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Chapter 1

Abstract

After the European Union (EU) has introduced a regulation for Renew-

able Energy Communities (REC) in 2018, the attention on them is grow-

ing quickly. Renewable Energy Communities can be composed by citizens,

small and medium-sized companies, and local administrations with the goal

of self-producting and self-consuming of energy from renewable sources and,

at the same time, is a way to increase the e�ciency of the energy system

and to reduce the environmental pollution.

In this thesis we discuss about a stochastic model for optimizing invest-

ment in Renewable Energy Communities. We start from the paper [1] and

we focus on a particular type of REC composed by an household and a bio-

gas producer. In this case, the potential demand of the community is given

by the household's demand, while both members produce renewable energy.

In this type of REC, the biogas producer converts biogas into electricity and

sells it in the electricity market, while the biogas that is not transformed

into energy can be sold on the gas market. Meanwhile, the household invests
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in photovoltaic panels to reduce the energy purchased from the market in

order to cover its own power demand, and can also sell the energy which is

not self-consumed.

The advantage of entering into a REC for both players is that they will

be rewarded with a governmental incentive, in particular we use the incen-

tive approved by the italian government by the "Decreto CER" [3].

We set the problem as a leader-follower problem, where the leader decides

how to share the incentive, while the followers decide their own optimal

installation strategy. Our goal is to �nd an optimal way to balance invest-

ments in renewable energies.



Chapter 2

Introduction

2.1 Environmental issues

Environmental issues are disruptions in the usual function of ecosystems.

Further, these issues can be caused by humans (human impact on the envi-

ronment) or they can be natural. These issues are considered serious when

the ecosystem cannot recover in the present situation, and catastrophic if

the ecosystem is projected to certainly collapse.

Major current environmental issues may include:

� climate change

� pollution

� biodiversity loss.
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2.1.1 Climate change

Climate change refers to long-term shifts in temperatures and weather pat-

terns. Such shifts can be natural, due to changes in the sun's activity or

large volcanic eruptions. But since the 1800s, human activities have been

the main driver of climate change, primarily due to the burning of fossil fuels

like coal, oil and gas. Burning fossil fuels generates greenhouse gas emissions

that "chokes" the Earth and makes it su�er by raising temperatures. The

main greenhouse gases that are causing climate change include carbon diox-

ide and methane. These come, for example, from using gasoline for driving

a car or coal for heating a building, clearing land and cutting down forests

can also release carbon dioxide. Agriculture, oil and gas operations are ma-

jor sources of methane emissions. Energy, industry, transport, buildings,

agriculture and land use are among the main sectors causing greenhouse

gases [9].

2.1.2 Pollution

Pollution in our world a�ects two essential aspects of our planet: air and

water. Although their pollutants are emitted in completely di�erent ways,

they both harm living organisms.

Air pollution is predominately emitted through the exhaust of motor vehi-

cles and the combustion of fossil fuels, but also animals and vegetation emit

some substances which are not naturally part of the atmosphere; whereas

water pollution is mostly caused by human involvement. It is the result

of industrial waste and environmental accidents. There are main areas of

polluting substances that cause disruption or change in the chemical make
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up of the world's waters, and e�ect the aquatic environment. Some basic

pollutants include: wastes, radioactive material, sediments, inorganic chem-

icals, oil, synthetic organic compounds (i.e. pesticides) and toxic metals (i.e.

mercury) [10].

2.1.3 Biodiversity loss

Biodiversity loss refers to the decline or disappearance of biological diver-

sity, understood as the variety of living things that inhabit the planet, its

di�erent levels of biological organization and their respective genetic vari-

ability, as well as the natural patterns present in ecosystems.

The causes of biodiversity loss are multiple: climate change, that impacts

biodiversity at various levels like species distribution, population dynamics,

community structure and the functioning of the ecosystem; destruction of

habitats, that can be the consequence of soil pollution and of changes due

to activities such as deforestation; invasive alien species, that are the second

biggest cause of loss of biodiversity in the world, and �nally overexploitation

of natural resources, that is the consumption of natural resources at a speed

greater than that of their natural regeneration.

Biodiversity loss has many consequences, not only for the environment, but

also for human beings at the economic and health level. Some of these

consequence are: extinction of species, proliferation of pests and increase in

CO2 emissions [11].
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2.2 Renewable Energies

A large chunk of the greenhouse gases are generated through energy pro-

duction, by burning fossil fuels to generate electricity and heat. Fossil fuels,

such as coal, oil and gas, are by far the largest contributor to global climate

change.

About 80% of the global population lives in countries that are net-importers

of fossil fuels, that's about 6 billion people who are dependent on fossil fuels

from other countries, which makes them vulnerable to geopolitical shocks

and crises.

Science says that, to avoid the worst impacts of climate change, emissions

need to be reduced by almost half by 2030 and reach net-zero by 2050.

To achieve this, human reliance on fossil fuels should end, so to start to and

invest in alternative sources of energy that are clean, accessible, a�ordable,

sustainable, and reliable. Renewable energy sources, provided by the sun,

wind, water, waste, and heat from the Earth, are replenished by nature and

emit no greenhouse gases or pollutants into the air.

Unlike fossil fuels, which are present in small areas of the world, renewable

energy sources are available in all countries, and their potential is yet to

be fully harnessed. The International Renewable Energy Agency (IRENA)

estimates that 90% of the world's electricity can and should come from re-

newable energy by 2050.

