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Abstract

In recent years, researchers have focused on seismic anisotropy and developed
related seismic tomographymethods. One commonmethod is inverting P-wave
travel times, which provides unique constraints on the Earth’s interior elastic
properties. To characterize anisotropy, 21 independent parameters need to be
constrained. Assuming Earth has hexagonal symmetry simplifies the problem,
reducing free parameters. In this case, P-wave velocity variations are described
by mean slowness, anisotropy strength, and orientation. Three representations
have been proposed for these anisotropic parameters for the purpose of tomog-
raphy imaging: spherical, vectoral and the ABC (a modified vectoral parameter-
ization). Although each is equivalent in describing hexagonal anisotropy, they
are nonlinear, making it unclear which is most suitable for iterative inversion
schemes in seismic tomography. Therefore, we designed numerical experiments
to study howdifferent parameterizations affect the performance of linearized in-
version schemes in seismic tomography, providing suggestions for parameter-
ization selection. In this paper, we study the stability and convergence charac-
teristics of all three parameterizations in P-wave travel time linearized inversion,
and evaluate the number of iterations and errors of each parameterization in
solving the problem. For the linearized inversion scheme, we explore three com-
mon methods for minimizing the objective function: gradient descent, Newton,
and Levenberg-Marquardt, and select the most suitable solver based on experi-
ments. Our numerical experiments start with a simplified case of constraining
two anisotropic parameters, then extend to a full anisotropic problem with four
constrained parameters. Finally, we summarize the stability and performance of
various anisotropic models and initial conditions under each parameterization.
For the 2-D anisotropy numerical experiments, the results show that the ABC
parameterization has excellent stability and performance, with the Levenberg-
Marquardt method being the best solver method; for the full anisotropy nu-
merical experiments, the combination of ABC and spherical parameterizations
becomes the best parameterization scheme choice when using the Levenberg-
Marquardt method with further constrained solver parameters.





Sommario

In recent years, researchers have focused on seismic anisotropy and developed
related seismic tomographymethods. One commonmethod is inverting P-wave
travel times, which provides unique constraints on the Earth’s interior elastic
properties. To characterize anisotropy, 21 independent parameters need to be
constrained. Assuming Earth has hexagonal symmetry simplifies the problem,
reducing free parameters. In this case, P-wave velocity variations are described
by mean slowness, anisotropy strength, and orientation. Three representations
have been proposed for these anisotropic parameters for the purpose of tomog-
raphy imaging: spherical, vectoral and the ABC (a modified vectoral parameter-
ization). Although each is equivalent in describing hexagonal anisotropy, they
are nonlinear, making it unclear which is most suitable for iterative inversion
schemes in seismic tomography. Therefore, we designed numerical experiments
to study howdifferent parameterizations affect the performance of linearized in-
version schemes in seismic tomography, providing suggestions for parameter-
ization selection. In this paper, we study the stability and convergence charac-
teristics of all three parameterizations in P-wave travel time linearized inversion,
and evaluate the number of iterations and errors of each parameterization in
solving the problem. For the linearized inversion scheme, we explore three com-
mon methods for minimizing the objective function: gradient descent, Newton,
and Levenberg-Marquardt, and select the most suitable solver based on experi-
ments. Our numerical experiments start with a simplified case of constraining
two anisotropic parameters, then extend to a full anisotropic problem with four
constrained parameters. Finally, we summarize the stability and performance of
various anisotropic models and initial conditions under each parameterization.
For the 2-D anisotropy numerical experiments, the results show that the ABC
parameterization has excellent stability and performance, with the Levenberg-
Marquardt method being the best solver method; for the full anisotropy nu-
merical experiments, the combination of ABC and spherical parameterizations
becomes the best parameterization scheme choice when using the Levenberg-
Marquardt method with further constrained solver parameters.
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1
Introduction

1.1 SEISMIC TOMOGRAPHY

Seismic tomography, as a geophysics technique, analyzes the seismic waves
generated by natural earthquakes or artificial earthquakes (such as explosions
or other artificial vibration sources) to obtain information on the velocity struc-
ture or other properties of the underground medium using inversion methods
[1]. Since the 1970s, inspired bymedical CT technology, seismic tomography has
been used for the semi-quantitative study of crust and upper mantle structures,
opening up new avenues in the field of geophysical research. In 1974, Aki et al.
imaged the 3-D velocity anomalies of the crust and upper mantle at San Andrés
Fault using teleseismic P-waves arrival times [2]. Subsequently, regional-scale
tomography byAki andLee [3]was considered the starting point ofmodern seis-
mic tomography [4], and Dziewonski [5] [6] extended the application of seismic
tomography to a global scale.

In the past few decades, with the continuous increase in the number of global
seismic stations, the application of digital seismic records, and the rapid de-
velopment of computer technology, seismic tomography has been widely used
in various fields and has achieved many important research results [7]. At the
same time, the theoretical and technical methods of seismic tomography have
been continuously innovated andperfected in the application process, andmany
new methods and technologies have emerged, such as attenuation tomography
[8], finite-frequency tomography [9], ambient noise tomography [10], and the
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1.2. STUDY ON SEISMIC ANISOTROPY

anisotropic tomography used in this paper [11] used in this paper, etc. These
new methods and technologies provide new directions for the future develop-
ment of seismic tomography.

1.2 STUDY ON SEISMIC ANISOTROPY

Anisotropy is the characteristic that some or all properties of amaterial change
with the direction. In geophysics, seismic wave anisotropy refers to the phe-
nomenon that the velocity and particle polarization motion of seismic waves are
related to the propagation direction when they propagate in an elastic medium.
Seismic wave anisotropy is ubiquitous in the Earth’s interior, and it is related to
factors such as the composition, state, structure, and strain of materials in the
Earth’s deep interior [12] [13]. Therefore, seismic wave anisotropy has become
an important means to study the composition, structure, and tectonics of the
Earth’s interior materials, as well as geodynamic processes, and has received
widespread attention in recent years.

1.2.1 HISTORY AND CURRENT SITUATION OF ANISOTROPY RESEARCH

In the 19th century, some scientists began to notice that the propagation of
elastic waves may have anisotropy. In 1838, Green first proposed the concept of
elastic energy in his article on the propagation of elastic waves, and supported
the view of 21 elastic constants; in 1856, Kelvin elaborated on the tensor form
of elasticity that is independent of the coordinate system in his published ar-
ticle, and described the propagation of elastic waves in anisotropic media us-
ing formulas. Towards the end of the 19th century, Maurycy Pius Rudzki in-
troduced anisotropy into the field of seismology, and conducted innovative re-
search on seismic wave anisotropy, laying the foundation for modern seismic
wave anisotropy research [14].

In the 1960s, with the study of the incompatibility of Rayleigh and Lovewaves
(vertical anisotropy) [15], and the discovery of the variation of Pn wave velocity
in the oceanic mantle with azimuth (azimuthal anisotropy) [16], the research on
seismic wave anisotropy began to attract attention. Since then, the surface waves
in the oceanic mantle [17] and the continental mantle [18], as well as the body
waves in the continental lithosphere [19] have been found to exhibit azimuthal
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CHAPTER 1. INTRODUCTION

anisotropy, and seismic wave anisotropy research has gradually become a re-
search hotspot. In the 1980s, people mainly focused on the observational study
of body wave anisotropy and conducted a large number of experimental studies
on mineral physics and rock deformation mechanisms.

In the 21st century, in addition to measuring anisotropy in different regions
and at different depths using different methods, there is a tendency to com-
prehensively apply various anisotropymeasurement methods and constrain the
presence, cause, and interpretation of anisotropy [20] [21]. After decades of ef-
forts, rich results have been achieved in the study of seismic wave anisotropy
using various means, and the main features of anisotropy in the Earth’s interior
and its relationship with the Earth’s internal structure and dynamics processes
have been revealed [22] [23] [24], greatly enhancing human understanding of
the Earth’s internal structure and dynamics processes.

1.2.2 THE ORIGIN OF ANISOTROPY IN THE EARTH’S INTERIOR

Seismic wave anisotropy is ubiquitous in multiple layers within the Earth’s
interior, such as the crust, upper mantle, mantle transition zone, D” layer, and
inner core, etc [22] [24]. The formationmechanism of seismic wave anisotropy in
the Earth’s interior is generally considered to be the result of the combined action
of shape-preferred orientation (SPO) and lattice-preferred orientation (LPO).

The SPO refers to the dominant geometric shapedistribution orientationwithin
isotropicmedia. The existence of this orientation leads to differentwave impedances
in different directions, thereby producing seismic wave anisotropy. Normally,
the velocity of elastic waves parallel to the bedding direction is higher than that
perpendicular to the bedding direction; the velocity parallel to the direction of
oriented fractures, faults, and lens axes is higher than the velocity perpendicu-
lar to the axis direction. Within the lithosphere, especially in the upper crust,
anisotropy is mainly caused by SPO. Crampin et al. [25] believe that the for-
mation of crustal anisotropy is mainly due to the orientation of fluid-containing
fractures under stress. In a compressive environment, the fast wave direction of
anisotropy is usually consistent with the orientation of major structural bound-
aries such as mountain belts and faults [26]; in a tensile environment, the fast
wave direction is usually consistent with the extension direction [27].
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1.3. MAIN RESEARCH METHODS OF SEISMIC ANISOTROPY

Part of the cause of mantle anisotropy may be related to the cracks, lenses, or
compositional lamellae filled with melt in the mantle [28] [29]. Mineral single
crystals have different seismic wave velocities on different crystal axes, among
which the fastest wave velocity axis is called the fast axis. When the fast axes of
crystal particles are randomly distributed, the effects of fast axis wave velocity
in different directions cancel each other out, and there is no overall anisotropy.
However, when mineral crystals or aggregates are subjected to stress, the fast
axis orientation is arranged in a certain pattern of non-randomness, forming a
macroscopic fast axis orientation consistent with the relative distribution direc-
tion, which causes seismic wave anisotropy. This non-random distribution of
fast axis orientation is called the LPO.

In the lower crust and upper mantle, the oriented arrangement of mineral
crystals such as olivine, pyroxene, amphibole and mica can cause anisotropy.
Among them, olivine, which is the main mineral component of the upper man-
tle, has strong seismicwave anisotropy [30], and the LPO of olivine is considered
themain source of anisotropy in the uppermantle [31] [32]. Platemovement and
mantle flowwithin a certain range of the subduction zonewill cause the oriented
arrangement of mineral crystals such as olivine, so the fast axis direction of the
crystals is usually consistent with the direction of plate movement or mantle
flow [33].

1.3 MAIN RESEARCH METHODS OF SEISMIC ANISOTROPY

Currently, the research on seismic wave anisotropy mainly focuses on the
measurement of wave velocities in minerals and rocks (high temperature and
high pressure) and seismology, among which the main seismological methods
include shear wave splitting [34], Pn wave anisotropy, surface wave anisotropy,
and P-wave anisotropy (tomography method) [35] involved in this study. Shear
wave splitting refers to the phenomenon thatwhen an Swave enters an anisotropic
medium, it splits into two waves with mutually perpendicular polarization di-
rections and different wave velocities. By extracting the polarization direction
𝜙 of the faster fast wave and the time difference 𝛿𝑡 between the fast and slow
waves, the fast wave direction and amplitude of anisotropy in the medium can
be obtained. The method of shear wave splitting is widely used in the study of
anisotropy in the Earth’s interior and has achieved a large number of research
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CHAPTER 1. INTRODUCTION

results [27] [33] [36].

Both Pnwaves and surfacewaves exhibit directional anisotropy [16] [17] [37].The
method of Pn wave anisotropy research [38] divides the propagation path of Pn
waves into source path section, mantle path section, and receiver path section,
and divides the top of the mantle into multiple 2-D grids. Assuming that the
waves are isotropic in the source path section and receiver path section, and
only show directional anisotropy in the mantle path section, the ray path resid-
ual is calculated using the anisotropic wave velocity related to the ray azimuth,
and then the azimuthal anisotropy of Pn wave in the top of the mantle is in-
verted. The method of studying the directional anisotropy of surface waves
[39] is similar to that of Pn waves, except that the surface wave propagation
path is frequency-dependent. Therefore, a two-step inversion method is usu-
ally adopted. First, mixed path dispersion measurement is performed to extract
the ray path, and then the pure path dispersion measurement is used with the
Rayleigh wave group velocity related to the ray azimuth. The anisotropic group
velocity is introduced into the inversion computation to solve the directional
anisotropy of the surface wave.

The method of P-wave anisotropy is based on P-wave tomography, in which
the anisotropyparameters of P-wave azimuth and isotropicwave velocity anoma-
lies are used as inversion parameters and solved simultaneously to obtain the
3-D distribution of azimuthal anisotropy and isotropic wave velocity anoma-
lies in the study area. In recent decades, the method of P-wave anisotropy to-
mography has been continuously developing. Eberhart-Phillips andHenderson
[11] used the P-wave anisotropy tomography method to study the Marlborough
subduction zone in New Zealand, and used the results of shear wave splitting
in the study as the initial values for P-wave anisotropy tomography inversion;
Koulakov et al. [40] tried to use four anisotropy parameters to determine the
fast wave azimuth of P-waves in 3-D space in their study of anisotropy tomogra-
phy in central Java; Wang and Zhao [41] modified the TOMOG3D tomography
method [42] to solve the P-wave azimuthal anisotropy and isotropic wave veloc-
ity anomalies in the 3-D model space simultaneously during tomography inver-
sion, and further improved themethod to be able to solve the radial anisotropy of
P-waves. Eventually, the method was applied to the study of P-wave anisotropy
tomography in northeastern Japan and Kyushu areas [43]. Overall, the method
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of P-wave anisotropy tomography is increasingly being used by more and more
researchers and provides critical information for exploring Earth’s internal dy-
namics. This paper will focus on the P-wave anisotropy tomography method
and discuss the influence of different seismic anisotropic parameterization on
inversion results.

