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Abstract

The study investigates the downforce generation capabilities of a Formula One 2022-style un-

derbody placed close to a moving ground and subjected to a pure heave oscillatory motion. The

investigation has been conducted using both IDDES and URANS solvers coupled with the SST

Menter K-omega turbulence model. To achieve a close ground proximity oscillation a sliding

grid approach coupled with an AMR (Adaptive Mesh Refinement) solver has been used. For

values of the reduced frequency k between 0.754 and 1.508 the oscillation induced a significant

amplification in the aerodynamic forces compared to the quasi-static assumption. In order to

understand the origin of this amplification and to build a predictive model, multiple geometries

of increasing complexity were tested. A fundamental finding is the almost linear relationship

between the downforce circulatory component oscillation amplitude and the effective ground

load GE. A new added mass component was derived and shown to be non negligible at high

frequencies for geometries with low ride height endplates. Due to this component presence,

endplate longitudinal extension has shown to be the most influential feature on forces oscilla-

tion amplitude at high frequencies. The addition of other near ground features like footplates

or a central hull has shown mostly no effect beside differences in GE magnitude.
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Chapter 1

Introduction

1.1 Introduction to the topic

Before the first wing was introduced in motor sport racing in 1966, aerodynamic developments

of racing cars had been limited to streamlining the overall profile of the car while maintaining

adequate engine cooling [1]. The introduction of wings in 1966 heralded a new era in racing

car aerodynamics. Through the use of negative lift (downforce), the grip between the tires and

the road surface had been significantly increased, thus achieving higher cornering speeds and

lateral accelerations. One category of motorsport where aerodynamic development has had a

significant impact is Formula One. Since the first technical regulations limitations on wing

size and placement were introduced in Formula One, the drive for optimum wing performance

have progressively escalated over time. The true potential of ground effect aerodynamics was

realised in 1977 with the introduction of the Lotus type 78 [1]. Through the use of flexible

side skirts, wings close to the ground and a shaped underbody the Lotus type 78 represented

a milestone in ground effect aerodynamics in Formula One.

The exploitation of ground effect allowed downforce levels to reach unprecedented heights,

resulting in higher cornering speeds than ever before. Although under optimal conditions,

the combination of side skirts and a profiled underbody provided significant vertical load,

which was constantly on the verge of disappearing. Ride height and body trim sensitivity

were inherent characteristics of these cars, but tracks were rarely smooth, often filled with

bumps and curbs. Drivers in a race frequently took risks, engaged in battles, and made

mistakes, making encounters with track irregularities unavoidable. These encounters often

caused sideskirt damage or malfunctions , leading to a sudden loss of downforce and, in many
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cases, catastrophic accidents. Due to the rising number of accidents in the 1980s, the FIA

(Federation Internationale de l’Automobile) prohibited sliding side skirts and mandated the

adoption of a flat underbody. From that point onwards, racing car aerodynamics in Formula

One have focused on the front wing, rear wing, and rear diffuser. This trend has persisted since

the 2022 technical regulation changes, where the flat underbody was replaced by significantly

more complex venturi channels.

The 2022 technical regulations opened the door to multiple fundamentally different devel-

opment paths, and choosing any path with these limitations is akin to take a leap of faith.

The combination of the significant shift in the primary method of generating downforce, the

absence of testing, the simplification of mechanical components previously dedicated to the

aerodynamic platform control and, finally, the limited understanding of unsteady aerodynamic

phenomena in ground proximity, has led to the emergence of the phenomenon known as "por-

poising" in 2022. "Porpoising" is a term used in aerodynamics and racing car mechanics to

describe an unwanted dynamic phenomenon. This movement resembles the up-and-down mo-

tion of a dolphin (hence the term "porpoising," derived from the English word "porpoise,"

referring to the marine mammal) as it swims in water.

1.2 Applicability of research

The primary application of this research is within the realm of motorsport, specifically in

categories that rely on ground effect as the primary method to generate downforce. There

exists a lack of quantitative data concerning oscillating low aspect ratio wings in close ground

proximity.

Most of the studies on oscillating wings have focused on insect flight and micro air vehicles

(MAVs). Insects fly at low Reynolds numbers, so the flow physics differ from racing car wings.

Furthermore, both applications are generally focused on thrust generation and wake structure.

The work published on unsteady ground effect has been exclusively conducted through 2D

numerical simulations and so far it has only offered a qualitative analysis of the various effects

at play.

None of these studies have provided predictive capabilities that could have assisted teams

in avoiding porpoising during the 2022 Formula One season. Therefore, even if someone had

been able to anticipate the susceptibility of the new cars to the phenomenon, without expensive

fully coupled unsteady simulations, there would have been no way to quantify its magnitude
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to develop countermeasures nor to evaluate its impact on overall performance.

1.3 Aims of the present thesis

The aims of this research were the following.

• To investigate and quantify the flow field generated by a Formula One 2022 style under-

body.

• To investigate the effects of oscillatory heaving motion on the performance of a Formula

One 2022 style underbody.

• To explore how geometric features influence the heave frequency response of a Formula

One 2022 style underbody.

• To deepen the understanding of the unsteady force generation mechanisms of an inverted

low aspect ratio wing in close proximity to the ground.

• To propose a predictive model for these unsteady aerodynamic force generation mecha-

nisms

This thesis is divided into four main sections. Firstly the simulation setups used during this

research will be discussed within chapters 2 to 4 with validation considerations in chapter 5.

Then numerical results of this research will be covered from chapter 6 to chapter 7. In chapter 8

an empirical model with predictive capabilities regarding the unsteady forces generated in

ground effect will be presented. Finally in chapter 9 the results will be summarised and some

recommendations for future investigations will be offered.
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Chapter 2

CFD Model

In this chapter, an explanation of the CFD approach will be provided along with a brief overview

of the formulations used. Specifically, both incompressible URANS (Unsteady Reynolds-

Averaged Navier-Stokes) and IDDES (Improved Delayed Detached Eddy Simulation) have been

implemented using a second-order implicit temporal scheme. The simulation process involves

finite volume discretization using unstructured grids. Relative heaving motion has been im-

plemented through the use of two overlapping grids, a method known as the Overset-mesh

method. Additionally, considerations regarding the use of Adaptive Mesh Refinement (AMR)

strategies will also be discussed.

2.1 Computational strategy

To gain a deeper understanding of the observed porpoising phenomenon during the 2022 For-

mula One season, computational investigations were conducted. These investigations were

carried out with two main objectives:

1. To enhance the qualitative knowledge of the unsteady aerodynamic flow field.

2. To collect data across a wide range of geometries and oscillation conditions.

The initial cases involved a complex geometry inspired by actual Formula One 2022 un-

derbody configurations. The most prominent features of the underbodies were replicated from

Formula Ones that experienced the phenomenon most prominently, such as the Ferrari SF-75

and the Mercedes-Benz Petronas W-13. Due to limitations in computational resources, the

geometry in these cases will not include wings, tires, suspension arms, and features above
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the underbody, such as sidepods, bonnets, and cooling vents. It has been assumed that the

porpoising phenomenon is primarily related to the interaction between the lower surface of

the underbody and the ground. A hybrid RANS-LES known as IDDES (Improved Delayed

Detached Eddy Simulation) formulation had been employed to capture grid-resolvable eddies

both for steady state and heaving cases. This choice was made to investigate any hypotheses

concerning the connection between unsteady turbulent flow and the porpoising phenomenon.

Figure 2.1: Comparison between a the F1-75 2022 Formula One car and the "complex" case considered
in this thesis

Both quasi-steady and periodic imposed heaving motion will be investigated to study the

aerodynamic forces through a series of simulation cases. The real porpoising phenomenon

involves a combined motion of heaving and pitching. However, it’s challenging to accurately

quantify the magnitude and phase of the pitching motion due to a lack of data. Therefore,

another hypothesis made during this work is that pitching effects are negligible. Porpoising

motion has thus been modeled as a pure one-degree-of-freedom (1DOF) heaving motion. In

the 2022 Formula One season, both oscillation frequency and amplitude varied significantly

across teams, tracks, and setups. Frequency data have been publicly released by the FIA,

showing a range varying from 4.5Hz to 6Hz. In this thesis a range between 3 and 6Hz has been

considered. The heaving amplitude has been assumed to be a maximum of 30mm based on

quick image measurements.

The porpoising phenomenon has been observed to occur at speeds as low as 40 m/s, im-

pacting the behavior of the car not only at its top speed during straight-line braking but also in

medium-high-speed corners, where a consistent aerodynamic load is essential for performance.
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At high speeds and during an oscillating heaving motion, a combination of aerodynamic and

inertial forces often leads to a condition known as "bottoming". Bottoming occurs when the

wooden plank, positioned on the bottom of the central hull of the car, comes into contact with

and scrapes the ground. This wooden plank is placed 10 mm below the reference plane as

specified by the Formula One 2022 regulations.

According to these regulations, every surface of the car’s underbody must remain above this

plane. This means that when bottoming occurs, disregarding any possible deformations, the

only part of the car touching the ground is the wooden plank, and everything else remains 10

mm above the ground. Replicating the condition where a large surface like the plank touches

the ground while maintaining a real-time accurate monitoring of body forces on the geometry is

not feasible. Therefore, in this thesis, the presence of the plank will be disregarded. This means

that no part of the geometry will ever touch the ground, while still maintaining a minimum

height of 10 mm, thus accurately simulating the real minimum height condition.

Reference Plane

GroundWooden Plank 10mm Minumum Gap

Figure 2.2: CAD model at the minimum height condition considered

Many hypotheses have been proposed by influential figures in the motorsport world to

explain the cause of porpoising. However, since there is no publicly available material re-

garding any work done to attempt validation of these hypotheses, to fulfill the first objective,

it was essential to limit the number of initial assumptions regarding the true causes of this

phenomenon.

Following the results from the initial complex cases, a dependence of the phenomenon on

turbulent oscillations was ruled out, as the amplitude of turbulent-induced force oscillations

is several orders of magnitude lower compared to the amplitude of the forces induced by
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heaving motion. Therefore, the second set of cases has been limited to a URANS (Unsteady

Reynolds-Averaged Navier-Stokes) formulation for the heaving geometry simulations and RANS

formulation for the stationary ones. In this second set of cases, the objective is to collect

information on the relationship between geometric features and unsteady forces. The full

geometry has been idealised as an inverted wing with various combinations and dimensions of

Formula One 2022 underbody features, such as endplates, footplates, and a hull.