Renewables o�er a way out of import dependency, allowing countries to

diversify their economies and protect them from the unpredictable price

swings of fossil fuels.[12]
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The change of the electricity operator towards renewable sources therefore

becomes a fundamental step in the transition towards a more sustainable

energy system, actively involving consumers and promoting the adoption

of clean energy sources. Diversi�cation of energy supply, together with ap-

propriate government policies and incentives, can accelerate the adoption

of renewable energy, creating jobs and stimulating sustainable economic

development. In conclusion, the importance of renewable energy in com-

bating climate problems is undeniable and requires a global commitment to

guarantee a better future for our planet and future generations.

2.3 Renewable Energy Communities

A possible solution, born in recent years to encourage and spread the use

of renewable energies, are Renewable Energy Communities (RECs).

2.3.1 About Renewable Energy Communities

Renewable Energy Communities are a recent concept in the world of sustain-

able energy and environmentalism. Energy communities enable collective

and citizen-driven energy actions to support the clean energy transition. An

Energy Community is an association that produces and shares renewable

energy, generating and managing cost-e�ective green energy autonomously,

reducing CO2 emissions and energy waste.

The community may be composed of local citizens, businesses, public ad-

ministrations, small and medium-sized enterprises, etc. basically, any public
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or private entity that wants to form a Renewable Energy Community, for

example, people who live in the same neighborhood and want to develop a

REC may do so. They can contribute to increasing public acceptance of re-

newable energy projects and make it easier to attract private investments in

the clean energy transition. Energy communities can be an e�ective means

of re-structuring our energy systems, by empowering citizens to drive the

energy transition locally and directly bene�t from better energy e�ciency,

lower bills, reduced energy poverty and more local green job opportunities.

Acting as a single entity means energy communities can access all suitable

energy markets on a level-playing �eld with other market actors.

Through the Clean energy for all Europeans package, adopted in 2019,

the EU introduced the concept of energy communities in its legislation,

notably as citizen energy communities and renewable energy communities.

More speci�cally, the Directive on common rules for the internal electricity

market (EU/2019/944) aims to support the uptake of energy communities.

It introduced new rules to enable active consumer participation, individu-

ally or through citizen energy communities, in all markets, by generating,

consuming, sharing or selling electricity, or by providing �exibility services

through demand-response and storage. EU countries should enable this

through available support schemes, ensuring energy communities can par-

ticipate on equal footing with larger participants.[13].
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2.3.2 Di�erent types of Renewable Energy Communi-

ties

There are two tipes of energy communities:

� Renewable Energy Community

� Citizen Energy Community.

The �rst is based on open and voluntary participation, is autonomous, and

is e�ectively controlled by shareholders or members that are located in the

proximity of the renewable energy projects that are owned and developed

by that legal entity. It is a restricted membership capable of remaining au-

tonomous from individual members or other traditional market actors that

participate in the community as members or shareholders, natural persons

and local authorities, who's membership/participation is not their primary

economic activity.

The second is based on voluntary and open participation and is e�ectively

controlled by members or shareholders that are natural persons, local au-

thorities, including municipalities, or small enterprises. Electricity directive

does not bind energy communities to immediate vicinity. Any actor can par-

ticipate, but stakeholders involved in large-scale commercial activity where

energy is the primary economic activity cannot make decisions: in fact,

decision-making powers should be limited to those members or sharehold-

ers that are not engaged in large-scale commercial activity in the energy

sector [14].
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2.4 Renewable Energy Communities in Italy

The new Italian regulations concerning Renewable Energy Communities

give a signi�cant boost to distributed generation, encouraging the develop-

ment of `zero-mile' local energy production and smart grids.

Through the "Decreto CER" [3], the italian goverment introduced an in-

centive for RECs in order to encourage the use of renewable energies.

In this thesis we propose a simpli�ed version of REC which is composed

by a biogas producer and a representative household. The biogas producer

contributes with power production, while the household (which could be

interpreted as a whole building whose decision is taken by the building ad-

ministrator) contributes with demand and power production.

In Chapter 3 we introduce a mathematical model based on a REC composed

by a biogas producer and an household and we end up with an analytical

expression of the incentive.

In Chapter 4 we show the numerical implementation to calculate the incen-

tive and both the biogas producer's and household's pro�t with di�erent

market price and demand, and the results obtained from the implementa-

tion.

In Chapter 5 it is possible to �nd the conclusions of the entire work.



Chapter 3

Mathematical model

In this Chapter we describe the mathematical model and the problem for-

mulation of a simpli�ed version of Renewable Energy Communities.

Let us consider two members who together form a simpli�ed REC: one is

a biogas producer, the other is an household. The goal of this work is to

analyze the possible pro�t of both members with and without the incentives

present in [3], approved by the Italian government and e�ective from 24th

January 2024.

3.1 Introduction to the model and pro�ts with-

out the incentive

3.1.1 Introduction

Consider a complete �ltered probability space (Ω,F ,Ft,P) satisfying the

usual conditions, de�ne Wc, Wv, Wp, W four Brownian motions and de�ne

the correlation ρc = Corr(W,Wc).



18 Chapter 3. Mathematical model

As told before, we consider two members of a REC, a biogas producer and

an household. The biogas producer has a total gas production capacity Kg,

whose hourly output is equal to bKg · 1h (b > 0 is the conversion factor

MW/m3), which is sold in the market at the gas spot price (P p(t))t≥0, that

evolves according to a geometric Brownian motion with initial value p as

P p(s) = peµps+σpWp(s),

with µp ∈ R and σp > 0.

The biogas producer can transform the gas into electricity through a Gas-

to-Power turbine, and sell it at the spot sale electricity price (Xxv
v (t))t≥0,

which can be de�ned as

Xxv

v (s) = xve
µvs+σvWv(s),

with µp ∈ R and σp > 0.

