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Abstract

The occurrence of epileptic seizures is a problem that makes everyday life very
difficult for people who suffer from this disorder. This is especially true for patients
whose disorder cannot be cured with therapies or drugs. In this work, I studied and
developed different types of recurrent neural network (RNNs) that, through the analysis
of electroencephalography (EEG) signals, aimed to correctly predict the onset of a
seizure by detecting the preictal brain state and differentiating it from the interictal
state within minutes before the actual epileptic attacks. The two proposed models
use different approaches to extract relevant temporal features from raw EEG signals,
which are then used for prediction purposes. Many different kinds of experiment and
evaluation methods were used to assess the capacity of the model to correctly predict
the seizures’ onsets, leading to promising results that can be further enhanced with
more sophisticated models that could extract more relevant temporal features.
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1 | Introduction

The brain generates electrical activity due to communication between cells in the
nervous system. Unfortunately, this electrical activity can be characterized by an
abnormal release of energy leading to episodes of involuntary movement that can
affect a single part of the body (partial) or the entire body (generalized). In more
extreme cases, it can even cause a loss of consciousness. This disease is called
Epilepsy. Epilepsy is one of the most common neurological diseases that affects
approximately 50 million people worldwide [17] and between 1990 and 2015 we had
an increase of 11.6% in deaths caused by it (from 112,000 to 125,000 [26]).

Patients spend most of their lives uncertain when and where epilepsy will occur,
and one of the main problems is uncontrollability, which can cause injuries, social
disability, and mortality, affecting their quality of life. Epilepsy can be controlled
with antiepileptic drugs, but 1 in 3 patients have drug-resistant epilepsy [22], so
alternative treatment is required. Analysis of electroencephalograms (EEG) shows
that specific alterations in brain signals can be observed before epileptic onset,
giving the possibility of creating methods based on artificial intelligence that can
detect and anticipate seizure using EEG signals as input [1]. The main idea of
these methods is based on the fact that AI methods can discover patterns in brain
activity registered through EEGs and discriminate between normal and abnormal
brain activity. The ability to predict in advance the onset of a seizure could be a
huge improvement in the daily lives of these patients because they can be aware
of the epileptic attack and take the right preventive treatments, such as electri-
cal stimulation or drug delivery. Even if these precautions do not work, at least
patients would be put in safety by healthcare professionals. The task in which
we are interested is called seizure prediction, which differs from seizure detection.
Seizure detection is a binary classification problem that aims to distinguish between
abnormal brain activity and normal brain activity. In this kind of task, there are
no predictive aspects because we already know which abnormalities are present
in the EEG signals of a patient. Seizure prediction instead is a much more chal-
lenging problem because we need to distinguish normal brain activity from the
one that precedes, within a certain range of seconds or minutes, an actual seizure.
The wider the range, the greater the forecast, but the task will be more complicated.

The core of this master’s thesis is on the latter task, using recurrent neural networks
(RNNs), a type of computational model that excels at processing sequential data to
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Introduction

extract temporal features and patterns. The research presented here focuses on:

• the development of automated procedures that allow the processing of the
raw EEG signals from each individual patient. This can be used to generate
different types of datasets, organized by patient, for each specific experiment
that I need to perform. The data were preprocessed in order to be compatible
with other experiments performed by my supervisor and his collaborators;

• a comprehensive study on various types of RNNs, with particular emphasis
on long short-term mermory (LSTM) and gated recurrent unit (GRUs).
Subsequently, I used this knowledge to develop two distinct models. One
model exclusively uses LSTM, while the other is a combination of convolutional
neural network layers (CNN) and GRUs. These models were designed to
autonomously extract meaningful temporal features, eliminating the necessity
for manual feature extraction from the raw EEG data;

• the study of different feature selection procedures to identify the most suitable
one for EEG signal processing, allowing me to exclude less relevant channels
and retain only the most informative ones. This procedure is then employed
to generate new datasets for conducting other experiments;

• exploring the efficacy of the two proposed models. To this end, I conducted
a series of experiments using datasets created by manipulating the size of
the signal window, varying degrees of overlap between the EEG segments,
and different down-sampling frequencies. For each of these datasets, I have
performed experiments that involve the use of all patients and the evaluation
of the models trained with all the data but one left out patient.

This document is organized as follows.

Chapter 2: Epileptic Disorder. This chapter focuses on epileptic disorders from a
medical point of view. This paper will begin by providing an overview of the
disease, including its symptoms, how it affects the daily life of those affected,
and how it can be treated. We will then discuss why a seizure prediction
system is necessary and in what situations it is beneficial. Finally, we will
emphasize the importance of such a system.

Chapter 3: Neural Networks Building Blocks. This chapter focuses on recurrent
neural networks. Firstly, they are introduced by explaining the mathematical
principles, how they work, and why they are preferred in contexts where
sequential data is used. Following this generic background, the chapter
discusses LSTMs and GRUs, what they are, how they work, and what sets
them apart from conventional RNNs.

Chapter 4: Problem definition and experimental setup. This chapter focuses on
the data used throughout the research and experiments. First, it introduces
what EEGs are and how they can be used with deep learning models. Then,
there is a brief overview of the preprocessing steps and methods applied to
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the data to make it compatible with RNN models. Finally, we present all the
experiments conducted and discuss their significance for the seizure prediction
task.

Chapter 5: Models and Optimization. This chapter focuses on the models uti-
lized in the experiments. Both models are introduced, and their strengths
and weaknesses are discussed in the context of the seizure prediction task,
particularly when dealing with large datasets.

Chapter 6: Results. In this chapter, the results of the experiments, divided by
dataset, are presented and discussed, highlighting the prediction capabilities
of the models along with their limits.

Chapter 7: Conclusions. This final chapter provides a comprehensive summary of
the document, highlighting the findings derived from the extensive experimen-
tal work. These insights form the basis for concluding remarks regarding the
predictive potential of RNNs in delicate contexts like neurological diseases,
and offer broader conclusions about the overall research.
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2 | Epileptic Disorder

In this chapter, I introduce epilepsy as a neurological disorder, focusing on the clinical
aspects. We discuss what epilepsy is, how seizures start, the different types of epilepsy,
and their consequences on the daily lives of affected patients. I also introduce possible
treatments, why some of them may not relieve seizures and then the need for a procedure
to forecast seizure onset, which would allow healthcare providers to prepare patients
and themselves for impending seizures.

2.1 Overview

Epilepsy is a neurological disorder characterized by susceptibility to seizures. It is
one of the most common brain disorders that affects 1% of the world’s population
[17].
It is characterized by recurrent seizures, which are abnormal electrical discharges at
the level of the cerebral cortex. Seizures can be asymptomatic or cause episodes of
involuntary movement that may involve a part of the body (partial) or the entire
body (generalized). Seizures can also be accompanied by loss of consciousness and
control of bowel or bladder function[4].
To be considered epilepsy, two or more seizures must occur at least 24 hours apart
and must be spontaneous (not triggered by a known factor). In many cases, epilepsy
is caused by an unknown condition (idiopathic), but other brain disorders (such as
tumors or malformations) can cause symptomatic epilepsy[12].
The recurrent and unpredictable nature of seizures makes it difficult for people
with epilepsy to live normal lives. They may have a seizure at any time, which can
cause falls, injuries, and even death for themselves or others, but pharmacologic or
surgical therapy can control seizures in 80% of cases.

2.2 Classification and Symptoms

Epileptic seizures are classified according to three different characteristics [21]:

1. origin of the seizure in the brain;

5



Epileptic Disorder

2. degree of awareness during seizure;

3. level of body movement.

On the basis of the first characteristic, a seizure could be focal or generalized. A
focal seizure originates from a specific region of the cerebral cortex that has
abnormal excitability and the manifestation depends on the affected area. For
example, if the affected area deals with language, the patient will have difficulties
speaking and/or understanding speech. Instead, a generalized seizure occurs in
both hemispheres of the brain at the same time. A focal seizure can evolve into a
generalized one.
The second feature implies the degree of awareness, the consciousness of the self
and the surroundings; meanwhile, the last feature implies that a seizure could imply
the movement of one or more parts of the body (motor) or not (nonmotor).
There is one last type: seizures of unknown onset. These are seizures that
cannot be classified due to the lack of information on the onset. They may occur
during sleep or under a condition in which witnesses cannot describe or record any
kind of information (Fig.2.1).

Figure 2.1: International League against Epilepsy 2017: Epilepsy Classification [8]

2.2.1 Focal seizures

Focal seizures originate in one hemisphere of the brain and can involve one or
more areas of that hemisphere. They can also spread to the other hemisphere and
become generalized seizures.
An aura can precede seizures. The aura is a set of physical, mental, or autonomic
sensations that a patient feels before an attack. In focal seizures, symptoms depend
on the area of the brain affected. Therefore, depending on whether the motor, sen-
sory or language area is involved, there may be jerks, abnormal movements, sensory
disturbances, and difficulty speaking. Visual, gustatory phenomena, behavioral
alterations, sensations of strangeness, or déjà vu are also possible.
Focal seizures are classified according to the level of awareness as follows:

• Simple focal seizures: the person remains fully aware during the seizure;
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2.2.2 - Generalized seizures

• Complex focal seizures: the person experiences some loss of consciousness
during the seizure.

Motor focal seizure can also be classified as

• Automatism: these are repetitive movements, such as rubbing the hands or
licking the lips;

• Atonic: muscles of a specific area becoming limp or weak;

• Tonic: opposite of atonic in which the muscles, a body part or a limb become
rigid;

• Clonic: repeated, rapid muscle contractions and relaxations. Usually affects
arms and legs;

• Myoclonic: similar to clonic but last for less than a second, and they may
occur in clusters. During clonic seizures, the patient may lose consciousness,
while during myoclonic seizures vigilance is maintained.

Nonmotor focal seizures can instead be classified as

• Autonomic dysfunction: effects related to the autonomous system such as
gastrointestinal sensations, feeling of heat or cold, Flushing, sexual excitement,
piloerection and palpitations;

• Cognitive dysfunction: alteration of cognitive domains or symptoms such as
déjà vu, hallucinations, illusions or perceptual distortions;

• Emotional dysfunction: manifested by sudden emotional changes or difficulties
in controlling emotions;

• Sensory dysfunction: difficulties in receiving and responding to information
that comes in through the senses leading to be oversensitive or undersensitive.
This can affect one or more senses;

• Behavior arrest: cessation of movement and lack of responsiveness as the
main feature of the entire seizure.

Focal seizures can evolve into a generalized one that causes loss of consciousness.
This is called secondary generalization and occurs when a partial seizure spreads
and activates the entire cerebral cortex. Activation can occur so quickly that the
initial partial seizure is not clinically apparent or is very short.

2.2.2 Generalized seizures

Generalized seizures originate from abnormal electrical activity in both hemispheres.
Awareness is often compromised by loss of consciousness. Generalized seizures can
be classified as motor and nonmotor seizures. The classification is similar to the
one for focal seizures, but here we also have the following.
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• Generalized Tonic-Clonic Seizures, also known as grand mal, are a type of
motor seizures divided into two phases: the tonic phase, characterized by
muscle rigidity, and the clonic phase, characterized by moments of muscle
relaxation. Consciousness is often lost with subsequent injury from a fall;

• Absence seizures, also known as petit mal, are a type of nonmotor seizure
characterized by short and sudden loss of consciousness. They can be divided
into typical and atypical seizures. Typical seizures are characterized by
episodes of loss of consciousness that last a few seconds with blinking; muscle
tone may or may not be lost. Patients do not fall or have convulsions.
They suddenly interrupt the activity they are doing and then resume it,
without symptoms or awareness that a seizure has occurred [12]. Atypical
seizures differ from typical absence seizures because they last longer, spasms
or automatic movements are more pronounced, and the loss of consciousness
is less complete. They often occur in the context of Lennox-Gastaut
syndrome.

2.3 Causes

The causes of epilepsy are different for each person, and most of the time the
causes are not known. Doctors can trace epilepsy directly to genetics, brain trauma,
autoimmune disorders, metabolic problems, or infectious diseases. Each cause has
different signs, diagnoses, and treatment options.

• Genetics: Epilepsy is said to have a genetic cause if seizures are the result
of a known or presumed genetic defect. Genetic epilepsy may or may not be
inherited, as some changes in genes can spontaneously occur without being
present in either parent. For most people, genes are only part of the cause of
epilepsy. Certain genes may make a person more susceptible to environmental
conditions that trigger seizures;

• Structural causes: These can be congenital or acquired. A congenital cause
is a developmental change in the brain that a person is born with. Some
congenital structural causes may also have a genetic component. These causes
are often seen in babies born to women whose pregnancies have been otherwise
normal (due to infections in the mother, poor nutrition, or oxygen deficiencies).
An acquired cause is due to a process or injury that occurs in someone with a
previously normal brain structure. Examples are brain tumors, strokes, or
head traumas;

• Infections: Epilepsy is said to have an infectious cause if there is evidence of a
brain infection that leads to seizures. Infection is probably the most common
cause of epilepsy worldwide, but is more common in the developing world.
Meningitis, HIV, viral encephalitis, and some parasitic infections can cause
epilepsy.
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• Autoimmune disorders: These are caused by a change in the immune function
of the body. Our immune system protects the body from foreign substances
or things that could harm the body, but there are conditions that cause your
immune system to attack brain cells, leading to seizures;

• Metabolic causes: The body contains many enzymes that are responsible for
breaking down the various parts of the food we eat to nourish the body. If
there is underactivity or blockage in one of these enzymes, this can lead to
problems metabolizing one of the components in food or problems generating
energy to sustain the body’s function, and then this can lead to seizures.

2.4 Treatment

Epilepsy has the tendency to repeat epileptic seizures, so while single-onset treat-
ment should not be performed (except for particular cases), treatments must be
carried out until complete control of seizures.
The first treatment step is usually to find the right medicine or Anti-Epileptic Drug
(AED). AEDs can be needed indefinitely, and no drug is able to control all types of
seizures, and different patients require different types of drugs depending on the
type of seizure; thus, the first step is deciding whether the patient’s seizures are
partial or generalized. Most patients can be optimally managed with a single AED.
One must be sure that a given drug has failed before moving on to an alternative
drug or a two-drug combination. If the patient has persistent seizures, but no
adverse effects, the dose can be increased as tolerated or until seizure control is
obtained. Antiepileptic drugs can eventually be successfully withdrawn in more
than 60% [22] of patients who remain free from seizures. Most neurologists require
that patients remain seizure-free for 2 to 4 years before discontinuing AED, and
drugs are generally discontinued over a 2 to 6 month period. Despite the availability
of many anticonvulsants, they are only effective in controlling seizures in 7 out of
10 patients, leading to Drug resistent epilepsy.
Drug resistant epilepsy refers to a condition in which seizures in patients with
epilepsy are not adequately controlled despite treatment with multiple antiepileptic
drugs (AED). There is no single definition of drug-resistant epilepsy, as it can
depend on the type of seizure and syndrome. In general, drug-resistant epilepsy is
classified when a patient does not achieve seizure freedom for 12 months during
long-term treatment with several appropriate AEDs at the maximum tolerated
doses [22]. Up to one in three patients with epilepsy experience drug-resistant
epilepsy.
Due to this, there are other approaches that have made it possible for most people
to achieve seizure control that do not require AEDs. Such approaches include:

• Dietary therapy: is an approach to help control seizures, usually in conjunction
with seizure medications. The most used one is the ketogenic diet special
high-fat, low-carbohydrate diet, prescribed and monitored in the hospital;
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• Surgery: is worth considering in patients in whom seizures and/or medication
side effects significantly impair quality of life. Surgical treatment is indicated
in such patients if seizures arise from an area that can be removed without
causing unacceptable neurological deficits;

• Alternative therapies: treatments used instead of conventional medicine that
are used together with AEDs. These therapies can include natural products
such as herbs, vitamins, minerals, and probiotics, used in conjunction with
diet therapy. Other practices may include acupuncture, meditation, relaxation
techniques, massage therapy, yoga, and hypnotherapy;

• Devices: another option to control seizure is called Neuromodulation. This
therapy involves using a device to send small electrical currents to the nervous
system to change the electrical current in the brain to compensate for possible
abnormal discharges that cause seizures. There are different neuromodulation
approaches such as vagus nerve stimulation VNS, deep brain stimulation DBS
and responsive neurostimulation RNS;

• Seizure alert devices: are electronic devices that can detect the onset of
seizures and alert caregivers, health professionals, or clinicians about the
incoming seizure, allowing them to provide timely assistance and put the
patient into safety, helping to reduce the risk of injury and other complications.

In this context, this document presents research on AI methods that, using EEGs,
could help monitor brain electrical activity, potentially allowing automatic prediction
of epileptic seizures in advance, allowing patients to avoid dangerous situations or
even plan the administration of preventive treatments, such as electrical stimulation
or targeted drug delivery, thus improving their quality of life. It is important to
note that AI-based seizure prediction is still in its early stages of development.
However, the research presented in this document is promising and suggests that
this technology has the potential to make a significant difference in the lives of
people with epilepsy.
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3 | Neural Networks Building Blocks

In this chapter, I introduce recurrent neural networks (RNNs), a type of artificial neural
network suited for working with sequential data by extracting temporal features. After
an overview of RNNs, I discuss long short-term memory (LSTM) and gated recurrent
units (GRU), two specialized types of RNNs that can overcome some of the challenges
of working and learning with long sequences of data. The last section, introduces
convolutional neural networks (CNNs), a class of neural networks that specializes in
processing data that has a grid-like topology.

3.1 Recurrent Neural Networks

Humans don’t start their thinking from scratch every second. Our thoughts have
persistence, allowing us to process a lot of information, grasp the important parts,
and make our own thoughts about what we just witnessed. Traditional neural
networks (feed forward network FFN) cannot do this because they are designed to
treat each input as independent of the others. This means that they cannot learn
long-term dependencies in sequential data, which is essential for many tasks such as
natural language processing. Therefore, it is important to design models that can
work with sequential data because observations in sequences have temporal patterns,
meaning that previous observations have an effect on future ones. Persistence is
one approach to learning such temporal patterns, and this can be achieved through
memory. Recurrent neural networks (RNNs) were designed for this purpose.
What differentiates RNNs from FFNs is how information is passed through the
network. While the FFN passes information through the network without cycles,
the RNN has cycles that allow to transmit information back to itself. In figure
3.1 the neuron ’s’, looks at some input x and outputs a value o. A loop allows
information to be passed from one step of the network to the next.
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Figure 3.1: RNN schema with loops [14]

This can be treated as multiple copies of the same network, each of which passes
the information processed at one time step to the next (Fig.3.2).

Figure 3.2: RNN schema unfolded in time [14]

This chain-like nature reveals that recurrent neural networks are related to se-
quences and therefore are the natural architecture of neural network to use for
sequential data. This process of passing information can be described with the
following mathematical formulas [9]:

ht = θ(Uxt +Wht−1 + bt) (3.1)

ot = V ht (3.2)

Where we have:

• n: number of samples;
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3.1.1 - Backpropagation Through Time

• d: number of features for each sample;

• h: number of hidden units;

• t: timestamp being processed;

• xt: the input at timestep t with dimension Rn×d;

• U : weight matrix from input to hidden state with dimension Rd×h;

• ht−1: the hidden state computed at timestep t− 1 with dimension Rn×h;

• W : weight matrix from hidden to hidden with dimension Rh×h;

• bt: bias parameter at timestep t with dimension R1×h.

