
Università degli studi di Padova
Department of information Engineering

Master’s course in Bioengineering

A model of intraperitoneal insulin
kinetics in patients with type 1 diabetes
treated by implanted insulin pumps

Supervisor Student
Prof. Chiara Dalla Man Filippo Moret

Co–Supervisor
Michele Schiavon

Academic Year 2018–2019



2



Abstract

Type 1 Diabetes (T1D) is an autoimmune disease which a�ects about 5–10% of all
diabetic patients in the world (422 million according to the World Health Organiza-
tion), commonly occurring in childhood and adolescence. It is characterized by the
destruction of the insulin–producing pancreatic beta cells, leading to chronic hyper-
glycaemia. As a consequence, a strict glycaemic control is needed in order to main-
tain the glucose homeostasis approximately in 80–140 mg/dl (4.4–7.8 mmol/l) range,
avoiding both the risk of hyperglycaemia, leading tomicro– andmacro–vascular com-
plications and the risk of hypoglycaemia, potentially leading to coma and death. In
this regard, several insulin therapies are available, mainly based on exogenous subcu-
taneous insulin administration through the common Multiple Daily Injection (MDI)
or the more recent Continuous Subcutaneous Insulin Infusion (CSII) therapy. How-
ever, in some patients with T1D, the subcutaneous insulin therapy is not su�cient
to avoid excessive glycaemic excursions, both due to the delay and large inter–/intra–
subject variability in the insulin appearance in plasma as well as subcutaneous insulin
resistance. Recently, solution has been proposed for this problem, represented by
Continuous Intraperitoneal Insulin Infusion (CIPII). The two main insulin infusion
systems adopting the intraperitoneal route are the implantable pumps and Diaport
systems. In the treatment of patients with T1D, several studies have demonstrated
that the CIPII therapy mimics more closely physiological conditions, allowing also to
reduce hypoglycaemic events, improve glycaemic control and thus, increase patients
satisfactory and Quality of Life (QoL) than standard therapies. However, so far, a
mathematical model of intraperitoneal insulin absorption is still lacking thus limit-
ing the optimization of insulin therapy in this population. The aim of this thesis is
to develop a mathematical model to describe the intraperitoneal insulin absorption
in patients with T1D, who are treated by CIPII therapy. In this regard, a database
of eight patients, studied fro three days in a hospitalized setting with basal and meal
insulin administered via intraperitoneal route, is used. A battery of compartmental
models with increasing complexity are developed and compared based on standard
metrics. Finally, the best model, i.e. the one able to describe the data with the mini-
mum number of parameters, is selected.
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Sommario

Il diabete di tipo 1 è una malattia autoimmune che colpisce circa il 5–10% di tutti i
pazienti diabetici nel Mondo (422 milioni secondo l’Organizzazione Mondiale della
Sanità), comunemente bambini ed adolescenti. Si caratterizza per la distruzione del-
le beta cellule pancreatiche, responsabili della produzione di insulina, che porta ad
eventi cronici di iperglicemia. Di conseguenza, è richiesto un ferreo controllo della
glicemia al fine di mantenere un livello della concentrazione di glucosio nel sangue
approssimativamente nel range di 80–140 mg/dl (4.4–7.8 mmol/l), evitando sia il ri-
schio di iperglicemia, che può provocare complicanze micro e macrovascolari, sia il
rischio di ipoglicemia che può potenzialmente indurre al coma e alla morte. A que-
sto proposito, diverse terapie insuliniche sono disponibili, nelle quali tale ormone
viene somministrato tramite iniezione sottocutanea: la comune terapia di "iniezioni
multiple giornaliere" (MDI) oppure la più recente "infusione di insulina sottocutanea
continua" (CSII). Tuttavia, in alcuni soggetti con diabete di tipo 1, la terapia insuli-
nica sottocutanea non riesce ad evitare eccessive escursioni della glicemia, sia per il
ritardo sia per la grande variabilità inter– e intra–soggetto nella comparsa di insuli-
na nel plasma, così come per la loro marcata resistenza sottocutanea all’insulina. La
soluzione che è stata recentemente proposta per questo problema prende il nome di
"infusione intraperitoneale continua di insulina" (CIPII). I due principali sistemi di
infusione di insulina che adottano la via intraperitoneale sono le pompe implantabili
e il sistema DiaPort. Nel trattamento dei pazienti con diabete di tipo 1, diversi studi
hanno infatti già dimostrato che la terapia CIPII rappresenta un sistema in grado di
mimaremeglio, rispetto alle terapie standard, le condizioni fisiologiche, permettendo
anche di ridurre gli eventi di ipoglicemia, di migliorare il controllo glicemico e perciò,
di aumentare il livello di soddisfazione percepito dai pazienti e la qualità di vita. Tut-
tavia, finora, non è presente in letteratura alcun modello matematico dell’infusione
di insulina per via intraperitoneale, limitando perciò l’ottimizzazione della terapia
insulinica in questa popolazione. Lo scopo di questa tesi è quindi quello di sviluppare
un modello matematico in grado di descrivere l’assorbimento di insulina per via in-
traperitoneale nei pazienti con diabete di tipo 1, trattati utlizzando la terapia CIPII.
A tal proposito, è stato utilizzato un database di otto pazienti ospedalizzati e studia-
ti per tre giorni, attraverso una terapia insulinica bolo-basale somministrata per via

5



6

intraperitoneale. Di�erenti configurazioni di modelli compartimentali di crescente
complessità sono state quindi proposte e comparate secondo criteri standard. Infine,
è stato scelto il miglior modello, cioè quello in grado di descrivere i dati con il minor
numero di parametri.
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Glossary
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Chapter 1

Introduction

1.1 Diabetes mellitus
T1D mellitus is characterized by an (almost) absent secretion of insulin due to au-
toimmune mechanisms [49]. In particular, the immune system attacks and destroys
the insulin producing cells called beta cells in the islets of Langerhans in the pancreas.
To better understand what’s going on type 1 diabetes, in Figure 1.1 is represented the
glucose–insulin mechanism. Carbohydrates that we ingest through food are broken
down into simple sugars, primarily glucose, that is an important source of energy for
the body’s cells. To leave the bloodstream and to enter into the cells, glucose needs
insulin, a key hormone that promotes its absorption by the cells. Normally, the pan-
creas secrets more insulin when glucose levels in the blood rise. However, in patients
with T1D, due to the lack of insulin secretion, glucose accumulates in the bloodstream
leading to hyperglycaemia.
The causes of T1D are unknown and the possible explanatory theories are related
to genetics and environment such as particular viral and bacterial infections and di-
etary agents that may, precisely, trigger this autoimmune disease. The incidence in
the World indeed represents an epidemiological conundrum: T1D is most common
in Finland (>60 cases per 100 000 people each year) while its incidence in Estonia,
separated from Finland by less than 120 km, is less than one–third. The global inci-
dence of T1D is estimated 5–10% of all diabetes cases and in Italy it is most common
in Sardinia (around 40 cases per 100 000 people each year). This type of diabetes,
also known as "juvenile diabetes" or insulin–dependent diabetes, tends to occur in
childhood, adolescence or early adulthood (before age 30) but it may have its clinical
onset at any age. The classic symptoms are excessive excretion of urine (polyuria),
weight loss, blurry vision, increased thirst (polydipsia), excessive hunger (polypha-
gia), and fatigue. Symptoms typically develop over a short period of time. The life
expectancy is 11 years less for men and 13 years less for women with type 1 diabetes
[28]. Diabetes complications are classified as macrovascular or microvascular. In par-

11



12 CHAPTER 1. INTRODUCTION

(a) Healthy subject (b) Type 1 diabetes patient

Figure 1.1: Representation of the glucose-insulin molecular mechanism. Retrieved
from https://www.health.harvard.edu/media/content/images/cr/205333.jpg. Author:
Wendy Hiller Gee. Copyright 2007 Krames

ticular, as patients with T1D live longer, cardiovascular disease is becoming a more
commonmacrovascular complication with a ten–times higher risk than age–matched
non-diabetic populations. Themicrovascular ones include retinopathy and nephropa-
thy [1]. It has been proven that those complications are unambiguously linked to the
duration and severity of hyperglycaemia [49], so it’s crucial to guarantee insulin in-
jection, after disease onset, through intensive insulin therapy (diet and exercise are
not enough although important). Moreover, also hypoglycaemia can lead to both
short and long–terms consequences: for example, since the brain is completely de-
pendent upon glucose supply, it can alter cerebral activity, damage the cells and even
cause death. This risk is increased with the increasing duration of the disease and
strict glycaemic control. Hence, diabetes therapy focuses on maintain glucose in the
tight target range, approximately 80–140 mg/dl (4.4–7.8 mmol/l) avoiding hypo and
hyper–glycaemia phenomena.

Nowadays several strategies are adopted for the treatment of T1D via insulin ther-
apy: Multiple Daily Injection (MDI) of insulin in the Subcutaneous (SC) tissue and Con-
tinuous Subcutaneous Insulin Infusion (CSII) with externally placed pumps. With the
first exogenous insulin replacement modality, a short–acting insulin analogue is ad-
ministered in the postprandial period to compensate glucose increase, due to meal
ingestion and/or hyperglycaemic events as bolus insulin, while a long–acting insulin
analogue is administered once daily to keep glucose stable in the post–absorptive
state as basal insulin. On the other hand, CSII uses a portable electromechanical
pump infusing short–acting insulin into the subcutaneous tissue at preselected rates.
A randomised controlled trial in adults reported that a greater proportion of patients
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reached the targeted levels of GlycatedHemoglobin (HbA1c) using Sensor–Augmented
Pump (SAP), i.e. through Continuous Glucose Monitoring (CGM) sensors and CSII
pumps therapy instead of MDI [5]. Nevertheless, outcomes reported in various stud-
ies don’t agree whether CSII is better, overall, than MDI. In fact, another recent ran-
domised trial and economic evaluation of infants, children and young people in the
first year of T1D, demonstrated CSII treatment was not more clinically e�ective than
treatment with MDI and that glycaemic control was suboptimal in both treatments
[7]. Actually, with bothMDI andCSII, pharmacokinetic and pharmacodynamic prop-
erties of SC administered insulin cause deviations from the normal response. This
is generally due to the high intra and inter subject variability in the rate of SC ab-
sorption, together with di�erences in insulin absorption between injections sites and
insulin preparation [49]. Therefore, it’s not uncommon to detect unpredictable fluc-
tuations in blood glucose concentrations that globally reduce the quality of life (QoL).
The current and future challenge is to avoid, as much as possible, these fluctuations
and to increase the time in normoglycaemia that translates into a better QoL and a re-
duction in complications. In this framework, alternative insulin infusion routes have
been developed such as the Intraperitoneal (IP) one which is thoroughly analysed in
the following section 1.2.

1.2 Insulin infusion using intraperitoneal route
As previously mentioned, the researchers’ goal is to build an Artificial Pancreas (AP)
capable to achieve long–term strict glycaemic regulation. Nowadays, the aim pursued
via SC glucose sensing and SC insulin delivery. However, even the most sophisticated
control algorithms in on–body AP systems are not able to maintain tight glycaemic
control because of the high delays introduced by the SC route in compensating exoge-
nous glucose disturbances like meals and exercise. Moreover, some patients with T1D
do frequently experience unexpected hypoglycaemia, despite an intensive SC insulin
treatment. Therefore, the need for a more physiological route of insulin delivery has
opened the door to the IP insulin delivery.

1.2.1 Physiological justification
Before focusing on the main physiological reasons underlying IP route, it is useful
to make some essential introductory remarks to the kinetics of insulin, represented
schematically in the Figure 1.2. Endogenous insulin Secretion (SR) in healthy sub-
jects is pulsatile (bursts approximately every 4 minutes) and occurs into the portal
vein. The liver, for its special anatomical position, receives the entirety of de novo
secreted insulin, introducing a "first pass" e�ect. Studies have shown that 50–80% of
the endogenous portal insulin is extracted by the liver before the subsequent systemic
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entry [8], [18], [32]. Then, after each recirculation, systemic insulin is again extracted
by the liver. In order to quantify these intuitive facts in humans, some technical and
theoretical issues are evident, such as the inaccessibility of the ports of entry and exit
of the liver. Thus, the kinetics is measured in the system circulation and some as-
sumptions have to be made to estimate the various parameters of insulin metabolism.
On the assumption of Steady–State (SS) and by direct hepatic vein and artery sam-
pling (invasive direct measurement), it was possible to calculate the Net splanchnic
insulin output (NSIO) as the product of hepatic plasma flow (F ) and the di�erence
between the arterial insulin concentration

(
ISSa
)
and the insulin concentration in

the hepatic veins
(
ISShv
)

: NSIO = F
(
ISSa − ISShv

)
. This balance equation is only

valid at SS and so applicable in conditions in which SS is not significantly perturbed.
AS it can be clearly seen in the Figure 1.2, pancreatic insulin reaches the hepatic veins
before distribution to body periphery, so this leads to a considerable positive portal
to systemic insulin gradient (insulin concentrations ratio 4:1). The gradient assists
in balancing peripheral glucose disposal and hepatic glucose output, ensuring daily
glucose homeostasis. The net e�ect of insulin secretion and Hepatic Extraction (HE)
determine the peripheral insulin concentrations. So, the extraction ratio (h) can be
interpreted as the ratio of Hepatic Insulin Uptake (HIU) to total insulin delivery to
the liver, i.e. SR + FISSa . As mentioned above, the direct measurement of F or
HE is not possible because of the catheterization invasive procedure, so estimation
is a reasonable alternative exploiting the fact that C–peptide is secreted equimolarly
with insulin, but the former is not extracted by the liver. It has been proven that
with a hepatic fractional extraction of 55% and a 4 : 1 portion of splanchnic blood
flow between the portal vein and the hepatic artery, all the available information on
insulin are confirmed [17]. The HE is a dynamic process which is a�ected by the
mass (and therefore amplitude) of insulin pulses and hyperglycaemia. Moreover it
declines linearly with the logarithm of insulin concentration and saturates at levels
approximately higher than 400− 500µU/ml. However, probably the liver saturates
at lower insulin concentrations than those of peripheral tissues but it may work under
saturation conditions since it receives an higher insulin amount.