3.1.2 Pro�t of both biogas producer and household

without the incentives

The turbine that transforms gas into electricity has capacity yb ≤ θb, where

θb is the maximum allowed installation for the biogas producer. Since the

biogas producer has a total gas production capacity Kg, the turbine reduces

the output of gas that can be sold to the market, then the residual gas output

is (bKg − yb). So the biogas producer's pro�t functional is

J0
b (xv, xc, p, d, yb, yh) = E

[
∫ ∞

0

e−rsXxv

v (s)ybds

]

+

+E

[
∫ ∞

0

e−rsP p(s)(bKg − yb)ds

]

− cbyb, (3.1)
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where cb is the cost (e/MW) of installing a turbine with capacity yb, and

r > 0 is a discount rate.

The household buys all the energy at the purchase electricity price, which

follows a geometric Brownian motion

Xxc

c (s) = xce
µcs+σcWc(s),

with µc ∈ R and σc > 0.

We assume that the demand of the community is equal to the household's

power demand (Dd(t))t≥0, de�ned as

Dd(s) = deµds+σdW (s),

with µd ∈ R and σd > 0.

Moreover, the household can install new photovoltaic panels of capacity

yh ≤ θh, so the pro�t of the household is

J0
h(xv, xc, p, d, yb, yh) = E

[
∫ ∞

0

e−rsXxv

v (s)yhds

]

+

−E

[
∫ ∞

0

e−rsXxc

c (s)Dd(s)ds

]

− chyh, (3.2)

where ch is the installation cost of photovoltaic panels per MW.

3.1.3 Calculation of both pro�ts J0

b
and J0

h

Now, we �nd the optimal installation for both members in absence of in-

centives. First assume that:
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rv = r − µv −
1

2
σ2
v , rp = r − µp −

1

2
σ2
p,

rc = r − µc −
1

2
σ2
c , rd = r − µd −

1

2
σ2
d,

rcd = rc + rd − r − ρcσcσd,

are strictly positive.

From these, we can calculate

E
[

e−rsXxv

v (s)
]

, E
[

e−rsP p(s)
]

, E
[

e−rsXxc

c (s)Dd(s)
]

.

The �rst term becomes:

E
[

e−rsXxv

v (s)
]

= e−rs
E [Xxv

v (s)] = e−rs
E
[

xve
µvs+σvWv(s)

]

=

= xve
−rs+µvsE

[

eσvWv(s)
]

= xve
−rs+µvs+

1

2
σ2
vs = xve

−rvs.

The second term's computation is similar to the �rst, so:

E
[

e−rsP p(s)
]

= e−rs
E
[

peµps+σpWp(s)
]

=

= pe−rs+µp+
1

2
σ2
ps = pe−rps.

The last has two correlated terms, in fact:

E
[

e−rsXxc

c (s)Dd(s)
]

= e−rs
E
[

xce
µcs+σcWc(s)deµds+σdW (s)

]

=

= dxce
−rs+µcs+µdsE

[

eσcWc(s)+σdW (s)
]

=

= dxce
−rs+µcs+µds+

1

2
σ2
cs+

1

2
σ2

d
s+σcσdρcs = dxce

−rcds.
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From the previous calculations, we obtain the following proposition.

Proposition 3.3. The payo�s for the household and for the biogas producer

without the incentives are:

J0
b (xv, xc, p, d, yb, yh) = ybgb +

pbKg

rp
,

J0
h(xv, xc, p, d, yb, yh) = yhgh −

xcd

rcd
,

where gb =
xv

rv
− p

rp
− cb and gh = xv

rv
− ch.

Proof.

From (3.1), knowing that

E [e−rsXxv
v (s)] = xve

−rvs and E [e−rsP p(s)] = pe−rps,

we have

J0
b (xv, xc, p, d, yb, yh) =

∫ ∞

0

ybxve
−rvsds+

∫ ∞

0

(bKg − yb)pe
−rpsds− cbyb =

=
xvyb
rv

+
(bKg − yb)p

rp
− cbyb = ybgb +

pbKg

rp
,

and from (3.2), knowing that

E [e−rsXxv
v (s)] = xve

−rvs and E
[

e−rsXxc
c (s)Dd(s)

]

= dxce
−rcds,

we have

J0
h(xv, xc, p, d, yb, yh) =

∫ ∞

0

ybxve
−rvsds+

∫ ∞

0

dxce
−rcdsds− chyh =

=
xvyb
rv

−
xcd

rcd
− chyh = yhgh −

xcd

rcd
.
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3.2 Pro�ts of the biogas producer and of the

household with incentives

We now assume that, by creating a REC, the community receives an incen-

tive. Both members contribute to the total power produced by the commu-

nity: the household provide power yh by installing solar panels, while the

biogas producer contributes with power yb by installing turbines to trans-

form the gas into electricity. Hence the energy shared and self-consumed by

the community at time t can be expressed as

min{Dd(t), yh + yb}.

3.2.1 Introduction of the incentives

As we already anticipated, the billing system is organized in a way to o�er

an incentive to REC, moreover, this incentive is proportional to the self

consumed energy of the REC.

As explained in [3], this incentive depends on the power of the system and

on the geographical location, we assume to have a system of power > 600

kW and to be in Veneto, so we have a bonus of +10e/MWh. The incentive

provides a reward, dependent on the current market electricity price de�ned

as

Z(Xxv

v (s)) = 60 + max{0, 180−Xxv

v (s)}+ 10, (3.4)

where Xxv
v (s) is the current market electricity price. This function has a

maximum value of 110e/MWh, reached when the price is ≤ 140 and a

minimum value of 70 e/MWh, when the price is ≥ 180 as showed in the

following graph:
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3.2.2 Pro�ts of the biogas producer and the household

Now, we can de�ne the pro�t of the biogas producer and the household.