The activation function θ prepares the gradient for backpropagation, which is used
to compute the hidden state ht at timestep t, which has dimension Rn×h. This new
hidden state ht is then combined with its weights V with dimensions Rh×k (where
k is the number of classes) to generate the final output ot. To correctly propagate
the RNN error throughout the model, we use a technique called backpropagation
through time.

3.1.1 Backpropagation Through Time

Backpropagation is a supervised algorithm used to update a model’s weights to
minimize the error of the predicted output compared to the expected output. It
consists of four main repeated steps:

1. Present an input data and propagate it through the model (forward pass) to
get a result;

2. Calculate the error by comparing the predicted result with the expected
output (supervised learning);

3. Compute the derivatives of the error with respect to the network’s weights;

4. Adjust the weights (backward pass) to minimize the error.

This procedure is well suited for feed-forward networks where the inputs and outputs
are fixed in size.
Backpropagation through time (BPTT) is an adaptation of backpropagation to
RNN. It works by unfolding the RNN into a traditional feed-forward neural network,
in which we can apply backpropagation (just like figure 3.2). Unfolding means
replicating the network for each data in the sequence. This allows us to adapt
backpropagation to RNN, since the weights associated with the input x (denoted by
U) and the previous step ht−1 (denoted by W ) are shared. This avoids an explosion
of parameters due to the unfolding in time of the network. Other advantages of
this approach are: (1) we can work with sequences of any length and (2) since the
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weights are shared, the model does not become too complex, helping in controlling
overfitting. Conceptually, BPTT works by unrolling all input timesteps. Each
timestep has one input xt, one copy of the network st, and one output ot. Errors
are then calculated and accumulated for each timestep t. The network is rolled
back up and the weights are updated. Each timestep of the unrolled recurrent
neural network may be seen as an additional layer of the model, which gives the
order of dependencies of the problem that is managed by the hidden state h of the
previous timestep and is taken as input in the subsequent timestep.

3.1.2 Problem of Long-Term Dependencies

The main problem with the BPTT algorithm arises when the model is fed with
data from very long sequences.If the input sequences are made up of thousands of
timesteps, then this will be the number of derivatives required for a single weight
update. In this case, the gradients accumulate and the method becomes unstable.
Eigenvalues less than 1 cause the gradients to decrease with each layer until they
vanish. This practically makes the contribution of further timesteps meaningless
with respect to the current one. This can cause the network to become stuck in
a local minimum, or even to fail to converge to any solution. However, if the
eigenvalues are greater than 1, the gradients increase with each layer, causing an
explosion. In practice, this means that the weights of the network are updated by
very large amounts, which can cause the network to overshoot the optimal solution
and even cause the network to diverge, meaning that the weights become infinitely
large.

Figure 3.3: Long-term dependency problem: the network cannot learn from distant timesteps
[14]

3.1.3 Truncated Backpropagation Through Time

To address the issue of having a computationally expensive algorithm, a variant
of BPTT has been developed.
The main idea of this variant is to stop computing the sum of gradients after
timestep k1 and perform the update back for a fixed number of timesteps k2. This
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leads to an approximation of the true gradients and gives quite good results in
practice. This version is called trucated backpropagation through time (TBPTT).
This algorithm introduces two new variables:

• k1: the number of forward passes before a new update of the weights. It
controls how often the weights are updated and therefore how fast or slow
the training will be;

• k2: the number of timesteps in which we apply BPTT. It should be large
enough to capture the temporal dependencies, but not too large to avoid
vanishing gradients.

Figure 3.4 shows graphically the differences between the weight update that
occurred in backpropagation through time and the truncated backpropagation
through time.

(a) BPTT (b) TBPTT

Figure 3.4: Graphical representation of BPTT and TBPTT.
Blue arrows represent the forward-pass step, and red arrows represent the backward-
pass step. Dots represents the internal state reset [5]

The advantage of having a less computationally expensive algorithm is balanced
by the fact that the algorithm is an approximation that might not work well for
sequences where the dependencies can be further apart from each other.
A better solution to this problem and the vanishing and exploding gradients one
is to use networks that are specifically designed to learn long-term dependencies,
such as long short-term mermory (LSTM [10]) and gated recurrent unit (GRU [6])
networks.

3.1.4 Fundamentals of LSTM

Long short-term memory (LSTM) networks are a special type of recurrent neural
network (RNN) designed to learn long-term dependencies by overcoming the prob-
lems of RNN. The main difference between RNNs and LSTMs is that LSTMs have
a more sophisticated internal structure that incorporates mechanisms to handle the
memory of past information (Fig. 3.5).
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(a) RNN (b) LSTM

Figure 3.5: Difference between the internal structure between RNN and LSTM [14]

The LSTM is composed by four different submodules:

• input gate: controls how much of the current input is added to the cell state;

• forget gate: controls how much of the previous cell state is forgotten;

• cell state: is the memory of the LSTM cell. It stores information about the
past inputs;

• output gate: controls how much of the cell state is outputted as the hidden
state.

The key component that allows LSTM to learn long-term dependencies is the cell
state (Fig. 3.6).

Figure 3.6: LSTM cell state highlight [14]

This component is regulated by gates (Fig. 3.7) that allow information to be
stored or deleted from memory. These gates are learned during training, so they
can adjust according to how much information of the past to maintain or not.
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Figure 3.7: LSTM gates structure [14]

3.1.4.1 Step-by-step walkthrough

At each new data sample, the first step (Fig. 3.8) is to decide how much information
to remove from the cell state. This decision is made by the sigmoid layer called
forget gate. This layer takes as input the hidden state at previous timestep ht−1

and the current input xt and returns a value between 0 and 1. A value of 0 means
that we want to remove all past memory, while a value of 1 means that we want to
keep all of it. These values are stored in ft.

Figure 3.8: LSTM step by step: forget past information [14]

The next step (Fig. 3.9) is deciding what new information at timestep t we want
to store in the cell state. First, we find the relevant information in xt creating a
vector of new candidate information to store (C̃t). The second step is to compute,
through the input gate layer, which information to update. This is done using
a sigmoid function which values in (0, 1) measure how relevant or irrelevant the
information at timestep t is. These relevancy scores are stored in it.
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Figure 3.9: LSTM step by step: store new information [14]

In the next step (Fig. 3.10) we want to update the previous cell state Ct−1 (called
long-term memory) to create the new cell state Ct. This is done by multiplying the
old cell state Ct−1 with ft, forgetting the past information that is not relevant to the
information in xt. Then we add the new relevant information by multiplying by i∗C̃t.

Figure 3.10: LSTM step by step: cell state update[14]

In the final step (Fig. 3.11), we are going to decide which information to output
from the LSTM cell. First, we create the output ot by combining the previous
hidden state ht−1 and the new input xt with a sigmoid function. Then, we pass the
cell state Ct through tanh and multiply it by the output of the sigmoid gate, so
that we only output the most relevant parts for timestep t in ht (called short-term
memory).
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Figure 3.11: LSTM step by step: cell output[14]

The definition of the cell state Ct and the use of gate mechanisms allow LSTMs
to solve the vanishing gradient problem by controlling how much of the old state is
forgotten and how much of the new data is added. This keeps the gradients under
control, allowing LSTMs to learn long-term dependencies in the data.

3.1.5 LSTM drawbacks and variants

LSTM networks are powerful in learning long-term dependencies, but they suffer
from some drawbacks because, to handle long sequences, they are quite complex.
Some problems of the LSTMs are the following:

• Computational complexity: LSTM networks are computationally expensive
to train and run. This is because they require more memory and more
computations at each time step than other types of neural networks. This is
mainly because all the gates need to be trained to learn how much information
to maintain, forget, and pass through the subsequent time steps.

• Overfitting: LSTM networks are prone to overfitting, especially when training
data is limited or noisy. This is because they have many parameters and a
very complex architecture. To train effectively, they require large amounts of
data, which is not always possible to obtain.

• Sensitivity to hyperparameters: LSTM networks are sensitive to hyperparam-
eters, such as learning rate and number of epochs. This means that it can be
difficult to find the right hyperparameter settings for a given problem, leading
to long optimization times.

For these reasons, variants of LSTMs were studied. One such variant is called
gated recurrent unit (GRU in Fig. 3.12). This is a simplified version of the LSTM
in which the forget and input gates are combined into a single update gate. This
variant is then composed of only two gates:

• update gate controls how much of the previous hidden state is combined with
the current input to produce the new hidden state (zt);
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• reset gate controls how much of the previous hidden state is forgotten (rt).

Figure 3.12: GRU internal structure[14]

Having only two gates leads to a simpler internal structure, resulting in faster
training and inference steps.
Compared to LSTM networks, GRU networks are less powerful, but are also simpler
and faster to train and run.

3.2 Convolutional Neural Networks

A convolutional neural network, also known as CNN, is a class of neural networks
that specializes in processing data with grid-like shapes. Each neuron of the human
brain works in its own receptive field and is connected to other neurons, so it covers
the entire visual field. Just as each neuron responds to stimuli only in the restricted
region of the visual field called the receptive field, each neuron in a CNN processes
data only in its receptive field as well. These neurons are arranged so that they
detect simpler patterns first and more complex patterns later on. At its basic level,
CNN can be thought of as a kind of neural network that uses many identical copies
of the same neuron, allowing the network to express computationally large models
while keeping the number of parameters small.

3.2.1 Convolutional Layers

The convolutional layer (Conv Layer) is the main building block of a CNN.
Suppose that we have some data samples that we want to classify based on some
local properties of the data. The CNN approach involves (Fig. 3.13) the usage
of neurons (A) that look at small time segments of our data (analogous to the
receptive field) and compute some features from it. These features, which are the
output of the convolutional layer, are then passed through a fully connected layer
(F) for the final classification. One useful property of convolutional layers is that
they are composable: you can feed the features of a previous convolutional layer
as input of another to extract more relevant and high level features (Fig. 3.14).
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Figure 3.13: CNN simple structure: the conv layer look at two timesteps but it can be expanded
to have a greater receptive field and look at more timesteps at once [13]

Between one convolutional layer and another, there is often a pooling layer (Fig.

Figure 3.14: CNN composition: the output of the previous layers (A) is the input of the second
layer (B). This can be used to extract high-level features [13]

3.15). The pooling layer replaces the network output at certain locations by deriving
a summary statistic of the nearby outputs. This helps for two main reasons:

• reduces the number of parameters to learn: by reducing the spatial dimensions
of the features, pooling layers can reduce the number of parameters that need
to be learned in the network. This can make the network faster to train and
more efficient;

• makes the network more invariant to translation: pooling layers can help to
make the network more invariant to small changes in the position of features
in the input. This is because pooling layers summarize the features in a region
of the input rather than focusing on individual samples.

The most used pooling layer is the max-pooling layer which takes the maximum
of features over blocks of a previous layer. It tells us if a feature was present in a
region of the previous layer, but not where. Convolutional neural networks can
work on data of any dimensionality, but the most common use is to apply 2D
convolutional neural networks to images or video sequences.
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Figure 3.15: CNN schema: between the conv layer A and B we have the pooling layer max [13]

In these examples, I introduced 1D convolutional layers to extract temporal features
from data sequences that do not need to be images, such as EEG signals. These
blocks were used as part of one of the two models proposed in chapter 5.

3.2.1.1 Into convolution

What does a convolutional layer exactly compute?
Intuitively, this layer performs a dot product between two matrices, where one
matrix is the set of learnable parameters known as a kernel, and the other matrix
is the input data. The convolution operation is performed by sliding the kernel
over the input signal and multiplying the values of the kernel and the input signal
at each point. The results of these multiplications are then summed together to
produce a single value at each point in the output signal. Here, an example:

Kernel = [3, 2, 1]

Input = [1, 2, 3, 4, 5]

to have a better feeling of the slide of the kernel I flip the input:

Kernel = [3, 2, 1]

Input = [5, 4, 3, 2, 1]

Step 1: Step 2: Step 3:

3 2 1 3 2 1 3 2 1

5 4 3 2 1 5 4 3 2 1 5 4 3 2 1

--------- --------- ---------
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3 = 3 6 2 = 8 9 4 1 = 14

Step 4: Step 5: Step 6:

3 2 1 3 2 1 2 1

5 4 3 2 1 5 4 3 2 1 5 4 3 2 1

--------- --------- ---------

12 6 2 = 20 15 8 3 = 26 10 4 = 14

Step 7:

1

5 4 3 2 1

---------

5 = 5

The result of the convolution is then the new matrix [3, 8, 14, 20, 26, 14, 5].
The kernel can be thought of as a window that slides over the input and the output
of the dot product is then used to update the neuron activation. The receptive field
of a neuron is then defined as the input area covered by the kernel when the neuron
is activated.
From this intuitive explanation, we could now define the mathematical formula of
convolution:

(f ∗ g)(t) :=
∫︂ ∞

−∞
f(τ)g(t− τ)dτ

that can be read as: to convolve (∗) a kernel (f) with an input signal (g) we must:
flip the signal (−τ), slide for the desired time (t) and accumulate every interaction
(
∫︁

) with the kernel (f) [7] [15].
Recalling figure 3.15 we have that the convolutional layer (A) consists of weights that
describe its behavior. Negative weights inhibit neurons from firing, whereas positive
weights encourage them. Convolution handles the wiring of neurons, describing all
the weights and which ones are identical. During training, the layer learns different
weight configurations that the kernel uses to extract different temporal features
from the input signals.

One thing to note is that the kernel is shared in a convolutional layer, allowing
the same set of weights to be used to convolve multiple inputs. This has several
advantages:

• reduces the number of parameters in the network, making it more efficient to
train;

• helps to extract more general features from the input data, because the kernel
is able to learn from multiple inputs at once;

23



Neural Networks Building Blocks

• helps to reduce overfitting, because the kernel is not being trained on a specific
set of inputs and can generalize among different ones.
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4 | Problem definition and experi-
mental setup

In this chapter, I define the problem of epileptic seizure forecasting and explain why
it is a concern. After defining the problem, I introduce the dataset used in this study,
along with its annotations and preprocessing pipeline. Finally, I present the various
experiments conducted, along with the metrics used to evaluate the performances of
the models that proposed in Chapter 5.

4.1 Problem definition

As stated in chapter 2 epilepsy is a severe neurological disorder that leads to
recurrent seizures. Although antiepileptic drugs can reduce clinical complications
and mortality rates, 30% of patients are refractory to such medications [22], leading
to the development of alternative treatments. The unpredictability of seizures
significantly affects the patient’s quality of life due to the risk of injury, mortality,
and psychosocial disability.
Evidence suggests that specific alterations and patterns can be observed in brain
dynamics before epileptic attacks [3]. This finding inspired the building of devices
capable of anticipating seizures by analyzing electroencephalogram EEG. A reliable
monitoring device would allow patients to avoid dangerous situations or even
plan the administration of preventive treatments, such as electrical stimulation or
targeted drug delivery, thus significantly improving their quality of life.
In such a setting, seizure forecasting aims to anticipate an upcoming seizure before
it clinically happens. This is a challenging task because finding patterns in EEG
seizures’ manifestations vary between patients (based on their psycho-physical
characteristics and clinical history) and between the types of seizures with which a
patient is affected.
The most recent approaches to this problem exploit deep learning techniques to
extract nonlinear features directly from the raw EEG signals and then use these to
train the models.
In this research, I feed LSTM and GRU with EEG signals, allowing the models
to exploit interchannel dependencies to extract temporal features to perform the
prediction.
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C3 C4 Cz F3 F4 F7 F8 Fp1 Fp2 Fz
O1 O2 Oz P3 P4 P7 P8 Pz T7 T8
Table 4.1: List of channels used in the EEG dataset

4.2 Dataset description

The data used are a set of continuous long-term multichannel EEG recordings
collected by the Epilepsy and Clinical Neurophysiology Unit at the Eugenio Medea
IRCCS Hospital in Conegliano, Italy. Data were recorded from 29 epileptic patients
(15 male and 14 female, referred to as Patient 1 through Patient 29 for privacy
reasons) at a sampling rate of 256 Hz. I used 20 common channels based on the
international standard 10-20 EEG scalp electrode positioning system (Fig. 4.1).
The channels used are reported in table 4.1.

Figure 4.1: Scalp positioning of the 20 common EEG used in the dataset [23]

4.2.1 Data labeling

The EEG signal recorded from epileptic patients can be categorized into four
stages:

1. interictal state: is a period of regular brain activities between two consecutive
seizures (approximately 30 to 120 minutes preceding a seizure);

2. preictal state: refer to the period included between approximately 30 minutes
before a seizure onset;

3. ictal state: the period in which the seizure occurs;
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4. postictal state: the period immediately following a seizure for a few minutes.

In the data, the onset and end of the ictal states were manually identified using
video recorded data from video-EEG monitoring by two expert clinicians. Figure
4.2 shows how an EEG signal is segmented into the four categories above.

Figure 4.2: Segmentation of EEG recording: (A) trace depicting a recording from a single EEG
channel during a seizure. It is divided into: interictal, preictal, ictal, and postictal
stages. The highlighted areas represent the 30 minutes before the seizure from the
preictal and interictal states used for the prediction task. (B),(C), (D) and (E) are
magnification of the recordings from 20 channels at the beginning of each stage [23]

The goal of the seizure prediction task is to discriminate between the preictal
state immediately preceding a seizure and a general signal recorded during the
interictal state. For this, I used two binaries categories based on the distance to
the upcoming seizure:

• class 0: are signals sampled from the time window between 0 and 30 minutes
before the seizure (preictal class);

• class 1: are signals sampled from 30 minutes randomly selected from the
interictal state (interictal class).

To guarantee the use of appropriate interictal time periods, we excluded seizures
that occurred in recordings shorter than 3 hours, resulting in a total of 93 seizures
retained as valid data.

4.2.2 Preprocessing steps

Several filtering procedures were applied to improve signal quality. Specifically, a
125 Hz low-pass filter and a 1 Hz high-pass filter were applied to retain high-frequency
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Frequency Overlapping #Segments #Channels Seq.Len
128 0 57.612 20 640
128 3 143.940 20 640
64 0 57.612 20 320
64 3 143.940 20 320

Table 4.2: Dataset used: 5 second segments variants

signals relevant to abnormal brain activities before seizures, while simultaneously
removing DC offset and baseline fluctuations. Furthermore, to mitigate power line
interference, two notch filters operating at 50 Hz and 100 Hz were incorporated into
the preprocessing pipeline. Finally, the EEG signals were normalized by subtracting
the average EEG reference computed in the training data of each patient and
balanced to have an equal number of preictal and interictal segments. Depending on
the experiment, the EEG signals were downsampled at 128 or 64 Hz and segmented
into 4-, 5-, 10-, 20- or 30-second intervals.
Based on the evaluation metrics in Section 4.3, the best performing dataset is
composed of 5 second segments, and, therefore, experiments were carried out
making the segments overlap by half (rounded up) of their length (for a total of
3 second overlap). In total, I ended up having four different datasets depicted in
table 4.2.