Figure 2.3: Showcase of some of the simple geometries and some of the Formula One-like geometrical
features tested

2.2 Governing equations

Starting with the incompressible Navier-Stokes equations in three dimensions, Reynolds aver-

aging is applied by decomposing each variable into a mean component (U , P ) and a fluctuating

component (u′, p′), where U represents the mean velocity, P is the mean pressure, u′ represents

the velocity fluctuation, and p′ is the pressure fluctuation. This decomposition is expressed as

ui = Ui + u′
i for velocity field and similarly p = P + p′ for the pressure field. The Reynolds

averaging operation will be indicated as:

⟨ui⟩ = Ui (2.1)

⟨p⟩ = P (2.2)

Substituting these relations into the incompressible Navier-Stokes equations and applying

Reynolds averaging results in the Incompressible URANS (Unsteady Reynolds-Averaged Navier-
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Stokes) equations:
∂Ui

∂xi
= 0,

∂u′
i

∂xi
= 0 (2.3)

ρ

(
∂Ui

∂t
+ Uj

∂Ui

∂xj

)
=

∂

∂xj

(
µ

(
∂Ui

∂xj
+

∂Uj

∂xi

)
− Pδij − ρ⟨u′

iu
′
j⟩
)

(2.4)

Rij = −ρ⟨u′
iu

′
j⟩ = −ρ


⟨u′u′⟩ ⟨u′v′⟩ ⟨u′w′⟩

⟨u′v′⟩ ⟨v′v′⟩ ⟨v′w′⟩

⟨u′w′⟩ ⟨v′w′⟩ ⟨w′w′⟩

 (2.5)

Where eq. (2.3) represent the continuity equations, where both the mean velocity and fluctu-

ating velocity fields are divergence-free (solenoidal). eq. (2.4) is the momentum equation and

depends solely on terms from the mean velocity field, except for the term Rij . The Reynolds

stress tensor Rij , which is a 3x3 matrix, consists of 6 independent components associated with

the velocity fluctuation field. Identifying these components is referred to as the RANS closure

problem. Resolving this problem is where turbulence modeling plays a critical role. Turbu-

lence models provide relationships for the components of the Reynolds stress tensor and other

turbulent properties, allowing for a closure of the governing equations.

The idea behind the classical formulation of Detached Eddy Simulation (DES), proposed by

Spalart in 1997 [14], was to combine RANS and LES in a single simulation. In this approach,

thin shear flow attached regions are resolved using RANS and a turbulence model, while

detached turbulent unsteady regions, where eddies are not much smaller than the scale of the

geometry, are solved using LES. Since its introduction, there have been many improvements

in this type of formulation. The one used in this thesis is the IDDES formulation, which was

initially proposed by Shur in 2008 [13] and later refined and adapted to the K-Omega SST

eddy viscosity turbulence model [3]. The capabilities of this latest formulation have recently

been compared to more conventional LES and RANS approaches [4]. It was found that a

RANS approach tends to be inaccurate in correctly predicting the qualitative features of wakes

behind notchback road vehicles. On the other hand, the IDDES method has shown excellent

consistency with LES results, even on coarser grids.

In all the simulations, the following finite volume method schemes have been employed:

Convection :

RANS/URANS second-order upwind

IDDES second-order upwind (inizialization only)

IDDES hybrid second-order upwind/central scheme
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Diffusion : second-order upwind

The second-order upwind scheme allows for second-order accuracy while introducing artificial

dissipation, which aids in solution stability in RANS formulations. For this reason the second-

order upwind scheme was also utilized to quickly dampen initial transient oscillations in IDDES.

The second-order upwind scheme is the most accurate for steady-state calculations, while

the central-differencing scheme, with its kinetic energy-preserving properties, is suitable for

LES. Therefore, the hybrid second-order upwind/central scheme is a good choice for a hybrid

RANS/LES formulation like IDDES.

2.3 Turbulence model

Solving the RANS closure problem introduced in the previous chapter means finding a rela-

tionship between the Reynolds stress tensor and the mean flow field. This is where turbulence

models come into play. Most of the commonly used turbulence models today are based on the

Boussinesq hypothesis:

Rij = ρνt

(
∂Ui

∂xj
+

∂Uj

∂xi

)
− 2

3
ρkδij = 2ρνtEij −

2

3
ρkδij (2.6)

Where νt is the kinematic eddy viscosity and Eij is the mean rate of strain tensor. Substituting

Rij into eq. (2.4) give:

ρ

(
∂Ui

∂t
+ Uj

∂Ui

∂xj

)
=

∂

∂xj

(
ρ (ν + νt)

(
∂Ui

∂xj
+

∂Uj

∂xi

)
− Pδij −

2

3
ρkδij

)
(2.7)

From Equation eq. (2.7), it is clear where the name "Eddy viscosity models" comes from. The

Boussinesq hypothesis assumes that the presence of the Reynolds stress tensor can be inter-

preted as an increase in the total viscosity acting on the mean flow. ddy viscosity turbulence

models, such as the K-Omega SST two-equation model, provide a relationship between mean

flow field variables and νt.

The K-Omega SST model as described in [8] allows, through the use of the blending function

F1, to progressively switch from the standard K-Omega model near the wall to the standard

K-Epsilon model far away from the wall. The K-Omega SST model is derived from the K-

Omega BSL model where the main difference between the two is the different definition of the

eddy viscosity νt, which has been modified to account for the transport of the turbulent shear

stress Rij that, in the Boussinesq hypothesis, is proportional to the mean rate of strain Eij . As
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shown in [7] is the best performing model in shear flows with strong pressure gradients. This

makes it the most suitable model both for pure RANS simulations and for the hybrid IDDES

approach, as IDDES maintains a RANS formulation near walls.

Once the turbulence model has been chosen, the wall treatment has also been selected.

In particular, the K-Omega SST model described in [8] allows for a low y+ approach. This

approach consists in maintaining the first cell adimensional distance from the wall y+ < 5

to solve the viscous sub-layer region in the boundary layer. The adimensional distance y+ is

defined as a function of a reference velocity usually called shear velocity uτ

y+ =
yuτ

ν
(2.8)

uτ =

√
τw
ρ

(2.9)

where τw is the wall shear stress and is proportional to ∂U
∂y

∣∣∣
y=0

. With the assumption of

turbulent flow and low y+ the following wall functions have been used for all non-slip walls.

For velocity:

u+ = y+ (2.10)

For turbulence:

ω+ =
6

β1(y+)2
(2.11)

where β1 is a K-Omega coefficient.

P+
k = µ+

t

∂u+

∂y+
(2.12)

where P+
k = µPk

ρ2u4
t

is the adimesional production of tubulent kinetic energy, ω+ = ωµ
ρu2

t
is the

adimensional specific dissipation rate and µ+
t = µt

µ is the adimensional turbulent eddy viscosity.
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2.4 Boundary conditions

The domain has been identical for all simulations: a rectangular 10× 10× 65m domain with a

constant velocity inlet, pressure outlet and a moving ground. The assumption of symmetry has

been implemented by using a symmetry plane to reduce the required number of cells by half.

This assumption is considered safe because it is unlikely that the geometry under consideration

would exhibits asymmetric wakes with respect to the XZ plane. Far field boundaries have also

been treated as symmetry planes.

Moving Ground

Symmetry Plane

V
el

oc
ity

In
le

t

P
ressure

O
utlet

10m 45m20m
∼ 3m

Moving ground

Symmetrical asumption Domain

10m

Figure 2.4: Side view and front view of the computational domain and the geometry at its minumum
heigth of 10mm

2.5 Motion: Overset-Grids

To achieve relative motion between walls in the domain, two methods were evaluated: mesh

morphing and overset grids. Mesh morphing is the easier and less computationally expensive

method for small movements. However, when dealing with larger movements, mesh quality

may become problematic. In contrast to the overset mesh method, using mesh deformation

doesn’t introduce conservation or interpolation errors, as the grid remains single. Addressing

the challenge of high mesh deformation involves performing remeshing operations whenever a

predefined quality threshold is exceeded, offsetting any speed advantages. Overset meshes are

employed to discretize a computational domain using multiple different meshes that overlap in
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an arbitrary manner.

H
eave H

ea
veOverset domain

Background domain

Figure 2.5: Overset domain containing the geometry inside the background domain

They are particularly useful for problems involving large motions. After conducting a quick

test of both methods, the overset method was selected to avoid the need for frequent remeshing

operations.In this thesis, two separate grids were adopted: the background grid, which contains

the moving ground and far-field boundary conditions, and the overset grid, which contains the

geometry. Heaving motion is achieved by vertically sliding the overset grid on top of the

background grid. Information exchange between the background region and the overset region

is accomplished using a linear interpolation approach, as described in [1].
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2.6 Convergence Criteria

Convergence criteria for steady RANS solutions were determined based on both residuals and

body forces reports. To consider a RANS simulation as converged, all residuals needed to

decrease by at least three orders of magnitude before reaching a plateau. Additionally, there

should be no or negligible oscillation in the body forces.

0 100 200 300 400 500 600 700 800 900
10−12

10−8

10−4
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N
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m
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ua
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s.d.r. t.k.e. Continuity Xmom Ymom Zmom

Figure 2.6: Example of well converged steady RANS solution

When examining residuals in unsteady IDDES or URANS simulations, they have limited

utility in determining if each inner iteration reaches a converged solution. The formulation

of convergence criteria for stopping inner iterations has proven to be unreliable, varying from

one simulation to another. Therefore, a consistent approach of using a fixed number of inner

iterations has been employed. Nevertheless, it has been ensured that residuals exhibited a con-

verging trend during each inner iteration. To determine the exhaustion of the initial transient

for unsteady solutions with a steady-state geometry, the moving average value of key quantities

of interest, such as the magnitude of body forces and the position of the center of pressure, has

been considered.
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Figure 2.7: Example of inner iteration converging residuals on the left and a convergent body-forces
plot of unsteady IDDES solution on the right

2.7 Initialization Strategy

Initialization strategy fro URANS transient has been simply done by starting from well con-

verged steady RANS solution with same mesh and turbulence model. IDDES initialization was

a bit more elaborate:

1. Starting with a well converged RANS K-omega SST solution

2. First 150 transient IDDES K-Omega timesteps using the second-order upwind convective

scheme (for increased numerical dissipation)

3. Switching to hybrid second-order upwind/central scheme (for increased accuracy in LES

treated domain)

4. After a steady state solution has been reached geometry motion could be activated

Transition from RANS to IDDES has been done maintaining the same mesh to avoid solution

interpolation error between different grids.
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Chapter 3

Computational Grid

3.1 Global strategy

The fluid domain had been discretized using a trimmed mesh for the majority of the core and

an inflation layer (or prism layer) of anisotropic prismatic cells next to wall surfaces.