Taking into account these considerations, IP insulin administration seems to be a
nearly physiological solution, since insulin is directly infused in the IP space and then,
via the capillaries, is absorbed into the portal vein, so restores partially the positive
portal to systemic insulin gradient. Liebl et al. showed that emulating this insulin gra-
dient may be beneficial also for weight management, since increase in body weight
is linked to high level of peripheral insulin [27]. Actually, IP insulin delivery repre-
sents a similar but less invasive way of portal insulin administration via the umbilical
vein that has been proven to be beneficial. The speed of the IP insulin absorption
depends on factors such as concentration of insulin solution, injected volume and
duration of injection, but it is mostly directly absorbed into the portal system and
detectable within 1 minute after administration. For this reason, after absorption, an
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Figure 1.2: Block diagram of the insulin system. Retrieved from [17].

higher hepatic uptake of insulin occurs, with fist–pass liver insulin extraction. Conse-
quently, this achieves a lower peripheral insulin concentration than the conventional
SC insulin delivery. The latter aspect is very important because the peripheral overin-
sulinization, caused by SC insulin administration, shifts the primary site of insulin
action toward the skeletal muscle instead of the liver. So, considering that skeletal
muscle is a larger glucose sink than the liver and that it takes up glucose regardless
of glycaemic levels, also glucose storage shifts towards the muscles. This contributes
to excess hepatic glucose output and so to a predisposition to hypoglycaemia. To
mention, some other positive physiological e�ects (that will be further explored in
the subsection 1.2.3) related to CIPII, include a more rapidly return to blood glu-
cose baseline values, since insulin takes 15/20 minutes to reach its peak e�ect. Thus,
insulin profile is more predictable and reproducible compared to SC insulin. Then,
there is an improvement of glucose production in the liver in response of exercise and
hypoglycaemia, and of the glucagon secretion. Finally, there are some studies that in-
dicate how a long–term use of IP therapy positively influences the Insulin–like Growth
Factor–1 (IGF–1) concentrations, increasing them, in a more pronounced e�ect than
SC insulin treatment [23], [45].

1.2.2 Target population
Currently, CIPII therapy is only used by a small number of patients with T1D due
to limited evidence, high costs and risks of complications. Experts, including EVAlu-
ation dans le Diabète des Implants ACtifs group [22], have published guidelines for
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patients selection for IP therapy. CIPII therapy is recommended for patients with
T1D who have frequent episodes of severe hypoglycaemia during SC insulin therapy,
who are unaware of it and also who experience fear of it (in fact their subsequent
behaviour leads to chronic hyperglycaemia). Moreover, this is suitable for patients
who have brittle diabetes, thus they show sustained suboptimal glucose control with
the result of recurrent hospitalizations, despite intensive SC therapy. Then it is rec-
ommended for patients with T1D who have SC insulin resistance or other SC site
defects/issues such as allergies, lipoatrophy and lipohypertrophy, that alter insulin
absorption with the conventional therapy. In this regard, in [26] it is reported a case
study of a 36 years old Caucasian man, who developed two areas of significant lipo-
hypertrophy around his umbilicus. This inflammation led to poor insulin absorption
and subsequently to ketoacidosis. Even though the injections sites were changed, local
inflammation and pain were reported together with a higher di�culty in the man-
agement of diabetes. CSII treatment helped in the first four–year time period but
then inflammation recurred. Therefore, only CIPII device let him to go back to his
normal life.

However, there are some contraindications that avoid the large use of CIPII treat-
ment for every diabetes patient. Among them, there is the presence of high insulin–
antibodies levels, pregnancy, gastrointestinal disorders including peritoneal adhe-
sions and immunodeficiency syndromes.

1.2.3 E�ects of continuous intraperitoneal insulin infusion
Several studies and clinical trials have been carried out with the purpose of comparing
IP with SC insulin infusion therapy and to find out some proven benefits of IP insulin
delivery. Just for simplicity’s sake, it’s possible to split the e�ects in on glycaemic control
and beyond glycaemic control.

With regard to the first ones, a randomized trial conducted by Selam et al. on
twenty–one T1DM patients aged 24–61 years old, showed an improvement of HbA1c
levels to near-normal with both treatments but intraperitoneal therapy resulted to
be more e�ective for limiting glycaemic fluctuations [43]. In another 6–month ran-
domised, crossover, controlled study performed by Haardt et al. on ten adult patients
reduced glycaemic fluctuations were observed, together with improved glycaemic
control (lower HbA1c levels) and fewer hypoglycaemic events with CIPII [21]. In
2008, Logtenberg et al., in a longer (16 months) randomized, prospective, cross-over
trial on twenty–four patients, found a decline ofHbA1c levels, with amean di�erence
0.76% and an 11% increase in the time spent in euglycaemic range in favour of IP. No
increase in hypoglycaemic events has been reported [31]. Moreover, Logtenberg et al.,
in a long–term retrospective analysis (over 20 years) in Zwolle, found that CIPII im-
proves glycaemic control showing a decline in self–reported hypoglycaemic events in
patients with poorly controlled diabetes [29]. It is also remarkable to report the case
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of a 26–year–old woman, who, 15 months after IP pump implantation, decided to be-
come pregnant. As anticipated in 1.2.2, CIPII therapy is not indicated in pregnancy
because it may be associated with an increased risk of fetal mortality. However, in
this case, no complications were observed andCIPII wasmaintained during thewhole
pregnancy [42]. Finally, besides the implantable insulin pump, it has been noted that
also DiaPort system, that will be developed in more detail in the subsection 1.2.4,
improves (slightly) HbA1c levels and reduces the number of severe episodes of hypo-
glycemia, as found by Liebl et al. during a 12–month trial. In this study, for instance,
severe hypoglycaemic episodes with CIPII were 34.8/100 patient years, while with
CSII they were 86.1 (p = 0.013). Thus, to sum up, a considerable number of observa-
tional studies (also long–term ones as previously cited and confirmed by the 6–year
follow–up on nineteen patients [47]) reported that CIPII, instead of CSII therapy,
ensures a lower occurrence of hypoglycemia and an improved glycaemic control, in
terms of both reduction/stabilization of HbA1c levels and lower glycaemic variabil-
ity. The latter, expressed as the standard deviation of the capillary glucose, has been
demonstrated to be lower also using CGM as proven by the 26–week, prospective,
observational case–control on 176 patients [48].

As already mentioned in the subsection 1.2.1, CIPII treatment positively a�ects
some physiological processes, besides glycaemic control. In addition to the previously
cited increasing of the sensitivity of the liver to the Growth Hormone (GH) and the
subsequent higher IGF–1 production and bioactivity, also production of the hepatic
glycoprotein Sex Hormone–Binding Globulin (SHBG) is influenced by insulin. In
particular, it has been proven that CIPII significantly lowers SHBG concentrations,
since portal insulin concentrations inhibit SHBG production, regardless of glycaemic
control [25]. It could be a potential advantage for male patients with T1D but the clin-
ical significance on reproductive function has to be further tested. Moreover, CIPII
improves also lipoprotein metabolism. The key factor, in this case, is the lower pe-
ripheral plasma insulin concentration that normalizes cholesteryl–ester–transferase
and lipoprotein lipase increasing the hepatic lipase [2], [38]. Finally, another study
by Colette et al. showed a correlation between vitamin D metabolism and IP insulin
infusion [14]. In fact, patients with T1D treated with CIPII had higher values of cal-
cidiol, a prehormone that physicians measure to determine vitamin D status. Apart
from all these e�ects described so far, there are other two beneficial aspects of CIPII:
QoL and treatment satisfaction. Many case studies and randomized trials such as [27],
[29], [37] report that both are substantially improved during CIPII as compared to
CSII.

1.2.4 Intraperitoneal insulin infusion systems
The first implantable pump was applied in 1979 and early IP utilised either IP or
Intravenous (IV) routes [3]. However, IP has prevailed because of its lower risk of
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Figure 1.3: The MIP 2007D implantable pump system and patients-pump communi-
cator. Retrieved from [49].

thrombosis and infection. Nowadays, the only available commercial implantable sys-
tem is the MIP 2007D pump, visible in figure 1.3. It has a diameter of 8 cm, thickness
of 2 cm, its clinical use is limited to few countries of Europe (France, the Netherlands,
Sweden, and Belgium) and contains up to 15 ml of insulin. Implantable systems are
put, under general anaesthesia, at the lower quadrants of the abdomen in which the
insulin is delivered via a catheter towards the liver, as can be seen in figure 1.4. The
implantable device components are biocompatible in order to avoid adverse reactions
or rejections. The insulin reservoir is refilled transcutaneously through a refill port
at least every three months and it has also an additional side-port for the technical
maintenance. Finally, the user has the possibility to control insulin delivery remotely
using a hand–held device. For implantable systems it is necessary a highly concen-
trated insulin such as U–400 (Sanofi–Aventis, Frankfurt Germany) since the higher
ambient temperature, interactions with surface materials and fluid turbulence aggra-
vate the risk of insulin precipitation. Among preliminary and early studies on im-
planted insulin pumps, a pilot one in 18 participants showed that glycaemic control
was sustained, glucose variability reduced without episodes of sever hypoglycaemia or
diabetic ketoacidosis and the total mean daily insulin dose was maintained constant.
The authors also noted 80% of catheters were usable for seasons not longer than 1.5
years, due to their obstruction [40]. A relevant issue for IP therapy consists in hav-
ing limited data from randomised controlled trials, although for several decades it
has been available in clinical practise. These limitations concern the small number of
participants and the short duration of studies ranging from 9 to 16months. Neverthe-
less, it has been demonstrated that IP delivery is clinically feasible and improve not
only pharmacokinetic and pharmacodynamic, but it also better mimics physiological
insulin delivery compared to SC insulin.

Besides the reported positive e�ects using implantable pumps, various studies ad-
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Figure 1.4: Illustration of the implantable pump system. Retrieved from Diabetes
Care 2009 Aug;32(8):1372–1377. Copyright 2009 The American Diabetes Associa-
tion[3].

dressed also some technical issues that limited widespread use of CIPII in the past.
For instance, a retrospective observational cohort study performed by van Dijk et
al. on 56 patients over the period from 2000 to 2011, found that the most frequent
complications were catheter occlusion (32.9%), pump dysfunction (17.1%), pain at the
pump site (15.7%) and infections (10.0%). The same study also included sub–analyses
to compare patients starting CIPII from 2000 to 2007 and from 2007 onwards. A sig-
nificant decrease in pump dysfunction and explanation was seen after 2007 compared
to the previous subperiod [46]. In fact, the ongoing development of the technology
has helped to address these problems, thus modern IP devices have fewer of them. An-
other recent study with an observational time window from 1990 to 2006 confirmed
this improvement over the years, in terms of an increase of the median operation free
period (from 21 to 78 months from 2000 onwards; p=0.039) and the reduction of the
complication rate (only 19%). One more issue that was reported in several studies
in 1990s is the increased production of anti–insulin antibodies during implantable
systems use. Even if the exact cause remains unknown, the possible explanations are
related to the fact that peritoneum is a macrophage-rich area so that it may increase
the antibody production, or to the insulin modification that occurs during storage
in the pump, or this issue can be due to insulin aggregates which are known to be
antigenic [24]. Anyway, this immune reaction is highly variable and it does not a�ect
the number of hypoglycaemic episodes or insulin requirements. Finally, a relevant
problem of IP therapy is its high cost per year (during a 7-year period): in 2010 direct
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pump and procedure associated costs were estimated at 10910 Euros compared with
4810 Euros for CSII [30]. This high price is mainly due to implantable pump and the
insulin used.
Therefore, due to this high cost, the invasive nature (a surgical procedure is needed
to put the pump in the peritoneum and also to replace the pump battery when it
is depleted), the risk of complications and the invasive procedures (insulin refill or
rinsing in case of catheter occlusion), an alternative approach for intraperitoneal in-
sulin delivery has been developed: DiaPort. As depicted in figure 1.5, the Accu–Chek
DiaPort system consists of a flexible catheter that is placed in the peritoneal space
and a small titanium port–body which is biocompatible and it is implanted into the
subcutaneous tissue. The membrane and polyester felt, on which patient skin grows,
are needed to prevent skin infections. The port, that is stabilized by a flower–shaped
plate, can connect to the Spirit Combo pump, which delivers insulin through a spe-
cial stainless steel ball canula infusion set. Infused insulin is a regular U–100 insulin
solution (Insuman Infusat, Sanofi).
Significant advantages of CIPII via this system comparedwith via implantable pumps
(considering the similar e�cacy on glucose control) are related to the lower cost and
the higher flexibility and patient autonomy. In fact, insulin refill and battery replace-
ment can be carry out by the patients on their own. Moreover, due its less invasive ap-
plication procedure, it is more feasible in clinical practice. On the other hand, among
the severe complications associated with DiaPort use, infections at the port implan-
tation site was the most reported one. However, the second generation of this system,
introduced in 2011 and used, for instances, in Dassau et al. study [16], has shown less
frequent adverse events [20] than DiaPort of the first generation used by Liebl et al.
[27]. Manufacturer improved the implantation method, materials and design in or-
der to simplify the implantation procedure in addition to reduce the complications,
precisely. Therefore, for its apparent low side e�ects and economic reasons, specific
interest for this system is relevant, although still pending data from the clinical field
does not allow a thorough assessment of its risks [34].