1.4 THE PARAMETERIZATION OF SEISMIC ANISOTROPY

In the P-wave anisotropy tomographymethod, if a seismic travel-time data set
is given, we hope to constrain the average slowness, the strength and orientation
of anisotropy. To achieve this goal, we need to parameterize these quantities ap-
propriately so that they can be constrained in the linearized inversion scheme.
Currently, three parameterization methods have been proposed, namely: (1)
spherical parameterization, (2) vectoral parameterization, and (3) ABC (an im-
proved vectoral parameterization).

In the study of teleseismic P-wave tomography to simulate anisotropic upper
mantle structure by Munzarova et al. [44], the key part is deriving a clear for-
mula to describe the P-wave velocity in weakly anisotropic media with hexag-
onal symmetry axes, which are usually oriented in three dimensions. They de-
scribe the derivation process of anisotropic velocity in hexagonal symmetry in
detail and consider spherical parameterization. Wang andZhao [45] also discuss
the expression of P-wave anisotropic velocity in anisotropic media with inclined
hexagonal symmetry axes in their research, but they adopt vectoral parameter-
ization. VanderBeek and Faccenda [46] improved the vectoral parameterization
and proposed the ABC parameterization.

In the second chapter, wewill describe the above three parameterizationmeth-
ods in detail.

1.5 RESEARCH WORK OF THE THESIS

This paper will focus on studying the stability and convergence characteristics
of three different parameterization methods in the linear inversion of P-wave
travel-time of anisotropic parameters, and assessing the number of iterations
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CHAPTER 1. INTRODUCTION

and error quantity of each parameterization in solving. For the linearized inver-
sion scheme, we will explore three common methods for minimizing the objec-
tive function: gradient descent, Newton, and Levenberg-Marquardt, and choose
the most suitable solver based on experimental results.

Themain application of this paper includes a series of numerical experiments,
aimed at studying how different seismic anisotropy parameterizations affect the
performance of linearized inversion schemes in seismic tomography. We will
first consider the simple case of constraining two anisotropy parameters, which
define a uniformly anisotropic volume sampled by straight ray paths. Subse-
quently, wewill extend the experiments to constrain four anisotropy parameters
in the fully anisotropic problem and consider two ray path geometries to obtain
more quantitative results. Finally, we will summarize the stability and perfor-
mance of each parameterization under various anisotropy models and initial
conditions, and provide recommendations for parameterization selection.
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2
Theory and Methodology

2.1 PRINCIPLES AND METHODS OF SEISMIC TOMOGRAPHY

Seismic tomography can be divided into body-wave tomography and surface-
wave tomography according to the different seismic phases. This paper mainly
focuses on body-wave tomography. Since the 1970s, body-wave tomography has
been one of themostwidely used tomographymethods. According to ray theory
[47], the frequency of seismic waves is approximately infinite, so seismic waves
can be considered as seismic rays. These rays are emitted from the source, and
the travel-time to the station is determined by the length of the ray path and the
velocity on the path.

We will parameterize the model space of the study region as a grid, and use
the velocity or slowness perturbations of the grid points relative to the 1-D ini-
tial velocity model as the unknown variables in the inversion. Given the source
and station positions, ray tracing can be used to determine the ray path length
from the source to the station and the grid points the ray passes through to reach
the station. The velocity along the ray path can be obtained by the velocity per-
turbations of the grid points the ray passes through and the 1-D initial velocity,
thereby calculating the theoretical travel-time of this seismic ray. Subtracting the
actual travel-time of the earthquake recorded at the station from the theoretical
travel-time, the trend residual of this seismic ray can be obtained. Obviously,
the trend residual is determined by the velocity perturbations of each grid point
along the ray path, and thus a linear equation can be established. When there
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are multiple earthquakes to multiple stations’ rays passing through the model
space, the linear equation can be solved simultaneously, and the equation can
be represented in the following form:

𝑑 = 𝐺𝑝 (2.1)

where 𝑑 is the ray travel-time residual vector, 𝐺 is the matrix of travel-time
partial derivatives with respect to the model parameters, and 𝑝 is the perturba-
tions of the model parameter 𝑚 relative to the 1-D velocity model. By solving
the above linear equation system, we can obtain the velocity perturbations vec-
tor 𝑝 at each location in the model space, and thus obtain the velocity anomaly
distribution in the study region.

Next, we will introduce the body-wave tomography method from three as-
pects: model parameterization, ray tracing, and solution of linear equation sys-
tems.

2.1.1 MODEL PARAMETERIZATION

In order to image the velocity structure of the Earth’s interior, we need to pa-
rameterize the velocity structure within the Earth as an inverse model, typically
using the blocks or grids method for model parameterization. Both the blocks
or grids method divides the model space into small blocks or grids to simu-
late fine structural anomalies and generate sparse coefficient matrices for easy
inverse calculations.

Figure 2.1: Different methods of model parameterization: (a) blocks method; (b)
grids method.

The blocking method [3] divides the model space into discrete blocks (Fig.
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2.1 a), forming a discrete velocity model. It is assumed that the medium within
each block is uniform, and the velocity (slowness) of each point within the block
is equal, i.e., the number of blocks divided is equal to the number of parame-
ters to be determined. The grids method [48] parameterizes the model space
into multiple discrete grid points (Fig. 2.1 b), each of which has a certain veloc-
ity. The velocity of any point within the model space can be obtained by linear
interpolation of its surrounding 8 grid points.

2.1.2 RAY TRACING

After model parameterization, we need to determine the ray path through ray
tracing, which is actually a forward problem. Since the final linear equation set
is determined by the rays, the accuracy of ray tracing has a significant impact
on the quality of tomography. Currently commonly used ray tracing methods
include the shooting method [49], the bending method [47] and the pseudo-
bending method [50], etc.

The shooting method starts from the source point, and traces the rays to the
station direction with a certain offset angle and azimuth. By calculating the
residual of the contrast travel-time, the offset angle and azimuth are corrected.
The bendingmethod fixes the station and source as the two endpoints of the ray,
and gradually bends the ray according to the ray equation until the minimum
travel-time path is found. In contrast, the pseudo-bending method disturbs the
initial ray path using the geometric expression of the ray equation, and then
calculate the minimum travel-time in segments. According to the Fermat prin-
ciple, when the travel-time is minimized, the ray path is determined using the
obtained solution. This method can accurately search for the ray path under 3-D
models, regardless of the distance to the seismic center or the length of the ray.

2.1.3 SOLUTION OF LINEAR EQUATION SYSTEMS

After the model parameterization and ray tracing are completed, the linear
system of equations (Eq. 2.1) is also established, and the Eq. 2.1 is solved to
obtain the model parameter perturbation matrix 𝑝, which also leads to the to-
moraphy results. Therefore, the tomography problem can ultimately be reduced
to solving a linear equation set. In the field of geophysics, the linear equation
set is usually a large sparse matrix, and the solution of such matrices is typically
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carried out using algorithms such as ART (Algebraic Reconstruction Technique
[51]), SIRT (Simultaneous Iterative Reconstruction Technique [52]) and LSQR
[53]. Among them, the most widely used algorithm is LSQR, which is favored
for its fast convergence speed and effective suppression of data error propaga-
tion.

Aswithmany geophysical inversion problems, there is a need to find a balance
between the roughness of the model and the misfit of the solution when solving
a linear systemof equations, usually by plotting the L-curve [54] to find a balance
between the roughness and the misfit (Fig. 2.2).

Figure 2.2: The L-curve in geophysical inversion problems.

2.2 PRINCIPLES OF P-WAVE ANISOTROPY TOMOGRAPHY

Through the introduction above, we can understand that P-wave anisotropy
can be combinedwith body-wave tomography. The P-wave anisotropy tomogra-
phy method [41] no longer regards the velocity at each point in the model space
as isotropic (only setting one wave velocity as the inversion parameter), but in-
troduces anisotropy parameters. The isotropic wave velocity and anisotropy pa-
rameters at each point in the model space are used as inversion parameters,
and the calculation of travel-time residuals using anisotropic wave velocity is
adopted to simultaneously solve the isotropicwave velocity anomalies and anisotropy
at each point in the model space, thus realizing anisotropy tomography.
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According to the research by Barclay et al. [55], the slowness of the P-wave
in the 3-D ray path can be expressed as:

𝑆 = 𝑆0 +𝑀𝑐𝑜𝑠(2𝜃) (2.2)

where 𝑆 represents the anisotropic slowness, 𝑆0 represents the isotropic slow-
ness, 𝑀 represents the azimuthal anisotropy strength, and 𝜃 is the angle be-
tween the 3-D P-wave ray path propagation vector and the isotropic symmetry
axis. For a unit P-wave propagation vector 𝑉 with ray path azimuth 𝜙 and an-
gle of incidence 𝑖 and a unit symmetry axis vector 𝐼 with symmetry axis in the
horizontal plane and azimuth 𝜓 (Fig. 2.3):

Figure 2.3: The figure of the relationship between the P-wave propagation vector
and the azimuthal anisotropy symmetry axis.

They can each be expressed as:

𝑉 = (𝑠𝑖𝑛𝑖𝑠𝑖𝑛𝜙, 𝑠 𝑖𝑛𝑖𝑐𝑜𝑠𝜙, 𝑐𝑜𝑠𝑖) (2.3)

𝐼 = (𝑠𝑖𝑛𝜓, 𝑐𝑜𝑠𝜓, 0) (2.4)

It is obvious that 𝑐𝑜𝑠𝜃 is the dot product of the unit vector 𝑉 and 𝐼, and
therefore can be obtained as follows:
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𝑐𝑜𝑠𝜃 = 𝑠𝑖𝑛𝑖(𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜓 + 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜓) (2.5)

Substituting Eq. 2.5 into Eq. 2.2, we can obtain:

𝑆 = 𝑆0 −𝑀𝑐𝑜𝑠2𝑖 +𝑀𝑠𝑖𝑛2𝑖(𝑐𝑜𝑠2𝜓𝑐𝑜𝑠2𝜙 + 𝑠𝑖𝑛2𝜓𝑠𝑖𝑛2𝜙) (2.6)

Setting 𝐴 =
√
𝑀𝑐𝑜𝑠2𝜓 and 𝐵 =

√
𝑀𝑠𝑖𝑛2𝜓, then Eq. 2.6 can be written as:

𝑆 = 𝑆0 − 𝑐𝑜𝑠2𝑖𝑀 + 𝑠𝑖𝑛2𝑖(𝐴𝑐𝑜𝑠2𝜙 + 𝐵𝑠𝑖𝑛2𝜙) (2.7)

Then let 𝑀′ = 𝑀/𝑆0, 𝐴′ = 𝐴/𝑆0, 𝐵′ = 𝐵/𝑆0, Eq. 2.7 can also be expressed as:

𝑉 =
𝑉0

1 − 𝑐𝑜𝑠2𝑖𝑀′ + 𝑠𝑖𝑛2𝑖(𝐴′𝑐𝑜𝑠2𝜓 + 𝐵′𝑠𝑖𝑛2𝜓) (2.8)

where 𝑉 represents the anisotropic velocity„ 𝑉0 represents the isotropic ve-
locity, 𝐴′ and 𝐵′ are called anisotropic parameters. Consider a small segment
of the ray path with a length of 𝑑, and the average anisotropic velocity 𝑉 at the
midpoint is the average velocity of this small segment. Therefore, the travel-time
𝑇 of this segment of the ray path can be obtained:

𝑇 =
𝑑
𝑉

=
𝑑[1 − 𝑐𝑜𝑠2𝑖𝑀′ + 𝑠𝑖𝑛2𝑖(𝐴′𝑐𝑜𝑠2𝜙 + 𝐵′𝑠𝑖𝑛2𝜙)]

𝑉0
(2.9)

In any point (𝜑, 𝜆, ℎ) within the model space, the isotropic velocity 𝑉0 and
the two anisotropic parameters 𝐴′ and 𝐵′ can be obtained by weighted linear
interpolation of the corresponding values of the surrounding eight model grid
points [48]:

𝑓 (𝜑,𝜆, ℎ) =
2∑
𝑖=1

2∑
𝑗=1

2∑
𝑘=1

𝑤𝑖 𝑗𝑘(𝜑,𝜆, ℎ) 𝑓 (𝜑𝑖 ,𝜆 𝑗 , ℎ𝑘) (2.10)

𝑤𝑖 𝑗𝑘(𝜑,𝜆, ℎ) = (1 − ∥ 𝜑 − 𝜑𝑖

𝜑2 − 𝜑1
∥)(1 − ∥ 𝜆 − 𝜆 𝑗

𝜆2 − 𝜆1
∥)(1 − ∥ ℎ − ℎ𝑘

ℎ2 − ℎ1
∥) (2.11)

where 𝜑𝑖 , 𝜆 𝑗 , ℎ𝑘 represent the latitude, longitude and depth of the eight
model grids points surrounding any point (𝜑, 𝜆, ℎ) in the model space, 𝑤𝑖 𝑗𝑘

represents the weighting coefficients of these eight grids points, and 𝑓 (𝜑,𝜆, ℎ)
and 𝑓 (𝜑𝑖 ,𝜆 𝑗 , ℎ𝑘) respectively represent the difference value at point (𝜑, 𝜆, ℎ) and
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the values at the eight surrounding model grid points.
Then, for the 𝑖th earthquake recorded by the 𝑗th station, the residual travel-

time 𝑟𝑖 𝑗 along ray path 𝐿𝑖 𝑗 can be expressed as:

