deformazione laterale più che per il raggiungimento della tensione di rottura a compressione del materiale. Questo fenomeno è il cosiddetto *"buckling"* o instabilità dell'equilibrio. È l'esempio più semplice dei problemi di stabilità risolto ed anche il primo ad essere stato risolto (Timoshenko 1953).

La caratteristica principale della rottura per instabilità è il fatto che il carico di rottura dipenda più dal modulo elastico e dalla rigidezza della sezione trasversale dell'elemento che dalla resistenza del materiale di per sé.

2.2.1 Asta Ideale

Generalmente quando si tratta dell'instabilità dell'equilibrio delle aste ci si rifà al caso dell'asta Euleriana, ovvero una colonna perfettamente elastica e soggetta ad un carico di punta P, caratterizzata da una lunghezza 'l', una rigidezza sezionale 'EI' finita e vincolata da una cerniera ed un carrello, come mostrato in Figura 2.2:

Figura 2.2 – Asta Ideale vincolata da cerniera e carrello e soggetta a carico di punta P – (Bazant, Cedolin, 1991)

Per l'analisi del problema, vengono tenute come valide le seguenti assunzioni:

- Asta ideale priva di imperfezioni iniziali;
- Carico applicato nel baricentro della sezione;
- Comportamento elastico-lineare;
- Assenza di tensioni interne;
- Sezione trasversale e condizioni di vincolo tali che l'instabilità si verifichi in una sola direzione;

• Piccoli Spostamenti e Piccole Deformazioni.

Si ricercano le condizioni per le quali l'asta assume una configurazione deformata mantenendo però l'equilibrio, in particolare si cerca il minimo valore di carico verticale P tale da garantire questa condizione.

Dall'equilibrio alla rotazione si può esprimere il momento nella generica sezione della colonna deformata come:

$$M(x) = -P \cdot w(x) + M_0(x) \tag{2.1}$$

Dove M_0 è il momento dovuto ad un carico laterale p(x), che per semplicità poniamo pari a 0.

Il momento M(x) della sezione si può definire anche rispetto alla relazione alla curvatura dell'asta deformata:

$$M(x) = -EI w''(x)$$
 2.2

Sostituendo all'interno della 2.1, si ottiene un'equazione differenziale, in particolare *l'equazione del moto armonico*:

$$w'' + k^2 w = 0 \operatorname{con} k^2 = \frac{P}{EI}$$
 2.3

La cui soluzione generale è data da:

$$w = A \cdot \sin(kx) + B \cdot \cos(kx)$$
 con A e B costanti arbitrarie 2.4

Si pongono le seguenti condizioni al contorno:

$$w = 0 \ per \ x = 0, \qquad w = 0 \ per \ x = l$$
 2.5

L'imposizione delle condizioni al contorno comporta che:

$$B = 0, \quad Asin(kl) = 0 \tag{2.6}$$

Si nota che per soddisfare la seconda condizione, escluso il caso A=0 che corrisponde ad una configurazione di w(x) nulla, si deve avere kl= $n\pi$, con n=1,2,... ottenendo così un certo valore di carico critico:

$$P_{cr} = \frac{n^2 \pi^2}{l^2} EI \tag{2.7}$$

Dalla risoluzione dell'equazione differenziale, si nota come siano possibili più configurazioni di equilibrio. Il *carico critico euleriano* minimo che si possa trovare, è quando n assume valore unitario, ovvero il caso corrispondente al primo autovalore, pertanto:

$$P_{cr} = \frac{\pi^2}{l^2} EI$$
 2.8

Dove:

- **E** = Modulo elastico del materiale;
- I = Modulo di Inerzia della sezione;
- I = valore della lunghezza libera di inflessione, che corrisponde alla lunghezza della semionda tra due punti di flesso consecutivi e dipende direttamente dallo schema statico a cui l'asta è sottoposta:

Figura 2.3 - Lunghezze Libere - (Bazant, Cedolin, 1991)

Si può considerare il carico critico P_{cr} in termini tensionali, quindi osservando la tensione critica σ_{cr} :

$$\sigma_{cr} = \frac{P_{cr}}{A} = \frac{\pi^2 EI}{l_0^2} \frac{EI}{A} = \frac{\pi^2 EIr^2}{l_0^2} = \frac{\pi^2 EI}{\lambda^2}$$
 2.9

Dove:

- $r^2 = I/A$ Raggio d'inerzia della sezione;
- $\lambda^2 = l_0/r$ Snellezza geometrica dell'elemento.

Poiché il comportamento del materiale fino al punto di inizio del suo percorso instabile risulta elastico lineare, si può ricavare un valore di snellezza limite λ_1 , corrispondente al raggiungimento della tensione di snervamento delle fibre nella sezione:

$$\sigma_{cr} = \frac{\pi^2 EI}{\lambda_1^2} = f_y \quad \rightarrow \quad \lambda_1 = \pi \sqrt{\frac{EI}{f_y}} = \text{snellezza limite della sezione}$$
 2.10

Si può così analizzare il valore che assume la tensione critica in funzione della snellezza e, come riportato nella 2.10, si nota come questa segua la curva detta *iperbole di Eulero*:

Figura 2.4 - Dominio resistente Tensione Critica – Snellezza per un'asta compressa

Si può vedere valore di limite di snellezza λ_1 indichi anche un limite per il comportamento della sezione, prima del quale l'elemento è considerato tozzo, arrivando a rottura a causa del raggiungimento della tensione limite di compressione.

Viceversa, superato il valore λ_1 , l'elemento si definisce snello e l'effetto dell'instabilità comporta una rottura a valori di tensione inferiori rispetto all'elemento tozzo.

A partire dalla soluzione generale 2.4 dalla quale si è ricavato il carico critico è possibile trovare anche l'andamento della deformata per ogni possibile configurazione di equilibrio.

La deformata critica si ricava dall'applicazione delle condizioni al contorno imposte al punto 2.6 ed assume quindi una forma sinusoidale definita come al punto 2.11, in funzione di una coordinata x, posta secondo la stessa direzione di applicazione del carico:

$$w(x) = A \cdot \sin\left(\frac{kx}{L}\right)$$
 2.11

Figura 2.5 - Asta con carico di punta critico, vincolata da una cerniera ed un carrello

Le configurazioni dipendono direttamente dal valore n associato ad ogni possibile carico critico; si possono così identificare diversi modi di instabilità per l'asta compressa, come ad esempio quelli riportati in Figura 2.6:

Figura 2.6 - Possibili configurazioni di instabilità di un'asta compressa al variare del valore n

Si vede come i punti di massimo valore *w* sono diversi per ogni configurazione deformata che viene individuata. Questo comporta che le sezioni più sollecitate dal fenomeno del buckling siano diverse a seconda dello specifico modo che si sta analizzando.

Nel caso di strutture complesse, si potrebbero quindi verificare delle istanze nelle quali, per modi diversi dal primo, vi siano delle sezioni caratterizzate da coefficienti di utilizzo superiori a quelli della verifica effettuata. Normalmente infatti, la normativa suggerisce di prendere come riferimento solamente il primo modo per effettuare il controllo di resistenza all'instabilità.

È possibile notare inoltre come in taluni casi vi siano delle sezioni dove la deformazione raggiunge i valori estremi e le cui posizioni coincidono tra modi diversi. Un esempio è la sezione di mezzeria dell'asta, che presenta dei massimi sia nella configurazione n=1 che nella configurazione n=3.

Questo può comportare che la sezione critica possa risentire degli effetti di questi due diversi modi, i quali possono avere una mutua interazione, come si discuterà al paragrafo 2.5.4.

2.2.2 Asta Reale

Il dominio di resistenza che sottostà alla curva di Eulero mostrato in Figura 2.4 è però valido solamente nel caso di aste ideali, prive di difetti ed imperfezioni (approfondite al capitolo 2.4). Il comportamento dell'asta reale non è coincidente con il caso ideale ma segue un percorso di instabilità detto *Postbuckling Path* nel caso in cui il carico agente raggiunga il valore di quello critico dell'elemento. La presenza di imperfezioni implica valori massimi di tensione critica inferiori a quelli dell'asta perfetta, in funzione della quantità di difetti presenti nel materiale, come si riporta in Figura 2.7:

Figura 2.7 - Confronto tra domini di aste reali ed aste ideali

Per tenere conto del grado di imperfezione, all'interno dell'Eurocodice vengono fornite delle curve di instabilità che dipendono dalle caratteristiche del profilo scelto, le quali sono ricavate sulla base di valori sperimentali adattati all'equazione di AyrtonPerry per la verifica di elementi compressi, come riportato in Figura 2.8:

Figura 2.8 - Curve di instabilità EC, espresse secondo la relazione tra fattore di buckling χ e snellezza relativa - (Veljkovic - Da Silva, 2015)

2.3 Instabilità delle lastre

L'analisi dell'instabilità si applica anche ad elementi bidimensionali sottoposti ad azioni agenti nel proprio piano. Questi elementi si trovano comunemente nell'ambito delle costruzioni civili in acciaio, e si possono identificare nelle pannellature d'anima e nelle piattebande d'ala delle travi, ma possono essere anche fazzoletti di irrigidimento presenti nei nodi delle strutture.

Poiché lo spessore è di almeno un ordine di grandezza inferiore rispetto alle altre due direzioni, questi elementi risultano particolarmente suscettibili agli effetti dell'instabilità e, come per le aste, anche in questo caso si può individuare un valore di tensione critica limite che innesca il fenomeno:

$$\sigma_{cr} = k \cdot \sigma_E \tag{2.12}$$

Dove:

- **σ**_E : tensione Euleriana;
- **k** : fattore di buckling, dipende dalle condizioni di vincolo.

Mentre la tensione Euleriana viene definita come segue:

$$\sigma_E = \frac{\pi^2 D}{bt^2} = \frac{\pi^2 E}{12(1-\nu^2)} \left(\frac{t}{b}\right)^2$$
 2.13

Con:

- $D = \frac{E \cdot t^3}{12(1-v^2)}$: Rigidezza flessionale per unità di lunghezza;
- t : Spessore della lastra;
- **b** : Larghezza della lastra;
- **E** : Modulo Elastico del materiale;
- v: Coefficiente di Poisson.

Si nota l'analogia di questa espressione di tensione critica con il corrispettivo delle aste (definito al punto 2.9). Nel caso delle lastre la tensione critica dipende dal rapporto tra spessore e larghezza t/b dell'elemento. Questo comporta che le condizioni di vincolo a cui la lastra viene sottoposta influenzano ampiamente il comportamento ad instabilità.

2.3.1 Comportamento post-critico delle lastre

Un altro fattore che distingue le lastre dal caso dell'asta è il loro comportamento postcritico, in particolare queste tendono ad avere una riserva di resistenza dopo il raggiungimento della tensione critica. Questo è dovuto al fatto che la lastra sviluppa una doppia curvatura, comportandosi in analogia ad un graticcio di travi.

Figura 2.9 - Confronto tra comportamento a buckling dell'asta e della piastra - (Zizza A., 2016)

Le 'travi' che compresse che tendono instabilizzarsi infatti, vengono vincolate dalle altre disposte ortogonalmente soggette a trazione, che contrastano il fenomeno di imbozzamento del pannello. Questo fenomeno può portare dunque ad un valore di collasso superiore a quello del valore di tensione critica d'instabilità. È però importante ricordare che anche nel caso di lastra reale, la presenza di difetti ed imperfezioni va a ridurre il valore effettivo di tensione critica della lastra.

2.3.2 Instabilità locali

Nel momento in cui la lastra raggiunge la tensione critica, si instaura uno stato di equilibrio nel quale il pannello si deforma al di fuori del suo piano, in corrispondenza delle zone compresse. Nel caso dei pannelli che compongono le travi ad esempio, vi possono essere due diversi tipi di instabilità, che dipendono dalle caratteristiche del profilo stesso e dall'entità del carico che vi è applicato:

- *Imbozzamento:* se l'anima non è eccessivamente alta ed il carico applicato non è troppo elevato, si verifica una deformazione locale nei pannelli che vanno a comporre una sezione;
- *Svergolamento:* è un tipo di instabilità che va ad in interessare l'intera sezione trasversale ed è legata ad all'instabilità flesso-torsionale dell'elemento.

Figura 2.10 - Imbozzamento e Svergolamento di una trave - (Arnesano C., 2020)

L'instabilità locale può quindi interagire con la stabilità globale dei pannelli, e questo rende più difficile studiare e prevedere il comportamento di questi elementi. In tal senso, l'Eurocodice UNI EN1993-1-1 (2005) fornisce una classificazione delle più comuni tipologie di profili, in base alle caratteristiche geometriche e in relazione al loro comportamento nei riguardi dei fenomeni di instabilità:

- *Classe 1*: profili la cui sezione trasversale è in grado di sviluppare completamente una cerniera plastica con la capacità rotazionale richiesta dall'analisi plastica, senza alcuna riduzione di resistenza;
- Classe 2: in grado di sviluppare completamente il proprio momento resistente plastico, con capacità rotazionale limitata per tenere conto dell'instabilità locale;
- *Classe 3*: per questi profili, le fibre compresse raggiungono lo snervamento, ma non riescono a sviluppare completamente il momento resistente plastico a causa dell'innesco di fenomeni di instabilità locale;
- *Classe 4*: in questi casi l'instabilità locale avviene prima che le fibre compresse del pannello raggiungano la tensione di snervamento, perciò avviene quando la sezione assume ancora un comportamento elastico-lineare.

2.4 L'effetto delle imperfezioni nell'instabilità

Nell'ambito dell'instabilità, specialmente nel caso di strutture in acciaio, le imperfezioni hanno un importante un ruolo nel comportamento degli elementi, comportando degli effetti non trascurabili. Vi sono diverse tipologie di imperfezione a cui si fa riferimento e si identificano come segue:

- *Imperfezioni Geometriche*: presenti a causa della non perfetta rettilineità dell'elemento. A loro volta possono essere categorizzate secondo il livello di dettaglio che vanno ad interessare:
 - Difetti della Sezione Trasversale: presenti a seguito del processo di realizzazione dell'elemento;
 - Difetti di Elemento: dovuti agli errori di rettilineità, alla presenza di eccentricità dei giunti ecc.;
 - Difetti di Struttura: dovuti alla non perfetta verticalità degli elementi e alla non perfetta orizzontalità dei piani della struttura.
- *Imperfezioni meccaniche o strutturali*: causate dal processo di produzione e comportano stati tensionali interni negli elementi.
- *Imperfezioni di materiale*: dovuti ai difetti stessi dell'acciaio, come piani di dislocazione e presenza di tensioni residue;

L'Eurocodice UNI EN1993-1-1, al punto §5.2.1 fornisce delle indicazioni in merito alle situazioni nelle quali sia opportuno tenere conto o meno delle imperfezioni e degli effetti del secondo ordine che queste comportano. È possibile effettuare solamente l'analisi degli effetti del prim'ordine se la struttura è sufficientemente rigida, in particolare se vengono rispettati i criteri che seguono:

$$\alpha_{cr} = \frac{F_{cr}}{F_{ed}} \ge 10$$
 per Analisi Elastiche 2.14

$$\alpha_{cr} = \frac{F_{cr}}{F_{ed}} \ge 15$$
 per Analisi Plastiche 2.15

Dove:

- α_{cr} : minimo fattore di amplificazione del carico assiale per raggiungere l'instabilità dell'elemento;
- F_{cr}: carico critico euleriano che genera l'instabilità, dipendente dalla rigidezza iniziale del sistema;
- Fed : carico di progetto agente;

Nel caso queste condizioni non siano soddisfatte, la struttura non è abbastanza rigida e bisogna considerare i contributi di secondo ordine dovuti alla presenza delle imperfezioni; in questa circostanza vi sono due metodi applicabili:

- Analisi Plastica Iterativa: effettuata tramite analisi agli elementi finiti ed applicabile nel caso in cui α_{cr} ≤ 3;
- Analisi Elastica con coefficiente amplificativo K: applicabile nel caso in cui α_{cr} ≥ 3; gli effetti del secondo grado vengono considerati a partire dai valori dell'analisi del prim'ordine, i quali vengono amplificati da un coefficiente definito come segue:

$$K = \frac{1}{1 - \frac{1}{\alpha_{cr}}} \ge 10 \tag{2.16}$$

2.5 Il fenomeno dell'Instabilità Composta o Compound Buckling

2.5.1 Compound Buckling nelle aste

Come dimostrato da J.Rondal in *"Coupled Instabilities in Metal Structures"*, il compound buckling è un fenomeno dell'instabilità che comporta lo sviluppo di percorsi di equilibrio *instabile* a seguito del raggiungimento del valore di carico critico di punta.