1.2.5 Future use of continuous intraperitoneal insulin therapy
CIPII as a valuable treatment option for patients with T1D is, nowadays, more than
just a promising researchers’ idea. As seen, several studies have confirmed its bene-
fits on glucose control and positive e�ects in terms of pharmacokinetic and pharma-
codynamic properties. At the same time, they have emphasised the overcoming of
historical drawbacks of CIPII such as long–term e�cacy and complications. So, the
promising approach would be using CIPII to enhance closed–loop system, known as
Artificial Pancreas, so far developed. In fact, all the e�orts of the research in this field
aim to an optimal glucose control, without patient involvement, that is performed
with an insulin pump, a control algorithm and a CGM sensor. Most AP so far devel-
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Figure 1.5: Illustration of the Accu-Chek DiaPort system (Roche Diabetes Care). Re-
trieved from [20].

oped are based on CSII delivery and SC glucose sensing. Limitations in CSIIinclude
slow insulin clearance and insulin absorption due to delays in the interstitial fluid.
This can cause a non–satisfactory postprandial glycaemic control. Some early studies
[36], [35] have demonstrated, on the contrary, that CIPII, due to its ability to restore
the physiological portal–systemic insulin gradient, leads to an improvement on both
problems and they have ensured the feasibility of a hybrid implantable artificial pan-
creas. Moreover, recently, Burnett et al., using Intravenous Glucose Tolerance Test
(IVGTT) in eight swine, have provided evidence that IP glucose–sensing are signif-
icantly faster than sensing in the SC space [9]. This is due to the fact that blood
vessels in the peritoneal cavity are una�ected by slow and variable blood flow during
sensing and external fluctuations such as temperature and mechanical pressure. Also
Fougner et al. reached the same conclusion underlining an even faster peritoneal fluid
reaction to changes in intravascular glucose levels than previous studies on animals
reported [19]. Therefore, in order to make a safe artificial pancreas with a robust,
rapid and accurate glucose control, sensing glucose and delivering insulin in the IP
space could be used. Furthermore, considering the advantages of IP insulin delivery
and the restoration of glucagon secretion, IP insulin infusion could make possible a
fully automated close–loop system, as suggested by Renard [34].
Consequently, even if there are authors (Garcia–Verdugo et al.) which are already very
optimistic about CIPII future, it seems clear that nowadays more research and well–
conducted studies on CIPII are needed to confirm short and long–term e�ects and
to provide an irrefutable scientific evidence for its subsequent wider use in clinical
practice. In the meantime, also an increased awareness of the availability of CIPII as
a valid solution is needed, as emphasised by Lee et al. for UK country [26].
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1.3 Aim of the thesis
The aim of this work is to develop a mathematical model of insulin absorption from
the IP space in patients with T1D. Recently, in order to improve the available knowl-
edge and the understanding of the underlying physiology, a powerful research tool,
i.e. a mathematical model, is utilized. Moreover, it can provide insight into the var-
ious mechanisms and may help in suggesting new experiments. In this respect, a
first model is proposed, based on a unique database of eight patients with T1D in a
hospitalized setting, treated by implanted pumps in a two–day closed–loop and one–
day control phase in randomised order. The main purpose has been to determine
the insulin kinetics related to the insulin boluses and to assess the inter and intra–
variability of the patients. Thus, considering all the positive aspects of IP route and
the recent e�orts to develop a fully automated and implantable AP, this model can
be thought as an additional step towards that direction.
In detail, in the following chapter the description of the database used is provided.
Then, chapter 3 is dedicated to report a battery of models. In chapter 4 the meth-
ods for the a priori model identifiability, the parameters estimation and criteria for
the model selection are described. Finally, in chapter 5 and 6 the discussion of the
obtained results together with the future developments are outlined.



Chapter 2

Database

In this thesis a small database of eight type 1 diabetic patients is used. They are all
treated by implanted pumps andmonitored by a subcutaneous glucose sensor for a to-
tal of 86 hour–period in a hospital setting. The subjects and protocol characteristics
are explored more thoroughly below.

2.1 Patients
The database consists of eight patients with T1D treated by implanted pumps (model
MMT–2007D; Medtronic Diabetes) and infusing U–400 regular insulin (Insuplant;
Sanofi–Aventis) for at least 3 months. The process of enrolling in the study foresaw
some inclusion and exclusion criteria. Among the former ones, there were the age
(18–70 year–interval allowed), the plasma anti–insulin antibody level, which had to
be lower than 30%, the insulin delivery expected accuracy for the 60 days preceding
the trial (within 15% allowed), health insurance andwritten informal consent. Among
the exclusion criteria, there were obviously the suspected allergy to glucose sensor
components, any cardiovascular event within the last 6–month period and evolving
ischemic or diabetic retinopathy within the last year. Then also pregnant and feeding
women together with subjects with plasma creatinine > 150 µmol/l, total blood Hb <
12 g/dl, aspartate aminotransferase and serum alanine aminotransferase above twice
the highest limit of the normal range, were not admitted [36].

2.2 Study protocol
The study protocol was approved on 11 September 2007 by the regional ethics com-
mittee Comité de Protection des Personnes Sud Mediterranée IV, France. It consists
of three phases summarized in the Table 2.1, for a total of 86 hours.

Tomeasure plasma insulin and blood glucose, frequent blood samples were drawn
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Table 2.1: Phases of the study protocol and their main characteristics

Phase Duration Characteristics

Preparation 14 h Calibration and patients instructions
Control 24 h Pumps programmed according to patient–monitoring

data
Closed–loop 48 h Pump’s insulin infusion rate automaticallymodulated by

algorithm and 15–min premeal manual bolus (HyPID)

using an intravenous catheter: every 20 minutes in the early postprandial periods (8:00–
10:00, 13:00–15:00, 19:00–21:00), every hour from 8:00 to 22:00, excluding early post-
prandial periods, every two hours in the non–postprandial periods (22:00–8:00). More-
over, for a mere safety’s sake, two SC glucose sensors (one of them used as a backup)
were inserted in the patients’ abdominal area and calibrated against a Capillary Blood
Glucose (CBG) in order to perform CBG tests every hour from 8:00 to 22:00 and ev-
ery two hours from 22:00 to 8:00.
In further detail, during the control phase (also called open–loop), diabetes was moni-
tored by 7CBG tests performed by patients before and after eachmeal and at bedtime.
Then, according to these data, they programmed themselves their pump, in fact sen-
sor glucose data were patient blinded.
On the other side, in the closed–loop phase, the implanted pump was driven by a SC
glucose sensor and the only manual operation was the insulin bolus, given approx-
imatively 15 minutes before meal time, which consisted of 30% of the amount the
patient–programmed. Thus, the Proportional–Integral–Derivative (PID) algorithm,
running on a laptop computer, received sensor data using a radiofrequency protocol
and automatically modulated the pump’s insulin infusion rate. The pump, in turn,
was set up to receive commands via Bluetooth and its minimum basal infusion rate
was 0.2 unit/h. To sum up, three components were used in the closed loop phase: SC
glucose sensors, a PID algorithm and an implanted pump. This system, because of
the hybrid PID due to manual premeal boluses, was called HyPID system. As with
control phase, also in the closed–loop phase, the sensor glucose data were patient
blinded. Closed–loop phases and control phases were in a randomised order: the con-
trol phase therapy for the patients 1,4,5,6 was before the closed–loop one, vice versa
for the other four patients. Finally, the amount of carbohydrates for breakfast was 40
grams, while both for lunch and dinner it was 70 grams.



Chapter 3

Models of intraperitoneal insulin
kinetics

As mentioned in the introduction, in this chapter a number of compartmental mod-
els describing intraperitoneal insulin kinetics will be provided. In particular, in the
first section, two models of whole–body insulin kinetics are reported. In the second
section, instead, a battery of models developed with the purpose to describe the in-
sulin absorption via intraperitoneal route in patients with T1D. For all the models, it
will be specified the number of compartments, their interconnections and the sites
where insulin absorption and loss occur.

3.1 Plasma and Liver subsystem

3.1.1 One–compartment model
The simplest model configuration for the insulin kinetics is the one–compartment
linear model, depicted in Figure 3.1. Insulin kinetics is described by a unique pool
which corresponds to the liver and plasma considered together. This is a reasonable
approximation since the exchange between them is very rapid. This simple model
does not account for first–pass hepatic insulin extraction. However, this is a reason-
able approximation in T1D subjects where insulin is not secreted by the pancreas into
the portal vein but it is usually exogenously administered in the periphery (e.g. sub-
cutaneous route).
This model is described by the following equations:İp(t) = −nIp(t) Ip(0) = Ipb

I(t) =
Ip(t)

VI

(3.1)
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Figure 3.1: The one–compartment linear model for the insulin kinetics [11]

where n (min−1) is the only rate parameter and Ip is the insulin mass in plasma
and in the liver considered as an unique pool. In fact, the liver is not modeled as
a true kinetics compartment with its own size and exchange rates, as the following
model. Therefore, in this mono–compartment model, the insulin is considered to
be distributed into a unique compartment in the body, that is characterized by the
distribution volume VI and the clearance can be considered as: CL = n · VI .

3.1.2 Two–compartment model
The two–compartment model of whole–body insulin kinetics, described in [15], [50],
is represented in Figure 3.2. Is is described by the following equations:

İp(t) = −(m2 +m4)Ip(t) +m1Il(t) Ip(0) = Ipb

İl(t) = −(m1 +m3(t))Il(t) +m2Ip(t) Il(0) = Ilb

I(t) =
Ip(t)

VI

(3.2)

In details, the two compartments represent the liver (L) that is non accessible to direct
measurement, and the plasma (P), where both sampling and testing occur. Ip and Il
(mU/kg) are respectively the insulin masses in plasma and in the liver, VI (l/kg) is
the distribution volume of insulin, I (mU/l) is the plasma insulin concentration and
m1, m2, m3 and m4 (min−1) are the rate parameters. The parameters m3 and m4

represent respectively the insulin degradation in liver and plasma. Then, in particular,
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Figure 3.2: The two–compartment linear model for the insulin kinetics [15], [50]

m3 is given by:

m3(t) =
HE(t) ·m1

1− HE(t)
(3.3)

where HE(t) is the HE of insulin. In T1D subjects, HE is fixed to 0.6, as reported in
[15], [50], assuming that the liver is responsible for 60% of insulin clearance.
This model has been already implemented in the UVA/Padova T1D simulator [15],
[50], allowing in silico testing and so accelerating the development of artificial pan-
creas control algorithms.

3.2 Intraperitoneal subsystem
In this section, a battery of models are proposed in order to describe the IP insulin
absorption kinetics. These models are linked to the mono–compartment model of
whole–body insulin kinetics, represented in Figure 3.1, with the purpose of reproduc-
ing the data presented in the Chapter 2. In a future work, the chosen model, i.e. able
to better describe the experimental data with the minimum number of parameters,
will be linked to the two–compartment model of whole–body insulin kinetics, so
that the IP insulin absorption model can be implemented in the UVA/Padova T1D
simulator.
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Figure 3.3: The linear model for the direct intraperitoneal absorption

3.2.1 Model I: direct absorption model
The first easiest assumption made is shown in Figure 3.3. Since insulin absorption
from the IP route is known to be very fast, it is assumed to be directly absorbed into
the circulation. The equations are the same of the mono–compartment model with
the exogenous input, given by the IP route:İp(t) = −nIp(t) + Input(t) Ip(0) = Input(0)/n

I(t) =
Ip(t)

VI
(3.4)

3.2.2 Model II: one–compartment linear model
Another developed model is depicted in Figure 3.4. Compared to the previous model,
it has been added a compartment that is able to describe a slower insulin absorption
than the direct configuration model. In this case, the model equations are:

İp(t) = −nIp(t) + kaIq(t) Ip(0) = Input(0)/n

İq(t) = −kaIq(t) + Input(t) Iq(0) = Input(0)/ka

I(t) =
Ip(t)

VI

(3.5)

where Iq (mU ) is the insulin mass in intraperitoneal space, ka (min−1) is the rate
parameter and Input is the total exogenous insulin administered, i.e. insulin basal
and bolus (mU/min).
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Figure 3.4: The linear one–compartment model for the intraperitoneal absorption

3.2.3 Model III: two–compartment linear model
A third linear model, which is made up of two compartments to represent the in-
traperitoneal space, as can been seen in Figure 3.5, has been developed. The under-
lying idea is to take into consideration, with a one more compartment, the physio-
logical route and time period between the insulin injection site (where the flexible
catheter is placed) and its absorption via the capillaries of the visceral peritoneum.
The equations that describe this model are:

İp(t) = −nIp(t) + kaIq2(t) Ip(0) = Input(0)/n

İq2(t) = −kaIq2(t) + kdIq1(t) Iq2(0) = Input(0)/ka

İq1(t) = −kdIq1(t) + Input(t) Iq1(0) = Input(0)/kd

I(t) =
Ip(t)

VI

(3.6)

where Iq1 and Iq2 (mU ) are respectively, the insulin masses in the first absorption
site (IP1) and in the second pool (IP2), representing both the IP space. As can been
seen in Figure 3.5, between these two IP compartments, insulin flow is expected to
be unidirectional and no insulin degradation occurs, so that all the exogenous insulin
enters the circulation. The two rate parameters are ka and kd (min−1), which are
interchangeable from a priori identifiability analysis, thus in the model identification,
the assumption kd ≥ ka has been made.