𝑟𝑖 𝑗 =
𝜕𝑇𝑖 𝑗
𝜕𝜑𝑖

Δ𝜑𝑖+
𝜕𝑇𝑖 𝑗
𝜕𝜆𝑖

Δ𝜆𝑖+
𝜕𝑇𝑖 𝑗
𝜕ℎ𝑖

Δ𝑖+Δ𝑇0𝑖+
𝑁∑
𝑘=1

( 𝜕𝑇𝑚
𝜕𝑉0𝑘

Δ𝑉0𝑘+ 𝜕𝑇𝑚
𝜕𝐴′𝑘

Δ𝐴′𝑘+
𝜕𝑇𝑚
𝜕𝐵′𝑘

Δ𝐵′𝑘)+𝐸𝑖 𝑗

(2.12)
where𝑇𝑖 𝑗 represents the travel-time along the ray 𝐿𝑖 𝑗 ,𝑇𝑚 represents the travel-

time of the 𝑚th ray path at the 𝑘th model grid, 𝜑𝑖 , 𝜆𝑖 , ℎ𝑖 , 𝑇0𝑖 denote the latitude,
longitude, depth andmoment of the 𝑖th earthquake, respectively, and𝑉0𝑘 ,𝐴′𝑘 , 𝐵

′
𝑘

respectively represent the isotropic wave velocity and anisotropic parameters at
the 𝑘th model grid point. The first four terms on the right-hand side of Eq. 2.12
represent the latitude, longitude, depth, and the influence of original moment
of the 𝑖th earthquake on the travel-time residuals, and their partial derivatives
can be obtained from the analytical solution [56]. While 𝐸𝑖 𝑗 is a higher-order
perturbation term that can be ignored because its influence on the travel-time
residuals is very small. The next three terms represent the perturbation of the
isotropic wave velocity 𝑉0𝑘 at the 𝑘th grid in the model space and the effect of
the perturbation of the two anisotropic parameters: 𝐴′𝑘 and 𝐵′𝑘 on the travel-time
residuals, respectively. Their partial derivatives are given in Eq. 2.13, 2.14 and
2.15:

𝜕𝑇𝑚
𝜕𝑉0𝑘

= −𝑑𝑚𝑤𝑘[1 − 𝑐𝑜𝑠2𝑖𝑚𝑀′𝑘 + 𝑠𝑖𝑛2𝑖𝑚(𝐴′𝑘𝑐𝑜𝑠2𝜙𝑚 + 𝐵′𝑘𝑠𝑖𝑛2𝜙𝑚)]
𝑉2

0𝑘
(2.13)

𝜕𝑇𝑚
𝜕𝐴′𝑘

=
𝑑𝑚
𝑉0𝑘

𝑤𝑘(−𝑐𝑜𝑠2𝑖𝑚
𝐴′𝑘
𝑀′𝑘
+ 𝑠𝑖𝑛2𝑖𝑚𝑐𝑜𝑠2𝜙𝑚) (2.14)

𝜕𝑇𝑚
𝜕𝐵′𝑘

=
𝑑𝑚
𝑉0𝑘

𝑤𝑘(−𝑐𝑜𝑠2𝑖𝑚
𝐵′𝑘
𝑀′𝑘
+ 𝑠𝑖𝑛2𝑖𝑚𝑠𝑖𝑛2𝜙𝑚) (2.15)

Here, 𝑤𝑘 represents the weighting coefficient of the 𝑘th grid point, 𝑑𝑚 , 𝑖𝑚 ,
and 𝜙𝑚 respectively represent the length, incidence angle, and azimuth of the
𝑚th segment of the ray 𝐿𝑖 𝑗 passing through the 𝑘th grid point. The travel-time
residuals of multiple earthquakes to multiple stations (Eq. 2.12) form a large lin-
ear system of equations that relates the travel-time residuals (𝑟𝑖 𝑗) to the source
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parameters (𝜑𝑖 , 𝜆𝑖 , ℎ𝑖 , 𝑇0𝑖) and the medium parameters (𝑉0𝑘 , 𝐴′𝑘 , 𝐵
′
𝑘). Since this

linear system of equations is a large sparse matrix, it can be solved by the LSQR
algorithm to obtain the isotropic wave velocity 𝑉0𝑘 and two anisotropic param-
eters 𝐴′𝑘 and 𝐵′𝑘 at each grid point in the model space, and then the anisotropic
fast wave azimuth and the anisotropic amplitude at the grids can be obtained
from these two anisotropic parameters [11].

2.3 COMMONPARAMETERIZATIONOF SEISMIC ANISOTROPY
TOMOGRAPHY

From the previous discussion, we can understand that in order to fully de-
scribe the anisotropy of the Earth’s interior, we need to constrain 21 indepen-
dent elastic parameters, which is undoubtedly a complex and challenging task.
In 2006, Becker et al. [57] studied the impact of several common assumptions
regarding the influence of mantle convection and mineral deformation-induced
LPO on the numerical prediction of upper mantle seismic anisotropy. They
found that most of the anisotropy can be captured by estimating the best-fitting
hexagonal symmetric tensor, and the correlation between the hexagonal anisotropy
parameters of P-waves and S-waves shows a simple bilinear relationship. If we
include this information in the prior information, such relationships can reduce
the number of free parameters required for seismic inversion.

In order to simplify the problemand reduce the number of free parameters, we
assume that the Earth’s interior has hexagonal symmetry. Under this simplifi-
cation, the directional dependence of P-wave velocity can be well-approximated
by a periodic function of 2𝛼 and 4𝛼 terms, where 𝛼 is the angle between the
hexagonal symmetry axis and the direction of P-wave propagation (ray path)
[58]. The 4𝛼 term of the mantle fabric is usually an order of magnitude smaller
than the 2𝛼 oscillation. Under this approximated P-wave model, the travel-time
computation (Eq. 2.9) can be modeled according to the equation [46]:

𝑡𝑖 = 𝐿𝑖𝑢[1 + 𝐹𝑐𝑜𝑠(2𝛼𝑖)]−1 (2.16)

here, for the 𝑖th travel time, 𝐿𝑖 is the ray path length; 𝑢 is the average slowness
(i.e. the inverse of the velocity); 𝐹 is the anisotropic strength (or in subsequent
experiments called anisotropic fraction); and 𝛼𝑖 is the angle between the ray path
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and the orientation of anisotropy. Given a P-wave travel-time dataset, we want
to constrain the average slowness, as well as the strength and orientation of the
anisotropy. This requires appropriate parameterization of Equation 1 so that we
can use a linearized inversion scheme to constrain these quantities. Currently,
researchers have proposed three such parameterizations: (1) spherical, (2) vec-
toral, and (3) the ABC (a modified vectoral parameterization), which we will
describe separately below.

2.3.1 SPHERICAL PARAMETERIZATION

In the previous section, we introduced the principle of P-wave anisotropy
tomography in 3-D space. For the simplified case (i.e., hexagonal symmetry),
Munzarova et al. [44] derived an explicit formula for P-wave velocity in weakly
anisotropic media with hexagonal symmetry axes typically oriented in 3-D in
2018, and established a linearized relationship between data (travel-time resid-
uals) and model parameters (spherical coordinates) describing the anisotropic
medium. According to Eq. 2.16, we have already known the expression for ap-
proximating P-wave velocity in hexagonal symmetry cases. Here, we adopt the
formula from Munzarova’s paper to represent:

𝑣 = �̄�(1 + 𝑘
2
𝑐𝑜𝑠2𝛼) (2.17)

where �̄� is the isotropic component of the anisotropic velocity, 𝑘 is the anisotropic
strength, and 𝛼 is the angle between the symmetry axis and the direction ofwave
propagation (Fig. 2.4).

In the case of a weakly anisotropic medium with hexagonal symmetry, the
cosine function (Eq. 2.17) is not sufficient to approximate the P-wave velocity of
the upper mantle. For the anisotropic upper mantle approximated by peridotite
(olivine) assemblages, themaximumdifference between the P-wave velocity cal-
culated by the approximation equation (Eq. 2.17) and the P-wave velocity eval-
uated as an exact solution of the Christoffel equation is only 0.5% [59].

In order to convert the angle 𝛼 into a ray-parametric coordinate system (spher-
ical coordinate system), we define the direction of the symmetry axis with the
unit vector 𝑠 and the direction of wave propagation with the unit vector 𝑛 (Fig.
2.4) as:

𝑠 = (𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜆, 𝑠 𝑖𝑛𝜃𝑐𝑜𝑠𝜆, 𝑐𝑜𝑠𝜃) (2.18)
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Figure 2.4: Definition of the Cartesian coordinate system used in Munzarova’s
paper [44]. Angles 𝜆 and 𝜃 label azimuth and inclination of the hexagonal-
symmetry axis (unit vector 𝑠), respectively. Wave propagation direction is rep-
resented by unit vector 𝑛. Angles Φ and 𝑖 mark backazimuth and angle of the
direction of wave propagation, respectively.

where 𝜆 and 𝜃 are the azimuth and inclination angles of the symmetry axis
and

𝑛 = (−𝑠𝑖𝑛𝑖𝑠𝑖𝑛𝜙,−𝑠𝑖𝑛𝑖𝑐𝑜𝑠𝜙,−𝑐𝑜𝑠𝑖) (2.19)

where 𝜙 and 𝑖 are the back azimuth and incidence angles of wave propaga-
tion. After substituting 𝑐𝑜𝑠2𝛼 = 2𝑐𝑜𝑠2𝛼 − 1 and 𝑐𝑜𝑠𝛼 = 𝑛 · 𝑠 in the Eq. 2.17, the
P-wave velocity in a weakly anisotropic medium with hexagonal symmetry and
3-D direction can be expressed as:

𝑣 = �̄�{1 + 𝑘[(𝑠𝑖𝑛𝑖𝑠𝑖𝑛𝜃𝑐𝑜𝑠(𝜙 − 𝜆) + 𝑐𝑜𝑠𝑖𝑐𝑜𝑠𝜃)2 − 1
2
]} (2.20)

Eq. 2.20 relates the anisotropic velocity 𝑣 of a P-wave propagating in a direc-
tion given by the angle 𝜙 and 𝑖 to the isotropic component �̄� of the anisotropic
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velocity and variable velocity perturbation, that is the term with anisotropic
strength 𝑘. We can combine and simplify Eq. 2.20 with Eq. 2.16, which finally
leads to the spherical parameterization expression of this paper:

𝑡𝑖 = 𝐿𝑖𝑢[1 + 𝐹(2[𝑐𝑜𝑠(𝜃𝑖)𝑐𝑜𝑠(𝛾)𝑐𝑜𝑠(𝜓 − 𝜙𝑖) + 𝑠𝑖𝑛(𝜃𝑖)𝑠𝑖𝑛(𝛾)]2 − 1)]−1 (2.21)

In this equation, 𝜙𝑖 and 𝜃𝑖 represent the azimuth and elevation of the seismic
ray, while 𝜓 and 𝛾 denote the anisotropic azimuth and elevation. The Eq. 2.21 is
an approximate expression for the P-wave spherical parameterization velocity.

2.3.2 VECTORAL PARAMETERIZATION

In 2021, Wang and Zhao described a new parameterization method [45]: the
vectoral parameterization. From Eq. 2.2, we know the slowness expression of
the P-wave in the 3-D ray path.

Theunit vector along the raypropagationdirection can be expressed as 𝑙(𝑠𝑖𝑛𝑝𝑠𝑖𝑛𝜆,
𝑠𝑖𝑛𝑝𝑐𝑜𝑠𝜆, 𝑐𝑜𝑠𝑝) (Fig. 2.5 a), while the unit vector along the hexagonal symmetry
axis can be expressed as 𝑛(𝑠𝑖𝑛𝑞𝑠𝑖𝑛𝛾, 𝑠𝑖𝑛𝑞𝑐𝑜𝑠𝛾, 𝑐𝑜𝑠𝑞) (Fig. 2.5 b). 𝜆 and 𝛾 are
the azimuth of the two vectors, while 𝑝 and 𝑞 are the incidence angles of the two
vectors. To ensure that the direction of the hexagonal symmetry axis is unique,
we assume 0 ≤ 𝑞 < 𝜋 and 0 ≤ 𝛾 < 𝜋. Therefore, the cosine of the two vectors
(Fig. 2.5 c) can be written as:

𝑐𝑜𝑠𝜃 = 𝑙 · 𝑛 = 𝑠𝑖𝑛𝑝𝑠𝑖𝑛𝜆𝑠𝑖𝑛𝑞𝑠𝑖𝑛𝛾 + 𝑠𝑖𝑛𝑝𝑐𝑜𝑠𝜆𝑠𝑖𝑛𝑞𝑐𝑜𝑠𝛾 + 𝑐𝑜𝑠𝑝𝑐𝑜𝑠𝑞 (2.22)

According to Eq. 2.2 and Eq. 2.22, the total P-wave slowness can be rewritten
as:

𝑆 = 𝑆0[1 + 2(𝑑𝐴 + 𝑒𝐵 + 𝑓 𝐶)2 − (𝐴2 + 𝐵2 + 𝐶2)] (2.23)

where 𝑑 = 𝑠𝑖𝑛𝜆𝑠𝑖𝑛𝑝, 𝑒 = 𝑐𝑜𝑠𝜆𝑠𝑖𝑛𝑝, 𝑓 = 𝑐𝑜𝑠𝑝, 𝐴 =
√

𝑀
𝑆0
𝑠𝑖𝑛𝑞𝑠𝑖𝑛𝛾, 𝐵 =√

𝑀
𝑆0
𝑠𝑖𝑛𝑞𝑐𝑜𝑠𝛾, 𝐶 =

√
𝑀
𝑆0
𝑐𝑜𝑠𝑞. Of course, combining Eq. 2.16, we can obtain the

vectoral parameterization expression of this paper:

𝑡𝑖 = 𝐿𝑖𝑢[1 ± (2[𝑟𝑖1𝑠1 + 𝑟𝑖2𝑠2 + 𝑟𝑖3𝑠3]2 − 𝑠2
1 − 𝑠2

2 − 𝑠2
3)]−1 (2.24)

19
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Figure 2.5: P-wave anisotropy with hexagonal symmetry adopted in this study
[45]. (a), A unit vector along the ray propagation direction. (b), A unit vector
along the HSA. (c), Included angle between the two vectors shown in (a) and
(b). (d), Relation between the HSA and the fast velocity plane.