The trimmed mesh utilizes a template mesh constructed from hexahedral cells at the target

size, from which it cuts or trims the core mesh using the initial input surface. This method

allows for a high-quality hexahedral mesh with minimal skewness. It also enables a rapid, au-

tomated meshing process, resulting in reduced iteration time and memory allocation compared

to the polyhedral mesh. This type of mesh is the recommended choice for highly directional

flows, as diffusion errors can be minimised by alining the hexahedral grid with the flow direc-

tion. The trimmed mesh also allows for localised generation of high aspect ratio cells, which

tunred out to be very useful in mitigating the high cell demand required to define the close

gap between the studied geometry and the ground.

The adoption of a RANS formulation and a turbulence model allows for the use of a highly

anisotropic inflation layer (or prism layer) near walls to adequately capture the mean flow

features of the boundary layer. Prism layers do not only provide near wall mesh density,

they also allow high-aspect-ratio cells to be used, thus providing better cross-stream resolution

without incurring an excessive stream-wise resolution. Prism layers also reduce numerical

diffusion near the wall. Numerical diffusion is a discretization error that smears discontinuities

and steep gradients in a finite volume advection scheme. Numerical diffusion is minimized

when the flow is aligned with the mesh. The use of prism layers greatly enhances accuracy as

a result.
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3.2 Volume refinement

Since the size of the trimmed cell template mesh is based on the default target surface size, the

trimmed cell mesh only grows in multiples of 2 starting from the target surface size. Therefore,

the actuall Cell Size CS[m] in the domain core can be represented by the following formulation:

CS = BS · 16 · 2
−L

100

Where BS[m] represents the Base Size, which is a global parameter used to scale the overall

grid density, and tha adimensional value L is the refinement level. A value of L = 0 represents

the "default" cell dimension used to define the body surface. Positive values of L indicate grid

refinement, while negative values of L indicate grid coarsening. To ensure efficient resource

utilization, careful consideration was taken in identifying areas where a positive refinement

level L was necessary and areas where a negative one could be applied.

L=-1

L=-2
Untill end of the domain∼ 2.5m

L=0
∼ 4m

∼ 0.5m L=0
L=-1∼ 1.5m L=-2

Figure 3.1: Volume mesh refinement zones showned from the side and from above

In fig. 3.1, the control volumes used to define the volume refinement zones are shown in

different colors. The pink region represents the L = 0 refinement zone, which corresponds to

the wake zone immediately behind the geometry. The vicinity of the geometry and an extended

backward portion of the domain are defined with L = −1 cells, shown in yellow. Finally, a

L = −2 coarser region, extending from the backend of the geometry to the end of the domain,

is used to avoid abrupt dissipation of the wake structures inside the domain.
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L=1

Overset interface anisotropic treatment

Figure 3.2: Underbody treatment

In fig. 3.2 aim to show that all the volume below the geometry is refined using a L = 1

refinement level.

For IDDES simulations, an Adaptive Mesh Refinement (AMR) strategy to capture fluctuat-

ing turbulent wakes was considered, tested, and subsequently discarded. The AMR solver was

configured to identify and refine zones where turbulent quantities exceeded a certain threshold.

This method was implemented for its ability to provide higher-resolution results and faster

solution speeds compared to a static mesh.

AMR simulations demonstrated improved resolution of turbulent wakes with minimal im-

pact on memory resource requirements. However, it was observed that AMR interventions

were highly sensitive to threshold parameters and had limited influence on the body’s pressure

distribution. To effectively track the convective motion of the turbulence structures, frequent

activations of AMR were necessary, which negated any potential time savings in the solution

process. Consequently, this approach was abandoned for wake refinement applications in this

thesis.

3.3 Wall treatment

Correctly defining the inflation layer is crucial to accurately predict forces acting on a wall

and to predict flow features such as separation and vortex shedding. To ensure an accurate

representation of the boundary layer, a low wall y+ approach has been adopted. The choice

of such approach has imposed a constraint on the maximum height of wall adjacent cells. The

inflation layer is composed of a specified number of progressively growing layers. The total

thickness of this layer is defined as the distance between the surface of the wall and the surface
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Figure 3.3: y+ value distribution on the surface geometry of an IDDES conveged simulation. Different
colours representing different patches of the suface

of the last layer. The thickness of these layers follows a geometric progression law, such as:

htot = h0 + h1 + ...hn−1 =

n−1∑
i=0

h0 · αi = h0 ·
1− αn

1− α

Where n the number of layers, α is the growth rate and h0 is the height of the first layer. This

equation is regulated by four variables, three of which are independet, also h0 is constrained by

the limitation imposed by y+ ≥ 5. The choice of the remaining two independent variables was

made to ensure high mesh quality based on general criteria. These critiria being the following:

1. Slow growthrate α ∈ [1.2− 2]

2. Smooth transition between prism layer and core mesh

To quantify the smoothness of the core to prism layer transition, the parameter Transition

Ratio (TR) has been defined as follows:

TR =
CS

LPLT

Where CS[m] is the local core cell size and LPLT [m] is the last prism layer thickness (fig. 3.4).

TR is a ”quality” parameter, in all the simulations done during this thesis for all transitioning

cells its value has being kept between [1-5] . Growthrate α is both a ”resolution” and a

”quality” parameter since values above a certain threshold can lead to instability or divergence

in the solution. Growthrate values closer to 1 coupled with a fixed target TR will cause a quick

increase in prism layer number, thus an increase in total cells count. To guarantee an efficient
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Figure 3.4: Mesh section near a wall to showcase inflation layer structure

utilization of the available resources, the geometry surface has been divided into two main

groups based on prism layer ”resolution” and ”quality” criteria used.

Target max y+ Growtrate α Transition Ratio (TR)

Critical surfaces 3 1.3 [1-4]

Non Critical Surfaces 5 1.6 [1-5]

Critical surfaces are those that contribute significantly to force generation. These surfaces

experience strong pressure gradients and may be prone to separation. Therefore, they have

been treated with a highly resolved and high-quality prism layer.

Figure 3.5: In cyan, the non-critical surfaces are highlighted, while in magenta, the critical surfaces
are highlighted.

3.4 Ground treatment

As stated in section 3.4, the ground surface is modeled as a moving wall, whose velocity

coincides with the freestream velocity. Since there is no relative velocity between ground

surface and freestream flow this mean that the boundary layer will form only where flow

behaviour deviates from freestream condition. This is true especially in geometry vicinity,
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4.2m

1.8m

Figure 3.6: In light blue, the ground patch beneath the geometry has been treated for strong interaction
with the body, while in brown is the remaining ground surface treated for weak interaction.

where the flow can be strongly accelerated by the presence of stagnation points, suction peaks

and near ground vortex structures formation (fonte 4 sezione 5.3 interazione col ground, fonte

7 4.4 ). Just like stationary walls an inflation layer has been applied to the sliding ground surface

too. To optimize resource allocation, the ground surface has been devided into two zones based on

ground-body interaction. One group comprises areas with strong ground-body interaction, while the

other includes areas with weak interaction (fig. 3.6).

Interaction strengt Target max y+ Growtrate α Transition Ratio (TR)

Strong 5 1.6 [1-5]

Weak 5 2 [1-5]

The table above provides details on the properties of the prism layers in these two zones.
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Figure 3.7: Mesh section along the Y-Z axis illustrating grid coupling between overset domain and
Background domain

3.5 Overset interface treatment

Particular attention has been devoted to interface quality between the overset region and the back-

ground region, especially in the close ground proximity side. On the far-field sides of the interface, the

sole criterion enforced was that the cell sizes between the overset region and the background region

had to be identical (fig. 3.7). Complying with this criterion was relatively straightforward, thanks

to the grid’s uniformity in the distant regions away from the geometry. Regarding the ground-side

interface, relying solely on the grid uniformity criterion was found to be inadequate. It was observed

that during heaving motions, the conversion of acceptor cells into active cells and vice versa introduced

considerable noise into the pressure field underneath the body, resulting in significant fluctuations in

pressure-related reports (fig. 3.8).
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Figure 3.8: Showcase of active/inactive cell switcing induced noise on Lift reports.
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Similar fluctuations, although smaller in magnitude, have been observed in published results from

[1]. The high magnitude observed in the application during this thesis is likely caused by the extreme

proximity of the overset interface to the geometry. The number of time steps required to dissipate these

fluctuations depended on their magnitude, which was related to the vertical cell dimensions of cells

along the ground-side interface where strong pressure gradients were occurring. As this phenomenon

not only affects readings but also impacts the entire flow field, a series of strategies were implemented

to mitigate this issue:

1. Avoid having prism layer cells as acceptor cells since prism layer cells are difficult to control.

2. Increase gap-wise cell resolution through the use of anisotropic cells. Especially in areas where

steep vertical pressure gradients exist, which include:

• Volumes below minimum height part surfaces, such as endplates, hull and fence edges.

• Volumes where strong vortex structures exist.

3. Adoption of adaptive mesh refinement strategies to maintain adequate interface quality during

overset movement.

Ground-side interface cells consist of both isotropic and anisotropic cells. All the anisotropic cells used

in the core mesh, except for transition cells, had the following dimensions:

XSide = Y Side = BS · 16 · 2
(−Lz+2)

100

ZSide = BS · 16 · 2
−Lz

100

Where Lz is analogous to the refinement level L used for isotropic cells in section 4.2, the difference

being that parameter Lz is defined only for anisotropic cells and refers to the refinement level along

the z-direction.

AspectRatio =
Xside

ZSide
=

Y side

ZSide
=

2(Lz+2)

2Lz
= 4

The fixed aspect ratio of 4 has been chosen as a limit value to achieve a good z-resolution in critical

areas of the interface without introducing concerns about mesh quality related to excessively high

aspect ratios. This choice was made due to the limitations of the trimmed mesh, which does not allow

for aspect ratios between 4 and 8. Using a value of 8 would have required special care to ensure mesh

quality. Gap refinement for the ground-side overset interface can be represented by the 2 cases showed

in fig. 3.9 and fig. 3.10 in which 4 different types of treatments can be distinguished. In particular:

Typer 1: Far from the body there is no necessity of any consideration about interface refinement.