Figura 2.11 - Sistema a un grado di libertà, asta soggetta ad un carico di punta P e vincolata da una cerniera e da una molla rotazionale di rigidezza K – (Rondal, 1998)

Per individuare questo tipo di comportamento si parte da un sistema a due gradi di libertà, studiando un'asta reale (che presenta quindi delle imperfezioni $\phi_i \in \theta_i$), vincolata alla base da una cerniera sferica e nei due piani x-z ed y-z da due molle rotazionali di costante K_{ϕ} e K_{θ}.

Figura 2.12 – Modello a due gradi di libertà – (Rondal, 1998)

pg4

È possibile individuare un valore di carico critico per il piano debole e per il piano forte:

$$P_E = \frac{\kappa_{\Phi}}{L} \quad in \ y - z \qquad ; \qquad P_{E2} = \frac{\kappa_{\theta}}{L} = C \cdot P_E \quad in \ x - z \qquad 2.17$$

Dove C è dato dal rapporto tra le rigidezze delle molle che vincolano l'asta:

$$C = \frac{\kappa_{\theta}}{\kappa_{\Phi}} \ge 1 \tag{2.18}$$

Dalle equazioni di equilibrio si ottiene la condizione:

$$C(\theta - \theta_i)\frac{\sin{(\Phi)}}{\cos{(\theta)}} = (\Phi - \Phi_i)\frac{\sin{(\theta)}}{\cos{(\Phi)}}$$
 2.19

Con $\phi_i e \theta_i$ valori dell'imperfezione iniziale

È quindi possibile individuare 3 diverse condizioni di equilibrio:

i. **Deformata del** *primo modo*: avviene nel piano debole z-x ed avviene quando ho rotazione $\theta = 0$ ed è legata al carico critico più piccolo.

$$\theta = 0; \quad n = \frac{P}{P_E} = \frac{\Phi - \Phi_i}{\sin(\Phi)}$$
 2.20

ii. **Deformata del** *secondo modo*: avviene nel piano forte z-x ed avviene quando ho rotazione $\phi = 0$ ed è legata al carico critico più piccolo.

$$\Phi = 0; \quad n = \frac{P}{P_E} = \frac{(\theta - \theta_i)}{\sin(\theta)}$$
 2.21

iii. Deformata del compound mode:

$$C \frac{(\theta - \theta_i)}{\sin(2\theta)} = \frac{(\Phi - \Phi_i)}{\sin(2\Phi)}; \quad n = \frac{P}{P_E} = \frac{\Phi - \Phi_i}{\sin(\Phi)} \sqrt{1 - \frac{\sin(\Phi)^2}{\cos(\Phi)^2}}$$
 2.22

Dalla 2.22, è possibile vedere che è possibile una configurazione di equilibrio quando $\phi \in \theta$ sono diversi da 0 e questo vale anche per le aste ideali, quindi nel caso di imperfezioni $\phi_i \in \theta_i$ nulle.

Figura 2.13 - Curve Carico - Deformazione per un'asta perfetta – (Rondal, 1998)

Si nota come per n<1, quindi fino al punto 1, l'asta rimanga verticale, raggiungendo il *punto di biforcazione primario*, oltre il quale l'asta si instabilizza, seguendo un percorso post-buckling stabile.

Si possono però individuare dei punti di biforcazione ulteriori, in particolare i punti 3 e 7, che sono proprio i punti dei *compound mode*, oltre i quali il sistema segue un percorso decrescente, e quindi instabile.

Le coordinate di questi punti si possono trovare assumendo imperfezioni nulle e studiando la 2.22 con θ che tende a 0:

$$\frac{\Phi_{EC}}{\sin(2\Phi_{EC})} = C; \quad n_{EC} = C \cdot \cos(\Phi_{EC})$$
 2.23

I punti di biforcazione secondaria comportano percorsi instabili, perciò il valore di carico critico per compound P_{EC} coincide con il carico critico P_C dell'asta, come mostrato nella 2.24. Inoltre, n_{EC} e C sono tra loro legate: n_{EC} varia in maniera monotona crescente e tende a $\pi/2$ per C che tende ad infinito.

$$P_{EC} = n_{EC} \cdot P_E \tag{2.24}$$

2.5.2 Accoppiamento dei modi o Coupled Buckling

Vi è un caso limite del compound buckling, ovvero il caso in cui C=1. In queste condizioni infatti, si crea un fenomeno di *coupling*, ovvero l'accoppiamento dei modi. In particolare, i carichi critici corrispondenti ai due modi di instabilità hanno uguale valore, di conseguenza i punti di biforcazione primari e secondari coincidono in un unico multiplo di biforcazione.

In questo caso è importante notare come al raggiungimento del carico critico elastico, poiché tutti i punti di biforcazione sono coincidenti, l'elemento raggiunga l'instabilità e inizi a seguire un percorso post-buckling di tipo instabile anche nel suo range elastico.

Se si tiene inoltre conto della presenza delle imperfezioni, fin qui non considerate per questi casi notevoli, si nota come la loro presenza possa andare a diminuire il valore di carico critico della struttura, rendendo così di fatto il problema del compound buckling sensibile alle imperfezioni che possono essere presenti.

2.5.3 Erosione del Carico Ultimo

Nel caso di strutture reali, si segue quindi un percorso di equilibrio stabile fino al raggiungimento del carico ultimo effettivo, la cui determinazione è un problema fortemente non lineare, per via della presenza di non linearità geometriche e meccaniche.

Il valore di erosione del carico ultimo è pari alla differenza tra carico ultimo calcolato tenendo conto delle imperfezioni e quello che comporta il raggiungimento del punto di biforcazione stabile calcolato elasticamente.

Figura 2.14 - Confronto tra carichi ultimi ed identificazione del valore di erosione – (Gioncu, 1998)

Come visto al punto precedente però, si può avere una situazione nella quale due modi di buckling di pari valore possono comportare, a causa della loro mutua interazione, ad un percorso di equilibrio instabile. Nel caso di coupling quindi, vi è un fenomeno di erosione secondaria, dovuta agli effetti delle imperfezioni.

Figura 2.15 - Erosione primaria e secondaria - (Gioncu, 1998)

L'effettivo valore delle due erosioni è fortemente dipendente dalla geometria e dalle condizioni di vincolo del sistema. Inoltre, sebbene l'erosione si manifesti soprattutto nel caso si abbiano modi di instabilità con pari valore di carico critico, questo fenomeno si verifica anche quando vi sono modi con valori di carico critico diversi.

2.5.4 Interazione tra diversi modi di instabilità

L'interazione tra i diversi modi è classificabile in base all'entità dell'erosione che essa comporta:

- Scarsa interazione (W): Erosione inferiore al 10%;
- *Moderata interazione (M)*: Erosione inferiore al 30%;
- *Forte Interazione (S)*: Erosione inferiore al 50%;
- Interazione molto forte (VS): Erosione superiore al 50%.

L'erosione dipende da diversi fattori, ma quello più significativo è il rapporto tra le lunghezze delle semionde dei singoli modi. Nella Figura 2.16 che segue si riportano alcuni esempi di strutture utilizzare comunemente nell'ingegneria civile e la loro classificazione in termini di erosione a seconda della loro geometria:

	Structure	Instability modes		Class
	Structure	First	Second	of interaction
1		Overall		S-VS
2	Thin-walled beams () I T T][Overall T	Local T T	S-VS
3	Monosymmetrical	Flexural	Torsional- flexural	W-M
4	Built-up columns	Overall		М
5	Elasto-plastic buckling of columns	Overall	Local atomic lattice	S-VS

Figura 2.16 - Accoppiamento di Instabilità per elementi ad asta - (Gioncu, 1998)

L'interazione tra modi può essere inoltre analizzata in base al tipo e all'estensione di instabilità che essi comportano. In particolare la l'interazione può avvenire tra modi locali e modi globali della struttura, come si riporta in Figura 2.17:

Figura 2.17 - Interazione tra modi globali e locali per un'asta calastrellata - (Gioncu, 1998)

L'interazione può avvenire anche tra modi che comportano solamente fenomeni globali, con valori di carico critico diversi, come si vede in Figura 2.18:

Figura 2.18 - Interazione tra modi globali della struttura - (Gioncu, 1998)

È importante studiare questi fenomeni poiché permette di comprendere la complessità del problema dell'instabilità, e non si può quindi limitare il calcolo del carico critico ultimo tenendo in considerazione il solo primo modo di buckling.

L'interazione tra modi globali non viene generalmente considerata, ma risulta un fenomeno critico per l'asta, in quanto modi diversi che agiscono nelle stesse sezioni possono portare a fattori di utilizzo della sezione maggiore rispetto a quelli calcolati tenendo conto esclusivamente del primo modo di instabilità. Un esempio lo si trova in Figura 2.18, dove la sezione di mezzeria è interessata da più modi, con diversi valori di carico ultimo.

È inoltre importante notare che diversi modi possono interessare non solo stesse sezioni, ma anche sezioni posti in punti diversi dell'elemento.

Questo fenomeno si ritrova particolarmente in casi più complessi della semplice asta, come ad esempio nelle lastre, dove i punti più sensibili all'instabilità possono trovarsi in zone molto lontane tra loro a seconda del modo analizzato.

In questo caso, fare riferimento al primo modo comporta il trascurare alcune parti di struttura che possono essere comunque afflitte da instabilità per i modi superiori. Questi possono comunque interagire con il primo, specialmente per effetto delle imperfezioni presenti, le quali possono favorire l'instabilizzazione in specifiche zone del pannello del pannello se i carichi critici sono vicini tra loro.

2.6 Normativa Attuale

Le attuali verifiche di resistenza all'instabilità indicate dall'Eurocodice 3 sono basate sull'estensione della formula di Ayrton-Perry per il calcolo della resistenza di aste compresse.

La verifica si effettua andando a controllare che il *coefficiente di buckling* α_{Rd} risulti maggiore o uguale ad 1:

$$\alpha_{Rd} = \frac{\chi \cdot \alpha_{ult,k}}{\gamma_{M1}}$$
 per aste, $\alpha_{Rd} = \frac{\rho \cdot \alpha_{ult,k}}{\gamma_{M1}}$ per lastre 2.25

Dove:

- χ : Fattore di riduzione di Instabilità per aste;
- ρ: Fattore di riduzione di Instabilità per lastre;

 α_{ult,k}: Minimo moltiplicatore di carico agente per il raggiungimento della resistenza caratteristica;

• γ_{M1} : Coefficiente di sicurezza fornito dalla normativa.

Figura 2.19 - Regole generali presenti nell'Eurocodice 3 e risultati sperimentali – (Sedlacek, Müller, Aachen, Bijlaard, Delft, 2005)

In Figura 2.19 si riportano le indicazioni fornite dall'EC3 per il calcolo della verifica ad instabilità per aste soggette a normale instabilità o instabilità latero-torsionale, per elementi lastra e per elementi shell.

In Figura 2.20, si riporta una sintesi dei diversi metodi presenti nell'EN1993-1-1, EN1993 1-5 e EN1993-1-6, i quali si utilizzano come base normativa dalla quale partire per sviluppare l'estensione tramite il nuovo approccio:

Figura 2.20 – Schema metodi di verifica nell'Eurocodice 3 – (Bagordo C., 2021)

Le curve di instabilità definite nell'Eurocodice e mostrate in Figura 2.8 e Figura 2.20, vanno ad identificare i fattori di imperfezione α , α_{LT} , αp , ricavati a seguito di una serie di studi, effettuati su aste e lastre soggette ad azioni di compressione.

Nel 2003 Müller sviluppò la formulazione generale di Maquoi e Rondal, che a loro volta estesero la formulazione di Ayrton-Perry per il calcolo dell'instabilità a partire dal raggiungimento dello snervamento nella sezione instabilizzata:

$$(1-\chi)(1-\chi\cdot\bar{\lambda}^{\gamma}) = \eta\chi \qquad 2.26$$

Dove:

- χ: Fattore di riduzione da Buckling;
- λ: Snellezza adimensionalizzata dell'elemento;
- γ : Esponente dell'equazione;
- η : Fattore di imperfezione.

Se si prende un esponente γ di valore 2, si ottiene la curva di instabilità utilizzata per il calcolo ad instabilità delle aste:

$$(1-\chi)(1-\chi\cdot\bar{\lambda}^2) = \eta\chi \qquad 2.26$$

Dove il fattore di riduzione χ si esprime come:

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \bar{\lambda}^2}}$$
 2.27

Scegliendo invece un valore unitario per l'esponente γ , si trova la formulazione della curva utilizzata per il calcolo ad instabilità delle lastre, dove in questo caso si utilizza la lettera ρ al posto della lettera χ per differenziare le due:

$$\rho = \frac{1}{\phi + \sqrt{\phi^2 - \bar{\lambda}}}$$
 2.28

In entrambe le formulazioni, il termine ϕ è funzione della snellezza adimensionalizzata e del coefficiente di imperfezione α ed è definito come:

$$\Phi = 0.5 \cdot \left[1 + \alpha (\bar{\lambda} - 0.2) + \bar{\lambda}^2 \right]$$
 2.29
3. Metodo della Snellezza Sfumata

3.1 La Snellezza Puntuale

Il metodo proposto è un'estensione del General Method descritto nel §6.3.4 dell'EN1993-1-1 e delle indicazioni contenute nell'Annex B dell'EN1993-1-5.

Esso si basa sull'individuare un valore di snellezza calcolati puntualmente e pesato da un certo fattore di sfumatura $k_{i,j}$, il quale dipende dal differenziale tensionale tra il modello numerico iniziale dell'elemento ed il modello che tiene conto delle imperfezioni. Di seguito si riportano i passaggi per lo sviluppo del metodo:

1. Risoluzione di una *Linear Static Analysis* (di seguito definita come LSA) sul modello iniziale che si definisce *perfetto*, dal quale si vanno a ricavare i valori tensionali $\sigma_{\rm fibrestress}$ nodali punto per punto. In particolare si prendono i contributi tensionali dati dallo sforzo normale e dal momento flettente:

$$\sigma_{fibrestress} = \frac{N}{A} + \frac{M}{W}$$
 3.1

- 2. A partire dalla LSA del modello perfetto, si esegue un'analisi lineare all'instabilità o *Linear Buckling Analysis* (LBA), dalla quale si individuano i diversi modi di instabilità della struttura. In particolare, da ogni modo si ottiene un certo autovettore ed il relativo autovalore α_{CR} (corrispondente al valore del minimo moltiplicatore di carico per il raggiungimento del carico critico);
- 3. A partire dall'autovettore di ogni modo, si crea un modello deformato o *imperfetto*; ogni modo viene associato ad un certo pedice 'j'. L'imperfezione

Type of imperfection	Component	Shape	Magnitude
global	member with length ℓ	bow	see EN 1993-1-1, Table 5.1
global	longitudinal stiffener with length a	bow	min (a/400, b/400)
local	panel or subpanel with short span a or b	buckling shape	min (a/200, b/200)
local	stiffener or flange subject to twist	bow twist	1 / 50

iniziale utilizzata per scalare i modelli viene individuata seguendo un'imperfezione iniziale indicata nell'Annex C dell'EN1993-1-5:

Figura 3.1 - EN1993-1-5: Valori di imperfezione geometrica equivalente

Per la deformazione dell'elemento si considera sia il verso positivo sia il verso negativo, perciò il salvataggio del modello imperfetto avviene secondo il rapporto di scala positivo e negativo; ciò risulta importante per modelli asimmetrici.