The pro�t of the biogas producer is de�ned as

Jb(xv, xc, p, d, yb, yh, β) = J0
b (xv, xc, p, d, yb, yh) + (1− β)ω(yh, yb, d, xv),

(3.5)

where β is the household's proportion of the incentive and 1− β is that of

the biogas producer. Furthermore, J0
b is the biogas producer's pro�t with-

out the incentives (3.1) and ω(yh, yb, d, xv) is the total revenue from the

incentives based on self-consumption

ω(yh, yb, d, xv) = E

[
∫ ∞

0

e−rsZ(Xxv

v (s))min{Dd(s), yh + yb}ds

]

. (3.6)
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Whereas, the pro�t of the household is

Jh(xv, xc, p, d, yb, yh, β) = J0
h(xv, xc, p, d, yb, yh) + βω(yh, yb, d, xv). (3.7)

Now we want to calculate the function ω(yh, yb, d, xv).

First of all we notice that ω depends on yb, yh ≥ 0 only as parameters, so

we can consider ω as a function of d and xv. Then we have

ω(d, xv) = E

[
∫ ∞

0

e−rsZ(Xxv

v (s))min
{

Dd(s), yh + yb
}

ds

]

=

=

∫ ∞

0

e−rs
E
[

Z(Xxv

v (s))min
{

Dd(s), yh + yb
}]

ds.

Assuming that Xxv
v (t) and Dd(t) are independent, we obtain

ω(d, xv) =

∫ ∞

0

e−rs
E [Z(Xxv

v (s))]E
[

min
{

Dd(s), yh + yb
}]

ds. (3.8)

In the following Section, we introduce a method that will help us to calcolate

(3.8).

3.3 Fourier methods

In this section we introduce Fourier methods in order to determine the

expression of a call option (we follow the method explained in [8]). We

present our approach for analytically determining the Fourier transform of

the option value and of the time value in terms of the characteristic function
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of the risk-neutral density.

Consider the problem of evaluating a European call of maturity T, written

on the terminal spot price

ST = S0e
µT+σWT

of some underlying asset (where µ is the drift of ST under the risk-neutral

measure Q). The logarithmic price is

sT = ln(ST ) = ln(S0) + µT + σWT

So the characteristic function of sT is de�ned by:

φT (u) = E
[

eiusT
]

Now suppose that K is a strike and k = ln(K), CT (k) is a call option and

qT (s) is the risk-neutral density of the logarithmic price sT . Then, the price

of a discounted call option with strike K = ek and maturity T can be ex-

pressed as

CT (k) = E
[

(ST −K)+
]

=

∫ ∞

k

(es − ek)qT (s)ds,

and the characteristic function of the density qT (s) is

φT (u) =

∫ ∞

−∞

eiusqT (s)ds.

Now let

cT (k) = eαkCT (k) = eαk
∫ ∞

k

(es − ek)qT (s)ds (3.9)
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with α > 0, we can de�ne the Fourier transform of cT (k)

ψT (v) =

∫ ∞

−∞

eivkcT (k)dk. (3.10)

Substituting (3.9) in (3.10), we obtain

ψT (v) =

∫ ∞

−∞

eivk
∫ ∞

k

eαk(es − ek)qT (s)dsdk =

=

∫ ∞

−∞

qT (s)

∫ s

−∞

(es+αk − e(α+1)k)eivkdkds =

=

∫ ∞

−∞

qT (s)

[

e(α+1+iv)s

α + iv
−

e(α+1+iv)s

α + 1 + iv

]

ds =

=

∫ ∞

−∞

qT (s)
e(α+1+iv)s

(α + iv)(α + 1 + iv)
ds =

=
1

(α + iv)(α + 1 + iv)

∫ ∞

−∞

ei(v−(α+1)i)sqT (s)ds,

and writing the previous expression in terms of the characteristic function

φT , it becomes

ψT (v) =
φT (v − (α + 1)i)

(α + iv)(α + 1 + iv)
. (3.11)

Now we use the inverse Fourier transform and obtain:

CT (k) =
e−αk

2π

∫ ∞

−∞

e−ivkψT (v)dv =

=
e−αk

2π

∫ ∞

−∞

e−ivk φT (v − (α + 1)i)

(α + iv)(α + 1 + iv)
dv.
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Since φT (v − (α + 1)i) is the characteristic function of the Gaussian distri-

bution of sT , i.e. sT ∼ N (ln(S0) + µT, σ2T ) (remember that the charac-

teristic function of a Gaussian distribution with mean µ and variance σ2 is

φx(t) = eiµt−
1

2
σ2t2), we have that

φT (v − (α + 1)i) = ei(ln(S0)+µT )(v−(α+1)i)− 1

2
σ2T (v−(α+1)i)2 .

Finally, we obtain that a discounted call option can be expressed as

CT (k) =
e−αk

2π

∫ ∞

−∞

e−ivk e
i(ln(S0)+µT )(v−(α+1)i)− 1

2
σ2T (v−(α+1)i)2

(α + iv)(α + 1 + iv)
dv. (3.12)

3.4 Calculation of the incentive

Now, we return to equation (3.8) and we write the two means inside the

integral in terms of call options.

3.4.1 Computation of ω(d, xv)

First of all, we can assume that the �rst term E [Z(Xxv
v (s))] is equal to a

constant term g, which is the starting value of the incentive, minus a call

option plus another call option. In our case, g is the value of the incen-

tive at the initial price xv ≤ 140, so g = 110. For the expressions of the

call options, we use (3.12), with two logarithmic strikes k1 = ln 140 and

k2 = ln 180, obtained from (3.4). So we have that

E [Z(Xxv

v (s))] = g − Cv
s (k1) + Cv

s (k2),
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where

Cv
s (kj) =

e−αkj

2π

∫ ∞

−∞

e−ivkj
ei(lnxv+µvs)(v−(α+1)i)− 1

2
σ2
vs(v−(α+1)i)2

(α + iv)(α + 1 + iv)
dv

with j = 1, 2.