Type 2a: Presence of gradients non negligible but not strong enough to justify anisotropic treatment

so cells remains isotropic at refinement level L = 1.
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Type 2b: Strong gradients due to body suction peaks the or presence of near ground vortices therefore

requiring Lz = 3

Type 3: Strongest gradients and minimum body-ground clearance therefore Lz = 4 (This refinement

has been done only in proximity of the interface using an adaptive mesh aproach)

Type 1

Type 2a

Type 3 Type 3

Figure 3.9: Showcase of the different treatment for different parts of the overset interface for a Y-Z
section of the complex IDDES case.
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Type 1

Type 2a

Type 3 Type 2b

Figure 3.10: Showcase of the different treatment for different parts of the overset interface for a Y-Z
section of the simple RANS case.

In fig. 3.9 , can be see that the entire surface beneath the body of the complex geometry has been sub-

jected to type 3 adaptive anisotropic refinement. This decision is based on the presence of substantial

vortex structures inside the channels, and the utilization of adaptive refinement aims to accurately

capture and analyze the intricate flow patterns and vortex dynamics in this area. In contrast, in

fig. 3.10, the portion of the interface in the middle of the channel was sufficiently treated with a type

2b refinement. the portion of the interface in the middle of the channel was sufficen to be treated

with a type 2b. In order to guarantee that interpolation occours always between core cells and never

with prism layer cells the following scheme has been adopted for surfaces at minimum body-ground

clearance:
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5 layers of anisotropic Lz = 4 cells

Body

Ground

Overset heaving domain

Fixed Background domain

Body

Ground

Figure 3.11: Y-Z mesh section at minumum ride height of 10mm on the left and 12.5mm ride heigth
on the rigth

As shown in fig. 3.11 this scheme consists in having at least 5 non prism layer cells from the border

of the interface and the start of the inflation layer. Given the fixed minum ride height of 10mm. This

imposes a constraint on the values of the total prism layer height for surfaces at minimum body-ground

clearance, both on the body side and on the ground side. The use of Lz = 4 allows for a reduced prism

layer total height without compromizing TR, whose importance has been discussed in the previous

section.

For geometries with large surfaces at minimum height, the increase in the number of cells caused

by the use of anisotropic cells with Lz = 4 is very high. To ensure that this type of cell is used only

near the interface and not across the entire oscillation range, an adaptive mesh approach has been

used. The AMR has been set to intervene only when the movement of the overset domain causes a

change in active cells count, this means the solver gets triggered only when there is the need to refine

a a row of Lz = 3 into Lz = 4 (fig. 3.12).

Ride height=40mm Ride height=25mm

Figure 3.12: Y-Z section of the background mesh at 2 different ride height to show the adapted Lz = 4
anisotropic cells following the lower overset interface
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Chapter 4

Solution time optimization

In this chapter the work done in order to optimize total solution time will be higlighted.

4.1 Grid independence analysis

A grid independence analysis study was conducted on the complex geometry by performing multiple

RANS simulations with varying grid densities. The grid structure remained consistent with the de-

scription provided in chapter 3, with the only adjustable parameter being the base size, denoted as BS

in section 3.2. The base size directly determines both surface and volume resolution, and it indirectly

influences the number of prism layers required for each surface to maintain the transition ratio (TR)

within the threshold specified in section 3.3 . This approach is employed for both the URANS-based

simulations and the IDDES-based simulations.

4.2 Time-step Independence analysis

Implicit schemes are unconditionally stable, meaning that there is no need to satisfy any particular

time-step criteria to achieve a converging solution. However, it is essential to note that while implicit

schemes are unconditionally stable, they are not unconditionally accurate. As a good practice, even for

implicit schemes, it is often recommended to ensure that the Courant CFL (Courant-Friedrichs-Lewy)

number is less than or equal to 1 at every point in the domain, where:

CFL =
V elocity · TimeStep

GridSpacing

This condition helps ensuring numerical stability and accuracy in simulations. Unfortunately,

satisfying this criterion was almost impossible in this case, so a time-step independence analysis was

conducted to choose the optimal compromise between accuracy and solution time.
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Figure 4.1: Relative percentage error difference between the reference simulation with ∆t = 4.5e− 5s
for an early complex geometry

This analysis was conducted on the IDDES simulations with a steady-state geometry and a constant

number of inner iterations set to 10. To prevent solver instability, safe values of Under Relaxation

Factors (URF) were used, with both velocity and K-Omega set to 0.7. As the SIMPLEC pressure-

velocity coupling algorithm was employed, pressure relaxation is not specified since it is embedded

in the algorithm. These measures were adopted to isolate error caused by temporal resolution. To

determine an appropriate timestep, a series of simulations were conducted. These simulations were

initialized using the finest timestep considered, and the difference in overall force generation relative

to the finest timestep was calculated after a simulated time of 0.2 seconds

As shown in fig. 4.1 a timestep of 7.5e-5 seconds exhibits less than a 1% deviation in the Cz reading

within respect to the reference simulation done with a timestep of 4.5e-5 seconds in the considered time

interval. The error remains within an acceptable range even for a timestep of 1e-4 seconds. Therefore,

a timestep of 7.5e-5 seconds has been chosen as a suitable compromise for IDDES simulations. This

choice is also influenced by the fact that further reducing the time resolution would not significantly

improve solution speed due to the need to increase the number of inner iterations to achieve convergence

at each timestep.

Another point of concern when choosing the timestep for simulations involving moving geometries

through sliding grids is to ensure that during motion, no overset interface cell takes less than 2 timesteps

to move from one background cell to another. In this case, CFL-related limitations have been found

to be much more demanding in terms of time resolution.

4.3 Inner iteration tightening

A good practice for choosing the number of inner iterations is to ensure that each inner iteration

reaches an adequate level of convergence. The convergence speed for the implicit temporal scheme,
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coupled with a segregated SIMPLEC solver, can depend on factors such as:

1. Mesh quality

2. Timestep value and Courant number distribution in the domain

3. Turbulence model

4. Solvers relaxation

This step was taken as an additional refinement in solver settings to improve solution speed. Starting

with the reference solution that used a timestep of 7.5e-5 seconds presented in section 4.2, Under-

Relaxation Factors (URF) were incrementally increased until instability was observed. After identifying

a stable set of URF, a similar approach to the one used in section 4.2 was employed to determine the

combination of URF and inner iteration numbers that strike a balance between accuracy and speed.

This combination was found to require 5 inner iterations with both under relaxation factors for velocity

and K-Omega set to 0.9.
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Chapter 5

CFD model validation

CFD model Validation was performed using publicly available results. However, it is important to note

that most of the heaving bodies in ground effect results are limited to 2D computational experiments, as

seen in articles [10] and [11]. The behavior of the geometry considered in this thesis differs significantly

from the one of a 2D geometry.

In particular, the stall height for a 2D geometry is much higher. For example, the results cited in

[10] and [11] stop at hmin = h0−a = (0.16−0.08)c = 0.08c, where hmin is the minimum gap between the

ground and the section during heaving oscillation, h0 is the mean gap, and a is the oscillation amplitude,

all expressed as a measure of the chord length c. This means that when scaling these results to a 3m

chord length, the minimum height considered in [10] and [11] is hmin = 0.08 · 3000mm = 240mm, a

value 24 times higher than the 10mm minimum height considered in this thesis.

Due to the absence of data from simulations or physical experiments regarding 3D low aspect ratio

heaving bodies in close proximity to the ground, quantitative validation of the heaving results has

proven to be infeasible. Therefore, validation will be limited to a qualitative assessment by comparing

the observed 3D behavior in this thesis with the known 2D behaviour. Data related to 3D steady

geometries in close ground proximity is available. In studies such as [2] and subsequently in [5], the

effects of vortices trapped between a flat plate and a moving ground were investigated through wind

tunnel experiments. In these experiments, forces were measured along the vertical and longitudinal
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Figure 5.1: On the top the purpously built domain to replicate [2] wind tunnel dimensions and features.
On the bottom the 3 different set of fences tested

directions at a speed of 120mph ≃ 53.65m/s for various ground clearances, with a minimum clearance

of h = 0.0042c, where c = 762mm is the length of the plate tested. Scaling the problem to a more

representative cord c = 3m it gives a scaled ground clearence of h = 12.6mm. Results obtained in

[2] and [5] thus provide valuable data for the validation of the CFD model described in the previous

chapters.

Validation has been performed by recreating the wind tunnel experiment published in [2] within

the simulation environment. A comparison has been made for a range of clearances ranging from

hmin = 0.0042c = 3.24mm to hmax = 0.084c = 64mm for three different configurations of vortex

generators. Two of the sets considered had β = 20◦ but different spacings between vortex generators

d, while the last set had a different β = 30◦. Experimental data has been compared with the IDDES

solver using exacttlu the same overset mesh approach described in previous chapters. Due to the

difference in geometry dimensions between this case and the original cases for which BS was decided

in section 4.1, the grid size had to be scaled. Scaling was accomplished by maintaining the same number

of Lz = 4 anisotropic cells (whose importance is described in section 3.5) between the geometry and the

ground surface at the minimum gap considered. Since cell dimensions changed, time step was adjusted

to achieve a similar CFL distribution in the domain compared to what was found to be optimal in

section 4.2.
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Figure 5.2: Plots of the averaged negative lift coefficient Cz and Y-Moment coefficient Cmy for
the three geometries. The "REF" curves represent the data found in [2], while the "SIM" curves are
obtained using the IDDES CFD model.

In fig. 5.2, it can be seen that the CFD model setup described in previous chapters provides decent

accuracy when it comes to the qualitative behavior of the geometry at different ride heights, both for

Cz and Cmy values. However, the measured values show an error of almost 20%. It’s important to

note that this error was not caused by the overset interface because simulations with h = hmin were

repeated using a single continuos grid, and no appreciable difference was observed.

This error can be attributed to differences between setups. In a study referenced as [5], the same

wind tunnel setup as [2] was replicated, and a similar error was found to be caused by a slight positive

angle in the plate.
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Chapter 6

IDDES simulations of a Formula

One 2022 style underbody

6.1 Geometrical features

The 2022 Formula One technical regulations saw some of the most significant changes in recent decades.

Consequently, there were substantial differences in car designs among the various teams, as shown in

fig. 6.1. At the start of the season, we witnessed a variety of approaches to car design, reflecting the

different strategies adopted by teams in response to the new rules.