Si fa presente inoltre che la tabella riportata in Figura 3.1 indica valori solamente per l'introduzione dell'imperfezione nelle analisi non lineari, ma il valore che se ne trae viene utilizzato come riferimento per l'applicazione in analisi lineari, come spiegato in seguito;

- Si esegue una LSA per ogni modello deformato ottenuto e, come al punto 1, si vanno traggono i valori tensionali nodali σ*_{fibrestress} di ogni singolo modello. Tra il modello positivo e negativo del medesimo si tiene conto dei valori di tensione massimi in modulo;
- 5. Partendo dal modello perfetto si calcola, punto per punto, il minimo moltiplicatore $\alpha_{ult,k}$ per il raggiungimento della tensione di snervamento;
- 6. Si calcola il valore della snellezza puntuale per ogni singolo modo:

$$\bar{\lambda}_{i,j} = \sqrt{\frac{\alpha_{ult,k,i}}{\alpha_{cr,j}}}$$
 3.2

Dove il pedice '*i*' indica il nodo *i-esimo* dove viene effettuato il calcolo mentre il pedice '*j*' indica la *j-esima* deformata;

7. Si calcola il differenziale tensionale tra modello perfetto e modelli imperfetti:

$$V_{i,j} = \sigma *_{fibrestress} - \sigma_{fibrestress} \qquad 3.3$$

8. Si calcola il fattore di sfumatura 'k' definito come segue:

$$0 < k_{i,j} = \frac{V_{i,j} - V_{min}}{V_{max} - V_{min}}$$
 3.4

Dove Vmax e Vmin sono rispettivamente i moduli dei valori massimi e minimi di variazione tensionale puntuale calcolati;

9. Si calcola la snellezza puntuale equivalente, data dalla snellezza puntuale calcolata al punto 6 scalata del fattore $k_{i,j}$;

$$\bar{\lambda}_{i,j} = k_{i,j} \cdot \sqrt{\frac{\alpha_{ult,k,i}}{\alpha_{cr,j}}}$$
3.5

10. Si effettua il calcolo del fattore di riduzione per instabilità χ:

$$\chi_{i,j} = \frac{1}{\Phi_{i,j} + \sqrt{\Phi_{i,j}^{2} - \bar{\lambda}_{i,j}^{2}}}$$
3.6

11. Si calcola il fattore di utilizzo U.F., definito come:

$$U.F_{\cdot i,j} = \frac{1}{\frac{\chi_{i,j} \cdot \alpha_{ult,k,i}}{\gamma_{M1}}}$$
3.7

Di seguito si riporta uno schema che in breve riporta i diversi passaggi del metodo:

Figura 3.2 - Schema del nuovo metodo proposto – (Bagordo C. 2021)

3.1.1 Approfondimento del coefficiente k_{i,j}

Si riporta un approfondimento sul coefficiente di sfumatura $k_{i,j}$ in relazione all'equazione di Ayrton Perry sulla quale l'attuale normativa si basa per la risoluzione del problema dell'instabilità dell'equilibrio.

Si prende in considerazione il caso di asta vincolata alle estremità da una cerniera e un carrello, caricata in sommità da una forza di compressione.

Figure 3.1 - Asta con carico di Punta N_{max}

L'equazione di Ayrton-Perry viene ricavata a partire dalla condizione di equilibrio tensionale, assumendo che la sezione raggiunga la tensione di snervamento a causa del carico di punta N_{max}, tenendo in considerazione gli effetti di secondo ordine dovuti alla deformazione dell'asta per effetto dell'instabilità:

$$\frac{N_{max}}{A} + \frac{N_{max} \cdot \bar{e}}{W_{el}} = f_y \tag{3.8}$$

Dove:

- N_{max} = Valore del massimo carico di punta per raggiungere la tensione di snervamento;
- A = Area della sezione trasversale

- W_{el} = Modulo di resistenza elastico della sezione trasversale;
- f_y = tensione di snervamento.

ē viene definito come segue:

$$\bar{e} = \frac{e_0}{1 - \frac{N_{max}}{N_{cr}}}$$
3.9

Dove:

- e₀ = Valore dell'imperfezione iniziale;
- N_{cr} = Valore del carico critico euleriano.

Dividendo la 3.8 per il valore di resistenza a snervamento si ottiene:

$$1 = \frac{N_{max}}{A \cdot f_y} + \frac{N_{max} \cdot \bar{e}}{W_{el} \cdot f_y} = \frac{N_{max}}{A \cdot f_y} + \frac{N_{max}}{W_{el} \cdot f_y} \cdot \frac{e_0}{1 - \frac{N_{max}}{N_{cr}}}$$

$$3.10$$

Il prodotto A \cdot f_y è pari al valore del massimo sforzo normale resistente della sezione:

$$N_{pl} = A \cdot f_y \tag{3.11}$$

Sostituendo all'interno della 3.10 si trova:

$$1 = \frac{N_{max}}{N_{pl}} + \frac{N_{max}}{W_{el} \cdot f_y} \cdot \frac{e_0}{1 - \frac{N_{max}}{N_{cr}}}$$

$$3.12$$

Si introducono ora il fattore di instabilità χ e la snellezza adimensionalizzata, definiti come segue:

$$\chi = \frac{N_{max}}{N_{pl}}$$
 3.13

$$\bar{\lambda} = \sqrt{\frac{N_{pl}}{N_{cr}}}$$
 3.14

Sviluppando alcuni passaggi algebrici, è possibile ricondursi alla più comune formulazione dell'equazione presente in normativa:

$$\chi \cdot \frac{e_0 \cdot A}{W_{el}} = (1 - \chi) \cdot (1 - \chi \cdot \bar{\lambda}^2)$$
3.15

Il termine $\frac{e_0 \cdot A}{W_{el}}$ equivale al fattore di imperfezione η , che nella normativa viene espresso in funzione della snellezza adimensionalizzata e di un coefficiente α , ricavato dalle curve di instabilità e che tiene conto delle imperfezioni presenti nell'elemento.

$$\eta = \frac{e_0 \cdot A}{W_{el}} = \alpha(\bar{\lambda} - 0.2) \tag{3.16}$$

Essendo η funzione della snellezza adimensionalizzata, si considera ora la definizione di snellezza adimensionalizzata individuata dal metodo della snellezza sfumata:

$$\bar{\lambda} = k_{i,j} \cdot \sqrt{\frac{\alpha_{ult,k,i}}{\alpha_{cr,j}}} = k_{i,j} \cdot \sqrt{\frac{N_{pl,i}}{N_{cr,j}}}$$
3.17

Se nella 3.16 si va a sostituire la 3.17 si trova:

$$\frac{e_0 \cdot A}{W_{el}} = \alpha(k_{i,j} \cdot \sqrt{\frac{N_{pl,i}}{N_{cr,j}}} - 0.2)$$
3.18

Esprimendo ora l'equazione in funzione del coefficiente di sfumatura k_{i,j}, si trova:

$$k_{i,j} = \frac{\frac{\boldsymbol{e_0} \cdot A_i}{W_{el,i}} + \boldsymbol{\alpha} \cdot 0.2}{\sqrt{\frac{N_{pl,i}}{N_{cr,j}}}}$$
3.19

Si individua così un'espressione del coefficiente di snellezza sfumata. Si nota come, poste come costanti le caratteristiche geometriche e di resistenza dell'asta, il parametro $k_{i,j}$ sia diretta funzione delle imperfezioni geometriche e di materiale assunte.

3.2 Accoppiamenti dei modi di instabilità

Fin qui si è trattato dei diversi modi di instabilità in modo separato, mentre il metodo prevede anche una parte nella quale andare a considerare l'interazione che questi possono tra loro avere.

Come anticipato nelle considerazioni alla fine del paragrafo 2.5.4, in modelli complessi possono avere punti molto lontani tra loro interessati dal buckling o, viceversa, si possono avere stessi punti interessanti dagli effetti di più modi di instabilità.

Per il calcolo dell'accoppiamento dei modi si segue un'analogia delle formule relative al calcolo della snellezza per le sezioni in Classe 4:

$$\overline{\lambda} = \sqrt{\frac{A_{eff} f_y}{N_{er}}}$$
 for Class 4 cross-sections

Figura 3.3 - Calcolo della snellezza adimensionalizzata secondo EN1993-1-1

In particolare, come per queste sezioni viene penalizzato il valore di area resistente, si propone la penalizzazione della resistenza all'instabilità, secondo il procedimento descritto come segue:

- Si prendono come riferimento i valori di snellezza adimensionalizzata λ_{i,j} ed i relativi valori del coefficienti del buckling χ_{i,j} dell'ultimo modo 'j' considerato;
- Si ricalcola il valore di snellezza puntuale nel modo '*j*-1', penalizzandola del fattore di instabilità del modo precedente:

$$\bar{\lambda}_{i,(j-1)} = k_{i,j} \cdot \sqrt{\frac{\chi_{i,j} \cdot \alpha_{ult,k,i}}{\alpha_{cr,j}}}$$
3.20

 Si calcola del valore del fattore di stabilità per il modo '*j-1*' a partire dal valore di snellezza adimensionalizzata appena calcolato:

$$\chi_{i,(j-1)} = \frac{1}{\Phi_{i,(j-1)} + \sqrt{\Phi_{i,(j-1)}^2 - \bar{\lambda}_{i,(j-1)}^2}}$$
3.21

4. Si continua a seguire i punti 2 e 3 fino ad arrivare al secondo modo di instabilità, per il quale viene calcolato un valore di *coefficiente di buckling equivalente*:

$$\chi_{EQ} = \frac{1}{\Phi_{i,(j+n-1)} + \sqrt{\Phi_{i,(j+n-1)}^2 - \bar{\lambda}_{i,(j+n-1)}^2}}$$
3.22

Dove con il pedice '*j*-*n*+*1*' si indica il penultimo modo considerato;

5. Si esegue la verifica puntuale calcolando il coefficiente di buckling α_{rd} in analogia allo sforzo resistente N_{brd} definito nell'EN1993-1-1 per le sezioni in classe 4:

(3)	The design buckling resistance of a compression member should be taken as:					
	$N_{b,Rd} = \frac{\chi A f_y}{\gamma_{M1}}$	for Class 1, 2 and 3 cross-sections	(6.47)			
	$N_{b,Rd} = \frac{\chi A_{eff} f_y}{\gamma_{Mi}}$	for Class 4 cross-sections	(6.48)			
wher	e v is the reduction fact	or for the relevant buckling mode.				

Figura 3.4 - Capacità resistente calcolata secondo EN1993-1-1

In questo caso si sostituisce alla penalizzazione applicata all'area efficace il valore del *coefficiente di instabilità equivalen*te χ_{EQ} calcolato al punto 4, e si ottiene così la verifica:

$$\alpha_{Rd,i,j} = \frac{\chi_{EQ} \cdot \chi_{i,j-n+1} \cdot \alpha_{ult,k,i}}{\gamma_{M1}} \ge 1$$
3.23

$$UF_{i,j} = \frac{1}{\frac{\chi_{EQ} \cdot \chi_{i,j-n+1} \cdot \alpha_{ult,k,i}}{\gamma_{M1}}} = \frac{1}{\alpha_{Rd}} \le 1$$
3.24

4. Applicativo Software e avanzamenti

4.1 Struttura ed Interfaccia

Il codice numerico è programmato tramite il linguaggio C# ed è un applicativo che si interfaccia al software Straus7 per l'esecuzione di analisi lineari, per la creazioni di modelli e per l'elaborazione di quest'ultimi.

In particolare, per poter sfruttare le funzionalità di Straus7, si utilizzano le cosiddette *Application Programming Interfaces* le quali costituiscono un insieme di comandi e strumenti che permettono l'interazione tra i due software.

Il programma è strutturato in due moduli principali:

- 12. *Modulo di calcolo*: questa parte del codice è dedicata all'elaborazione dei dati e all'esecuzione delle analisi;
- 13. Modulo di Interfaccia grafica: questa componente fornisce un ambiente visivo e interattivo attraverso il quale l'utente può configurare i parametri, avviare le analisi ed esaminare i risultati prodotti dal modulo di calcolo.

4.1.1 Modulo di Calcolo

In questa sezione vengono presi gli input forniti dall'utente e vengono elaborati seguendo i passaggi spiegati precedentemente nei paragrafi 3.1 e 3.2. Il modulo viene a sua volta diviso in tre parti:

- Pre-Processore: ha la funzione di salvare i dati necessari allo sviluppo dei calcoli, raccolti dall'analisi elastica lineare e dall'analisi lineare al buckling sul modello perfetto;
- Elaboratore: genera i modelli deformati a partire dalle deformate dei diversi modi di buckling e dal valore di imperfezione massimo fornito. Successivamente esegue una LSA sui modelli creati e ne elabora e archivia i risultati;
- Post-Processore: in questo comparto tutti i valori salvati in precedenza vengono combinati ed utilizzati per creare delle mappe contour dei vari

parametri calcolati dall'elaboratore. Viene inoltre effettuato l'accoppiamento dei risultati per tenere conto degli effetti di coupling.

4.1.2 Modulo di Interfaccia Grafica

Questa sezione serve a far interagire l'utente con il programma attraverso comandi e menù utili all'impostazione delle analisi da eseguire. In Figura 4.1 si riporta una rappresentazione dell'interfaccia:

Figura 4.1 - Schermata Principale del Software – (Bagordo C., 2021)

Una volta eseguite le analisi numeriche, viene attivato il Post-Processore, il quale si basa sul modulo di post-processamento di Straus7 e permette di visualizzare le mappe contour che vengono create. In Figura 4.2 si può vedere un esempio di funzionamento:

🛃 Buckling post Cim (64 bit)					- 🗆 X
File Utilities Calculate e0 with converg	gence				
Linear buckling solutions Base result cases	Result case	Buckling mode	Plate Result type ∨	Beam Result type	Update calculations Update Calculations
1: Carico di Punta 200kN	- <mark> </mark>	Q Q Q Ø ₱ 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	· · · · · · · · ·		Select buckling modes Select / Deselect All Select / Deselect All Select / Deselect All Select / Deselect All Select 2 S
Solve Load existing Load LBA N.B. LBA solution must include results for stress patterns (not SD7 default)	 Beam Mensola_RC_1_MODE Max = 0.516277 [Bm:1] 0.430231 0.344185 0.258139 0.172092 	_1 - U_F_BUCKLING_BEAM			1, Factor - 74 749
Checks 10 v Alpha1_Model 10 v v_M1 11 v v_M2 125 v f_y 355 v Plates a_p 0.8 v Mans Stress Patern (All plates) Mans These Patern (Selected Orly) Bot Plate to Mean (Stress Patern)	0.086046 Min = 0.0 [Bm:9]				
Man SigmAM (Selected Ork) Set Plate to Mean (EgravIV) e_0 e_0 2 Baam λp0 (0.34 ~) Nan Stations 2 Calculate UF, permutation Table Use Grader Sindements Methed				z	Select Groups Select / Deelect All

Figura 4.2 - Esempio di visualizzazione della parte di post-processamento del software

4.2 Avanzamenti compiuti

Il lavoro di programmazione svolto durante la tesi si è concentrato sul miglioramento e l'ampliamento del codice esistente, con interventi significativi a livello di programmazione informatica.

In primo luogo è stata effettuata una revisione globale del codice, al fine di andare a risolvere alcuni degli errori o dei comportamenti non previsti (in gergo tecnico definiti anche come "*bug*") e di poter effettuare le successive modifiche a partire da una base più affidabile.

In Figura 4.3 si riporta un esempio di una delle correzioni effettuate. In taluni casi infatti, il codice andava a calcolare dei valori non esatti e questo si riscontrava nella visualizzazione delle mappe che fornivano risultati diversi da quelli che ci si attendeva.

Figura 4.3 – Esempio di confronto tra mappa incorretta (immagine superiore) e mappa corretta (immagine inferiore)

Per la revisione è stato applicato un approccio sistematico di *backtracking*, ovvero si è seguito un percorso a ritroso delle azioni compiute dal codice, analizzando le problematiche logiche e strutturali e verificando manualmente i risultati generati per garantire la correttezza e la consistenza delle soluzioni fornite dal programma.