So far, only linear models for the intraperitoneal subsystem have been proposed.
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Figure 3.5: The two–compartment linear model for the intraperitoneal absorption

However, it has been deemed useful to further increase the model complexity, consid-
ering also some nonlinearities, in order to evaluate any possible correlation between
the rate parameters and insulin and/or glucose concentrations. Thus, some nonlin-
ear strategies have been developed starting from the two–compartmental model de-
scribed in Figure 3.5.

3.2.4 Model IV: Michaelis–Menten kinetics between the intraperi-
toneal compartments

Firstly, the question concerning the saturation has been examined and the chosen ap-
proach was the Michaelis–Menten. The underlying idea can be summarised as follows:
by increasing the insulin concentration, the speed of the insulin absorption increases
until its maximum value is reached, assuming that, increasing insulin concentration,
its absorption reaches a saturation level. Thus, in this case, a correlation between the
rate parameter kd and an eventual saturation of the insulin mass Iq1 (first compart-
ment IP1) is evaluated. The equations that describe the model are the following:

İp(t) = −nIp(t) + kaIq2(t) Ip(0) = Input(0)/n

İq2(t) = −kaIq2(t) +
VmaxIq1(t)

Km + Iq1(t)
Iq2(0) = Input(0)/ka

İq1(t) = − VmaxIq1(t)

Km + Iq1(t)
+ Input(t) Iq1(0) = Input(0)Km

Vmax−Input(0)

I(t) =
Ip(t)

VI

(3.7)
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where Vmax (mU/min) represents the maximum value of the speed of the insulin
absorption,Km (mU ) is a mass parameter and by definition, it represents the insulin
concentration needed for the speed value of the insulin absorption to be half than its
maximum. Therefore, using this nonlinear technique, the pool which controls the
rate parameter kd is the first one, i.e. IP1.

3.2.5 Model V: Langmuir kinetics between the intraperitoneal com-
partments

Another nonlinear strategy to describe the possible insulin saturation is based on
the Langmuir relation. The main di�erence compared with Michaelis–Menten is that
the intraperitoneal compartment which regulates the rate parameter kd is the second
one, i.e. the IP2 in Figure 3.5. In fact, in this case, the underlying idea consists in
evaluating whether, as the insulin concentration in IP2 increases, the rate parameter
kd starts to decrease down to zero, due to a saturation phenomenon. In mathematical
terms, the equations describing this kind of nonlinearity are the following:

İp(t) = −nIp(t) + kaIq2(t) Ip(0) = Input(0)/n

İq2(t) = −kaIq2(t) + kd(Iq2(t), α, β)Iq1(t) Iq2(0) = Input(0)/ka

İq1(t) = −kd(Iq2(t), α, β)Iq1(t) + Input(t) Iq1(0) = Input(0)

α
(
1− Input(0)

βka

)
I(t) =

Ip(t)

VI
(3.8)

and kd(Iq2(t), α, β) is given by:

kd(Iq2(t), α, β) =

α
(

1− Iq2(t)

β

)
if β ≥ Iq2(t)

0 if β < Iq2(t)
(3.9)

where α (min−1) represents the rate parameter between the two IP compartments
and β (mU ) is the threshold value above which there is no insulin absorption because
of saturation.

3.2.6 Model VI: fractional insulin clearance modulated by glucose
concentration

In this case, a nonlinearity on the rate parameter n, i.e. the irreversible insulin re-
moval from the circulation, has been introduced. In this case, it has been taken as
a reference a recent literature study of Piccinini et al. [33], who found a relation
between the insulin HE and plasma glucose concentration. Consider that, as previ-
ously specified, assuming a mono–compartment description for the insulin kinetics
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as in this specific case, the HE parameter is not directly estimated, but it is partially
included in the rate parameter n. Thus, the model equations are the following:

İp(t) = −(aGG(t) + aoG)Ip(t) + kaIq2(t) Ip(0) = Input(0)/nb

İq2(t) = −kaIq2(t) + kdIq1(t) Iq2(0) = Input(0)/ka

İq1(t) = −kdIq1(t) + Input(t) Iq1(0) = Input(0)/kd

I(t) =
Ip(t)

VI
(3.10)

whereG (mg/dL) is the glucose concentration in the pool, aG (min−1dL/mg) repre-
sents the control of glucose on n and aoG (min−1) is obtained from the SS constraint:

aoG = nb + aGGb (3.11)

where nb is the fractional insulin clearance in the basal state.

3.2.7 Model VII: saturable fractional insulin clearance
TheMichaelis–Menten kinetics has been also used in order to describe the irreversible
insulin degradation from the accessible pool. Thus, in this case, the underlying idea
consists in evaluating whether, increasing insulin concentration, its disposal increases
until a maximum value. So, a correlation between the rate parameter n and an even-
tual saturation of the insulin mass Ip is evaluated. The equations that describe the
model are the following:

İp(t) = −
(
VmaxIp(t)

Km + Ip(t)

)
+ kaIq2(t) Ip(0) = Input(0)Km

Vmax−Input(0)

İq2(t) = −kaIq2(t) + kdIq1(t) Iq2(0) = Input(0)/ka

İq1(t) = −kdIq1(t) + Input(t) Iq1(0) = Input(0)/kd

I(t) =
Ip(t)

VI
(3.12)

where Vmax (mU/min) and Km (mU ) are the Michaelis–Menten parameters previ-
ously described.

3.2.8 Model VIII: Fractional insulin clearance modulated by insulin
concentration

Finally, the last nonlinear strategy which has been developed, takes as a reference
the recent literature study of Piccinini et al. [33] outlined previously. In this case,
the focus has been put on the relation between the insulin HE and plasma insulin
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concentration, with the same considerations applied. The equations describing this
kind of nonlinearity are the following:

İp(t) = −(aII(t) + aoI)Ip(t) + kaIq2(t) Ip(0) = Input(0)/nb

İq2(t) = −kaIq2(t) + kdIq1(t) Iq2(0) = Input(0)/ka

İq1(t) = −kdIq1(t) + Input(t) Iq1(0) = Input(0)/kd

I(t) =
Ip(t)

VI
(3.13)

where I (µU/mL) is the insulin concentration in the pool, aI (min−1mL/µU ) repre-
sents the control of insulin on n and aoI (min−1) is obtained from the SS constraint:

aoI = nb + aIIb (3.14)

where nb is the fractional insulin clearance in the basal state.
The last remark: implementing this strategy evaluating both the glucose and insulin
dependency on n, the parameter n can mathematically reach any minimum value.
However, a negative one is physiologically unacceptable, so it has been added a con-
straint to avoid it.
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Chapter 4

Model Identification

In order to analyse dynamics of complex systems such as those in biological and phys-
iological fields, and to understand their regulatory processes, mathematical models
are required. A simple schematic illustration of the framework for building models
of complex physiological processes is outlined in Figure 4.1. The inverse process of
designing models from experimental time course data is called system identification.
Since the focus of the thesis is to investigate the insulin absorption, models have a
parametric description and take the form of a set of ordinary di�erential equations
involving parameters. Many of these parameters are not directly accessible to mea-
surement, so their values can only be obtained by designing a structural model and
estimating its parameters. Thus, in this chapter, a briefly introduction to the theory
of the criteria for the optimal model selection, will be reported.

4.1 A priori identifiability
In parametric models, the first bottleneck is to verify whether the unknown parame-
ters of the postulated model can be uniquely determined from the input–output ex-
periment, under the ideal conditions of noise–free observable variables, continuous–
time measurements and error–free model structure. This is a model–related property
called structural identifiability or a priori identifiability. The identifiability assessment is
certainly a necessary but not su�cient prerequisite to guarantee an accurate identifi-
cation of the model. Of course, if there is no structural identifiability, the parameter
estimation will be totally casual and meaningless. Moreover, in clinical practice, data
are a�ected by measurement error, hence, after verifying a priori identifiability, one
must verify that the model is a posteriori identifiable from the data, i.e. that model
parameters can be estimated with a good precision.
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Figure 4.1: Framework for building mathematical models of complex systems. Re-
trieved by [13]

In mathematical terms, a dynamical model can be described by:{
ẋ = f(x(t), θ) +

∑n
i=1 gi(x(t), θ)ui(t)

y(t) = h(x(t), u(t), θ) + ε(t)
(4.1)

where x(t) ∈ Rn is the state function, y(t) ∈ Rm is the output, u(t) ∈ Rq is the
input data function, ε(t) ∈ Rm is the random measurement noise, f is the function
which defines the model structure, g defines the input data function, h is the func-
tion which connects model with measurements and finally θ ∈ Rp is the unknown
parameter vector that characterizes the process.
The methods to study the a priori identifiability are based on a definite mathematical
procedure [12], [6], [4], [39]. Let’s assume for the sake of simplicity, only one known
input u(t) = δ(t) , one output and the following parameterized deterministic model:

ẋ = f(x, u; θ)

y = h(x, u; θ)

x(0−) = x0(θ)

(4.2)

A set of functions ρ1, ρ2, . . . , ρq called observational parameters are extracted by the
output of the system. These parameters are functions of the basic model parameter
θ, they can be estimated uniquely from the data by definition, i.e. they are uniquely
associated to known observable values ρ̂i. Moreover, they should sum up the whole
information about θ included in the model output. The latter is a crucial point for
nonlinear systems since, in this case, the number of observational parameters could be
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infinite and there is no criteria to know which is the correct number of parameters ρi
needed to study the a priori identifiability. Thus, it is necessary to study the preimages
or inverse images of the set ρi, that is, to solve the system of nonlinear algebraic
equations in the unknown ρi, called exhaustive summary.

ρ1(θ) = ρ̂1

ρ2(θ) = ρ̂2
...
ρq(θ) = ρ̂q

(4.3)

The extension to the case of multiple–input and multiple–output models is immedi-
ate: for each k input channel and j output channel, we obtain the functions ρi which
characterise the output yj(t), considering the latter is generated by all null input ex-
cept uk(t) = δ(t). Then, the previous exhaustive summary is obtained by the union
of all the algebraic equations related to the various values of k and j. We can now
generalize definitions, first defining a single parameter of the model and then the
model as a whole. So, the single parameter θi is a priori

globally identifiable if and only if the system of 4.3 has one and only one solution for
θi;

locally identifiable if and only if θi is not globally identifiable but the system of 4.3
has a finite number of solutions for θi;

nonidentifiable if and only if the system of 4.3 has an infinite number of solutions for
θi.

Focus on the whole model, it is a priori

globally identifiable if all of its parameters are globally or uniquely identifiable;

locally identifiable if all of its parameters are identifiable, either globally or locally
and at least one θi is locally identifiable;

nonidentifiable if at least one θi is nonidentifiable.

The mathematical procedure just described, is applied to study the a priori iden-
tifiability, both in the case of linear and nonlinear dynamic models. The di�erent
methods to perform it are in detail reported below.
Consider a linear dynamic model with only one input and one output, described by:{

ẋ(t) = F (θ)x(t) +G(θ)u(t)

y(t) = H(θ)x(t)
(4.4)
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where F,G,H are constant coe�cient matrices parametrized by θ and there is a
non linear relationship between θ and y in general. Moreover, for sake of simplicity
assume that the system remains at rest until disturbed by an impulse (x(0−) = 0), but
all results and comments hold for the general case. In this case, the commonly used
method to study a priori identifiability is the transfer function method which requires
the Laplace transform of the output. Since the transformation of input u(t) = δ(t)
is U(s) = 1, the output coincides with the transfer function W (s) of the system,
thus:

Y (s) = H(θ)(sI − F (θ))−1G(θ)

=
βd(θ)s

d−1 + · · ·+ β2(θ)s+ β1(θ)

sd + αd(θ)sd−1 + · · ·+ α1(θ)

(4.5)

where I is the identity matrix, d is the state space dimension and the 2d coe�cients
are the observational parameters {αi, βi}di=1 to whom the known values {α̂i, β̂i}di=1

can be associated. Therefore, the exhaustive summary can be written as:

α1(θ) = α̂1

α2(θ) = α̂2

...
αd(θ) = α̂d

β1(θ) = β̂1

β2(θ) = β̂2
...
βd(θ) = β̂d

(4.6)

With p inputs and q outputs, the transfer function must have p by q dimensionality
and thus has a total of pq rational functions. All the elements of the matrix has the
same denominator and each numerator provides d adding new algebraic equations so
that the number of observational parameters ρi is d x (pq + 1).

