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ABSTRACT 

Multi-energy microgrids (MEMG) can simultaneously distribute and supply 
electrical and thermal energy to customers. By coupling together electrical and thermal 
networks, traditionally independently operated, system operators can benefit from 
higher flexibility while also allowing the integration of distributed generators. However, 
MEMGs operation is strongly affected by uncertain parameters, such as renewable 
sources output, electric loads and temperature-dependent thermal loads, which can 
never be perfectly forecasted. If not adequately modelled, the uncertainty related to 
these parameters may deviate the economic and feasible dispatch from its optimal value. 
This thesis work proposes a coordinated dispatch method to minimize the operating 
costs of a MEMG when multiple uncertain parameters are considered.  

First, the system model was built considering devices and network constraints. 
Then, the operation method was modeled as a single-stage stochastic programming 
problem. To capture uncertainty variability, Monte Carlo sampling technique was used 
to generate a large number of random scenarios. Sets with different numbers of 
representative scenarios were selected, generating uncertainty models with different 
accuracy levels and computational burdens. The proposed stochastic operation method 
was tested on a 14-bus system to find the optimal day-ahead operation dispatch. After 
that, a feasibility check was carried out based on a set of new scenarios and the 
corresponding solutions were compared. The results demonstrated that the proposed 
operation model can achieve robust solutions when uncertainties are accurately 
modeled and, therefore, can be properly used for day-ahead operation planning.  
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RIASSUNTO 

 Le microreti multienergetiche (MEMG) sono dei sistemi in cui le reti di 
distribuzione elettrica e termica sono accoppiate l’una all’altra da componenti le cui 
dinamiche influenzano entrambi i sistemi. Compito del gestore della MEMG è quindi 
quello di garantire l’approvvigionamento dei carichi elettrici e termici della rete 
rispettando contemporaneamente i vincoli d’esercizio di entrambi i sistemi di 
distribuzione. Sebbene la gestione di un tale sistema sia più complessa rispetto a quella 
dei singoli sistemi, le MEMG permettono una gestione più flessibile ed uno uso più 
efficiente delle fonti a disposizione. In particolare, in una MEMG ad elevata 
penetrazione di fonti rinnovabili, l’accoppiamento dei sistemi elettrico e termico è un 
metodo efficace per meglio gestire la loro aleatorietà e contemporaneamente 
massimizzare il loro utilizzo.  

 Oltre a numerosi vantaggi, le MEMG portano con sé, tuttavia, anche le criticità 
dei singoli sistemi. In particolare, sistemi di questo tipo sono fortemente influenzati 
dall’incertezza dei parametri del modello di rete. Per questo motivo, se le incertezze che 
influenzano il sistema non vengono adeguatamente modellate, la pianificazione del 
dispacciamento può risultare molto lontana dal suo ottimo, sia in termini di costo di 
esercizio che di sostenibilità della rete. Per gestire tale problema, in questo lavoro di 
tesi è stato realizzato un modello in ambiente MATLAB per il dispacciamento di una 
MEMG capace di garantire una soluzione ottima quando diverse fonti di incertezza 
perturbano il sistema.  

 Per prima cosa si è costruito il modello della MEMG definendo i vincoli di 
funzionamento dei componenti e delle reti di distribuzione sia elettrica che termica. 
Successivamente, il modello di gestione è stato formulato come un problema di 
programmazione stocastica lineare a singolo stadio. Si osservi che è stato possibile 
adoperare questo metodo solo grazie all’ipotesi di conoscere le funzioni di distribuzione 
di probabilità delle incertezze analizzate, che in questo modello si suppongono avere 
distribuzione normale. Sfruttando quindi la tecnica di campionamento casuale di 
“Monte Carlo” si è generato un vasto numero di possibili scenari, ovvero possibili valori 
che i parametri incerti potrebbero assumere. Si è poi  ridotto il numero iniziale di scenari 
usando il metodo di “Riduzione simultanea all’indietro” (simultaneous backward 
reduction, in inglese) in modo da ottenere dei modelli di incertezze meno 
computazionalmente onerosi da usare  durante le simulazioni. Dal momento che il 
numero di scenari a cui si riduce l’insieme iniziale generato da Monte Carlo è 
proporzionale all’accuratezza con cui l’incertezza verrà modellizzata, maggiore è il 
numero e maggiore saranno sia l’accuratezza che l’onere computazionale.  
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 Il modello di gestione così costruito è stato testato su una rete elettrica e termica 
a 14 nodi e i valori delle variabili di controllo sono stati confrontati con la soluzione 
deterministica del dispacciamento, ovvero quella non considera le incertezze. I risultati 
hanno dimostrato che il costo d’esercizio della soluzione stocastica poco si discosta da 
quella deterministica. Per testare la praticabilità della soluzione stocastica trovata, si 
sono imposti i valori delle variabili di controllo trovati a 2000 nuovi scenari, generati 
sempre con il metodo di Monte Carlo. Basandoci quindi su 2000 nuovi valori che le 
incertezze potrebbero assumere durante il giorno, si è verificato che la soluzione 
stocastica risulta praticabile nel 91% dei casi. Questo dimostra come la soluzione 
stocastica, a fronte di un costo di esercizio leggermente superiore garantisca una 
programmazione del dispacciamento molto robusta (e quindi affidabile) e adatta alla 
previsione del giorno prima. Ripetendo lo stesso test sulla soluzione deterministica si è 
invece riscontrata una praticabilità dello 0%, il che dimostra quanto la programmazione 
che non consideri l’influenza di incertezze sia lontano dalla pratica utilità. 

Successivamente, il modello stocastico è stato usato per confrontare le soluzioni 
che si possono ottenere quando le incertezze vengono modellate meno accuratamente, 
ovvero con meno scenari. Come ci si poteva aspettare, le soluzioni trovate hanno 
dimostrato avere una praticabilità proporzionale alla loro accuratezza. Ciò mette in luce 
un limite della programmazione stocastica, ovvero che per avere soluzioni robuste 
necessita di modelli di incertezza con elevata accuratezza, che per contro richiedono 
maggior onere computazionale.  
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NOMENCLATURE 

Acronyms: 

CCHP Combined Cooling Heat and Power 
CF-VT Constant flow – variable temperature 
CHP Combined Heat and Power 
DG Distributed generation 
DH  District heating 
DHW Domestic hot water 
EF Electric following 
ETC Evacuated-tube collector 
FPC Flat-plate collector 
FR Feasibility rate 
HST Heat storage 
MC Monte Carlo 
MEMG Multi-Energy microgrid 
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MILP Mixed-integer linear programming 
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TF Thermal following 
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Sets and Indices 

H, h Set/Index of buses with HST 
I, i Set/Index of buses in a MEMG 
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K, k Set/Index of scenarios 
M, m Set/Index of buses with CHP  
N, n Set/Index of buses with PV 
S, s Set/Index of buses with SC 
T, t Set/index of time periods 

 

Variables: 

𝐸𝑚,𝑡 
𝐶𝐻𝑃 CHP electric energy output (kWh) 

𝐹𝑚,𝑡 
𝐶𝐻𝑃 Fuel energy needed for CHP generation (kWh) 

𝐻(.) Thermal conduction power (kW) 

𝑃𝑖,𝑡 , 𝑄𝑖,𝑡  Active/Reactive power through the main branch from bus i (kW/kVar) 

𝑃𝑚/𝑛,𝑡 
(.)  Power output of distributed generator (kW) 

𝑃𝑡 
𝑑𝑒𝑓

, 𝑃𝑡 
𝑠𝑢𝑟 Power deficiency/surplus of MEMG (kW) 

𝑇𝑖,𝑡 
𝑖  Indoor temperature of bus i (°C) 

𝑇𝑖,𝑡 
𝑟  Return temperature of bus i (°C) 

𝑇𝑖,𝑡 
𝑠  Supply temperature of bus i (°C) 

𝑇𝑡 
𝑟1 Thermal slack bus return temperature (°C) 

𝑇𝑡 
𝑠1 Thermal slack bus supply temperature (°C) 

𝑉𝑖,𝑡  Voltage of bus i (p.u.) 

𝑞(.) Thermal energy flow (kWh) 

𝑞ℎ,𝑡 
𝑇𝑆,0 Initial thermal energy stored in HST (kWh) 

𝑞ℎ,𝑡 
𝑇𝑆  Thermal energy stored in HST at timestep t (kWh) 

𝑞ℎ,𝑡 
𝑇𝑆𝐶 Charged Thermal energy by HST at bus h (kWh) 

𝑞ℎ,𝑡 
𝑇𝑆𝐷 Discharged Thermal energy by HST at bus h (kWh) 

𝑞𝑖,𝑡 
𝐷𝐻𝑊 DHW demand of bus i (kWh) 

𝑞𝑖,𝑡 
𝑆𝐻 Space heating demand of bus i (kWh) 

𝑞𝑖,𝑡 
𝑇𝐶 Setting indoor temperature demand of bus i (kWh) 

𝑞𝑖,𝑡 
𝑏𝑖𝑙𝑙 Thermal energy of customer thermal usage bill (kWh) 

𝑞𝑖,𝑡 
𝑙𝑎𝑜𝑑 Thermal energy demand of bus i (kWh) 

𝑞𝑚/𝑠,𝑡 
(.)  Thermal energy output of distributed generator (kWh) 

𝑞𝑡 
𝑑𝑒𝑓

, 𝑞𝑡 
𝑠𝑢𝑟 Thermal energy deficiency/surplus of MEMG (kWh) 

𝑞𝑡 
𝑠𝑙𝑎𝑐𝑘 Thermal energy exchanged at the thermal slack bus (kWh) 

𝑣𝑚,𝑡 
𝑓𝑢𝑒𝑙 Fuel consumption of CHP (m3) 

𝛽ℎ,𝑡 
𝑇𝑆𝐶 Binary decision of HST charging 

𝛽ℎ,𝑡 
𝑇𝑆𝐷 Binary decision of HST discharging 
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INTRODUCTION 

According to the European Environment Agency, in 2017 greenhouse gas 
emissions in the European Union were distributed as shown in Fig. 1.1. As we can see 
the sector responsible for the highest contribution is the energy supply sector, with an 
overall 28% [1]. In order to tackle climate change and to foster radical decarbonizations 
of all States members, ambitious binding targets were set. By 2030 all EU-members 
agreed on cutting greenhouse gas emissions by 40% compared to 1990 levels and to 
cover at least 32% of final energy consumptions with renewable energy sources [2]. 

Integrating such a great portion of renewable energy sources (RES) will be challenging 
for current distribution network operators due to RES high variability and difficulty to 
modulate their output generation. For this reason, a whole heap of research is 
undergoing to enhance distribution systems’ flexibility while also promoting RES 
penetration.  

In recent years, the paradigm of energy distribution has been challenged, suggesting 
that traditional centralized energy production strategies may not be the most efficient 
for the energy scenario we are heading to. Hence, interest in distributed generation 
strategies has been intensifying and all energy utilities are now evolving towards 
decentralized systems.  

  
Energy 
supply

28%

Industry
19%Transport

21%

Residential 
and 

commercial
13%

Agriculture
11%

Waste
3%

Others
5%

Fig. 1.1 EU greenhouse gas emissions by source sector in 2017 
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Decentralized distribution systems are based on the concept of “local production of 
energy for local consumption” [3]. In this type of distribution networks, energy supply 
is secured by small distributed generation units (DGs) installed close to the load demand 
either by network utilities or private investors. Meeting load demand thanks to local 
energy sources results in a wide range of benefits in terms of techniques and economics. 
First, DGs generation alleviate load demand on the installed network node, resulting in 
an overall reduction of transport energy losses and transmission and distribution lines 
congestions. Second, they guarantee a more sensitive tracking and response to local 
load demand, hence providing a higher voltage stability and lower operating costs due 
to peak hour control [4]. Third, by enabling energy generation from different nodes of 
the systems, it takes full advantage of local RES output, which is not uniformly 
distributed on the territory. In turn, this allows utilities to reduce penalties cost for 
environmental care. 

 According to their generation controllability, DGs can be classified into two 
groups, i.e. dispatchable and non-dispatchable [5]. Dispatchable DGs, such as micro-
turbines and fuel cells, have cost-effective operation and good reliability since their 
output can be controlled according to how much fuel is consumed. Non-dispatchable 
DGs instead, such as solar collectors (SCs) and wind turbines, are environmentally 
friendly sources and benefit from many economic incentives from governments. 
Current distribution networks rely on a combination of both DGs types to 
simultaneously achieve overall economic profit, system reliability and environmental 
benefits [6]. 

 In the following subsections, a short introduction is given of the components 
considered in the MEMG model built in this thesis work . 

 

In 2019 the solar photovoltaic (PV) installed capacity in the European Union 
reached 16.7 GW, representing an astonishing 104% increase over the 8.2 GW added 
in 2018, which was the greatest installed capacity introduced among all other energy 
sources [7]. This clearly shows how much European countries are counting on this 
technology to reach the 2030 energy targets. 

When connecting this technology to distribution networks, system operators 
must make sure that its active power injection will not cause excessive voltage 
deviations or unexpected power flow reversals. Historically, reactive power (Var) 
controls such as OLTC and capacitors banks used to be employed when distribution 
networks had a relatively small load and voltage fluctuations and significant changes in 
average load occur relatively slowly [8]. However, these components cannot cope with 
the variability of PV generation, which is strongly affected by weather conditions 
happening on much shorter timescales. More like, they could be operated on short 
timescales, but this would result in a drastic reduction of their switches lifetime [8].  

A much more efficient and overall convenient method is represented by 
appropriately controlling the DC/AC inverter connecting PVs to the grid. Indeed, this 
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technology can provide much faster active power control and can also be employed to 
inject or consume reactive power, hence allowing them to perform voltage regulation 
and VAR control. 

 

When power plants are integrated with heat recovery systems, Combined Heat 
and Power units (CHPs) are formed. Combining together the generation of both power 
and heat carriers results in higher overall plant efficiency. When this type of system is 
furtherly integrated with devices allowing cooling generation Combined Cooling Heat 
and Power units (CCHPs) are formed, hence allowing the simultaneous dispatch of three 
energy vectors. 
More accurately, CHP systems are named differently according to their maximum 
electrical capacities, namely: 

• Cogeneration if 𝑃𝑚𝑎𝑥 > 1 MWe. 
• Small scale cogeneration if 50 kWe ≤ 𝑃𝑚𝑎𝑥 < 1 MWe. 
• Micro-cogeneration if 𝑃𝑚𝑎𝑥 < 50 kWe. 

Current CHP technologies and their field of applications are shown in Fig. 1.2. 

Fig. 3.3Thanks to its size scalability and high primary energy usage efficiency, there is 
a growing interest surrounding CHPs. As evidence of this, the European Union 
endorsed this type of technology as a viable solution to climate change mitigation [9]. 

Small scale and micro-CHPs can also be installed in decentralized distribution 
networks, hence allowing the system operator to take full advantage of their multi-
energy outputs. One of the most intriguing applications of these technologies relates to 
the possibility of renewable energies integration. Among the most investigated CHP 
system using renewable energy sources solar, biofuel and biomass are the main ones 
[10]. Thus, renewable energy-based micro-CHP systems can be a solution to 
significantly lower greenhouse gas emissions and secure energy supply. They also can 
facilitate energy access in rural areas, where energy infrastructures are not available and 
current fossil fuel-based solutions pose important environment, health, and economic 
issues. 

Fig. 1.2 Main CHP technologies and their fields of application [10] 
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Southern European countries benefit from a significant amount of irradiance 
throughout the year. This makes solar-driven technologies very attractive for both 
power and heat generation. While all devices for direct power generation are built 
around the photovoltaic panel, different solutions are available for direct heat 
generation. Three main categories can be found in the market: Stationary compound 
parabolic collectors (CPC), Flat-plate collectors (FPC) and Evacuated-tube collectors 
(ETC) [11]. While the first category is mostly employed for high-temperature industrial 
uses, the second and the third find many domestic applications such as domestic water 
and space heating. In Italy, solar-thermal installations are strongly supported by 
government incentive Conto Termico, which aims at helping the country covering 33% 
of final thermal energy usage with RES by 2030 to comply with EU targets [12]. 