In Figura 4.4 si riporta uno dei confronti tra alcuni dei valori forniti dal codice e i valori che invece si attendeva dal calcolo manuale per il caso in Figura 4.3:

Valori Codi		χ3	λ2	φ2	χ2	λ1	φ1	χ1	U.F.
Valori Cour	~	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
Beam 1: End	1 1	.00	0.64	0.78	0.82	1.15	1.32	0.51	0.45
Beam 1: End	2 0	.95	0.62	0.76	0.83	1.16	1.33	0.50	0.45
Beam 2: End	1 0	.95	0.62	0.76	0.83	1.16	1.33	0.50	0.45
Beam 2: End	2 0	.92	0.61	0.76	0.83	1.16	1.34	0.50	0.45
Beam 3: End	1 0	.92	0.61	0.76	0.83	1.16	1.34	0.50	0.45
Beam 3: End	2 1	.00	0.64	0.78	0.82	1.15	1.32	0.51	0.45
Beam 4: End	1 1	.00	0.64	0.78	0.82	1.15	1.32	0.51	0.45
Beam 4: End	2 0	.98	0.63	0.77	0.82	1.15	1.33	0.50	0.45
Beam 5: End	1 0	.98	0.63	0.77	0.82	1.15	1.33	0.50	0.45
Beam 5: End	2 0	.92	0.61	0.75	0.83	1.16	1.34	0.50	0.46
Beam 6: End	1 0	.92	0.61	0.75	0.83	1.16	1.34	0.50	0.46
Beam 6: End	2 0	.98	0.63	0.77	0.82	1.15	1.33	0.50	0.45
Beam 7: End	1 0	.98	0.63	0.77	0.82	1.15	1.33	0.50	0.45
Beam 7: End	2 1	.00	0.64	0.78	0.82	1.15	1.32	0.51	0.45
Beam 8: End	1 1	.00	0.64	0.78	0.82	1.15	1.32	0.51	0.45
Beam 8: End	2 0	.92	0.61	0.76	0.83	1.16	1.34	0.50	0.45
Beam 9: End	1 0	.92	0.61	0.76	0.83	1.16	1.34	0.50	0.45
Beam 9: End	2 0	95	0.62	0.76	0.83	1 16	1 33	0.50	0.45
Beam 10: End	1 0	95	0.62	0.76	0.83	1 16	1 33	0.50	0.45
Beam 10: End	2 1	00	0.64	0.78	0.82	1 15	1 32	0.50	0.45
	χ3	λ2	φ2	χ2	λ1	φ1	χ1	χMat	U.F.
Matriosca	χ3 [-]	λ2 [-]	φ2 [-]	χ 2 [-]	λ1 [-]	φ1 [-]	χ1 [-]	χMat [-]	U.F. [-]
Matriosca Beam 1: End 1	χ 3 [-] 1.00	λ2 [-] 0.20	φ2 [-]	2 χ 2 [-] 2 1.00	λ1 [-] 0.20	¢1 [-] 0.52	χ 1 [-] 1.00	χMat [-] 1.00	U.F. [-] 0.23
Matriosca Beam 1: End 1 Beam 1: End 2	χ3 [-] 1.00 0.95	λ2 [-] 0.20 0.38	φ2 [-] 0.5: 0.6(× χ2 [-] 2 1.00 0 0.93	λ1 [-] 0.20 0.38	φ1 [-] 0.52 0.60	χ1 [-] 1.00 0.93	χMat [-] 1.00 0.87	U.F. [-] 0.23 0.26
Matriosca Beam 1: End 1 Beam 1: End 2 Beam 2: End 1	χ3 [-] 1.00 0.95 0.95	λ2 [-] 0.20 0.38 0.38	¢2 [-] 0.5: 0.60 0.60	x2 [-] 2 1.00 0 0.93 0 0.93	λ1 [-] 0.20 0.38 0.38	φ1 [-] 0.52 0.60 0.60	χ1 [-] 1.00 0.93 0.93	χMat [-] 1.00 0.87 0.87	U.F. [-] 0.23 0.26 0.26
Matriosca Beam 1: End 1 Beam 1: End 2 Beam 2: End 1 Beam 2: End 2	x3 [-] 1.00 0.95 0.95 0.92	λ2 [-] 0.20 0.38 0.38 0.61	φ2 [-] 0.5: 0.6(0.6(0.7)	2 χ2 [-] 2 1.00 0 0.93 0 0.93 6 0.83	λ1 [-] 0.20 0.38 0.38 0.68	φ1 [-] 0.52 0.60 0.60 0.81	χ1 [-] 1.00 0.93 0.93 0.79	χMat [-] 1.00 0.87 0.87 0.66	U.F. [-] 0.23 0.26 0.26 0.34
Matriosca Beam 1: End 1 Beam 1: End 2 Beam 2: End 1 Beam 2: End 2 Beam 3: End 1	χ3 [-] 1.00 0.95 0.95 0.92 0.92	λ2 [-] 0.20 0.38 0.38 0.61 0.61	φ2 [-] 0.53 0.64 0.64 0.74 0.74	x2 [-] 2 1.00 0 0.93 0 0.93 6 0.83 6 0.83	λ1 [-] 0.20 0.38 0.38 0.68 0.68	φ1 [-] 0.52 0.60 0.60 0.81 0.81	x1 [-] 1.00 0.93 0.93 0.79 0.79	xMat [-] 1.00 0.87 0.87 0.66 0.66	U.F. [-] 0.23 0.26 0.26 0.34 0.34
Matriosca Beam 1: End 1 Beam 1: End 2 Beam 2: End 1 Beam 3: End 1 Beam 3: End 1	χ3 [-] 1.00 0.95 0.95 0.92 0.92 1.00	λ2 [-] 0.20 0.38 0.61 0.61 0.64	42 [-] 0.53 0.66 0.66 0.77 0.77 0.77	χ2 [-] 2 1.00 0 0.93 6 0.83 6 0.83 8 0.82	λ1 [-] 0.20 0.38 0.38 0.68 0.68 0.93	φ1 [-] 0.52 0.60 0.60 0.81 0.81 1.06	χ1 [-] 1.00 0.93 0.93 0.79 0.79 0.64	χMat [-] 1.00 0.87 0.66 0.66 0.66	U.F. [-] 0.23 0.26 0.26 0.34 0.34 0.34
Matriosca Beam 1: End 1 Beam 2: End 1 Beam 2: End 1 Beam 3: End 1 Beam 3: End 2 Beam 4: End 1	x3 [-] 1.00 0.95 0.95 0.92 0.92 1.00 1.00	λ2 [-] 0.20 0.38 0.38 0.61 0.61 0.64 0.64	42 [-] 0.53 0.66 0.66 0.77 0.77 0.77 0.77	x2 [-] 2 1.00 0 0.93 0 0.93 6 0.83 6 0.83 8 0.82 8 0.82	λ1 [-] 0.20 0.38 0.38 0.68 0.68 0.93 0.93	φ1 [-] 0.52 0.60 0.60 0.81 0.81 1.06 1.06	χ1 [-] 1.00 0.93 0.93 0.79 0.79 0.64 0.64	χMat [-] 1.00 0.87 0.66 0.66 0.66 0.52 0.52	U.F. [-] 0.23 0.26 0.26 0.34 0.34 0.34 0.43
Matriosca Beam 1: End 1 Beam 2: End 2 Beam 2: End 2 Beam 3: End 1 Beam 3: End 2 Beam 4: End 1 Beam 4: End 2	x3 [-] 1.00 0.95 0.95 0.92 0.92 1.00 1.00 0.98	λ2 [-] 0.20 0.38 0.38 0.61 0.61 0.64 0.64 0.39	42 [-] 0.55 0.66 0.77 0.77 0.77 0.77 0.77	x2 [-] 2 1.00 0 0.93 6 0.83 6 0.83 8 0.82 8 0.82 1 0.93	λ1 [-] 0.20 0.38 0.38 0.68 0.68 0.93 0.93 1.17	ф1 [-] 0.52 0.60 0.81 0.81 1.06 1.06 1.35	χ1 [-] 1.00 0.93 0.79 0.79 0.79 0.64 0.64 0.50	xMat [-] 1.00 0.87 0.66 0.66 0.52 0.52 0.52	U.F. [-] 0.23 0.26 0.34 0.34 0.43 0.43 0.43
Matriosca Beam 1: End 1 Beam 2: End 2 Beam 2: End 1 Beam 3: End 1 Beam 3: End 1 Beam 4: End 2 Beam 4: End 2 Beam 5: End 1	χ3 [-] 1.00 0.95 0.95 0.92 0.92 1.00 1.00 0.98 0.98	λ2 [-] 0.20 0.38 0.38 0.61 0.61 0.64 0.64 0.39 0.39	¢2 [-] 0.55 0.66 0.77 0.77 0.77 0.77 0.66 0.66	x2 [-] 2 1.00 0 0.93 0 0.93 6 0.83 6 0.83 8 0.82 1 0.93 1 0.93	λ1 [-] 0.20 0.38 0.38 0.68 0.68 0.93 0.93 1.17 1.17	Φ1 [-] 0.52 0.60 0.81 0.81 1.06 1.06 1.35	x1 [-] 1.00 0.93 0.79 0.79 0.64 0.64 0.50 0.50	xMat [-] 1.00 0.87 0.66 0.66 0.52 0.52 0.52 0.46 0.46	U.F. [-] 0.23 0.26 0.26 0.26 0.34 0.43 0.43 0.43 0.49 0.49
Matriosca Beam 1: End 1 Beam 2: End 1 Beam 2: End 1 Beam 3: End 2 Beam 3: End 2 Beam 4: End 1 Beam 4: End 2 Beam 5: End 1 Beam 5: End 2	χ3 [-] 1.00 0.95 0.95 0.92 1.00 1.00 0.98 0.98 0.92	λ2 [-] 0.20 0.38 0.38 0.61 0.61 0.64 0.64 0.39 0.39 0.20	42 [-] 0.55 0.66 0.66 0.77 0.77 0.77 0.77 0.77 0.73 0.66 0.66 0.55	x2 [-] 2 1.00 0 0.93 0 0.93 6 0.83 6 0.83 8 0.82 1 0.93 2 1.00	λ1 [-] 0.20 0.38 0.38 0.68 0.68 0.93 0.93 1.17 1.17 1.27	φ1 [-] 0.52 0.60 0.60 0.81 1.06 1.06 1.06 1.35 1.35	x1 [-] 1.00 0.93 0.79 0.64 0.64 0.50 0.50 0.50	xMat [-] 1.00 0.87 0.66 0.66 0.52 0.52 0.52 0.46 0.46	U.F. [-] 0.23 0.26 0.34 0.34 0.43 0.43 0.43 0.49 0.49 0.52
Matriosca Beam 1: End 1 Beam 2: End 2 Beam 2: End 1 Beam 3: End 1 Beam 3: End 2 Beam 3: End 2 Beam 4: End 1 Beam 4: End 2 Beam 5: End 2 Beam 5: End 2 Beam 6: End 1	x3 [-] 1.00 0.95 0.92 0.92 1.00 1.00 0.98 0.98 0.98 0.92 0.92	λ2 [-] 0.20 0.38 0.61 0.64 0.64 0.64 0.39 0.39 0.20 0.20	42 [-] 0.55 0.66 0.66 0.77 0.77 0.77 0.77 0.77 0.77	x2 x2 [-] 2 2 1.00 0 0.93 6 0.83 6 0.83 8 0.82 1 0.93 2 1.00 0 2	λ1 [-] 0.20 0.38 0.38 0.68 0.93 0.93 1.17 1.27 1.27	φ1 [-] 0.52 0.60 0.60 0.81 1.06 1.06 1.35 1.35 1.49 1.49	x1 [-] 1.00 0.93 0.79 0.79 0.64 0.64 0.64 0.50 0.50 0.44	xMat [-] 1.00 0.87 0.66 0.66 0.52 0.52 0.46 0.46 0.44	U.F. [-] 0.23 0.26 0.34 0.34 0.43 0.43 0.49 0.49 0.52 0.52
Matriosca Beam 1: End 1 Beam 1: End 2 Beam 2: End 1 Beam 2: End 2 Beam 3: End 2 Beam 4: End 1 Beam 4: End 2 Beam 5: End 1 Beam 5: End 1 Beam 6: End 2	x3 [-] 1.00 0.95 0.92 0.92 1.00 1.00 0.98 0.98 0.92 0.92 0.92	λ2 [-] 0.20 0.38 0.61 0.64 0.64 0.64 0.39 0.39 0.20 0.20 0.20	42 [-] 0.5: 0.6(0.6(0.7) 0.7) 0.7) 0.7) 0.7) 0.6(0.6(0.5) 0.5) 0.5) 0.5]	χ2 Γ-] 2 1.00 0 0.93 0 0.93 6 0.83 6 0.83 8 0.82 1 0.93 2 1.00 2 1.00 2 1.00 1 0.93	λ1 [-] 0.20 0.38 0.38 0.68 0.93 1.17 1.27 1.27 1.17	¢1 [-] 0.52 0.60 0.60 0.81 0.81 1.06 1.35 1.35 1.49 1.49	χ1 [-] 1.00 0.93 0.79 0.64 0.50 0.44 0.44	xMat [-] 1.00 0.87 0.66 0.66 0.52 0.52 0.52 0.46 0.46 0.44 0.44	U.F. [-] 0.23 0.26 0.34 0.43 0.43 0.43 0.49 0.49 0.52 0.52 0.52
Matriosca Beam 1: End 1 Beam 2: End 1 Beam 2: End 2 Beam 3: End 2 Beam 3: End 2 Beam 4: End 2 Beam 4: End 2 Beam 5: End 1 Beam 6: End 2 Beam 6: End 1 Beam 6: End 1 Beam 7: End 1	x3 [-] 1.00 0.95 0.92 1.00 1.00 0.98 0.98 0.92 0.92 0.92 0.92	λ2 [-] 0.20 0.38 0.61 0.61 0.64 0.39 0.39 0.20 0.20 0.20 0.39	42 [-] 0.55 0.66 0.66 0.77 0.77 0.77 0.77 0.77 0.77	χ2 [-] 2 1.00 0 0.93 0 0.93 6 0.83 6 0.83 6 0.83 8 0.82 1 0.93 2 1.00 2 1.00 2 1.00 2 1.00 2 1.00 2 1.00 2 1.00 2 0.93 0 0.93 0 0.93	λ1 [-] 0.20 0.38 0.68 0.68 0.93 1.17 1.27 1.17 1.27 1.17 1.17	Φ1 [-] 0.52 0.60 0.81 1.06 1.06 1.06 1.35 1.35 1.49 1.49 1.35	χ1 [-] 1.00 0.93 0.79 0.64 0.50 0.44 0.50 0.44 0.50	xMat [-] 1.00 0.87 0.87 0.66 0.52 0.52 0.52 0.52 0.46 0.46 0.44 0.44 0.44 0.44 0.46	U.F. [-] 0.23 0.26 0.34 0.34 0.43 0.43 0.43 0.49 0.49 0.52 0.52 0.52 0.49 0.49
Matriosca Beam 1: End 1 Beam 2: End 2 Beam 2: End 1 Beam 3: End 1 Beam 3: End 2 Beam 4: End 1 Beam 4: End 2 Beam 5: End 2 Beam 6: End 1 Beam 6: End 2 Beam 7: End 2 Beam 7: End 2	x³ [-] 1.00 0.95 0.92 0.92 1.00 1.00 0.98 0.98 0.98 0.92 0.92 0.98 0.98 0.98	λ2 [-] 0.20 0.38 0.61 0.61 0.64 0.39 0.20 0.20 0.20 0.39 0.39 0.20 0.39 0.20	42 [-] 0.55 0.66 0.67 0.77 0.77 0.77 0.77 0.77 0.77	χ2 <th< td="" tr<=""><td>λ1 [-] 0.20 0.38 0.38 0.68 0.93 0.17 1.17 1.27 1.17 1.17 1.17 1.17 0.93</td><td>φ1 [-] 0.52 0.60 0.60 0.81 1.06 1.06 1.35 1.35 1.49 1.49 1.35 1.35 1.35 1.35</td><td>x1 [-] 1.00 0.93 0.79 0.64 0.64 0.50 0.50 0.44 0.44 0.50 0.50 0.50 0.5</td><td>xMat [-] 1.00 0.87 0.87 0.66 0.66 0.52 0.52 0.52 0.46 0.44 0.44 0.44 0.44 0.46 0.46 0.46</td><td>U.F. [-] 0.23 0.26 0.26 0.34 0.43 0.43 0.43 0.43 0.49 0.49 0.52 0.52 0.52 0.52 0.49 0.49 0.49</td></th<>	λ1 [-] 0.20 0.38 0.38 0.68 0.93 0.17 1.17 1.27 1.17 1.17 1.17 1.17 0.93	φ1 [-] 0.52 0.60 0.60 0.81 1.06 1.06 1.35 1.35 1.49 1.49 1.35 1.35 1.35 1.35	x1 [-] 1.00 0.93 0.79 0.64 0.64 0.50 0.50 0.44 0.44 0.50 0.50 0.50 0.5	xMat [-] 1.00 0.87 0.87 0.66 0.66 0.52 0.52 0.52 0.46 0.44 0.44 0.44 0.44 0.46 0.46 0.46	U.F. [-] 0.23 0.26 0.26 0.34 0.43 0.43 0.43 0.43 0.49 0.49 0.52 0.52 0.52 0.52 0.49 0.49 0.49
Matriosca Beam 1: End 1 Beam 2: End 2 Beam 2: End 1 Beam 3: End 1 Beam 3: End 2 Beam 3: End 2 Beam 4: End 1 Beam 4: End 2 Beam 5: End 2 Beam 6: End 1 Beam 7: End 2 Beam 7: End 1 Beam 7: End 2 Beam 7: End 1 Beam 7: End 1	x³ [-] 1.00 0.95 0.92 0.92 1.00 1.00 0.98 0.98 0.98 0.92 0.92 0.98 0.98 1.00 1.00	λ2 [-] 0.20 0.38 0.61 0.64 0.64 0.39 0.39 0.20 0.20 0.39 0.20 0.39 0.39	¢2 [-] 0.55 0.66 0.77 0.77 0.77 0.77 0.66 0.66 0.66	 x2 [-] 2 1.00 0.93 0.93 6 0.83 8 0.82 1 0.93 8 0.82 0.93 0.82 0.82 0.82 0.82 0.82 0.82 	λ1 [-] 0.20 0.38 0.38 0.68 0.68 0.93 1.17 1.17 1.27 1.27 1.17 0.93 0.93 0.93	φ1 [-] 0.52 0.60 0.81 1.06 1.35 1.35 1.49 1.49 1.35 1.35 1.06	χ1 [-] 1.00 0.93 0.79 0.79 0.64 0.50 0.44 0.50 0.64 0.50 0.64 0.50 0.64 0.50 0.64	xMat [-] 1.00 0.87 0.66 0.66 0.52 0.52 0.52 0.46 0.46 0.44 0.44 0.44 0.46 0.52 0.52 0.52 0.52 0.52 0.55 0.66 0.66 0.52 0.52 0.55 0	U.F. [-] 0.23 0.26 0.34 0.43 0.43 0.43 0.49 0.52 0.52 0.52 0.52 0.49 0.49 0.43 0.43 0.43
Matriosca Beam 1: End 1 Beam 1: End 2 Beam 2: End 1 Beam 2: End 2 Beam 3: End 2 Beam 3: End 1 Beam 4: End 1 Beam 5: End 1 Beam 5: End 1 Beam 5: End 2 Beam 7: End 2 Beam 7: End 2 Beam 8: End 1 Beam 8: End 1 Beam 8: End 2 Beam 8: End 2	x3 [-] 1.00 0.95 0.92 0.92 1.00 1.00 0.98 0.98 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	λ2 [-] 0.20 0.38 0.61 0.64 0.64 0.64 0.39 0.39 0.20 0.20 0.20 0.20 0.39 0.64 0.64	42 [-] 0.5: 0.6(0.77 0.77 0.77 0.77 0.77 0.6: 0.6: 0.6: 0.6: 0.6: 0.77 0.77 0.77	χ2 [-] 2 1.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.93 1 0.93 1 0.93 1 0.93 1 0.93 1 0.93 1 0.93 1 0.93 1 0.93 1 0.93 1 0.93 1.00 1 0.93 0.93 0.93 0.93 0.93 0.93 0.93	λ1 [-] 0.20 0.38 0.38 0.68 0.93 0.93 1.17 1.17 1.27 1.27 1.17 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	φ1 [-] 0.52 0.60 0.61 0.61 1.06 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.36 1.06 0.061 0.81	x1 1.00 0.93 0.79 0.64 0.64 0.50 0.50 0.44 0.50 0.50 0.44 0.64 0.79 0.64 0.64 0.79	xMat [-] 1.00 0.87 0.66 0.66 0.52 0.52 0.46 0.44 0.44 0.44 0.44 0.44 0.52 0.52 0.52 0.52 0.52 0.52	U.F. [-] 0.23 0.26 0.34 0.43 0.43 0.49 0.49 0.49 0.52 0.52 0.52 0.49 0.49 0.49 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.52 0.52 0.52 0.49 0.49 0.49 0.52 0.52 0.52 0.52 0.49 0.52 0.43 0.43 0.43 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.53 0.55 0
Matriosca Beam 1: End 1 Beam 1: End 2 Beam 2: End 1 Beam 2: End 2 Beam 3: End 2 Beam 4: End 1 Beam 4: End 2 Beam 4: End 2 Beam 5: End 1 Beam 5: End 1 Beam 7: End 2 Beam 7: End 1 Beam 8: End 2 Beam 8: End 1 Beam 8: End 1 Beam 9: End 1 Beam 9: End 1 Beam 9: End 1 Beam 9: End 1	x3 [-] 1.00 0.95 0.92 0.92 1.00 1.00 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0	λ2 [-] 0.20 0.38 0.61 0.64 0.69 0.20 0.39 0.20 0.39 0.20 0.39 0.64 0.61 0.64	42 [-] 0.5: 0.66 0.66 0.77 0.77 0.77 0.77 0.77 0.6: 0.5: 0.6: 0.6: 0.77 0.77 0.77	χ2 1-2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.93 1 0.93 1 0.93 1 0.93 1 0.93 1 0.93 1 0.93 1 0.93 1 0.93 0 0 0 0 0 0 0	λ1 [-] 0.20 0.38 0.38 0.38 0.68 0.93 0.93 1.17 1.27 1.27 1.17 1.17 0.93 0.68 0.93 0.68 0.63 0.64	φ1 [-] 0.52 0.60 0.81 1.06 1.35 1.35 1.35 1.49 1.49 1.49 1.35 1.06 0.81 1.06	x1 i -0 0.93 0.79 0.64 0.50 0.50 0.44 0.44 0.44 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.64 0.50	xMat [-] 1.00 0.87 0.66 0.52 0.46 0.44 0.44 0.44 0.44 0.44 0.44 0.46 0.52 0.66 0.62 0.66 0.62 0.66 0.87 0.87 0.66 0.87 0.66 0.52 0.66 0.66 0.52 0.66 0.52 0.66 0.66 0.52 0.66 0.52 0.66 0.66 0.52 0.66 0.66 0.52 0.46 0.52 0.66 0.52 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.52 0.55 0	U.F. [-] 0.23 0.26 0.26 0.34 0.43 0.43 0.49 0.52 0.52 0.52 0.49 0.49 0.49 0.43 0.43 0.43 0.43 0.43
Matriosca Beam 1: End 1 Beam 1: End 2 Beam 2: End 1 Beam 2: End 2 Beam 3: End 1 Beam 3: End 2 Beam 4: End 1 Beam 5: End 2 Beam 5: End 2 Beam 5: End 2 Beam 6: End 1 Beam 7: End 2 Beam 7: End 2 Beam 8: End 2 Beam 9: End 1 Beam 9: End 2 Beam 9: End 2 Beam 9: End 2	x3 [-] 1.00 0.95 0.92 0.92 1.00 1.00 0.98 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.98 0.98 0.98 0.98 0.98 0.92 0.98 0.98 0.98 0.98 0.98 0.99 0.92 0.95	λ2 [-] 0.20 0.38 0.61 0.64 0.64 0.39 0.39 0.20 0.20 0.39 0.39 0.39 0.39 0.64 0.64 0.61 0.61 0.61	42 [-] 0.5: 0.66 0.67 0.77 0.77 0.77 0.77 0.77 0.77	x2 [-] 2 1.00 0 0.93 0 0.93 0 0.93 0 0.93 6 0.83 8 0.82 1 0.93 1 0.93 1 0.93 1 0.93 1 0.93 8 0.82 8 0.82 8 0.82 6 0.83 6 0.83 6 0.83 6 0.83 0 0.93 0 0.93	λ1 [-] 0.20 0.38 0.68 0.693 1.17 1.27 1.17 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.68 0.68 0.68 0.38 0.38 0.38	\$1 [-] 0.52 0.60 0.81 1.06 1.06 1.35 1.35 1.35 1.49 1.49 1.49 1.35 1.06 0.81 0.81 0.81 0.60	x1 	xMat [-] 1.00 0.87 0.66 0.52 0.52 0.46 0.44 0.46 0.44 0.46 0.44 0.46 0.52 0.52 0.52 0.52 0.66 0.66 0.66 0.66 0.87 0.87	U.F. [-] 0.23 0.26 0.34 0.43 0.43 0.43 0.49 0.52 0.52 0.52 0.52 0.49 0.49 0.43 0.43 0.43 0.43 0.34 0.34 0.34
Matriosca Beam 1: End 1 Beam 1: End 2 Beam 2: End 2 Beam 3: End 1 Beam 3: End 2 Beam 3: End 2 Beam 4: End 1 Beam 4: End 2 Beam 5: End 2 Beam 6: End 1 Beam 7: End 2 Beam 7: End 1 Beam 7: End 2 Beam 7: End 1 Beam 8: End 1 Beam 8: End 1 Beam 8: End 1 Beam 9: End 2 Beam 9: End 1 Beam 9: End 2 Beam 10: End 1 Beam 10: End 1	x3 [-] 1.00 0.95 0.92 0.92 0.92 0.92 0.98 0.98 0.98 0.98 0.92 0.98 0.92 0.92 0.98 0.92 0.92 0.92 0.95 0.95 1.00	λ2 [-] 0.20 0.38 0.61 0.64 0.39 0.39 0.39 0.20 0.20 0.39 0.39 0.39 0.40 0.54 0.64 0.64 0.64 0.64 0.64 0.64 0.39 0.39 0.39 0.20 0.39 0.20 0.39 0.20 0.39 0.20 0.39 0.20 0.39 0.39 0.20 0.39 0.39 0.20 0.39 0.20 0.39 0.20 0.39 0.20 0.39 0.20 0.20 0.39 0.20 0.20 0.20 0.39 0.20 0.	42 [-] 0.5: 0.6(0.7) 0.7) 0.7] 0.7] 0.6; 0.6; 0.6; 0.5; 0.6; 0.6; 0.7] 0.7] 0.7] 0.7] 0.7] 0.7] 0.7] 0.7]	x2 [-] 2 1.00 0 0.93 0 0.93 0 0.93 0 0.83 8 0.82 1 0.93 2 1.00 2 1.00 1 0.93 8 0.82 1 0.93 8 0.82 6 0.83 0 0.93 0 0.93 0 0.93 0 0.93 0 0.93 0 0.93	λ1 [-] 0.20 0.38 0.68 0.93 0.93 1.17 1.17 1.27 1.17 0.93 0.68 0.38 0.38 0.20	φ1 [-] 0.52 0.60 0.81 1.06 1.35 1.35 1.35 1.35 1.35 0.81 0.060 0.81 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.61 0.62 0.62	χ1 I-100 0.93 0.79 0.64 0.50 0.50 0.50 0.50 0.64 0.64 0.50 0.50 0.64 0.64 0.50 0.50 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.79 0.93 0.93 0.93	xMat [.] 1.0 0.87 0.87 0.66 0.52 0.52 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.66 0.87 0.87	U.F. [-] 0.23 0.26 0.34 0.43 0.43 0.49 0.49 0.52 0.52 0.49 0.49 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43