On the other hand, the problem to test a priori identifiability becomes harder if it
is considered a non linear dynamic model. The method is based on the Taylor expansion.
As usual, for sake of simplicity, it is considered only one input and one output and
our interest is the resulting overall systems’ behaviour to the Dirac delta function
application. Thus, the Taylor series expansion in t = 0+ interval and θ parametrized,
is:

yθ(t) = yθ(0
+) + ẏθ(0

+)t+ ÿθ(0
+)
t2

2
+ . . . (4.7)

where derivatives of all orders are known and can be interpreted as the observational
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parameters ρi. In the latter case, the exhaustive summary is described by:
yθ(0

+) = ρ̂1

ẏθ(0
+) = ρ̂2

ÿθ(0
+) = ρ̂3

...

(4.8)

Again, in case of p inputs and q outputs, for each function with k as entry and j
as output, it is computed the Taylor series expansion of yj . The latter one, in turn,
is generated by all null input except uk(t) = δ(t). Then, the exhaustive summary
is obtained by the union of all the algebraic equations to varying of the values of k
and j. The crucial aspect of this method is the lack of criteria to know how many
parameters ρi are needed to study the a priori identifiability handling independent
equations. In other words, there is no theory that provides a stop–value for the order
of derivatives, except for some cases such as d–dimensional linear systems (where it
can be demonstrated it is su�cient to stop at 2d− 1 order of the derivatives).

4.1.1 The Daisy software
The Laplace transform method discussed above is a handy and simple approach to
test a priori identifiability for linear models of low dimensions. For more complex
models, the nonlinear algebraic equations increase both in degree of linearities and
number of terms so that their solution becomes increasingly di�cult. In this frame-
work, the software DAISY (Di�erential Algebra for Identifiability of SYstems) has
been developed as a structural identifiability test of linear and nonlinear models in-
volving polynomial and rational functions [4], [39]. This tool (available on the web
site https://daisy.dei.unipd.it) implements a di�erential algebra algorithm,
the Buchberger algorithm, which allows to compute a Gröbner basis , i.e. a set of
polynomials allowing to assess the global or local identifiability or the nonidentifi-
ability of the system of di�erential equations. In fact, the algorithm allows to find
the input–output relation involving only the (u, y) variables, eliminating the non–
observed state variables. This is possible because of the knowledge of a characteristic
set (that is a "minimal" set of di�erential polynomials) whose computation is per-
formed via the Ritt’s pseudodivision algorithm. Together with the system of di�eren-
tial equations, also initial condition can play a fundamental role, so, if available, they
should be used to test the a priori identifiability of the model. Without going into too
much details, it is su�cient knowing that the input of the algorithm are the di�eren-
tial equations defining the dynamic system, the list of the unknown parameters and
the number of inputs, outputs and state variables, while the output is the number of
solutions for each unknown parameter of the model. The software DAISY manages
to check the global identifiability of the original model in only a few seconds and

https://daisy.dei.unipd.it
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it does not require an in–depth understanding of the mathematical tools but only a
minimum prior knowledge of mathematical modelling. See the article [4] for further
details concerning the algorithm.

In conclusion, in this section we have ascertained the essential role of the a pri-
oriidentifiability analysis in model identification, although many researchers often
neglect it.

4.2 Parameter estimation
In the section 4.1 it was pointed out the importance of a priori identifiability, as a
necessary prerequisite for well posedness of parameter estimation. Once the model
has passed this test, it is possible to proceed with the parameter estimation adopting
one of the available techniques. Any of them is called an estimator which is a statistic
that is applied to a set of data (represented by the m–dimensional random vector z)
to construct an estimate θ̂. An estimator has three key properties: consistency, bias and
variance. Briefly, consistency is a nearly always desired property that requires the con-
vergence of the estimate to the true parameter value θ as the number of items in the
data set (to which it is applied) increases. The bias is defined as the deviation of the ex-
pectation from the true value, that is the di�erence between the estimator’s expected
value and the true value of the parameter being estimated: Biasθ(θ̂) = E[θ̂]−θ. An
estimator is said to be unbiased if its bias is equal to zero for all values of parameter
θ. Finally, the variance of an estimator is the expected value of the squared sampling
deviations: V ar(θ̂) = E[(θ̂ − E[θ̂])2]. One measure which is used to reflect both
types of di�erence is the mean square error:MSE(θ̂) = V ar(θ̂) + (Bias(θ̂, θ))2.
The parameter estimation problem can be mathematically formalized in the follow-
ing way. Since the model includes a set of unknown parameters and the experimental
data are available, the discrete–time noisy output measurements zi are:

z(ti) = zi = yi + vi = g(ti, θ) + vi (4.9)

where g(ti, θ) is related to the model of the system and vi is the measurement error
of the i–th measurement, which is modeled as a random variable with zero mean and
known statistics distribution. The random vector v has a covariance matrix Σv =
E[(v − E[v])(v − E[v])T ] = E[vvT ] = σ2B, where σ is scalar quantity and B
is a NxN diagonal matrix if the entries of v are uncorrelated. In vector form, the
equation 4.9 can be expressed as follows:

z = y + v = G(t, θ) + v (4.10)

There are two main estimation approaches: the Fisher (deterministic) approach is
based on the estimation of θ, for which exits a "true" value, only using the experimen-
tal data, so the estimator gives a point estimate for the parameter of interest θ. The
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Bayes (stochastic) approach refers to the situation in which a stochastic realization of
the parameter vector is assumed as opposed to the deterministic approach previously
described. In particular, it is known not only the data of the experiment, called a pos-
teriori information, but also some a priori information on θ that is a random vector and
so it is expressed in probabilistic terms. Focusing on the Bayesian approach, which
can be used also for small data records and it allows to improve the estimate sequen-
tially as new data arrives, three statistical concepts are presented below in order to
describe how it is possible to obtain Bayesian point estimators.

4.2.1 A priori information
On the unknown parameters vector θ, θ ∈ Θ ⊆ RM , there is some expectation/belief
(often from the scientific literature) before seeing any data z, which is described by
its a priori probability density:

fθ(θ) = fθ1,θ2,...,θM (θ1, θ2, . . . , θM) (4.11)

Consider the particular case in which it is known that the prior for the vector θ has a
normal distributionwithµθmean andΣθ covariancematrix, the 4.11 can be rewritten
as:

fθ(θ) =
1(

(2π)Mdet(Σθ)
) 1

2

exp
(
−1

2
(θ − µθ)TΣ−1θ (θ − µθ)

)
(4.12)

4.2.2 Likelihood function
The likelihood function or simply likelihood, expresses how probable a given set of
observations z (available after the experiments) is for di�erent values of statistical
parameters θ. Thus, it depends on the model g(ti, θ) and on the probability density
of the measurements error fv(v) and it is expressed as:

fz|θ(z|θ) = fz1,z2,...,zM |θ1,θ2,...,θM (z1, z2, . . . , zM |θ1, θ2, . . . , θM) (4.13)

Consider the particular case in which the random vector v, v ∈ RN , has a Gaussian
distribution with µv = 0 mean and Σv covariance matrix. The 4.13 can be rewritten
as:

fz|θ(z|θ) =
1(

(2π)Ndet(Σv)
) 1

2

exp
(
−1

2

(
z −G(θ)

)T
Σ−1v

(
z −G(θ)

))
(4.14)

4.2.3 A posteriori information
A posteriori information is the conditional probability of the parameters θi which
takes into account the observed data (e.g. given the evidence z):

fθ|z(θ|z) = fθ1,θ2,...,θM |z1,z2,...,zM (θ1, θ2, . . . , θM |z1, z2, . . . , zM) (4.15)
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Consequently, it must be expected that the initial a priori expectation changes. Using
both 4.11 and 4.13, it is possible to determine the latter probability density applying
the Bayes’ rule, which forms the heart of Bayesian inference:

fθ|z(θ|z) =
fz|θ(z|θ)fθ(θ)

fz(z)
=

fz|θ(z|θ)fθ(θ)∫
fz|θ(z|θ)fθ(θ) dθ

(4.16)

where fz(z) is the probability density of the measurements vector z which is just a
constant, in fact it does not depend on θ. In general, posterior densities are too com-
plex to work with analytically, thus it is used a numerical simulation method called
Markov Chain Monte Carlo with which it is possible to generate samples from an arbi-
trary posterior density and to use them to approximate the expectations of quantities
of interest. However, it can be demonstrated that there is a particular case in which
the a posteriori probability density can be handled analytically, that is when prior
and error v have Gaussian distribution. From 4.15 it is possible to define confidence
intervals and di�erent point estimators such as Mean value a posteriori (minimum vari-
ance) and Maximum A Posteriori (MAP), the latter one chosen to be used in the models
reported in this thesis. Bayesian estimators are defined by a minimization problem
which seeks for the value of θ that minimizes the posterior expected value of a loss
function. In particular, the MAP estimator minimizes Bayes risk for a "hit or miss"
loss function and estimates θ as the mode (the highest value) of the posterior distribu-
tion. It is defined as

θ̂MAP = argmax
θ

fθ|z(θ|z) (4.17)

So, the MAP estimate, known the data measurements z, is given by the value of θ
that maximises the a posteriori probability density. Considering 4.16 and the remark
concerning fz(z), the equation 4.17 can be simplified:

θ̂MAP = argmax
θ

fz|θ(z|θ)fθ(θ) (4.18)

It is worth noting that maximizing the log of a function is equivalent to maximizing
the original function, since log is a monotonic transformation. The log distribution
is often convenient to work with because it is less prone to numerical problems and
closer to an ideal quadratic function that optimizers like. Then, usually, we find
the mode of the distribution by minimizing an ’energy’, which is the negative log–
probability of the distribution up to a constant. Taking into account these obser-
vations and in the particular case in which prior and v have Gaussian distributions,
MAP estimator becomes a minimization problem as follows:

θ̂MAP = argmin
θ

(
z −G(θ)

)T
Σ−1v

(
z −G(θ)

)
+ (θ − µθ)TΣ−1θ (θ − µθ) (4.19)
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where the first addend represents the a posteriori information, while the second one the
a priori information. So Bayesian estimator realizes a trade–o� between these two type
of informations underlying how, in the situation of ’poorer and poorer’ prior, MAP
estimator tends toMaximumLikelihood Estimation (MLE). In fact, at the limit, fθ(θ)
tends to a constant, prior function becomes flat and thus it is like not having a priori
information.

The models which have been reported in the chapter 3 are nonlinear in the param-
eters, thus a closed–form solution does not exist. Consequently, it is needed iterative
linearizations such as Gauss–Newton method, used to solve nonlinear least squares
problems. Moreover, another critical aspect may also concern the error structure of
the data. Since, generally, it is partially or totally unknown, assumptions must be
made and the common one is that the errors are independent with zero mean. Then,
considering that the natural choice is to weight each datum according to the inverse
of the variance, it is necessary to distinguish between the case in which variance is
known (absolute weights) and when it is known up to a proportionality constant (rel-
ative weights).
Using the MAP formulation, in the absolute weights case, the loss function is ex-
pressed by 4.19, where the first addend is related to the measurements data adherence,
while the second one represents the prior adherence.
In the relative weights case, as seen before, the covariance matrix Σv can be rewritten
as:

Σv = σ2


b1 0 0 . . . 0
0 b2 0 . . . 0
0 0 b3 . . . 0
0 0 0 . . . 0
0 0 0 . . . bM

 = σ2B (4.20)

where B is a known matrix and σ2 is an unknown scalar that can be estimated a
posteriori by dividing the value of the cost function F (θ̂) by the degrees of freedom
of the modelM −N :

σ̂2 =

(
z −G(θ̂)

)T
B−1

(
z −G(θ̂)

)
N −M

(4.21)

The previous formula is valid when the Maximum Likelihood (ML) estimator is used.
However, in case of MAP estimation, the following cost function F (θ) is used [41]:

F (θ) =
1

M +N

{
M∑
k=1

( (
zk − g(tk, θ̂)

)2
Vk
(
g(tk, θ̂), zk, σ̂2

) + log
(
Vk
(
g(tk, θ̂), zk, σ̂

2
)))

+
N∑
j=1

((
θj − µj

)2
σ2
j

+ log(σ2
j )

)}
(4.22)
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where, as usual, θ is the parameters vector, zk is the k−thmeasurement and g(tk, θ) is
themodel prediction at time k. Then,MandN are the number of datameasurements
and Bayesian parameters respectively and Vk

(
g(tk, θ̂), zk, σ̂

2
)

= σ2 is the variance
term of the k − th datum that is a posteriori estimated as:

σ̂2 =
1

M

M∑
k=1

( (
zk − g(tk, θ̂)

)2
Vk
(
g(tk, θ̂), zk, 1

)) (4.23)

At this stage, an estimate θ̂ of the parameter vector has been obtained, so both nu-
merical values of the parameters and, obviously, the equations are known. Thus, in
order to consider whether the model is valid, it is necessary to assess the quality of
the identification results.

4.3 Analysis of the identification results
The quality evaluation of the parameters estimates can be performed in two main
steps which are described in this section.