FPCs are by far the most used type of collector. Usually, a transparent glass 
covers the absorbing plate, but many applications with no glass or multiple glasses are 
also available. When the sun radiation flows through the glazed cover, the absorber 
plate heats up, transferring its thermal energy to the operating fluids in the tubes. Then, 
the output heat is either consumed by customers or stored in specific tanks. For locations 
with a temperate climate, such as most of the Italian regions, this is the most efficient 
and cost-effective solution. For colder areas, ETCs are typically used instead. 

 

When considering thermal storage devices (HSTs) in a thermal distribution 
system we are increasing the flexibility of the system. Just like most commonly know 
electric storage units, i.e. batteries, HST allows to uncouple heat generation from the 
thermal load demand. Hence, this component does not only allow to redistribute heat 
production during the day, but it also allows higher energy usage efficiencies. As it will 
be explained in 3.3 when CHPs are equipped with HST its operation is not subject to 
bounding control strategies and its flexibility is significantly enhanced. 

 

 

Although distributed energy systems management is more challenging than 
traditional centralized systems, network operators can benefit from a wide range of 
advantages. However, these systems reveal an intrinsic limit when unexpectedly high 
unbalances between loads and generation occurs, requiring additional dispatchable 
resources (at higher cost) to equilibrate the system [13]. This could be the case of 
distributed systems with high RES penetration or networks with low supply 
redundancy. In these kinds of situations, the operating flexibility of the system can be 
further enhanced by coupling together systems using different energy carriers (e.g. 
power and heat). 
By doing so, the coupled system will become even more complicated to coordinate, but 
it will also provide a margin for higher efficiency solutions. Let’s consider, for example, 
an unexpected wind power peak in a winter night. In situations like this customers have 
a low electric and a high thermal load. Instead of requesting heat from the local CHP, 
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the excessive wind power can be used to run an electric boiler, hence reducing the 
overall operational cost.  

When referring to a multi-energy microgrid (MEMG) the combination of a small 
electric distribution network, i.e. a microgrid (MG), together with a district heating 
(DH) is intended, where both electrical and thermal energies are supplied to costumers. 
To couple the two distinct systems, devices influencing both systems at the same time 
are needed, such as CHP, electric pumps or electric boilers. In the following 
subsections, an overview of electrical and thermal networks will be given. 

 

Microgrids (MG) are defined as small electrical distribution networks 
characterized by a large penetration of DGs, whose coordination is controlled by a local 
operator. This cluster of DGs can operate both in grid-connected or islanded mode. In 
the islanding mode, the MG operator's main target is to maintain the system stable while 
meeting customers' loads. In grid-connected operation instead, the MG operator can 
exchange power with the upper-level transmission system. Therefore, in this operation 
mode, the MG operator will try to maximize its profits by opportunely coordinating 
local generation and transactions with the main grid. 

From the electrical systems point of view, MGs are connected to the 
transmission network by electrical substations, where step-down transformers adapt the 
transmission voltage level to the lower distribution level, typically 400V.  

 

The distribution network of a district heating (DH) network usually consists of 
supply and return pipes that deliver heat, in the form of hot water or steam, from the 
point of generation of the heat to the end consumers [14], [15]. Fig. 1.3 shows an 
example of a DH with a primary, secondary and tertiary network, each of them separated 
by substations, supplying different types of customers.  

 

Following the trend of power distribution networks, DHs are also moving 
towards decentralized systems using heat from multiple distributed generation facilities. 
This gives DH a huge potential for exploiting low-temperature sources like RES 
generation (such as geothermal, solar thermal, biomass) and wasted heat coming from 

Fig. 1.3 Example of DH system feeding multiple types of consumers 



 
 

16 
 

industries. However, integrating these types of sources poses some technical challenges 
which are currently undergoing. In fact, because DH networks need certain pressures to 
operate properly, DH are always pressurized systems; this makes the supply 
temperature network to take over values above 100°C, resulting in high heat losses and 
impossibility to include low-temperature sources. To overcome these issues, the current 
trend leans towards using pre-insulated pipes to lower the supply temperature – 
eventually until 50°C – and installing “booster units” at the consumer side[16]. This 
will not result only in reduced transport losses but could also allow low-temperature 
sources to be integrated. 

Due to their high energy usage efficiency and the possibility to exploit RES, DH 
systems are expected to play a key role in the decarbonization of European countries.  

 

 

Any problem involving decision making calls for planning, designing and 
operating in an optimal manner to reduce (or maximize) the related outcomes. Indeed, 
in our daily life, we come across different sorts of decisions we have to take; some of 
them involve complicated problems, many others refer to much simpler matter, such as 
finding the lowest-priced item in the store or taking the shortest path to reach a certain 
destination. In any of these cases, we need to ponder the variables involving the 
underlying problem and find the optimum solution that would allow us to reach the 
minimum cost, commuting time, etc. However, as the system describing the problem 
becomes more complicated (i.e. more variables and constraints are considered) optimal 
decisions become harder to take and they cannot be based only on expertise and 
intuition. Solving these types of problems becomes more challenging, leading to 
complexities related to multi-objective criteria, uncertainties of the parameters 
describing the system and so on.  

A much better alternative was provided when the advance of computers and 
computational theory made it clear that by formulating tasks in a mathematical form, 
solving optimization problems was much more practical. Nowadays, mathematical 
optimization has become an essential support in all branches of engineering, economics, 
finance, chemistry, biology, etc. In particular, mathematical optimization is a 
fundamental tool for energy utilities when dealing with the planning, sizing and 
operating the energy system.  

In conclusion, mathematical optimization can be defined as the process of 
maximizing and/or minimizing one or more objectives without violating specified design 
constraints, by regulating a set of variable parameters that influence both the objectives 
and the design constraints [17]. 

 

The first step to take in the optimization process is developing an appropriate 
model. When referring to developing a model we mean the process of identifying and 
expressing in mathematical terms the objective, the variables, and all the constraints of 
the problem [18]. 
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An objective is a quantitative measure of the performance of the system that we 
want to optimize. In some applications, two or more objective may be needed to satisfy 
different requests. For example, electrical utilities may want to minimize energy losses 
or the operational cost consequent to the dispatching of the system. Of course, the 
problem solution is going to be different whether we consider the first or the second 
objective. If both objectives were deemed together, the solution would result in a 
tradeoff between the two single objectives.  

The variables or unknowns are the components of the model for which we want 
to find values. In an optimization problem, we can distinguish between two types of 
variables: decision and state variables. The first type involves those variables we are 
able to control and we wish to optimize; the second type, instead, regards those 
additional variables used to describe the system and that are determined once the 
decision variables are fixed. Following the previous example, possible decision and 
state variables involved in an optimal energy dispatch could be the power production of 
controllable sources (e.g. by CHP) and the volume of fuel consumed respectively. 

The constraints are the functions that describe the dynamic of the system, the 
relationships among the variables and that define the allowable values for the variables. 
They can be stated either in an equality or inequality form. In the electrical grid, for 
example,  the voltage on every bus is bounded within an admissible range. 

A set of decision variables that fully satisfies all the constraints is called a feasible 
solution (even if it does not minimize the objective function) [17]. 

 

The second step to take in the optimization process is determining in which 
category of optimization the model belongs to. This step is exceptionally important 
since it will determine which algorithm/method and software better apply to the 
considered problem. Fig. 1.4 provides a helpful perspective of optimization taxonomy, 
mainly focusing on the subfields of deterministic problems with only one objective. 

Fig. 1.4 Optimization taxonomy scheme [19] 
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• Continuous Optimization vs Discrete Optimization 
In a generic model, variables may take on values from a discrete set or, 
in other cases, from a set allowing any real value. When a model is 
defined by only discrete variables - often a subset of integers - we have 
a discrete optimization problem. More specifically, when the subset of 
integers is bounded to binary values (0-1) we are handling a binary 
optimization problem. On the other hand, models with all continuous 
variables are continuous optimization problems. According to the 
considered case - a mixture of the above cases is actually the most typical 
case - different solving methods are available. Usually, continuous 
optimization problems tend to be easier to solve; the smoothness of the 
functions means that the objective and constraint function values at a 
point x can be used to deduce information about points in the 
surroundings of x [18]. Although, thanks to the recent enormous progress 
of computing technology, handling discrete optimization problems 
efficiently it is also possible. Lastly, it is worth mentioning that many 
discrete optimization problems can be reverted to a sequence of 
continuous subproblems, thus allowing continuous optimization 
algorithms to be used. 

• Unconstrained Optimization vs Constrained Optimization 
When the optimization variables are limited by some equality or 
inequality constraint, we have a constrained optimization problem. 
When they are not, we have instead an unconstrained optimization 
problem. Because most practical problems are limited by constraints, 
unconstrained problems usually have more theoretical than practical 
values [17]. Finding a solution to these types of problems is still very 
relevant when constrained problems are reformulated into unconstrained 
problems, eliminating a constraint and replacing it with a penalty factor. 

Another noteworthy aspect relates to the type of constraints used. Indeed, 
constrained problems can be also classified according to the nature of 
the constraint (e.g. linear, nonlinear, convex). 

• Single-Objective vs Multi-Objective 
As previously mentioned, model variables have to be optimized 
following a certain objective. Generally, the optimization of problems 
modelling physical systems involves tradeoffs among conflicting 
objectives. Another example relevant to energy utilities could be the 
optimization of energy dispatch while trying to minimize the operational 
cost and the CO2 penalties coming from the usage of fossil fuel sources. 
Many times, problems with multiple objectives are reformulated in a 
single-objective form by either forming a weighted combination of the 
different objectives or by substituting some of the objectives with 
constraints [20]  
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• Deterministic Optimization vs Nondeterministic Optimization 
In deterministic optimization, the data used to describe the system is 
assumed to be known accurately. This assumption is not just very 
unrealistic - leading to solutions that do not describe closely real-life 
systems - but it is also very inadequate because the mathematical 
solution found may be physically unfeasible – in the energy dispatch, 
this may lead to excessive fuel bought or problematic power flow 
solutions. If input data uncertainty and variability are incorporated into 
the model, we will have a non-deterministic optimization problem. There 
are different methods to handle this type of problem, namely divided into 
stochastic and heuristic methods. In the following subsection, this 
category will be further discussed. 

 

 

As previously mentioned, when modelling real physical systems, input data is 
never perfectly known. This is due to a variety of reasons, the main two being 
measurement and forecasting errors.  

When including measured data in our model, we must accept that the real value 
of the measured entity does not exist; this is because every measurement is affected by 
some intrinsic variability. Apart from the measured entity itself, many other sources of 
errors may be involved in the measurement process; some of them are attributable to 
the measuring tool, the measuring method or even the operator in charge of the process. 
In electrical engineering, a good example of the aforementioned issues is represented 
by the resistance evaluation of resistors [21].  

Similarly, when dealing with forecasting data, we must rely on predictions 
coming from algorithms using historical data and statistical theory. As much as the 
forecasting methods might be sophisticated, it is impossible to fully capture the 
randomness and aleatory nature of some parameters. Thus, because there is no way to 
perfectly predict data, the robustness of deterministic models’ solutions is very limited. 
For example, in current distribution networks, electricity utilities need to model the 
uncertainty of PV generation so that the power-flow solutions will be appropriate. 

For the above-mentioned reasons, to properly model our problem, we must be 
able to properly model uncertainties. In the past, empirical safety factors were used to 
compensate the propagation effects of uncertainties. As Messac observed though, this 
often resulted in overly conservative designs, increasing the probability businesses may 
lose their competitive edge in terms of cost and performance [17]. Later on, 
mathematical frameworks were developed, achieving algorithms that can guarantee 
insensitiveness to data uncertainty to a significant extent.  
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Different types of uncertainty affect the MEMG optimal operation. All of them can be 
grouped among  three categories [3]:  

• Energy uncertainties 
MEMGs with high RES penetration are severely affected by supply generation 
uncertainty, due to RES variability. Also, because MEMG generation consists 
of multiple small size DGs, when load unexpected variations occur, balancing 
the system is more challenging than in centralized systems; thus, load demand 
uncertainty is also very relevant to MEMG. 

• Economic uncertainties 
The dispatch of MEMGs operating in grid-connected mode is significantly 
affected by the energy price upon which transactions with the upper-level 
transmission grids are made. Thus, it is also important to find optimal solutions 
under different price realizations.  

• Technical uncertainties 
Some parameters defining devices’ performances, such as efficiencies, cannot 
be perfectly estimated. This uncertainty makes the architecture of the MEMG 
model uncertain as well.  

In the literature, energy uncertainties are the most investigated sources of uncertainty 
and, for this reason, this thesis work will consider only this type of uncertainty. 

 

 

The contributions given by this thesis work are listed as follow:  

• Investigating MEMGs operation control strategies under uncertainties. In this 
work, three uncertainty sources were considered: electric load, outdoor 
temperature, and solar irradiation. 

• A fully constrained MEMG formulation is formulated, considering multiple 
devices and both electrical and thermal network constraints. 

• An optimal one-stage stochastic optimization method is proposed to handle 
multiple uncertainties.  

• Analyzing how solar collector devices influence the MEMG dispatch under 
uncertain sun irradiation. 

 

 

The description of each chapter included in this thesis is as follows: 

• Chapter 1 gives an introduction of the components considered in the considered 
MEMG and a short background of optimization theory. 
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• Chapter 2 and Chapter 3 describe the models of the electrical and thermal 
distribution systems. Both network and components constraints are presented. 

• Chapter 4 presents the stochastic optimization formulation. Both deterministic 
and stochastic solution methods are outlined. Then the Monte Carlo sampling 
method and Simultaneous backward reduction technique are introduced. 

• Chapter 5 describes the test system used to perform the numerical simulations. 
A description of how uncertainties were modeled is also given. 

• Chapter 6 illustrates and discusses the results obtained from the numerical 
simulations of both deterministic and stochastic problems. To compare these 
two solutions a feasibility check was carried out, also including some other 
simulation cases. 

• Chapter 7 presents the conclusions, the main findings, and recommendations for 
future works.  
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ELECTRICAL DISTRIBUTION  

SYSTEM MODELLING 

In this chapter, the constraints used to model the microgrid dynamics are going to be 
presented. As previously mentioned, by referring to the term microgrid we are 
considering all the components influencing the power flow of the multi-energy system. 
In order to obtain a correct representation of the system, an accurate set of equations, 
also called formulation, needs to be used.  

The MG model is composed of the following elements:  

• Distribution network  
• Photovoltaic solar panels (PV) 
• Combined Heat and Power units (CHP) 
• Loads 

 

The model of the distribution network needs to satisfy several constraints that 
must describe correctly the power-flow. Different models of power-flow problems are 
used in the literature. For this thesis work, a linearized version of the DistFlow will be 
used.  

 

To solve the power-flow problem the DistFlow formulation used by references 
[22] and [23] was applied. Let’s consider a unidirectional single branch radial 
distribution circuit like the one in Fig. 2.1, having n-1 branches and n buses. It is 

Fig. 2.1. One-line schematic diagram of a radial system [22]  
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worthwhile mentioning that by considering a  circuit with unidirectional flows we are 
referring to current distribution networks, where reverse flows are considered 
consequences of faults. 

In the figure, the 0-bus, also called slack-bus, is connected to the upper-level grid at the 
reference constant voltage 0V . Lines are modeled by a series impedance 𝑧𝑙 = 𝑟𝑙 + 𝑗𝑥𝑙 
and loads are considered as constant power sinks, with apparent power equal to 

L L LS P jQ= + . 