Figura 4.4 - Confronto tra i valori forniti in output (immagine superiore) ed i valori attesi (immagine inferiore)

4.2.1 Estensione del codice

In seguito alla fase di revisione e correzione delle problematiche riscontrate, si è proceduto all'ampliamento del codice tramite l'introduzione di un modulo per il calcolo dell'imperfezione iniziale da assegnare alle analisi di modelli composti da elementi di tipo *plate*.

In particolare, il modulo opera in maniera similare a quello del codice principale e utilizza come principali parametri di input: il modello perfetto, l'analisi lineare statica e l'analisi lineare al buckling.

Successivamente procede a calcolare il valore dell'imperfezione iniziale e₀ da assegnare a partire dalle prescrizioni fornite all'interno dell'Annex B, presente nell'EN1993-1-5.

$$e_0 = \alpha_p (\bar{\lambda}_p - \bar{\lambda}_{p0}) \frac{t}{6} \frac{1 - \frac{\rho \lambda_p}{\gamma_{M1}}}{1 - \bar{\lambda}_p}$$

$$4.1$$

Dove:

- λ_p : Snellezza adimensionalizzata del pannello;
- t : Spessore del pannello;
- γ_{M1} : Coefficiente di sicurezza;

I valori di α_p e di λ_p vengono invece forniti nella tabella T.B 1 contenuta nell'annesso:

 α_{p} Product predominant buckling mode λ_{p0} 0,70 direct stress for $\psi \ge 0$ direct stress for $\psi < 0$ hot rolled 0,13 0,80 shear transverse stress 0,70 direct stress for $\psi \ge 0$ welded or direct stress for $\psi < 0$ 0,34 cold formed 0,80 shear transverse stress

Table B.1: Values for $\overline{\lambda}_{p0}$ and α_{p}

Tabella 4.1 - Valori relativi ad αp e di λp - (UNI EN 1993-1-5 §Annex B)

Si utilizza come valore di snellezza adimensionalizzata quella calcolata al paragrafo 3.1. Poiché il valore della snellezza dipende in maniera diretta dall'imperfezione scelta, in quanto funzione del differenziale tensionale tra modelli imperfetti e modello iniziale, il modulo calcola il valore di e₀ procedendo in maniera iterativa, assegnando un valore di imperfezione di primo tentativo e ripetendo le analisi fino alla convergenza di e₀.

Questa funzionalità era già stata realizzata in precedenza, ma funzionava in modalità *standalone*, ovvero operava in modo totalmente indipendente. L'obiettivo era dunque quello di inserirla nel codice principale e di far interagire le due parti in maniera diretta.

Per accedere al modulo è stata creata una sezione apposita, alla quale si accede tramite il pulsante mostrato in Figura 4.5:

Base result case	s		Result case	
		*	Model	
4		Þ		
Solve Load exis	ting			
Solve Load exis	ting 20			
Solve Load exis Modes Shift	20 0.0			

Figura 4.5 - Accesso al modulo tramite pulsante

All'interno di quest'area, si inseriscono i parametri di input e le analisi lineari di partenza. L'utente ha inoltre la facoltà di poter decidere un valore di tolleranza con il quale controllare il processo di convergenza, oppure decidere di effettuare il calcolo di e₀ per specifici modi di buckling da analizzare.

Form1			- 0
1010077	Load a	t7 Model	Convergence of e0
LOAD ST7	Luau	st/ Woder	
LOAD LSA	Load L	inear Static Solution	
LOAD LBA	Load L	inear Buckling Solution	
e0 initial	5	mm	
fy	355	MPa	
lambdaP0	0.8		
alphaP	0.34		
Panel Thickness	10	mm	
Gamma M1	1.1		
Convergence Limit	0.005	mm	Results
			e0 converged, max
Modes Selection			mm Start Calculation
🔾 Calculate Co	nvergence	e for All Modes	
O Calculate Co	nvergence	e on Single Mode Mode:	

Figura 4.6 - Interfaccia del modulo per il calcolo di e0

In conclusione, il codice presenta ora delle migliorie che lo rendono più stabile e in grado di fornire risultati più precisi. In particolare, la parte di analisi degli elementi beam è quella che ha ricevuto il maggior numero di modifiche e correzioni, garantendo una maggiore consistenza dei risultati, specialmente per modelli più complessi.

Il nuovo modulo integrato inoltre, ottimizza l'analisi dei modelli plate, migliorando l'accuratezza dei risultati e fornendo delle mappe contour più precise e di facile lettura.

Sebbene vi siano comunque diversi aspetti che si possono sviluppare ulteriormente, l'attuale stato del codice si presenta come una base ben più affidabile dalla quale partire per apportare modifiche ed integrazioni future.

5. Esempi Applicativi

5.1 Caso 1: Asta Cerniera Carrello – Modello Beam

Si tratta il caso di un'asta di lunghezza L = 4.0m e vincolata alle estremità da una cerniera ed un carrello, soggetta ad un carico di punta pari a N = 200kN.