where 𝑟𝑖 𝑗 is the 𝑥−, 𝑦−, and 𝑧-components of the unit vector pointing in the
direction of the 𝑖th ray path; similarly, 𝑠 𝑗 is the component of the vector describ-
ing the orientation of anisotropy, whose squared-norm is equal to themagnitude
of anisotropy. Combining Eq. 2.21 and Eq. 2.24, we can obtain the relationship
between the magnitude of anisotropy (𝐹), the azimuth (𝜓) and the elevation (𝛾)
with the vector components of the axis of symmetry as follows:

𝐹 = 𝑠2
1 + 𝑠2

2 + 𝑠2
3 (2.25)

𝜓 = 𝑎𝑟𝑐𝑡𝑎𝑛[ 𝑠2
𝑠1
] (2.26)
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𝛾 = 𝑎𝑟𝑐𝑡𝑎𝑛[ 𝑠3√
𝑠2

1 + 𝑠2
2

] (2.27)

2.3.3 ABC PARAMETERIZATION

From the content of the previous section, we can understand that inversion re-
quires establishing a linear relationship between travel-time and anisotropy pa-
rameters. This relationship can be obtained by directly differentiating Eq. 2.21
with respect to the spherical anisotropy parameters (i.e. 𝐹, 𝜓, and 𝛾). Mun-
zarova et al. practiced this method. However, the parameterization method in
the previous text produced zero partial derivatives for the isotropic model, re-
quiring initial anisotropymodels or computing second-order partial derivatives
to drive the inversion. This makes some results strongly dependent on the pos-
sibly unknown initial anisotropy model, while the calculation of second-order
partial derivatives increases computational complexity. Therefore, VanderBeek
and Faccenda [46] proposed a modified version of the vectoral parameterization
(i.e., ABC parameterization) for imaging hexagonal anisotropy in any direction.
They suggest using an alternative parameterization, which is based on the ar-
bitrary direction hexagonal anisotropy as a combination of coefficients of the
symmetric axis vector components. This modified version allows the definition
of partial derivatives in the case of model isotropy, without calculating second-
order terms, and has the advantage of separating variables that control the ori-
entation and strength of the anisotropy direction from variables that control the
tilt angle. The new anisotropy parameters are defined as:

𝐴 = 𝑠2
1 − 𝑠2

2 = 𝐹𝑐𝑜𝑠2(𝛾)𝑐𝑜𝑠(2𝜓) (2.28)

𝐵 = 2𝑠1𝑠2 = 𝐹𝑐𝑜𝑠2(𝛾)𝑠𝑖𝑛(2𝜓) (2.29)

𝐶 = 𝑠3 =
√
𝐹𝑠𝑖𝑛(𝛾) (2.30)

under this parameterization, Eq. 2.16 becomes:

𝑡𝑖 = 𝐿𝑖𝑢[1 ± (𝑄𝑖 − 𝐺 − 𝐶2)]−1 (2.31)
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where 𝑄𝑖 = (𝑟𝑖 · 𝑠)2 can be expressed in terms of the 𝐴, 𝐵 and 𝐶 parameters
as:

𝑄𝑖 = 𝐴(𝑟2
𝑖1 − 𝑟2

𝑖2) + 2𝐵𝑟𝑖1𝑟𝑖2 + 𝐺(𝑟2
𝑖1 + 𝑟2

𝑖2) + 2
√

2𝐶𝑌𝑖𝑟𝑖3 + 2𝐶2𝑟2
𝑖3 (2.32)

For the sake of convenience, the terms 𝐺 and 𝑌 are defined as:

𝐺 = [𝐴2 + 𝐵2] 12 (2.33)

and

𝑌 = (𝐺 + 𝐴) 12 𝑟𝑖1 ± (𝐺 − 𝐴) 12 𝑟𝑖2 =
√

2𝑟𝑖1𝑠1 +
√

2𝑟𝑖2𝑠2 (2.34)

We can also relate 𝐴, 𝐵 and 𝐶 to the spherical parameters 𝜓, 𝛾 and 𝐹 as:

𝜓 =
1
2
𝑎𝑟𝑐𝑡𝑎𝑛(𝐵

𝐴
) (2.35)

𝛾 = 𝑎𝑟𝑐𝑡𝑎𝑛( 𝐶√
𝐺
) (2.36)

𝐹 = 𝐺 + 𝐶2 (2.37)

This parameterization is particularly convenient because the Eq. 2.31 and
bias functions reduce to the azimuthal anisotropy inversion that is widely used
to model isotropy [11].

2.4 MINIMIZATION OF THE OBJECTIVE FUNCTION

In order to achieve tomography, we need to solve Eq. 2.1, whichmeans solving
for the perturbations 𝑝 of themodel parameters𝑚 relative to the velocitymodel,
thus obtaining the velocity anomaly distribution in the study area. Therefore,
our goal is to find the perturbations 𝑝 of the model parameters 𝑚 to minimize
the least-squares objective function:

𝑓 (𝑚, 𝑝) =
𝑁∑
𝑖=1

[𝜏𝑖 − 𝑡𝑖(𝑚, 𝑝)]2
𝜖2
𝑖

(2.38)
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here, 𝜏𝑖 and 𝑡𝑖 are respectively the 𝑖th observed and predicted travel-time,
with uncertainty 𝜖𝑖 . Wewill consider the following three basic solutionmethods
to determine theminimumvalue of 𝑓 : (1) gradient descentmethod, (2)Newton’s
method, and (3) Levenberg-Marquardt method.

2.4.1 GRADIENT DESCENT METHOD

Themost directmethod tominimize 𝑓 is by using the gradient descentmethod
[60]. This is a first-order optimization algorithm, which is one of the simplest
andmost classicmethods for solving unconstrained optimization problems. The
basic idea is to calculate the gradient (slope) of the objective function, and then
move in the direction of the global (true) minimum value of the objective func-
tion, like ”going downhill”. However, this method may eventually reach a local
minimum.

In particular, for an unconstrained optimization problem 𝑚𝑖𝑛𝑥 𝑓 (𝑥), where
𝑓 (𝑥) is a continuous differentiable function, if we can construct a sequence 𝑥0,
𝑥1, 𝑥2,..., and satisfy the following conditions:

𝑓 (𝑥𝑡+1) < 𝑓 (𝑥𝑡), 𝑡 = 0, 1, 2, ... (2.39)

If we can perform this process continuously until it converges to a local min-
imum point. Assuming we randomly choose an initial point 𝑥1, then 𝑥𝑡+1 is
obtained by taking a small step Δ𝑥 in a certain direction from the previous 𝑥𝑡
(𝑥𝑡+1 = 𝑥𝑡 + Δ𝑥). The key to this process is to ensure that 𝑓 (𝑥𝑡+1) < 𝑓 (𝑥𝑡) while
determining the direction of Δ𝑥. For a univariate function, there will be two di-
rections: the positive direction (Δ𝑥 > 0) and the negative direction (Δ𝑥 < 0). In
each step of direction selection, we can use the Taylor expansion formula to help
us decide:

𝑓 (𝑥 + Δ𝑥) ≃ 𝑓 (𝑥) + Δ𝑥∇ 𝑓 (𝑥) (2.40)

where ∇ 𝑓 (𝑥) is the gradient of the objective function. To ensure that 𝑓 (𝑥 +
Δ𝑥) < 𝑓 (𝑥) (direction choice), based on the Eq. 2.40, it is clear that we need to
ensure that: Δ𝑥∇ 𝑓 (𝑥) < 0, we can choose to let:

Δ𝑥 = −𝜂∇ 𝑓 (𝑥), 𝜂 > 0 (2.41)

where 𝜂 is the step length, representing the distance the gradient moves
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2.4. MINIMIZATION OF THE OBJECTIVE FUNCTION

downwards at each iteration, hence:

Δ𝑥∇ 𝑓 (𝑥) = −𝜂(∇ 𝑓 (𝑥))2 (2.42)

Due to the fact that the square of any non-zero number is greater than 0, it
can be concluded that Δ𝑥∇ 𝑓 (𝑥)must be less than 0, and we can set 𝑓 (𝑥 + Δ𝑥) =
𝑓 (𝑥−𝜂∇ 𝑓 (𝑥)), then it can be guaranteed that 𝑓 (𝑥+Δ𝑥) < 𝑓 (𝑥), then the formula
for updating 𝑥 is:

𝑥′← 𝑥 − 𝜂∇ 𝑓 (𝑥) (2.43)

In this way, by continuously updating 𝑥, 𝑓 (𝑥) gradually moves towards the
global (true) minimum value, and eventually reaches the local (or global) mini-
mum point.

For Eq. 2.38, its gradient with respect to the model perturbation 𝑝 𝑗 is:

𝑔𝑗 = −2
𝑁∑
𝑖=1

Δ𝑡𝑖
𝜖2
𝑖

𝜕𝑡𝑖
𝜕𝑝 𝑗

(2.44)

We want to reduce the gradient (i.e., towards the minimum rather than the
maximum), resulting in the following expression for the model perturbation at
iteration 𝑛:

𝑝 𝑗(𝑛 + 1) = 𝑝 𝑗(𝑛) − 𝜂𝑔𝑗 (2.45)

Generally, the value of 𝜂 can vary with each iteration and each component
of 𝑔. There are many ways to choose the value of 𝜂, but we will adopt a simple
backtracking line search strategy. This means, given an initial estimate of 𝜂, we
will build a new model using the perturbations in Eq. 2.45. If the value of 𝜂
results in a decrease of the objective function, we accept the model and continue
iterating. If the objective function does not decrease, we continue to decrease 𝜂
until the objective function decreases.

2.4.2 NEWTON’S METHOD

The gradient descent method only uses first-order derivatives, that is, the
information brought by the gradient. If we consider not only the first-order
derivatives of the function, but also the information brought by the second-order
derivatives, we need to introduce the Hessian matrix:
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𝐻( 𝑓 )(𝑥)𝑖, 𝑗 = 𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗
𝑓 (𝑥), 𝐻𝑖, 𝑗 = 𝐻𝑗 ,𝑖 (2.46)

The Hessian matrix is a real symmetric matrix that can be decomposed into
eigenvectors. In some cases, the gradient descentmethodmay fail. If the current
point of gradient descent is 𝑥0, we can perform a second-order Taylor expansion
at the current point:

𝑓 (𝑥) ≈ 𝑓 (𝑥0) + (𝑥 − 𝑥0)𝑇 𝑔 + 1
2
(𝑥 − 𝑥0)𝑇𝐻(𝑥 − 𝑥0) (2.47)

where 𝑔 is the gradient of the objective function and 𝐻 is the Hessian matrix
at 𝑥0. We use gradient descent for iteration, and according to the Eq. 2.43, we
can obtain a new point, substituting the above equation we get

𝑓 (𝑥0 − 𝜂𝑔) ≈ 𝑓 (𝑥0) − 𝜂𝑔𝑇 𝑔 + 1
2
𝜂2𝑔𝑇𝐻𝑔 (2.48)

From the above equation, it can be seen that when 1
2𝜂

2𝑔𝑇𝐻𝑔 is too large,
the gradient descent method may cause the value of the objective function to
increase, and the following two cases may cause 1

2𝜂
2𝑔𝑇𝐻𝑔 to be too large:

1. The step length 𝜂 is too large, and 𝑥′ ← 𝑥 − 𝜂∇ 𝑓 (𝑥) exceeds the 𝑥 corre-
sponding to the minimum value of 𝑓 (𝑥).

2. The second-order derivative 𝑔𝑇𝐻𝑔 of 𝑓 (𝑥) in the direction of the gradient
is too large, i.e., 𝑓 (𝑥) is very ”steep” at 𝑥0, so that even a small step length
𝜂 causes 𝑥′← 𝑥 − 𝜂∇ 𝑓 (𝑥) to surpass the 𝑥 corresponding to the minimum
value of 𝑓 (𝑥).

Therefore, we need to find a method that suits using the second derivative
to guide the iteration. The simplest second-order optimization method is the
Newton’s method. The basic idea of the Newton’s method is to approximate
the objective function with a quadratic function using the first-order derivative
(gradient) and the second-order derivative (Hessen matrix) at the iterative point
𝑥, and then use the minimum point of the quadratic model as the new iterative
point 𝑥 + 1, and repeat this process continuously until an approximation with
satisfactory accuracy is obtained.

Compared to simplymovingdown the gradient directly, theNewton’smethod
uses the curvature of the objective function to find a ”more direct” path to the
minimum, that is, its iteration direction at each step is along the direction of
decrease in the value of the objective function. If the iterated point 𝑥 + 1 is a
minimum point, the following conditions must be satisfied:
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1. 𝑔(𝑥 + 1) = 0 (all elements in the gradient vector are 0).

2. 𝐻(𝑥) is a positive definite matrix, i.e., it ensures that the stationary point
𝑥 + 1 near 𝑥 is a minimal point.

Once the conditions are satisfied, we can take the derivative of both sides of
the formula for Eq. 2.47 and obtain:

𝑔(𝑥) ≈ 𝑔(𝑥0) + 𝐻(𝑥0)(𝑥 − 𝑥0) (2.49)

Let 𝑔(𝑥) = 0, then each step of iteration is:

𝑥𝑘+1 = 𝑥𝑘 − 𝐻(𝑥𝑘)−1𝑔(𝑥𝑘) (2.50)

For our objective function (Eq. 2.38), the curvature is given by 𝜕𝑔𝑗/𝜕𝑝𝑘 which
is referred to as the Hessian matrix of the objective function:

𝐻𝑗𝑘 = 2
𝑁∑
𝑖=1

1
𝜖2
𝑖

𝜕𝑡𝑖
𝜕𝑝 𝑗

𝜕𝑡𝑖
𝜕𝑝𝑘
− Δ𝑡𝑖

𝜖2
𝑖

𝜕2𝑡𝑖
𝜕𝑝 𝑗𝜕𝑝𝑘

(2.51)

The newmodel perturbation is derived from the second-order Taylor expan-
sion of the objective function, leading to the following expression for updating
the perturbation vector:

𝑝(𝑛 + 1) = 𝑝(𝑛) − 𝜂𝑔𝐻−1 (2.52)

For general problems, we can choose to directly calculate the inverse of Hes-
sian to update Eq. 2.52; however, for problems with a large number of parame-
ters (i.e., high-dimensional), we do not directly calculate the inverse of Hessian,
but instead use effective algorithms such as LSQR to solve the equation system
𝐻𝑥 = 𝑔 to calculate the product 𝑥 = 𝑔𝐻−1. Therefore, although the computa-
tional cost of Newton’s method is larger than that of gradient descent, its con-
vergence speed is much faster than that of gradient descent.