Meanwhile the second term E
[

min
{

Dd(s), yh + yb
}]

is equal to a function

(which we call D(s)) minus a call option with strike k3 = ln(yh + yb), so

E
[

min
{

Dd(s), yh + yb
}]

= E
[

Dd(s)− Cd
s (k3)

]

=

= E
[

deµds+σdW (s)
]

− Cd
s (k3) =

= de(µd+
1

2
σ2

d
)s − Cd

s (k3) =

= D(s)− Cd
s (k3), (3.13)

where we de�ned

D(s) = de(µd+
1

2
σ2

d
)s,

Cd
s (k3) =

e−αk3

2π

∫ ∞

−∞

e−iwk3
ei(ln d+µds)(w−(α+1)i)− 1

2
σ2

d
s(w−(α+1)i)2

(α + iw)(α + 1 + iw)
dw.

Now, since we want to calculate (3.8), we have to calculate the product

E [Z(Xxv

v (s))]E
[

min
{

Dd(s), yh + yb
}]

=

= (g − Cv
s (k1) + Cv

s (k2))(D(s)− Cd
s (k3)) =

= gD(s)− gCd
s (k3)− Cv

s (k1)D(s)+

+Cv
s (k1)C

d
s (k3) + Cv

s (k2)D(s)− Cv
s (k2)C

d
s (k3).
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Finally, de�ning

Axv(v, kj) = −ivkj + (iv + α + 1) ln xv j = 1, 2,

Ad(w, k3) = −iwk3 + (iw + α + 1) ln d,

B(w) = (α + iw)(α + 1 + iw),

Cv(v) = (iv + α + 1)µv −
1

2
σ2
v(v − (α + 1)i)2,

Cd(w) = (iw + α + 1)µd −
1

2
σ2
d(w − (α + 1)i)2, (3.14)

we obtain that (3.8) can be rewritten as

ω(d, xv) =

∫ ∞

0

e−rs
E [Z(Xxv

v (s))]E
[

min
{

Dd(s), yh + yb
}]

ds =

= gd

∫ ∞

0

e(−r+µd+
1

2
σ2

d
)sds− g

e−αk3

2π

∫ ∞

−∞

eA
d(w,k3)

B(w)

[
∫ ∞

0

e(−r+Cd(w))sds

]

dw+

− d
e−αk1

2π

∫ ∞

−∞

eA
xv (v,k1)

B(v)

[
∫ ∞

0

e(−r+Cv(v)+µd+
1

2
σ2

d
)sds

]

dv+

+
e−αk1−αk3

4π2

∫ ∞

−∞

∫ ∞

−∞

eA
d(w,k3)+Axv (v,k1)

B(w)B(v)

[
∫ ∞

0

e(−r+Cd(w)+Cv(v))sds

]

dvdw+

+ d
e−αk2

2π

∫ ∞

−∞

eA
xv (v,k2)

B(v)

[
∫ ∞

0

e(−r+Cv(v)+µd+
1

2
σ2

d
)sds

]

dv+

−
e−αk2−αk3

4π2

∫ ∞

−∞

∫ ∞

−∞

eA
d(w,k3)+Axv (v,k2)

B(w)B(v)

[
∫ ∞

0

e(−r+Cd(w)+Cv(v))sds

]

dvdw.

(3.15)
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3.4.2 Conditions for α

In order to have �nite integrals in (3.15) respect to the variable s, we have

to impose some condition on r.

For all v, w ∈ R and α > 0, we suppose that

r > µd +
1

2
σ2
d,

r > Re{Cd(w)},

r > Re{Cv(v)}+ µd +
1

2
σ2
d,

r > Re{Cd(w)}+Re{Cv(v)},

where

Re{Cv(v)} = (α + 1)µv −
1

2
σ2
v(v

2 − α2 − 2α− 1),

Re{Cd(w)} = (α + 1)µd −
1

2
σ2
d(w

2 − α2 − 2α− 1).

Since the conditions on r need to be valid for all v, w ∈ R and α > 0, this

means that r have to be grater then the supremum in v and w. So �rst we

calculate the supremum of Re{Cd(w)} and Re{Cv(v)}:

sup
w∈R

[

Re{Cd(w)}
]

= sup
w∈R

[

(α + 1)µd −
1

2
σ2
d(w

2 − α2 − 2α− 1)

]

= (α + 1)µd +
1

2
σ2
d(α

2 + 2α + 1 + sup
w∈R

[

−w2
]

) =

= (α + 1)µd +
1

2
σ2
d(α + 1)2,
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sup
v∈R

[Re{Cv(v)}] = sup
v∈R

[

(α + 1)µv −
1

2
σ2
v(v

2 − α2 − 2α− 1)

]

= (α + 1)µv +
1

2
σ2
v(α

2 + 2α + 1 + sup
v∈R

[

−v2
]

) =

= (α + 1)µv +
1

2
σ2
v(α + 1)2.

The inequalities for r become

r > sup
w∈R

[

Re{Cd(w)}
]

= (α + 1)µd +
1

2
σ2
d(α + 1)2,

r > sup
v∈R

[Re{Cv(v)}] + µd +
1

2
σ2
d =

= (α + 1)µv +
1

2
σ2
v(α + 1)2 + µd +

1

2
σ2
d,

r > sup
v,w∈R

[

Re{Cd(w)}+Re{Cv(v)}
]

=

= sup
w∈R

[

Re{Cd(w)}
]

+ sup
v∈R

[Re{Cv(v)}] =

= (α + 1)µd +
1

2
σ2
d(α + 1)2 + (α + 1)µv +

1

2
σ2
v(α + 1)2 =

= (µd + µv)(α + 1) +
1

2
(σ2

d + σ2
d)(α + 1)2.