Figura 5.1 – Caso 1 - Asta vincolata da cerniera a carrello soggetta a carico di punta N

L'asta ha come sezione trasversale un profilo IPE200 e di seguito se ne riportano le caratteristiche:

Caratteristiche Sezione Trasversale						
Altezza Sezione	h	200	mm			
Base Ala Inferiore	B1	100	mm			
Spessore Ala Inferiore	T1	8.5	mm			
Base Ala Superiore	B2	100	mm			
Spessore Ala Superiore	T2	8.5	mm			
Spessore Anima	Т3	5.6	mm			
Area Sezione	Α	2724.8	mm ²			
Modulo Resistente El	Wel	184559.023	mm ³			
Momento d'Inerzia Sezione	1	18455902.3	mm⁴			

Tabella 5.1 - Caratteristiche Geometriche IPE200

Figura 5.2 - Sezione trasversale dell'asta -Profilo IPE200

Si riportano ora i parametri principali calcolati tramite il software e le mappe a colori ottenute come output del programma. In particolare, si mostrano i valori di snellezza adimensionalizzata $\lambda_{i,j}$, il fattore di buckling $\chi_{i,j}$ ed il fattore di utilizzo UF_{i,j}:

Mode 1	$\alpha_{CR} = 11.95$	ID Node	$\overline{\lambda_{i,j}}$	Xi	U.F.
Colonna con Cerniera e Max = 0.63608 [Bm:5]	Carrello - LAMBDA_BEAM	11	0.20	1.00	0.23
0.58157 0.52706	3	10	0.20	1.00	0.23
0.47255 0.41804	3	9	0.37	0.94	0.24
0.36353 0.30902		8	0.51	0.88	0.26
0.25451		7	0.60	0.83	0.27
Will = 0.2 [DHL1]		6	0.64	0.82	0.28
		5	0.60	0.83	0.27
		4	0.51	0.88	0.26
		3	0.37	0.94	0.24
		2	0.20	1.00	0.23
		1	0.20	1.00	0.23

Tabella 5.2 – Parametri calcolati dal software tramite applicativo Straus7 – Modo 1

Figura 5.3 – Diagrammi Contour di parametro $k_{i,j}$, fattore di buckling $\chi_{i,j}$ e fattore di utilizzo $UF_{i,j}$ – Modo l

Mode 2	α _{cR} = 47.82	ID Node	$\overline{\lambda_{i,j}}$	Xi	U.F.
Colonna con Cerniera Max = 0.636016 [Bm:3	e Carrello - LAMBDA_BEAM 3]	11	0.20	1.00	0.23
0.581514		10	0.20	1.00	0.23
0.47251	3	9	0.32	0.96	0.24
0.363506		8	0.32	0.96	0.24
0.254502		7	0.20	1.00	0.23
Min = 0.2 [Bm:1]		6	0.20	1.00	0.23
		5	0.20	1.00	0.23
		4	0.32	0.96	0.24
		3	0.32	0.96	0.24
		2	0.20	1.00	0.23
		1	0.20	1.00	0.23

Tabella 5.3 - Parametri calcolati dal software tramite applicativo Straus7 – Modo 2

Figura 5.4 - Diagrammi Contour di parametro $k_{i,j}$, fattore di buckling $\chi_{i,j}$ e fattore di utilizzo $UF_{i,j}$ – Modo 2

Mode 3	α _{CR} = 107.70	ID Node	$\overline{\lambda_{i,j}}$	Xi	U.F.
Beam CernieraCarre Max = 0.211917 [Bm:	llo_RC_1_MODE_3 - LAMBDA_BEAM :5]	11	0.200	1.000	0.220
0.210427 0.208938		10	0.200	1.000	0.220
0.207448 0.205958 0.204469		9	0.202	0.999	0.227
0.202979 0.20149		8	0.200	1.000	0.220
Min = 0.2 [Bm:1]		7	0.200	0.999	0.220
		6	0.212	0.996	0.228
		5	0.200	0.999	0.220
		4	0.200	1.000	0.220
		3	0.202	0.999	0.227
	3	2	0.200	1.000	0.220
		1	0.200	1.000	0.220

Tabella 5.4 - Parametri calcolati dal software tramite applicativo Straus7 – Modo 3

Figura 5.5 – Diagrammi Contour di parametro $k_{i,j}$, fattore di buckling $\chi_{i,j}$ e fattore di utilizzo $UF_{i,j}$ – Modo 3

Si riportano i risultati attraverso mappe contour del fattore di riduzione χ e del fattore di utilizzo ottenuti dall'accoppiamento dei tre modi, confrontati con i corrispondenti valori relativi al primo modo:

Figura 5.6 - Confronto tra coefficienti di riduzione e di utilizzo del primo modo e del risultato dell'accoppiamento

59

	-					
	x					
ID Node	Modo 1	Modo 2	Modo 3	Coupling		
	αcr = 11.95	αcr = 47.82	αcr = 107.70	X EQ		
3	0.936	0.957	0.227	0.845		
4	0.878	0.957	0.220	0.835		
6	0.819	1.000	0.228	0.816		

Nella tabella seguente sono riportati i valori minimi del fattore di riduzione χ per ogni modo analizzato e quello calcolato derivante dall'accoppiamento dei modi:

Tabella 5.5 – Confronto tra i valori del fattore di riduzione χ

Di seguito invece si riportano i valori del massimo fattore di utilizzo nei singoli modi e quello derivante dall'accoppiamento:

	U.F.					
ID Node	Modo 1	Modo 2	Modo 3	Coupling		
	αcr = 11.95	αcr = 47.82	αcr = 107.70	U.F. _{EQ}		
3	0.243	0.238	0.227	0.269		
4	0.259	0.238	0.220	0.273		
6	0.278	0.227	0.228	0.279		

Tabella 5.6 - Confronto tra i coefficienti utilizzo U.F.

Si può osservare l'influenza dei singoli modi su quello equivalente e, a livello locale, quale dei nodi dell'elemento strutturale risente maggiormente del buckling; nel caso in esame, la sezione dell'asta in cui gli effetti del buckling sono massimi è quella centrale.

In questa circostanza, per la sezione centrale (Nodo 6) l'accoppiamento non comporta peggioramenti significativi ma si nota come nelle altre due sezioni vi sia un aumento del fattore di utilizzo.

5.2 Caso 2: Asta incastrata alla base – Modello Beam

Si tratta il caso di un'asta di lunghezza L = 4.0m e vincolata alla base da un incastro, soggetta ad un carico di punta pari a N = 200kN.

Figura 5.7 – Caso 1 - Asta vincolata da cerniera a carrello soggetta a carico di punta N

L'asta ha come sezione trasversale un profilo IPE200 e di seguito se ne riportano le caratteristiche:

Caratteristiche Sezione Trasversale					
Altezza Sezione	h	200	mm		
Base Ala Inferiore	B1	100	mm		
Spessore Ala Inferiore	T1	8.5	mm		
Base Ala Superiore	B2	100	mm		
Spessore Ala Superiore	T2	8.5	mm		
Spessore Anima	Т3	5.6	mm		
Area Sezione	Α	2724.8	mm ²		
Modulo Resistente El	Wel	184559.023	mm ³		
Momento d'Inerzia Sezione	1	18455902.3	mm ⁴		

Figura 5.8 - Sezione trasversale dell'asta -Profilo IPE200

Si riportano ora i parametri principali calcolati tramite il software e le mappe a colori ottenute come output del programma. In particolare, si mostrano i valori di snellezza adimensionalizzata $\lambda_{i,j}$, il fattore di buckling $\chi_{j,j}$ ed il fattore di utilizzo UF_{i,j}:

Mode 1	α _{CR} = 2.98	ID Node	$\overline{\lambda_{i,j}}$	Xi	U.F.
Beam Mensola_RC_ Max = 1.27217 [Bm:	I_MODE_1 - LAMBDA_BEAM]]	11	0.20	1.00	0.23
1.13815 1.00413		10	0.20	1.00	0.23
0.870104		9	0.39	0.93	0.24
0.468042		8	0.58	0.85	0.27
Min = 0.2 [Bm:9]		7	0.75	0.76	0.30
		6	0.90	0.66	0.34
		5	1.03	0.58	0.39
		4	1.13	0.52	0.44
		3	1.21	0.47	0.48
		2	1.26	0.45	0.51
		1	1.27	0.44	0.52

Tabella 5.8 - Parametri calcolati dal software tramite applicativo Straus7 – Modo 1

Figura 5.9 - Diagrammi Contour di parametro ki,j, fattore di buckling χi,j e fattore di utilizzo UFi,j – Modo 1

Mode 2	α _{cR} = 26.89	ID Node	$\overline{\lambda_{i,j}}$	Χi	U.F.
Beam Mensola_RC_1_MODE_2 - LAMBDA_BEAM Max = 0.424041 [Bm:1]	11	0.20	1.00	0.23	
0.396036		10	0.20	1.00	0.23
0.312021		9	0.34	0.95	0.24
0.25601 0.228005		8	0.42	0.92	0.25
Min = 0.2 [Bm:3]		7	0.40	0.92	0.25
		6	0.30	0.96	0.24
		5	0.20	1.00	0.00
		4	0.20	1.00	0.00
		3	0.25	0.98	0.23
		2	0.38	0.93	0.24
	, , , , , , , , , , , , , , , , , , , ,	1	0.42	0.92	0.25

Tabella 5.9 - Parametri calcolati dal software tramite applicativo Straus7 – Modo 2

Figura 5.10 - Diagrammi Contour di parametro ki,j , fattore di buckling χi,j e fattore di utilizzo UFi,j – Modo 2

Mode 3	α _{CR} = 74.75	ID Node	$\overline{\lambda_{i,j}}$	Xi	U.F.
Beam Mensola_RC_ Max = 0.254368 [Bm	1_MODE_3 - LAMBDA_BEAM h:1]	11	0.20	1.00	0.20
0.247572 0.240776		10	0.20	1.00	0.20
0.23398 0.227184 0.220388		9	0.25	0.98	0.23
0.213592 0.206796		8	0.20	1.00	0.20
Min = 0.2 [Bm:1]		7	0.20	1.00	0.20
		6	0.20	1.00	0.20
		5	0.25	0.98	0.23
		4	0.20	1.00	0.20
		3	0.20	1.00	0.20
		2	0.20	1.00	0.20
		1	0.25	0.98	0.23

Tabella 5.10 - Parametri calcolati dal software tramite applicativo Straus7 – Modo 3

Figura 5.11 - Diagrammi Contour di parametro ki,j , fattore di buckling χi,j e fattore di utilizzo UFi,j – Modo 3

Si riportano i risultati attraverso mappe contour del fattore di riduzione χ e del fattore di utilizzo ottenuti dall'accoppiamento dei tre modi, confrontati con i corrispondenti valori relativi al primo modo:

Figura 5.12 - Confronto tra coefficienti di riduzione e di utilizzo del primo modo e del risultato dell'accoppiamento

	X			
ID Node	Modo 1	Modo 2	Modo 3	Coupling
	αcr = 2.98	αcr = 26.89	αcr = 74.75	X eq
1	0.936	0.916	0.981	0.430
2	0.448	0.935	1.000	0.439
5	0.579	1.000	0.981	0.574
8	0.848	0.919	1.000	0.790
9	0.929	0.948	0.981	0.886

Nella tabella seguente sono riportati i valori minimi del fattore di riduzione χ per ogni modo analizzato e quello calcolato derivante dall'accoppiamento dei modi:

Tabella 5.11 - Confronto tra i valori del fattore di riduzione χ

Di seguito invece si riportano i valori del massimo fattore di utilizzo nei singoli modi e quello derivante dall'accoppiamento:

	U.F.				
ID Node	Modo 1 Modo 2 Modo 3		Coupling		
	αcr = 2.98	acr = 26.89	αcr = 74.75	U.F. _{EQ}	
1	0.516	0.248	0.232	0.529	
2	0.507	0.243	0.200	0.518	
5	0.393	0.200	0.232	0.397	
8	0.268	0.248	0.200	0.288	
9	0.245	0.240	0.232	0.257	

Tabella 5.12 - Confronto tra i coefficienti utilizzo U.F.

Si può osservare l'influenza dei singoli modi su quello equivalente e, a livello locale, quale dei nodi dell'elemento strutturale risente maggiormente del buckling; nel caso in esame, la sezione dell'asta in cui gli effetti del buckling sono massimi è quella alla base.

Anche in questo caso, per il Nodo 1 l'accoppiamento non comporta peggioramenti significativi ma risulta avere comunque un coefficiente di utilizzo più alto rispetto a quello calcolato tenendo conto solo del primo modo.

5.3 Caso 3: Telaio Multipiano – Modello Beam

Si porta il caso di telaio multipiano a maglia regolare 6x6 metri, con estremità incastrate e soggetto a due carichi verticali F pari a 2100kN. La struttura è caratterizzata dall'avere orizzontamenti rigidi e colonne di rigidezza finita che diminuisce all'aumentare del piano.

Figura 5.13 - Schema Telaio multipiano a sezione variabile

Le colonne sono realizzate in acciaio S355 e hanno come sezioni trasversali i profili di seguito riportati:

- *Colonna di Base*: Profilo HEA 300;
- *Colonna Intermedia*: Profilo HEA 240;
- *Colonna Superiore*: Profilo HEA 200;

Figura 5.14 - Sezioni trasversali delle colonne del telaio

Per l'analisi della struttura si è realizzato un modello ad elementi tipo *beam* utilizzando il software Straus7, riportato in Figura 5.15:

Figura 5.15 - Modello Numerico ad elementi Beam del Telaio - Straus 7

Sono stati considerati i primi 10 modi di instabilità ottenuti dall'analisi lineare al buckling; di seguito si riportano alcuni dei modi analizzati:

Figura 5.16 - Deformate da Instabilità relative ai modi 1 e 2

Figura 5.17 - Deformate da Instabilità relative ai modi 3 e 5

Di seguito si riportano i valori numerici minimi del fattore di riduzione χ e i valori massimi del fattore di utilizzo U.F., insieme alle corrispondenti mappe puntuali (contour file) ottenute in output dal software utilizzato:

Figura 5.18 – Mappe del fattore di riduzione χ e del fattore di utilizzo U.F. – Modo 1

Figura 5.19 - Mappe del fattore di riduzione χ e del fattore di utilizzo U.F. – Modo 2

Figura 5.20 - Mappe del fattore di riduzione χ e del fattore di utilizzo U.F. – Modo 3

Figura 5.21 - Mappe del fattore di riduzione χ e del fattore di utilizzo U.F. – Modo 5

Si riportano i risultati attraverso mappe contour del fattore di riduzione χ e del fattore di utilizzo ottenuti dall'accoppiamento dei dieci modi considerati:

Figura 5.22 - Mappe del fattore di riduzione χ e del fattore di utilizzo U.F. – Accoppiamento dei Modi

Si confrontano i valori dei fattori di riduzione χ e di utilizzo U.F. per alcuni degli elementi beam le cui verifiche ad instabilità risultano essere più gravose. Le posizioni degli elementi sono evidenziate nello schema che segue:

Figura 5.23 - Posizione delle sezioni critiche della struttura

Nella tabella seguente sono riportati i valori minimi del fattore di riduzione χ per ogni modo analizzato e quello calcolato derivante dall'accoppiamento dei modi:

	χ					
ID Beam	Modo 1	Modo 2	Modo 3	Modo 5	Coupling	
	αcr = 2.07	αcr = 4.48	αcr = 8.39	αcr = 11.18	X EQ	
10	1.000	1.000	1.000	0.845	0.845	
22	1.000	0.750	1.000	1.000	0.750	
26	0.647	1.000	0.902	1.000	0.612	

Tabella 5.13 - Confronto tra i valori del fattore di riduzione χ
	U.F.				
ID Beam	Modo 1	Modo 2	Modo 3	Modo 5	Coupling
	αcr = 2.07	αcr = 4.48	αcr = 8.39	αcr = 11.18	U.F. _{EQ}
10	0.288	0.288	0.288	0.342	0.342
22	0.428	0.570	0.428	0.428	0.571
26	0 963	0.623	0 691	0.623	1 018

Di seguito invece si riportano i valori del massimo fattore di utilizzo nei singoli modi e quello derivante dall'accoppiamento:

Tabella 5.14 - Confronto tra i valori del fattore di utilizzo U.F.

Nel caso in esame, la sezione del telaio in cui gli effetti del buckling sono massimi è quella in corrispondenza del piano superiore, essendo la colonna la più snella delle tre.

Si nota inoltre come per questo elemento la verifica risulti soddisfatta nel caso del primo modo di instabilità, poiché il coefficiente di utilizzo risulta inferiore al valore unitario.

Se si prende invece il valore ottenuto dall'accoppiamento dei modi, la sezione non risulta più verificata, poiché vengono tenuti in considerazione anche i contributi dei modi superiori al primo i quali comportano un aumento del 5% circa del fattore di utilizzo.