4.3.1 Residuals
The first step is to analyse the residuals vector defined as:

r = z − g(θ̂) (4.24)

that is the di�erence between the observed data and the model prediction obtained
with the "optimal" estimated value of the parameter of interest. Considering the def-
inition 4.24 and observing 4.10, residuals vector can be thought of as sort of estimate
of the vector v, i.e. it may be compatible with the statistical description of v. For
instance, if it is known or expected that v has uncorrelated elements, a significant
correlation among the residuals cannot be acceptable and it can be associated to a
bad modelling of the system. Thus, a first important step in the analysis of residuals
is to assess their whiteness. In practical cases, it is always performed by visual inspec-
tion, then also some statistical tests such as the Anderson–Darling whiteness test and
the runs test are used [13], above all if a large number of data is available. Residuals
assessment is facilitated if weighted residuals are considered. In fact, assuming that
errors are uncorrelated and their variance σ2

k is known and defining weighted resid-
uals as wresk = rk

σk
, then:

var
( rk
σk

)
=

1

σ2
k

· var(rk) =
1

σ2
k

· var(vk) =
σ2
k

σ2
k

= 1 (4.25)
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Thus, weighted residuals should be uncorrelated and with an amplitude comparable
to the [−1,+1] band. Finally, observing the first addend of the MAP loss function
4.19, it can be noted that the residual vector is also connected to theWeighted Residual
Sum of Squares (WRSS):

WRSS = rTB−1r (4.26)

which provides a measurement of the goodness of fit, regardless how θ̂ is obtained.

4.3.2 Precision of the estimates
Since the data zi are uncertain because a�ected by error, also estimated parameter
vector is uncertain in any case. Therefore, another important aspect to take into
consideration is the precision of the estimates in order to assess howmuch θ̂ is reliable.
Starting with the definition of the estimation error as θ̃ = θ− θ̂, where θ̃ is a random
vector (since θ̂ is random), the uncertainty a�ecting the estimates can be measured
by using the covariance matrix of θ̃:

Σθ̃ = E[θ̃θ̃T ] (4.27)

However, in the nonlinear case, it has no closed–form solution, so analytical approx-
imate computations are feasible only under restrictive assumptions, for example of
Gaussianity. Therefore, for the MAP estimator, the approximation often utilized is:

Σθ̃ = Σθ̂ ≈
(
STΣ−1v S + Σθ

)−1 (4.28)

where S is the sensitivityM xN matrix of the linearized system given by:

S =



∂g(t1, θ)

∂θ1

∣∣∣
θ=θ̂

∂g(t1, θ)

∂θ2

∣∣∣
θ=θ̂

. . .
∂g(t1, θ)

∂θN

∣∣∣
θ=θ̂

∂g(t2, θ)

∂θ1

∣∣∣
θ=θ̂

∂g(t2, θ)

∂θ2

∣∣∣
θ=θ̂

. . .
∂g(t2, θ)

∂θN

∣∣∣
θ=θ̂

. . . . . . . . . . . .
∂g(tM , θ)

∂θ1

∣∣∣
θ=θ̂

∂g(tM , θ)

∂θ2

∣∣∣
θ=θ̂

. . .
∂g(tM , θ)

∂θN

∣∣∣
θ=θ̂


(4.29)

and the quantity in the right side is the inverse of the Fisher information matrix [13].
Finally, it should be noted that the mathematical expression 4.28 is also equal to
(JTJ)−1 in the absolute weights case, while it is necessary consider also a scale factor
σ2 in relative weights case. Therefore, in order to provide a measure of the preci-
sion, i.e. uncertainty, it is possible to obtain the expression of the standard deviation
(SD) from the diagonal elements of the Σθ̂ matrix which contain the variances of the
parameters:

SD(θ̂i) =

√
var(θ̂i) i = 1, 2, . . . , N (4.30)
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Moreover, precision is often given in terms of the coe�cient of variation (CV), as
follows:

CV (θ̂i) =
SD(θ̂i)

θ̂i
i = 1, 2, . . . , N (4.31)

4.4 Criteria for model selection
There is often the need of selecting which model can be defined the most suitable
among a number of competing one, such as in this thesis. In this regard, it is interest-
ing to cite a famous Box and Draper’ statement: "All models are wrong but some are
useful", where usefulness of a model can be intended as its ability to make predictions
about unseen observations. Thus, the aim is to find a model which is useful, able to
fit the data with the minimum number of parameters and physiologically plausible.
To evaluate the model fit, it is used the WRSS, since it minimizes the di�erence be-
tween the observed and predicted value for each sample time ti with i = 1, 2, . . . ,M .
Then, under hypothesis that the measurement error is zero mean and uncorrelated,
also weighted residuals should be almost zero mean, uncorrelated with most of them
lying in the−1 + 1 interval. Finally, it is assumed the parameters are estimated with
good precision if their CV is less than 100%. Criteria based on principle of parsimony
are used in order to obtain a trade–o� between goodness of fit and precision of the
parameter estimates. WhenMAP estimation is applied as in the models developed in
the chapter 3, the Generalized Information Criterion (GIC) can be employed. It is an
extension of the Akaike Information Criterion (AIC) (used in the Fisher approach)
and requires the following index to be minimized:

GIC =
2M

N
+ JMAP(θ̂) (4.32)

where M is the number of unknown parameters, N is the number of data and
JMAP(θ̂) is the value of the cost function at its minimum. The relation 4.32 consists
in two terms: the first one takes into consideration the number of parameters, while
the second term represents the trade–o� between the adherence to a priori knowledge
and data fit. In case of smaller sample size, as in this thesis work, a corrected version
of Akaike Information Criterion (AICc) should be used [10]:

AICc = AIC +
2M(M + 1)

N −M − 1
(4.33)

where M is the number of unknown parameters, N is the number of data points
and AIC is defined as AIC = WRSS + 2M . Finally, another possible criterion
is the Bayesian information criterion (BIC) or Schwarz information criterion which
introduces a penalty term for the number of parameters in the models, larger than in
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AIC. It is formally defined as:

BIC = WRSS +Mlog(N) (4.34)

where againM is the number of unknown parameters and N is the number of data
points.
Thus, each of these criteria are computed for each model and the model with the
smallest criterion value is preferred.

4.5 Identification strategy and statistical analysis
As it has been described in the Chapter 2, the study protocol consisted in two main
therapy phases: the control one and the closed–loop one. The identification of all
the developed models which have been provided in the Chapter 3, has been applied
at the control phase data and performed using MAP estimation. In particular, at the
beginning, it has been considered these data in their entirety, then, for a simplicity’s
sake and a greater clarity, the 24 hour–period has been divided into three time sub-
periods, each including a meal. Then, the identification process has been performed
as follows: the parameters related to the insulin kinetics, i.e. the Volume and the frac-
tional insulin clearance, have been assumed constant in the whole control phase and
thus identified one time. The parameters related to the IP insulin absorption instead,
have been identified three times, one for each time subinterval, in order to evaluate
their inter and intra–variability. Moreover, this data partition has been made trying
to begin each sub–period in a condition of SS. Then, the model adopted to describe
the error in insulin is based on the assumption the error samples are uncorrelated,
Gaussian with zero mean known standard deviation, in particular equals to:

SD =

√
1

6
+ 0.0055 · I2 (4.35)

where I (µU/mL) is the insulin concentration [44]. Finally, to investigate the intra–
subject variability in the intraperitoneal absorption, one–way analysis of variance (one–
way ANOVA) was performed in order to test the null hypothesis that ka1, ka2 and ka3
values (corresponding to the three time subintervals), in each subject, are drawn from
populations with the same mean values (using the F distribution). Similarly for the
kd1, kd2 and kd3 values.
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Chapter 5

Results

In this chapter, for each model developed (Chapter 3), the results of the a priori and
a posteriori model identification, together with model selection, are reported.

5.1 A priori identifiability
Firstly, the results of the a priori identifiability are outlined for each of the eight mod-
els, showing the final part of the DAISY software (version 1.5) report as proof. In this
regard, it is worth recalling that one basic step of the di�erential algebra identifia-
bility algorithm consists in choosing a set of pseudo–randomly numerical values for
the unknown parameter vector and then calculating the corresponding value of the
coe�cients of the input–output relation. This provides a system of algebraic non-
linear equations, which is solved by the Buchberger algorithm. Finally, by repeating
this procedure for an adequate set of parameter values, if, for example, a unique value
for the Groebner basis is obtained, then the model is globally identifiable. Therefore,
the numerical values reported in the Figures below, simply refer to this mathematical
procedure performed by the DAISY software.

Model I
As expected, the model with direct insulin absorption into circulation, which has 2
parameters to be estimated, i.e. the ones related to plasma kinetics (VI , n), is a priori
globally identifiable. A screenshot of the output of the DAISY software is showed
in Figure 5.1. It has been also exploited the a priori information (retrieved by [11])
concerning the uncertainty equal to 20% a�ecting as the insulin kinetics parameter
Vi.

49
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Figure 5.1: Model I: output of the DAISY software

Model II
The model with a mono-compartment description for the intraperitoneal insulin ab-
sorption together with a single–compartment description of plasma kinetics, has 3
parameters to be estimated (VI , n, ka) and it is a priori locally identifiable, since it
can admit two di�erent solutions. The Daisy software in fact shows (Figure 5.2) two
possible numerical solutions for the parameter set. As previously reported, the a priori
information on VI has been used to help a numerical identifiability.

Figure 5.2: Model II: output of the DAISY software

Model III
The model with a two-compartment description for the intraperitoneal insulin ab-
sorption, together with a single–compartment description of plasma kinetics, has 4
parameters to be estimated (VI , n, ka, kd) and it is a priori locally identifiable, since
it can admit six di�erent solutions. The Daisy software in fact shows (Figure 5.3) six
possible numerical solutions for the parameter set. Again, the a priori information
on Vi helps numerical identifiability but, the model is still a priori locally identifiable
with two possible di�erent solutions. This is due to the fact that the parameters ka
and kd are interchangeable, so, as we will see in the following section, it has been
assumed that kd ≥ ka, without loss of generality.
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Figure 5.3: Model III: output of the DAISY software

Model I, II and III are linear models, thus, the a priori information can be studied
with the transfer function method, which requires the Laplace transform of the out-
put. As an example, for the model III, the mathematical procedure is reported below.
The model equations can be written as:

ẋ1(t) = −n · x1(t) + ka · x2(t)
ẋ2(t) = −ka · x2(t) + kd · x3(t)
ẋ3(t) = −kd · x3(t) + u(t)

y(t) =
1

VI
· x1(t)

(5.1)

wherex1(t), x2(t), x3(t) and y(t) represent Ip(t), Iq2(t), Iq1(t) and I(t), respectively.
Then, u(t) is the input and it can be supposed equal to the Dirac impulse multiplied
by a known constant valueD: u(t) = D · δ(t). Using the matrix representation 4.4,
the F matrix is:

F =

−n ka 0
0 −ka kd
0 0 −kd

 (5.2)

the vector G = [0 0 D]T and the vector H =
[

1
VI

0 0
]
. From this matrix–vector
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representation, we can calculate the determinant of the matrix (sI − F ):

det(sI − F ) = det

s+ n ka 0
0 s+ ka kd
0 0 s+ kd

 = (s+ n)(s+ ka)(s+ kd) (5.3)

Now, for simplicity’s sake, rename (sI − F ) with A, so that:

A−1 =
1

det(A)
(A∗)T =

1

det(A)

a11 a21 a31
a12 a22 a32
a13 a23 a33

 (5.4)

where A∗ is the attached matrix, i.e. a matrix where each of the elements aij is re-
placed by their smallest complementaries multiplied by −1 elevated to the sum of
the row i plus the column j. Thus (sI − F )−1 is obtained by:s2 + (ka + kd)s+ kakd −kas− kakd kakd

0 s2 + (n+ kd)s+ nkd −(s+ n)kd
0 0 s2 + (n+ kd)s+ nka


s3 + (ka + kd + n)s2 + (kakd + nkd + nka)s+ nkakd

(5.5)
and the transfer functionW (s) is:

W (s) = Y (s) =
1
VI
kakdD

s3 + (ka + kd + n)s2 + (kakd + nkd + nka)s+ nkakd
(5.6)

Finally, the exhaustive summary is:
1
VI
kakdD = β̂1

ka + kd + n = α̂3

kakd + nkd + nka = α̂2

nkakd = α̂1

(5.7)

that is the same one obtained by the Daisy Software provided in the Figure 5.3. At
this point, it is possible to obtain the model parameters VI , n, ka, kd as a function of
β1, α1, α2, α1 with a finite possible number of solutions.

Model IV
The model with the non–linear (Michaelis–Menten) absorption between the two in-
traperitoneal compartments, governed by the first compartment, has 5 parameters to
be estimated (VI , n, ka, Vmax, km) and it is a priori locally identifiable, since it can
admits two di�erent solutions. The Daisy software in fact shows in the Figure 5.4
two possible numerical solutions for the parameter set.
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Figure 5.4: Model IV: output of the DAISY software

Model V
The model with the non–linear (Langmuir) absorption from the two intraperitoneal
compartments, governed by the second compartment, has 5 parameters to be esti-
mated (VI , n, ka, α, β) and it is a priori globally identifiable. The Daisy software in
fact shows, in the Figure 5.5, a unique numerical solution for the parameter dataset.