If the power supplied from the upper grid, 0 0 0S P jQ= + , is known then the apparent 
power and the voltage at the receiving end of the branch can be evaluated as follows:  

 

2
2 0

1 0 1 0 1 0 12
0

*
0

1 0 1 0 0
0

| |
loss L l L l L

SS S S S S z I S S z S
V

SV V z I V
V

= − − = − − = − −

= − = −
  

Applying the same procedure to all the other branches, we obtain the following 
general equations: 

2 2 2 2
c gi i i i

i 1 i i L1 i i i 1 i 12 2
i i
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V V+ + +

+ +
= − − = − − +   2.1 
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+
= − + + +   2.3 

where, 

iV : voltage at bus i; 

iP , iQ : real and reactive power flowing on branch i +1; 
c
ip , g

ip
: 

active power consumed and generated by bus i; 

c
iq , g

iq : reactive power consumed and generated by bus i; 
  

 

To alleviate the computational burden of the model, a simplified formulation of the 
distribution network can be applied using the following assumptions:  
 

• The nonlinear terms of the DistFlow model can be neglected. 
Using a linearized formulation of the power-flow problem is largely accepted in 
the literature [24]. Turitsyn et al. [8] demonstrated that the solution obtained 
using this approximation is almost indistinguishable from the model based on 
Eqq. 2.1-2.3. This is because the nonlinear terms ∝ (𝑃𝑖

2 + 𝑄𝑖
2)/𝑉𝑖

2 , which 
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represent the branch losses, are much smaller (o4) than the linear terms iP , iQ , 
representing the active and reactive power flowing through the branches. 
 

• The square of the difference between the voltage on the j-bus and the reference 
voltage on the slack bus is neglectable. This approximation is accepted as long 
as the deviation of voltages across the distribution network is kept within an 
allowed range. This leads to expression 2 2

0 0 02 ( )i iV V V V V + − . 
 
Under these two approximations, the formulation of the distribution network becomes:  

1 1 1
c g

i i i iP P p p i+ + += − +   2.4 

1 1 1
c g

i i i iQ Q q q i+ + += − +   2.5 

+1
i i i i

i i
0

r P x QV V i
V
+

= −   2.6 

Once we defined the set of equations used to solve the Power Flow problem, we 
have to find an efficient technique that can be used to implement the set of constraints. 
In the literature, most of the solution techniques apply either graph properties or the 
incidence matrix to automate the implementation process. Alternatively, as it was done 
in this thesis, simulation can be run coding each set of constraints. 

For radial distribution networks simulations, we used a code based on a topology 
matrix containing all the topological information about the considered distribution 
network. By following this procedure, the DistFlow formulation can be studied on any 
kind of radial circuit, no matter the number of nodes nor the number of lateral branches. 

A simple example is used to illustrate this approach. Fig. 2.2. shows a radial 
circuit with five buses and four branches.  

 

The topology of this circuit is entirely described in Table 2.1, whose columns 
represent: 

 

1st column Name of the branch 
2nd column Starting bus of the branch 
3rd column Ending bus of the branch, also called to bus 
4th column The resistance of the branch 
5th column The reactance of the branch 

Fig. 2.2 A simple radial distribution network 
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6th column 
1 if the branch is the first parallel branch  
2 if the branch is the second parallel branch  
0 if the branch has no parallel branches 

7th column Active power withdrawn by to bus 
8th column Reactive power withdrawn by to bus 

9th column 1 if the branch is an end-branch 
0 if the branch is not an end-branch 

10th column Source branch   

Table 2.1 Topology matrix for a simple radial circuit 
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 
1 1 2 r x 0 P Q 0 0 
2 2 3 r x 1 P Q 0 1 
3 3 4 r x 0 P Q 1 2 
4 2 5 r x 2 P Q 1 1 

 

The DistFlow program then writes all the constraints in a block matrix format in order 
to solve the following linear system:  

 𝐴𝑛_𝑏𝑟𝑎𝑛𝑐ℎ,𝑛_𝑏𝑟𝑎𝑛𝑐ℎ ⋅ 𝑥3⋅𝑛_𝑏𝑟𝑎𝑛𝑐ℎ,1 = 𝑏3⋅𝑛_𝑏𝑟𝑎𝑛𝑐ℎ,1  

The block matrix A shown in Table 2.2 contains on the first, second and third 
block-line the constraints related respectively to active power, reactive power, and 
voltage. It is worth to notice that while P and Q are entities related to branches, V are 
instead related to buses. 

Table 2.2 Block matrix containing all the power-flow constraints 

1 1 0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0

0 02 0 0 0 0 04 0 0 0 1 0 0 0
0 0 02 0 0 0 0 04 0 0 1 1 0 0
0 0 0 01 0 0 0 0 04 0 0 1 1 0
0 0 0 0 02 0 0 0 0 08 1 0 0 1

. .

. .

. .

. .

A

 − −


−



 − −


−
=




 −


−
 −
 

1

2

3

st

nd

rd



















  

In Table 2.3 instead, the unknown vector x and the known term b are displayed. 
It should be noticed that b contains the active and reactive load of every bus and the 
reference voltage, in per-units, at the slack-bus. 
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Table 2.3 Vectors x and b 
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 As already mentioned before, to ensure a good power-quality on the system, the 
magnitude of voltages deviation across the circuit must be kept within acceptable 
bounds: 

min max
iV V V i,t    

Considering a per-units base, the voltage constraint can be written as: 

 1 1iV i,t −   +    2.7 

For transmission systems, the voltage deviation e is typically set to 𝜀 = ±5% 
while for distribution system 𝜀 = ±10% is mostly accepted.   

 

 

Considering a grid-connected case, the behavior of the power slack bus needs to 
be modeled in order to guarantee a correct power exchange between the MG and the 
main grid.  

When the power production in the MG is not enough to fulfill the customers’ loads, the 
MEMG operator must buy electricity from the main grid, defP . On the contrary, when 
power production of the DG exceeds the customers’ needs, electricity must be injected 
into the main grid, surP .  

The power effectively exchanged between the MG and the main grid in every time step, 
which is a result of the optimization problem, is modeled by Eq. 2.8: 

 slack def sur
t t tP P P t= −    2.8 
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 Where 𝑃𝑠𝑙𝑎𝑐𝑘 is defined in Eq. 2.9 following the notation of the variables used 
in the simplified DistFlow formulation:  

 ,
slack

t 1 tP P i,t=    2.9 

 

All transmission lines must operate under their maximum power capacity, which 
can be expressed by an apparent power limit. This limit depends not just on the material 
properties but also on the length of the lines. While excessive power flowing in short 
lines will result in overheating damages to the lines and to the system equipment, the 
maximum capacity for long lines must also consider stability concerns.  
As it will later be explained, loads maintain constant power factor throughout the day, 
hence keeping the active and reactive power flowing in each branch proportional to 
each other. Following reference [24], the capacity limit of each branch is represented 
by the active power constraint in Eq. 2.10 to avoid quadratic constraints inclusion: 

 ,
cap cap

i tP P P i,t−      2.10 

 

The installation of PVs in a distribution network results in an active power 
injection into the system. Thereby, power demand on each bus is reduced as well as the 
active power flow in the connecting branch, decreasing significantly transmission 
losses.  

Different from fossil fuel power sources, PVs production cannot be planned. 
Even though its output can be predicted by modelling the movements of the sun, it still 
relies strongly on atmospheric conditions. The two major parameters influencing the 
efficiency of these systems are the irradiance and temperature of the cell, which depend 
on the clearance of the sky and wind speed, respectively. 

 

In the literature, many PV dynamics models have been proposed to properly 
describe output power production. Basaran et al.  [25] used a model based on the 
equivalent electric circuit of PV cells, achieving simulation results very close to reality. 
In another work [26], the hourly energy production is obtained by multiplying the 
hourly ideal output generation by a derating factor which takes into account several 
parameters reducing the performances of the PV panel.  

For the purpose of this study, a more general model is considered. The output 
power produced throughout the day by the PV system can then be evaluated as follows:  

 
,max

,

,max

,

,

PV PV index
n t t

PV index
t

p P PV n t

P G n t

=  

=  
  2.11 

where ,maxPVP  is the PV installed capacity and 𝑃𝑉𝑡
𝑖𝑛𝑑𝑒𝑥  is the daily power 

output profile multiplier. This profile is assumed to have the same outline of the 
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irradiance in a reference day and is therefore achieved by scaling the irradiance profile 
by its maximum value. 

 

As already introduced in Chapter 1, Combined Heat and Power (CHP) units 
differ not just on the size but also on the different types of technology they rely on. 
Several types of models can, therefore, be found in the literature according to the type 
of unit considered and modelling accuracy required.  

In this section, some of the most used formulations to model the electrical and 
thermal behavior of CHP will be presented, while also motivating the choice of the 
model used in this thesis.  

 

For large size units, namely defined as Cogeneration units, works like [27]-[28] 
make use of the polyhedrons method in order to describe the CHP feasible operating 
region. Following this approach, the power and heat dispatched by the unit can be 
described by a convex combination of the corner points defining the operating region:  

 

M
k k

k 1
M

k k

k 1

p x

q y





=

=

=

=





  

Where xk and yk are the power and heat production for the kth corner point and 
αk are positive weights whose summation must be equal to the binary variable 
representing the operating status of the unit.  

It is worthwhile mentioning that this procedure can also be extended to CHP 
with a non-convex feasible area by dividing the region into different sub-areas. 

For smaller units, micro-CHP and small scale CHP, a more general model can 
be implemented. Zhengmao et al. [29] referred his work to a Capstone’s micro-turbine 
considering a nonlinear relation between power output and electrical efficiency: 

 . ( ) . ( ) . ( ) .7 3 5 2 3
MT MT MT MT2 767 10 P 7 337 10 P 6 385 10 P 0 107 − − −=  −  +  +   

By using this type of formulation, all entities depending on 𝜂𝑀𝑇would be nonlinear 
therefore creating a mixed-integer nonlinear programming problem (MINLP). To 
alleviate the computational burden, it is common practice to linearize this kind of 
relations using piecewise-linear functions, transforming the problem in a MILP one. 
Once this is done, the output heat recovered is evaluated by: 

 (1 ) /MTH H H MT MT L MTQ COP P   = − −   

Where 𝜂𝐻 and 𝐶𝑂𝑃𝐻 represents the heat recovery ratio and coefficient of performance 
of the heat recovery unit. Lastly, 𝜂𝐿 is the heat loss ratio.  
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 Another different formulation comes from reference [24], where the heat 
recovered by the CHP is modeled following an energetic approach. This is the 
formulation considered in this thesis.  

The electrical energy produced by the CHP unit is defined as:  

 , , , ,CHP CHP
m t m tE P m t=    2.12 

where 𝑃𝑚,𝑡
𝐶𝐻𝑃 is the output active power and τ is the intraday operation stage set as one 

hour. 

The fuel energy needed to obtain that electrical energy is equal to: 

 , , / , ,CHP CHP PGU
m t m tF E m t=    2.13 

where 𝜂𝑃𝐺𝑈 is the constant electrical efficiency.  

The heat recovered can finally be evaluated as: 

 , , ,( ), ,HR HR CHP CHP
m t m t m tq F E m t= −    2.14 

where 𝜂𝐻𝑅 is the heat recovery factor. 

 

Like any other realistic dispatchable unit, CHP output power cannot exceed its 
nominal capacity. At the same time, the output power must also be higher than a certain 
threshold. Similar considerations also apply for the output heat, which must be bounded 
within an upper and lower bound. 

Therefore, the following range constraints must be considered: 
 

 min max
, , ,CHP CHP CHP

m tP P P m t     2.15 

 min max
, , ,HR HR HR

m tq q q m t     2.16 

 

When planning the dispatch of power units, ramping constraints must also be 
taken into account. Ramp rates, indeed, define how quickly power plants can change 
their output power and are, consequently, defined in units of power (e.g. kW) over time 
(e.g. one minute).  

Because the grid has to maintain a constant balance between generation and 
demand and because ramp rates assume very different values according to the different 
types of power plants, choosing accurately the mix of generating units plays a key role 
when sizing and planning the power system. This becomes even more severe when 
considering grids with high penetration of RES, which can ramp up and ramp down 
very quickly, unbalancing the system. 

The ramping constraint can then be defined as:  

 max max
, , 1 , ,CHP CHP CHP CHP CHP CHP

down m m t m t up mr P P P r P m t−−   −      2.17 
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In this study, loads are considered fixed, with no possibility to react to the 
MEMG operator's needs. As already explained in section 2.1, active and reactive power 
are withdrawn at each bus. The apparent power requested by the load is then: 

 , , , , ,L L L
i t i t i tS P jQ i t= +    

The power demand requested by every load throughout the day can be evaluated 
as follows:  

 , , ,L L index
i t tS S load i t=     2.18  

where 𝑆𝐿 is the reference bus apparent power and 𝑙𝑜𝑎𝑑𝑡
𝑖𝑛𝑑𝑒𝑥 is the daily load demand 

profile multiplier. Once the profile with absolute values is selected, the percentage 
profile is obtained by scaling the load profile by its maximum value. 
It should be noticed that by using Eq. 2.18 we are assuming that the power factor on 
every bus will stay constant during the day. This assumption is quite realistic 
considering that rephasing devices are widespread in current distribution networks. 
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DISTRICT HEATING MODELLING  

Once the electrical model of the MEMG is completed, we can now focus on the 
formulation of the district heating dynamics. By doing so, we are aiming at describing 
the thermal grid through which heat is produced, distributed and delivered to thermal 
loads.  

Similar to the microgrid model, also the DH is composed of the distribution network, 
sources and loads. In addition to these elements, the system considered in this research 
is also equipped with storage units that allow a more flexible operation.  

In the next sections the models of the following elements are going to be presented: 

• Distribution network 
• Solar collector 
• Thermal storage 
• Thermal loads 

It is worth to notice that CHP units are key components also for the DH network 
since their outputs influence both electrical and thermal systems. Hence, their model 
could have been included either in the MG or the DH formulation. For the sake of 
clarity, it was reported in the previous chapter. 

 

In this study, the district heating network is modelled following a constant-flow 
and variable-temperature (CF-VT) strategy. Even though the fully nonlinear variable-
flow and variable temperature (VF-VT) strategy can achieve better optimization results, 
solving this type of model in a satisfactory manner it is still rather challenging [27]. 
Hence, to simplify the complexity of the model, the CF-VT strategy was chosen, 
without losing generality. 

In order to simulate correctly the dynamics of the thermal vector through the 
system in steady-state conditions, a Hydraulic and a Thermal model were built. The 
combination of these two models defines the Heat power model, whose structure is 
shown in Fig. 3.1.  
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From the figure, we can see that once the Hydraulic model is run, the flow ratios 
in all pipelines are obtained and consequently the Thermal model can be used to 
determine the supply and return temperatures of every bus. 

 

Solving the hydraulic flow in a DH is very similar to solving the power flow in 
an electrical circuit. As shown in Table 3.1 there is a clear analogy between hydraulic 
and electrical laws. This consideration allows us to build the Hydraulic model following 
a similar procedure. 

Table 3.1 Analogies between electrical and hydraulic network 
Power flow Kirchhoff’s current law Kirchhoff’s voltage law Ohm’s law 
Hydraulic flow Mass conservation law Loop pressure balance Head loss 

  

It is worthwhile mentioning that while in the VF-VT strategy the hydraulic 
network is modeled considering both flow and pressure constraints [15], in CF-VT 
applications, pressure constraints can be neglected [27]. This can be motivated by the 
fact that water pumps’ consumption is largely determined by the hydraulic regimes in 
the network. In these situations, mass flow rates of water pumps and heat-substation are 
considered as decision variables so that their related costs can be optimized. On the 
other hand, when considering constant hydraulic regimes, the cost related to the pumps’ 
power consumption are fixed and cannot be optimized.  

For the above-mentioned reasons, this model does not consider pressure constraints in 
the Hydraulic model formulation. Thus, only flow rate constraints are taken into 
account.  