Questo caso è rilevante, in quanto mostra come il tenere conto del solo modo di buckling con il valore di α_{cr} più piccolo, possa portare al sottostimare i reali effetti dell'instabilità che interessano l'elemento.

5.4 Caso 4: Pannello d'anima con irrigidimenti longitudinali angolari – Modello Plate

Si prende in esame un pannello d'anima di una trave a parete piena che presenta 2 irrigidimenti angolari longitudinali posizionati nella zona compressa della sezione. In Figura 5.24 ed in Tabella 5.15 si riportano le caratteristiche del pannello e le condizioni di carico a cui è sottoposto l'elemento:

Figura 5.24 - Caratteristiche geometriche e condizioni di carico del pannello - (U.Kuhlmann, 2010)

CARATTERISTICHE DEL PANNELLO				
Geometria del Pannello	-	3000x2000x8	mm	
Geometria degli Irrigidimenti	-	100x50x6	mm	
Resistenza Caratteristica	f _{yk}	235	MPa	
Modulo Elastico	E	210000	MPa	
Tensione Normale Massima	σ1	151	MPa	
Tensione di Taglio	τ	37.8	MPa	

Tabella 5.15 - Caratteristiche del Pannello d'anima

Si procede ora a verificare l'elemento applicando alcuni metodi suggeriti dalla normativa e se ne comparano i risultati ottenuti con quelli ricavati dall'applicazione del metodo della snellezza puntuale. In particolare si eseguiranno le verifiche del pannello seguendo i seguenti metodi:

- Reduced Stress Method
- Metodo da Annex B
- Metodo Snellezza Puntuale
- Analisi non lineare con imperfezione indicata in Annex C
- Analisi non lineare con imperfezione in Annex B

5.4.1 Reduced Stress Method

Il metodo viene indicato al capitolo §10 dell'UNI EN1993-1-5 e si utilizza per verificare il pannello, assumendo che questo risulti in Classe 3, quindi considerando una distribuzione lineare delle tensioni, senza redistribuzione plastica.

Nei passaggi che seguono si verifica la stabilità dell'intero pannello e dei singoli sottopannelli. Questi ultimi vengono individuati dagli irrigidimenti presenti che delimitano e individuano le tre zone in cui l'anima è suddivisa. In particolare si riporta la verifica del sottopannello superiore, che risulta più gravosa:

La tensione calcolata secondo il criterio di Von Mises del sottopannello risulta essere pari a:

$$\sigma_{VM} = \sqrt{\sigma_x^2 + 3\tau^2} = \sqrt{151^2 + 3 \cdot 37.8^2} = 164.6 MPa$$
 5.1

Si calcola così il minimo moltiplicatore di carico necessario a raggiungere la tensione di snervamento α_{ult}:

$$\alpha_{ult} = \frac{f_y}{\sigma_{VM}} = 1.428$$
5.2

Nel caso non si possa individuare un valore di α_{CR} per il singolo sottopannello, si seguono le indicazioni riportate nella UNI EN 1993-1-5 §10 (10.6), dove si riporta il calcolo del minimo moltiplicatore di carico per il raggiungimento della tensione critica:

$$\frac{1}{\alpha_{cr}} = \frac{1 + \psi_x}{\alpha_{cr,x}} + \sqrt{\left(\frac{1 + \psi_x}{4\alpha_{cr,x}}\right)^2 + \frac{1 + \psi_x}{2\alpha_{cr,x}^2} + \frac{1}{\alpha_{cr,\tau}^2}} = 1.428$$
 5.3

Dove:

$$\alpha_{cr,x} = \frac{\sigma_{cr,x}}{\sigma_{\tau,ED}}$$
$$\alpha_{cr,\tau} = \frac{\tau_{cr,\tau}}{\tau_{ED}}$$

 $\sigma_{cr,x}$, $\tau_{cr,\tau}$ e ψ_x vengono definiti nelle sezioni da 4 a 6 dell' UNI EN 1993-1-5

In questo caso risulta un valore di α_{CR} pari a:

$$\alpha_{CR} = 1.514 \qquad 5.4$$

Si definisce così il valore di snellezza adimensionalizzata del pannello:

$$\bar{\lambda}_p = \sqrt{\frac{\alpha_{ult}}{\alpha_{CR}}} = \sqrt{\frac{1.428}{1.514}} = 0.971$$
 5.5

Per il calcolo del fattore di riduzione da buckling ρ si considerano due diverse curve di instabilità, una legata alle sollecitazioni da taglio e una legata a quelle di tensione normale agente:

• Per le sollecitazioni normali:

$$\rho_{c,x} = 0.818$$
5.6

• Per le sollecitazioni taglianti:

$$\chi_w = \frac{0.83}{\bar{\lambda}_p} = \frac{0.83}{0.971} = 0.855$$
5.7

Come indicato nell' UNI EN 1993-1-5 §10 (10.5) si esegue la verifica ad instabilità del pannello:

$$\sqrt{\left(\frac{\sigma_{x,ED}}{\rho_{c,x}}\right)^2 + 3\left(\frac{\tau_{ED}}{\chi_w}\right)^2} \le \frac{f_y}{\gamma_{M1}}$$
5.8

$$\sqrt{\left(\frac{151}{0.818}\right)^2 + 3 \cdot \left(\frac{37.8}{0.855}\right)^2} = 199.8 \le \frac{235}{1.1} = 213.6$$
 5.9

Si esprime la verifica in termini di fattore di utilizzo per il sottopannello superiore:

$$U.F. = \frac{E_d}{R_d} = \frac{199.8}{213.6} = 0.935 < 1$$
5.10

Per quanto riguarda la verifica dell'intero pannello, si assume un valore di α_{CR} fornito da Straus7, pari a:

$$\alpha_{CR} = 1.8620$$
 4.11

Si ripetono i passaggi sopra riportati; per brevità si riportano i soli valori ottenuti:

$$\bar{\lambda}_p = \sqrt{\frac{\alpha_{ult}}{\alpha_{CR}}} = \sqrt{\frac{1.428}{1.862}} = 0.874$$
 5.12

$$\rho_{c,x} = 0.762$$
5.13

$$\chi_w = \frac{0.83}{\bar{\lambda}_p} = 0.937$$
5.14

$$\sqrt{\left(\frac{\sigma_{x,ED}}{\rho_{c,x}}\right)^2 + 3\left(\frac{\tau_{ED}}{\chi_w}\right)^2} = 210.1 \le \frac{f_y}{\gamma_{M1}} = 213.6$$
5.15

Si ottiene un fattore di utilizzo per l'intero pannello pari a:

$$U.F. = \frac{E_d}{R_d} = \frac{210.1}{213.6} = 0.984 < 1$$
5.16

5.4.2 Metodo Annex B

In questo caso si assume, per il calcolo della snellezza relativa un valore di minimo moltiplicatore α_{CR} calcolato utilizzando Straus7, pari ad 1.862.

Figura 5.25 - Primo modo di buckling della piastra, con relativo valore di $\alpha_{CR} = 1.862$

Il valori di α_{ult} e di snellezza relativa λ risultano uguali a quelli calcolati nel metodo precedente per la verifica dell'intero pannello e sono pari a:

$$\alpha_{ult} = \frac{f_y}{\sigma_{VM}} = 1.428 \tag{5.17}$$

$$\bar{\lambda}_p = \sqrt{\frac{\alpha_{ult}}{\alpha_{CR}}} = \sqrt{\frac{1.428}{1.862}} = 0.874$$
 5.18

Si può così calcolare il valore del fattore di riduzione ρ, come indicato nell' UNI EN 1993-1-5 §Annex B (B1):

$$\rho = \frac{1}{\phi - \sqrt{\phi^2 - \lambda}} = 0.899$$
 5.19

Dove:

$$\Phi = 0.5 \cdot \left[1 + \alpha_p (\bar{\lambda}_p - \bar{\lambda}_{p0}) + \bar{\lambda}_p^2 \right] = 0.949$$
5.20

I valori di α_p e di λ_{p0} vengono invece forniti nella tabella T.B 1:

Product	predominant buckling mode	$\alpha_{_p}$	$\overline{\lambda}_{p0}$
	direct stress for $\psi \ge 0$		0,70
hot rolled	direct stress for $\psi < 0$ shear transverse stress	lirect stress for $\psi < 0$ 0,13 hear ransverse stress	
	direct stress for $\psi \ge 0$		0,70
welded or cold formed	direct stress for $\psi < 0$ shear transverse stress	0,34	0,80

Table B.1: Values for $\overline{\lambda}_{p0}$ and α_p

Tabella 5.16 - Valori relativi ad α_p e di λ_{p0} - (UNI EN 1993-1-5 §Annex B)

Si calcola ora il valore del fattore di utilizzo definito come:

$$U.F. = \frac{1}{\alpha_{Rd}} = \frac{\gamma_{M1}}{\rho \cdot \alpha_{ult}} = 0.857 < 1$$
 5.21

5.4.3 Metodo della Snellezza Puntuale

Si esegue la verifica tramite software andando a considerare i primi 10 modi di instabilità forniti dalla *Linear Buckling Analysis* eseguita sul modello perfetto.

Figura 5.26 - Modello FEM del pannello realizzato con Straus 7

Di seguito si riportano i modi che comportano le condizioni peggiore per il pannello, con le relative mappe contour del fattore di utilizzo U.F. generate dal software:

Figura 5.27 - Deformata del 1° modo di instabilità – $\alpha_{CR} = 1.8620$

Figura 5.28 – *Coefficiente di Utilizzo U.F. del* 1° modo di instabilità – α_{CR} = 1.8620

Figura 5.29 - Deformata del 2° modo di instabilità – $\alpha_{CR} = 1.8969$

Figura 5.30 - Coefficiente di Utilizzo U.F. del 2° modo di instabilità $-\alpha_{CR} = 1.8969$

Figura 5.31 - Deformata del 3° modo di instabilità – \alpha_{CR} = 1.9208

Figura 5.32 - Coefficiente di Utilizzo U.F. del 3° modo di instabilità $-\alpha_{CR} = 1.9208$

Figura 5.33 - Deformata del 4° modo di instabilità – $\alpha_{CR} = 2.0102$

Figura 5.34 - Coefficiente di Utilizzo U.F. del 4° modo di instabilità $-\alpha_{CR} = 2.0102$

Figura 5.35 - Deformata del 9° modo di instabilità – $\alpha_{CR} = 2.4441$

Figura 5.36 - Coefficiente di Utilizzo U.F. del 9° modo di instabilità $-\alpha_{CR} = 2.4441$

Figura 5.37 - Mappa del fattore di riduzione rho derivante dall'accoppiamento dei modi

Figura 5.38 - Mappa del fattore di utilizzo U.F. derivante dall'accoppiamento dei modi

	U.F.					
ID Plate	Modo 1	Modo 2	Modo 3	Modo 4	Modo 9	Coupling
	αcr = 1.869	αcr = 1.897	αcr = 1.921	αcr = 2.010	αcr = 2.444	U.F. _{EQ}
1624	0.804	0.000	0.000	0.000	0.000	0.805
302	0.000	0.799	0.000	0.000	0.000	0.798
1603	0.000	0.000	0.793	0.000	0.000	0.793
1599	0.000	0.000	0.000	0.773	0.000	0.773
2735	0.000	0.000	0.000	0.000	0.554	0.550

Nella tabella seguente sono riportati i valori del massimo fattore di utilizzo U.F. nei singoli modi e quello derivante dall'accoppiamento di questi:

Tabella 5.17 - Valori del Fattore di utilizzo U.F. per gli elementi più sollecitati

5.4.4 Analisi non lineare con imperfezione da Annex C

Si esegue un'analisi non lineare seguendo le indicazioni contenute all'interno dell'Annex C dell'UNI EN – 1993-1-5.

(5) In combining imperfections a leading imperfection should be chosen and the accompanying imperfections may have their values reduced to 70%.

NOTE 1: Any type of imperfection should be taken as the leading imperfection and the others may be taken as the accompanying imperfections.

NOTE 2: Equivalent geometric imperfections may be substituted by the appropriate fictitious forces acting on the member.

Figura 5.39 - Prescrizioni per l'analisi non lineare secondo l'Annex C dell'UNI EN 1993-1-5

Si prendono in considerazione le prime 5 imperfezioni, le quali vengono tra loro accoppiate seguendo le indicazioni riportate in Figura 5.39, determinando diverse possibili permutazioni ($\pm 1 \pm 0.7 \pm 0.7 \pm 0.7 \pm 0.7$).

Per ogni singolo accoppiamento si genera un modello che viene deformato e scalato di un valore pari all'imperfezione ottenuta, e sulla base del quale viene eseguita un'analisi non lineare per geometria e per comportamento del materiale. Il numero complessivo di modelli creati dipende dal numero 'n' di imperfezioni tenute in considerazione; in questo caso n=5, il che comporta:

Numero di Modelli
$$= n \cdot 2^n = 160$$
 5.22

Si assume inoltre un comportamento del materiale di tipo elasto-plastico, con valore di resistenza plastica che aumenta in maniera lineare:

Figura 5.40 - Esempi di modellazione del comportamento del materiale - (UNI EN 1993-1-5 §Annex C)

Le deformate scelte per l'applicazione delle imperfezioni sono quelle mostrate anche al paragrafo 5.4.3, relative ai modi 1,2,3,4 e 9. Si ricava ora l'entità dell'imperfezione geometrica equivalente da applicare come fattore di scala:

Type of imperfection	Component	Shape	Magnitude
global	member with length ℓ	bow	see EN 1993-1-1, Table 5.1
global	longitudinal stiffener with length a	bow	min (a/400, b/400)
local	panel or subpanel with short span a or b	buckling shape	min (a/200, b/200)
local	stiffener or flange subject to twist	bow twist	1 / 50

Figura 5.41 - Prescrizioni relative alla scelta dell'imperfezione da applicare al modello - (UNI EN 1993-1-5 §Annex C)

Figura 5.42 – Modellazione delle imperfezioni geometriche equivalenti - (UNI EN 1993-1-5 §Annex C)

L'imperfezione che si ottiene risulta quindi essere pari a:

$$e_0 = 2.5 mm$$
 5.23

Dopo l'analisi dei modelli deformati, si calcolano i coefficienti di utilizzo U.F. del pannello; di seguito in Tabella 5.18 sono riportati i valori più alti ottenuti dalle cinque combinazioni di imperfezione più gravose:

N° Imperfezione	ψ imperfezione	U.F.
n°17	-1 0.7 0.7 0.7 0.7	1.089
n°34	-0.7 1 0.7 0.7 0.7	1.087
n°66	-0.7 0.7 1 0.7 0.7	1.074
n°98	-0.7 0.7 0.7 1 0.7	1.089
n°146	-0.7 0.7 0.7 0.7 -1	1.063

Tabella 5.18 - Valori dei Coefficienti di Utilizzo più gravosi ottenuti dalle analisi lineari effettuate

5.4.5 Analisi non lineare con imperfezione da Annex B

L'analisi viene effettuata in modo del tutto analogo a quella del punto precedente, con l'unica differenza data dal calcolo del valore di imperfezione geometrica equivalente. In questo caso si seguono le prescrizioni che vengono riportate nell' UNI EN 1993-1-5 §Annex B.

Per calcolare l'entità del difetto, si segue quanto già discusso al paragrafo 4.2.1, utilizzando il modulo di calcolo dell'imperfezione tramite metodo iterativo, dal quale si ricavano per i 5 modi i seguenti valori di e₀:

n° Modo	αcr	e₀ [mm]
1	1.869	0.084
2	1.897	0.080
3	1.921	0.077
4	2.010	0.065
9	2.444	0.500

Tabella 5.19 - Imperfezione e0 ottenuta tramite metodo iterativo, seguendo le prescrizioni dell'Annex B -UNI EN 1993-1-5

N° Imperfezione	ψ imperfezione	U.F.
n°18	-1 -0.7 0.7 0.7 0.7	0.747
n°39	0.7 1 -0.7 -0.7 0.7	0.746
n°68	0.7 0.7 1 -0.7 0.7	0.746
n°100	-0.7 -0.7 0.7 1 0.7	0.746
n°132	-0.7 -0.7 0.7 0.7 1	0.746

Risolvendo le analisi si ottengono quindi i seguenti valori di coefficiente d'utilizzo U.F.:

Tabella 5.20 - Valori dei Coefficienti di Utilizzo più gravosi ottenuti dalle analisi lineari effettuate

5.4.6 Confronto tra i risultati ottenuti

Metodo utilizzato	U.F.	Δ% rispetto a GMNIA e0 Annex C	Δ% rispetto a GMNIA e0 Annex B
Reduced Stress Method	0.984	-9.4%	31%
Annex B	0.857	-21%	16%
Metodo Proposto	0.805	-26%	7%
GMNIA e0 Annex C	1.089	-	-
GMNIA e0 Annex B	0.747	-	-

Tabella 5.21 - Confronto tra i risultati ottenuti dalle analisi effettuate

Comparando i risultati ottenuti e riportati in Tabella 5.21, si può notare come tutti i metodi sottostimino il valore del coefficiente di utilizzo ottenuto dall'analisi non lineare con imperfezione ottenuta dall'Annesso C.