Figure 5.5: Model V: output of the DAISY software

Model VI
This model is represented by a two–compartment model of intraperitoneal absorp-
tion and accounts for a possible correlation between the glucose concentration and
the rate parameter which describes the insulin clearance from the accessible pool, has
5 parameters to be estimated (VI , ka, kd, aG, nb) and it is a priori locally identifiable.
The Daisy software in fact shows, in the Figure 5.6, two possible numerical solutions
for the parameter set. In particular, it is evident how the software is not able to assign
a unique numerical value to the rate parameters ka and kd. This underlines the fact
that the parameters ka and kd are interchangeable, as previously seen in the model
III. Therefore, also in this model, the assumption kd ≥ ka has been made in the
identification procedure.
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Figure 5.6: Model VI: output of the DAISY software

Model VII
This model is represented by a two–compartment model of intraperitoneal adsorp-
tion and accounts for a non–linear (Michaelis–Menten) insulin disposal from the
accessible pool, has 5 parameters to be estimated (VI , ka, kd, Vmax, km) and it is a
priori locally identifiable. The Daisy software in fact shows, in the Figure 5.7, two
possible numerical solutions for the parameter set and in particular, underlines the
interchangeability between the two rate parameters ka and kd. So, also for this model,
the assumption kd ≥ ka has been made in order to guarantee the a priori unique iden-
tifiability.

Figure 5.7: Model VII: output of the DAISY software

Model VIII
[htp] Finally, this model is represented by a two–compartment model of intraperi-
toneal adsorption and accounts for a possible correlation between the insulin con-
centration and the rate parameter which describes the insulin disposal from the ac-
cessible pool, has 5 parameters to be estimated (VI , ka, kd, aI , nb) and it is a priori
locally identifiable. The Daisy software in fact shows, in the Figure 5.8, two possible
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Figure 5.8: Model VIII: output of the DAISY software

numerical combinations for the 5 parameters. Also in this model, as seen in model
III, VI and VII, the local identifiability is due to the interchangeability between ka
and kd. So, in the identifiability procedure, the assumption kd ≥ ka is used in order
to guarantee the a priori unique identifiability.

5.2 A posteriori identification
The model di�erential equations integration has been carried out by ode45 solver
implemented in Matlab® (R2017a). Considering the low number of subjects in the
database, in this section, for eachmodel, bothmodel predictions andweighted residu-
als, together with the parameter estimates related to each patient, are provided. Note
that, in subject 6, data related to the first time interval have not been taken into ac-
count, because some of them have been considered outliers.

Model I
Model I was not able to satisfactorily predict plasma insulin profiles, due to a slower
IP insulin absorption into the circulation, which is not well described with this con-
figuration of direct absorption model. In fact, the model predicts insulin peaks in
correspondence of meal (or correction) boluses in which insulin concentration in-
creases and decreases too rapidly, as shown in Figures 5.9–5.16. As a consequence,
the pattern of weighted residuals is not acceptable since their amplitude is almost
always larger than expected, i.e. ±1. Subject 3 shows a better model fit and weighted
residuals (Figure 5.11) than the others subjects, due to its more rapid kinetics with
respect to the other subjects. The inability of the model to predict the data leads
also to unphysiological parameter values. In fact, the volume of distribution achieves
very high values (0.833 ± 0.336 with respect to the prior value around 0.131 L/Kg),
while the fractional clearance achieves very low values (0.131± 0.321 with respect to
the expected value around 0.105 min−1) but with a great variability since the SD is
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higher than the average value. In addition to this, also a very high variability in model
parameters is observed.

Figure 5.9: Model I: Subject 1

Figure 5.10: Model I: Subject 2
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Figure 5.11: Model I: Subject 3

Figure 5.12: Model I: Subject 4
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Figure 5.13: Model I: Subject 5

Figure 5.14: Model I: Subject 6
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Figure 5.15: Model I: Subject 7

Figure 5.16: Model I: Subject 8
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Table 5.1: Model I: parameter estimates and their precisions (CV)

Subjects
Parameters
Vi n

(L/kg) (min−1)

1
1 0.038
(3) (3)

2
0.954 0.035
(6) (5)

3
0.649 0.053
(10) (8)

4
0.058 0.817
(11) (11)

5
1 0.020
(5) (5)

6
1 0.026
(6) (5)

7
1 0.018
(6) (6)

8
1 0.045
(4) (4)

Mean 0.833 0.131
± SD ± 0.336 ± 0.321
(CV) (6) (6)

Model II
Model II was not able to satisfactorily predict plasma insulin profiles, due to a
slower IP insulin absorption into the circulation, which is not described with a
single–compartment configuration model. Although model fit has visibly improved
compared to model I, in most of the subjects, the insulin concentration predicted by
the model in correspondence of insulin boluses increases and decreases too rapidly
compared to the experimental data. This is also confirmed by their weighted resid-
uals pattern. In Table 5.2 parameters estimates and their precisions are reported.
In particular, all the parameters are well estimated and Vi (0.357 ± 0.153 L/Kg) is
much closer to the prior value than in Model II. The same applies to the fractional
clearance (0.122 ± 0.078 with respect to the prior value around 0.131 min−1). The
variability of the IP rate parameter estimates in each of the three subintervals (ka1,
ka2 and ka3) is quite small, since their dispersion (SD) is always lower than their aver-
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age value (0.025 ± 0.013, 0.023 ± 0.014, 0.027 ± 0.023min−1 respectively). Finally,
considering that, for each subject, ka is identified three times (one for each time
subinterval), one–way analysis of variance (one–way ANOVA) was performed in order
to test the null hypothesis that values in the ka1, ka2 and ka3 columns (Table 5.2) are
drawn from populations with the same mean values (using the F distribution). Since
F = 0.13 < Fcrit = 3.49, the null hypothesis was accepted, concluding that the
di�erences between ka1, ka2 and ka3 means are nonsignificant at the 5% significance
level (the p–value is 0.8817).

Figure 5.17: Model II: Subject 1

Figure 5.18: Model II: Subject 2
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Figure 5.19: Model II: Subject 3

Figure 5.20: Model II: Subject 4
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Figure 5.21: Model II: Subject 5

Figure 5.22: Model II: Subject 6
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Figure 5.23: Model II: Subject 7

Figure 5.24: Model II: Subject 8
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Table 5.2: Model II: parameter estimates and their precisions (CV)

Subjects
Parameters

Vi n ka1 ka2 ka3
(L/kg) (min−1) (min−1) (min−1) (min−1)

1
0.593 0.073 0.033 0.023 0.018
(14) (14) (9) (8) (9)

2
0.372 0.083 0.023 0.056 0.082
(17) (17) (12) (16) (20)

3
0.132 0.289 0.051 0.025 0.027
(19) (19) (30) (11) (12)

4
0.375 0.141 0.014 0.016 0.009
(16) (16) (11) (8) (7)

5
0.345 0.067 0.016 0.013 0.012
(15) (14) (7) (8) (8)

6
0.176 0.171 N/A 0.020 0.015
(19) (18) (N/A) (6) (8)

7
0.350 0.055 0.024 0.019 0.023
(15) (15) (12) (10) (11)

8
0.508 0.095 0.014 0.013 0.033
(15) (15) (17) (10) (9)

Mean 0.357 0.122 0.025 0.023 0.027
± SD ± 0.153 ± 0.078 ± 0.013 ± 0.014 ± 0.023
(CV) (16) (16) (13) (10) (10)

Model III
The Model III was able to quite satisfactorily predict plasma insulin profiles in all of
the subjects. This two–compartment model can better predict the absorption kinet-
ics with respect to the previous models, as can be observed by the model fit, which is
able to describe the experimental data (clearly visible in subject 5, Figure 5.29). This
is also confirmed by weighted residuals, which are smaller thanModel I and II, even if
their profile presents some correlated sequences positive/ negative residuals (Figure
5.27, 5.28, 5.29, 5.30, 5.32) and the amplitude is larger than expected in some time
intervals (Figure 5.25, 5.26, 5.32). In table 5.3 model parameter estimates and their
precisions are reported, in particular: only kd1 in subject 4 is estimated with poor
precision (CV>100%), VI (0.163 ± 0.023 L/Kg) is estimated close to the prior value
(around 0.131 L/Kg), the same applies to the fractional clearance (0.224 ± 0.068
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with respect to the prior value around 0.131min−1). The variability of ka in each of
the three subintervals (ka1, ka2 and ka3) is quite small, since their dispersion (SD) is
always lower than their average value (0.036 ± 0.016, 0.033 ± 0.018, 0.031 ± 0.019
min−1 respectively). On the other hand, the variability of kd in the second and third
subinterval (kd2 and kd3) is large since their standard deviation is greater than their
average value (0.114 ± 0.164, 0.213 ± 0.298 min−1 respectively). Finally, one–way
ANOVA was performed in order to test the null hypothesis that values in the ka1, ka2
and ka3 columns (Table 5.3) are drawn from populations with the same mean values
(using the F distribution). Since F = 0.13 < Fcrit = 3.49, the null hypothesis
was accepted, concluding that the di�erences between ka1, ka2 and ka3 means are
nonsignificant at the 5% significance level (the p–value is 0.8757). Then, one–way
ANOVA was performed also to compare means of kd1, kd2 and kd3. Also in this case,
F = 0.77 < Fcrit = 3.49, the null hypothesis was accepted, concluding that the
di�erences between kd1, kd2 and kd3 means are nonsignificant at the 5% significance
level (the p–value is 0.4758).

Figure 5.25: Model III: Subject 1
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Figure 5.26: Model III: Subject 2

Figure 5.27: Model III: Subject 3
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Figure 5.28: Model III: Subject 4

Figure 5.29: Model III: Subject 5



5.2. A POSTERIORI IDENTIFICATION 69

Figure 5.30: Model III: Subject 6

Figure 5.31: Model III: Subject 7
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Figure 5.32: Model III: Subject 8

Model IV
The extension of a Michaelis–Menten kinetics in the absorption between the two IP
compartments in Model IV did not improve the prediction of plasma insulin pro-
files with respect to the linear Model III. This was confirmed by the similar weighted
residuals pattern (Figure 5.33–5.40). Further evidence stems from Table 5.4, in which
model parameters and their precisions are reported. In particular, among the IP pa-
rameters, ka is estimated, on average, with good precision (CV<100%) in all the three
subintervals, while Vmax and km are estimated, on average, with very poor precision
in the first and third subinterval, and in detail, with CV>100% in 39% and 35% of the
time, respectively. Then, Vi (0.202 ± 0.048 L/Kg) is estimated close to the prior
value (around 0.131 L/Kg), the same applies to the fractional clearance (0.224 ±
0.068 with respect to the prior value around 0.131 min−1). The variability of ka in
each of the three subintervals (ka1, ka2 and ka3) is quite small, since its dispersion
(SD) is always lower than its average value (0.029 ± 0.016, 0.024 ± 0.014, 0.027 ±
0.017 min−1 respectively). The same considerations can be applied for the variabil-
ity of Vmax in the three subintervals (1017 ± 376, 838 ± 369, 788 ± 235 mU/min
respectively). Finally, the variability of km is large only in the first subinterval (1633
± 2093, 500 ± 247, 929 ± 536mU respectively). In conclusion, the eventual satura-
tion of the insulin in the first IP compartment, due to the rapid insulin absorption,
seemed not occur.
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Figure 5.33: Model IV: Subject 1

Figure 5.34: Model IV: Subject 2
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Figure 5.35: Model IV: Subject 3

Figure 5.36: Model IV: Subject 4
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Figure 5.37: Model IV: Subject 5

Figure 5.38: Model IV: Subject 6
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Figure 5.39: Model IV: Subject 7

Figure 5.40: Model IV: Subject 8
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Model V
The extension of a Langmuir kinetics in the absorption between the two intraperi-
toneal compartments in Model V did not significantly improve the prediction of
plasma insulin profiles obtained with respect to the linear Model III. In fact, model
fit, as well as weighted residuals pattern were similar (Figure 5.41–5.48) to those ob-
tained in Model III, so the same considerations of Model IV can be applied here. In
table 5.5, model parameters and their precisions are reported, in particular: among
the IP parameters, ka andα are estimated, on average, with poor precision (CV>100%)
in the first subinterval, while their precision is good in the other two subintervals. On
the other hand, β is estimated, on average, with very poor precision (CV� 100%) in
all the three subintervals and in detail, in 91% of the time. Then, Vi (0.167 ± 0.024
L/Kg) is estimated close to the prior value (around 0.131 L/Kg), the same applies
to the fractional clearance (0.218± 0.060 with respect to the prior value around 0.131
min−1). The variability of ka in the first and third subinterval (ka1 and ka3) is large
since their standard deviation is greater than their average value (0.126± 0.164, 0.190
± 0.298min−1 respectively), while is quite small in the second subinterval (0.102±
0.083 min−1). The same considerations can be applied for the variability of α in
the three subintervals (0.070 ± 0.100, 0.033 ± 0.013 and 0.044 ± 0.045 min−1 re-
spectively). Finally, the variability of β is very large in all the subintervals (399960
± 488041, 241672 ± 337339 and 101064 ± 203519mU respectively). In conclusion,
neither the insulin concentration in the second IP compartment seemed to drive a
saturation phenomenon in the IP absorption.