According to the Mass conservation law, also known as Continuity law, when 
considering an incompressible fluid, the mass flowing into one node must be equal to 
the sum of the mass leaving the node. By applying this law on every DH bus, we can 
state that: the sum of all water flow rates entering a bus must be equal to the flow rates 
leaving the bus plus the flow consumption at each node. For both the supply and return 
network, this constraint is expressed by Eq. 3.1: 

 ( ) ( ) qin out
m m m −  =   3.1 

Where �̇� is the mass flow running through each pipe and 𝑚𝑞 is the mass flow either 
withdrawn from the supply network buses or injected into the return network buses.  

Fig. 3.1 Block diagram of the Heat power model 
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Because the flow direction in both the supply and return networks is fixed, the 
costumer’s requested flow will always leave the bus in the supply network and will 
always enter the bus in the return network. 

As mentioned before, solving the hydraulic flow is very similar to solving the 
power flow problem. Therefore, when implementing this set of constraints in a code 
with a general pipeline system, we can take advantage of the same procedure used in 
section 2.1.1. 

This will result in a linear system of the following form: 
𝐴𝑛_𝑏𝑟𝑎𝑛𝑐ℎ,𝑛_𝑏𝑟𝑎𝑛𝑐ℎ ⋅ 𝑥𝑛_𝑏𝑟𝑎𝑛𝑐ℎ,1 = 𝑏𝑛_𝑏𝑟𝑎𝑛𝑐ℎ,1  

 

As an example, let’s consider the same simple network used when the power flow 
algorithm was introduced, which is here reported in Fig. 3.2: 

 

In Table 3.2 the A matrix containing all the mass conservation constraints is reported. 
As can be observed, inside this matrix all the +1 values refer to flows entering a bus, 
while all the -1 values refer instead to all those flows leaving the bus.  

Table 3.2 Hydraulic A matrix 

1 1 0 1
0 1 1 0
0 0 1 0
0 0 0 1

A

 − −
 

− =
 
 
  

 

 

Finally, in Table 3.3 the x and b vectors are shown. While the unknown x vector 
contains all the flow rates variables, the know-term vector b contains all the withdrawn 
or injected costumers’ flows. 

Table 3.3 Vectors x and b 
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Fig. 3.2 A simple radial district heating network 
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Because under CF-VT strategy the hydraulic regimes of the network are 
invariant, the constraints that build up the Hydraulic and Thermal models are decoupled. 
Therefore, once the Hydraulic model is solved – and all the mass flows within each 
pipeline are known - the Temperature model is run, allowing the solver to calculate the 
supply and return temperatures at every bus of the DH.  

The outlet temperature of every pipeline of both supply and return network is 
calculated using the Temperature drop equation [15]: 

 ( ), ,

i i

w i

L
c m

out i in i a aT T T e T


−

= − +   3.2 

Where,  

,out iT  outlet temperature of pipeline i; 

,in iT  inlet temperature of pipeline i; 

aT  outdoor temperature; 

i  overall heat transfer coefficient for pipeline i; 

iL  length of pipeline i; 

wc  specific heat of water; 

im  mass flow in pipeline i; 
 

As it can be observed by Eq. 3.2, the temperature drop is defined by means of an 
exponential factor which makes the outlet temperature of a pipeline proportional to the 
mass flowing through.  

Defining 𝑇𝑜𝑢𝑡,𝑖
′ = 𝑇𝑜𝑢𝑡,𝑖 − 𝑇𝑎, 𝑇𝑖𝑛,𝑖

′ = 𝑇𝑖𝑛 − 𝑇𝑎 and finally 𝛹𝑖 = 𝑒
−

𝜆𝑖𝐿𝑖
𝑐𝑤�̇�𝑖, we can rewrite 

Eq. 3.2 in the following form:  

 , ,out i in i iT T  =   3.3 

Thanks to Eq. 3.3 we can now evaluate the outlet temperature of every pipeline of the 
network. However, when considering a pipeline network, we need to take into account 
that there could be several pipelines either entering or leaving each bus. When these 
situations happen, the resulting temperature at the bus is a mixed temperature, which is 
determined by the thermal energy of every mass flow entering the bus. As the first 
principle of thermodynamics states, the energy of an isolated system is constant, hence 
the sum of the energies of the outlet flows must be equal to the sum of the energies of 
the inlet flows.  

 ( ) ( ), ,
i i

b w in b b w out i
b P b P

m c T m c T
− + 

 =     

Where 𝑏 ∈ 𝑃𝑖
− is the set of branches entering the i-bus and 𝑏 ∈ 𝑃𝑖

+is the set of branches 
leaving the i-bus. 
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Since in every branch of the pipeline network flows the same fluid, the mixing 
temperature constraints for the supply and return network are:  

 ( ) ( ), ,
i i

s s s s
b in b b out b

b P b P

m T m T
− + 

 =      

 ( ) ( ), ,
i i

r r r r
b in b b out b

b P b P

m T m T
− + 

 =      

In the previous constraints, the costumers’ mass flows are not taken into account. When 
considering them, the mixing temperature constraints become:  

 ( ) ( ), , ,
i i

s s s s
b in b b q i out b

b P b P

m T m m T
− + 

 
 = +  

  
    3.4 

 ( ) ( ), , ,
i i

r r r r
b q i in b b out b

b P b P

m m T m T
− + 

 
+  =  

  
    3.5 

As it can be noticed, the customer’ mass flows withdrawn from the supply network are 
considered as the flows of fictitious pipelines leaving the corresponding bus. For the 
return network instead, the customers’ injected mass flows are considered as fictitious 
pipelines entering the corresponding bus. This way of looking at the customer model 
comes from the realistic assumption that the temperature drop between each household 
and its heat-exchange substation is neglectable. Thus, the inlet and outlet temperature 
of customer mass flow coincide with those of the connected bus. 

Once the equality constraints are defined, some additional inequality constraints 
should also be considered to ensure a satisfactory “heat quality” at every bus of the DH. 
Bounding the bus temperature between a satisfactory limit is very similar to the dual 
concept of keeping voltages in the power grid within an allowed range. Thus, all 
temperatures on the supply and return buses must be constrained to:  

 ,min ,max
,

s s s
i tT T T    3.6 

 ,min ,max
,

r r r
i tT T T    3.7 

Because of the current industry tendency to include low-temperature sources to the DH, 
in present DH the upper bound of the supply temperature must be kept below 100°C. 
Therefore, common values used Eq. Eq. 3.6 are: 

,80 95s
i tC T C     

For the return supply network instead, the lower bound of Eq. 3.7 is determined by 
health concerns. Indeed, to prevent legionella 0F0F0F

1  contamination, the water flowing 

 
 
1 Pathogenic group of bacteria which can cause health problems 



 
 

38 
 

through the pipelines must always be kept above 50°C [30]. The upper and lower 
bounds used in this model are:  

,50 65r
i tC T C     

However, for one category of buses, Eq. 3.7 assumes different values. In this DH 
formulation indeed, all buses with thermal generation units are allowed to feedback to 
the DH part of their heat. For these buses, the return temperatures are constrained by: 

,50 110r
i tC T C     

The reason why the upper bound of the return temperature is so large is due to the fact 
that we want to take advantage of the excessive heat produced by the thermal units. By 
feeding back to DH part of the heat we can lower the return temperature of the slack-
bus. Therefore, the heat imported from the upper-level transmission system will 
decrease and so will its associated exchange cost.  

Let’s now consider our reference simplified DH system, whose supply and return 
network are shown in Fig. 3.3. The solutions of the Hydraulic model for both cases have 
equal absolute values, but opposite signs.  

Fig. 3.3 Example of flows distribution in a simplified a) supply and b) return network 
 

When implementing Eq. 3.4 and 3.5 inside the code, a matrix formulation was 
used, like in sections 2.1.1 and 3.1.1.  

All the constraints for the supply network are written in the following form: 

 , 1 0s s
i i i down i im T m T +−  +  =    

Where �̇�𝑑𝑜𝑤𝑛,𝑖 = ∑ (�̇�𝑏
𝑠 )𝑏∈𝑃𝑖

+ + �̇�𝑞,𝑖 is the sum of all flows leaving the bus, including 
customers’ ones. Then, the return network constraints are expressed by: 

( ), 1 0
i

s s
up i i b b b

b P

m T m T
−

+


 −  =  

Where �̇�𝑢𝑝,𝑖 = ∑ (�̇�𝑏
𝑟 )𝑏∈𝑃𝑖

+ − 𝑚𝑞,𝑖  is the sum of all flows leaving the bus minus the 
customers’ ones. 

The Temperature model is then built up combining all the constraints of both supply 
and return network in only one linear system defined using a block-matrix:  

A1+2⋅n_branch,2+2⋅n_branch⋅x2+2⋅n_branch,1=b1+2⋅n_branch,1 

a) b) 
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For this example, let’s consider Tr1 = 100°C and �̇�𝑞,𝑖 = 0.4 kg/s. 

The A matrix, shown in Table 3.4, is composed of the 1st block containing all the 
constraints related to supply temperatures and the 2nd block containing all those related 
to return temperatures. Because of the logic the code follows to build the A matrix, one 
additional constraint had to be written at the bottom.   

Table 3.4 A matrix of the Temperature model 

0 8 0 0 0 0 0 0 0 0 78 0
0 38 0 40 0 0 0 0 0 0 0 0
0 0 18 0 2 0 0 0 0 0 0 0 1

0 18 0 0 0 20 0 0 0 0 0 0
0 0 0 0 0 60 0 38 0 0 18 0 0
0 0 0 0 0 0 20 0 18 0 0 0
0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 98 0 0 0 0 1 00

. .

. .

. .

. .

. . .

. .

. .

st

nd

A

 −
 
− 
 −
 
− 
 − −=
 

− 
 
 
 
 −  

 

 

Table 3.5 shows the x and b vectors. While the unknown x vector contains all the 
temperature variables, the know-term vector b contains all zeros.  
 

Table 3.5 Vector x and b of the Temperature model 
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Similarly to the model of the power grid slack-bus in section 2.1.3, also the 
slack-bus of the DH is connected to an upper-level transmission system. The heat 
exchanger thermally linking the two systems is schematically shown in Fig. 3.4. 

 

When the sum of heat demand from the loads together with the discharged heat 
of the HST is greater than the heat produced by the thermal units, the DH will have to 
buy heat from the transmission system. On the contrary, when the sum of the heat 
demand together with the charged heat from the HST is lower than the heat production 
within the DH, all the excessive heat can be feedback to the transmission system. Thus, 
when in case of deficiency, the DH will have to import 𝑞𝑑𝑒𝑓, while in case of surplus 
the DH will feedback 𝑞𝑠𝑢𝑟 . 

In order to consider this binary behavior of the slack bus, the following constraint is 
needed:  

 slack def sur
t t tq q q= −   3.8 

The heat exchanged with the transmission system, 𝑞𝑠𝑙𝑎𝑐𝑘, can also be express by means 
of the temperatures on its buses: 

 , ,
, , , ,( )slack s slack r slack

i t 1 t w i t i tq m c T T= −   3.9 

 

 

Among heating generation units considered in this system, apart from the CHP, 
also solar thermal collectors are included. Exactly like PV panels, the output production 
of these units is proportional to the irradiance of the sun and thus, their output 
production  follows its same profile throughout the day.  

To simulate realistically the performances of solar collectors, the model employed in 
[31] was used as a reference. The parameters of the glazed FPC considered are listed in 
Table 3.6. 

Ts,slack 

Tr,slack 

Hslack 

Fig. 3.4 Heat exchanger between transmission system and DH 
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Table 3.6 Parameters of reference solar collector 
Glazed flat-plate collector 

Area A 2.3 m2 
Zero loss efficiency η0 0.79 

Heat loss coefficients 
a1 4.04 W/( m2K) 
a2 0.0182 W/( m2K) 

 

 

The efficiency of solar collectors in steady-state operation is  expressed by the following 
non-linear equation [11]:  

2

0 1 2
( )m a m aT T T Ta a G

G G
 

 − −
= − −  

 
 

Where 

𝜂0  Zero loss coefficient  
𝑇𝑚 Average fluid temperature 
𝑇𝑎 Outdoor temperature 
a1 Linear heat loss coefficient  
a2 Quadratic heat loss coefficient 
G Irradiance 

 

As can be observed the conversion from irradiance to thermal energy is severely 
influenced by both outdoor temperature and fluid temperature. A more compact 
expression of the previous equation can be obtained using the reduced temperature 
difference 𝑇𝑚

∗ :  

 ( )2* *
0 1 2m ma T a G T = − −   3.10 

Thus, when considering 𝑛𝑝  number of installed collectors, each of them having an 
aperture area A, the output heat production throughout a day is equal to:  

 ( )sol
pq n G A=     3.11 

 

 

Although using Eq. 3.11 in our formulation will allow us to achieve very 
accurate results, it will also transform our model in a non-linear problem, increasing 
remarkably the computational burden. In order to maintain a MILP formulation while 
trying to consider also the influence of temperature, the following method was used.   

Firstly, constant temperatures of the water flowing through the collector were assumed 
according to the considered season. Then, using the same reference irradiance profile 
𝐺𝑖𝑛𝑑𝑒𝑥  employed in section 2.2.1 and a reference outdoor temperature profile, the heat 
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output of the indicated solar collector, qsol, is evaluated. In this way, the values obtained 
will be influenced by both hourly changing parameters G and 𝑇𝑎. 

Similarly to what was done in section 2.2.1, qsol is scaled by the maximum value during 
the day, 𝑞𝑠𝑜𝑙,max. This allows us to boil  qsol down to a percentage profile. Finally, the 
approximated heat production throughout the day is evaluated as:  

 ,max
, ,sol sol index

s tq q G s t=     3.12 

 

 

Other key role components inside the model are represented by thermal storage 
units (HSTs), which in this work are provided to all buses with thermal units (CHP and 
SC). The presence of HST is particularly important for the dispatch of CHP units to 
decouple the electrical and heat systems - or, in other words, microgrid and district 
heating – connected by the CHP units.  

If thermal storage units were not considered, then the dispatch of CHP should 
follow either an electrical-following (EF) or a thermal-following (TF) strategy. In the 
first case, the CHP units would be dispatched in order to match electrical loads, while 
in the second case, CHP would be requested to “follow” the thermal loads. The 
consequences of operating under these strategies force the system operator to deal with 
several issues.  

Typically, in grid-connected microgrids, CHPs operate under the TF strategy 
since the power imbalance can be compensated by exchanging power with the 
transmission grid. Operating the system in the following way was shown to have a 
severe problem when trying to exploit RES generation [15][26][31]. During wintertime, 
for example, heat demand could be very high while at the same time electric demand is 
very low. In these situations, because CHP outputs are coupled to one another, both heat 
and power dispatched will be very high. This will cause an oversupply of electricity in 
the grid and leading to important RES curtailment, wind in particular. 
In islanded operation, instead, microgrids are usually operated under EF [29]. This is 
quite reasonable since, from the system operator point of view, a power imbalance can 
generally have more dangerous outcomes than a thermal mismatch. However, the 
burden of this strategy is born by costumers, whose thermal comfort might be 
compromised. 
In both cases, the control of the MEMG becomes rigid, not allowing the MEMG 
operator to take full advantage of the flexibility that CHP could offer.  

On the other hand, if thermal storage units are considered, all the excessive heat 
produced by the CHP can be stored and released when heat demand is high. Thus, the 
two outputs of the CHP become uncoupled, giving the MEMG operator a lot more 
flexibility when planning the system dispatch.  

 In addition, providing thermal storage also to solar collectors can further 
enhance the flexibility of the system. All buses provided with such components will 
play an active role when optimizing the heat exchanged with the DH. 
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The first behavior that must be modeled to make the HST operate properly is 
that in each timestep the status of the unit should never be charging or discharging at 
the same time. In order to capture this binary dynamic, the following constraint must be 
satisfied: 

 , , 1 ,TSC TSD
h t h t h t +     3.13 

Where βTSC and βTSD are the two binary variables for charging and discharging 
respectively. As Eq. 3.13 shows, during each timestep the HST can either charge or 
discharge but can also stay neutral, thus making the left-hand side equal to zero. 