2.4.3 LEVENBERG-MARQUARDT METHOD

Newton’s method may encounter issues in its purest form, mainly due to two
reasons: first, the poor performance of the derivatives, and second, the high
cost of computing theHessianmatrix in high-dimensional problems. To address
these issues, the Gauss-Newton algorithm approximates the Hessian matrix of
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the least squares objective function by ignoring the second-order terms (i.e. the
last term in Eq. 2.50), thus reducing the computational difficulty. This method
allows us to define the Hessian matrix based on the first-order derivatives of the
data, also known as the data Jacobian matrix. Specifically, we can represent 𝑔
and 𝐻 in the form of Jacobian matrices multiplied together:

𝑔 = 2𝐽𝑇𝑓 𝑓 , 𝐻 ≈ 2𝐽𝑇𝑓 𝐽 𝑓 (2.53)

where 𝐽 𝑓 is the Jacobi matrix. By substituting the modified 𝑔 and 𝐻 into the
equation Eq. 2.50, we can obtain:

𝛽𝑠+1 = 𝛽𝑠 + Δ,Δ = −(𝐽𝑇𝑓 𝐽 𝑓 )−1𝐽𝑇𝑓 𝑓 (2.54)

Through this approximation, we obtain the iterative update formula for the
Gauss-Newton method. Therefore, for Eq. 2.52, we can represent 𝑔 as 𝑔 = 2𝐽𝑇𝑡 𝑡,
and the approximate Hessian as 𝐻 = 𝐽𝑇𝑡 𝐽𝑡 , where 𝐽𝑖 𝑗 = 𝜕𝑡𝑖/𝜕𝑝 𝑗 . Please note that
the data Jacobian is a 𝑁 × 𝑀 matrix (𝑁 is the number of observations, and 𝑀

is the number of model parameters). In the Gauss-Newton method, we find the
update of the perturbation vector by solving the linear system 𝐽𝑥 = Δ𝑡, which
can be effectively done using the LSQR algorithm. The new perturbation vector
is defined as:

𝑝(𝑛 + 1) = 𝑝(𝑛) + 𝜂𝑥, 𝑥 = −𝐻−1𝑔 = −(𝐽𝑇𝑡 𝐽𝑡)−1𝐽𝑇𝑡 𝑡 (2.55)

Similar to Newton’s method, when the initial values are far from the mini-
mum value, the Gauss-Newton method cannot guarantee convergence. Addi-
tionally, in cases where 𝐻 is approximately singular, the Gauss-Newtonmethod
cannot converge correctly. Therefore, we adopt an improved algorithm of the
Gauss-Newtonmethod: the Levenberg-Marquardtmethod. This approach com-
bines gradient descent and Gauss-Newton method through a linear combina-
tion, making the most of the advantages of both algorithms. By adding a damp-
ing factor (scaling factor) 𝜆 (𝜆𝐼) to the Hessian matrix, we can control the step
size and direction of each iteration:

(𝐻 + 𝜆𝐼)𝜖 = −𝐽𝑇𝑡 𝑡 (2.56)

here, 𝜖 represents the iteration direction. As 𝜆 increases, 𝐻 + 𝜆𝐼 tends to 𝜆𝐼,
and therefore 𝜖 tends to −𝜆𝐽𝑇𝑡 𝑡, which is the iteration direction given by gradient
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descent; as 𝜆 decreases, 𝐻 + 𝜆𝐼 tends to 𝐻, and 𝜖 tends to −𝐻−1𝐽𝑇𝑡 𝑡, which is
the direction given by the Gauss-Newton method. With a slight modification
of the Levenberg-Marquardt method, we can add the equation in the form of a
scaled identity matrix to the end of 𝐽 to limit the amplitude of the perturbation
in each iteration. As the scaling factor increases, the iteration follows the trend
of gradient descent. Specifically, the corrected equation system we are solving
for is: [

𝐽

𝜆𝐼

]
𝑥 =

[
Δ𝑡

0

]
(2.57)

here, 𝐼 is the 𝑀 ×𝑀 identity matrix multiplied by the proportional factor 𝜆,
and 0 is the 𝑀 × 1 vector of zeros. Normally, 𝜆 is unique for each row of 𝐼, but
in this paper, we only focus on one scalar value.
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3
2-D Anisotropic Numerical

Experiment

In order to study how different seismic anisotropy parameterizations affect
the performance of linearized inversion schemes in seismic tomography, we
need to conduct a series of numerical experiments. Firstly, we focus on sim-
ple cases, where only two anisotropy parameters are constrained in 2-D cases
(with two variable anisotropy parameters). At the same time, we use synthetic
observed data to combine test different anisotropy parameterizations and ob-
jective function minimization schemes. In subsequent studies, we extend the
2-D anisotropy parameterization case to a full (with four variable anisotropy pa-
rameters) anisotropy parameterization case, in order to find the most suitable
parameterization method for the commonly used iterative inversion schemes in
seismic tomography.

3.1 SYNTHETIC EXPERIMENT PREPARATION

3.1.1 SYNTHETIC DATA GENERATION ANDMODEL PARAMETER SETTING

For the generation of synthetic observed data, we first define a homogeneous
anisotropic volume sampled by the straight ray path. The length of the straight
ray path is 100 km, with a uniform sampling of azimuth between 30◦ and 50◦ (the
specific sampling interval depends on the number of observations), and the ele-
vation is set to 0◦. A total of 37 observation data are included. When setting the
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anisotropy model parameters, we adopt the target (true) anisotropy parameter
model and the initial anisotropy parameter model. Since this chapter needs to
discuss the 2-D case, we use the anisotropy fraction (𝐹) and the anisotropy az-
imuth (𝜓) as two variable parameters. For the target anisotropy fraction, we set it
to 0.03, and the target anisotropy azimuth is set to −21◦; for the initial anisotropy
fraction, we set it to 0.01, and the initial anisotropy azimuth is set to 0◦. In addi-
tion, for both the target and initial anisotropy parameters, we set the slowness
(i.e., the inverse of velocity, denoted as 𝑢) to 0.125 s/km.

After defining the synthetic observed data and anisotropy model parame-
ters, we can calculate the observed and predicted travel-time using different
anisotropy parameterization methods. First, we use the spherical parameteri-
zation method (Eq. 2.21) for calculation. Since the elevation of the seismic ray
and the elevation of anisotropy are both 0◦, therefore:

𝑐𝑜𝑠(𝜃𝑖) = 1, 𝑐𝑜𝑠(𝛾) = 1, 𝑠 𝑖𝑛(𝜃𝑖) = 0, 𝑠 𝑖𝑛(𝛾) = 0 (3.1)

We bring in Eq. 3.1 into Eq. 2.21, and ultimately obtain a new travel-time
computation formula:

𝑡𝑖 = 𝐿𝑖𝑢[1 + 𝐹(2[𝑐𝑜𝑠(𝜓 − 𝜙𝑖)]2 − 1)]−1 (3.2)

Next, for the vectoral parameterization method, according to Eq. 2.24, we
need to first obtain 𝑟𝑖 𝑗 and 𝑠 𝑗 . Combining the content of the previous chapters,
we can derive the relationship between 𝑟𝑖 𝑗 and 𝑠 𝑗 and the anisotropy fraction 𝐹,
azimuth 𝜓, and elevation 𝛾 (Eq. 2.25, Eq. 2.26 and Eq. 2.27):

𝑠1 =
√
|𝐹 |𝑐𝑜𝑠(𝛾)𝑐𝑜𝑠(𝜓) (3.3)

𝑠2 = 𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝜓) (3.4)

𝑠3 = 𝑠𝑖𝑛(𝛾) (3.5)

where 𝑟𝑖 𝑗 represents the 𝑥−, 𝑦−, and 𝑧-components of the unit vector pointing
in the direction of the 𝑖th ray path. Combined with Eq. 2.21, we can obtain:

𝑟1 = 𝑐𝑜𝑠(𝜃𝑖)𝑐𝑜𝑠(𝜙𝑖) (3.6)
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𝑟2 = 𝑐𝑜𝑠(𝜃𝑖)𝑠𝑖𝑛(𝜙𝑖) (3.7)

𝑟3 = 𝑠𝑖𝑛(𝜃𝑖) (3.8)

where 𝜙𝑖 and 𝜃𝑖 represent the azimuth and elevation of the seismic ray. By
combining Eq. 3.3 to Eq. 3.8 with Eq. 2.24, we can calculate the travel-time un-
der the vectoral parameterization method using the values of anisotropy frac-
tion, azimuth, and elevation. Finally, for the ABC parameterization method,
we need to calculate 𝐴, 𝐵, and 𝐶 according to Eq. 2.28, Eq. 2.29, and Eq. 2.30.
Then, according to Eq. 2.33, Eq. 2.35, Eq. 2.36, and Eq. 2.37, we can derive the
relationships between the anisotropy fraction, azimuth, elevation, and 𝐴, 𝐵, 𝐶.
Finally, combining the derived anisotropy fraction, azimuth, and elevation with
Eq. 2.21, we can obtain the travel-time computation formula under the ABC
parameterization method:

𝑡𝑖 = 𝐿𝑖𝑢[1 + (𝐺 + 𝐶2)(2[𝑐𝑜𝑠(𝜃𝑖)𝑐𝑜𝑠(𝑎𝑟𝑐𝑡𝑎𝑛( 𝐶√
𝐺
))𝑐𝑜𝑠(1

2
𝑎𝑟𝑐𝑡𝑎𝑛(𝐵

𝐴
) − 𝜙𝑖)

+𝑠𝑖𝑛(𝜃𝑖)𝑠𝑖𝑛(𝑎𝑟𝑐𝑡𝑎𝑛( 𝐶√
𝐺
))]2 − 1)]−1

(3.9)

In order to simulate the error situation of observed data in real cases, we
added a Gaussian noise with a standard deviation of 0.1 to the observed travel-
time data results. We can calculate the observed and predicted travel-time under
different parameterization methods using Eq. 3.2, Eq. 2.24, and Eq. 3.9, and
then calculate the travel-time residuals (i.e., the difference between the observed
values and the predicted values). Considering our objective function is Eq. 2.38,
we set the assumed data uncertainty to 0.1, and finally, the objective function
value can be calculated through Eq. 2.38. Our goal is to determine theminimum
value of the objective function, so we need to use some minimization methods
to achieve this goal.

3.1.2 SOLVER PARAMETER SETTINGS

In this paper, we consider three basic solution methods to determine the min-
imum value of the objective function, which are the gradient descent method,
the Newton’s method, and the Levenberg-Marquardt method (also known as
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the damped Gauss-Newton method or damped least-squares method). In the
previous chapters, we have introduced the basic principles of these three solu-
tion methods. In this chapter, we need to set the operating parameters of the
three solvers to constrain the solution process of the objective function. Here we
introduce several main solver parameter settings.

In all the numerical experiments in this chapter, the maximum number of it-
erations for the solver is 100. The criteria for solver convergence is set to 1.01,
i.e., when the average value of the objective function is less than this value (tol-
erance), the iterative calculation steps of the solver are exited. We will set the
scale factor that modifies the size of perturbations on each iteration, i.e., set a
certain step length (in all the numerical experiments in this chapter, the step
length is set to 1). Since the update of the perturbations require the use of the
backtracking linear search method, we can set the number of line search iter-
ations. If the number of line search iterations is greater than 0, the solver will
perform a linear search to ensure that the perturbations actually reduce the ob-
jective function. Similarly, we can also set the scale factor in the linear search
iteration, so that in each iteration of the linear search, the perturbations will be
scaled by this factor (in all the numerical experiments in this chapter, the scale
factor of the linear search is set to 0.5). We also have specific options set for the
Gauss-Newton method: damping term. If this option is enabled, the Gauss-
Newton solver will include the Levenberg-Marquardt damping term. All the
solver parameter settings are shown in the following items:

• Opts.SolverFunc = *. Define function handle to solver (for example: @Gra-
dientDescent).

• Opts.SolverIterations = 100. The maximum number of solver iterations.

• Opts.ObjFunTolerance = 1.01. Convergence criteria. Exit solver when the
mean objective function value is less than this value. The objective function
is scaled such that a value of 1 implies the data is fit to within estimated
errors.

• Opts.StepLength = 1. Step length. Scale factor that modifies the size of
perturbations on each iteration.

• Opts.tf_NormStep = 0. Normalize the step length. If true, length of the
perturbational vector is normalized such that the norm of the step (i.e. per-
tubation vector) at each iteration is the same.

• Opts.LineSearchIterations = *. The number of line search iterations. If
greater than 0, the solver will perform a line search to ensure that the per-
turbations did reduce the objective function.
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• Opts.LineSearchStep = 0.5. Scale factor for linear search. On each iteration
of the line search, the perturbations will be scaled by this factor.

• Opts.ForceQuadrant = 1. Force solution into the positive (1) or negative
(-1) m1-coordinate. If 0, no quadrant forcing will be applied.

• Opts.MaxAbsStep = []. Option to define maximum allowed change in the
model parameters.

• Opts.FigureObjFunc = 0. Option to plot iterations on existing figure.