Figure 6.1: Showcasing the simplified upper portion of the modeled geometry, the top features the
narrow sidepods concept of the Mercedes WB13, while the bottom showcases the wide, sculpted sidepods
approach of the Ferrari F1-75.
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Some teams, like McLaren and Mercedes, initially tried to replicate aerodynamic concepts from

the 2021 season, intending to adapt their previous designs to the new regulations. In contrast, other

teams took a completely different route. They embraced the idea of using wide and sculpted sidepods,

which allowed them to achieve aerodynamic effects that were traditionally obtained using different

methods under the previous regulations. Since there was no direct link between sidepod design and

the porpoising issue, all surfaces above the underbody were treated as "closure" surfaces to ensure a

stable and attached airflow over the top of the underbody and to the beamwing.

Figure 6.2: RedBull RB18 viewed from behind exposing its beam wing design and a comparison with
the designed CAD model.

Another element that has undergone significant simplification in the model is the beam wing,

as depicted in fig. 6.2. This component undergoes continuous evolutions and changes throughout

the season, exerting a substantial influence on both aerodynamic balance (as it closely collaborates

with the underbody and rear wing) and overall aerodynamic efficiency. With a few exceptions, this

component typically adopts the form of a double-element wing, featuring a total of two junctions on

each side. One of these junctions connects to the rear wing’s endplate, while the other interfaces with

the rear crash structure, with the exhaust passing in between. In this model, the beam wing has been

simplified to a single, floating twisted element with two basic endplates. The section of the beam wing

was a s1223 whose cord has been enlarged by ∼ 50% compared to the rule-compliant design, aiming

to partially replicate the absence of the rear wing.

Another characteristic feature introduced by the new 2022 regulations is the presence of vertical

fences. As shown in fig. 6.3 these are rigid vertical thin surfaces with various purposes:

• Front wheel wake management

• Upper flow management

• Local vertical load generation through local expansion

• Downstream vertical load generation through:

– Venturi inlet flow management

– Edge flow management and sealing

– Downstream propagation of vortices
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Figure 6.3: Mercedes WB13 underbody design, with clearly visible fences and a comparison with the
designed and tested fences.

The 2022 Formula One technical regulations stipulate that vertical fence structures must not have

a rounded leading edge. This requirement necessitates careful attention during optimization, as a

sharp leading edge is less forgiving of variations in the angle of attack. The model usde in this thesis,

the fences have a rounded leading edge to avoid the laborious process of optimizing the leading edge

angle of attack to prevent flow separation. However, this choice results in slightly thicker modeled

fences, reducing clearance between them. Additionally, to simplify the model and eliminate the need

for meshing small gaps between fences, one of the four fences imposed by the technical regulation has

been removed.

In order to design a geometry resembling the cars competing in the 2022 Formula One champi-

onship, a comprehensive review of the technical regulations was conducted. One of the distinguishing

factors that sets apart the 2022 Formula One regulations from its predecessors is its definition based

on volumes. For the first time, technical regulations have been crafted with the intention of being

implemented directly in CAD software.

Figure 6.4: Showcase of the technical regulations volumes overlapped to the designed geometry in a
CAD environment.

As depicted in fig. 6.4, the technical regulations provide explicit constraints not only on the exis-

tence volume and minimum height of both venturi channels and the floor edge and central hull, but

also impose limitations on the vertical expansion slope and, more significantly, on the lateral expansion

slope. These technical regulations not only dictate where the geometry must exist but also define the

shape of these geometrical features, through minimum radii of curvature and continuity characteristics

of specific sections. For the sake of simplicity, only the regulations related to volume constraints were
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(a) (b)

(c) (d)

Figure 6.5: Images (a) and (b) show a sideview comparison of 2 geometries highlighting a porcupine
curvature analysis of the vertical expansion slope, while Images (c) and (d) show a top view comparison
highliting the lateral expansion slope.

followed during the design of this geometry. Regarding the vertical and lateral expansion slopes, sev-

eral iterations were carried out to achieve a more optimal functioning of the underbody. In the early

iterations of the geometry, significant fluctuations in force reports were observed. These fluctuations

were primarily caused by the premature breakdown of vortices inside the expansion zone. The first

iteration of the vertical slope (as shown in fig. 6.5a) featured a simple constant radius profile with

another constant radius blending into the upstream channel. On the other hand, the lateral slope de-

sign is constrained by tight rules and regulations. Therefore, in the initial iteration, a straightforward

sinusoidal-like shape consisting of two constant radius sections was adopted(as shown in fig. 6.5c). In

the last iteration, the slopes were designed taking inspiration from shapes that are actually used in

Formula One. In the new vertical slope design shown in fig. 6.5b, a single kick concave-convex profile

has been employed. These types of profiles are characterized by a strong, localized suction peak at

the beginning of the extraction slope, followed by a pressure recovery zone immediately after to the

re-energize the boundary layer. This design also helps reduce the expansion rate in the middle portion

of the diffuser, where vortex breakdown was observed to occur. Additionally, to further reduce the

expansion rate in the middle zone and create a more favorable pressure gradient inside the diffuser,

another constant radius kick-up was added at the end of the section. Modifications on the side extrac-

tion profile showed in fig. 6.5d were made to add a strong positive pressure gradient in proximity of

the vortex brake down location.
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(a) (b)

Figure 6.6: Showcase of two "mousehole" tested geometries. In (a) the mousehole is a simple cut on
the sidewall while (b) is a complex connected shape.

Formula One teams in the 2022 season frequently utilized a feature known as the "mousehole" in

order to manage edge flow in the sensitive area. This feature involves an opening in the side wall, as

illustrated in fig. 6.6, which allows for the introduction of high-energy airflow into this critical region

where vortex breakdown can lead to significant flow stability issues. Several shapes were explored in

this area, ranging from a simple cut in fig. 6.6a to a more complex and connected shape in fig. 6.6b.

As a result of this optimization process, the integrity of vortex structures in the diffuser area has

been significantly improved, as demonstrated in fig. 6.7c. This improvement is also evident when

examining the force plot along the vertical axis. In a steady-state condition at 40m/s prior to opti-

mization, the overall vertical forces exhibited an oscillation magnitude of nearly 10% of the total load

produced, accompanied by a very slow oscillation frequency. This confirmed the unstable behavior of

the macroscopic vortex structures, as shown in fig. 6.7a. In contrast, the optimized geometry exhib-

ited a smaller oscillation magnitude at a higher frequency, in line with fig. 6.7a, which clearly shows

a continuous propagation of vortices coming from downstream and a compact vortex structure that

forms in proximity of the mousehole. In trying to avoid the vortex breakdown problem, an unintended

consequence was an increase in the overall vertical load generated. This increase was attributed to

the reduction in energy flow losses and the increase in the effective extraction area. Additionally,

refinements were made in the edge geometry area, and the extraction efficiency of the beam wing,

which was later adopted with endplates, also contributed to this effect.
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Figure 6.7: Images on the top are frame captures of a view from below of the diffuser area showing a
isosurface of Q− Criterion = 5000/s2 representing flow vortex structures in a steady state condition
at 40mm ride height at 40m/s. On the bottom instead there is the steady state Cz plot for the two
geometries at 40mm ride height at 40m/s
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Channel length=3.2m
total lenght=3.8m

0.06m

0.3m

Channels max width=0.6m

Footplate maxi width=0.75m

Figure 6.8: Formula One 2022-like aerodynamic dimensions were considered, such as the length of
the venturi channel and the maximum extension of the floor edge.

All aerodinamic coefficients will be calculated within respect the channel dimensions and not the

total dimensions.

6.2 Grid details

In chapter 3, the general meshing strategy adopted for all cases has been thoroughly described, so in

this section, we will provide an overview of the details adopted to discretize the particular geometry

described in the previous section. To determine an appropriate value of the BS parameter described in

section 3.2, a mesh sensitivity study has been performed following the method described in section 4.1.

A value of BS = 0.095m has been chosen for the complex geometry IDDES cases. This means, for

example, that at an L = 0 isotropic refinement level, the actual cell size CS[m] is:

CS = 0.095m · 16 · 2
L=0

100
= 0.0152m

And for Lz = 4 anisotropic refinement level cells:

XSide = Y Side = 0.095m · 16 · 2
(−Lz=4+2)

100
= 0.0038m

ZSide = 0.095 · 16 · 2
−Lz=4

100
= 0.00095m
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Figure 6.9: Surface mesh distribution overview
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Fences LE Mousehole

L=1

L=0

(a) X-Y section cutting trough the ventury channel

L=1

L=0

L=-1

(b) X-Z beam wing mesh section

Figure 6.10: Showcase of different mesh sections for the complex IDDES case.
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Type3Type2b

(a) In cian Type 2b refinement have been aplied. In magenta a Type 3 refinement have been applied

Minumum ride height=10mm

L=1

(b) Y-Z mesh section showing minumum gap grid resolution with Type 3 overset interface refinement

Figure 6.11: Distribution of anisotropic treatment (referencing section 3.5) and a Y-Z section mesh
at minimum clearence for the complex IDDES case
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6.3 Quasi-steady results

In this paragraph the quasi-static solutions of the IDDES simulations at various ground clearances

will be presented. These results will provide valuable insights into the behavior of a Formula One

2022 compliant underbody, offering both quantitative and qualitative information. In fig. 6.12, we can

observe how the average load generated at 40m/s by the underbody behaves in a nearly monotonic

manner as the ride height varies (ride height rh ∈ [10− 40]mm) but with clear non-linearities.