In every timestep the heat stored or released by the HST must be bounded 
between some realistic bounds:  

 ,max
,0 ,TSC TSC TSC

h t hq q h t      3.14 

 ,max
,0 ,TSD TSD TSD

h t hq q h t      3.15 

where qTSC,max and qTSD,max are the maximum allowed heat charged and discharged 
withing each timestep, typically set equal to 1/8 of the total heat capacity of the HST. 

 

 

Another constraint that must be satisfied by the HST is that the available thermal 
energy of each unit at the initial and final hour of the day must be the same.  

 ,0 ,24 ,TS TS
h hq q h t=    3.16 

Another useful way to write the same constraint is by using the State Of Charge (SOC) 
parameter, which is defined as: 

 ( ) ,
,maxt 100 ,
TS
h t

TS
h

q
SOC h t

q
=    

Thus, leading to:  

 ( )0 (24)SOC SOC=   

It is worth noticing that without this constraint the solver might decide to only 
charge or discharge the unit throughout the day. This could definitely be a realistic 
behavior of the HST, but it might take away part of the relevant decision-making role it 
was intended to be given to this component. 

Like any other physical component, the heat stored inside the HST must be 
bounded within a range:  

 ,max
,0 ,TS TS

h t hq q h t     3.17 
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Finally, the heat available at the end of every timestep must be updated 
considering the following constraint: 

 ,
, , 1 , ,

TSD
h tTS TS TS TSC TSC

h t h t h t TSD

q
q q q h t 


−= + −    3.18 

Where, ηTS is used to model the self-discharging losses, while ηTSC and ηTSD are the 
charging and discharging efficiency rates. 

 

 

On every bus of the DH, except the slack-bus, a cluster of households are 
supposed to be connected. Every cluster is composed of nb number of buildings each 
of them having nf number of floors.  When estimating the building's thermal load, 
adequate results can be obtained by calculating heat losses and gains based on a steady-
state heat transfer analysis [33]. More accurate representations can be achieved by 
considering the discrete building thermal inertia, which, in real-world scenarios, affects 
significantly the indoor temperature dynamics during every timestep. For the sake of 
simplicity, in this work, we considered a steady-state regime. 
 

 

An important part of the total heat load requested by a household is due to the 
domestic hot water (DHW). This component includes the heat needed for all usages 
(dishwashing, clothes washing, cleaning, and personal hygiene) with the exception of 
space heating. In 2012 in Canada it was estimated that about 20% of the yearly 
residential energy consumption was due to DHW [34], which was more than all the 
electrical energy consumption.  

In order to evaluate the total DHW needed by a household during a day, the procedure 
proposed in [11] was used following these assumptions: 

• The average volume of water consumed during a day for DHW application 
(Lw) can be assumed equal to 50 liters per person 

• The requested hot water temperature (Twh) must be equal to 45°C 
• The inlet cold water temperature (Twc) is set equal 15°C 
• The number of people living in every floor of every building (Np) is equal to 

4 

The daily value of heat demand of DHW requested at every bus by the nb-buildings can 
then be evaluated as: 

 ( ),

3600
wh wcDHW daily

w p w

T T
Q nb nf L N c

− 
=      

 
  3.19 

where, ρ = 1000 m3/kg is the water density and cw= 4.186 kJ/(kg⋅K) is the specific heat 
of water. Eq. 3.19 is divided by 3600 to define the output heat in kWh. 
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Once the total heat needed during a day was calculated, the DHW profile of a 
residential building found in [35] was used to calculate the hourly heat demand. The 
reference DHW profile is shown in Fig. 3.5. 

 

To determine the amount of heat corresponding to each hour of the day, the area 
under the given profile was evaluated summing all the trapezoids defined under each 
timestep. Then, every hourly trapezoid was divided by the total area in order to define 
the percentage heat corresponding to each hour, creating the 𝐷𝐻𝑊𝑖𝑛𝑑𝑒𝑥. 

Finally, the absolute value of DHW requested throughout the day was calculated by: 

 ,
, ,DHW DHW daily index

i t tq Q DHW i t=     3.20 
 

 

When trying to maintain a setpoint indoor temperature inside the building, 
additional heat must be withdrawn from the DH. Specifically, the total thermal power 
supplied from the air conditioning consists of two components: the heat needed to 
compensate the thermal transfer through the building envelope and the heat needed to 
reach the setpoint indoor temperature. The space heating demand can be then evaluated 
as: 

 , , , , ,SH BE Ti
i t i t i tH H H i t= +    3.21  

In an electrical analogy, the thermal transfer rate flowing through the building envelope 
can be evaluated as follow: 

 ,
, , ,

in am
i t tBE

i t T

T T
H i t

R
−

=    3.22 

Eq. 3.22 states that the thermal power flowing from the indoor space to the ambient 
environment can be evaluated by temperature difference over the building’s shell 
divided by the thermal resistance of the building envelope.  
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Fig. 3.5 Daily DHW profile of a residential building 
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Because the setpoint indoor temperature may vary across the day, the air 
conditioning systems must be able to compensate the indoor thermal power variations. 
Hence, the following contribute must be considered: 

 , , ,
in

Ti air
i t

dTH c i t
dt

 
=  

 
  3.23 

As it can be observed from Eq. 3.22 and Eq. 3.23, the space heating term depends on 
the household physical properties and the air conditioning systems setpoint indoor 
temperature. Because of the large buildings’ thermal inertia, the indoor temperature 
variations are negligible within each intra-day operation interval. Thus, the indoor 
temperature can be considered constant in each timestep. Consequently, Eq. 3.21 can 
be rewritten using a discrete state model, where the temperatures and space heating 
terms are modeled in hourly states, as: 

 
( ), , 1 ,

, , ,
in in in am

i t i t i t tSH air
i t T

T T T T
H c i t

R

−− −
= +    3.24 

Eq. 3.24 can finally be expressed in terms of kWh by multiplying all terms by the 
timestep length τ. 

 ( ) ,
, , , 1 , ,

in am
i t tSH air in in

i t i t i t T

T T
q c T T i t

R
−

−
= − +    3.25 

In order to provide some flexibility to the thermal loads’ definition, the indoor 
temperature can be set within a comfortable range: 

 ,min ,max
, , ,in in in

i tT T T i t     3.26 

 

 

Finally, the complete thermal load requested from every bus of the DH is given 
by summing the DHW and the space heating demand: 

 ( ), , , , ,HL DHW SH
i t i t i tq nb q q i t= +    3.27 

Because the daily DHW demand remains constant throughout the year, the thermal load 
is influenced only by the indoor and outdoor temperatures. It is worth to mention that 
some other external parameters influence the indoor temperature dynamic, like the solar 
radiation incident on the surface of the building and the heat given off by occupants’ 
metabolism or other domestic appliances. If a more detailed house thermal model was 
needed, reference [36] could be considered. 
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Following [24] approach, the customers’ thermal load bill payment is based on 
minimal heat energy required to keep the comfortable indoor temperature. The limits 
of the comfortable indoor temperature are applied to calculate this thermal energy as 
the follows, 

 ( ),min ,min
. .,

, ,min
.

/
, ,

0

in a T a in
i t t t i tHL bill

i t a in
t i t

T T R if T T
q i t

if T T

 − 
= 



  3.28 

As a result, this minimal thermal energy usage is influenced only by the varying ambient 
temperature rather than the setpoint indoor temperature. Consequently, the thermal 
usage bills do not depend on the indoor temperature control and the customers’ 
economic benefits are secured. 

 

 

Lastly, constraint 3.29 defines the heat requested by every bus from the DH, 
which is determined by the heat load and, for buses with heat generators, also by the 
heat produced and heat exchanged with the HST.   

 ( ), , , , , , , , , , ,DH HL CHP SC TSC TSD
i t i t m t s t h t h tq q q q q q i m s h t= + + + −    3.29 
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OPTIMIZATION 

 

When uncertain parameters follow a probability distribution that is known or can 
be estimated, stochastic optimization can be applied. This method takes advantage of 
the data probability information to model the uncertain parameters as random variables 
to which the theory of probability can be used [37]. Typically, because continuous 
probability distributions are more complex to model, most problems prefer using 
discrete distributions.  

The purpose of stochastic optimization is to find a feasible solution for all the 
possible values that the uncertain parameters may take, while also minimizing (or 
maximizing) the objective function. Stochastic problems can be interpreted as problems 
where the decision-maker must initially make an optimal decision when the value of 
some data is still unknown (e.g. PV generation) by exploiting the known probability 
distribution; once the uncertainty on the parameters is realized, the decision-maker must 
minimize the consequences of his former decision by taking a recourse action. 

Each possible realization of the uncertain parameter, also called a scenario, can be 
obtained using either previous historical data or by randomized sampling techniques 
(this topic will be further discussed in the next section). Now that the scenario concept 
was introduced, the purpose of stochastic optimization can be reformulated as finding a 
solution that is feasible for all the possible scenarios while also minimizing (or 
maximizing) the total cost, given by the sum related to the first and second decision. 

Stochastic optimization programming can be generally expressed in 
mathematical terms using a two-stage stochastic linear optimization form. A brief 
overlook of this formulation will now be presented, following reference [38].  

Let x ∈ ℝ𝑛 and y ∈ ℝ𝑚 be two variables and let the set of scenario be given by Ω =
{𝜔1, … , 𝜔𝐾} ⊆ ℝ𝑟 , where 𝑟  is the number of scenarios representing the uncertain 
parameters. The stochastic problem is stated as:  

( )T
x
z c x Q x

s.t. Ax b

x

min ,

0

 = +
 

=


 
4.1 
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where  

 
( )

0

, min ( )

( ) ( ) ( )

T
y

Q x q y

s.t. T x W y h

y

 

  

=
+ =



  4.2 

 Eq. 4.1 and Eq. 4.2 define the first-stage and the second-stage problem, 
respectively. In the first-stage, x  is the decision variable, 𝑐𝑇  represents the cost 
coefficients of the objective function and 𝔼[𝑄(x,ω)] denotes the expected value of the 
optimal solution of the second-stage problem. This last term can be seen as the expected 
recourse cost. Then, this first linear problem minimizes the first-stage direct cost while 
satisfying the first-stage constraints, =Ax b .  

 In the second-stage instead, y  becomes the decision variable and 𝑞𝑇 denotes the 
cost coefficient. The second-stage objective function is subject to some recourse 
function, Tx Wy h+ = , whose parameters are all dependent on the scenario realization. 
Then, this second linear problem minimizes the cost of the recourse action needed once 
the scenarios’ value is realized. 

Thus, to summarize, the first-stage decision must be taken before the uncertain 
parameters are realized so that the solution is feasible for all possible scenarios. Once 
the first-stage optimal solution is fixed, the variabilities on parameters are cleared, and 
the realization of scenarios becomes available. Putting together the information of the 
first-stage decision and the scenarios’ realization, in the second-stage, a recourse action 
is taken, and a second optimal solution is determined. 

A noteworthy piece of information is that the first-stage decision variable x  does 
not depend on which type of scenario is realized in the second-stage. This very 
important property is defined as non-anticipativity and it is employed to model the fact 
that when deciding upon an uncertain future, we cannot take advantage of the 
knowledge we will gain in the future [39]. 

One of the most common techniques to solve a two-stage stochastic linear 
problem is by formulating as a deterministic equivalent problem.  
 

Let us assume that the uncertain parameter has a finite number of possible realization 
(i.e. scenarios), denoted as 𝜔1, . . . , 𝜔𝐾 with respective probabilities 𝜌1, . . . , 𝜌𝐾, so that 
∑ 𝜌𝑘 = 1𝑘 . Then, the expectation term in Eq. 4.1 can be written as:  

𝔼[Q(x,ω)]≜ ∑ ρkQ(x,ωk)

K

k=1

 4.3 

 

 The original two-stage stochastic linear programming model can be expressed as 
a linear system in the following way: 
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1 1 1 2 2

1 1 1 1

2 2 2 2

0
0

  + + + +

=
+ =

+ =

+ =

 

 

, ,...,
min

. .

,

,

K

T T T T

x y y K K

K K K K
n

m
k k

c x q y q y q y

s t Ax b

Tx Wy h

T x W y h

T x W y h

x x

y y

 

Note that for stochastic linear programs the deterministic equivalent notation is just 
another linear system. In a more compact form this can be written as: 

1
1

0
0

K

K
T T

x y y k k
k

i i i i
n

m
k k

c x q y

s t Ax b

Tx Wy h

x x

y y

, ,...,
min

. .

,

,


=

+

=
+ =

 

 



 

4.4 

 

As we can observe, the first-stage decision variable, x , does not depend on any second-
stage parameter, hence satisfying the non-anticipativity property. Also, because we 
solve for all the first and second-stage decisions simultaneously, x  must be feasible for 
every scenario and its value represents (in some sense) as an overall optimum solution 
[39].  

One of the major drawbacks of stochastic optimization problem is that it requires 
a large number of scenarios to properly model the nature of the uncertainty [40]. Thus, 
the better we want to approximate the uncertainty and more scenarios are needed. 
Stochastic programming, hence, can provide robust solutions but is penalized by high 
computational cost.  Another weakness of the stochastic optimization is due to the fact 
that it can only guarantee constraint satisfaction by accurately knowing probability 
distribution data, which is not always easy to obtain. 

 

 

A more recent approach to handle uncertainty in optimization problems is 
represented by robust optimization. Different from classical stochastic programming, 
robust optimization is characterized by the following features [41]: 

• uncertainty randomness is captured by using uncertainty sets instead of 
probability distributions. An uncertainty set contains all the values an uncertain 
parameter can take on. 

• while stochastic optimization relies on optimal expected values, robust 
optimization searches for an optimal solution within the worst case. By doing 
so, the solution found is immune against any uncertainty realization. 
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Unfortunately, exploring the applications of this technique is not in the interest of this 
thesis. For a more comprehensive picture of robust optimization theory, reference [42] 
can be consulted.  

 

 

The optimal operation model proposed in this thesis work aims to maximize the 
total operating profit of the MEMG over 24 hours by optimizing the day-ahead decision 
variables, i.e. the CHP electric power output 𝑃𝑚,𝑡

𝐶𝐻𝑃 and the thermal storage operation 
state 𝛽ℎ,𝑡

𝑇𝑆𝐶/𝐷
 and 𝑞ℎ,𝑡

𝑇𝑆𝐶/𝐷. 

In a MEMG such as the one described, multiple uncertainties affect the system 
operation. In this thesis we are going to consider three sources of uncertainty: 

• Electric load demand: 
Utilities rely on a lot of historical data to forecast electricity demand. As 
much as more and more variables influencing customers' behavior are 
considered, the predictions made can never be completely accurate. While 
in traditional distribution networks, the operator can count on a large reserve 
capacity to fix any mismatch in the power flow solution, the MEMG 
operator has only a limited number of dispatchable units. Thus, because 
transactions with the main grid should try to be reduced, capturing this type 
of uncertainty is very relevant for a MG.   

• Outdoor temperature:  
Similar to the electric load demand, also outdoor temperature predictions 
can never be perfect. The uncertainty on this parameter affects the space 
heating demand component and propagates up to the total thermal load 
demand definition. Therefore, this uncertainty affects the thermal flow in 
the DH, hence making the management of thermal storage units more 
challenging. 

• Sun irradiance: 
Differently from the previous uncertainties, irradiance in a sky-clear day 
can be precisely estimated using the equations of the movement of the Sun. 
Unfortunately, the sky is not always clear, since the weather conditions vary 
considerably during the day. Thus, both PVs and SCs output generation will 
be uncertain, hence affecting both power and thermal flow problems.  