These inequalities give us an upper bound for α. In fact:

� from the �rst inequality we obtain











(−
√

µ2
d + 2σ2

dr − µd − σ2
d)

1
σ2

d

< α

α < (
√

µ2
d + 2σ2

dr − µd − σ2
d)

1
σ2

d

,
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� from the second we have











(−
√

µ2
v − 2σ2

v(µd +
1
2
σ2
d − r)− µv − σ2

v)
1
σ2
v
< α

α < (
√

µ2
v − 2σ2

v(µd +
1
2
σ2
d − r)− µv − σ2

v)
1
σ2
v
,

� from the third











(−
√

(µd + µv)2 + 2(σ2
d + σ2

v)r − (µd + µv)− (σ2
d + σ2

v))
1

σ2

d
+σ2

v
< α

α < (
√

(µd + µv)2 + 2(σ2
d + σ2

v)r − (µd + µv)− (σ2
d + σ2

v))
1

σ2

d
+σ2

v
.

From these inequalities, knowing that α > 0, we obtain these conditions for

α:







































α > 0

α < (
√

µ2
d + 2σ2

dr − µd − σ2
d)

1
σ2

d

α < (
√

µ2
v − 2σ2

v(µd +
1
2
σ2
d − r)− µv − σ2

v)
1
σ2
v

α < (
√

(µd + µv)2 + 2(σ2
d + σ2

v)r − (µd + µv)− (σ2
d + σ2

v))
1

σ2

d
+σ2

v
.

(3.16)
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3.4.3 Condition for r

Now, note that, since α > 0, we need that all the three upper bounds for α

in (3.16) are grater then zero, this implies the following inequalities:



























(
√

µ2
d + 2σ2

dr − µd − σ2
d)

1
σ2

d

> 0

(
√

µ2
v − 2σ2

v(µd +
1
2
σ2
d − r)− µv − σ2

v)
1
σ2
v
> 0

(
√

(µd + µv)2 + 2(σ2
d + σ2

v)r − (µd + µv)− (σ2
d + σ2

v))
1

σ2

d
+σ2

v
> 0.

� the �rst inequalitiy gives us

√

µ2
d + 2σ2

dr − µd − σ2
d > 0

⇔
√

µ2
d + 2σ2

dr > µd + σ2
d

⇔ µ2
d + 2σ2

dr > µ2
d + 2µdσ

2
d + σ4

d

⇔ r > µd +
1

2
σ2
d,

which is the same condition that we found assuming that rd > 0,

� from the second inequality we obtain

√

µ2
v − 2σ2

v(µd +
1

2
σ2
d − r)− µv − σ2

v > 0

⇔

√

µ2
v − 2σ2

v(µd +
1

2
σ2
d − r) > µv + σ2

v

⇔ µ2
v − 2σ2

vµd − σ2
vσ

2
d + 2σ2

vr > µ2
v + 2µvσ

2
v + σ4

v

⇔ r > µd +
1

2
σ2
d + µv +

1

2
σ2
v ,
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so we �nd a new condition for r,

� �nally, the third inequality gives us

√

(µd + µv)2 + 2(σ2
d + σ2

v)r − (µd + µv)− (σ2
d + σ2

v) > 0

⇔
√

(µd + µv)2 + 2(σ2
d + σ2

v)r > µd + µv + σ2
d + σ2

v

⇔ µ2
d + 2µdµv + µ2

v + 2σ2
dr + 2σ2

vr > (µd + µv + σ2
d + σ2

v)
2

⇔ r > µd +
1

2
σ2
d + µv +

1

2
σ2
v ,

which is the same condition found in the second inequality.

So we obtain two conditions for r:











r > µd +
1
2
σ2
d

r > µd +
1
2
σ2
d + µv +

1
2
σ2
v ,

(3.17)

where we remember that µd, µv ∈ R and σd, σv > 0.

Notice that the �rst lower bound is equal to suppose that rd > 0, whereas

the second lower bound is a new condition to satisfy in order to have �nite

integrals in (3.15) when we integrate in the variable s.
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3.4.4 Computation of the integrals of ω(d, xv) in the

variable s

Finally, we are able to calculate the integrals in (3.15) in the variable s,

with r satisfying (3.17), and obtain

ω(d, xv) =
gd

r − µd −
1
2
σ2
d

− g
e−αk3

2π

∫ ∞

−∞

eA
d(w,k3)

B(v)(r − Cd(w))
dw+

− d
e−αk1

2π

∫ ∞

−∞

eA
xv (v,k1)

B(v)(r − Cv(v)− µd −
1
2
σ2
d)
dv+

+
e−αk1−αk3

4π2

∫ ∞

−∞

∫ ∞

−∞

eA
d(w,k3)+Axv (v,k1)

B(w)B(v)(r − Cd(w)− Cv(v))
dvdw+

+ d
e−αk2

2π

∫ ∞

−∞

eA
xv (v,k2)

B(v)(r − Cv(v)− µd −
1
2
σ2
d)
dv

−
e−αk2−αk3

4π2

∫ ∞

−∞

∫ ∞

−∞

eA
d(w,k3)+Axv (v,k2)

B(w)B(v)(r − Cd(w)− Cv(v))
dvdw.

(3.18)

From this expression we will calculate the values of ω(d, xv) numerically

using Matlab.