4.3 Evaluation criteria

Evaluation criteria are essential to evaluate the performance of models throughout
their life cycle. The following metrics were used in both optimization and training
and allowed me to design the best models used in the experiments that I am going
to present in chapter 5.
I have used a total of three metrics: accuracy, specificity, and sensitivity each of
these computed from:

• TP (True Positive): The number of positive instances that the model correctly
predicted as positive;

• TN (True Negative): The number of negative instances that the model
correctly predicted as negative;

• FP (False Positive): The number of negative instances that the model incor-
rectly predicted as positive;

• FN (False Negative): The number of positive instances that the model
incorrectly predicted as negative.
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4.3.1 Accuracy

It is the most common metric used to evaluate models. Measure the percentage of
predictions that the model makes correctly on the total number of predictions. It
is calculated as:

Accuracy =
(TP + TN)

(TP + TN + FN + FP )

It is a simple and intuitive metric and is easy to calculate and interpret. However,
it is not always the best metric for evaluating deep learning models. If a dataset is
imbalanced, meaning that there are many more examples of one class than another,
an accuracy metric can be misleading. In this case, a model could achieve high
accuracy simply by always predicting the majority class, even if it is making many
incorrect predictions for the minority class. For this reason, this is not the only
metric used, even if it is a good starting point for evaluating a model’s overall
performance.

4.3.2 Specificity

Specificity is a metric that measures how well a deep learning model is able to
identify negative examples. It is calculated as the proportion of true negatives to
the total number of negative examples:

Specificity =
TN

(TN + FP )

A high specificity indicates that the model is good at avoiding false positives.
Specificity is an important metric to consider when evaluating deep learning models
for tasks where it is critical to avoid misclassifying negative examples. For example,
in a medical diagnosis system, a false positive (predicting that a patient is sick
when they are actually healthy) could lead to unnecessary and potentially harmful
interventions. However, specificity can be confusing because it is possible to achieve
high specificity simply by predicting the negative class for all examples.

4.3.3 Sensitivity or Recall

Sensitivity, also known as recall, is a metric that measures how well a deep learning
model is able to identify positive examples. It is the opposite of specificity and
is calculated as the proportion between the correct positive predictions and all
positive predictions:

Sensitivity =
TP

(TP + FN)

A high sensitivity indicates that the model is good at finding positive examples,
even if it means that it also makes some false positive predictions.
Recall is an important metric to consider when evaluating deep learning models
for tasks where it is critical to avoid missing positive examples. For example, in a
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medical diagnosis system, a false negative (predicting that a patient is healthy when
they are actually sick) could lead to a delay in diagnosis and treatment. However,
the sensitivity can be confusing because it is possible to achieve high sensitivity by
simply predicting the positive class for all examples. For this reason, sensitivity
and specificity were used in conjunction to evaluate the performance of the model
in both the optimization and training procedures.

4.4 Experimental approaches

A series of experiments and evaluations were conducted to measure the predictive
capabilities of proposed models for the prediction of epileptic seizures. These
experiments measured different aspects of the performance of the models. The
experiments are as follows:

• Randomized cross validation (RCV): classic approach in which, multiple times,
the data is split into training and test to evaluate the predictive capabilities
of the model as the average performance. This method has been used to
establish a baseline for the predictive capabilities of the model, from which
all other approaches can then be compared;

• Leave one patient out (LOO): approach where the data is divided into 29
folds, each representing a single patient. The model is trained on all but one
fold and then evaluated on the remaining one. This is the most challenging
task to have good results with;

• Permutation experiments: RCV and LOO were repeated by randomly ordering
the channels (Table 4.1) that are given as input to the models. This type
of experiment aims to understand how the models exploit the relationships
between channels, or if they are exploited as a whole, making the order of the
channels irrelevant;

• Feature selection: three different feature selection methods were studied and
implemented to evaluate whether all 20 channels were actually used during
the training phase or if some contained redundant/irrelevant information. The
implemented methods include two filter methods and one wrapper method.

4.4.1 Randomized Cross Validation (RCV)

Randomized cross-validation (Fig. 4.3) is a technique that aims to evaluate
the generalizability of models by evaluating their predictive capabilities on data
that were not used during training. This is a widely used technique for both the
evaluation phase of a trained model and the optimization phase of hyperparameters
due to its simplicity of implementation.
The main reasons for its use are:
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• avoid overfitting, which occurs when a model learns too much from the training
data and is unable to generalize. In this case, training the model on different
data subsets helps it find patterns that help the model to predict unseen data;

• compute better generalization estimates, as the final performance of the model
is calculated as the average of the training performed on different subsets.

Figure 4.3: Randomized Cross Validation (RCV) schema

In this project, I used 5-fold cross-validation to evaluate the performance of the
models. I randomly divided the data into five folds of equal size. For each fold, we
trained the model on four folds and tested it on the remaining fold. We repeated this
process until each fold was used for both training and testing. Finally, I computed
the mean accuracy, sensitivity, and specificity across the five folds to obtain the
final performance of the models.
The same experiment was then repeated by randomizing the order of the 20 channels
within the dataset. The goal of this experiment was to see how the models exploit
the information in the data, considering or not the order in which the channels are
processed. This experiment is important to understand whether it is necessary to
record EEG in a specific order to achieve better performance or whether the model
is able to extract temporal features independently of the order, simplifying the data
collection process.

4.4.2 Leave One patient Out (LOO)

Leave One patient Out (Fig. 4.4) is a performance evaluation technique in which
a training dataset is created from 28 patients and a test dataset is created from
the remaining patient on which the performance is evaluated. This procedure is
repeated 29 times so that each patient is individually evaluated in the test dataset.
Performances are evaluated for each patient, as well as the average of all results of
individual patients.
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Figure 4.4: Leave One patient Out (LOO) schema

With this procedure, achieving good results is difficult because it aims to predict
the onset of seizures in a patient based on seizures of other patients who, as described
in Section 4.1, may have psychophysical characteristics or types of epileptic seizures
that are completely different from those of the patient under test.
Even in this case, the experiments were repeated by randomizing the order of the
channels in the training data.

4.4.3 Feature selection

Feature selection is a process of selecting input variables from a dataset. Typically,
it involves selecting the most informative variables, thus reducing the dimensionality
of the original dataset. In my case, the feature selection process aims to reduce the
number of channels (Table 4.1) to a subset that retains only the most informative
and useful channels for predicting an epileptic seizure (dimensionality reduction).
This process is particularly important for three main reasons:

• it reduces the computational complexity of every activity that is done on
EEGs;

• it can potentially improve performances and reduce the risk of overfitting by
eliminating channels that do not contain useful information;

• a smaller amount of data therefore implies less setup time for models and the
entire training and testing process

Feature selection follows these steps:

1. subset generation;

2. subset evaluation;

3. matching the stopping criterion? yes: return the results for the subset, no:
go back to step 1)

Feature selection methodologies vary in how they generate and evaluate candidate
subsets. The evaluation methods used in this research are filter and wrapper
methods.
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4.4.3.1 Filter methods

Filter methods apply a statistical measure to assign a score to each channel. The
channels are then ranked by the score and either selected to be kept or removed
from the dataset. Filtering techniques have some advantages, among them high
speed, independence from the classifier, and scalability, but they suffer from low
accuracy, since they consider each channel independently from all the others.
For EEG seizure prediction, the signal statistics used for channel selection is variance
and it has been used in two different ways [18].
The first method estimates the plain variance of the preictal data of all available
channels with the equation:

Vpreict(c) =
1

k

k∑︂
i=1

(xc(i)− µ2
c)

where:

• Vpreict(c): variance of preictal data from channel c;

• k: total number of segments;

• xc: preictal data coming from channel c;

• µc: mean of the data from channel c.

The channels are then ordered by variance and several experiments were performed,
selecting the first N channels in descending order.
The second method estimates the difference between the variance of the preictal
data and the interictal data of all channels with the equation:

Vdiff (c) = Vpreict(c)− Vinterict(c)

The N channels with the highest difference between the preictal and interictal
variance are then selected to perform several experiments.

4.4.3.2 Wrapper methods

Wrapper techniques use a classification algorithm to evaluate candidate channel
subsets. Evaluation is obtained by training and testing models using the selected
subset of channels as input. Since they require multiple training and test phases,
wrapper techniques are more computationally expensive than other feature selection
methods. However, they can achieve better results and more accurately estimate
the most informative candidate channel subsets.
The following algorithm is inspired by the one proposed in [11]:
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channels # the 20 channels

dataset # dataset with 20 channels

baselineAcc = 0 # baseline accuracy

hasRemoved = True # stop criterion

baselineAcc = train_model(dataset)

while hasRemoved:

hasRemoved = False

candidate = {}

for toRemove in channels:

newSubset = remove(channels , toRemove)

subsetDataset = get_data_subset(dataset , newSubset)

tempAcc = train_model(subsetDataset)

candidate[toRemove] = tempAcc

bestCandidate , bestAccuracy = select_candidate(candidate)

if(bestAccuracy >= baselineAcc):

channels = remove(channels , bestCandidate)

hasRemoved = True �
Listing 4.1: Wrapper algorithm for channel reduction

This algorithm is quite simple.
After calculating the baseline accuracy (baselineAcc), it starts by removing one
channel at a time to create a subset of data consisting of 19 channels. For each
subset, the accuracy is calculated and saved in a dictionary, along with the name
of the channel removed.
When all possible subsets with 19 channels were calculated and saved in the
dictionary, the one with the best accuracy is retrieved along with the associated
removed channel (bestCandidate and bestAccuracy). If this bestAccuracy is not
worse than the baseline, then it means that it is possible to remove the bestCandidate
channel without worsening the performance.
The channel is then removed, and the flag hasRemoved is set to true. This means
that the algorithm, within the while loop, will start to evaluate the channels again,
but this time with the 19 that remained from the previous iteration.
This procedure continues until it is possible to find channels to remove that do not
worsen the performance compared to the baseline. If this does not happen, then
the flag hasRemoved will remain false, resulting in the exit from the while loop and
the interruption of the procedure.
This is computationally expensive and time-consuming because it consists of two
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loops, one nested into the other, and for each new subset it is necessary to retrain
the model from scratch. Despite this, this procedure results in a more accurate
selection of channels than filter methods.
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5 | Models and Optimization

In this chapter, I present the two different architectures that were used experiment in
the epileptic seizure prediction problem.
The first model uses only LSTM to extract temporal features from raw EEG signals
and to find patterns and correlations between these features.
The second model, on the other hand, is a more complex architecture that combines the
advantages of CNN to extract temporal features from raw data and the characteristics
of GRUs to learn temporal correlations between these features. For both models, the
final architectures that were obtained after optimizing the hyperparameters on each
dataset used in the experiments are presented.

5.1 Optimization

Hyperparameters are parameters that control the training process of a deep
learning model. They are not learned from the data, but are set by the user before
training begins. These kinds of parameters are particularly important because:

• they determine the architecture of the model. Hyperparameters such as the
number of layers and neurons in each layer play a key role in determining the
complexity and expressiveness of the model;

• they control how the model learns. Hyperparameters such as the learning
rate control how the model updates its parameters during training;

• they can help to prevent overfitting. Hyperparameters, such as weight decay
or dropout values, can help to prevent the model from learning the training
data too well and from being unable to generalize to new data.

In general, they can be divided into two categories. Architectural hyperparameters
determine the structure of the model, such as the number of hidden layers or
neurons inside each hidden layer. Learning hyperparameters instead control the
training process, such as the learning rate.
Since they have a direct impact on the model’s performances, finding hyperpa-
rameters that yield the best result is a crucial step when developing deep learning
solutions. This process called hyperparameter optimization is strictly related to
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the goal to be achieved and the architecture being used. There are many ways to
perform it, but the way I solved this problem was to use Optuna.

5.1.1 What is Optuna and how it works

Optuna is an automated hyperparameter optimization software framework that
is knowingly invented for machine learning-based tasks and is framework-agnostic
[16]. This means that you can use it with any machine learning or deep learning
framework.
Optuna works by running a series of experiments to evaluate different combinations
of hyperparameter values. Optuna uses a Bayesian optimization algorithm to guide
the search process, which can help find the best hyperparameters more efficiently
than other methods, such as grid search or random search.
The main advantages of Optuna are the following:

• efficiency: Optuna can find the best hyperparameters more efficiently than
other methods, such as grid search or random search;

• ease of use: Optuna has a simple API that makes it easy to use without the
need to modify your code;

• flexibility: Optuna can be used with any deep learning framework and can
optimize any number of hyperparameters;

• distributed training: Optuna supports distributed training, which can make
it faster to find the best hyperparameters for large models.

5.1.2 Basic structure

When we want to optimize a model, we must first define the hyperparameters
that will be optimized by the process. This can be done using a built-in Optuna
object that allows us to define the hyperparameter values called Trial. The Trial
object represents a single experiment that Optuna is running. It contains different
properties such as:

• the hyperparameter values that were used for the experiment;

• the objective function value for the experiment;

• the status of the experiment (running, finished, pruned).

Trial objects can be used to track the progress of the hyperparameter optimization
process and to get insight into the performance of different hyperparameter values.
Another important object of Optuna is the Study object that is a collection of
trials. It represents a single hyperparameter optimization experiment. Studies can
be used to optimize different deep learning models, different datasets, and different
hyperparameter spaces.
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5.1.2 - Basic structure

# 1. Define the objective function

def objective(trial):

# Define hyperparameters and model

# Train and evaluate the model

# Return the evaluation metric

# 2. Create a Study Object

study = optuna.create_study(direction= ’ maximize ’ )

# 3. Run the Optimization Process

study.optimize(objective , n_trials =100) �
Listing 5.1: Optuna basic structure

The basic structure of an optimization process (listing 5.1) consists of the following
steps:

1. defining the objective function: in this process an evaluation metric must be
returned (for example test accuracy) to evaluate the trial with the defined
hyperparameters;

2. creating a study object: create a study object that can be used to keep
track of the experiments. A “direction” must be defined to tell Optuna to
maximize the evaluation metric (accuracy for instance) or to minimize it (loss
for instance);

3. running the optimization process: the optimization process is run for “n_trials”
iterations, each time with different hyperparameters according to bayesian
optimization search.

At the end of a study, the study object contains all the information about the
optimization that was just performed. Some useful information that can be re-
trieved includes: the best combination of hyperparameters found, according to the
evaluation metric, the combinations of ’top n’ and ’worst n’ hyperparameters, to
provide insights into which combinations are good and which are not, and various
graphs that can be used to visualize the importance of the hyperparameter, the
optimization history and correlations between the values of the hyperparameters
and the values of the objective function values.
All of this helped me design the best architecture for both the LSTM model (Section
5.2) and CGRNN model (Section 5.3).
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5.2 Long Short-Term Memory Model (LSTM)

As stated in [25], LSTM models have not been used for seizure prediction, so there
are no references in the literature on an optimal internal architecture. Therefore, I
rely heavily on Optuna to find the best possible architecture.
The general structure can be seen in figure 5.1.

Figure 5.1: LSTM model inspired by [25]

The raw signals, normalized as stated in 4.2.2, flow in a two-layer LSTM structure
where the temporal features are automatically extracted by the model. Between
these two layers, there is a dropout layer that regularizes the model to rely on
different sets of features to prevent overfitting.
Before being used to classify preictal and interictal data, these features pass through
a dropout layer and then a fully connected layer to discriminate between the two
classes.
This architecture is quite simple, but I found no information on LSTM layers, the
number of neurons on each layer, dropout values, or many other parameters in the
literature. To address this problem, I optimized both architectural and learning
hyperparameters using Optuna.

Here are the hyperparameters that I tested:
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5.2 - Long Short-Term Memory Model (LSTM)

• Architectural:

– number of LSTM layers: 1, 2, 3;

– number of hidden neurons: 32, 64, 128, 256.

• Learning:

– learning rate: from 1e-5 up to 0.1;

– batch size: 16, 32, 64, 128, 256;

– dropout value between LSTMs: form 0.1 up to 0.9;

– dropout value before fc-layer: form 0.1 up to 0.9;

– number of training epochs: 50, 100, 150, 200.

The entire optimization process took 1 day and 22 hours to complete successfully,
in 45 trials in which the evaluation metric was the accuracy on the test set with
a 5-fold RCV procedure.
Figure 5.2 shows the relative importance of each hyperparameter in predicting the
values of the objective function.

Figure 5.2: LSTM optimization: parameter importance

The most important hyperparameters that have the greatest impact on performance
are the learning rate and the hidden size of each LSTM layer, followed by the two
dropout values, the batch size, and the number of epochs required to properly train
the model. The number of LSTM layers is the least important hyperparameter.
This could be because the number of hidden units per layer has a greater impact
on the model’s capacity (ability to learn and represent complex patterns) than the
number of layers, which can cause overfitting due to the increased computational
complexity of the model.
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In figure 5.3 there is the optimization history plot for the 45 trials. As Optuna
explores different hyperparameter combinations, we can see that is capable of finding
better and better solutions even if there is some randomness in the optimization
process, as the objective function value can fluctuate from trial to trial.

Figure 5.3: LSTM optimization: history plot

Overall, the optimization history plot shows that Optuna was able to find a good
set of hyperparameters for the model that are the following:

• Architectural:

– number of LSTM layers: 2;
– number of hidden neurons: 32.

• Learning:

– learning rate: 0.0048;
– batch size: 32;
– dropout value between LSTMs: 0.137;
– dropout value before fc-layer: 0.3;
– number of training epochs: 100.

This is the final LSTM architecture that was used to obtain the results presented
in chapter 6.

5.3 Convolutional Gated RNN model (CGRNN)

Considering that the input is an EEG, an obvious approach would be stacking
multiple LSTMs as the previous model in figure 5.1 but I decided to use GRUs
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5.3 - Convolutional Gated RNN model (CGRNN)

since they use fewer parameters than LSTMs and hence offer a faster training time
while requiring data to generalize.
GRUs, such as LSTMs, are architectures for handling sequential input data, which
has led to state-of-the-art accuracy in various pattern recognition tasks. However,
when applied to relatively long input time series data, this approach turns out to
be computationally very intensive and time-consuming to train.
To solve this problem, S. Roy et al. [20], tried to downsample the data to an
acceptable size before feeding them into the GRUs. To mitigate these problems,
they used multiple 1D convolution layers (Conv1D) with strides larger than 1,
allowing the network to learn to appropriately reduce the input signal automatically.

Figure 5.4: CGRNN model inspired by [20]

The resulting architecture (CGRNN in figure 5.4) is a combination of Conv1D
layers followed by stacked GRU layers.
The main advantages of Conv1D layers are two:

1. learn to downsample the input signal, reducing the shapes of the input as we
move towards deeper layers. This is important for GRU layers, which are the
most computationally expensive part of the network to train;

2. learn local temporal dependencies from neighboring data points in the EEG
segments.