Figure 5.41: Model V: Subject 1
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Figure 5.42: Model V: Subject 2

Figure 5.43: Model V: Subject 3
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Figure 5.44: Model V: Subject 4

Figure 5.45: Model V: Subject 5
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Figure 5.46: Model V: Subject 6

Figure 5.47: Model V: Subject 7
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Figure 5.48: Model V: Subject 8

Model VI
Model VI did not significantly improve the prediction of plasma insulin profiles ob-
tained with the linear Model III. Moreover, model fit in the third time interval (dur-
ing the night) in subject 3, 4, 7 and 8 is still not so good, since the model is not able
to describes these data, so over and/or underestimation is visible (Figures 5.51, 5.52,
5.55, 5.56). This is confirmed by the weighted residuals which are correlated with a
larger amplitude than expected, i.e. ± 1. Model parameters and their precisions are
reported in Table 5.6, in particular: among the IP parameters, ka and kd are estimated,
on average, with good precision (CV<100%) in all of the three subintervals. The vari-
ability of ka in each of the three subintervals (ka1, ka2 and ka3) is quite small, since its
dispersion (SD) is always lower than its average value (0.035 ± 0.017, 0.028 ± 0.012,
0.028 ± 0.017min−1 respectively). On the other hand, the variability of kd is quite
small only in the first subinterval (0.080 ± 0.079 min−1), while in the other two
subintervals, the variability in quite large (0.149 ± 0.188 and 0.261 ± 0.320 min−1

respectively). Then, Vi (0.142 ± 0.020 L/Kg) is estimated close to the prior value
(around 0.131 L/Kg), aG is estimated, on average, with poor precision (CV>100%)
and its variability is large (0.0002 ± 0.0003 min−1dL/mg). Finally, nb (which to-
gether with aG represents the fractional clearance in this Model VI), is estimated, on
average, with good precision (CV < 100%) and its variability is small (0.264 ± 0.105
min−1). In conclusion, fractional insulin clearance seemed not to be modulated by
glucose concentration.
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Figure 5.49: Model VI: Subject 1

Figure 5.50: Model VI: Subject 2
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Figure 5.51: Model VI: Subject 3

Figure 5.52: Model VI: Subject 4
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Figure 5.53: Model VI: Subject 5

Figure 5.54: Model VI: Subject 6
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Figure 5.55: Model VI: Subject 7

Figure 5.56: Model VI: Subject 8
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Model VII
The model VII was able to quite satisfactorily predict plasma insulin profiles in all
the 8 subjects, slightly improving the model fit with respect to the linear Model III, as
can be observed by weighted residuals, whose amplitude seems to be more compara-
ble to the [−1,+1] range (Figures 5.57–5.64). A saturation phenomenon concerning
the fractional insulin clearance, which increases until a maximum value when the in-
sulin concentration increases, seemed to occur. Thus, the model could better describe
the data of the higher insulin absorption peaks, when a great amount of insulin could
reach the liver and a saturation phenomenon could occur. Model fit in subject 1, 5
and 6, who were given significant insulin boluses (> 10U ) are better described (Fig-
ures 5.57, 5.61, 5.62) than in linear Model III. In Table 5.7 model parameter estimates
and their precisions are reported. Model parameters were overall estimated with pre-
cision: only in three cases, one for kd, one for Vmax and one for km (the latter two
in the same subject 3), CV were greater than 100%. In addition, VI (0.143 ± 0.019
L/Kg) is estimated close to the prior value (around 0.131 L/Kg). The variability of
ka in each of the three subintervals (ka1, ka2 and ka3) is quite small, since their dis-
persion (SD) is always lower than their average value (0.031 ± 0.025, 0.026 ± 0.015,
0.025 ± 0.017min−1 respectively). On the other hand, the variability of kd is small
only in the third subinterval (0.164 ± 0.122min−1), while it is large in the first and
second subintervals (0.256± 0.303 and 0.093± 0.097min−1 respectively). Also the
variability of Vmax and km (which together represent the fractional clearance in this
Model VII) is large (788± 1014mU/min and 2657± 2692mU respectively). Finally,
one–way ANOVAwas performed in order to test the null hypothesis that values in the
ka1, ka2 and ka3 columns (Table 5.7) are drawn from populations with the same mean
values (using the F distribution). Since F = 0.19 < Fcrit = 3.49, the null hypoth-
esis was accepted, concluding that the di�erences between ka1, ka2 and ka3 means
are nonsignificant at the 5% significance level (the p–value is 0.8263). Then, one–way
ANOVA was performed also to compare means of kd1, kd2 and kd3. Also in this case,
F = 1.38 < Fcrit = 3.49, the null hypothesis was accepted, concluding that the
di�erences between kd1, kd2 and kd3 means are nonsignificant at the 5% significance
level (the p–value is 0.274).

Model VIII
Model VIII was able to satisfactorily predict plasma insulin profiles, as confirmed by
the weighted residuals, whose amplitude is more comparable to the [−1,+1] desired
band than all the other models. However, a further analysis allows to detect some
unphysiological pattern. In fact, for instance in subject 1 (Figure 5.65), it is evident
how the absorption insulin peaks described by the models are quite di�cult to be
physiologically described. This particular model fit can be observed in all the sub-
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Figure 5.57: Model VII: Subject 1

Figure 5.58: Model VII: Subject 2
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Figure 5.59: Model VII: Subject 3

Figure 5.60: Model VII: Subject 4
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Figure 5.61: Model VII: Subject 5

Figure 5.62: Model VII: Subject 6
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Figure 5.63: Model VII: Subject 7

Figure 5.64: Model VII: Subject 8
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jects except for subjects 2 and 3. In Table 5.8 model parameter estimates and their
precisions are reported. Model parameters were overall estimated with good preci-
sion: only aI in subject 3 was estimated with a very poor precision (CV�100%). The
variability of ka in each of the three subintervals (ka1, ka2 and ka3) is quite small, since
its dispersion (SD) is lower than or equal to its average value (0.023 ± 0.019, 0.022
± 0.022 and 0.016 ± 0.014 min−1 respectively). On the other hand, the variability
of kd is quite small only in the second subinterval (0.387 ± 0.340 min−1), while in
the other two subintervals, the variability in quite large (0.375 ± 0.431 and 0.322 ±
0.333min−1 respectively). Then, Vi (0.112 ± 0.014 L/Kg) is estimated close to the
prior value (around 0.131 L/Kg), aI is estimated, on average, with poor precision
(CV>100%) and its variability is quite small (0.004 ± 0.003 min−1mL/µU ). In ad-
dition, nb (which, together with aI , represents the fractional clearance in this Model
VIII), is estimated, on average, with good precision (CV < 100%) and its variability
is small (0.362 ± 0.090 min−1). Finally, one–way ANOVA was performed in order
to test the null hypothesis that values in the ka1, ka2 and ka3 columns (Table 5.8) are
drawn from populations with the same mean values (using the F distribution). Since
F = 0.26 < Fcrit = 3.49, the null hypothesis was accepted, concluding that the
di�erences between ka1, ka2 and ka3 means are nonsignificant at the 5% significance
level (the p–value is 0.7722). Then, one–way ANOVA was performed also to com-
pare means of kd1, kd2 and kd3. Also in this case, F = 0.07 < Fcrit = 3.49, the null
hypothesis was accepted, concluding that the di�erences between kd1, kd2 and kd3
means are nonsignificant at the 5% significance level (the p–value is 0.9318).

Figure 5.65: Model VIII: Subject 1
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Figure 5.66: Model VIII: Subject 2

Figure 5.67: Model VIII: Subject 3
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Figure 5.68: Model VIII: Subject 4

Figure 5.69: Model VIII: Subject 5
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Figure 5.70: Model VIII: Subject 6

Figure 5.71: Model VIII: Subject 7
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Figure 5.72: Model VIII: Subject 8

5.3 Model selection and statistical analysis
Model comparison is summarized in Table 5.9. Model I and II are not able to well
describe the data, in fact their measure of the deviation of the experimental data
from the predicted, represented byWRSS, is resulted to be very high with respect to
the other models. This is also confirmed by the percentage of subjects who passed
the Runs test equal to 75% for Model I and II and 88% for Model III, which instead
quite well predicted the data. Among the models III – VIII which quite satisfactorily
describe the data, WRSS results the lowest for Model VIII but it shows very unphysi-
ological model predictions, so the model cannot be physiologically acceptable. Thus,
the second lowest value is obtained withModel VII. Runs test, instead, does not allow
to add statistical information in the model selection. The ability of the model to es-
timate model parameters with a satisfactory precision results, on average, lower than
100% forModels III (17%), VII(62%) and VIII (91%). In addition, the 62% inModel VII
is mostly due to only two bad estimates in subject 3 which contributes in increasing
the average precision. Then, if it is observed the percentage of subjects with all the
CV below 100%, it is equal to 88% for model 3 (7/8 subjects), 75% for Model 7 (6/8
subjects) and 88% for Model 8 (7/8 subjects). Furthermore, in Model III, in 48% of
the time, one model parameter (kd) is virtually identical to ka. In Model VII, this
happened only 0.05% of the time. Finally, AICc is the lowest (149) in Model VIII,
then in Model VII (188) and in Model III (197).
In summary, Model I and II are not able to reproduce the data, Model IV, V, VI are
able to better describe the data but they are not numerically identifiable, with an
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Table 5.9: Summary results of Model comparison

Model Average precision of
WRSS

Residual
AICc

parameter estimates randomness

I 6% 794.56 75% 799
II 13% 254.63 75% 261.55
III 17% 187.06 88% 196.67
IV > 100% 238.49 75% 251
V � 100% 191.08 100% 203.6
VI � 100% 186.19 88% 198.71
VII 62% 175.02 88% 187.55
VIII 91% 136.11 88% 148.64

average unacceptable precision of the estimates (CV>100%). Model VIII shows un-
phisyiological behaviour in insulin profiles. Model III and VII are able to reproduce
the data with, on average, a good precision of parameter estimates in almost all sub-
jects, a reasonable physiological interpretation of model parameters, but Model VII
has a WRSS and AICc values lower than Model III. Therefore, taking together all the
criteria, Model VII is selected as the best Model among the ones developed.



Chapter 6

Conclusions

Nowadays, insulin therapy in T1D is usually based on exogenous insulin adminis-
tration via subcutaneous route through the common MDI or, more recently, CSII
therapy. These SC insulin replacement strategies face problems associate to delays
and intra–/inter–subject variability. In this regard, CIPII therapy mimics physiology
more closely than standard therapies, restoring partially the positive portal to sys-
temic insulin gradient, and it constitutes a last treatment option in cases of SC insulin
resistance in subjects with T1D. Then, considering the mounting interest, among the
researchers in this field, towards a fully automated and implantable AP, the IP insulin
infusion seems to be the better solution in terms of mimicking the physiological in-
sulin delivery route. In this regard, in order to better understand the underlying phys-
iology in the IP route of insulin administration, in this thesis, a first model of the IP
kinetics, able to describe plasma insulin data after IP administration and accurately
estimate model parameters, was developed. To do this, we used a unique dataset of
eight subjects treated by implanted pumps, who underwent a two–day closed–loop
and one–day open–loop therapy. A battery of models, with increasing complexity,
was developed andmodel selection was carried out applying well–accepted criteria of
ability to describe the data, parameters identifiability, physiological plausibility and
parsimony. In particular, assuming a mono–compartmental description of plasma in-
sulin kinetics, eightmodels of intraperitoneal insulin absorption have been developed.
In Model I a direct insulin absorption into circulation was proposed, but it was not
able to well describe the data, resulting with the highest WRSS and the lowest runs
test to assess whiteness of weighted residuals. Model II assumes amono-compartment
description for the intraperitoneal insulin absorption showing its inability to well de-
scribe the data as Model I. Model III assumes a two-compartment description for the
intraperitoneal insulin absorption with a satisfactory description of the data, precise
model parameters estimation leading toWRSS andAICc values among the lowest ob-
tained. Models IV and V, which assume respectively a non–linear (Michaelis-Menten
forModel IV and Langmuir forModel V) absorption between the two intraperitoneal
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compartments, and Model VI, which assumes a relation between the glucose concen-
tration and fractional insulin clearance, do not improve consistently the model fit
and model parameters, on average, were estimated with poor precision (CV>100%).
Model VII assumes a non–linear (Michaelis–Menten) fractional insulin clearance and
allowed to accurately estimate model parameters and well describe the data. Finally,
Model VIII, similarly to Model VII, assumes a relation between the insulin concen-
tration and fractional insulin clearance, showing the lowest WRSS value but with un-
physiological model predictions. Therefore, the two models which were able to well
predict the data with physiological plausible parameters estimated with precision,
resulted to be Models III and VII with the latter one chosen as best because of low-
ers values of WRSS and AICc. In further detail, in both models, the intraperitoneal
parameter ka, which has been estimated three times, one in each time subinterval,
shows both a small inter–subject variability (SD is always lower than their average
value) and a small intra–subject variability (confirmed by ANOVA test), so that, an
average ka value resulted to be equal to 0.033min−1 in Model III and 0.027min−1 in
Model VII. On the other hand, kd presents a quite large inter–subject variability but
a small intra–subject variability (ANOVA test) in both Model III and VII. A possible
limitation of the study can be related to the low number of the subjects. However, if
consider the high experimental costs and the invasive procedure for pump insertion
instead of the conventional SC insulin therapy, the dataset can be considered a satis-
factory and unique tool.
Future challenges will include testing the models with the closed–loop data available
in the database, in order to validate themodel also in closed–loop, then, using another
model for measurement error of insulin, such as with standard deviation known up
to a proportionally constant a posteriori estimated. Finally, another next step will be
adopting the two–compartmental model for the insulin kinetics, with the purpose to
test the model selected as the best and include it in the UVA/Padova T1D Simulator,
allowing to simulate IP route of insulin administration.
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