1 1.5 2 2.5 3 3.5 4

·10−2

1.8

1.8

1.9

1.9

2

rh [m]

C
z

40m/s interpolated
40m/s

Figure 6.12: Example of inner iteration converging residuals on the left and a convergent body-forces
plot of unsteady IDDES solution on the right

It must be noted that there is a parallelism between ground proximity and incidence on a stationary

airfoil. When the incidence increases, more suction is generated on the suction surface and, as a

consequence, more downforce. But at high angles the adverse pressure gradient becomes too high

and the boundary layer starts to separate. Downforce might continue to increase up to point where

separation is massive and the airfoil stalls (obviously the separation process depends on the particular

airfoil, but this serves as a generic explanation). Similarly, an inverted airfoil getting closer to the

ground will experience the same events trhough another mechanism called ground effect. Ground

effect is an application of the Bernoulli principle, that for an incompressible, inviscid and stationary

gas states:

p+ ρ
u2

2
+ ρgh = costant (6.1)

This formulation of the Bernoulli equation can be applied, neglecting viscous effects, to a 2D inverted

wing section at a distance rh from the ground. In this situation the channel that forms between the

ground and the wing can be seen as a Venturi channel (fig. 6.13).
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Figure 6.13: Inverted 2D wing in ground effect

For a 2D case a general section area Si can be defined as the product of its height hi and width bi:

Si = hi · b (6.2)

Mass conservation law coupled with the incompressible hypothesis tells us that the mass flow Q across

the whole channel has to remain constant. Therefore the following relatioships can be written for the

minumum height section S1 and the exit section S2 :

Q

ρ
= u · Si = u1 · rh = u2 · (rh+∆h) (6.3)

u1 =
u2 · (rh+∆h)

rh
(6.4)

By simply applying the Bernoulli equation eq. (6.1) and knowing that the conditions at the exit section

S2 have to be the freestream condition (neglecting losses and hypothesizing parallel streamlines at the

exit section) the value of ∆p can be derived as follow:

p1 + ρ
u2
1

2
= p2 + ρ

u2
2

2
= patm + ρ

u2
inf

2
(6.5)

∆p = p1− patm = ρ
u2
inf

2

(
1−

(
(rh+∆h)

rh

)2
)

= ρ
u2
inf

2
Ω (6.6)

with:

Ω =

(
1−

(
(rh+∆h)

rh

)2
)

(6.7)

where:

lim
rh→0+

Ω = −∞ (6.8)

lim
rh→+∞

Ω = 0 (6.9)

It is, therefore, safe to assume that the total vertical load coefficient of a 2D wing will be a non-linear

function of the ride height. As for the 3D low aspect ratio case examined in this paragraph, it becomes

much more chaotic, as shown in Figure 6.12. The non-linearity of Cz as a function of the ride height

rh is due to the intricate interplay of various non-linear mechanisms that collectively contribute to the
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overall vertical load. We could hypothesize that Cz(rh) can be decomposed as:

Cz(rh) =

n∑
i=1

Cz(rh)i

Where Cz(rh)i represents one of the n seprate mechanisms that generate the full vertical load slope.

rh
=

1
0
m
m

rh
=

2
5
m
m

rh
=

4
0
m
m

Figure 6.14: Comparison between different ride heigths.The Q − criterion = 5000/s2 isosurface is
highligted in red and blue to show diffentent sign of te local x-vorticity. The body surface pressure
distribution is shown with wall shear stress driven surface streamlines

In the varius instances shown in fig. 6.14 it is clear that isolating each contributing component

is not feasable for complex flows such tas that of a Fomula One underbody, especially because flow

structures can be quite different based on different design choices. Looking at fig. 6.14 the flow show
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numerous counter rotating vortices, mostly generated in the frontal fences area and propagating along

the venturi channel. Numerous vortex structures are generated as a side effect of the edge opening.

In this area, air is drawn into the diffuser from the side, and the shearing of the flow along the floor

edge causes the formation of strong vortices. These edge vortices are, in nature, similar to the wingtip

vortices of a 3D wing or the leading-edge vortices of a delta wing, with the major difference that in this

case they interact both with the geometry and the ground. Just as on a delta wing, the presence of 3D

structures like edge vortices is crucial for maximizing vertical load. In fact, vortices play a dual role

in vertical load generation. They contribute directly to vertical load generation through a mechanism

similar to the one described in [12]. Additionally, vortices promote flow attachment to the diffuser by

inducing a favorable velocity field and mixing low-energy boundary layer flow with high-energy flow

from inside and outside the channel.

rh
=

1
0
m
m

rh
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2
5
m
m

rh
=

4
0
m
m

Figure 6.15: Comparison of different ride heigth quasi-steady reuslts. On the right the contour plot
of the velocity magnitude and on the left the horizontal velocity component(>0 if moving toward the
symmetry plane). Above is shown the Y-Z section position to be right before the start of the diffuser
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Figure 6.16: Comparison of different ride heigth quasi-steady reuslts. On the right the contour plot
of the velocity magnitude and on the left the horizontal velocity component(>0 if moving toward the
symmetry plane). Above is shown the Y-Z section position to be in the middle of the diffuser

Another factor contributing to the non-linearity of Cz(rh) is the variation in the perceived aspect

ratio of the venturi channels. The perceived aspect ratio would tend towards infinity if the edge

touched the ground, resulting in the elimination of lateral infiltration and exhibiting behavior close

to two-dimensionality. Comparing fig. 6.15 and fig. 6.16, it can be observed that different sections

behave in opposite ways with changing ride height, depending on the local flow characteristics. In this

particular case, it can be hypothesized that the mass flow through the mousehole area significantly

decreases with a lower ride height. This reduction in mass flow in the area diminishes the local negative

pressure peak, thus drawing less air through the edge gap.
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rh = 10mm

80m/s

40m/s

rh = 25mm

80m/s

40m/s

rh = 40mm

80m/s

40m/s

Figure 6.17: Comparison between 40m/s and 80m/s results in quasi-steady conditions.The body
surface pressure distribution is shown with wall shear stress driven surface streamlines

A comparison has also been made for the same geometry at double the freestream flow to under-

stand if there was any Reynolds number dependencies. Both the pressure distribution and wall shear

stres driven streamlines in fig. 6.17are nearly identical between the two cases for all tested ride heights.

This is expected given that this is a high Reynold number application and that the majority of the

flow underneath the surface is mostly laminar.
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Figure 6.18: Comparison between 40m/s and 80m/s quasi-steady negative lift coefficent slopes
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6.4 Heaving results

This paragraph discusses the flow behavior in a pure heaving harmonic condition, emphasizing dif-

ferences from the quasi-steady solution discussed in the previous section. For the complex geometry

heaving simulations, the full 30mm range of motion was utilized, ranging from the wood plank touching

the ground condition (providing a 10mm minimum clearance, as shown in fig. 2.2) to the maximum

considered ride height rh = 40mm. In a harmonic heaving oscillation, body position in terms of ride

height rh can be expressed as a function of the angular position θ[rad]:

θ(t) = wt+ pi = 2πft+ π (6.10)

rh(t) = rhav + real(rh0e
iwt) → rh(θ) = rhav + real(rh0e

iθ) (6.11)

Where hav is the mean ride height, and rh0 is the oscillation amplitude. In fig. 6.19, values of the

angle θ that will be sampled for the qualitative flow analysis are highlighted in red.
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3
2
πrad → 25mm

2πrad → 10mm

θ [rad]

rh
[m

m
]

Sampled

Figure 6.19: Ride heigth plotted over the angle θ in rad. Higligted the sampled unsteady conditions
used in this chapter

In fig. 6.20, vertical force coefficients are presented for both the unsteady case and the quasi-

steady prediction at a speed of 40 m/s. It becomes apparent that within the tested frequency range of

f ∈ [3− 6]Hz, the quasi-steady approach inadequately captures the forces generated during harmonic

heaving conditions. Particularly noteworthy is the fact that at higher frequencies, the maximum

recorded Cz value increases by more than 50% than what was expected based on the quasi-steady

analysis. Furthermore, as the heaving frequency increases, the amplitude of oscillation appears to

diminish. The heaving forces recorded do not exhibit perfect sine wave patterns, and their phase is

not in sync with the heaving motion. Both of these observations were anticipated. The distortion in

sine wave patterns can be attributed to the non-linear nature of ground effect. Additionally, the phase

51



delay phenomenon, which is known to affect oscillating wings in freestream, results from the time

required for the flow around the geometry to adjust to its new position, as described by Theodorsen

in [15].
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Figure 6.20
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Figure 6.21: Comparison between quasi-steady and unsteady 6hz 40m/s conditions.The body surface
pressure distribution is shown with wall shear stress driven surface streamlines
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π 2
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Figure 6.22: Comparison of different phase angles between quasi-steady and 6hz 40m/s. The above
sets are the contour plot of the velocity magnitude and on the below ones the horizontal velocity com-
ponent(>0 if moving toward the symmetry plane). Above is shown the Y-Z section position to be at
the start of the diffuser

Looking at these figures, it is clear that during porpoising oscillations, the unsteady effects are

non-negligible. Major differences occur at the minimum ride height and already start at theta = 3
2
π.

During quasi-steady descent, it is easy to observe that the channel velocity in Figure 6.22 remains

almost constant. During unsteady descent, the velocity at the start of the diffuser keeps climbing,

lowering pressure below the whole region. This phenomenon could be attributed to an "hysteresis"

effect. However, it will become clearer at the end of this thesis that due to the predictability of this

phenomenon across a wide range of geometries, the hysteresis effect can only partially explain these

amplifications.
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Figure 6.23: Comparison of different phase angles between quasi-steady and 6hz 40m/s. The above
sets are the contour plot of the velocity magnitude and on the below ones the horizontal velocity com-
ponent(>0 if moving toward the symmetry plane). Above is shown the Y-Z section position to be at
the middle of the diffuser
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Chapter 7

URANS simulations of an

inverted wing

7.1 Geometry

In order to collect a larger dataset encompassing a wider range of geometries and to attempt to

isolate the specific geometrical features that primarily influence porpoising, several simpler yet still

representative geometries have been introduced. All of these geometries share a common main body,

which was modeled after the wing used in experimental ground effect testing described in [6]. The only

dimensions held constant across all geometries are the airfoil’s angle of attack and its chord length.

All other dimensions have been systematically varied:

• Wing span

• Airfoil ground clearence

• Endplates presence or absence

• Endplates longitudinal estension

• Footplates presence or absence

• Footplates estension

• Central hull presence or absence

• Central Hull shape and dimension

• Combination of all of theese

56



7.2 Some examples
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Figure 7.1: Sidewiew of some different simple geometries on the left and their corresponding steady
state ride heigth sensitivity on the rhight.
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Figure 7.2: Frontal view of some other simple geometries on the left and their corresponding steady
state ride heigth sensitivity on the right.