To capture the nature of these three uncertainties, the deterministic optimization 
problem is reversed into a stochastic optimization problem. To highlight the differences 
between these two approaches, simulations will be run using both deterministic and 
stochastic problems. 

In Table 4.1 all variables used in the model are listed showing whether they are 
decision or state variables while also differentiating continuous from discrete/binary 
variables. As we can see, the decision variables of our model are the CHPs output power 
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and all variables concerning the HSTs dynamic. To properly model the binary status of 
HSTs, our model also includes two binary variables, i.e. 𝛽𝑇𝑆𝐶/𝐷. 

Table 4.1 Variables used in the model 

Variable name Type of variable Nature of variable 
𝑃 State Continuous 
𝑄 State Continuous 
𝑉 State Continuous 

𝑃𝐶𝐻𝑃 Decision Continuous 
𝐸𝐶𝐻𝑃 State Continuous 
𝐹𝐶𝐻𝑃 State Continuous 
𝑣𝑓𝑢𝑒𝑙 State Continuous 
𝑃𝑑𝑒𝑓 State Continuous 
𝑃𝑠𝑢𝑟 State Continuous 
𝑇𝑠1 State Continuous 
𝑇𝑠 State Continuous 
𝑇𝑟1 State Continuous 
𝑇𝑟 State Continuous 
𝑇𝑖 State Continuous 

𝑞𝑠𝑙𝑎𝑐𝑘 State Continuous 
𝑞𝑑𝑒𝑓 State Continuous 
𝑞𝑠𝑢𝑟 State Continuous 
𝑞𝐶𝐻𝑃 State Continuous 
𝑞𝑇𝑆𝐶 Decision Continuous 
𝑞𝑇𝑆𝐷 Decision Continuous 
𝛽𝑇𝑆𝐶 Decision Binary  
𝛽𝑇𝑆𝐷 Decision Binary 
𝑞𝑇𝑆,0 Decision Continuous 
𝑞𝑇𝑆 State Continuous 

𝑞𝑙𝑎𝑜𝑑 State Continuous 
𝑞𝐷𝐻𝑊 State Continuous 
𝑞𝑆𝐻 State Continuous 
𝑞𝑇𝐶 State Continuous 
𝑞𝑏𝑖𝑙𝑙 State Continuous 

 

 

The deterministic optimization problem considers deterministic input data, 
which can be easily obtained from a wide range of open-source databases. In our case, 
the deterministic input data matches the mean values of the probability distribution 
curves upon which scenarios will be generated.  

The objective function that our problem must optimize is represented as follows:  

 min el th el th
CHP OM ex ex rev revC C C C C C+ + + − −   4.5 
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The first element defines the cost of the fuel consumed by the CHP units:  

 ,
 

= fuel fuel
CHP m t

t T m M
C C V   4.6 

The second element represents the operation and maintenance cost of CHPs, PVs, and 
SCs respectively:  

 , , ,
CHP CHP PV PV SC SC

OM m t n t s t
t T m M n N s S

CHP PV SC
OM OM OM

C C P C P C q

C C C

 
   

 
= + + 

 

= + +

      4.7 

The third and fourth terms identify the exchange cost with their upper-level 
transmission systems, as shown in Eq. 4.8  and Eq. 4.9, respectively: 

 , , 


= −el buy el def sell el sur
ex t t

t T
C C P C P   4.8 

 , , 


= −el buy el def sell el sur
ex t t

t T
C C P C P   4.9 

In conclusion, the last two terms describe the revenues of the MEMG operator coming 
from the electrical and thermal energy sold to the customers: 

 ,
elel EL

rev i t
t T i I

C Pr P 
 

=   4.10 

 ,
thth bill

rev i t
t T i I

C Pr q
 

=   4.11 

 

 

 Differently from the deterministic problem, we now want to optimize the 
decision variables to guarantee feasible operation under uncertainties. In this thesis 
work, uncertainties are modeled as scenarios generated by the Monte Carlo sampling 
technique, which will be explained in the next section. Hence, in the stochastic 
optimization problem, the solver will look for a solution that must be feasible for all K 
scenarios (initially in our case, K = 200). For this reason, the solution to our problem 
must have only one set of decision variables and K sets of state variables. From the 
coding point of view, this can be achieved following these steps: 

1) Define K-sets of each state variable. Let’s 𝑦 be a generic state variable; then 
𝑦 = {𝑦1, … , 𝑦𝐾} 

2) Every constraint depending on state variables or uncertainties must be rewritten K 
times. Every k-constraint will then be defined by the corresponding k-state variable 
and k-scenario value. If decision variables are included, the same variables must be 
used for every k-constraint. Let’s consider the general constraint 𝐶  

𝐶 ∶  𝑥 + 𝑦 = 𝑎 
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Where 𝑥 is a decision variable, 𝑦 is a state variable and 𝑎 is an uncertain parameter. 
Then, the 𝐶 constraint will generate K constraints each of them having the following 
form: 

𝑐𝑘 ∈ 𝐶 ∶ 𝑥 + 𝑦𝑘 = 𝑎𝑘  ∀𝑘 

3) Any cost term of the deterministic objective function related to either state variables 
or uncertain parameters must be isolated. Let’s consider the following generic 
deterministic objective function: 

Θ𝐷𝐸𝑇 = 𝑓1(𝑥) + 𝑓2(𝑦, 𝜔) 

Where 𝑓1 is a cost function depending only on a decision variable, 𝑥, and 𝑓2 a cost 
function depending on either a state variable, 𝑦, or a scenario, 𝜔.  
All cost terms in the form of 𝑓2 must be summed together and multiplied by 𝜌𝑘, 
which is the probability of the k-scenario to happen. The stochastic objective 
function will then be defined as:  

Θ𝑆𝑇𝑂 = 𝑓1(𝑥) + ∑ 𝜌𝑘 ⋅ 𝑓2,𝑘(𝑦𝑘, 𝜔𝑘)

𝐾

𝑘=1

 

Which will be subject to the set of constraints 𝐶 = {𝑐1, … , 𝑐𝑘}. 

As can be observed from the above-mentioned solution method, the solver must look 
for an optimal solution that satisfies all K constraints at the same time. By doing so, the 
solution found is not going to be the best solution for any single scenario, but it is going 
to be the best solution overall.   

The deterministic objective function given by Eq. 4.5 will then assume the 
following stochastic form: 

 , , , , , ,min
K

CHP PV SC el th el th
CHP OM k OM k OM k ex k ex k rev k rev k

k 1
C C C C C C C C

=

 + + + + + − −    4.12 

Eq. 4.12 shows that the only two terms depending on decision variables are the cost 
terms related to the CHP active power 𝑃𝑚,𝑡

𝐶𝐻𝑃. All the other terms depend either on state 
variables or scenarios. More precisely, 

, ,andPV SC
OM k OM kC C  Depend on the sun irradiation uncertainty 

, ,andel el
ex k rev kC C  Depend on the active power flowing on the first branch, which 

comes from the solution of the power flow problem 

, , and th th
ex k rev kC C  

Depend on the supply and return temperatures of the thermal 
slack bus, which are determined once the thermal flow is 
solved 

 

One last thing that should be noticed is that in this solution approach we cannot 
take a recourse action, thus making our problem a single-stage problem even though we 
are using a two-stage programming formulation. 
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When historical data regarding uncertainties realization is not available to perform 
stochastic optimization simulations, sampling methods must be used. Sampling 
techniques can be divided into two categories: probability and non-probability 
sampling. Probability sampling techniques are based on randomization; hence every 
sampled element gets an equal chance to be selected among a set of other sampled 
elements. Among these techniques, Monte Carlo sampling methods are some of the 
most widely used.  

 

Monte Carlo (MC) sampling method is a computational technique to randomly sample 
a probability distribution; reference [43] points out three main reasons to use MC 
methods: 

• Estimate density: gather samples to model the distribution of a certain function. 
• Approximate a quantity: e.g. the mean or variance value of a distribution. 
• Optimize a function: define a sample that maximizes or minimizes the target 

function 

When planning the energy dispatch of electrical distribution networks MC sampling is 
used to capture uncertainties on renewable power generation (e.g. PVs and wind 
turbines) or electric load demand. When modelling multiple uncertain parameters, MC 
will randomly sample every parameter and then create scenarios, which will be vectors 
containing one sampled value for every considered uncertainty.  
The only requirement needed for MC methods to run is knowing the probability 
distribution of the uncertainty. When performing a general model, a normal distribution 
is typically chosen. In our work, uncertainties are assumed to have normal distributions 
with different standard deviations according to the underlying nature of the parameter.  

In stochastic programming, the MC sampling technique is used not only when 
we need to generate a discrete number of uncertainty realizations, which are necessary 
to solve the problem itself, but also when performing feasibility checks. Indeed, it is 
common practice to test the optimal solution found on a large set of scenarios so that its 
robustness can be evaluated. Another set of new scenarios will then be generated, 
having approximately the same size as the previous initial set. Thus, the feasibility rate 
of the optimal solution will be given by the ratio between the number of feasible 
solutions determined and the size of the test scenario set. 

 

The MC simulation will generate a large number of scenarios subject to the 
defined probability distribution. The probability given to each scenario will be equal to 
one divided by the number of the sampled scenarios. As previously mentioned, to better 
approximate uncertainties we have to increase the number of sampled scenarios. 
Unfortunately, this will result in our model having a very high computational burden, 
hence requiring the set of scenarios to be reduced. In this thesis, an efficient algorithm 
based on simultaneous backward reduction was used [44]. The purpose of this 
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technique is to determine a representative subset of scenarios and their probabilities so 
that the reduced subset will best represent the initial distribution. Wu’s et al’s method 
aggregates most similar scenarios by measuring a distance of probability distribution as 
a probability metric until the target subset dimension is reached. 

Let Ω𝑠 = {𝜔1, … , 𝜔𝐾}, with 𝑠 = (1, … , 𝐾) be the initial scenario set containing K initial 
scenarios, each of them having a probability 𝜌𝑠. The probability distance between two 
scenarios ( , )s s is given by:  

  1
,
max ,|| ||,|| || || ||

s s
d s s s s s s= − − −   4.13 

where s  is the average value of scenarios. 

Let S  be the initial set of scenarios and J  the set of scenarios to be deleted (initially 
null). The simultaneous backward reduction method includes the following steps: 

Step 1: Compute the distances of all scenario pairs 𝑑𝑠,�̇� = 𝑑(𝜔𝑠, 𝜔�̇�) , with 𝑠 , 
1,...,s K= . 

Step 2: For each scenario k, 𝑑𝑡𝑘(𝑟) = min 𝑑𝑘,�̇� , �̇�, 𝑘 ∈ 𝑆 and �̇� ≠ 𝑘 and 𝑟 is the 
scenario index that has the minimum distance with scenario 𝑘. 

Step 3: Compute 𝜌𝑑𝑘(𝑟) = 𝜌𝑘 × 𝑑𝑡𝑘(𝑟), 𝑘 ∈ 𝑆. Choose 𝑑 so that  
𝜌𝑑𝑑 = min 𝜌𝑑𝑘 , 𝑘 ∈ 𝑆. 

Step 4: 𝑆 = 𝑆 − {𝑑},  𝐽 = 𝐽 + {𝑑};  𝜌𝑟 = 𝜌𝑟 + 𝜌𝑑 . 
Step 5: Repeat steps 2-4 until the number of scenarios to be deleted meets the 

request. 

After reducing the set of scenarios to the desired size, this set is going to be 
formed by the most representative scenarios, hence eliminating those scenarios too 
similar to each other. By reducing the number of scenarios we are also reducing the 
accuracy of the uncertainty model. 

 

 

In this thesis work, the model built upon Chapter 2 and Chapter 3 formulations 
represents a mixed-integer linear programming problem (MILP). All constraints are 
written in a linear form, while the variables used are both stated in continuous and binary 
form, thus making the problem mixed. Simulations are conducted on a 64-bit PC with 
2.80-GHz CPU and 16 GB RAM using MATLAB platform. 

The proposed model is implemented in the YAMILP platform [45], which 
allows the problem to be built within a MATLAB interface, and solved thanks to 
GUROBI solver [46], one of the most used commercial solvers for linear and quadratic 
programming.  
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TEST SYSTEM DESCRIPTION 

 

 

The topology of both the microgrid and the district heating considered in this 
thesis comes from the 14-Bus Radial System introduced by Basu et al [47]. A 
representation of the microgrid layout is shown in Fig. 5.1, while both supply and return 
pipelines of the district heating are shown in Fig. 5.2 with red and blue colors, 
respectively. 

Both MG and DH operate in grid-connected mode, which allows them to exchange 
power/heat with the upstream transmission systems. Thus, when costumers’ demand 
cannot be fulfilled, the MEMG operator purchases power/heat from the transmission 
system operator (TSO). When the available power/heat in the MEMG exceeds the 
costumers’ request instead, the MEMG operator sells back to the TSO.  

Although the nature of the upstream systems feeding the MEMG is kept general, 
an assumption regarding power and thermal slack buses was made, following [15] 
approach. This is to say that the power and thermal slack buses are supposed to be 
connected to transmission system buses whose power and heat flows are not dependent 
on one another; in other words, the power and heat exchanged from upstream must not 

Fig. 5.1 One-line diagram of the 14-bus radial system 
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be proportional to each other. Therefore, for example, the two slack buses cannot be fed 
by the same cogeneration plant (e.g. a CHP) - which would be able to compensate 
MEMG unbalances - but they could be connected to two different CHP. 
 

 

 

In Fig. 5.3, the structure of the MEMG considered in this case study is shown. 
As it can be observed, the MEMG can simultaneously supply electric and thermal 
energy to customers. Consequently, the MEMG operator must coordinate the energy 
flows of both energy vectors to satisfy customers’ demand while meeting system 
constraints. From the electrical point of view, the MEMG operator manages the power 
output of CHP units and PV panels distributed along the system. Since PVs output 
generation depends on the irradiance profile of the considered day, and because no 
electric storage units are provided, CHP units must be controlled so that PVs 
fluctuations do not destabilize the MG. From the thermal point of view instead, the 
MEMG operator manages the output heat produced by CHP units and SCs. Besides, all 
thermal units are equipped with a water-tank HST, which gives the MEMG operator 
more flexibility in the energy dispatch. Enabling heat energy to be stored allows CHP 
units not to be subjected to control strategies (cfr 3.3) and SCs to decouple their output 
from sun irradiance profile.  
As previously mentioned, when energy balance cannot be found within the MEMG 
components, power and heat can be exchanged through the slack buses. In the electric 
and thermal substations, an MT/BT transformer and a heat exchanger are supposed to 
be placed, respectively. 

In Table 5.1 the typology of components connected to each bus of the test case 
study is shown. 

Table 5.1 Typology of components installed in the case study MEMG 

Components Bus, i 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

PV panel   ✓   ✓   ✓ ✓   ✓  
CHP        ✓      ✓ 

Solar collector    ✓     ✓ ✓   ✓  
Storage    ✓    ✓ ✓ ✓   ✓ ✓ 

        

        

  

 

Fig. 5.2 District heating supply and return networks 
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It should be noticed that while the PVs and SCs positioning did not follow any 
particular consideration, CHP units were placed on the end-buses to help to maintain 
voltages across the system within an acceptable range. The further the buses are from 
the slack bus and the higher the voltage drop will be. Therefore, controlling the output 
active power of CHP units, allows the MEMG operator not only to compensate the 
severe PV output variations but also the strengthen up the weakest buses of the MG. 

 

 

 

The following tables show the values of MEMG network considered in this 
thesis work. Table 5.2 shows the electric slack bus parameters, while Table 5.3 lists the 
impedance of the 14-Bus Radial System branches used in [47].  
It is worth noticing that if an upstream OLTC is considered, the slack bus voltage 𝑉0 
could be defined as a state variable, thus adjusting its value according to the voltage 
fluctuations. This could be implemented in a future development of this model.  