Chapter 4

Model implementation

4.1 Introduction to the Matlab implementa-

tion

In this chapter we want to solve (3.18) for one particular case and to do

this, we will use MATLAB. MATLAB (MATrix LABoratory) is a propri-

etary multi-paradigm programming language and numeric computing envi-

ronment which allows matrix manipulations, plotting of functions and data,

implementation of algorithms, creation of user interfaces, and interfacing

with programs written in other languages.

4.1.1 Initial data

In our case we suppose to be in Veneto, so we have the function of the

incentive (3.4), and we set the following initial data:

� the maximum allowed installation for the biogas producer is θb = 0.32
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MW,

� the maximum photovoltaic panels capacity for the household is θh =

0.2 MW,

� the total gas production capacity is Kg = 18.9394 m3,

� the conversion factor is b = 0.01056 MW/m3,

� the installation cost of photovoltaic panels is ch = 900000 e/MW,

� the cost of installing a turbine of capacity yh is cb = 2500000 e/MW,

� the cost of the energy is xc = 65 e/MWh,

� the correlation factor is ρc = 0.01,

� the gas spot price is p = 74.7 e/MWh.

Moreover, we set

µd = −7.269 · 10−4, σd = 0.03812835,

µv = −0.0043076, σv = 0.09281802,

µp = −0.35, σp = 0.8371437,

µc = −2.14 · 10−6, σc = 0.00128.

Now, from (3.17), we calculate the conditions for r (the variables LB_r1 and

LB_r2), we obtain that: LB_r1 = −1.4463·10−8 and LB_r2 = −2.2045·10−8,

so we set

r = 3.4247 · 10−6.



Chapter 4. Model implementation 39

We do the same with α, �rst we compute the upper bounds from (3.16),

which we call UB_alpha1, UB_alpha2 and UB_alpha3, obtaining: UB_alpha1

= 0.0047, UB_alpha2 = 7.9952 · 10−4 and UB_alpha3 = 6.8416 · 10−4, then

we set

α = 1 · 10−4.

Finally, we suppose that yh equal to the maximum photovoltaic panels ca-

pacity and yb equal to the maximum allowed installation, so:

yh = θh, yb = θb.

4.1.2 Computation of the pro�ts and of the incentives

Then we start two cicles to compute the incentive and the pro�ts with and

without the incentive:

� one with the variables xv varying from 60 to 200 with step 10,

� one with d varying from 0.1 to 2 with step 0.1.

For each of these values, �rst we compute the pro�ts without the incentive

(called Jh0 and Jb0) from Proposition 3.3; then we compute the incen-

tive from (3.18); and �nally, from (3.5) and (3.7), we compute the biogas

producer and the household pro�t (called Jb and Jh) with the incentive,

assuming that β = 0.5.

To calculate the incentive, we compute the integrals in (3.18) one by one,

using the MATLAB functions:

� integral1, which numerically integrates the function from xmin to

xmax, using global adaptive quadrature and default error tolerances,
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� integral2, which approximates the integral of the function over the

planar region xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax,

where we set xmin = ymin = − M, xmax = ymax = M and M = 10000.

Finally, we plot �ve surfaces representing the incentive and the pro�ts with

and without the incentive.

4.2 Code

In this Section we show the MATLAB code used for the implementation.

4.2.1 Data setting of the problem

% Master's thesis in Mathematical Engineering, Ivano Severino

% Fixed data:

% -thetah is the maximum allowed installation for

% the household (MW)

% -thetab is the maximum allowed installation for

% the biogas producer (MW)

% -Kg is the total gas production capacity (m3)

% -b>0 is the conversion factor (MWh/m3)

% -ch is the installation cost of photovoltaic panels

% per MW (¿/MW)

% -cb is a cost coefficient of installing a turbine (¿/MW)
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% -xc initial value of the purchase electricity price (¿/MWh)

% -roc is the correlation factor between cost and demand

% of the electricity

% -p is the initial value of the gas spot price (¿/MWh)

% -r is the discount rate (1/h)

% -beta is the share factor of the incentive

% (we assume that is 0.5)

thetah = 0.32;

thetab = 0.2;

Kg = 18.9394;

b = 0.01056;

ch = 2500000;

cb = 900000;

xc = 65;

roc = 0.01;

p = 74.7;

beta = 0.5;

mud = -7.269*10^(-4);

sigmad = 0.03812835;

muv = -0.0043076;

sigmav = 0.09281802;

mup = -0.35;

sigmap = 0.8371437;

muc = -2.14*10^(-6);
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sigmac = 0.00128;

% LB_r1 and LB_r2 are the lower bounds for r,

% we need to have r grater than these values

LB_r1 = mud+sigmad^2*0.5;

LB_r2 = mud+sigmad^2*0.5+muv+sigmav^2*0.5;

r = 3.4247*10^(-6);

rv = r-muv-sigmav^2*0.5;

rp = r-mup-sigmap^2*0.5;

rd = r-mud-sigmad^2*0.5;

rc = r-muc-sigmac^2*0.5;

rcd = rc+rd-r-roc*sigmac*sigmad;

% UB_alpha1, UB_alpha2, UB_alpha3 are the three upper bounds

% for alpha

UB_alpha1 = (sqrt(mud^2+2*sigmad^2*r)-mud-sigmad^2)/sigmad^2;

UB_alpha2 = (sqrt(muv^2-2*sigmav^2*(mud+0.5*sigmad^2-r))-...

muv-sigmav^2)/sigmav^2;

UB_alpha3 = (sqrt((mud+muv)^2+2*(sigmad^2+sigmav^2)*r)-...