The GRU layers are then fed with the features extracted by the Conv1D layers,
which are responsible for capturing both short- and long-term dependencies in the
data.

43



Models and Optimization

Unlike LSTM in section 5.2 the paper [20] clearly described the architecture, so
Optuna was only used to find the best learning rate, batch size, and epochs, which
took 13 hours and 30 minutes over 30 trials.

Figure 5.5: CGRNN optimization: hyperparameter importance

Figure 5.5 shows the hyperparameter importance. As with the LSTM model,
the learning rate is the most important hyperparameter, while batch size plays
a marginal role in the learning process. This is likely because the architecture is
already optimized in the paper, making it less sensitive to changes in batch size
than to changes in learning rate.
Figure 5.6 there is the optimization history plot for the 30 trials. The plot shows
that the optimizer was able to find a good solution relatively quickly and that
the objective value improved steadily over time, suggesting that the optimizer had
found a near-optimal solution.

The final architecture of the CGRNN, that was used to get the results presented
in chapter 6, is the following:

• Architectural:

– number of Conv1D layers: 3 (from paper);

– kernel size for each Conv1D layer: 4 (from paper);

– number of hidden neurons (Conv1D): 32 (from paper);

– stride for each Conv1D layer: 2 (from paper);

– number of GRU layers: 4 (from paper);

– number of hidden neurons (GRU): 32 (from paper).

• Learning:
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5.3 - Convolutional Gated RNN model (CGRNN)

– learning rate: 0.0017;

– batch size: 128;

– number of training epochs: 200.

Figure 5.6: CGRNN optimization: history plot
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6 | Results

In this chapter, I will present all the results I have been able to obtain with the four
selected datasets. The various datasets are evaluated based on seven experiments: 5-fold
cross validation, 5-fold cross validation with randomized channels, leave-one-patient-out,
leave-one-patient-out with randomized channels, variance feature selection, variance
difference feature selection, and wrapper feature selection

6.1 Introduction

This chapter summarizes all the results I have been able to obtain for the two
models (LSTM and CGRNN). For each model, seven experiments were conducted
with four different datasets for a total of 56 trials.
The first goal of these experiments was to evaluate the actual ability of the models
to extract relevant temporal features for the prediction of epileptic seizures. The
second goal was to evaluate which datasets contained the most relevant information
so that future experiments could be carried out more accurately. This is particularly
true for feature selection experiments.
As we have already mentioned in chapter 4, feature selection is the process of
selecting a subset of the most relevant features from a dataset for a given task. This
has many advantages from a computational perspective, but it also has advantages
from a medical perspective.
Reducing the number of channels (which in our case are the features of the dataset)
not only leads to improved model performance, but also to a reduction in the costs
and time of electroencephalographic examinations, as it is possible to record fewer
areas of the brain than those used in these experiments (Table 4.1).
Another advantage is that with careful selection of channels, it is possible to identify
which areas of the brain are more or less responsible for which types of epileptic
seizures, thus helping to develop a more accurate understanding of the origins and
causes of this disease.

This chapter will be divided into datasets, and each dataset presents sections
divided by experiments and models. This allows for a comparison of the models’
performance for any given experiment.
To have a fair comparison between the two models, I decided to train even the
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CGRNN for 100 epochs (instead of 200) since, as seen in the chapter 5 section 5.3,
it has a nearly marginal impact on the learning capabilities of the model, and this
is also confirmed in the many attempts that I have done.

All line graphs were created using the mean values’ results from the 5 folds both
for training and test. The cold colors (blue and green) are associated with training,
while the warm colors (yellow and orange) are associated with testing. The values
used to create the graphs are those obtained from the mean of the performances in
the five folds.

6.2 Dataset: 5sec segments - 128Hz - no overlap

The dataset in table 6.1 is made up of 57.612 segments, each described by 20
channels, with a length of 640 for a final shape of (57.612, 20, 640). This comes
from raw EEG signals that are subsampled at 128 Hz without overlap between
segments.

Frequency Overlap #Segments #Channels Seq.Len
128 0 57.612 20 640

Table 6.1: Dataset: 5 second segments with no overlap and 128Hz frequency

6.2.1 5-Fold RCV

Metrics LSTM CGRNN p-value
ACC 98.09 ± 0.28 96.56 ± 1.54 0.09
SEN 98.74 ± 0.73 98.89 ± 0.9 0.08
SPE 97.42 ± 0.92 96.16 ± 2.37 0.54

Table 6.2: Dataset 5s 128Hz 0s: summary result of the RCV procedure on the test set

In table 6.2 and figure 6.1 we find the results of the 5-fold cross-validation. As we
can see, both models are able to achieve good results that exceed the 95% threshold
for each proposed metric.
The LSTM model obtains more accurate and precise results with much lower
variability than the CGRNN. However, the LSTM takes about 44 seconds per
training epoch, compared to 15 seconds for the CGRNN.
In total, the LSTM takes 73 minutes to complete one training fold, compared to 25
minutes for the CGRNN.
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6.2.2 - 5-Fold RCV randomized channels

The p-value is less than the threshold of 0.05 for all metrics reported. This suggests
that the variability in the results is not due to the test that was performed, but to
the intrinsic randomness of the training methods of the models. Both models are
capable, for the RCV, of learning robust temporal features to predict an epileptic
seizure within 30 minutes from onset.

Figure 6.1: 5F RCV: comparison between LSTM and CGRNN on dataset 5s 128Hz 0 overlap.
The intervals on the histograms (black lines) are the standard error for the corre-
sponding metric. The data are the one in table 6.2

In figures 6.2 and 6.3 we can see a comparison of training and test procedures for
the two models.
In these figures, we can see how both models are able to learn the temporal features
without overfitting, but the main difference is that the CGRNN presents more
linear curves with fewer sharp changes, especially in the test loss, suggesting a more
stable and robust training phase.

6.2.2 5-Fold RCV randomized channels

Metrics LSTM CGRNN p-value
ACC 98.13 ± 0.38 97.46 ± 0.66 0.13
SEN 98.11 ± 0.95 96.76 ± 1.8 0.23
SPE 98.15 ± 1.29 98.17 ± 0.53 0.98

Table 6.3: Dataset 5s 128Hz 0s: summary result of the RCV procedure on the test set
with randomized channels

In table 6.3 and figure 6.4 can see the results for the RCV with randomized
channels.
The p-value suggests that the two models behave in the same way, thus having no
significant differences in terms of performance.
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Figure 6.2: 5F RCV: training and test accuracy/loss for the LSTM model on dataset 5s 128Hz
0 overlap

In this case, the CGRNN presents smaller oscillations than in the previous case,
suggesting that the oscillations are due to the random nature of the training.
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6.2.2 - 5-Fold RCV randomized channels

Figure 6.3: 5F RCV: training and test accuracy/loss for the CGRNN model on dataset 5s 128Hz
0 overlap

Figure 6.4: 5F RCV: comparison between LSTM and CGRNN on dataset 5s 128Hz 0 overlap
with randomized channels. The data is the one in table 6.3

Figures 6.5 and 6.6 show the loss and accuracy for both training and test.
Even in this case the CGRNN 6.6 presents smoother curves than the one for LSTM
6.5 that, as in the previous case, presents some spikes in the loss values.
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Figure 6.5: 5F RCV: training and test accuracy/loss for the LSTM model on dataset 5s 128Hz
0 overlap with randomized channels

Figure 6.6: 5F RCV: training and test accuracy/loss for the CGRNN model on dataset 5s 128Hz
0 overlap with randomized channels
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6.2.3 - LOO

6.2.3 LOO

Metrics LSTM CGRNN p-value
ACC 62.94 ± 8.71 56.88 ± 6.5 0.28
SEN 64.63 ± 12.51 55.33 ± 13.3 0.32
SPE 61.12 ± 11.21 58.54 ± 11.42 0.75

Table 6.4: Dataset 5s 128Hz 0s: summary result of the LOO procedure on the test set

Table 6.4 and figure 6.7 show the results for the LOO validation procedure on
the given dataset. As we stated in the definition of the problem in chapter 4, the
LOO procedure evaluates the ability of the model to predict seizures of unknown
patients. This task is quite challenging, and this is shown in the tables where the
results, compared to the RCV procedure, get a huge drop.
The results suggest that the LSTM model has a slight advantage over the CGRNN
model in terms of accuracy and sensitivity. However, the difference between the two
models is not statistically significant (the p-values are higher than the threshold at
5%).
In this experiment, both LSTM and CGRNN have huge confidence intervals in
all metrics caused by uncertain results. This was expected due to the challenging
nature of the task, especially on a dataset with high variance of data (different
patients, different types of epilepsy, and different amounts of data recorded).
Table 6.5 and table 6.6 show in detail the results for each patient.
It is difficult to draw any firm conclusions about the overall performance of the
models from these results, as performance varies significantly from patient to patient.
However, there are some general trends that can be observed. There are some
patients like Patient 6 or Patient 13 who, in both models, have good results, which
means that the models were able to detect their seizures even if they were an
’unknown’ patient. On the other hand, there are patients like Patient 27 and
Patient 28 who perform very poorly.
The fact that some patients have good performance and others do not can be due
to many reasons, such as

• some patients in the training set present a type of seizure that is similar to
one of the left out patients (good performances);

• some patients have a rare type of seizure and they are the only one in the
dataset with such disease (poor performances);

• seizures can originate from different areas of the brain, for which there may
be many or few data available. This can lead to good or poor performance
accordingly;

• it is possible that patient data may have been recorded under optimal condi-
tions and have good signal quality, resulting in good performance, or, on the
contrary, may have many artifacts, resulting in poorer performance.
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There are many things that must be considered, in addition to the fact that LOO
is a very complex task and should be carefully analyzed even with the help of
specialized clinicians. The fact that it is possible to differentiate patients for whom
the procedure works well from others for whom it does not work well is a starting
point that deserves further exploration.

Figure 6.7: LOO: comparison between LSTM and CGRNN on dataset 5s 128Hz 0 overlap. The
data are the one in table 6.4
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6.2.3 - LOO

Name #Preictal #Interictal ACC (%) SEN (%) SPE (%)
Patient 1 719 2681 18,39 12,66 24,38
Patient 2 360 5275 60,51 97,78 21,51
Patient 3 720 5431 92,78 94,72 90,83
Patient 4 1440 9195 41,60 6,25 76,94
Patient 5 360 1738 79,12 68,33 90,41
Patient 6 2763 17064 92,73 98,19 87,23
Patient 7 360 1728 32,24 37,50 26,74
Patient 8 2160 11072 72,62 93,19 52,04
Patient 9 720 2765 77,99 91,25 64,72
Patient 10 462 3006 87,17 93,72 80,18
Patient 11 720 3595 96,67 95,69 97,64
Patient 12 1080 14235 50,14 98,70 0,85
Patient 13 720 2318 98,06 100,00 96,11
Patient 14 540 1987 78,22 85,19 70,93
Patient 15 810 3606 65,25 55,06 75,70
Patient 16 468 3744 56,36 62,61 50,00
Patient 17 720 3296 75,49 54,17 96,81
Patient 18 2427 18868 56,31 64,98 47,57
Patient 19 1080 5610 49,81 2,13 98,21
Patient 20 720 6516 48,12 50,14 46,11
Patient 21 1800 16731 81,45 99,89 62,84
Patient 22 1440 6989 72,43 60,28 84,58
Patient 23 835 6306 76,62 98,80 54,28
Patient 24 590 3930 48,87 93,90 1,60
Patient 25 720 3196 71,53 79,31 63,75
Patient 26 1080 8632 73,09 48,06 98,50
Patient 27 720 5630 3,26 3,47 3,06
Patient 28 1080 7916 27,29 18,43 36,28
Patient 29 1192 3661 41,30 10,15 72,87

Table 6.5: Dataset 5s 128Hz 0s test set: results for the LOO procedure with LSTM
divided by patient.
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Name #Preictal #Interictal ACC (%) SEN (%) SPE (%)
Patient 1 719 2681 48,93 0,00 100,00
Patient 2 360 5275 64,84 99,17 20,71
Patient 3 720 5431 65,77 90,56 39,83
Patient 4 1440 9195 40,02 12,78 68,53
Patient 5 360 1738 51,41 19,72 92,14
Patient 6 2763 17064 86,90 78,32 95,55
Patient 7 360 1728 46,56 53,06 38,21
Patient 8 2160 11072 49,50 59,31 39,24
Patient 9 720 2765 67,05 42,08 93,17
Patient 10 462 3006 78,24 91,77 63,82
Patient 11 720 3595 48,86 0,00 100,00
Patient 12 1080 14235 52,73 98,15 2,07
Patient 13 720 2318 82,10 99,44 63,95
Patient 14 540 1987 32,32 15,19 51,45
Patient 15 810 3606 78,84 94,44 61,43
Patient 16 468 3744 31,25 26,92 35,98
Patient 17 720 3296 80,82 70,56 91,57
Patient 18 2427 18868 62,42 63,12 61,67
Patient 19 1080 5610 48,83 13,70 88,02
Patient 20 720 6516 71,38 50,00 93,75
Patient 21 1800 16731 80,58 98,22 62,78
Patient 22 1440 6989 64,28 93,68 33,50
Patient 23 835 6306 55,41 99,28 11,22
Patient 24 590 3930 50,78 95,59 3,74
Patient 25 720 3196 55,40 58,89 51,74
Patient 26 1080 8632 64,94 46,57 85,43
Patient 27 720 5630 24,93 4,58 46,22
Patient 28 1080 7916 16,41 24,63 7,23
Patient 29 1192 3661 48,22 4,78 94,78

Table 6.6: Dataset 5s 128Hz 0s test set: results for the LOO procedure with CGRNN
divided by patient
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6.2.4 LOO randomized channels

Metrics LSTM CGRNN p-value
ACC 58.24 ± 8.57 53.70 ± 6.08 0.43
SEN 60.49 ± 13.53 48.37 ± 12.2 0.2
SPE 56.05 ± 12.36 59.31 ± 11.28 0.7

Table 6.7: Dataset 5s 128Hz 0s: summary result of the LOO procedure on the test set
with randomized channels

In the case of randomized channels, the same consideration holds. Table 6.7 and
Figure 6.8 suggest that LSTM has a small advantage over CGRNN in accuracy and
specificity, while it is slightly worse in sensitivity. Overall, the two models perform
similarly even in the case of randomized channels because the p-values, for all the
three metrics, are grater than the 5% threshold.
Even in this case the confidence intervals are large, suggesting uncertainty in the
degree of prediction with values similar to the one presented in table 6.4.
Tables 6.8 and 6.9 show the results for each patient. As before, we have patients in
which the models perform well (Patient 11) and others in which they perform very
poorly (Patient 27).

Figure 6.8: LOO with randomized channels: comparison between LSTM and CGRNN on dataset
5s 128Hz 0 overlap. The data are the one in table 6.7
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Name #Preictal #Interictal ACC (%) SEN (%) SPE (%)
Patient 1 719 2681 26,99 19,47 34,83
Patient 2 360 5275 62,64 100,00 23,55
Patient 3 720 5431 57,50 83,75 31,25
Patient 4 1440 9195 32,43 57,99 6,88
Patient 5 360 1738 68,75 43,06 95,64
Patient 6 2763 17064 96,18 96,85 95,51
Patient 7 360 1728 49,29 3,61 97,09
Patient 8 2160 11072 65,93 82,78 49,07
Patient 9 720 2765 69,79 95,97 43,61
Patient 10 462 3006 77,23 95,89 57,37
Patient 11 720 3595 96,60 97,22 95,97
Patient 12 1080 14235 53,03 99,91 5,45
Patient 13 720 2318 94,31 98,47 90,14
Patient 14 540 1987 60,80 24,26 99,03
Patient 15 810 3606 74,31 56,17 92,91
Patient 16 468 3744 7,87 4,49 11,30
Patient 17 720 3296 57,64 15,42 99,86
Patient 18 2427 18868 57,51 60,73 54,26
Patient 19 1080 5610 49,35 1,85 97,56
Patient 20 720 6516 39,38 50,14 28,61
Patient 21 1800 16731 87,30 98,94 75,56
Patient 22 1440 6989 58,92 94,03 23,82
Patient 23 835 6306 67,91 98,68 36,91
Patient 24 590 3930 68,14 83,05 52,49
Patient 25 720 3196 59,24 93,06 25,42
Patient 26 1080 8632 74,44 59,72 89,38
Patient 27 720 5630 3,26 0,69 5,83
Patient 28 1080 7916 22,57 19,17 26,03
Patient 29 1192 3661 49,37 18,88 80,27

Table 6.8: Dataset 5s 128Hz 0s test set with randomized channels: results for the LOO
procedure with LSTM divided by patient
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Name #Preictal #Interictal ACC (%) SEN (%) SPE (%)
Patient 1 719 2681 27,34 48,12 5,66
Patient 2 360 5275 61,56 98,33 14,29
Patient 3 720 5431 82,67 88,75 76,31
Patient 4 1440 9195 42,97 14,51 72,75
Patient 5 360 1738 47,81 15,28 89,64
Patient 6 2763 17064 68,77 55,81 81,83
Patient 7 360 1728 38,44 40,28 36,07
Patient 8 2160 11072 62,76 74,58 50,39
Patient 9 720 2765 71,80 46,67 98,11
Patient 10 462 3006 56,14 90,48 19,59
Patient 11 720 3595 94,96 93,06 96,95
Patient 12 1080 14235 51,81 96,11 2,38
Patient 13 720 2318 48,86 0,00 100,00
Patient 14 540 1987 35,64 35,74 35,54
Patient 15 810 3606 47,27 0,00 100,00
Patient 16 468 3744 26,90 15,81 39,02
Patient 17 720 3296 63,21 42,64 84,74
Patient 18 2427 18868 54,81 44,79 65,35
Patient 19 1080 5610 46,92 17,96 79,24
Patient 20 720 6516 68,82 58,89 79,22
Patient 21 1800 16731 49,78 0,00 100,00
Patient 22 1440 6989 74,18 90,69 56,90
Patient 23 835 6306 71,33 98,08 44,39
Patient 24 590 3930 59,38 65,76 52,67
Patient 25 720 3196 61,65 65,42 57,70
Patient 26 1080 8632 76,51 63,80 90,70
Patient 27 720 5630 11,93 3,89 20,35
Patient 28 1080 7916 16,02 11,11 21,49
Patient 29 1192 3661 37,28 26,43 48,92

Table 6.9: Dataset 5s 128Hz 0s test set with randomized channels: results for the LOO
procedure with CGRNN divided by patient
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6.2.5 Filter feature selection

Method Ranked channels (desc)
Variance Pz-C4-P4-P3-F7-Fp2-Cz-F3-T7-O1-T8-F8-Fp1-Fz-Oz-C3-P8-F4-O2-P7

Variance-diff Fz-C4-C3-F4-P3-Cz-P7-O2-Fp1-Fp2-P4-Oz-F7-F8-O1-P8-F3-Pz-T7-T8
Table 6.10: Channels in descending order ranked by variance and variance-difference

filter methods

In table 6.10, the EEG channels are listed in descending order of importance,
calculated using the variance feature selection and variance difference feature
selection methods.
To evaluate the actual informativeness of the channels and therefore the effectiveness
of the feature selection methods, the two models were retrained five times, each
using a different number of channels. The evaluation method used is 5-fold RCV.
The channels were taken in descending order as reported in Table 6.10. The
experiments carried out involve the use of one, three, five, ten, and fifteen channels.
In order to compare the CGRNN fairly with the wrapper methods, the latter was
also trained with sixteen channels. The results of the variance-based filter method
are reported in Table 6.11 and in Figure 6.9.
With a single channel (Pz), both models obtained relatively good results of about

Variance ACC(%) SEN(%) SPE(%)

1 channel
LSTM 71,70 69,48 73,91

CGRNN 71,53 69,71 73,38

3 channels
LSTM 79,95 64,72 95,45

CGRNN 82,34 83,26 81,42

5 channels
LSTM 89,53 83,41 95,81

CGRNN 86,15 88,53 83,78

10 channels
LSTM 91,96 86,45 97,44

CGRNN 92,85 92,29 93,40

15 channels
LSTM 95,59 92,99 98,27

CGRNN 96,20 95,17 97,22

16 channels
LSTM — — —

CGRNN 95,63 95,23 96,02
Table 6.11: Dataset 5s 128Hz 0s: results for the feature selection procedure using the

variance filter method.