For the Gauss-Newton solver, we also have some special solver parameter
settings as follows:

• Opts.GN.Ldamp = *. Damping term. If defined as a scalar, Gauss-Newton
solver will include Levenberg-Marquardt style damping.

• Opts.GN.TolLSQR = 0.000006.

• Opts.GN.MaxIterLSQR = 1000.

All of the above items indicate the names, default values, and meanings of
the parameters for solvers. Please note that an asterisk (*) indicates that the pa-
rameter does not have a fixed default value, and different experiments can have
different settings.

3.1.3 STABILITY INSPECTION SCHEME DESIGN

For the stability test of the 2-D anisotropic numerical experiment, we can
visualize and evaluate the convergence of the objective function results by con-
structing a 2-D objective function surface. Simply put, we will take uniform
samples of the anisotropy fraction and the azimuth of anisotropy within a cer-
tain range. Then, for different sample combinations of anisotropy fraction and
anisotropy azimuth, we will calculate the travel-time residual of all combina-
tions using Eq. 3.2, Eq. 2.24, and Eq. 3.9, and further calculate the value of
objective function using Eq. 2.38. For different parameterization methods, we
will calculate the relative anisotropy fraction and the anisotropy azimuth ac-
cording to the transformation relationship described above. Next, we will use
the anisotropy fraction as the x-axis and the anisotropy azimuth as the y-axis,
and combine the objective function values of each sample point to draw the 2-D
objective function surface, as shown in the Fig. 3.1.

In the Fig. 3.1, 𝑚1 represents the anisotropy fraction and 𝑚2 represents the
anisotropy azimuth. The black contour lines show the distribution of the ob-
jective function values at the sample points, and the area enclosed by the red
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Figure 3.1: An example of a normalized objective function surface using the
spherical parameterization.

contour lines represents the region where the solver convergence criteria are
met (i.e., the average objective function value is less than or equal to 1.01). The
red points represent the target anisotropy parameters (which are also the mini-
mum value of the true objective function), and the color bars indicate the objec-
tive function values. Overall, we can clearly observe the distribution of the ex-
treme values of the objective function from the objective function surface. When
the solver iterates, the predicted anisotropy parameters (fraction and azimuth)
obtained in each iteration are printed on the objective function surface (green
points) and connected by adjacent iteration results (green lines). In this way, we
can observe the effective search directions of the solver in finding the minimum
value of the objective function. When the green dot is within the region enclosed
by the red contour lines, it indicates that the objective function value obtained
in the current iteration is less than or equal to 1.01, meeting the convergence cri-
teria of the solver, and then the iteration is exited to complete the calculation.
Eventually, we can obtain the predicted anisotropic parameters that meet the
convergence criteria. From the above image, we can see that the solver’s itera-
tive calculation count is 4 times (i.e., four green lines).

Different parameterization schemes result in different objective function sur-
faces in visualization, as shown in the Fig. 3.2 for the vectoral and ABC param-
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eterization schemes:

Figure 3.2: An example of a normalized objective function surface (using the
same model parameters as in Figure 1). (a), vectoral parameterization scheme
results; (b), ABC parameterization scheme results.

The objective function surfaces of the two parameterization schemes are cir-
cular because the anisotropic fraction term (𝑚1) and the azimuth term (𝑚2) of
the two parameterization schemes need to be transformed according to the rela-
tionship described earlier with respect to the anisotropy fraction, azimuth, and
elevation. However, the meaning expressed in the two figures is consistent with
the Spherical parameterization, that is, the Vectoral parameterization scheme
achieved the minimum value of the objective function with only two iterations,
while the ABC parameterization scheme achieved the minimum value of the
objective function with only one iteration.

3.2 SYNTHETIC NUMERICAL EXPERIMENT TESTING

We conducted synthetic numerical experiments using three solver methods
for three parameterization schemes. Apart from the selection of solvers and
parameterization schemes needing to be adjusted, all other parameters (except
for the specific options for the Gauss-Newton solver) remain constant in differ-
ent numerical experiments. For the settings of the observation data parameters,
please refer to the Tab. 3.1:

For the target anisotropic model parameters, our settings are as shown in the
Tab. 3.2:
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Table 3.1: Parameter settings of the observed data in 2-D anisotropic numerical
experiments.

Item Setting
Number of observations 37

Ray path lengths 100 km
Ray path azimuths 30 to 50◦

Ray elevations 0◦

Table 3.2: Settings of target anisotropic model parameters in 2-D anisotropic
numerical experiments.

Item Setting
Target slowness 0.125 s/km

Target anisotropic fraction 0.03
Target anisotropic azimuth −21◦
Target anisotropic elevation 0◦

For the initial anisotropic model parameters, our settings are as shown in the
Tab. 3.3:

Table 3.3: Initial anisotropicmodel parameter settings in 2-D anisotropic numer-
ical experiments.

Item Setting
Initial slowness 0.125 s/km

Initial anisotropic fraction 0.01
Initial anisotropic azimuth 0◦
Initial anisotropic elevation 0◦

Based on the above relatedparameter settings, wedesigned 12 2-D anisotropic
parameterization case experiments (including 3 parameterization schemes and
4 solver methods, among which 1 solver method is the Gauss-Newton solver
without Levenberg-Marquardt damping term).

3.2.1 EXPERIMENTS OF DIFFERENT PARAMETERIZATION SCHEMES AND
GRADIENT DESCENT SOLVER

For the gradient descent solver, our solver parameter settings are as shown in
the Tab. 3.4:
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Table 3.4: Parameter settings of the gradient descent solver in 2-D anisotropic
numerical experiments.

Parameter name Setting content
Opts.SolverFunc @GradientDescent

Opts.SolverIterations 100
Opts.ObjFunTolerance 1.01

Opts.StepLength 0.005
Opts.tf_NormStep 1

Opts.LineSearchIterations 1
Opts.LineSearchStep 0.01
Opts.ForceQuadrant 1
Opts.MaxAbsStep []

Opts.FigureObjFunc 0
Opts.GN.Ldamp []
Opts.GN.TolLSQR 1e-6

Opts.GN.MaxIterLSQR 1e3

We conducted numerical experiment tests for three parameterization schemes,
and finally obtained the objective function surfaces of different parameterization
schemes. In the 1st numerical experiment (as shown in the Fig. 3.3), the solu-
tion process was iterated a total of 100 times. From the figure, we can see that
the gradient descent solver did not initially search in the correct direction. As
the iteration progressed, the solution direction approached the minimum value
of the objective function. However, the final predicted value of the objective
function did not reach the solver’s convergence criteria. In the 2nd numerical
experiment (as shown in the Fig. 3.4), the solution process was iterated a total
of 13 times. The initial solution search direction of the gradient descent solver
did not point towards the minimum value of the objective function. However,
during the iteration calculation, the solver turned and the final predicted value
of the objective function reached the solver’s convergence criteria. In the 3rd nu-
merical experiment (as shown in the Fig. 3.5), the solution process was iterated
a total of 3 times. The final predicted value of the objective function also reached
the solver’s convergence criteria. However, unlike the vectoral parameterization
results, the gradient descent solver under the ABC parameterization setting can
quickly find the correct direction and search, and the numerical calculation con-
verges faster.
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Figure 3.3: The normalized objective function surface of the 1st numerical ex-
periment: Spherical parameterization method and gradient descent solver.

Figure 3.4: The normalized objective function surface of the 2nd numerical ex-
periment: Vectoral parameterization method and gradient descent solver.

38



CHAPTER 3. 2-D ANISOTROPIC NUMERICAL EXPERIMENT

Figure 3.5: The normalized objective function surface of the 3rd numerical ex-
periment: ABC parameterization method and gradient descent solver.

3.2.2 EXPERIMENTS OF DIFFERENT PARAMETERIZATION SCHEMESWITH
NEWTON’S METHOD SOLVER

For the Newton’s method solver, our solver parameters are set as shown in the
Tab. 3.5:
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Table 3.5: Parameter settings of the Newton’s method solver in 2-D anisotropic
numerical experiments.

Parameter name Setting content
Opts.SolverFunc @Netwon

Opts.SolverIterations 100
Opts.ObjFunTolerance 1.01

Opts.StepLength 0.005
Opts.tf_NormStep 1

Opts.LineSearchIterations 1
Opts.LineSearchStep 0.01
Opts.ForceQuadrant 1
Opts.MaxAbsStep []

Opts.FigureObjFunc 0
Opts.GN.Ldamp []
Opts.GN.TolLSQR 1e-6

Opts.GN.MaxIterLSQR 1e3

We conducted numerical experiments for three parameterization schemes
and successfully obtained the corresponding objective function surfaces. In the
4th numerical experiment (as shown in the Fig. 3.6), although the solution pro-
cess was iterated a total of 100 times, the solver did not conduct a search but
stayed at the initial position, which resulted in the predicted value of the objec-
tive function being far from the solver’s convergence criterion. In the 5th nu-
merical experiment (as shown in the Fig. 3.7), although the solver conducted
an outward search, its initial direction did not point to the true minimum value
of the objective function, and no turn occurred during the iteration process. It
was not until the 6th numerical experiment (as shown in the Fig. 3.8) that the
solver found an effective search direction pointing to the true minimum value of
the objective function and moved quickly. Eventually, the calculation was com-
pleted in just 4 iterations, and the predicted value of the objective function met
the solver’s convergence criterion.
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Figure 3.6: The normalized objective function surface of the 4th numerical ex-
periment: Spherical parameterization method and Netwon’s method solver.

Figure 3.7: The normalized objective function surface of the 5th numerical ex-
periment: Vectoral parameterization method and Netwon’s method solver.
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Figure 3.8: The normalized objective function surface of the 6th numerical ex-
periment: ABC parameterization method and Netwon’s method solver.

3.2.3 EXPERIMENTS OF DIFFERENT PARAMETERIZATION SCHEMESWITH
THEGAUSS-NEWTON SOLVERWITHOUTLEVENBERG-MARQUARDT
DAMPING TERM

For the Gauss-Newton solver without Levenberg-Marquardt damping term,
our solver parameters are set as shown in the Tab. 3.6:
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Table 3.6: Parameter settings of the Gauss-Newton solver (without Levenberg-
Marquardt damping term) in 2-D anisotropic numerical experiments.

Parameter name Setting content
Opts.SolverFunc @GaussNetwon

Opts.SolverIterations 100
Opts.ObjFunTolerance 1.01

Opts.StepLength 0.005
Opts.tf_NormStep 1

Opts.LineSearchIterations 1
Opts.LineSearchStep 0.01
Opts.ForceQuadrant 1
Opts.MaxAbsStep []

Opts.FigureObjFunc 0
Opts.GN.Ldamp []
Opts.GN.TolLSQR 1e-6

Opts.GN.MaxIterLSQR 1e3

We conducted numerical experiments for three parameterization schemes
and successfully obtained the corresponding objective function surfaces. In the
7th numerical experiment (as shown in the Fig. 3.9), the solution process was
iterated a total of 62 times. The initial search direction of the solver pointed to
the convergence direction, and the direction was continuously adjusted during
the iteration calculation, eventually pointing to the true minimum value of the
objective function. Meanwhile, the final predicted value of the objective func-
tion met the solver’s convergence criterion. In the 8th numerical experiment (as
shown in the Fig. 3.10), the solution process required only 15 iterations. The ini-
tial direction of the solver pointed directly to the true minimum value direction
of the objective function, so the final predicted value of the objective function
also met the solver’s convergence criterion. The results of the 9th numerical ex-
periment (as shown in the Fig. 3.11) were similar to those of the 8th numerical
experiment, where the solver directly pointed to the true minimum value di-
rection of the objective function and moved quickly. Eventually, the calculation
was completed in just 4 iterations, and the final predicted value of the objective
function met the solver’s convergence criterion.
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Figure 3.9: The normalized objective function surface of the 7th numerical ex-
periment: Spherical parameterization method and Gauss-Newton solver.

Figure 3.10: The normalized objective function surface of the 8th numerical ex-
periment: Vectoral parameterization method and Gauss-Newton solver.
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Figure 3.11: The normalized objective function surface of the 9th numerical ex-
periment: ABC parameterization method and Gauss-Newton solver.

3.2.4 EXPERIMENTS OF DIFFERENT PARAMETERIZATION SCHEMESWITH
THE LEVENBERG-MARQUARDT METHOD SOLVER

As introduced in the previous chapters, the Levenberg-Marquardt method is
a Gauss-Newton method with a damping term. For the Levenberg-Marquardt
method solver, the solver parameters are set as shown in the Tab. 3.7:
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Table 3.7: Parameter settings of the Levenberg-Marquardt method solver in 2-D
anisotropic numerical experiments.

Parameter name Setting content
Opts.SolverFunc @GaussNetwon

Opts.SolverIterations 100
Opts.ObjFunTolerance 1.01

Opts.StepLength 0.005
Opts.tf_NormStep 1

Opts.LineSearchIterations 1
Opts.LineSearchStep 0.01
Opts.ForceQuadrant 1
Opts.MaxAbsStep []

Opts.FigureObjFunc 0
Opts.GN.Ldamp 10
Opts.GN.TolLSQR 1e-6

Opts.GN.MaxIterLSQR 1e3

Here, we set the size of the damping term to 10 (Opts.GN.Ldamp=10). Then,
we conducted numerical experiments for three parameterization schemes and
successfully obtained the corresponding objective function surfaces. In the 10th
numerical experiment (as shown in the Fig. 3.12), the solution process under-
went a total of 60 iterations. Unlike the 7th numerical experiment, in this exper-
iment, the initial search direction of the solver did not point towards the con-
vergence direction, but continuously adjusted its direction during the iterative
calculation process, eventually pointing to the true minimum value of the objec-
tive function. The final predicted value of the objective function met the conver-
gence criteria of the solver. In the 11th numerical experiment (as shown in the
Fig. 3.13), the solution process required only 13 iterations. The initial direction of
the solver did not point to the true minimum direction of the objective function
but to the convergence direction (marked by a red circle). Nevertheless, the final
predicted value of the objective function still met the convergence criteria of the
solver. In the 12th numerical experiment (as shown in the Fig. 3.14), the solver
directly pointed to the convergence direction and moved quickly, completing
the calculation with only 3 iterations. Moreover, the final predicted value of the
objective function also met the convergence criteria of the solver.
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Figure 3.12: The normalized objective function surface of the 10th numeri-
cal experiment: Spherical parameterization method and Levenberg-Marquardt
method solver.