As shown in the above images and the corresponding steady-state ride height sensitivity plots, the

selected range of geometries provides a wide variety of aerodynamic behaviors. The objective of this

thesis is to gain insights into the unsteady behavior of a racecar without the need for computationally

expensive time-variant simulations or the complexities and potential fragility of simulation setups. In

the next chapter, it will be demonstrated how this seemingly chaotic distribution of ground effect

behaviors can be organized.
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Chapter 8

Modelling forces

8.1 Literature review

Theodorsen in [15] developed an analytical expression for the lift generated by a 2D airfoil under

sinusoidal motion. Although the solution is restricted to a symmetric airfoil in freestream and potential

flow for small oscillations, it is still useful to understand the composition of the aerodynamic forces

acting on an oscillating body. The expression for the downforce per unit length for the pure heaving

case can be written as follows:

L =
1

4
πρc2z̈︸ ︷︷ ︸

Noncirculatory

+
1

2
ρU∞cC(k)Cz ż︸ ︷︷ ︸
Circulatory

(8.1)

The unsteady downforce generated, as predicted by Theodorsen, consists of two distinct components:

one that depends on the negative lift coefficient, denoted as Cz (positive when the lift is towards the

ground), and another one that does not. These two contributions are commonly referred to as the

circulatory and non-circulatory components, respectively. The non-circulatory term arises from the

displacement of air by the airfoil. In eq. (8.1), this component has been modeled as a cylinder of air

with diameter c moving with the airfoil. This effect is also called "added mass effect". For sinusoidal

motion, the vertical coordinate z(t) (positive away from the ground) can be replaced by z(t) = z0e
iwt.

Consequently, the non-circulatory term can be expressed as follows:

1

4
πρc2z̈ =

(
−1

4
πρc2w2

)
z0e

iwt (8.2)

The circulatory term is filtered by the complex function C(k) = F (k) + iG(k), known as Theodorsens

function. The function C(k) affects both phase and magnitude of the quasi steady response, and
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depends on the reduced frequency k that for an oscillating arifoil section can be defined as:

k =
πfc

U∞
(8.3)

The reduced frequency represents the ratio between the time a particle takes to traverse the chord of

the airfoil c/U∞ and the oscillation period 1/f . In eq. (8.2) it can be observed that the added mass

effect is proportional to w2 = 4(πf)2 while:

lim
k→∞

C(k) = 0.5 + 0j (8.4)

lim
k→0+

C(k) = 1 + 0j (8.5)

meaning the circulatory component are going to be significant only at low oscillation frequencies while

the added mass effect is going to be the predominant component at high oscillation frequencies.

For a 2D nonsymmetrical heaving airfoil in ground effect, three different mechanisms describe un-

steady downforce generation. In [9], these mechanisms are referred to as the "ground effect", "incidence

effect", and "added mass effect." The "incidence effect" corresponds to the circulatory term in eq. (8.1).

The "ground effect" component is analogous to the circulatory component in eq. (8.1) but accounts

for ground effect. The "added mass effect" is, in principle, the same as in Theodorsen’s formulation.

However, it has been observed to lose its symmetry at high enough frequencies, resulting in a non-zero

average contribution that positively contributes to downforce generation. In this thesis, simulations

of various geometries have been conducted across a range of frequencies, f ∈ [3 − 6]Hz, which corre-

sponds to the frequency range where porpoising phenomena were observed during the 2022 Formula

One season. Using a chord length of c = 3.2m for the venturi channel and the definition eq. (8.3),

a range of reduced frequencies k ∈ [0.754 − 1.508] was obtained. It was noted in [9] that for values

of k > 0.11, the quasi-steady hypothesis is no longer a valid assumption, corroborating the findings

in chapter 6 and chapter 7. Maximum perceived incidence variation occurs during the moment of

maximum heaving velocity. With a free flow velocity of 40 m/s and a 30 mm heaving amplitude at 6

Hz, the maximum vertical velocity is Uz = ±0.566m/s, resulting in a maximum variation in perceived

incidence for the geometry of approximately aeff ∼ ±0.8◦. Since this thesis has primarily focused

on very low aspect ratio geometries (AR ∼ 0.3 < 1), incidence angle sensitivity can be considered

negligible in comparison to ride height sensitivity. This observation leads to the conclusion that all

the unsteady effects observed in these simulations are primarily related to the "ground effect" and not

to the better-known "incidence effect" present in Theodorsen’s formulation.

In [11], simulations had an identical set-up as [9], focusing more quantitatively on unsteady force

generation. For the range of k considered in this thesis, it was observed that mean forces should remain

unaffected during unsteady motion, while the amplitude should increase with oscillation frequency.
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This deviation from the quasi-steady hypothesis occurs even for the lowest considered value of k =

0.754.

8.2 Mean forces

For all the simulations conducted, the time averaged value of the unsteady downforce coefficient Ck
z

has been plotted against the time averaged value of the quasi-steady assumption downforce coefficient

C0
z , yielding fig. 8.1.
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Figure 8.1: Average value for the unsteady signal Ck
z plotted over the quasi steady asumptionC0

z for
all the simulations done. Including the ones at hald oscillation amplitude z1 = 15mm

These results are mostly consistent with what was found in [9] and [11], which indicates that for

sufficiently low values of the reduced frequency k, there are no significant unsteady effects on the mean

forces. However, geometries with the highest value C0
z seem to experience the biggest deviation even

at the lowest frequency. To achieve a higher level of precision in the final prediction, it might be useful

to introduce a slight non-linearity in the relationship between the unsteady Ck
z and the quasi-steady

C0
z .
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8.3 GE parameter

As mentioned in section 8.1, the added mass effect is related to the flow accelerations imparted by the

geometry. Therefore, to gain a deeper understanding of the relationship between geometrical features

and this effect, it is more useful to examine the highest frequency conditions. Before starting to

discuss these terms, it is usefull to show some correlations. To quantify the magnitude of the periodic

unsteady downforce coefficent magCk
z a frequency decomposition has been achieved through a fast

fourier transform algorithm.
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Figure 8.2: magCk
z plotted against the mean quasi-steady C0

z

By plotting magCk
z against the mean quasi-steady C0

z in fig. 8.2, a clear separation is evident

between geometries with different endplate extensions. The "No Endplate" group falls on a particular

straight line, while the "long endplate" and "short endplate" groups follow different straight lines. No

other geometrical features seem to affect this correlation. Observing fig. 8.2, it can be hypothesized

that the circulatory components are somewhat proportional to C0
z and the misalignment is caused by

a non-circulatory component. Since it has already been established in section 8.1 that the non-steady

effects are most likely due to ground effect, to better isolate its influence, a new parameter, denoted

as GE, has been defined as follows:

GE =
2

ρSU2
∞

∫
Ground

p(x, y)Weigth(x, y) dA (8.6)

Where the adimensional coefficients are the same for all negative lift coefficients. GE represents a

weighted "ground load." Considering the venturi channel layout in fig. 6.13, it is useful to note that

when an airfoil or a generic surface is close enough to perceive ground effect, its pressure field will

influence the pressure distribution on the ground, as shown in fig. 8.3.
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Ground pressure distribution

Body pressure distribution

Figure 8.3: Comparison between the body surface pressure distribution and the ground pressure dis-
tribution

Of course the pressure distribution on the ground will be affected also by other aerodynamic

phenomena, mainly by the interaction with edge vortices. To reduce the effects of pressure distribution

due to vortices on the GE parameter a weighting function Weigth(x, y) has been introduced in eq. (8.6)

and defined as follows:

Weigth(x, y) =


(
1− y

yedge(x)

)2

if y ≤ yedge

0 if y > yedge

(8.7)

This function depends on the y-coordinate and is scaled to be 1 at the middle symmetry plane and 0

from the edge of the geometry outward for each section, as shown in fig. 8.4.

0 ↑ yedge
0

0.5

1

1.5

2

y-coordinate →

W
ei

gt
h(

y)

Figure 8.4: Superposition of the function Weigth(y) and a Y-Z section

If the magnitude of the unsteady forces magCk
z is plotted against the newly defined quasi-steady
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time-averaged GE0 instead of being plotted against the mean quasi-steady downforce coefficient C0
z

fig. 8.5 is the result.
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Figure 8.5: magCk
z plotted against the mean quasi-steady ground load GE0

By using a quasi-steady parameter that better represents the ground effect-related downforce pro-

duction, a stronger correlation with the 1st mode magnitude magCk
z has been obtained. Various

weight functions, other than the one presented in eq. (8.7), were also tested, such as linear functions,

continuous functions, and step functions. The choice of weight function had little to no impact on the

correlation with magCk
z , as long as its value was much smaller from the edge outward compared to

the middle of the domain.

8.4 Non circulatory components

While the introduction of the GE parameter has indeed led to an almost linear correlation with

magCk
z in fig. 8.5, the three distinct groups of geometries, distinguished by differences in endplate

extension, remain clearly visible. At this point, it is reasonable to assume that these offsets represent

a manifestation of non-circulatory components. These components, by definition, are independent on

the ground effect downforce production mechanism and result from the air displacement due to the

body heaving motion. As described in eq. (8.2), there is no dependency on geometrical features, with

the only geometrical link being the cord length c. This formulation is also inadequate for low aspect

ratio geometries, as it describes the force needed to accelerate a cylinder of air of diameter c across the

wing span. The volume of air displaced by a 3D low aspect ratio geometry in close proximity to the

ground is expected to exhibit a more three-dimensional nature. However, merely adjusting the volume

in eq. (8.2) to accommodate low aspect ratio geometries would not explain the observed differences

arising from variations in endplate longitudinal extension. Because endplates do not displace air when
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moving vertically, all the considered geometries displace a very similar value of Vdisplaced due to their

nearly identical horizontal surface area. In fact, the geometries with the largest horizontal surface area

do not exhibit greater deviations than the others. To address this issue, the problem has been divided

into two parts, considering the volume displaced by the top and bottom body surfaces. For the top of

the geometry, which is away from ground-related effects, the approach is similar to Theodorsen’s, but

half of an ellipsoid is considered instead of a cylinder.