70% in all three metrics. As expected, with increasing number of channels, the
performance of the models improves significantly.
Moving from one channel to three (Pz-C4-P4), the performance of the CGRNN
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6.2.5 - Filter feature selection

increased dramatically, surpassing the LSTM for accuracy and sensitivity, but not
for specificity.
The trend is the same: the more channels are used for training, the better the
performance of the models. It appears that all channels are necessary for predicting
an epileptic seizure, and that eliminating any of them would lead to a slight, yet
noticeable, decrease in performance.
One thing to note for the CGRNN is that the results with sixteen channels (Pz-
C4-P4-P3-F7-Fp2-Cz-F3-T7-O1-T8-F8-Fp1-Fz-Oz-C3) show a slight decrease in
performance compared to the results recorded with fifteen channels (Pz-C4-P4-
P3-F7-Fp2-Cz-F3-T7-O1-T8-F8-Fp1-Fz-Oz). This may be due to the randomness
of the training method because, as reported in Table 6.2 where the 5-fold RCV
was performed on all channels, the results are similar to those reported with 15
or 16 channels. This may be an indication that only the last four or five channels
(C3-P8-F4-O2-P7) contain information that is not very relevant for the experiments
conducted in this paper.

Figure 6.9: Dataset 5s 128Hz 0s: result for the variance feature selection based on the results
on table 6.11

Even if we use the channels in order of importance according to the variance
difference, the considerations made before are still valid. These can be seen in table
6.12 and figure 6.10.
In this case, the use of a single channel (Fz) results in the CGRNN achieving similar
performances to those in the case of variance. The LSTM, on the other hand, results
in poor performances. With the use of three channels (Fz-C4-C3), the performance
of both models increases drastically as in the previous case.
This behavior suggests that, even if the two filtering methods give different scores
to the channels, all of them contribute to the predictions of epileptic seizures,
regardless of the order in which they are used.
Here are some considerations. In the case of the variance filtering method, one of the
channels with a lower score is F4, which in the case of the variance difference method
is one of the channels with a higher score. This means that F4 is never used in the

61



Results

Variance difference ACC(%) SEN(%) SPE(%)

1 channel
LSTM 54,46 70,16 38,88

CGRNN 71,79 69,02 74,52

3 channels
LSTM 81,68 72,31 91,63

CGRNN 84,55 82,16 87,01

5 channels
LSTM 87,90 80,22 95,48

CGRNN 88,44 87,15 89,74

10 channels
LSTM 92,43 85,91 98,96

CGRNN 92,88 92,35 93,43

15 channels
LSTM 95,68 92,34 99,15

CGRNN 95,10 96,94 93,28

16 channels
LSTM — — —

CGRNN 96,06 96,47 95,64
Table 6.12: Dataset 5s 128Hz 0s: results for the feature selection procedure using the

variance difference filter method.

variance filtering method (because it is the 18th channel, for which no experiments
have been conducted), while it is used almost always in the variance difference
method (because it is the fourth channel in order of importance). Whether used or
not, the models still achieve good performance. This suggests that the channels
contain redundant information that can be retrieved from other channels if it is not
available from a specific channel. Furthermore, the total information contained in
each channel is different enough to lead to optimal performance when all channels
are used. This is demonstrated by the fact that performance improves as the
number of channels increases, even if the improvement becomes less significant with
the addition of more channels.
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6.2.6 - Wrapper feature selection

Figure 6.10: Dataset 5s 128Hz 0s: result for the variance difference feature selection based on
the results on table 6.12

6.2.6 Wrapper feature selection

Model #channels Selected channels
LSTM 15 Cz-F4-F7-F8-Fp1-Fp2-Fz-O1-O2-Oz-P4-P8-Pz-T7-T8

CGRNN 16 C3-Cz-F3-F8-Fp1-Fp2-Fz-O1-O2-Oz-P4-P7-P8-Pz-T7-T8
Table 6.13: Channels selected by the wrapper feature selection method presented in

listing 4.1

Table 6.13 shows the channels selected by the procedure in listing 4.1. This
procedure reduced the number of channels from twenty to fifteen for LSTM and
sixteen for CGRNN, without degrading the initial performance (calculated using
5-fold RCV with twenty channels).
The wrapper method applied to LSTM eliminated channels F3, C3, C4, P3, and
P7, while applying it to CGRNN, the eliminated channels are C4, F4, F7, and P3.
As shown in table 6.14 and figure 6.11, the difference in channels does not lead to

Metrics LSTM CGRNN p-value
ACC 97.26 ± 0.21 96.87 ± 0.43 0.16
SEN 97.17 ± 0.67 96.95 ± 0.96 0.73
SPE 97.33 ± 0.95 96.77 ± 0.43 0.31

Table 6.14: Dataset 5s 128Hz 0s: summary result of the wrapper feature selection
method presented in listing 4.1

a significant difference in performance in the two models as discussed for the filter
methods. Both models can achieve excellent results, exceeding 96% in each metric,
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Results

with relatively low variability, less than 1. This indicates that the proposed results
are fairly accurate.
A significant statistic is the p-value that, for each metric, is greater than the
threshold value set at 5%. This tells us that the results, for each model, depend
on random fluctuations in the learning method and, therefore, the fact that the
wrapper method selected fifteen channels for the LSTM and sixteen for the CGRNN
does not influence the actual performance capabilities of the latter. This leads
us to say, with a certain degree of confidence, that the CGRNN even with fifteen
channels would have reached a similar performance to those obtained with sixteen
channels.
The main reason why CGRNN was unable to further reduce the number of channels
is due to the wrapper feature selection stopping methodology. This methodology
does not round out the results, which means that even a small fluctuation of 0.01
can result in a performance downgrade. This leads to stopping the channel selection.
In table 6.15 and figure 6.12, we can see a comparison between the results obtained

Figure 6.11: Dataset 5s 128Hz 0s: result for the wrapper feature selection method on the results
on table 6.14

by the three feature selection methods on the LSTM model using fifteen channels
(in order to allow comparison with the wrapper method).
As already discussed in chapter 4, the wrapper method results in slightly better
performance than the other two methods, at the cost of a higher computational
and time expense.
In table 6.16, we can see that the p-values associated with accuracy are all well

above the 5% threshold. This is an indication that the three feature selection
methods, even though they select different channels, allow the model to learn rele-
vant temporal features and achieve good performance in the 5-fold cross-validation
evaluation method. Despite the different feature selection methods, these p-values
suggest what was already discussed previously: all channels contain relevant and
redundant information that the model can exploit to predict epileptic seizures even
when some channels are completely removed from the training phase. All three
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6.2.6 - Wrapper feature selection

Method ACC(%) SEN(%) SPE(%)
Variance 95,59 98,27 92,99
Var-Diff 95,68 99,15 92,34
Wrapper 97,60 96,92 98,28

Table 6.15: Dataset 5s 128Hz 0s: comparison between the result of the three feature
selection methods on LSTM with 15 channels

Figure 6.12: Dataset 5s 128Hz 0s: comparison between the three feature selection methods on
LSTM using the results in table 6.15

methods select a good subset of channels that the model can exploit effectively. In
table 6.17 and figure 6.13, we can see a comparison between the results obtained by
the three feature selection methods on the CGRNN model using sixteen channels
(in order to allow comparison with the wrapper method).
In this case, as in the case of LSTMs, the wrapper method results in slightly better
performance than the other two methods in exchange for a higher computational
cost.
In table 6.18, we can find the p-values, calculated on accuracy, that compare the

three feature selection methods applied to the CGRNN.
In this case, as in the LSTM, the p-values indicate that the three methods, among

Method p-value
Wrapper-Variance 0,59
Wrapper-VarDiff 0,95
Variance-VarDiff 0,56

Table 6.16: Dataset 5s 128Hz 0s: p-value between the various feature selection methods
for LSTM
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Results

Method ACC(%) SEN(%) SPE(%)
Variance 95,63 96,02 95,23
Var-Diff 96,06 95,64 96,47
Wrapper 97,07 96,82 97,30

Table 6.17: Dataset 5s 128Hz 0s: comparison between the result of the three feature
selection methods on CGRNN with 16 channels

Figure 6.13: Dataset 5s 128Hz 0s: comparison between the three feature selection methods on
CGRNN using the results in table 6.17

themselves, do not lead to substantial differences in the temporal features learned
by the model for the purpose of predicting epileptic seizures. Even in the case of
CGRNN, the learned temporal features contain useful information for prediction,
but are redundant, so even if a channel is not selected by the feature selection
procedure, its information is still replaced by information present in other channels,
which makes the performance still good.
In any case, the feature selection methods cause a slight decrease in performance,

which, although slight, shows that all the channels, in one way or another, contribute
to the prediction.

Method p-value
Wrapper-Variance 0,38
Wrapper-VarDiff 0,48
Variance-VarDiff 0,86

Table 6.18: Dataset 5s 128Hz 0s: p-value between the various feature selection methods
for CGRNN
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6.3 - Dataset: 5sec segments - 128Hz - 3sec overlap

From now on, I present the results of the experiments conducted on the remaining
three datasets:

• 5-second segments, sampled at 128Hz with 3 seconds of overlap;

• 5-second segments, sampled at 64Hz with no overlap;

• 5-second segments, sampled at 64Hz with 3 seconds of overlap

To avoid repetitions, the considerations will be omitted as they are very similar to
what has already been reported (section 6.2). Considerations will only be added in
the case of significantly different behaviors from what has already been discussed.
In section 6.6, we find a final summary that takes into account and compares all
the results of all the experiments from all dataset.

6.3 Dataset: 5sec segments - 128Hz - 3sec overlap

The dataset in Table 6.19 is made up of 143.940 segments, each described by 20
channels, with a length of 640 for a final shape of (143.940, 20, 640). This comes
from raw EEG signals that are subsampled at 128 Hz with 3 seconds of overlap
between segments

Frequency Overlap #Segments #Channels Seq.Len
128 3 143.940 20 640

Table 6.19: Dataset: 5 second segments with 3 seconds overlap and 128Hz frequency

In this experiment, unlike the previous, I have used a dataset in which the segments
overlap. More precisely, the last three seconds of one segment correspond to the
first three of another.
This dataset was created to verify how RNN models behave when segments share
information. The idea is that overlapping segments can help RNN models better
correlate segments with each other, resulting in better performance.
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Results

6.3.1 5-Fold RCV

Metrics LSTM CGRNN p-value
ACC 98.90 ± 0.49 99.32 ± 0.07 0.14
SEN 98.51 ± 0.91 99.25 ± 0.33 0.18
SPE 99.28 ± 0.57 99.38 ± 0.30 0.78

Table 6.20: Dataset 5s 128Hz 3s: summary result of the RCV procedure on the test set

Figure 6.14: 5F RCV: comparison between LSTM and CGRNN on dataset 5s 128Hz 3 seconds
overlap. The data are the one in table 6.20
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6.3.1 - 5-Fold RCV

Figure 6.15: 5F RCV: training and test accuracy/loss for the LSTM model on dataset 5s 128Hz
3 seconds overlap

Figure 6.16: 5F RCV: training and test accuracy/loss for the CGRNN model on dataset 5s
128Hz 3 seconds overlap
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Results

6.3.2 5-Fold RCV randomized channels

Metrics LSTM CGRNN p-value
ACC 98.65 ± 0.65 99.15 ± 0.47 0.26
SEN 98.47 ± 1.17 99.48 ± 0.23 0.13
SPE 99.82 ± 0.89 99.81 ± 1.1 0.98

Table 6.21: Dataset 5s 128Hz 3s: summary result of the RCV procedure with randomized
channels on the test set

Figure 6.17: 5F RCV: comparison between LSTM and CGRNN on dataset 5s 128Hz 3 seconds
overlap. The data are the one in table 6.21
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6.3.2 - 5-Fold RCV randomized channels

Figure 6.18: 5F RCV: training and test accuracy/loss for the LSTM model on dataset 5s 128Hz
3 seconds overlap

Figure 6.19: 5F RCV: training and test accuracy/loss for the CGRNN model on dataset 5s
128Hz 3 seconds overlap
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Results

6.3.3 LOO

Metrics LSTM CGRNN p-value
ACC 60.25 ± 8.73 56.64 ± 7.20 0.53
SEN 63.21 ± 12.52 59.70 ± 13.37 0.71
SPE 57.28 ± 12.06 50.46 ± 11.09 0.41

Table 6.22: Dataset 5s 128Hz 3s: summary result of the LOO procedure on the test set

Figure 6.20: LOO: comparison between LSTM and CGRNN on dataset 5s 128Hz 3s overlap.
The data are the one in table 6.22
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6.3.3 - LOO

Name #Preictal #Interictal ACC (%) SEN (%) SPE (%)
Patient 1 1797 6703 31,19 1,56 61,00
Patient 2 898 13187 50,84 100,00 1,45
Patient 3 1798 13576 58,26 64,46 52,02
Patient 4 3598 22986 42,41 47,61 37,17
Patient 5 898 4343 73,27 58,57 88,03
Patient 6 6908 42659 95,04 96,60 93,48
Patient 7 898 4319 27,62 4,68 50,67
Patient 8 5398 27678 40,52 52,56 28,46
Patient 9 1798 6912 97,41 99,50 95,30
Patient 10 1153 7514 55,77 99,48 11,99
Patient 11 1798 8986 98,83 99,05 98,60
Patient 12 2698 35588 45,83 85,51 5,86
Patient 13 1798 5795 96,34 99,94 92,72
Patient 14 1348 4967 82,96 94,44 71,42
Patient 15 2025 9013 68,53 55,16 82,01
Patient 16 1169 9359 32,06 1,45 62,72
Patient 17 1798 8239 63,31 42,60 84,15
Patient 18 6067 47170 60,03 52,53 67,55
Patient 19 2698 14024 78,66 66,83 90,59
Patient 20 1798 16289 72,27 66,63 77,94
Patient 21 4498 41827 77,20 99,51 54,87
Patient 22 3598 17472 39,34 58,28 20,25
Patient 23 2088 15765 87,14 94,49 79,73
Patient 24 1475 9824 50,24 90,44 9,87
Patient 25 1798 7988 75,81 94,94 56,55
Patient 26 2698 21580 56,86 34,47 79,42
Patient 27 1798 14074 3,93 0,17 7,73
Patient 28 2698 19789 32,91 63,42 2,17
Patient 29 2978 9152 52,89 8,29 97,55

Table 6.23: Dataset 5s 128Hz 3s test set: results for the LOO procedure with LSTM
divided by patient
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Results

Name #Preictal #Interictal ACC (%) SEN (%) SPE (%)
Patient 1 1797 6703 19,95 22,48 17,40
Patient 2 898 13187 53,52 100,00 6,82
Patient 3 1798 13576 69,25 96,61 41,71
Patient 4 3598 22986 45,97 29,32 62,75
Patient 5 898 4343 59,99 35,08 85,01
Patient 6 6908 42659 75,09 96,42 53,39
Patient 7 898 4319 46,60 3,45 89,93
Patient 8 5398 27678 68,19 76,49 59,82
Patient 9 1798 6912 89,45 93,05 85,83
Patient 10 1153 7514 54,77 90,55 18,94
Patient 11 1798 8986 93,72 92,38 95,07
Patient 12 2698 35588 50,26 99,33 0,82
Patient 13 1798 5795 71,46 99,83 42,89
Patient 14 1348 4967 54,13 31,08 77,31
Patient 15 2025 9013 46,88 54,72 38,70
Patient 16 1169 9359 49,26 0,00 10,00
Patient 17 1798 8239 50,53 3,11 98,26
Patient 18 6067 47170 57,76 74,42 40,82
Patient 19 2698 14024 32,89 19,90 45,97
Patient 20 1798 16289 71,18 50,72 91,77
Patient 21 4498 41827 80,51 96,33 64,57
Patient 22 3598 17472 55,12 89,83 20,14
Patient 23 2088 15765 65,87 99,28 31,13
Patient 24 1475 9824 68,31 84,54 52,01
Patient 25 1798 7988 70,12 88,99 51,12
Patient 26 2698 21580 70,67 52,52 88,95
Patient 27 1798 14074 6,25 2,67 9,85
Patient 28 2698 19789 22,40 33,51 11,20
Patient 29 2978 9152 42,73 14,88 71,24

Table 6.24: Dataset 5s 128Hz 3s test set: results for the LOO procedure with CGRNN
divided by patient
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6.3.4 - LOO randomized channels

6.3.4 LOO randomized channels

Metrics LSTM CGRNN p-value
ACC 57.89 ± 7.88 59.38 ± 8.14 0.79
SEN 60.43 ± 12.42 63.30 ± 11.96 0.74
SPE 55.34 ± 11.96 55.41 ± 11.95 0.99

Table 6.25: Dataset 5s 128Hz 3s: summary result of the LOO procedure on the test set
with randomized channels

Figure 6.21: LOO with randomized channels: comparison between LSTM and CGRNN on
dataset 5s 128Hz with 3 second overlap. The data are the one in table 6.25
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Results