Table 5.4 shows the DH parameters and the upper and lower temperature bounds 
on each bus. Lastly, Table 5.5 lists the overall heat transfer coefficient of the DH 
pipelines. 
 

Table 5.2 Electric slack bus parameters 

Parameter Value Unit 
𝑣0 1.05 p.u. 

𝜀𝑢𝑝 0.05 p.u. 
𝜀𝑑𝑜𝑤𝑛 0.15 p.u. 

𝑃𝑠𝑙𝑎𝑐𝑘,max  1 MW 
𝑃𝑐𝑎𝑝 300 kW 

 

         
            
       

     
             
       

         

               
            
       

                                        

    
             
       

    

          
                          

         
       
    

        
       
    

               
            
       

     

    

                      

Fig. 5.3 Structure of the case study MEMG 
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Table 5.3 Branches impedance 

Starting  
Bus, i 

Ending  
Bus, i R  (Ω) X  (Ω) 

1 2 0.0119 0.0414 
2 3 0.0119 0.0414 
3 4 0.0135 0.0421 
4 5 0.0167 0.0845 
5 6 0.0194 0.0592 
6 7 0.0224 0.1200 
7 8 0.0318 0.0845 
6 9 0.0342 0.1704 
2 10 0.0167 0.0420 

10 11 0.0194 0.0592 
11 12 0.0670 0.1710 
12 13 0.0950 0.1989 
11 14 0.0813 0.1558 

 

Table 5.4 District heating parameters 

Parameter Value Unit 
𝑞𝑠𝑙𝑎𝑐𝑘,max 1 MW 

cw 4.186 kJ/(kg °C) 
𝐿𝑖 400 m 

𝑇𝑠,max 95 °C 
𝑇𝑖

𝑠,min 70 °C 
𝑇𝑖

𝑟,max 65 °C 
𝑇𝑖

𝑟,max,𝑠𝑜𝑢𝑟𝑐𝑒 110 °C 
𝑇𝑖

𝑟,min 50 °C 
 

Table 5.5 Pipelines overall heat transfer coefficients 

Starting  
Bus, i 

Ending  
Bus, i λ  W/(m K) 

1 2 3 
2 3 2 
3 4 6 
4 5 3 
5 6 2 
6 7 6 
7 8 2 
6 9 3 
2 10 6 
10 11 3 
11 12 2 
12 13 6 
11 14 3 
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Table 5.6 shows the PV installed capacity across the system, while Table 5.7 
lists the SC parameters assumed in this thesis work. 

In order to obtain the hourly contribution of both power and heat produced 
throughout the day, both Eq. 2.12 and Eq. 3.12 use the irradiance percentage profile 
𝐺𝑖𝑛𝑑𝑒𝑥 . The irradiance profile of 15th December 2019 in Lampedusa was extracted from 
the PVGIS database [48] and it is reported in Fig. 5.4. 

Table 5.6 PV installed capacity 

Bus,i PPV (kW) 
3 30 
6 30 
9 10 
10 10 
13 10 

 

Table 5.7 SC parameters 

Parameter Value Unit 
np 8 - 
𝑇𝑚 10 °C 

𝑞𝑠𝑜𝑙,max 1.08 kW 
 

 

 

Table 5.8 shows the CHP parameters used for the simulations, while in Table 
5.9 the heat storage parameters of both SCs and CHPs are listed. In addition, the values 
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Fig. 5.4 Irradiance index of 15th January 
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used for the self-discharging and charging/discharging efficiencies are ηTS= 0.95 and 
ηTSC/D= 0.97 respectively. 

Table 5.8 CHP parameters 

Parameter Value Unit 
𝑃𝐶𝐻𝑃,max 160 kW 
𝑃𝐶𝐻𝑃,min 16 kW 
𝐻𝐶𝐻𝑃,max 300 kWh 
𝐻𝐶𝐻𝑃,min 22.7 kWh 

𝜎 9.78 kWh/m3 
ηPGU 0.33 - 
ηHR 0.7 - 

𝑟𝑎𝑚𝑝𝑢𝑝
𝐶𝐻𝑃 0.5 - 

𝑟𝑎𝑚𝑝𝑑𝑜𝑤𝑛
𝐶𝐻𝑃  0.5 - 

 

Table 5.9 Thermal storage parameters 

Bus, i HTS,max(kWh) HTSC/D(kWh) 
4 400 50 
8 400 50 
9 300 37.5 
10 400 50 
13 300 37.5 
14 400 50 

 

 

Table 5.10 lists the base values of electric loads, which also come from Basu’s 
work [47]. 

Table 5.10 Electric loads base value 

Bus, i PL (kW) QL (kVar) 
2 20 6.5 
3 85 27.9 
4 40 13.1 
5 20 6.5 
6 20 6.5 
7 7.6 1.6 
8 10 3 
9 6.1 1.6 
10 11.2 7.5 
11 61 9 
12 1.6 6.1 
13 9.0 5.9 
14 13.5 6.1 

 
In order to find the hourly values of the electric loads during the day, the base values 
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shown in Table 5.10 must be multiplied by the load index profile 𝑙𝑜𝑎𝑑𝑖𝑛𝑑𝑒𝑥 (cfr Eq. 
2.19). The electric load profile of 15th January 2019 found on the website of the Italian 
TSO (Terna) [49] is shown in Fig. 5.5. 

The customer's thermal load demand was modeled using the parameters listed 
in Table 5.11 

Table 5.11 Thermal load parameters 

Parameter Value Unit 
𝑛𝑏 − 𝑛° 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 7 - 

𝑛𝑓 − 𝑛° 𝑓𝑙𝑜𝑜𝑟𝑠 2 - 
𝑅 2.582 °C/kW 

𝑐𝑎𝑖𝑟  0.42 kWh/°C 
 

As previously mentioned in Subsection 3.4.2, the heat load demand depends on 
the outdoor temperature values, which defines the space heating component. In this 
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Fig. 5.5 Load index profile of 15th January 
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thesis the temperature profile of Lampedusa on January 15th, 2019 was extracted from 
the Wunderground website [50]. Its profile can be seen in Fig. 5.6. 

 

 

The values of the parameters used to define the objective functions expressed by 
Eq. 4.5 and Eq. 4.12 are listed in Table 5.12. 

Table 5.12 Cost components parameters 

Parameter Value Unit 
fuelC  0.05 $/m3 

CHPC  0.008 $/kWh 
PVC  0.012 $/kWh 
SCC  0.015 $/kWh 

,buy elC  0.07 $/kWh 
,sell elC  0.015 $/kWh 
,buy thC  0.14 $/kWh 
,sell thC  0.03 $/kWh 

elPr  0.222 $/kWh 
thPr  0.444 $/kWh 

 

 

As extensively explained in Chapter 4, to run stochastic optimization problems, 
uncertainties must be modeled upon their probability distribution curves. Also, to reflect 
the uncertainty probability distribution accurately, a large number of uncertainty 
scenarios need to be generated.  
In this thesis work, all three types of uncertainty were assumed to follow the normal 
distribution where the mean values are those used in the deterministic problem (i.e. the 

(a) 

(b) 
Fig. 5.7 a) initial generated sets of scenarios and b) reduced sets of scenarios. 

The white-dashed line represents the mean values 
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values shown in Fig. 5.4, Fig. 5.5, and Fig. 5.6). In particular, the electric load, the 
outdoor temperature, and the sun irradiation were supposed to have standard deviations 
equal to 3%, 5%, and 30%, respectively.  
Then, the Monte Carlo sampling technique was used to build an initial set of 2000 
uncertainty realizations (i.e. scenarios). To reduce the computing burden, simultaneous 
backward reduction (cfr 4.3.2) was used to reduce the scenario set to the most 
representative 200 scenarios. Fig. 5.7a shows the initial set of 2000 scenarios for the 
three uncertainties, while Fig. 5.7b shows the 200 reduced scenarios selected. 

One important thing that must be highlighted is that the sun irradiation 
uncertainty acts differently on the PV and SC output generations, thus calling for the 
creation of two different scenarios.  

As it was mentioned when explaining the PV and SC model, the underlying nature of 
the coefficient multiplying the 𝐺𝑖𝑛𝑑𝑒𝑥  vector is different: in the first case, 𝑃𝑃𝑉,max 
represents the electrical  installed capacity, which can never be exceeded; in the second 
case 𝑞𝑠𝑜𝑙,max represents the estimated maximum heat produced using the deterministic 
irradiance profile.  

Because of the uncertainty deviations, generated irradiance scenarios might have some 
values above 1 (i.e. 100%), thus making the output power/heat greater than 𝑃𝑃𝑉,max and 
𝑞𝑠𝑜𝑙,max, respectively. However, while PV installed capacity represents an upper bound 
limit, SCs are not limited as such. Therefore, uncertainties must be treated differently 
and the former 𝐺𝑖𝑛𝑑𝑒𝑥 uncertain parameter must be differentiated between: 

• 𝐺𝑖𝑛𝑑𝑒𝑥
𝑆𝐶 , which will be identical to the reduced scenarios. 

• 𝐺𝑖𝑛𝑑𝑒𝑥
𝑃𝑉 , whose values are equal to the reduced scenarios’, except for those 

values greater than 1, which will be forced to 1. 

To better understand what was just explained, Fig. 5.8 shows both 𝐺𝑖𝑛𝑑𝑒𝑥
𝑆𝐶  and 𝐺𝑖𝑛𝑑𝑒𝑥

𝑃𝑉  
sets of scenarios. 

 

 

  

(a) (b) 
Fig. 5.8 a) SC uncertainty scenarios and  b) PV uncertainty scenarios 

The white-dashed line represents the mean values 
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NUMERICAL SIMULATIONS 

 

As already extensively explained in the previous chapters, the deterministic 
optimization model solves the problem using the deterministic profiles of the uncertain 
parameters (i.e. the mean values of the normal probability distribution, Fig. 6.1). 

Table 6.1 lists the realization of all cost terms considered in the deterministic 
objective function, which is rewritten below.  

 min el th el th
CHP OM ex ex rev revC C C C C C+ + + − −   

Table 6.1 Cost terms of the determinist problem 

Parameter Value ($) 
CHPC   27.27 
CHP

OMC  14.08 
PV

OMC  6.50 
SC

OMC  21.83 
el
exC   257.06 
th
exC   1206.42 
el
revC   1325.59 
th
revC   2799.79 

Net operating cost 2592.22 

a) b) c) 
Fig. 6.1 Profiles of the uncertain parameter: a) outdoor temperature,  

b) electric load and c) irradiance profile multiplier 
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The values of both decision and state variables will be shown in the following 
subsections together with some considerations. 

 

The solution found by the deterministic optimization problem gives the power 
output profiles in Fig. 6.2a. As it can be observed, the output power of both CHP at 
buses 8 and 14  remain approximately constant until 9:00 and 12:00, respectively. Then, 
both profiles decrease before ramping up to their peak power from 18:00 to 19:00. The 
output PV generation at buses 6 and 9, shown in Fig. 6.2b as representative buses with 
30 and 10 kW capacity installed, follows the deterministic irradiance profile reaching 
their maximum values at 12:00. 

To better understand the reason behind the CHPs dispatching profile, we can look at the 
system power balance in Fig. 6.3a, where the total CHP and PV contributions, together 
with the power withdrawn from the slack bus, are shown. 

As can be seen, the MEMG power production follows approximately the load 
profile. In particular, the MEMG operator takes advantage of the PV production during 
the first load peak, hence reducing the contribution of the CHPs. Once the PV 
contribution starts fading away, CHP generation is ramped up to reduce the imported 
power from the slack bus during the second load peak from 18:00 to 19:00. 

Another noteworthy piece of information can be extracted from Fig. 6.3b, where 
the percentage contribution of CHP, PV, and grid to the load fulfillment is shown. The 

Fig. 6.2 a) CHP output power in the deterministic case b) PV output power    
b) a) 

Fig. 6.3 a) Electric distribution network power balance  
          b) Percentage contribution to load fulfillment 

b) a) 



 
 

71 
 

MEMG production covers around 40% of the total load demand thanks to the local 
generation, eventually surpassing 50% from 11:00 to 12:00. 

 

When disconnecting the CHP units, the electrical and thermal distribution 
networks are uncoupled. This is because the MEMG is missing out the system coupling 
components, whose outputs influence both the power and thermal flow.  

To appreciate the fundamental contribution of the CHP power output on the 
buses’ voltages, Fig. 6.4a and Fig. 6.4b show the buses’ voltage profile during the 
minimum and maximum load periods, respectively. While during the minimum load 
period voltages remain bounded within the allowable range (i.e. 0.9 ≤ 𝑣𝑖 ≤ 1.1 ), 
during the maximum load period the voltage on buses 5-9 and buses 12-14 falls below 
the minimum threshold. As it can be noticed, because buses 8 and 14 are among the 
buses more severely affected by the branches’ voltage drop, these buses represent 
appropriate locations for placing CHPs.  

On the other hand, when CHP units are considered, the voltage constraint is 
respected during both minimum, Fig. 6.4a, and maximum load period, Fig. 6.4b. 

In Fig. 6.6 the daily voltage profiles on three representative buses are shown. As 
we might have expected, all voltages are inversely proportional to the load. Indeed, all 
buses experience higher values at the beginning and at the end of the day, when the load 
is lower. Although not boldly evident, both PV and CHP buses show a ramping period 
during their peak generation. 

 

a) b) 
Fig. 6.4 Voltages on buses during a) minimum load b) maximum load  

when CHP units are not considered 

b) a) 
Fig. 6.5 Voltages on buses during a) minimum load b) maximum load  

when CHP units are considered 
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During the day, the power produced by electrical generation units is used not 
only to alleviate the power demand on their own buses but also to inject power to the 
surroundings buses. This is obvious for the CHPs, whose main purpose is to feed the 
distribution network, Fig. 6.7a. Being the blue and black line the CHP generation and 
the load on the CHP bus respectively, only a small fraction (red area) is curtailed from 
the total power generated, dispatching all the rest (green area) to the MEMG. Similarly, 
bus 6 injects power to the distribution network when PV production exceeds the bus 
load demand Fig. 6.7b.  

 

 

The optimal deterministic solution also defines the values of the thermal 
decision variables, i.e. the charging and discharging rates of the thermal storage and 
their initial State Of Charge (SOC). In order to evaluate the results, two reference buses 
were studied: bus 9 and bus 14 which host a SC and CHP unit, respectively. In Fig. 6.8 
the storage dynamic of the representative buses is shown together with their heat 
production and SOC.  

In Fig. 6.8a we can see that until 12:00 the heat production of the CHP is 
approximately constant and its HST only absorbs the amount of heat needed to 
compensate the self-discharging losses. As a result, the SOC remains fully charged until 
12:00, when it starts diminishing due to the simultaneous reduction of output heat, 
reaching nearly 75%. At 15:00, the output heat starts ramping up until reaching its peak 
value from 18:00 to 19:00. At the same time, the HST charges back until reaching its 

Fig. 6.6 Voltages on representative buses 

a) b) 
Fig. 6.7 Generated power and load demand on bus a) 14 b) 6 
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maximum capacity at 21:00. Again, from 21:00 to 24:00 the HST only absorbs the 
necessary heat to compensate the self-discharging losses.  

In Fig. 6.8b instead, we can notice that the HST dynamic can be divided into 
three time intervals. In the morning, due to the lack of sun, the HST discharges from 
1:00 to 6:00, going from having a 20% SOC to 0%. As the sun starts rising, and so the 
captured heat, the HST charges from 8:00 to 16:00, reaching a 68% SOC. After the sun 
is set, HST uses the stored heat to discharge back to the load, bringing the SOC to its 
initial value. It is worth noticing that at 7:00, when HST is emptied and the sun has not 
come up yet, the HST is not charging nor discharging.  