Se si confronta invece l'analisi eseguita secondo le indicazioni fornite dall'Annesso B, i metodi forniscono valori a favore di sicurezza. In particolare, il Metodo proposto (Snellezza Puntuale) è quello che porta a risultati che più sia avvicinano a questa analisi non lineare, con una differenza percentuale pari al 7%

5.5 Caso 5: Diaframma Nave MAR01 – Modello Plate

Si prende ora in analisi il caso di uno dei diaframmi che compongono l'unità navale SDO-SuRS o Special Diving Operations – Submarine Rescue Ship (costruzione MAR 201), destinata all'uso da parte della marina militare.

Figura 5.43 - Scafo della MAR201 durante la fase di "float-off"

La SDO-SuRS misura oltre 120 metri di lunghezza e oltre 20 metri di larghezza, con un dislocamento superiore alle 8.000 tonnellate.

Si analizza in particolare la fase di *load-out*, ovvero il momento di movimentazione dello scafo, che viene spostato dalla sede di costruzione ad una chiatta semi-affondante per essere poi trasportato via mare. Durante la procedura, la nave viene sostenuta da degli appoggi mobili come si riporta in Figura 5.44 e Figura 5.45:

Figura 5.44 - Scafo della MAR201 durante la fase di "load-out"

Figura 5.45 - Particolare della condizione di carico analizzata

Si è realizzato un modello discretizzato in circa 50000 elementi tipo *plate4* su Straus7, rappresentante la condizione di carico al momento del posizionamento dell'unità al di sopra dei carrelli, come mostrato in Figura 5.46:

Figura 5.46 - Modello Numerico ad elementi plate 4 del diaframma

Il modello risulta essere alquanto complesso, in quanto il diaframma è suddiviso in pannelli di diversa dimensione e geometria, in particolare presentando spessori differenti per ogni pannellatura, per una questione di ottimizzazione dei materiali e di riduzione del peso dell'imbarcazione.

Di seguito si riportano le mappe contour ottenute in output dal software utilizzato; in particolare si mostrano per i modi più significativi: la deformata dei singoli modi di buckling, fattore di calibrazione k, fattore di riduzione ρ e fattore di utilizzo U.F.:

Figura 5.47 – Deformata del 1° modo di instabilità - $\alpha_{CR} = 3.73$

Figura 5.48 - Fattore di calibrazione k-Modo nº1

Figura 5.49 - Fattore di Riduzione ρ - Modo n°1

Figura 5.50 - Fattore di Utilizzo U.F. - Modo nº1

Figura 5.51 - Deformata del 4° modo di instabilità - $\alpha_{CR} = 5.10$

Figura 5.52 - Fattore di calibrazione k-Modo n°4

Figura 5.53 - Fattore di Riduzione ρ - Modo n°4

Figura 5.54 - Fattore di Utilizzo U.F. - Modo nº4

Figura 5.55 - Deformata del 12° modo di instabilità - $\alpha CR = 6.78$

Figura 5.56 - Fattore di calibrazione k – Modo n°12

Figura 5.57 - Fattore di Riduzione ρ - Modo n°12

Figura 5.58 - Fattore di Utilizzo U.F. - Modo nº12

Si riportano i risultati attraverso mappe contour del fattore di riduzione χ e del fattore di utilizzo ottenuti dall'accoppiamento dei venti modi considerati:

Figura 5.59 - Fattore di Riduzione ρ – Accoppiamento dei modi

Figura 5.60 - Figura 5.61 - Fattore di Utilizzo U.F. – Accoppiamento dei modi

Nella tabella seguente sono riportati i valori minimi del fattore di riduzione χ e quelli massimi per il fattore di utilizzo per ogni modo analizzato ed i valori derivanti dall'accoppiamento dei modi:

	Modo 1	Modo 4	Modo 12	Coupling
ID Node	αcr = 3.73	αcr = 5.10	αcr = 6.78	X EQ
ρ minimo	0.572	0.648	0.663	0.374
U.F. massimo	0.317	0.240	0.104	0.374

Tabella 5.22 – Confronto tra i valori del coefficiente di riduzione χ e del coefficiente di utilizzo U.F.

Dai risultati ottenuti, si può notare come l'interazione tra i singoli modi comporti un significativo aumento del coefficiente di utilizzo nell'elemento più soggetto ad instabilità, in particolare il valore ha un incremento del 18% circa.

Questo è conseguenza del fatto che molti modi tendono ad avere valori del fattore di carico critico α_{CR} molto simili tra loro e con instabilità che si interessa spesso gli stessi pannelli. Tramite l'utilizzo del software, è quindi possibile tenere in considerazione i mutui effetti che i modi di instabilità possono avere l'uno con l'altro.

Negli esempi sono però riportati modi di buckling che avvenivano in zone ben distinte del diaframma, a dimostrazione del fatto che, specialmente per casi complessi come questo, il software può rappresentare uno strumento molto utile nelle fasi di verifica. Questo perché permette di analizzare contemporaneamente tutti i punti della struttura in relazione ai diversi modi di buckling che si prendono in considerazione, a prescindere dalla zona in cui il fenomeno dell'instabilità possa andare a manifestarsi.

6. Conclusioni e Futuri Sviluppi

6.1 Conclusioni

In conclusione del lavoro di tesi, si portano alcune considerazioni sull'introduzione, applicazione e di questo metodo di analisi del fenomeno dell'instabilità.

Innanzitutto è importante sottolineare come l'introduzione del *fattore di snellezza sfumata* consenta di analizzare e verificare il comportamento nei confronti dell'instabilità per un ampio spettro di strutture civili, anche molto complesse. In particolare permette di tenere in considerazione gli effetti dei modi di buckling superiori al primo, i quali possono interessare sezioni diverse di una struttura, ma anche la mutua interazione che questi possono tra loro avere. Inoltre, uno dei vantaggi del metodo è quello di effettuare le analisi con un onere computazionale considerevolmente più basso rispetto a quello comportato dalle analisi non lineari con imperfezione, o *GMNIA*. Il metodo infatti, propone la risoluzione del problema dell'instabilità attraverso l'esecuzione di sole analisi lineari sui modelli deformati, in quanto il parametro di riferimento considerato è il differenziale tensionale conseguente all'introduzione di un'imperfezione equivalente all'interno del modello perfetto.

Un altro fattore da tenere in considerazione è che oltre al minore costo computazionale, è possibile ottenere dei risultati accurati, se paragonati alle analisi non lineari. Al capitolo 5.4 infatti, con il Caso n°4 sono riportati i confronti con alcuni metodi che la normativa attuale fornisce, con particolare riferimento all'analisi GMNIA con imperfezione ottenuta dall'applicazione dell'Annex B. L'esito del confronto mostra come il metodo della Snellezza Sfumata fornisca risultati conservativi rispetto a quelli ottenuti dall'analisi non lineare, ma con una differenza del solo 7%, molto più bassa rispetto a quella ottenuta dagli altri metodi, che arriva anche a valori del 30%.

Infine, con il Caso n°5, al capitolo 5.5, si è portato un caso applicativo reale e complesso, a causa della geometria e delle caratteristiche degli elementi che compongono la struttura. Questo per dimostrare come il metodo sia capace di eseguire analisi su modelli articolati e di fornire dei risultati puntuali, con il potenziale di facilitare di molto il processo di verifica dei singoli elementi strutturali, che in questo caso concorrono alla formazione del diaframma della nave MAR201.

6.2 Sviluppi Futuri

Sebbene siano stati fatti diversi passi in avanti attraverso i precedenti lavori di tesi e di ricerca riguardanti il metodo della Snellezza Sfumata, questo presenta ancora margini di sviluppo e approfondimento, sotto diversi punti di vista.

Innanzitutto sarebbe opportuno approfondire ulteriormente l'accoppiamento dei modi di instabilità. L'interazione tra i diversi modi è infatti un punto molto complesso da analizzare ma fondamentale per capire appieno come una struttura venga influenzata dal fenomeno dell'instabilità. Come discusso al punto 2.5, in letteratura vi sono già analisi sull'entità dell'erosione del carico critico a causa del *coupling*, ma rimane un argomento che lascia spazio ad un'ampia trattazione in merito.

Una riflessione da fare è quella riguardante la scelta delle imperfezioni da attribuire ai modelli deformati. Al momento l'imperfezione viene assegnata principalmente sulla base di risultati sperimentali, eseguiti su aste con specifiche condizioni di carico e vincolo, che possono ampiamente differire da quelle di una generica struttura.

Il calcolo puntuale dell'instabilità può portare all'introduzione di una imperfezione che per entità può essere assunta pari a quella misurata in fase di produzione, ma che può essere assegnata in maniera analoga a quanto fatto nel caso degli accelerogrammi spettrocompatibili, quindi con una distribuzione che può essere diffusa all'intera struttura in modo da meglio rappresentare l'aleatorietà del fenomeno.

Da un punto di vista più applicativo invece, vi sono alcuni aspetti che possono essere sviluppati. Uno degli obiettivi del metodo, ed in particolare del software sviluppato a corredo di questo, è infatti quello di divenire uno strumento in grado di semplificare il processo di progettazione e di verifica strutturale.

Un punto chiave che sarebbe possibile implementare è la gestione dei modelli che presentano diverse condizioni di carico (in parte già effettuata dal programma) ma anche diverse condizioni di vincolo. Questo aprirebbe un orizzonte di progettazione più ampio per il codice, con il potenziale di poter essere applicato in maniera sistematica a tutte le possibili fasi di vita della struttura, dalla realizzazione e messa in opera fino all'esercizio, con verifiche effettuate in maniera autonoma dal software su ogni componente dell'edificio.

Bibliografia

[1] De Vitis F. A., 2019, "Analisi di instabilità di anime nervate di travi da ponte in acciaio soggette a Patch Loading".

[2] Arnesano C., 2020, "Analisi di buckling di strutture in acciaio mediante matrice di lambda equivalente – Proposta di estensione del General Method UNI EN1993 1-1 §6.3.4".

[3] Bagordo C., 2021, "Analisi di Buckling di membrature in acciaio tramite estensione dei metodi proposti in UNI EN-1-1 (2005) §6.3.4 e UNI EN-1-5 (2006) §10, Annex B".

[4] Maggiore G.,2023, "Validazione analitica di un metodo 'multimodal compound' per lo studio di instabilità di elementi bidimensionali in acciaio".

[5] Timoshenko S.P., Gere J.M., 1961, "Theory of elastic stability", McGraw – Hill.

[6] Ballio G., Bernuzzi C., 2018, *"Progetto e verifica delle strutture in acciaio"*, Hoepli Editore S.p.a. Milano.

[7] Eurocodice UNI EN1993-1-1

[8] Eurocodice UNI EN1993-1-3

[9] Eurocodice UNI EN1993-1-5

[10] Eurocodice UNI EN1993-1-6

[11] Norme Tecniche per le Costruzioni, 2018

[12] De Vitis F.A., 2019, "Accoppiamento di imperfezioni multimodali per l'imbozzamento di piastre nervate in acciaio".

[13] Bazant Z.P, Cedolin L., 2010, "Stability of Structures. Elastic, Inelastic, Fracture and damage theories", World Scientific Co. Pte. Ltd. Singapore.

[14] Beg D., Kuhlmann U., Davaine L., Braun B., 2010, "Design of plated structures, Eurocode 3: Design of Steel Structures Part 1-5 – Design of Plated Structures", ECCS
Eurocode Design Manual. Ernst Sohn, Berlino, Germania.

[15] Johansson B., Maquoi R., Sedlacek G., Müller C., Beg D., 2007, "Commentary and worked examples to EN1993-1-5 "Plated structural elements", JRC – ECCS – CECM – EKS.

[16] Koiter T.W., 2008, "*Elastic stability of Solids and structures*", Cambridge University Press.

[17] Sedlacek G, Müller C, RWTH Aachen, Bijlaard F, TU Delft, 2005, "New tasks of ECCS".

[18] Rotter J.M, Schmidt H., 2013, "Buckling of steel sheels. Eurorepan design recommendations", 5th Edition, Revised Second Impression, ECCS CECM EKS

[19] Rondal J., 1998, "Coupled Instabilities in Metal structures. Theoretical and design aspects", CISM Courses and Lectures n.379, International Centre for Mechanical Sciences, Springer-Verlag Wien GmbH.

[20] Rondal J., Dubina D., 2005, "Light gauge metal structures. Recent advances", CISM Courses and Lectures n.455, International Centre for Mechanical Sciences, SpringerWienNewYork.

[21] Veljkovic M., Simoes da Silva L., Simoes R., Wald F., Jaspart JP., Weynand K., Dubina D., Landolfo R., Vila Real P., Gervasio H., 2015, *"Eurocodes: Background & Applications. Design of Steel Buildings"*, JRC Science and Policy report.

[22] Dubina D., Ivanyi M., 1999 "Stability and Ductility of Steel Structures", First edition 1999 Elsevier Science Ltd.

[23] Kindmann R./ Kraus M., 2011, "Steel Structures - Design using FEM", 2011Wilhelm Ernst & Sohn.

[24] (Zizza A., 2016), "Buckling behaviour of unstiffened and stiffened steel plates under multiaxial stress states".

Ringraziamenti

A conclusione del mio percorso di studi, che termina con il presente lavoro di tesi, desidero innanzitutto dedicare un ringraziamento speciale al Prof. Ing. Roberto Scotta, *relatore* della tesi, per avermi concesso l'opportunità di ampliare le mie conoscenze nell'ambito delle costruzioni in acciaio. Grazie per la disponibilità e per i preziosi consigli e insegnamenti ricevuti durante l'intero corso Magistrale, che porterò dietro per il resto della mia vita professionale e umana.

Un forte ringraziamento va all' Ing. Alessandro Catanzano, *correlatore* della tesi, che mi ha dato la possibilità di poter svolgere l'attività di tesi e di tirocinio in un contesto d'eccellenza come la Cimolai S.p.A., leader mondiale nel settore delle costruzioni in acciaio. La ringrazio per aver dedicato '*ample time*' ad insegnarmi e a portare avanti un lavoro su una tematica interessante e stimolante. La sua guida, le preziose discussioni, le riflessioni condivise e i ragionamenti approfonditi hanno arricchito in modo significativo questo percorso.

Desidero inoltre rivolgere un sentito ringraziamento al Prof. Ing. Filippo Berto, *controrelatore* della tesi, per il tempo che ha dedicato alla lettura, alla revisione e all'analisi del mio lavoro di tesi.

Ringrazio l'Ing. Fabiano De Vitis, per la disponibilità, il supporto e l'aiuto forniti, che sono stati fondamentali per affrontare e superare le diverse fasi del lavoro.

Ringrazio anche tutti i colleghi dell'ufficio di Padova di Cimolai S.p.A., che mi hanno accolto, mi hanno aiutato e a cui ho sempre potuto rivolgermi per qualsiasi problema, grazie per il tempo che mi avete dedicato.

Ringrazio l'Ing. Perin di HSH s.r.l., per aver fornito la licenza del software Straus7, che mi ha permesso di sviluppare tutto il lavoro di analisi numerica riportato nella tesi.

Il ringraziamento più importante va ai miei genitori, per l'amore e il supporto incondizionati, che con i loro sacrifici mi hanno dato la possibilità di potermi costruire un futuro.

Ringrazio tutta la mia famiglia, che sempre mi è stata vicina e che sempre è stata un punto di riferimento per me.

Grazie a Martina, per essere sempre stata al mio fianco durante questo percorso, per il suo affetto e per tutti i momenti che abbiamo condiviso insieme.

Infine ci tengo a ringraziare tutti gli amici più cari, che mi hanno rallegrato e tenuto compagnia durante tutti questi anni.