Name #Preictal #Interictal ACC (%) SEN (%) SPE (%)
Patient 1 1797 6703 28,63 4,17 53,22
Patient 2 898 13187 60,55 96,77 24,16
Patient 3 1798 13576 25,06 38,49 11,53
Patient 4 3598 22986 33,31 35,80 30,81
Patient 5 898 4343 69,87 61,14 78,64
Patient 6 6908 42659 87,77 83,06 92,49
Patient 7 898 4319 49,50 97,88 0,89
Patient 8 5398 27678 63,12 97,07 29,09
Patient 9 1798 6912 89,23 94,99 83,43
Patient 10 1153 7514 61,07 81,79 40,31
Patient 11 1798 8986 96,96 96,33 97,59
Patient 12 2698 35588 49,53 98,04 0,67
Patient 13 1798 5795 91,21 99,39 82,98
Patient 14 1348 4967 69,68 47,40 92,09
Patient 15 2025 9013 71,28 44,94 97,86
Patient 16 1169 9359 43,19 7,10 79,35
Patient 17 1798 8239 65,90 44,27 87,68
Patient 18 6067 47170 56,65 45,33 67,98
Patient 19 2698 14024 49,94 0,59 99,66
Patient 20 1798 16289 68,50 50,56 86,56
Patient 21 4498 41827 65,55 99,78 31,29
Patient 22 3598 17472 48,54 67,09 29,83
Patient 23 2088 15765 79,11 82,61 75,58
Patient 24 1475 9824 59,04 82,78 35,19
Patient 25 1798 7988 62,78 92,66 32,70
Patient 26 2698 21580 62,02 60,82 63,22
Patient 27 1798 14074 2,23 1,39 3,08
Patient 28 2698 19789 26,10 29,65 22,52
Patient 29 2978 9152 42,52 10,61 74,48

Table 6.26: Dataset 5s 128Hz 3s overlap with randomized channels on test set: results
for the LOO procedure with LSTM divided by patient
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6.3.4 - LOO randomized channels

Name #Preictal #Interictal ACC (%) SEN (%) SPE (%)
Patient 1 1797 6703 26,09 46,69 5,37
Patient 2 898 13187 54,52 99,78 9,06
Patient 3 1798 13576 77,62 92,94 62,21
Patient 4 3598 22986 41,17 14,62 67,93
Patient 5 898 4343 69,03 50,45 87,70
Patient 6 6908 42659 91,22 96,64 85,71
Patient 7 898 4319 42,75 64,37 21,03
Patient 8 5398 27678 60,64 54,24 67,09
Patient 9 1798 6912 85,07 79,53 90,65
Patient 10 1153 7514 73,39 90,11 56,65
Patient 11 1798 8986 96,93 96,38 97,48
Patient 12 2698 35588 50,00 99,48 0,15
Patient 13 1798 5795 81,08 100,00 62,04
Patient 14 1348 4967 58,78 45,47 72,16
Patient 15 2025 9013 63,41 92,05 33,56
Patient 16 1169 9359 24,61 6,59 43,17
Patient 17 1798 8239 84,15 76,42 91,94
Patient 18 6067 47170 63,45 74,44 52,27
Patient 19 2698 14024 46,54 30,36 62,85
Patient 20 1798 16289 73,33 50,17 96,64
Patient 21 4498 41827 84,90 98,22 71,47
Patient 22 3598 17472 37,96 62,42 13,31
Patient 23 2088 15765 64,79 99,33 28,88
Patient 24 1475 9824 67,87 91,05 44,59
Patient 25 1798 7988 72,27 59,79 84,83
Patient 26 2698 21580 49,81 0,00 100,00
Patient 27 1798 14074 4,99 2,95 7,05
Patient 28 2698 19789 22,99 43,51 2,32
Patient 29 2978 9152 52,89 17,76 88,83

Table 6.27: Dataset 5s 128Hz 3s overlap with randomized channels on test set: results
for the LOO procedure with CGRNN divided by patient

77



Results

6.3.5 Filter feature selection

Variance ACC(%) SEN(%) SPE(%)

1 channel
LSTM 74,64 67,94 81,33

CGRNN 82,29 79,10 97,40

3 channels
LSTM 89,65 87,03 92,22

CGRNN 90,16 82,74 94,17

5 channels
LSTM 92,02 88,70 95,26

CGRNN 96,86 88,95 99,06

10 channels
LSTM 96,58 98,09 95,08

CGRNN 95,02 88,75 96,49

15 channels
LSTM 98,02 98,62 97,39

CGRNN 99,28 95,20 99,18

16 channels
LSTM — — —

CGRNN 98,94 98,13 99,40
Table 6.28: Dataset 5s 128Hz 3s overlap: results for the feature selection procedure

using the variance filter method.

Figure 6.22: Dataset 5s 128Hz 3s overlap: result for the variance feature selection based on the
results on table 6.28
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6.3.5 - Filter feature selection

Variance difference ACC(%) SEN(%) SPE(%)

1 channel
LSTM 70,64 61,24 78,33

CGRNN 82,91 85,44 92,60

3 channels
LSTM 89,62 93,00 86,22

CGRNN 91,87 83,08 96,22

5 channels
LSTM 93,25 94,09 92,41

CGRNN 97,06 91,35 99,51

10 channels
LSTM 97,97 96,89 99,04

CGRNN 95,21 94,97 99,38

15 channels
LSTM 95,68 92,34 99,15

CGRNN 97,94 98,55 98,71

16 channels
LSTM — — —

CGRNN 98,33 95,94 97,27
Table 6.29: Dataset 5s 128Hz 3s overlap: results for the feature selection procedure

using the variance difference filter method.

Figure 6.23: Dataset 5s 128Hz 3s overlap: result for the variance difference feature selection
based on the results on table 6.29
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Results

6.3.6 Wrapper feature selection

Metrics LSTM CGRNN p-value
ACC 97.92 ± 0.88 97.87 ± 0.38 0.96
SEN 98.51 ± 0.97 97.15 ± 0.65 0.11
SPE 97.48 ± 1.05 98.59 ± 0.63 0.27

Table 6.30: Dataset 5s 128Hz 3s: summary result of the wrapper feature selection
method presented in listing 4.1

Figure 6.24: Dataset 5s 128Hz 3s: result for the wrapper feature selection method on the results
on table 6.30

Method ACC(%) SEN(%) SPE(%)
Variance 98,02 97,37 98,62
Var-Diff 98,08 98,81 97,38
Wrapper 97,92 98,51 97,48

Table 6.31: Dataset 5s 128Hz 3s: comparison between the result of the three feature
selection methods on LSTM with 15 channels
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6.3.6 - Wrapper feature selection

Figure 6.25: Dataset 5s 128Hz 3s: comparison between the three feature selection methods on
LSTM using the results in table 6.31

Method p-value
Wrapper-Variance 0,99
Wrapper-VarDiff 0,65
Variance-VarDiff 0,68

Table 6.32: Dataset 5s 128Hz 0s: p-value between the various feature selection methods
for LSTM on accuracy metric

Method ACC(%) SEN(%) SPE(%)
Variance 98,92 98,71 99,18
Var-Diff 98,33 97,27 99,40
Wrapper 97,90 97,19 98,60

Table 6.33: Dataset 5s 128Hz 3s: comparison between the result of the three feature
selection methods on CGRNN with 16 channels

Method p-value
Wrapper-Variance 0,81
Wrapper-VarDiff 76
Variance-VarDiff 0,95

Table 6.34: Dataset 5s 128Hz 3s: p-value between the various feature selection methods
for CGRNN on accuracy metric
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Results

Figure 6.26: Dataset 5s 128Hz 3s: comparison between the three feature selection methods on
CGRNN using the results in table 6.33
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6.4 - Dataset: 5sec segments - 64Hz - no overlap

6.4 Dataset: 5sec segments - 64Hz - no overlap

The dataset in table 6.35 is composed of 57.612 segments, each described by 20
channels, with a length of 320 for a final shape of (57.612, 20, 320). This comes
from the raw EEG signals that are subsampled at 64 Hz without overlap between
segments.

Frequency Overlap #Segments #Channels Seq.Len
64 0 57.612 20 320

Table 6.35: Dataset: 5 second segments with no overlap and 64Hz frequency

In this experiment, the sampling rate was halved from 128Hz to 64Hz, reducing
the length of the segments from 640 to 320. This change was made because RNNs
work better on smaller sequences.
The goal of the experiment is to see if a length of 640 is enough to learn temporal
features, or if a reduced length could lead to better performance. In the latter case,
it could be concluded that a length of 640 is excessive for the models used.
It should be noted that reducing the sampling rate results in a reduction in the
length of the segments, as the amount of information contained in each segment is
halved.

6.4.1 5-Fold RCV

Metrics LSTM CGRNN p-value
ACC 98.02 ± 0.83 97.26 ± 0.83 0.24
SEN 97.73 ± 1.98 97.05 ± 0.43 0.53
SPE 98.31 ± 0.67 97.62 ± 1.35 0.38

Table 6.36: Dataset 5s 64Hz no overlap: summary result of the RCV procedure on the
test set
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Results

Figure 6.27: 5F RCV: comparison between LSTM and CGRNN on dataset 5s 64Hz with no
overlap. The data are the one in table 6.36

Figure 6.28: 5F RCV: training and test accuracy/loss for the LSTM model on dataset 5s 64Hz
no overlap
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6.4.1 - 5-Fold RCV

Figure 6.29: 5F RCV: training and test accuracy/loss for the CGRNN model on dataset 5s
64Hz no overlap
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Results

6.4.2 5-Fold RCV randomized channels

Metrics LSTM CGRNN p-value
ACC 97.78 ± 0.82 96.61 ± 0.95 0.11
SEN 96.69 ± 2.01 96.12 ± 1.73 0.72
SPE 98.85 ± 0.84 97.26 ± 0.91 0.36

Table 6.37: Dataset 5s 64Hz no overlap: summary result of the RCV procedure on the
test set with randomized channels

Figure 6.30: 5F RCV: comparison between LSTM and CGRNN on dataset 5s 64Hz with no
overlap and randomized channels. The data are the one in table 6.37
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6.4.2 - 5-Fold RCV randomized channels

Figure 6.31: 5F RCV: training and test accuracy/loss for the LSTM model on dataset 5s 64Hz
no overlap with randomized channels

Figure 6.32: 5F RCV: training and test accuracy/loss for the CGRNN model on dataset 5s
64Hz no overlap with randomized channels
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Results

6.4.3 LOO

Metrics LSTM CGRNN p-value
ACC 60.25 ± 8.58 52.74 ± 6.11 0.17
SEN 65.19 ± 12.12 34.05 ± 13.10 0.02
SPE 55.18 ± 10.41 73.79 ± 9.90 0.01

Table 6.38: Dataset 5s 64Hz 0s: summary result of the LOO procedure on the test set

Figure 6.33: LOO: comparison between LSTM and CGRNN on dataset 5s 64Hz no overlap.
The data are the one in table 6.38
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6.4.3 - LOO

Name #Preictal #Interictal ACC (%) SEN (%) SPE (%)
Patient 1 719 2681 22,73 5,98 40,20
Patient 2 360 5275 53,98 85,56 20,93
Patient 3 720 5431 77,57 84,44 70,69
Patient 4 1440 9195 25,31 11,04 39,58
Patient 5 360 1738 70,31 86,39 53,49
Patient 6 2763 17064 77,80 93,85 61,62
Patient 7 360 1728 50,85 90,83 9,01
Patient 8 2160 11072 56,44 79,40 33,47
Patient 9 720 2765 88,33 97,36 79,31
Patient 10 462 3006 66,07 75,97 55,53
Patient 11 720 3595 92,64 94,72 90,56
Patient 12 1080 14235 50,23 99,63 0,09
Patient 13 720 2318 94,93 98,89 90,97
Patient 14 540 1987 64,39 47,59 81,98
Patient 15 810 3606 75,69 56,67 95,19
Patient 16 468 3744 32,00 9,83 54,57
Patient 17 720 3296 83,06 84,58 81,53
Patient 18 2427 18868 62,79 72,31 53,18
Patient 19 1080 5610 75,47 55,65 95,58
Patient 20 720 6516 53,06 52,50 53,61
Patient 21 1800 16731 91,27 98,67 83,80
Patient 22 1440 6989 60,31 92,78 27,85
Patient 23 835 6306 81,73 99,16 64,17
Patient 24 590 3930 55,99 88,14 22,24
Patient 25 720 3196 65,28 56,81 73,75
Patient 26 1080 8632 59,24 40,00 78,76
Patient 27 720 5630 2,43 0,69 4,17
Patient 28 1080 7916 17,54 15,46 19,64
Patient 29 1192 3661 39,91 15,77 64,37

Table 6.39: Dataset 5s 64Hz no overlap on test set: results for the LOO procedure with
LSTM divided by patient
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Results

Name #Preictal #Interictal ACC (%) SEN (%) SPE (%)
Patient 1 719 2681 16,90 14,88 19,01
Patient 2 360 5275 43,75 0,00 100,00
Patient 3 720 5431 79,33 91,25 66,86
Patient 4 1440 9195 48,86 0,00 100,00
Patient 5 360 1738 43,75 0,00 100,00
Patient 6 2763 17064 49,80 0,00 100,00
Patient 7 360 1728 43,75 0,00 100,00
Patient 8 2160 11072 55,92 77,22 33,62
Patient 9 720 2765 83,31 71,25 95,93
Patient 10 462 3006 60,38 70,35 49,77
Patient 11 720 3595 48,86 0,00 100,00
Patient 12 1080 14235 47,27 0,00 100,00
Patient 13 720 2318 48,86 0,00 100,00
Patient 14 540 1987 47,27 0,00 100,00
Patient 15 810 3606 47,27 0,00 100,00
Patient 16 468 3744 28,57 10,26 48,60
Patient 17 720 3296 61,72 72,78 50,15
Patient 18 2427 18868 67,10 58,80 75,83
Patient 19 1080 5610 42,24 30,65 55,17
Patient 20 720 6516 71,80 50,69 93,90
Patient 21 1800 16731 49,78 0,00 100,00
Patient 22 1440 6989 80,54 91,67 68,90
Patient 23 835 6306 70,97 98,32 43,43
Patient 24 590 3930 64,93 68,14 61,57
Patient 25 720 3196 59,45 78,61 39,39
Patient 26 1080 8632 73,68 52,78 97,00
Patient 27 720 5630 31,53 12,08 51,89
Patient 28 1080 7916 26,07 3,33 51,45
Patient 29 1192 3661 36,11 34,65 37,68

Table 6.40: Dataset 5s 64Hz no overlap on test set: results for the LOO procedure with
CGRNN divided by patient
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6.4.4 - LOO randomized channels

6.4.4 LOO randomized channels

Metrics LSTM CGRNN p-value
ACC 58.35 ± 8.45 52.69 ± 7.21 0.32
SEN 61.90 ± 12.48 41.85 ± 13.64 0.04
SPE 54.64 ± 12.98 64.16 ± 12.11 0.29

Table 6.41: Dataset 5s 64Hz 0s: summary result of the LOO procedure on the test set
with randomized channels

Figure 6.34: LOO: comparison between LSTM and CGRNN on dataset 5s 64Hz no overlap with
randomized channels. The data are the one in table 6.41
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Results

Name #Preictal #Interictal ACC (%) SEN (%) SPE (%)
Patient 1 719 2681 22,23 40,06 3,63
Patient 2 360 5275 54,69 99,72 7,56
Patient 3 720 5431 62,50 75,69 49,31
Patient 4 1440 9195 47,88 3,68 92,08
Patient 5 360 1738 68,18 84,17 51,45
Patient 6 2763 17064 93,62 95,01 92,23
Patient 7 360 1728 26,14 42,22 9,30
Patient 8 2160 11072 51,20 83,47 18,94
Patient 9 720 2765 90,07 94,72 85,42
Patient 10 462 3006 58,04 93,51 20,28
Patient 11 720 3595 97,22 96,11 98,33
Patient 12 1080 14235 50,23 99,63 0,09
Patient 13 720 2318 94,72 91,25 98,19
Patient 14 540 1987 50,19 4,26 98,26
Patient 15 810 3606 70,75 45,43 96,71
Patient 16 468 3744 28,88 1,07 57,17
Patient 17 720 3296 69,03 52,92 85,14
Patient 18 2427 18868 74,07 58,18 90,10
Patient 19 1080 5610 76,07 70,28 81,95
Patient 20 720 6516 73,54 50,00 97,08
Patient 21 1800 16731 71,65 99,11 43,95
Patient 22 1440 6989 51,28 75,14 27,43
Patient 23 835 6306 69,53 98,92 39,93
Patient 24 590 3930 60,94 67,12 54,45
Patient 25 720 3196 48,26 86,39 10,14
Patient 26 1080 8632 62,59 58,61 66,64
Patient 27 720 5630 4,44 2,22 6,67
Patient 28 1080 7916 15,49 10,37 20,68
Patient 29 1192 3661 48,48 15,86 81,55

Table 6.42: Dataset 5s 64Hz no overlap on test set with randomized channels: results
for the LOO procedure with LSTM divided by patient
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6.4.4 - LOO randomized channels

Name #Preictal #Interictal ACC (%) SEN (%) SPE (%)
Patient 1 719 2681 17,83 30,04 5,08
Patient 2 360 5275 67,97 95,00 33,21
Patient 3 720 5431 48,86 0,00 100,00
Patient 4 1440 9195 29,90 26,18 33,79
Patient 5 360 1738 45,16 8,06 92,86
Patient 6 2763 17064 85,57 80,42 90,77
Patient 7 360 1728 44,22 33,33 58,21
Patient 8 2160 11072 48,86 0,00 100,00
Patient 9 720 2765 48,86 0,00 100,00
Patient 10 462 3006 50,56 64,94 35,25
Patient 11 720 3595 93,54 96,39 90,55
Patient 12 1080 14235 56,49 99,63 8,37
Patient 13 720 2318 71,45 98,06 43,60
Patient 14 540 1987 10,74 15,56 5,37
Patient 15 810 3606 84,90 85,31 84,44
Patient 16 468 3744 27,12 15,60 39,72
Patient 17 720 3296 74,79 65,28 84,74
Patient 18 2427 18868 48,75 0,00 100,00
Patient 19 1080 5610 34,77 23,61 47,21
Patient 20 720 6516 78,55 70,42 87,06
Patient 21 1800 16731 49,78 0,00 100,00
Patient 22 1440 6989 67,58 82,36 52,11
Patient 23 835 6306 49,82 0,00 100,00
Patient 24 590 3930 45,49 73,22 16,37
Patient 25 720 3196 54,83 81,53 26,89
Patient 26 1080 8632 62,79 47,31 80,06
Patient 27 720 5630 33,88 4,72 64,39
Patient 28 1080 7916 47,27 0,00 100,00
Patient 29 1192 3661 47,70 16,95 80,67

Table 6.43: Dataset 5s 64Hz no overlap on test set with randomized channels: results
for the LOO procedure with CGRNN divided by patient
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Results

6.4.5 Filter feature selection

Variance ACC(%) SEN(%) SPE(%)

1 channel
LSTM 74,64 81,33 67,94

CGRNN 49,97 0,00 100,00

3 channels
LSTM 89,65 92,22 87,03

CGRNN 75,38 80,10 70,81

5 channels
LSTM 92,02 95,26 88,70

CGRNN 80,90 77,11 84,73

10 channels
LSTM 96,58 95,08 98,09

CGRNN 87,59 90,39 84,79

15 channels
LSTM 98,02 97,39 98,62

CGRNN 93,96 95,03 92,85

16 channels
LSTM — — —

CGRNN 94,87 96,02 93,67
Table 6.44: Dataset 5s 64Hz no overlap: results for the feature selection procedure using

the variance filter method.