Figure 3.13: The normalized objective function surface of the 11th numeri-
cal experiment: Vectoral parameterization method and Levenberg-Marquardt
method solver.
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Figure 3.14: The normalized objective function surface of the 12th numerical
experiment: ABC parameterization method and Levenberg-Marquardt method
solver.

3.3 DISCUSSION AND SUMMARY OF THIS CHAPTER

This chaptermainly introduces anddiscusses the impact of seismic anisotropy
parameterization on the linearization inversion scheme in seismic tomography.
To study this problem, we created and designed 2-D anisotropy numerical ex-
periments, and analyzed the results of 12 experiments. Through the analysis,
it was found that except for the 1st (Fig. 3.3), 4th (Fig. 3.6), and 5th (Fig. 3.7)
experiment results that could not converge, the other experiment results all met
the solver’s convergence criteria. Specifically, on the objective function surface,
the solution path (green line) eventually contacts the convergence region (re-
gion enclosed by red contour lines); during the iteration process, the solution
search direction continuously approaches the convergence region or the target
anisotropy parameter (red point) position.

From the perspective of parameterization schemes, regardless of which solver
method is used, the ABC parameterization scheme can always complete the cal-
culation more quickly. In comparison, the Spherical parameterization scheme
has the worst computational performance, followed by the vectoral parameter-
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ization scheme. This is because the vectoral parameterization method and the
ABC parameterization method can simplify the objective function surface and
reduce the complexity of the objective function surface, allowing the solver to
quickly find the effective search direction for the true minimum value of the
objective function during the solving process.

For the solver, if the Spherical parameterization scheme is used, the gradi-
ent descent solver and the Newton’s method solver cannot obtain the minimum
objective function value that satisfies the convergence criteria within the given
number of iterations. However, the undamped Gauss-Newton solver and the
Levenberg-Marquardt method solver can complete the calculation and exit the
iterationwithin a certain number of iterations, obtaining theminimum objective
function value that satisfies the convergence criteria. If the vectoral parameteri-
zation scheme or even the ABC parameterization scheme is used, the undamped
Gauss-Newton solver and the Levenberg-Marquardt method solver can com-
plete the iteration calculation more quickly.

In particular, with the addition of the damping term, the Levenberg-Marquardt
method solver can obtain the computational results that satisfy the convergence
criteria in the shortest time (with the fewest number of iterations). It can be
said that the ability of the undamped Gauss-Newton solver and the Levenberg-
Marquardt method solver to find the effective search direction for the minimum
value of the objective function is stronger than that of the gradient descent solver
and Newton’s method solver. If the results satisfy the convergence criteria,
the computational performance of the Levenberg-Marquardt method solver is
stronger than that of the undamped Gauss-Newton solver.

Therefore, we believe that the combination of the Levenberg-Marquardtmethod
solver and ABC parameterization scheme is the best approach to solve the cur-
rent 2-D anisotropic travel-time tomography problem. In the subsequent nu-
merical experiments of the full anisotropic parameters, we will also combine
the above experience to conduct more in-depth exploration.
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Based on the results of the 2-D anisotropic numerical experiments, we found
that the spherical parameterization scheme converged the slowest in all exper-
iments, and even in the experiments using gradient descent solver and New-
ton’s method solver, there were cases where the computation did not converge.
In comparison, the ABC parameterization scheme converged the fastest in all
experiments, and the final value of the objective function met the convergence
criteria regardless of which solver was used.

For the solvers, the Levenberg-Marquardtmethod solver can complete the cal-
culation in the shortest time while ensuring correctness (i.e., satisfying the con-
vergence criteria) in all 2-D anisotropic numerical experiments. Therefore, we
believe that the combination ofABCparameterization scheme and the Levenberg-
Marquardtmethod solver is currently the best solution for 2-D anisotropic travel-
time tomography problems.

In this chapter, we will increase the difficulty of the numerical experiments by
extending the 2-D anisotropic parameters to full anisotropic parameters, and in-
creasing the amount of observed data. We will evaluate the stability of different
parameterizationmethodswhen solving all four types of anisotropic parameters
(i.e., average velocity, anisotropy fraction, azimuth, and elevation), and further
investigate the computational performance, correctness, and stability of the cur-
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rent best solution.

4.1 SYNTHETIC EXPERIMENT PREPARATION

4.1.1 SYNTHETIC DATA GENERATION ANDMODEL PARAMETER SETTING

In terms of observational data, we have considered two types of ray path ge-
ometric configurations, aimed at testing the ideal (but realistic) and biased data
coverage for a variety of different target models, thereby obtaining more quan-
titative results. Here is the set-up we would use:

• Ideal coverage (ideal directional coverage): In this setting, the azimuth
(0-360◦) and elevation (0-90◦) use uniform ray sampling, with a sampling
interval of about 20◦.

• Biased coverage (limited directional coverage): In this setting, the azimuth
(0-360◦) uses uniform ray sampling with a sample spacing of about 20◦,
but the elevation sampling has biases, considering only 65◦, 75◦, and 85◦,
which mimics a teleseismic-like ray geometry where seismic waves prop-
agate near-vertically under the array.

For the two different ray path geometric configurationsmentioned above, we
have exploreddifferent target anisotropic parametermodels and initial anisotropic
parameter models. For the target anisotropic parameter models, we have de-
fined a total of 13 target models, including 12 anisotropic models and 1 isotropic
model, as shown in the Tab. 4.1:

Table 4.1: Settings of target anisotropic model parameters in full anisotropic nu-
merical experiments.

Item Setting
Target slowness 1/7.5 s/km

Target anisotropic fraction 0 (isotropic); 0.0125; 0.025; 0.05
Target anisotropic azimuth 31◦
Target anisotropic elevation 0 (isotropic); 30; 60; 90◦

In order to reduce the number of target models, we do not consider differ-
ent slowness values and anisotropic azimuth. We focus more on the constraint
degree of anisotropic fraction and anisotropic elevation, as well as how they
are balanced with slowness. There are two initial anisotropic parameter models
that need to be studied: one is an isotropic model; the other is an anisotropic
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model, but with a large difference from the true solution (i.e., the target and
initial anisotropic azimuth are orthogonal). The setup of the initial anisotropic
parameter models is shown in the Tab. 4.2:

Table 4.2: Initial anisotropic model parameter settings in full anisotropic numer-
ical experiments.

Item Setting
Initial slowness 0.125 s/km

Initial anisotropic fraction 0 (isotropic); 0.0125; 0.025; 0.05
Initial anisotropic azimuth 31◦
Initial anisotropic elevation 0 (isotropic); 30; 60; 90◦

Similar to the preparation part of the 2-D anisotropic parameters numerical
experiment, after defining the synthetic observed data and anisotropic model
parameters, we can calculate the observed travel-time and predicted travel-time
under different parameterization methods according to Eq. 3.2, Eq. 2.24, and
Eq. 3.9. At the same time, a Gaussian noise with a standard deviation of 0.1 is
added to the observed travel-time data, then the travel-time residuals are cal-
culated and substituted into Eq. 2.38 to combine the assumed data uncertainty
(0.1), and the objective function value can be obtained. To minimize the objec-
tive function value, we need to use a solver. Considering that the Levenberg-
Marquardt method solver performs best in the 2-D numerical experiment re-
sults, we will set the solver to the Levenberg-Marquardt method solver in the
following numerical experiments.

4.1.2 STABILITY INSPECTION SCHEME DESIGN

In the previous 2-D anisotropic numerical experiments, we represented the
convergence of the numerical calculation by constructing the objective function
surface and visualizing it, which was feasible in the 2-D case. However, when
the number of anisotropic parameters to be visualized increased from 2 to 4, i.e.,
when solving all 4 anisotropic parameters, it was not possible to generate the
objective function surface (because it is difficult to display the objective function
surface in high-dimensional space). Therefore, we directly used numerical indi-
cators, such as the (final) average tolerance, the total number of iterations, and
the Euclidean norm (L2 norm) of anisotropic parameters to quantify the experi-
mental results, and produced the 2-D indicator heatmap to display the relevant
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results to evaluate the stability of the parameterization scheme and solver. The
introduction and calculation method of the relevant numerical indicators are as
follows:

• Average tolerance: Here, we take the objective function value obtained
from the last iteration (whether it converges or not), and then take the av-
erage to obtain the final average tolerance.

• Total number of iterations: The number of iterations used in the numerical
calculation when it is completed can be used to evaluate the running time.

• Anisotropic L2 norm: Considering the large number of anisotropic param-
eters to be evaluated, we convert the other three anisotropic parameters
(except for the slowness) from spherical coordinates to Cartesian coordi-
nates, and then calculate the L2 norm (square root of the sum of squared
differences) of the predicted anisotropic parameters after coordinate sys-
tem conversion and the target anisotropic parameters. This helps to reduce
the number of anisotropic parameters to be evaluated.

The 2-D indicator heat map is drawn based on the calculation results of the
combination of target anisotropic parameters and initial anisotropic parameters.
We will explain the content of the 2-D indicator heat map in detail in the subse-
quent results display section.

4.2 SYNTHETIC NUMERICAL EXPERIMENT TESTING

In order to thoroughly investigate the performance and stability of different
parameterization schemes under these combinations of anisotropic parameters,
we need to conduct a certain number of numerical experiments. Here, we de-
signed 78 groups of numerical experiments (under one ray path geometric con-
figuration) by combining variable target and initial anisotropic parameters and
different parameterization scheme selections, as shown in the Fig. 4.1:

Figure 4.1: Details of variable experimental parameters and related experimen-
tal times.
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For two different ray path geometric configurations, a total of 156 numerical
experiments will be run. In this chapter, we will also discuss the experimental
results separately based on the different ray path geometric configurations. We
will use the Levenberg-Marquardt method solver as the solver for each numer-
ical experiment, and the specific settings of the solver parameters are shown in
the Tab. 4.3:

Table 4.3: Parameter settings of the Levenberg-Marquardt method solver in full
anisotropic numerical experiments.

Parameter name Setting content
Opts.SolverFunc @GaussNetwon

Opts.SolverIterations 100
Opts.ObjFunTolerance 1.01

Opts.StepLength 1
Opts.tf_NormStep 0

Opts.LineSearchIterations 0
Opts.LineSearchStep 0.5
Opts.ForceQuadrant 1
Opts.MaxAbsStep []

Opts.FigureObjFunc 0
Opts.GN.Ldamp 0.5
Opts.GN.TolLSQR 1e-6

Opts.GN.MaxIterLSQR 1e3

Please note that herewe temporarily disabled the line search function (Opts.LineSearchIterations
= 0) and set the damping term to a smaller value (Opts.GN.Ldamp = 0.5). This
setting will present some ”challenges” for the iterative calculation of the solver.
In the following sections, we will evaluate and discuss these two settings.

4.2.1 IDEAL COVERAGE DATA

Firstly, we conducted numerical experiments on the Ideal coverage data�and
the numerical results of the 78 groups of experiments are shown in the Fig. 4.2:
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Figure 4.2: Average tolerance of 78 numerical experiments conducted on the
ideal coverage data, using the Levenberg-Marquardt method solver.

The above figure shows the results of the average tolerance. The horizontal
coordinate represents the variable anisotropic parameters of the target model
(anisotropy fraction and anisotropy elevation), arranged in priority according to
the variation of anisotropy fraction (green arrow indicates). The vertical coordi-
nate represents the variable anisotropic parameters of the initialmodel (anisotropy
fraction and anisotropy azimuth), and the color bar indicates the size of the av-
erage tolerance. From the figure, we can clearly observe the average tolerance
of each anisotropic parameter combination experiment. We found that in most
anisotropic parameter configurations, the vectoral parameterization schemeper-
formed poorly overall, and some of the average tolerance resultswere evenmuch
greater than the convergence criterion (red boxed part). In comparison, the
spherical parameterization scheme performed better in all anisotropic param-
eter combination tests, and all experimental results met the convergence crite-
rion. For the ABC parameterization scheme, in some specific anisotropic model
parameter configurations, its results were not as good as the spherical parame-
terization scheme (yellow boxed part), but inmost anisotropic parameter config-
urations, the results of the ABC parameterization scheme were similar to those
of the spherical parameterization scheme. However, we noticed that when the
target model is isotropic and the initial model is anisotropic, the average toler-
ance result of the Vectoral parameterization scheme is better than the Spherical
and ABC parameterization schemes (green boxed part, close to the convergence
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criterion).

For the indicator of the total number of iterations, the results are shown in
the Fig. 4.3:

Figure 4.3: Total number of iterations for 78 numerical experiments conducted
on the ideal coverage data, using the Levenberg-Marquardt method solver.

We can observe that, for most anisotropic parameter configuration combina-
tions, the Vectoral parameterization scheme takes the most time, reaching the
maximum total number of iterations, and according to the results of the aver-
age tolerance, most of the Vectoral parameterization schemes do not converge
in calculation. In comparison, the ABC parameterization scheme takes less time
for numerical calculations in most cases compared to the Spherical parameter-
ization scheme. However, for some specific anisotropic model parameter con-
figurations, the ABC parameterization scheme has the most iterations (yellow
boxed part).

We calculated the L2 norm of the velocity and the other three anisotropic
parameters separately, and the results are shown in the Fig. 4.4:
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Figure 4.4: L2 norm results of anisotropic parameters in 78 numerical exper-
iments conducted on ideal coverage data. (a), L2 norm results of velocity;
(b), L2 norm results of anisotropic fraction, azimuth, and elevation, using the
Levenberg-Marquardt method solver.