V top
displaced =

2π
(
ca

a

2

)
3

=
πca2

3
(8.8)

Where a represents the maximum y-extension, and a/2 has been arbitrarily chosen as the third di-

mension of the ellipsoid. Following Theodorsen’s formulation, eq. (8.2) results in the following non-

circulatory term, Ctop
z,nc:

Ctop
z,nc = V top

displacedρz̈
2

ρSU2
∞

(8.9)

For what concerns the bottom surface, a different added mass mechanism has been hypothesized. This

mechanism takes into account the force needed to accelerate the displaced volume of air between the

ground and the endplate edge. Let us consider a generic section like in fig. 8.6, by assuming a 2D

longitudinal behaviour. For this section the volume displaced dV = dz∆xL0, during heaving motion,

needs to go through the narrow section HE and by doing so it need to be accelerated. The force

necessary to accelerate this volume can be written using the 2nd law of motion:

dV ρÿ = dz∆xLoρÿ = dFy (8.10)

Where ∆x is the Hypothetical width of the 2D section, and ÿ is the flow acceleration across the edge

gap. Dividing both members by an infinitesimal time increment dt:

żÿ∆xLoρ = Fẏ (8.11)
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H
E
(t)

patm
ÿ

patm+∆p

L0

z>0Fz > 0

y > 0

dz → dV = dz∆xLo

Figure 8.6: representation of the geometrical quantities used to determine the added mass effect

Leveraging the assumption of incompressible flow and ignoring viscous effects, the following mass

conservation equation holds:

dz∆xLoρ = dy∆xHE(t)ρ (8.12)

Dividing by dt:

żLo = ẏHE(t) (8.13)

Taking then the time derivative:
∂

∂t
(żLo) =

∂

∂t
(ẏHE(t)) (8.14)

z̈L0 = ÿHE + ẏHE
˙ (8.15)

The follwing assumption was made: the term ẏHE
˙ << ÿHE . This assumption can be justified by

considering small vertical velocities and large L0/HE ratios. This hypothesis ensures that HE
˙ remain

small compared to ÿ, which is significant for large values of L0/HE . The acceleration of the volume

dV going across the HE section can therefore be expressed as:

ÿ ∼ z̈L0

HE
(8.16)

The force Fy required to generate this acceleration can be expressed as a pressure differential acting

on the HE section. It can be assumed that the pressure differential Dp acting on the edge gap section

will propagate throughout the enclosed volume. It is important to remember that the force Fy results
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from the body motion, which means that the reaction force acting on the body will also be generated

by the same Dp but acting over a much larger surface.

FZ =
FyL0

HE(t)
(8.17)

By substituting eq. (8.16) into eq. (8.11), we can derive the following ordinary differential equation:

∆xżz̈
Lo2

He(t)
ρ = Fẏ (8.18)

A spectral analysis of this equation has been performed to determine its characteristics analytically.

Starting with:

∆xżz̈Lo2ρ = Fẏ(HE(t)) (8.19)

and applying the following identities for a sinusoidal heaving oscillation:

z = z1e
iwt (8.20)

HE = HE0 + z1e
iwt (8.21)

Fz = Fz1e
iwt (8.22)

The latter of this set of equations is a hypothesis made to obtain a similar behavior as the original

Theodorsen non-circulatory term: in phase with accelerations and with the same frequency as the

oscillation motion. By substituting these equations into eq. (8.19):

− iw3ρz21∆xL2
0e

i2wt = Fẏ(HE0 + z1e
iwt) (8.23)

Leveraging the relationship between Fy and Fz as defined in eq. (8.17), we can derive the following

expressions:

Fy =
Fz1HE0

L0
eiwt +

Fz1z1
L0

ei2wt (8.24)

Fẏ = iw

(
Fz1HE0

L0
eiwt + 2

Fz1z1
L0

ei2wt

)
(8.25)

Substituting eq. (8.25) into eq. (8.23) and performing the product between Fẏ and HE(t) will yield a

result as follows:

− iw3ρz21∆xL2
0e

i2wt = Aeiwt +Bei2wt + Cei3wt (8.26)

Having the coefficients A, B, and C, all different from 0 indicates that during the determination of the

left term in eq. (8.19), information regarding the eiwt and the ei3wt modes has been disregarded. To

maintain consistency with previous made assumptions, these modes will be disregarded once again.

Therefore:

− iw3ρz21∆xL2
0e

i2wt = Bei2wt = iw
3Fz1z1HE0

L0
(8.27)
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Rearranging the equation provides the magnitude for the new added mass effect:

Fz1 = −w2ρz1L
3
0∆x

3HE0
(8.28)

By applying standard adimensionalization for aerodynamic forces, we can define the downforce coeffi-

cient for the non-circulatory terms in the same way as it was done for the top surface:

cbotz,nc = Fz1e
iwt 2

ρSU2
∞

(8.29)

Of course this result is valid in the 2D hypothesis since Fz1 is dependent upon ∆x. To obtain the full

contribute, there is the need to integrate this value along the longitudinal vehicle direction.

Cbot
z,nc =

∫
x

cbotz,ncWeigth(x) dx (8.30)

Where the Wheigth function takes into account the finite longitudinal exstension of endplates and has

been arbitrarly chosen as shown in fig. 8.7

xs xs+L0 xe-L0 xe0

0.5

1

1.5

2

x-coordinate →

W
ei

gt
h(

x)

Figure 8.7: superposition of the Weigth(x) function with a geometry equipped with endplates

By adding together the two added mass components for each geometry and then subtracting them

from the unsteady downforce signal, a reduced signal containing only the component directly related

to ground effect is obtained. Observing fig. 8.8, it becomes apparent that the amplitude of the first

mode of the reduced downforce, represented as magCk
z is well approximated by a linear relationship

with the parameter GE0 for all the considered geometries.
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Figure 8.8: Compatison between the full magnitude against the one reduced of its non circulatory
terms. Linear fitting of the reduced magnitudes

Looking at the difference in magnitude for the complex geometry IDDES simulation between the

total signal and the reduced signal seem that a Formula One 2022 like geometry is particularly affected

by added mass effect related amplification at high frequencies.
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8.5 Circulatory terms

Now that the worst case scenario for circulatory components hasbeen addressed, it is possible to apply

the same procedure to all the other oscillation conditions tested.
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(a) k=1.508
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(b) k=1.131
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(c) k=0.754

Figure 8.9: 1st mode amplitude for z1 = 30mm, comparison between total amplitude value, reduced
amplitude value and linear fitting of the reduced value
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In fig. 8.9 the same linear correlation can be observed between the reduced magCk
z for lower reduced

frequencies, although the effect of non-circulatory components is less prominent at k = 1.131. This

is expected because the added mass effects are proportional to f2. It can be noticed that at lower

frequencies, the separation between different geometries with varying geometric features becomes less

prominent, which reinforces the confidence in the hypothesis that the discrepancies seen at higher

frequencies were solely caused by non-circulatory components.

k a b

1.508 -0.0714 0.3798

1.131 -0.0945 0.3894

0.754 -0.2111 0.4916

Table 8.1: Table containing linear fits parameters for different values of k and z1 = 30mm.
magCk

z = a+ bGE0
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(b) k=0.754

Figure 8.10: 1st mode amplitude for z1 = 15mm, comparison between total amplitude value, reduced
amplitude value and linear fitting of the reduced value
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Looking at fig. 8.10 intead contains 1st mode-related data for geometries that were instead oscillated

within a halved range of z1 = 15mm but at different mean heights. It is observed that, especially in

the case of the maximum frequency, the non-circulatory load model applied has significantly reduced

the uncertainty range of reduced amplitudes magCk
z .

k a b

1.508 0.3794 0.1718

0.754 0.4916 0.2288

Table 8.2: Table containing linear fits parameters for different values of k and z1 = 15mm. magCk
z =

a+ bGE0

Below, the linear fitted functions have been interpolated across the entire considered range of GE0

and reduced frequency k for both cases: full oscillation amplitude, and half oscillation amplitude.

However, due to the limited resolution in the k dimension, especially for the half-amplitude oscillation

case, (which considers only two different values of k), these graphs should be interpreted with caution.
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Figure 8.11: Countour plot of the interpolated data across the different values of the reduced frequency
k for z1 = 30mm
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Figure 8.12: Countour plot of the interpolated data across the different values of the reduced frequency
k for z1 = 15mm
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8.6 Phase shift
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Figure 8.13: 1st mode phase shift in rad for z1 = 30mm, comparison between the unfiltered value and
rhe reduced amplitude value

In section 8.1, Theodorsen approach has been discussed for an oscillating 2D airfoil in freestream. In

Theodorsen’s formulation eq. (8.1), the total lift generated in the sinusoidal motion had two compo-

nents: the non-circulatory one in counterphase with the oscillation and the circulatory one in phase
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quadrature (before going through Theodorsen’s formula C(k) which induces a delay in the circulatory

component). The combination of these two signals, depending on the properties of the airfoil and

its oscillation regime, could lead to a variety of different phases for the overall lift signal. However,

in the case of a 3D low aspect ratio ground effect-predominant geometry, this is not the case. Here,

both circulatory and non-circulatory components are mostly in phase with the heaving motion. Phase

variation must be caused only by some delay in the response of the circulatory component.
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Figure 8.14: 1st mode phase shift in radiants for z1 = 30mm, comparison between the unfiltered value
and rhe reduced amplitude value

In both fig. 8.13 and fig. 8.14, it can be observed how the delay in the response increases with the

reduced frequency, as expected. However, it also seems to depend on the magnitude of GE0 since the

lowest values of mean ground load always coincide with the highest delay values. This could be caused

by a shift in the principal downforce generating mechanism, transitioning from predominantly ground

effect at high values of ground load to a more freestream-oriented load generation.
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Chapter 9

Conclusions

In this thesis, the primary objective was to deepen our understanding of the aerodynamics behind the

porpoising phenomenon observed in the 2022 Formula 1 World Championship. Several key findings

and insights have emerged from this study. The methodology of overset simulations was successfully

applied to investigate unsteady aerodynamic phenomena, with particular attention to the interaction

between the ground and the vehicle’s body. One of the most striking revelations is that the quasi-

static assumption significantly underestimates the aerodynamic forces during porpoising conditions.

This underestimation becomes even more pronounced at higher frequencies, where the quasi-static

predictions fall short by more than 50% in estimating the peak forces generated. Comparisons between

quasi-static and transient variables remained consistent whether obtained through URANS or IDDES

simulations. Notably, for oscillatory phenomena such as porpoising, there is no compelling evidence

to necessitate a CFD model capable of resolving turbulent scales. The study examined multiple

geometries of increasing complexity, leading to the proposal of a predictive model. This model estimates

the non-circulatory components for low aspect ratio geometries in close proximity to the ground. It

introduced the concept of the ground load (GE) as a measure of ground effect, which demonstrated

a strong correlation with the amplitude of force oscillations for low aspect ratio bodies that rely

heavily on ground effect for lift generation. In the context of reduced frequencies k ∈ (0.754 − 1.508)

characteristic of porpoising, it was observed that transient effects do not significantly impact the time-

averaged aerodynamic forces. This finding provides valuable insights into the frequency-dependent

behavior of aerodynamic forces during porpoising. Furthermore, the study revealed that the delay in

force response increases with reduced frequency but decreases with the ground load parameter (GE).

This observation allows for a clear distinction between geometries heavily reliant on ground effect and

those generating downforce through alternative mechanisms.
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