Figure 6.35: Dataset 5s 64Hz no overlap: result for the variance feature selection based on the
results on table 6.44
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6.4.5 - Filter feature selection

Variance Difference ACC(%) SEN(%) SPE(%)

1 channel
LSTM 49,35 0,00 100,00

CGRNN 67,40 69,79 65,00

3 channels
LSTM 89,62 86,22 93,00

CGRNN 74,32 74,87 73,77

5 channels
LSTM 93,25 92,41 94,09

CGRNN 84,29 80,95 87,71

10 channels
LSTM 97,97 99,04 96,89

CGRNN 89,88 92,39 87,44

15 channels
LSTM 98,09 98,81 97,38

CGRNN 93,70 93,36 94,03

16 channels
LSTM — — —

CGRNN 95,26 93,78 96,77
Table 6.45: Dataset 5s 64Hz no overlap: results for the feature selection procedure using

the variance difference filter method.

Figure 6.36: Dataset 5s 64Hz no overlap: result for the variance difference feature selection
based on the results on table 6.45
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Results

6.4.6 Wrapper feature selection

Metrics LSTM CGRNN p-value
ACC 97.42 ± 0.35 95.69 ± 0.38 0.16
SEN 97.16 ± 1.17 95.19 ± 1.45 0.09
SPE 97.68 ± 1.32 96.49 ± 1.21 0.23

Table 6.46: Dataset 5s 64Hz no overlap: summary result of the wrapper feature selection
method presented in listing 4.1

Figure 6.37: Dataset 5s 64Hz no overlap: result for the wrapper feature selection method on
the results on table 6.46

Method ACC(%) SEN(%) SPE(%)
Variance 97,43 97,76 97,09
Var-Diff 95,78 93,71 97,77
Wrapper 97,42 97,16 97,68

Table 6.47: Dataset 5s 64Hz no overlap: comparison between the result of the three
feature selection methods on LSTM with 15 channels
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6.4.6 - Wrapper feature selection

Figure 6.38: Dataset 5s 64Hz 0s: comparison between the three feature selection methods on
LSTM using the results in table 6.47

Method p-value
Wrapper-Variance 0,57
Wrapper-VarDiff 0,68
Variance-VarDiff 0,89

Table 6.48: Dataset 5s 64Hz 0s: p-value between the various feature selection methods
for LSTM on accuracy metric

Method ACC(%) SEN(%) SPE(%)
Variance 94,88 93,67 96,03
Var-Diff 95,26 96,77 93,78
Wrapper 95,70 95,20 96,49

Table 6.49: Dataset 5s 64Hz no overlap: comparison between the result of the three
feature selection methods on CGRNN with 15 channels

Method p-value
Wrapper-Variance 0,67
Wrapper-VarDiff 0,90
Variance-VarDiff 0,60

Table 6.50: Dataset 5s 64Hz 0s: p-value between the various feature selection methods
for LSTM on accuracy metric
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Results

Figure 6.39: Dataset 5s 64Hz 0s: comparison between the three feature selection methods on
CGRNN using the results in table 6.49
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6.5 - Dataset: 5sec segments - 64Hz - 3sec overlap

6.5 Dataset: 5sec segments - 64Hz - 3sec overlap

The dataset in table 6.51 is composed of 143.940 segments, each described by 20
channels, with a length of 320 for a final shape of (143.940, 20, 320). This comes
from the raw EEG signals that are subsampled at 64 Hz with 3 seconds of overlap
between segments.

Frequency Overlap #Segments #Channels Seq.Len
64 3 143.940 20 32

Table 6.51: Dataset: 5 second segments with 3 second overlap and 64Hz frequency

6.5.1 5-Fold RCV

Metrics LSTM CGRNN p-value
ACC 98.89 ± 0.35 98.90 ± 0.21 0.95
SEN 98.84 ± 0.66 98.91 ± 0.61 0.90
SPE 98.94 ± 1.10 98.88 ± 0.59 0.92

Table 6.52: Dataset 5s 64Hz 3s overlap : summary result of the RCV procedure on the
test set

Figure 6.40: 5F RCV: comparison between LSTM and CGRNN on dataset 5s 64Hz with 3
second overlap. The data are the one in table 6.52
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Results

Figure 6.41: 5F RCV: training and test accuracy/loss for the LSTM model on dataset 5s 64Hz
3s overlap

Figure 6.42: 5F RCV: training and test accuracy/loss for the CGRNN model on dataset 5s
64Hz 3s overlap
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6.5.2 - 5-Fold RCV randomized channels

6.5.2 5-Fold RCV randomized channels

Metrics LSTM CGRNN p-value
ACC 98.92 ± 0.60 99.06 ± 0.18 0.68
SEN 98.37 ± 1.37 99.57 ± 0.12 0.12
SPE 99.48 ± 0.36 98.54 ± 0.39 0.57

Table 6.53: Dataset 5s 64Hz 3s overlap with randomized channels: summary result of
the RCV procedure on the test set

Figure 6.43: 5F RCV: comparison between LSTM and CGRNN on dataset 5s 64Hz with 3
second overlap and randomized channels. The data are the one in table 6.52
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Results

Figure 6.44: 5F RCV: training and test accuracy/loss for the LSTM model on dataset 5s 64Hz
3s overlap with randomized channels

Figure 6.45: 5F RCV: training and test accuracy/loss for the CGRNN model on dataset 5s
64Hz 3s overlap with randomized channels
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6.5.3 - LOO

6.5.3 LOO

Metrics LSTM CGRNN p-value
ACC 56.90 ± 7.95 56.20 ± 8.01 0.90
SEN 64.07 ± 11.06 57.30 ± 13.84 0.45
SPE 49.68 ± 10.92 55.16 ± 12.75 0.52

Table 6.54: Dataset 5s 64Hz 3s overlap: summary result of the LOO procedure on the
test set

Figure 6.46: LOO: comparison between LSTM and CGRNN on dataset 5s 64Hz 3s overlap. The
data are the one in table 6.54
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Results

Name #Preictal #Interictal ACC (%) SEN (%) SPE (%)
Patient 1 1797 6703 23,19 14,64 31,79
Patient 2 898 13187 56,08 99,11 12,86
Patient 3 1798 13576 49,75 78,98 20,32
Patient 4 3598 22986 40,33 53,42 27,14
Patient 5 898 4343 59,04 45,21 72,93
Patient 6 6908 42659 80,39 68,56 92,26
Patient 7 898 4319 37,72 60,80 14,54
Patient 8 5398 27678 77,64 82,92 72,35
Patient 9 1798 6912 55,52 97,55 13,21
Patient 10 1153 7514 69,18 96,44 41,88
Patient 11 1798 8986 96,12 99,67 92,55
Patient 12 2698 35588 46,11 91,85 0,04
Patient 13 1798 5795 77,09 100,00 54,03
Patient 14 1348 4967 71,69 46,51 97,01
Patient 15 2025 9013 35,02 34,86 35,18
Patient 16 1169 9359 30,99 1,45 60,58
Patient 17 1798 8239 52,06 20,13 84,21
Patient 18 6067 47170 69,95 73,91 66,00
Patient 19 2698 14024 73,07 76,69 69,42
Patient 20 1798 16289 55,86 51,84 59,91
Patient 21 4498 41827 96,86 99,47 94,26
Patient 22 3598 17472 56,86 77,96 35,60
Patient 23 2088 15765 76,63 79,98 73,26
Patient 24 1475 9824 63,72 70,31 57,11
Patient 25 1798 7988 57,25 82,87 31,47
Patient 26 2698 21580 78,63 75,72 81,55
Patient 27 1798 14074 11,02 0,50 21,61
Patient 28 2698 19789 28,44 56,08 0,60
Patient 29 2978 9152 23,89 20,69 27,10

Table 6.55: Dataset 5s 64Hz 3s overlap on test set: results for the LOO procedure with
LSTM divided by patient
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6.5.3 - LOO

Name #Preictal #Interictal ACC (%) SEN (%) SPE (%)
Patient 1 1797 6703 16,60 29,60 3,53
Patient 2 898 13187 50,89 97,22 4,36
Patient 3 1798 13576 60,32 91,71 28,72
Patient 4 3598 22986 42,42 8,25 76,86
Patient 5 898 4343 56,64 20,04 93,40
Patient 6 6908 42659 94,28 97,26 91,25
Patient 7 898 4319 44,81 65,59 23,94
Patient 8 5398 27678 27,43 42,44 12,29
Patient 9 1798 6912 89,23 82,81 95,69
Patient 10 1153 7514 61,02 85,43 36,58
Patient 11 1798 8986 95,42 98,00 92,83
Patient 12 2698 35588 51,17 99,04 2,95
Patient 13 1798 5795 54,16 100,00 8,01
Patient 14 1348 4967 24,07 21,96 26,19
Patient 15 2025 9013 48,97 0,00 100,00
Patient 16 1169 9359 33,77 21,47 46,43
Patient 17 1798 8239 82,95 71,97 94,01
Patient 18 6067 47170 52,11 24,16 80,54
Patient 19 2698 14024 43,04 13,16 73,15
Patient 20 1798 16289 49,83 0,00 100,00
Patient 21 4498 41827 80,86 97,62 63,96
Patient 22 3598 17472 71,32 86,66 55,85
Patient 23 2088 15765 59,77 98,56 19,42
Patient 24 1475 9824 82,34 95,12 69,50
Patient 25 1798 7988 60,13 77,20 42,95
Patient 26 2698 21580 87,69 86,58 88,80
Patient 27 1798 14074 20,84 28,64 12,99
Patient 28 2698 19789 49,81 0,00 100,00
Patient 29 2978 9152 38,18 21,29 55,46

Table 6.56: Dataset 5s 64Hz 3s overlap on test set: results for the LOO procedure with
CGRNN divided by patient
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Results

6.5.4 LOO randomized channels

Metrics LSTM CGRNN p-value
ACC 58.10 ± 7.28 55.47 ± 7.77 0.63
SEN 66.53 ± 10.96 44.82 ± 13.79 0.19
SPE 49.65 ± 12.60 66.30 ± 12.91 0.076

Table 6.57: Dataset 5s 64Hz 3s overlap with randomized channels: summary result of
the LOO procedure on the test set

Figure 6.47: LOO: comparison between LSTM and CGRNN on dataset 5s 64Hz 3s overlap with
randomized channels. The data are the one in table 6.57
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6.5.4 - LOO randomized channels

Name #Preictal #Interictal ACC (%) SEN (%) SPE (%)
Patient 1 1797 6703 16,60 29,60 3,53
Patient 2 898 13187 50,89 97,22 4,36
Patient 3 1798 13576 60,32 91,71 28,72
Patient 4 3598 22986 42,42 8,25 76,86
Patient 5 898 4343 56,64 20,04 93,40
Patient 6 6908 42659 94,28 97,26 91,25
Patient 7 898 4319 44,81 65,59 23,94
Patient 8 5398 27678 27,43 42,44 12,29
Patient 9 1798 6912 89,23 82,81 95,69
Patient 10 1153 7514 61,02 85,43 36,58
Patient 11 1798 8986 95,42 98,00 92,83
Patient 12 2698 35588 51,17 99,04 2,95
Patient 13 1798 5795 54,16 100,00 8,01
Patient 14 1348 4967 24,07 21,96 26,19
Patient 15 2025 9013 48,97 0,00 100,00
Patient 16 1169 9359 33,77 21,47 46,43
Patient 17 1798 8239 82,95 71,97 94,01
Patient 18 6067 47170 52,11 24,16 80,54
Patient 19 2698 14024 43,04 13,16 73,15
Patient 20 1798 16289 49,83 0,00 100,00
Patient 21 4498 41827 80,86 97,62 63,96
Patient 22 3598 17472 71,32 86,66 55,85
Patient 23 2088 15765 59,77 98,56 19,42
Patient 24 1475 9824 82,34 95,12 69,50
Patient 25 1798 7988 60,13 77,20 42,95
Patient 26 2698 21580 87,69 86,58 88,80
Patient 27 1798 14074 20,84 28,64 12,99
Patient 28 2698 19789 49,81 0,00 100,00
Patient 29 2978 9152 38,18 21,29 55,46

Table 6.58: Dataset 5s 64Hz 3s overlap on test set with randomized channels: results
for the LOO procedure with LSTM divided by patient
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Results

Name #Preictal #Interictal ACC (%) SEN (%) SPE (%)
Patient 1 1797 6703 13,98 24,99 2,91
Patient 2 898 13187 49,39 96,44 2,13
Patient 3 1798 13576 87,14 91,94 82,31
Patient 4 3598 22986 49,80 0,00 100,00
Patient 5 898 4343 57,14 35,41 78,97
Patient 6 6908 42659 64,60 32,46 97,30
Patient 7 898 4319 42,08 18,82 65,44
Patient 8 5398 27678 50,08 51,32 48,84
Patient 9 1798 6912 49,83 0,00 100,00
Patient 10 1153 7514 63,67 55,25 72,11
Patient 11 1798 8986 96,07 99,17 92,95
Patient 12 2698 35588 48,98 96,40 1,19
Patient 13 1798 5795 81,86 99,83 63,77
Patient 14 1348 4967 57,81 47,85 67,84
Patient 15 2025 9013 48,97 0,00 100,00
Patient 16 1169 9359 49,26 0,00 100,00
Patient 17 1798 8239 49,83 0,00 100,00
Patient 18 6067 47170 49,58 0,00 100,00
Patient 19 2698 14024 49,81 0,00 100,00
Patient 20 1798 16289 41,07 54,45 27,60
Patient 21 4498 41827 65,97 73,61 58,27
Patient 22 3598 17472 49,80 0,00 100,00
Patient 23 2088 15765 81,08 90,18 71,61
Patient 24 1475 9824 86,07 81,83 90,33
Patient 25 1798 7988 72,82 75,19 70,44
Patient 26 2698 21580 86,81 83,32 90,33
Patient 27 1798 14074 11,69 9,07 14,33
Patient 28 2698 19789 16,42 17,75 15,09
Patient 29 2978 9152 37,23 64,71 9,11

Table 6.59: Dataset 5s 64Hz 3s overlap on test set with randomized channels: results
for the LOO procedure with CGRNN divided by patient
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6.5.5 - Filter feature selection

6.5.5 Filter feature selection

Variance ACC(%) SEN(%) SPE(%)

1 channel
LSTM 71,86 73,31 70,44

CGRNN 76,05 76,80 75,29

3 channels
LSTM 87,99 84,26 91,68

CGRNN 88,25 90,90 85,57

5 channels
LSTM 93,26 94,51 92,04

CGRNN 91,77 92,63 90,92

10 channels
LSTM 96,84 97,08 96,60

CGRNN 95,31 96,07 94,56

15 channels
LSTM 97,76 99,34 96,18

CGRNN 98,18 97,76 98,59

16 channels
LSTM — — —

CGRNN 98,77 98,46 99,06
Table 6.60: Dataset 5s 64Hz 3 second overlap: results for the feature selection procedure

using the variance filter method.

Figure 6.48: Dataset 5s 64Hz 3 second overlap: result for the variance feature selection based
on the results on table 6.60
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Results

Variance Difference ACC(%) SEN(%) SPE(%)

1 channel
LSTM 73,25 72,23 74,29

CGRNN 76,65 78,72 74,55

3 channels
LSTM 87,08 82,86 91,23

CGRNN 89,31 90,72 87,89

5 channels
LSTM 93,83 95,80 91,87

CGRNN 94,57 94,55 94,59

10 channels
LSTM 95,90 93,66 98,14

CGRNN 95,84 96,80 94,92

15 channels
LSTM 98,55 98,99 98,10

CGRNN 98,19 98,06 98,31

16 channels
LSTM — — —

CGRNN 98,21 99,02 98,06
Table 6.61: Dataset 5s 64Hz 3 second overlap: results for the feature selection procedure

using the variance difference filter method.

Figure 6.49: Dataset 5s 64Hz 3 second overlap: result for the variance difference feature selection
based on the results on table 6.61
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6.5.6 - Wrapper feature selection

6.5.6 Wrapper feature selection

Metrics LSTM CGRNN p-value
ACC 97.47 ± 0.42 97.92 ± 0.44 0.18
SEN 97.35 ± 1.61 97.69 ± 0.53 0.70
SPE 97.55 ± 1.91 98.16 ± 0.82 0.60

Table 6.62: Dataset 5s 64Hz 3 second overlap: summary result of the wrapper feature
selection method presented in listing 4.1

Figure 6.50: Dataset 5s 64Hz 3 second overlap: result for the wrapper feature selection method
on the results on table 6.62

Method ACC(%) SEN(%) SPE(%)
Variance 97,76 99,34 96,19
Var-Diff 98,55 98,99 98,10
Wrapper 97,47 97,35 97,57

Table 6.63: Dataset 5s 64Hz 3 second overlap: comparison between the result of the
three feature selection methods on LSTM with 15 channels
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Results

Figure 6.51: Dataset 5s 64Hz 3s overlap: comparison between the three feature selection methods
on LSTM using the results in table 6.63

Method p-value
Wrapper-Variance 0,72
Wrapper-VarDiff 0,34
Variance-VarDiff 0,16

Table 6.64: Dataset 5s 64Hz 3s overlap: p-value between the various feature selection
methods for LSTM on accuracy metric

Method ACC(%) SEN(%) SPE(%)
Variance 98,77 98,46 99,06
Var-Diff 98,21 99,02 98,06
Wrapper 97,92 97,69 98,16

Table 6.65: Dataset 5s 64Hz 3 second overlap: comparison between the result of the
three feature selection methods on CGRNN with 15 channels

Method p-value
Wrapper-Variance 0,12
Wrapper-VarDiff 0,39
Variance-VarDiff 0,52

Table 6.66: Dataset 5s 64Hz 3s overlap: p-value between the various feature selection
methods for CGRNN on accuracy metric
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6.5.6 - Wrapper feature selection

Figure 6.52: Dataset 5s 64Hz 3s overlap: comparison between the three feature selection methods
on CGRNN using the results in table 6.65
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Results

6.6 Discussion

In this study, we used raw signals from multichannel EEG recordings from 29
patients with epilepsy and conducted a comparative analysis between a model that
uses only LSTM and a model that is the union of 1D CNN and GRU. The perfor-
mance evaluation methods were RCV and LOO, using both registered channels and
randomized channels.
In addition to this, a study was also conducted on the actual informative capacity
of each channel, using feature selection techniques to eliminate the least informative
channels for solving the prediction task.
However, these results cannot be compared with other similar works because the
dataset used for the analyses is not available online because it was collected from a
local hospital.