From the results of the average tolerance in the previous section, it can be
seen that the Vectoral parameterization scheme does not converge in calcula-
tion for most model parameter configurations, which leads to the poor perfor-
mance of theVectoral parameterization scheme in the L2 norm results of velocity
and other three anisotropic parameters (red boxed part), and the final predicted
model is far from the target model. In comparison, the Spherical parameteri-
zation scheme and the ABC parameterization scheme have better L2 norm re-
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sults for the velocity and other three anisotropic parameters. Except for a few
anisotropic model parameter combinations that cause the ABC parameteriza-
tion scheme to be numerically unstable, these two parameterization schemes
perform similarly for other model parameter configurations.

4.2.2 BIASED COVERAGE DATA

Next, we conducted another 78 numerical experiments on observation data
with finite directional coverage (biased coverage). Finite directional coverage
simulates the ray path geometry of earthquakewaves transmitted near-vertically
below the array, which is more challenging for numerical calculations compared
to ideal coverage data. Based on the results of the average tolerance (as shown
in the Fig. 4.5), we can directly observe that for most model parameter config-
urations, the results of the Vectoral parameterization scheme are still poor, and
most of the numerical experiment results do not converge (red boxed part).

Figure 4.5: Average tolerance of 78 numerical experiments conducted on the
biased coverage data, using the Levenberg-Marquardt method solver.

Similarly, as in the case of the ideal coverage experimental results, under
certain specific model parameter configurations, the numerical results of the
ABC parameterization scheme do not converge (yellow boxed part). However,
in most cases, the numerical results of the ABC parameterization scheme meet
the convergence criteria. In particular, as the difficulty of the observation data
increases, the number of non-converging cases of the ABC parameterization
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scheme also increases accordingly, especially when the anisotropic elevation of
the target model is 90 degrees (yellow boxed part). In comparison, the Spherical
parameterization scheme performs stably, and the results of all model parame-
ter combinations meet the convergence criteria.

Figure 4.6: Total number of iterations for 78 numerical experiments conducted
on the biased coverage data, using the Levenberg-Marquardt method solver.

From the Fig. 4.6, it can be seen that for the model parameter configura-
tions where the calculation results of the Vectoral and ABC parameterization
schemes do not converge, the time overhead of the numerical experiments is
the largest (red line and yellow boxed part), especially for the Vectoral param-
eterization scheme, which reaches the maximum number of iterations for most
model configurations. Although the Spherical parameterization scheme has a
higher computation time than the ABC parameterization scheme for some spe-
cific model parameter configurations, its performance is similar to that of the
ABC parameterization scheme for other model parameter configurations, and
even outperforms it in some cases.
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Figure 4.7: L2 norm results of anisotropic parameters in 78 numerical exper-
iments conducted on biased coverage data. (a), L2 norm results of velocity;
(b), L2 norm results of anisotropic fraction, azimuth, and elevation, using the
Levenberg-Marquardt method solver.

For the L2 norm results (Fig. 4.7) of velocity and anisotropy parameters, sim-
ilar to the ideal coverage experimental results, the performance of the Vectoral
parameterization scheme is still poor (red boxed part), andmost of the final pre-
dicted models have a large gap from the target model. In comparison, the re-
sults of the Spherical parameterization scheme and the ABC parameterization
scheme are still better. However, due to the fact that the ABC parameterization
scheme does not converge in more anisotropic model parameter combinations,
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the performance of the Spherical parameterization scheme is better than that of
the ABC parameterization scheme.

4.3 EXPLORATION OF THE SENSITIVITY OF ABC PARAME-
TERIZATION SCHEME TO SOLVER PARAMETERS

In the numerical experiment of 2-D anisotropic parameterization case, we
found that the ABC parameterization scheme is currently the best method for
solving 2-D anisotropic travel-time tomography problems. However, in the nu-
merical experiment of the full anisotropic parameterization case, we noticed that
the ABC parameterization scheme does not converge in numerical calculations
under certain specific model parameter configurations. Considering that we
turned off the line search function and set the damping term to a small value
before the numerical experiments in this chapter, we designed a new numeri-
cal experiment: exploring the sensitivity of the ABC parameterization scheme’s
numerical calculation results to the solver parameter settings (line search op-
tion Opts.LineSearchIterations and damping term Opts.GN.Ldamp) under the
premise of using the Levenberg-Marquardt method solver. The experimental
observation data is based on ideal coverage data and biased coverage data. Be-
sides the line search option and damping term mentioned above need to be ad-
justed, all other parameter settings remain unchanged and consistent with the
parameter values in the previous numerical experiments.

First, we tested on the observation data of ideal coverage. According to the
previous average tolerance results, we found that four model parameter combi-
nations lead to the numerical calculation of the ABC parameterization scheme
not converging (yellow boxed part).
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Figure 4.8: The average tolerance of 78 numerical experiments conducted on the
observation data of ideal coverage, consistent with the results in the Fig. 4.2.

In the Fig. 4.8, we have numbered four model parameter combinations (red
numbers) and tested different line search iteration numbers and damping sizes
for each group of model parameters. We have taken uniform samples of the
range of line search iteration numbers and damping sizes, where the line search
iteration numbers and damping values are sampled uniformly in the range of
0-20, with a sampling interval of 1. Therefore, each group of model parameters
has 441 sets of test results, as shown in the Fig. 4.9:
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Figure 4.9: Test results of different line search iteration numbers and damping
value combinations on the observation data of ideal coverage. The numerical
results represent the average tolerance: (a) the result of model parameter con-
figuration 1 in Figure 22; (b) the result of model parameter configuration 2 in
Figure 22; (c) the result of model parameter configuration 3 in Figure 22; (d) the
result of model parameter configuration 4 in Fig. 4.8.

We present the results of the average tolerance in the form of a 2-D heat map,
as shown in the Fig. 4.9. In the figure, the horizontal coordinate represents
the line search iteration number, the vertical coordinate represents the damping
value, and the color bar represents the size of the average tolerance. It can be
seen from the figure that the deeper the color, the closer the result of the average
tolerance is to 1. In particular, when the color is dark blue, the numerical exper-
iment results under the corresponding line search iteration number and damp-
ing value combination meet the convergence criteria. Therefore, based on the
distribution of color depth, we can infer that when the settings of line search it-
eration number and damping term are small, the ABC parameterization scheme
can obtain results that conform to the convergence criteria.

In summary, we have chosen a more suitable solver parameter combination
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(Opts.LineSearchIterations, Opts.GN.Ldamp) = (2, 2) to revalidate the perfor-
mance of the ABC parameterization scheme on the observation data of ideal
coverage. The new result of the average tolerance is shown in the Fig. 4.10:

Figure 4.10: The result of the average tolerance after applying line search and
larger damping value, using experimental data of observation data with ideal
coverage, and the solver used is the Levenberg-Marquardt method solver.

In the Fig. 4.10, ABC-New represents the result of the combination of Line-
SearchIterations and Ldamp. From the figure, we can discover that properly
setting LineSearchIterations andLdamp can improve the stability of theABCpa-
rameterization scheme (highlighted in the red box), especially compared to the
previous four special model parameter combinations (highlighted in the yellow
box), the latest result has reached the convergence criteria.

Next, we apply the above test scheme to the observation data of biased cover-
age, and the solver parameter combination remains consistent with the settings
in the above experiment, i.e., using (Opts.LineSearchIterations, Opts.GN.Ldamp)
= (2, 2). Finally, the new results of the average tolerance are shown in the Fig.
4.11:
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Figure 4.11: The result of the average tolerance after applying line search and
larger damping value, using experimental data of observation data with biased
coverage, and the solver used is the Levenberg-Marquardt method solver.

From the Fig. 4.11, we can also observe that properly setting LineSearchItera-
tions and Ldamp can improve the stability of the ABC parameterization scheme
(highlighted in the red box) on the biased coverage data, especially compared to
the previous results of some specialmodel parameter combinations (highlighted
in the yellow box), the latest results have reached the convergence criteria. How-
ever, except for the part highlighted in the green box, the results still do not meet
the convergence criteria, but compared to the previous results, there has been
an improvement in performance.

4.4 DISCUSSION AND SUMMARY OF THIS CHAPTER

This chapter mainly introduces the numerical experiments and experimen-
tal results of the full anisotropic parameterization case, as well as the optimal
solution. Through numerical experiments, we evaluated the stability and com-
putational performance of three anisotropic parameterization methods. On the
observation data, we considered two types of ray path geometric configurations
and tested the ideal and biased coverage data of various different target mod-
els to obtain more quantitative results. At the same time, we also designed a
new stability test scheme to determine whether the numerical results converge
in high-dimensional space. This chapter also explores the relationship between
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the ABC parameterization scheme and the solver parameters. We found that the
different constraint degrees of the solver parameters also have different effects
on the convergence speed and correctness of the ABC parameterization scheme.

Overall, in the numerical experiments of this chapter, the vectoral parameteri-
zation scheme performed poorly. In comparison, the spherical parameterization
scheme and the ABC parameterization scheme converge to the required toler-
ance in most numerical experiments. Among them, the ABC parameterization
scheme has an advantage in computational speed (fewer iterations compared
to the Spherical parameterization scheme). However, under specific model pa-
rameter configurations, the results of the ABC parameterization scheme are not
as good as those of the Spherical parameterization scheme.

After imposing constraints on the solver parameters (line search iteration num-
ber and damping value), the ABC parameterization scheme performs very well
on both ideal coverage data and bias coverage data. In only a very few spe-
cial cases, the performance of the ABC parameterization scheme after imposing
solver parameter constraints is still not as good as that of the Spherical parame-
terization scheme.

Overall, the ABC parameterization scheme is an excellent method, especially
when the related parameters of solver are constrained, and it can achieve the
best results in most numerical experiment cases. However, in a few special ex-
perimental cases, we will also consider using the Spherical parameterization
scheme, even though it takes longer to compute, but the correctness and stabil-
ity of the results are more important. Although the Spherical parameterization
scheme takes longer to compute, its results are stable, and therefore, the role of
the spherical parameterization scheme should not be ignored.

Finally, we believe that the ABC parameterization scheme with constraints on
the solver parameters is suitable formost experimental cases and should be used
for computation as a priority. Only when the computationwith the ABC param-
eterization scheme combined with constraints on the solver parameters cannot
converge will we use the Spherical parameterization scheme for computation to
ensure the stability of the results. Therefore, the combination of the Levenberg-
Marquardt method solver and the ABC & spherical parameterization scheme is
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currently the best solution for solving full anisotropic travel-time tomography
problems.
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5
Conclusions

This paper first elaborates on the research background, methods, and ap-
plications of seismic tomography, anisotropy, and anisotropic parameterization
methods. In order to investigate which of the three commonly used param-
eterizations (spherical, vectoral, and ABC) is most suitable for iterative inver-
sion schemes in seismic tomography, we then designed a series of numerical
experiments, considering the simple case of constraining two anisotropy pa-
rameters, and expanded the experiments to the full anisotropy problem with
four constrained anisotropy parameters. We also studied the stability and con-
vergence characteristics of the three parameterizations in P-wave travel-time lin-
earization inversion for both anisotropy problems. Moreover, we explored three
methods for minimizing the objective function: gradient descent, Newton, and
Levenberg-Marquardt, and selected the most suitable solver based on experi-
mental results. Finally, we summarized the stability and performance of param-
eterizations under various anisotropy models and different initial conditions.

The results of the 2-D anisotropic numerical experiments showed that except
for a few experiments that did not converge, the other experiments all met the
solver’s convergence criteria. Among the parameterization schemes, the ABC
parameterization had the best computational performance, while the spheri-
cal parameterization had the worst. For solvers, the undamped Gauss-Newton
solver and the Levenberg-Marquardt method solver were able to complete the
calculations within a certain number of iterations and meet the convergence cri-
teria. The Levenberg-Marquardt method solver showed stronger computational
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performance under the premise of meeting the convergence criteria. Therefore,
we believe that the combination of the Levenberg-Marquardtmethod solver and
ABC parameterization is the best solution for 2-D anisotropic travel-time tomog-
raphy problems.

The experimental results of the full anisotropic numerical experiments showed
that the vectoral parameterization performed poorly, while the spherical pa-
rameterization and ABC parameterization converged to the required tolerance
in most experiments. The ABC parameterization had an advantage in compu-
tational speed, but under specific model parameter configurations, the results
were not as good as those of the spherical parameterization. When the solver pa-
rameters were constrained, the ABC parameterization performed well in terms
of ideal and bias coverage rates. However, in a few special cases, the perfor-
mance of the constrained ABC parameterization was still worse than that of the
spherical parameterization. In summary, the ABC parameterization is an excel-
lent method that can obtain the best results in most numerical experiment cases
when the solver-related parameters are constrained. However, in a few spe-
cial experimental cases, the spherical parameterization will also be considered.
Therefore, the combination of the Levenberg-Marquardt method solver and the
ABC & spherical parameterization is currently the best solution for solving full
anisotropic travel-time tomography problems. In practical applications, it is rec-
ommended to use the constrained ABC parameterization for calculations first,
and only use the spherical parameterization when convergence fails to ensure
stability in the results.

For the future works, there is significant potential for optimization and en-
hancement of anisotropic numerical experiments. This particularly pertains to
identifying the reasons behind the failure (non-convergence) of certain cases
in partially anisotropic parameterization applications, and devising and test-
ing additional strategies to overcome these challenges. For instance, adopting
uncertainty estimation methods such as perturbational uncertainty estimation
or gradient-based uncertainty estimation could help assess the robustness of
the tomography model and pinpoint the causes of results non-convergence in
anisotropic parameterization applications. Moreover, efforts can be made to re-
fine the current parameterization method selection scheme by further optimiz-
ing the solver parameters and the parameterization selection process itself.
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