 

Like the voltage constraint, the MEMG is subject to some temperature 
constraints. The blue line in Fig. 6.9a represents the total thermal load throughout the 
day, showing a minimum and a maximum demand at 5:00 and 21:00, respectively. As 
can be observed in Fig. 6.9b and Fig. 6.9c during both periods all temperatures across 
the pipeline distribution network are kept within the specified range of 70°𝐶 ≤ 𝑇𝑠 ≤

95°𝐶 and 50°𝐶 ≤ 𝑇𝑟 ≤ 65°𝐶. 

 

Taking the already mentioned bus 9 and 14 as references, let’s also consider bus 11 as 
a reference load bus. Fig. 6.10 shows that all supply, return and indoor temperatures are 
respectively within the prescribed range of 70°𝐶 ≤ 𝑇𝑠 ≤ 95°𝐶 , 50°𝐶 ≤ 𝑇𝑟 ≤ 65°𝐶 
(for passive buses), 50°𝐶 ≤ 𝑇𝑟 ≤ 110°𝐶 (for active buses) and 16°𝐶 ≤ 𝑇𝑖 ≤ 25°𝐶.  

a) b) 
Fig. 6.8 Storage dynamic and heat production (left axis) and SOC (right axis) of  

a) CHP at bus 14 and b) SC at bus 9 

min 

max 

a) b) c) 
Fig. 6.9 a) Total thermal load; supply and return temperatures on the network during  

b) minimum load and c) maximum load 
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From Fig. 6.10a we can see that all supply temperatures follow the total load 
profile. Fig. 6.10b shows that setting a higher upper bound for active buses’ return 
temperature allows the MEMG to reduce the heat withdrawn from the network, favoring 
the consumption of the distributed generation.  

 

 

In Fig. 6.11 the thermal bus balances on the CHP and SC bus are shown, where 
all the heat contributions are shown to meet the load demand (black-dotted line). Fig. 
6.12 represents instead all the possible flow distributions cases happening during the 
day.  

As it can be observed, when scheduling the HST dynamic throughout the day, 
the optimization model allows the HST to absorb any amount of heat up to its maximum 
charging rate. Thus, when the produced heat exceeds the HST charging request, all the 
remainder goes directly to the thermal load, Fig. 6.12a. For the CHP bus, this happens 
from 1:00 to 12:00 and from 16:00 to 24:00. On the SC bus instead, this situation occurs 
from 8:00 to 16:00. In particular, from 10:00 to 14:00 the HST reaches its maximum 
charging rate, hence forcing all the remaining heat to the load.  

 During the CHP output drop, 13:00 – 15:00, the HST discharges, thus reducing 
the bus need for heat from the network, Fig. 6.12b. In the SC case instead, when the sun 
elevation does not allow any direct contribution, the load is met thanks to the HST 
discharged heat and the substantial support from the network, Fig. 6.12c.  

a) b) c) 
Fig. 6.10 Profile of a) supply, b) return, and c) indoor temperature 

a) b) 
Fig. 6.11 Thermal node balance on a) CHP bus 14 and b) SC bus 9 



 
 

75 
 

 

 

To verify the system's thermal balance, we must make sure that the system's 
thermal generation can fulfill the system's thermal load. Fig. 6.13 shows that, apart from 
the imported heat from the slack bus, the MEMG operator can count on the direct and 
discharged heat of both CHP and SC buses to match the thermal load and the network 
losses. 

By looking at the bar chart in Fig. 6.14, the first noticeable fact is that, different 
from the electrical system, from the thermal point of view the MEMG relies heavily on 
the imported heat from the upper-level transmission system. On average the MEMG 
local production covers 23% of the system load, reaching a maximum contribution of 
36%  at 9:00. 

The combination of direct and discharged heat from the CHP buses makes their 
overall contribution constant throughout the day, injecting roughly 65 kWh on each 
timestep. Hence, the total thermal energy released by CHP buses amounts to 15% of the 
daily thermal demand. 

On the other hand, SC buses’ contribution is concentrated mainly during the middle 
of the day, thanks to the direct heat component. The HSTs also support the system 

a) b) c) 

Fig. 6.12 Possible heat flow distributions on active buses 

      

direct heat

        

thermal load

network losses

discharged heat

direct heat

discharged heat

    

   

                            

Fig. 6.13 System’  thermal balance variables 

a) b) 
Fig. 6.14 System thermal balance in: a) absolute values and b) percentage 



 
 

76 
 

generation discharging either in the morning and at night. The SC buses' contribution 
to the daily thermal demand amounts to 8%. 

One last feature worth mentioning relates to the composition of the system's thermal 
load. In Fig. 6.15 it can be observed that space heating component represents the most 
relevant term, covering 75% of the overall system load, followed by the DHW term 
(14%) and network losses (12%). As it can be noticed, indoor temperature control term 
takes on negative values, meaning that the indoor temperature from one timestep to 
another has been changed.  

 

 

When looking for the optimum stochastic solution, the solver must find the set 
of decision variables that minimize the following objective function: 

 , , , , , ,min
K

CHP PV SC el th el th
CHP OM k OM k OM k ex k ex k rev k rev k

k 1
C C C C C C C C

=

 + + + + + − −    

Table 6.2 lists the CHP related cost terms together with the weighted summation 
of decision and scenario costs. Since all the cost terms related to state variables or 
uncertainties expectations are weighted by their respective probability density 𝜌𝑘, only 
the cost terms depending on the CHP output power can be compared with their 
respective deterministic equivalents. Both cost terms are slightly higher than the 
deterministic, meaning the CHP contribution is now a little bigger. The resulting net 
operating profit turns out to be a little lower than the deterministic, by only 10$, which 
is a penalty definitely worth to be paid for a much more reliable dispatch.  

Table 6.2 Stochastic realized cost terms 

Parameter Value ($) 
CHPC   28.00 
CHP

OMC  14.45 

 ΣC    2,625.37 
Net operating cost 2,582.92 

 

a) b) 
Fig. 6.15 System thermal load in: a) absolute values and b) percentage 
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Let’s now compare all the stochastic decision variables with their corresponding 
deterministic ones. In Fig. 6.16 the output profile of both CHP units on buses 8 and 14 
are shown. From Fig. 6.16a we can notice that the stochastic output dispatch of the first 
CHP is significantly lower during the morning, but from 9:00 it stays moderately higher 
throughout the day. Instead, the second CHP generation falls below the deterministic 
output only from 11:00 to 13:00, before ramping up and reaching a much higher power 
peak, 90 kW. 

 

 

To prove that the given stochastic solution can also satisfy the state variables 
constraints, the values of decision variables were applied to the deterministic model 
using the average uncertainty profiles (i.e. the deterministic scenario).  

Starting from the voltage constraint, Fig. 6.17 demonstrates that all voltages during both 
minimum and maximum load periods are kept within the allowed range 

 

 

In Fig. 6.18 the State Of Charge of the HST units on the CHP bu14 and SC bus are 
reported. As we can see, both profiles do not differ significantly from the deterministic. 
The CHP unit starts ramping down before than the deterministic, For this reason, it also 
starts charging back earlier. The SC instead, has a lower initial heat availability, so its 

a) b) 
Fig. 6.16 Deterministic vs stochastic CHP output power on a) bus 8 and b) bus 14 

a) b) 
Fig. 6.17 Deterministic vs stochastic voltage profiles during a) minimum and  

b) maximum load periods 
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profile remains below the deterministic during all day. Also, from 6:00 to 8:00 the HST 
of the SC remains empty. 

To get a better understanding of the HSTs dynamic we can also look at the bar charts 
in Fig. 6.19. As we can see from Fig. 6.19a, the HST of the CHP behaves the same as 
the deterministic until 6:00, absorbing from the CHP only the heat needed to 
compensate the self-discharging losses. As previously observed in Fig. 6.18a we can 
notice that in the stochastic solution, the HST begins charging back one hour before the 
deterministic solution. Then again, from 21:00 until the end of the day, only the top-up 
heat is charged.  

The HST of the SC follows approximately the same behavior of the deterministic 
solution. Fig. 6.19b allows us to appreciate clearly that from 6:00 to 8:00 the HST 
remains empty from with no heat charged nor discharged, as we noticed before in Fig. 
6.18. 

 

a) 

b) 
Fig. 6.19 Deterministic vs stochastic HST dynamic on a) CHP bus 14 and b) SC hus 9 

a) b) 
Fig. 6.18 Deterministic vs stochastic SOC of HST on a) CHP bus 14 and b) SC hus 9 
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 Because the stochastic solution yields different decision variable values, both 
power and thermal flow differ from the deterministic case. Also, since the thermal load 
does not follow a predetermined profile, heavily depending instead on indoor 
temperatures, it is not surprising that its profile differs from the deterministic case. Fig. 
6.20a shows that the stochastic solution determines a thermal load profile having a 
minimum and maximum peak at 4:00 and 23:00, respectively. Both supply and return 
temperatures of the distribution network are evaluated in the two representative load 
conditions. Fig. 6.20b and Fig. 6.20c show that all temperatures are within their 
constraint values, deviating almost imperceptibly from the stochastic profiles. 

Finally, the indoor temperatures on the three representative buses used in 
736.1.5 are reported in Fig. 6.21. While the CHP bus profile stays almost the same, Fig. 
6.21a, both  SC and load profiles vary considerably throughout the day. 

 

 

To test the robustness of the stochastic solution (SS), we carried out a feasibility 
check based on a large number of test scenarios. By testing the SS on a large number of 
different scenarios, we aim at evaluating the feasibility of our solution when different 
uncertainty realizations occur.  

A second set of 2000 new scenarios was created using the Monte Carlo sampling 
technique. Then, the SS was tested on each scenario, hence solving 2000 different 
deterministic problems. While solving each of these deterministic problems, the number 
of scenarios whose constraints were not violated was counted. Finally, the feasibility 
ratio (FR) was calculated by doing the ratio between the number of feasible solutions 

min 

max 

a) b) c) 
Fig. 6.20 Deterministic vs stochastic a) thermal load and supply and return temperatures  

during a) maximum and b) minimum load periods 

a) b) c) 
Fig. 6.21 Deterministic vs stochastic indoor temperature on representative 

 a) CHP, b) SC and c) load bus 
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and the total number of test scenarios, i.e. 2000. In our case, the number of scenarios 
for which the SS determined constraint violations is equal to 175, which is 8.75% of all 
possible 2000 scenarios. This indicates that our solution does not only guarantee higher 
profits but also proves to be robust for a wide range of uncertainty realizations, thus 
increasing operating performances.  

For a comprehensive analysis of how the uncertainty modelling impacts the 
problem solution, the stochastic optimization model was tested on uncertainty models 
based on different numbers of scenarios. The logic scheme of this feasibility analysis is 
shown in Fig. 6.22.  

Each uncertainty model comes from applying the simultaneous backward 
reduction method to the first set of 2000 scenarios (i.e. the same scenario used to find 
our case study reduced 200 scenarios) with different target reduced scenarios.  Each of 
these reduced scenario set was then used to solve our proposed stochastic optimization 
problem. Finally, every feasible solution found was used to solve each scenario of the 
second set of 2000 scenarios (i.e. the same scenarios test set used for the feasibility 
check of the 200 scenario-based SS). All the obtained results are reported in Table 6.3. 

Table 6.3 Sensitivity analysis results 

Number of 
scenarios 

Solution 
time 
(min) 

Optimum 
profit 

($) 

% profit 
increase vs 

Det 

Average check 
profit 

($) 

Feasibility 
rate 
(%) 

deterministic 0.07 2592.22 - - 0 
50  3.04 2586.59 0.22 2583.10 50 

100  10.23 2584.03 0.32 2582.70 76 
200  35.68 2582.92 0.36 2582.30 91 
250  44.43 unfeasible - - - 

 

The first thing we notice is that the FR  grows with the number of considered 
scenarios. Although the 50 scenario-based solution yields to only 50% of feasible 
scenarios, the FRs increase as the number of scenarios modelling the uncertain 

 a ckward
reduction

Monte
Carlo 

Sampling

1st set of 
 000  scenarios

Feasibility
check

 nd set of 
 000  scenarios 

 50 scenarios

 00 scenarios

100 scenarios

50 scenarios

deterministic scenario

SS  00  

SS 100 

SS 50 

DS

unfeasible

Stochastic
Optimization

FR = 91 

FR = 76 

FR = 50 

FR = 0 

Fig. 6.22 Feasibility rate diagram 
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parameters is enlarged. This shows how critical it is to choose an adequate number of 
scenarios when modelling uncertain parameters to guarantee the robustness of the 
problem solution. 

Unfortunately, although higher robustness can be achieved increasing the 
number of considered scenarios, solving time increases significantly. By looking at the 
second column of Table 6.3 we can see that the solution time grows more than linearly 
with the number of considered scenarios, going from just 3 minutes in the 50 scenarios 
case up to 44 minutes in the 250 scenario case. As was to be expected, higher 
computational burden is the price we must pay for higher operation performances. 

Regarding revenues of the MEMG operation, net operating profit slightly 
decreases with the number of considered scenarios. The same trend is shown when 
looking at the average profit of the 2000 deterministic problems of the feasibility check.   

One last thing worth noticing relates to the last line of Table 6.3. When trying to 
solve the stochastic optimization problem with a 250 scenario-based uncertainty model, 
the solver could not find any solution, making the problem unfeasible.   
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CONCLUSIONS 

AND FUTURE WORKS 

This thesis introduced a method for operational optimization of Multi-Energy 
Microgrids when different types of uncertainties are considered. The day-ahead 
operation strategy is modeled as a single-stage stochastic optimization programming 
problem based on a MILP formulation; this allows our method to be efficiently 
implemented by commercial solvers. Compared with conventional deterministic 
MEMG day-ahead operation strategies, our model solution can guarantee optimal 
profits under stochastic variations of electric load, thermal load and RES output. 

A feasibility check was carried out to test how the proposed method performs 
when different uncertainty realizations occur. The results demonstrated that the 
robustness of the stochastic operation method strongly depends on the accuracy of the 
uncertainty model. As the number of scenarios used to capture the uncertainty 
variability is increased, the robustness of the corresponding solutions increases 
accordingly. Thus, to guarantee reliable operation solutions, our stochastic method 
needs to be given uncertainty models based on a large number of scenarios. It is worth 
noticing that the higher the number of scenarios used, the higher the computational 
burden will be. Hence, the number of scenarios used should be the result of a trade-off 
between the solution robustness and the solving time required.  
When modelling uncertainties upon 200 scenarios, the solution of the stochastic 
problem resulted to be feasible against 91% of 2000 random scenarios, hence proving 
very good robustness. The computing time was 35.7 minutes, which is fully compatible 
with day-ahead operation planning.   

If this model was used for intra-day operation optimization, which requires 
much shorter solving time, a smaller number of scenarios could be used. Indeed, with a 
short lead time, energy uncertainties can be accurately forecasted (i.e. uncertainties have 
much lower standard deviations) and so the generated scenarios are not going to be too 
different from each other. This allows a smaller number of scenarios to be selected, 
thereby reducing computing time. 

When solving the proposed stochastic method on a 250 scenarios-based 
uncertainty model, the solver could not find any solution, hence making the problem 
unfeasible. The root reason for this lies in the fact that the current single-stage operation 
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model cannot cover all scenarios, revealing the system robustness issues. This means 
that for the considered physical system, the current operation strategy will never allow 
a FR = 100%. To overcome this limit, two possible further developments could be 
implemented:  

• Modify the physical system, which means acting on all the hardware components 
investing and installing in the system by future system updates and planning. 

• Modify the control strategy, either introducing an adaptive recourse action, real-
time local control or advanced model predictive control.  

In practice, hardware updates are often non-viable. This is because of the high 
investment costs involved in installing new equipment, which investors always try to 
limit. Hence, investing in a control strategy improvement is preferred. 

Another development could be to overcome the limit of the underlying 
programming technique used. Indeed, stochastic programming can be implemented 
only when uncertainty probability distribution is known. In future works, programming 
techniques not requiring pre-defined distribution could be investigated. 
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