The results obtained from the RCV validation (Tables: 6.2, 6.20, 6.36 and 6.52)
suggest that both models are able to achieve excellent performance in seizure
prediction with an accuracy of 98.45% for LSTM and 96.9% for CGRNN. This is
in line with expectations. The main difference between LSTM and GRU is that the
latter are much faster to train at the expense of a slight decrease in performance.
Based on the tests, CGRNN takes 5 seconds per epoch of training in the case of
a data set without overlap and 15 seconds with overlap. On the other hand, the
LSTM model takes 16 seconds in the case without overlap and 42 seconds in the
case with overlap. Therefore, it should be noted that the CGRNN is significantly
faster (about three times) than the LSTM at the expense of a decrease in accuracy
of 1.55%.
Both models result in very good sensitivity and specificity performance. The LSTM
results in a sensitivity of 98.5% and a specificity of 98.48%, while the CGRNN
results in a sensitivity of 98.3% and a specificity of 98.0%. The results of the p-value
values in all tables are significantly higher than the 5% threshold, showing that
these fluctuations in performance should not be considered to be the fault of the
models’ internal architecture and the features they extract, but only due to random
fluctuations in training.
In the graphs 6.2, 6.15, 6.28 and 6.41 for LSTM and graphs 6.3, 6.16, 6.29 and
6.42 for CGRNN, the blue line represents the training loss, while the orange line
represents the test loss. These two, as the number of epochs increases, continuously
decrease. This shows that the models are able to learn features that allow the task
to be solved without overfitting. This behavior was expected, as the parameters
were optimized using Optuna on the test performances. Further evidence that the
models have learned salient features are the green and yellow lines that represent
training and test accuracy. These, as the number of epochs increases, also increase
continuously, demonstrating how the network is able not only to learn but also to
generalize to unseen data, thus improving its predictive capabilities.
One thing to note is that the CGRNN graphs show more continuous test losses
compared to the LSTM graphs, which result in momentary peaks that then settle
as the training increases. This indicates that CGRNN is able to learn more robust
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features and have more reliable training. This can also be seen from the confidence
intervals, which, in the case of the CGRNN, are more contained than those of the
LSTM.

Very similar considerations can also be made in the case of randomized channels.
The results reported in Tables 6.3, 6.21, 6.37 and 6.53 and the training curves that
we can find in Figures 6.5, 6.18, 6.31 and 6.44 for LSTM and in Figures 6.6, 6.19,
6.32 and 6.45 for CGRNN show how the models behave similarly in the case of
using channels in recording order and in random order. This similarity is due to
the fact that the models are designed to take all channels as input at once and use
them together. This was done to give the model freedom to exploit the interchannel
correlation in the best possible way. This allows the models to have more freedom
during the training phase, allowing them to learn more robust features that are
independent of the order.

Unfortunately, these considerations do not hold when moving to a more robust
evaluation setup like LOO.
As it is assumed that the models are able to learn significant features for the task,
in Tables 6.4, 6.22, 6.38 and 6.54 we can see that all three metrics have a very
significant drop in performance. For the LSTM model, accuracy, sensitivity and
specificity go from 98.45%, 98.5% and 98.48% to 60.0%, 64.3% and 55.8%, with a
drop of more than 30 percentage points. A similar situation occurs in the case of
CGRNNs, where accuracy, sensitivity, and specificity go from 96.9%, 98.3% and
98.0% to 55.6%, 51.6% and 59.5%.
As can be seen in the tables divided by patients (Tables 6.5, 6.23, 6.39 and 6.55),
we have some patients for whom the accuracy, sensitivity, and specificity values
are good (example Patient 23: 87.14% - 94.49% - 79.0% and Patient 6: 86.90% -
78.32% - 95.55%) while others have really low performances (example Patient 28:
16.41% - 24.63% - 7.23% and Patient 27: 11.02% - 0.50% - 21.61%).
This can be associated with many factors, such as the fact that the dataset is not
homogeneous in terms of types of epilepsy. This means that some patients have
similar pathologies and the models can predict their seizures even if the patient has
never been seen in the training phase, while for other patients, with different types
of epilepsy, this does not happen.
This shows that it is difficult to develop models that can predict epileptic seizures
regardless of the type of epilepsy, because the different types of epileptic seizures
are probably characterized by totally different temporal features. It is also possible
that there are no common patterns across all types of epilepsy that would allow a
model to predict them correctly regardless of the type. One thing worth noting is
that the results are more or less consistent between the various tests performed.
A patient who has low or high performance in one dataset will also have those
performances in all other datasets. For example, Patient 1 has low performance in
all datasets, with accuracy, sensitivity, and specificity values of 23.9%, 13.8% and
62.9%. Patient 21, on the other hand, has much better performance, with values
that are around 86.7%, 99.4% and 73.4%.
This observation could lead to further investigation of patient data to understand
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the causes of these differences. Possible explanations include the type of epilepsy,
the quality of the recorded data, or the lack of sufficient data for each type of
epilepsy.
The same considerations can be made in the case of CGRNNs, the results of which
can be found in Tables 6.6, 6.24, 6.40 and 6.56, as well as in the case of randomized
channels (Tables 6.8, 6.26, 6.42 and 6.58 for LSTM and Tables 6.9, 6.27, 6.43 and
6.59 for CGRNN).

The last series of experiments that were carried out concerned feature selection,
that is, the selection of the most informative channels for prediction. Starting
from the 20 total channels (Table 4.1), it was attempted to reduce them using two
techniques: filtering and wrapper.
Tables 6.11, 6.28, 6.44 and 6.60 show the results of the variance-based filtering
method. What can be seen is that as the number of channels increases, regard-
less of the model used, the performances increase. This shows that there are no
totally irrelevant channels for seizure prediction, but that they all contain relevant
information. This also applies to the case of the results for the variance difference
method in Tables 6.12, 6.29, 6.45 and 6.61.
As already seen in Table 6.10, the two methods classify the channels differently
in terms of informativeness. However, the results still show an improvement in
performance as the number of channels increases, even if the subset of channels
used is different. This suggests that the channels, although different, share redun-
dant information. If this information is not available from one channel because
it is excluded from the training, it can be retrieved from another channel. This
makes the training robust to the presence of noise or lack of data in a specific channel.

As for the wrapper methods, we instead have that, depending on the model
used, the subset of channels is different (Table 6.13). In Figure 6.53 we can find a
representation of the selected channels (green) and the unselected channels (red)
from the wrapper method applied to the LSTM model (a) and the CGRNN model
(b).
The comparison of the features selected by the LSTM and the CGRNN (Tables
6.14, 6.30, 6.46 and 6.62) shows a behavior similar to what was already seen for
the 5-fold RCV procedure.
The LSTM model has better results than the CGRNN even though it selected a
smaller number of channels. However, the p-value analysis shows that, for each
performance metric, the values are above the 5% threshold, thus showing no signifi-
cance in the performance differences between the two models.

Tables 6.18, 6.34, 6.50 and 6.66 provide a direct comparison between the various
feature selection methods. These tables report the p-values, in terms of accuracy,
and show that all methods, compared to each other, have values greater than 5%.
The analysis showed that all 20 channels are informative, even if not to the same
extent. Some channels provide information that other channels cannot provide, and
this redundant information is used to compensate for the lack of information from
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other channels. This conclusion is supported by the fact that the performance is
good in each proposed method, even if the subset of channels used is different for each
model and method, including different areas of the brain (Fig. 6.53). Furthermore,
p-values do not show significance in the diversity of reported performances.

(a) LSTM 15 channels selected by wrapper method (b) CGRNN 16 channels selected by wrapper method

Figure 6.53: EEG scalp electrode position. In green the channel used and red the ones not
selected by the wrapper method
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Epilepsy is a neurological disease characterized by the occurrence of seizures.
These are defined as sudden and recurrent events that cause sensory and motor
alteration, absence states, and loss of consciousness. Seizures are an expression of
altered electrical activity in brain neurons that can be caused by:

• genetic causes: inherited from parents;

• acquired causes: due to trauma, infections, or brain tumors.

Epilepsy is a disease that can cause serious complications in the patient’s life, since

• it can cause falls that lead to physical injuries;

• it can limit social participation by preventing normal activities such as driving
or working;

• it can cause anxiety, depression, and isolation;

• in extreme cases, it can lead to the patient’s death.

Epilepsy can be treated with antiepileptic drugs, but some patients suffer from
drug-resistant epilepsy (AED) that cannot be treated with conventional methods.
The research described in this paper aims to analyze and deepen the deep learning
techniques that, through EEG, can help to monitor brain activity and potentially
predict the onset of seizures, to allow patients to avoid dangerous situations and
plan preventive treatments.

In this paper, two artificial intelligence models based on recurrent neural networks
are described: LSTM and CGRNN.
The LSTM model fully exploits the potential of LSTM layers, which are a particular
type of recurrent neural network that can learn temporal dependencies even over
long timesteps thanks to their internal structure.
The CGRNN model, on the other hand, is a combination of 1D convolutional neural
networks that allows the automatic extraction of features from raw EEG signals and
GRUs, which are a simplified version of LSTMs for learning temporal dependencies
within data.
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The experiments conducted show that less strict evaluation techniques (5-fold
RCV) lead to excellent results in the prediction of epileptic seizures, providing a
foundation for more robust evaluations and demonstrating that the models are
potentially capable of discovering patterns within brain signals.
The real challenge is to create models that can achieve acceptable performance even
when evaluated with more robust methods, such as LOO.
This technique is particularly important because models that can achieve good
performance in this validation technique would be able to predict seizures in patients
never seen before, thus improving the lives of these people.
Unfortunately, this is a very complex task due to numerous factors that make it very
challenging to identify patterns for the preventive detection of epileptic seizures.
Some of these factors are:

• psychophysical characteristics of patients;

• EEG recordings highly sensitive to any fluctuation and/or noise;

• different types of epilepsy are characterized by EEG patterns that vary
significantly among them.

In this study, EEG recordings from 29 patients with epileptic seizures were used.
From these recordings, four different datasets were derived on the basis of the length
of the signal and the amount of information contained. In total, 56 experiments
were conducted to demonstrate the actual ability of the models to predict epileptic
seizures.
In all experiments involving 5-fold cross-validation, the models achieved excellent
results that can serve as a basis for further evaluations.
Regarding experiments using the leave-one-out (LOO) validation technique, the
models did not achieve overall good results. However, what can be concluded from
these experiments is that there is still a significant margin for improvement because,
for some patients, the models were able to predict the onset of epileptic seizures
quite accurately. This suggests that common patterns have been learned and can
be used to generalize to other patients.
The feature selection experiments, which aim to understand which channels are
more important for the prediction task, have demonstrated that all channels carry
relevant information. With the available data, it is not possible to reduce the
number of channels with confidence. This opens up numerous potential analyses
and future experiments.

What can be done is try to understand what distinguishes the patients for whom
the LOO validation performed well compared to those for whom it did not, and try
to create homogeneous datasets based on common epilepsy characteristics. It may
be the case that there are no common patterns across all types of epilepsy and that
ad hoc datasets and models are needed.
This could involve a more in-depth analysis of which channels activate anomalously
and which do not. By selecting the features of each individual patient, it may be
possible to discover which channels are more active. Consequently, grouping patients
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on the basis of common channels could lead to the creation of more homogeneous
datasets. This approach might allow models to better generalize to specific types
of seizures.

Another possibility is to create model adaptation procedures. The models could be
trained on a heterogeneous set of patients and then, for each patient, fine tunning
could be applied to their specific data.
This would allow basic models to specialize in specific types of seizures, significantly
improving their performance. Since they are already trained, the adaptation process
through fine-tuning would require less time compared to training from scratch. This
technique is known as Leave-One-Patient-Out with adaptation, which has been
studied but not implemented in this document.

Last but not least, in support of all the other experiments, it would be to imple-
ment interpretability methods that can help researchers better understand why
those outputs are generated and which features are extracted and used within
the models. This is done because it is fundamental, especially in the medical
field, to implement interpretable artificial intelligence methods. Explainable AI
(XAI) enhances the reliability and transparency of medical diagnoses and AI-based
treatment recommendations, fostering trust among healthcare professionals and
patients.
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Acronyms and Abbreviations

AED Anti-Epileptic Drug. 9, 119, 126

AI Artificial Intelligence. 10

BPTT Backpropagation through time. 13, 127, 128

CGRNN Convolutional Gated Recurrent Neural Network. 39

CNN Convolutional neural netwrok. 2, 11, 20

Conv Layer Convolutional layer. 20

DBS Deep brain stimulation. 10

EEG Electroencephalogram. 1, 10, 25, 126

FFN Feed Forward Network. 11, 126

GRU Gated recurrent unit. 2, 11, 15

LOO Leave One patient Out. 30, 120, 127

LSTM Long short-term memory. 2, 11, 15

RCV Randomized Cross Validation. 30, 127

RNN Recurrent neural network. 1, 11, 125

RNS Responsive neurostimulation. 10

TBPTT Trucated backpropagation through time. 15, 128

VNS Vagus nerve stimulation. 10

XAI Explainable AI. 121, 126
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Glossary

Aura set of physical, mental, or autonomic sensations that a patient feels before a
seizure. 6

Backpropagation through time gradient-based technique used to train recur-
rent neural networks (RNNs). The algorithm works by unrolling all input
in timesteps. Each timestep is like a separate layer in a deep network, and
the weights are updated based on the error at that timestep. The errors are
propagated backwards through the network. This allows the network to learn
from historical data and make more accurate predictions. 13, 127

Backpropagation Backpropagation is a supervised learning algorithm used to
train artificial neural networks. It works by calculating the gradient of the loss
function with respect to the network’s weights and then using this gradient
to update the weights in a way that reduces the loss. It works by repeatedly
propagating the error signal backward through the network, from the output
layer to the input layer. In each layer, the error is used to calculate the
gradient of the loss function with respect to the weights of that layer. The
weights are then updated in a way that reduces the gradient. 13

Bayesian Optimization Search search algorithm that uses a probabilistic model
to guide the search process. It can be used to find the best hyperparameter
values efficiently in problems with a large number of hyperparameters or
where the objective function is expensive to evaluate. 39

Convolutional neural network type of deep learning architecture primarily used
for processing grid-like data, such as images and videos. It excels at automati-
cally extracting features from these data types through the use of convolutional
layers. 2, 20

Deep brain stimulation type of neuromodulation approach. Electrodes are im-
planted in the brain, in the area that is believed to be responsible for seizures.
Electrodes deliver electrical pulses to the brain at regular intervals. 10

Dropout regularization technique that randomly sets a fraction of the input units
to zero during training. This forces the model to learn to rely on a more
diverse set of features, which can help to prevent overfitting. 40
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Glossary

Drug resistent epilepsy refers to a condition in which seizures in patients with
epilepsy are not adequately controlled despite treatment with multiple antiepilep-
tic drugs (Anti-Epileptic Drug (AED)s). 9

Electroencephalogram EEG is a test that measures the electrical activity in your
brain. It is a noninvasive procedure that uses small metal discs (electrodes)
that are attached to your scalp. The electrodes detect the tiny electrical
charges that result from the activity of your brain cells. It is the result of
Electroencephalography. 1, 25

Electroencephalography method to record an electrogram of the spontaneous
electrical activity of the brain. 126

Epilepsy chronic noncommunicable disease of the brain coused by seizure episodes
that are the result of excessive electrical discharges in a group of brain cells
that can take place in different parts of the brain. 1, 128

Explainable AI XAI also known as interpretable AI is a field of AI that focuses
on making models and decision-making processes more transparent and under-
standable to humans. It aims to provide information on how AI models arrive
at their decisions, allowing users to comprehend the reasoning behind those
decisions, identify potential biases, and assess the reliability of the model’s
output. 121

Feature selection process of identifying and choosing a subset of the most rele-
vant features or attributes from the input data. This is done with the aim
of reducing the complexity of the model, improving its performance, and
potentially speeding up training. 2, 30

Feed forward network is a type of artificial neural network in which the connec-
tions between nodes do not form a cycle. This means that information flows
in a single direction, from the input layer to the output layer, without any
feedback loops. Feedforward neural networks (FFN) are the simplest type of
neural network and can be used to solve a wide range of problems, including
classification, regression and pattern recognition. 11

Fine Tunning is a technique that involves adjusting the parameters of a pre-
trained model to improve its performance on a new task or dataset. It is
particularly useful for tasks where limited training data is available. 121

Focal seizure type of seizure that starts in one area of the brain. It is also known
as a partial seizure. Focal seizures can cause a variety of symptoms, depending
on the area of the brain affected. 6

Gated Recurrent Unit type of RNN designed for processing sequential data. It
shares similarities with LSTM but uses a more streamlined structure, making
it computationally more efficient while still being effective in capturing long-
term dependencies. 2, 15
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Glossary

Generalized seizure type of seizure that affects both sides of the brain at the
same time. 6

Grid search method that exhaustively evaluates all possible combinations of
hyperparameter values. This means that grid search is more likely to find the
optimal set of hyperparameters, but it is also more computationally expensive
than random search. 38, 127

Leave One patient Out LOO is a type of cross-validation where each patient in
the dataset is used as a test set once, and the remaining patients are used
as the training set. This process is repeated for all patients in the dataset,
and the average performance across all test sets is used as an estimate of the
model generalization error. 30

Lennox-Gastaut syndrome type of childhood epilepsy that is particularly severe.
It almost always starts before age 10, with a diagnosis most likely to occur
between ages 3 and 5. This condition causes multiple types of seizures that
can cause permanent brain damage resulting in learning difficulties and other
disabilities [4]. 8

Long Short-Term Mermory type of RNN that excels in capturing long-term
dependencies in sequential data. It achieves this by using specialized memory
cells that retain and retrieve information over extended sequences. 2, 15

Random search method for hyperparameter optimization that selects hyperpa-
rameter values randomly from a predefined range. This means that random
search can explore a wider range of hyperparameter values than grid search,
but it is also less likely to find the optimal set of hyperparameters. 38, 127

Randomized Cross Validation RCV is an evaluation technique that works by
randomly splitting the dataset into k folds, and then training the model on
k-1 folds and testing it on the remaining fold. This process is repeated k
times, and the average performance across all k folds is used as an estimate
of the model’s generalization error. 30

Recurrent neural network is a type of artificial neural network which uses
sequential data or time series data. They are distinguished by the concept
of memory, since they take information from prior inputs to influence the
current input and output. While traditional deep neural networks assume
that input and output are independent of each other, the output of recurrent
neural networks depends on the prior elements within the sequence. They
leverage on backpropagation through time (BPTT). 1

Responsive neurostimulation type of neuromodulation approach. Electrodes
are implanted in the brain, in the area that is believed to be responsible for
seizures. The electrodes monitor brain activity and deliver electrical pulses to
the brain when seizures are detected. 10
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Glossary

Seizure unstable situation in epilepsy patients due to excessive electrical discharge
by brain cells. It is the cause of Epilepsy attacks. 1

Trucated backpropagation through time TBPTT is a modified version of the
backpropagation through time BPTT algorithm that is used to train recurrent
neural networks. BPTT is a standard algorithm for training RNNs, but it
can be computationally expensive and memory intensive for long sequences.
TBPTT addresses this problem by truncating the backpropagation process to
a fixed number of timesteps. 15

Vagus nerve stimulation type of neuromodulation approach. A small device is
implanted under the skin of the chest, connected to a wire that wraps around
the vagus nerve. The device delivers electrical pulses to the nerve at regular
intervals. 10
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