(mud+muv)-(sigmad^2+sigmav^2))/(sigmad^2+sigmav^2);

% -M is the value that we use in the definite integrals

% yh if the capacity of the photovoltaic panels
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% yb is the capacity if a gas turbine

M = 10000;

yh = thetah;

yb = thetab;

% k1, k2, k3 are three strike values

% g is the maximum value of the incentive

xmin = -M;

xmax = M;

ymin = -M;

ymax = M;

k1 = log(140);

k2 = log(180);

k3 = log(yh+yb);

g = 110;

alpha = 1e-4;

4.2.2 Computation of the incentive and the pro�ts

% I use "contatored" and "contatorexv" as indices to create

% matrices

contatored = 0;
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% Loop on d and xv to obtain different values of the

% incentive

for d = 0.1:0.1:2

contatored = contatored+1;

contatorexv = 0;

for xv = 60:10:200

contatorexv = contatorexv+1;

gb = xv/rv-p/rp-cb;

gh = xv/rv-ch;

% -Jb0 is the profit of the biogas producer without the

% incentive

% -Jbh is the profit of the household without the incentive

Jh0(contatored,contatorexv) = yh*gh-xc*d/rcd;

Jb0(contatored,contatorexv) = yb*gb+p*b*Kg/rp;

% I define a function handle in order to calculate

% the integrals using the matlab function "integral"

% for single integrals and the function

% "integral2" for double integrals.

% For double integrals i used iterated method with

% tollerance = 10^-8
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int1 = @(w) exp(-i*w*k3+(i*w+alpha+1)*log(d))/((alpha+i*w)*...

(alpha+1+i*w)*(r-((alpha+1+i*w)*mud-...

(w^2-2*i*alpha*w-2*i*w-alpha^2-2*alpha-1)*sigmad^2*0.5)));

omega1 = integral(int1,xmin,xmax,'ArrayValued',true);

int2 = @(v) exp(-i*v*k1+(i*v+alpha+1)*log(xv))/((alpha+i*v)*...

(alpha+1+i*v)*(r-((alpha+1+i*v)*muv-(v^2-2*i*alpha*v-...

2*i*v-alpha^2-2*alpha-1)*sigmav^2*0.5)-mud-sigmad^2*0.5));

omega2 = integral(int2,xmin,xmax,'ArrayValued',true);

int3 = @(w,v) exp(-i.*w*k3+(i.*w+alpha+1)*log(d)-i.*v*k1+...

(i.*v+alpha+1)*log(xv))./((alpha+i.*w).*(alpha+1+...

i.*w).*(alpha+i.*v).*(alpha+1+i.*v).*(r-((alpha+1+...

i.*w)*mud-(w.^2-2*i*alpha.*w-2*i.*w-alpha^2-2*alpha-...

1)*sigmad^2*0.5)-((alpha+1+i.*v)*muv-(v.^2-...

2*i*alpha.*v-2*i.*v-alpha^2-2*alpha-1)*sigmav^2*0.5)));

omega3 = integral2(int3,xmin,xmax,ymin,ymax,'Method',...

'iterated','AbsTol',1e-5,'RelTol',1e-6);

int4 = @(v) exp(-i*v*k2+(i*v+alpha+1)*log(xv))/...
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((alpha+i*v)*(alpha+1+i*v)*(r-((alpha+1+i*v)*muv-...

(v^2-2*i*alpha*v-2*i*v-alpha^2-2*alpha-1)*sigmav^2*...

0.5)-mud-sigmad^2*0.5));

omega4 = integral(int4,xmin,xmax,'ArrayValued',true);

int5 = @(w,v) exp(-i.*w*k3+(i.*w+alpha+1)*log(d)-i.*v*k2+...

(i.*v+alpha+1)*log(xv))./((alpha+i.*w).*(alpha+1+...

i.*w).*(alpha+i.*v).*(alpha+1+i.*v).*(r-((alpha+1+...

i.*w)*mud-(w.^2-2*i*alpha.*w-2*i.*w-alpha^2-2*alpha-...

1)*sigmad^2*0.5)-((alpha+1+i.*v)*muv-(v.^2-...

2*i*alpha.*v-2*i.*v-alpha^2-2*alpha-1)*sigmav^2*0.5)));

omega5 = integral2(int5,xmin,xmax,ymin,ymax,'Method',...

'iterated','AbsTol',1e-5,'RelTol',1e-6);

% omega is the function of the incentive

omega = g*d/(r-mud-0.5*sigmad^2)-g*exp(-alpha*k3)/(2*pi)*...

omega1-d*exp(-alpha*k1)/(2*pi)*omega2+exp(-alpha*k3-...

alpha*k1)/(4*pi^2)*omega3+d*exp(-alpha*k2)/(2*pi)*...

omega4-exp(-alpha*k3-alpha*k2)/(4*pi^2)*omega5;

asse_d(contatored) = d;

asse_xv(contatorexv) = xv;
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% Real_omega is the real part of the incentive

Real_omega(contatored,contatorexv) = real(omega);

end

end

% Now I calculate both the profit of the biogas producer Jb

% and the household Jh with the incentive.

Jb = Jb0+(1-beta)*Real_omega;

Jh = Jh0+beta*Real_omega;

4.2.3 Graphic outputs

% I plot the graphs for the incentive, and for both the

% profits.

figure1 = figure;

surf(asse_xv,asse_d,Jb0);

xlabel('price')

ylabel('demand')

zlabel('BiogasProducer profit no incentive')

colorbar
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figure2 = figure;

surf(asse_xv,asse_d,Jh0);

xlabel('price')

ylabel('demand')

zlabel('Household profit no incentive')

colorbar

figure3 = figure;

surf(asse_xv,asse_d,Real_omega);

xlabel('price')

ylabel('demand')

zlabel('incentive')

colorbar

figure4 = figure;

surf(asse_xv,asse_d,Jb);

xlabel('price')

ylabel('demand')

zlabel('BiogasProducer profit')

colorbar

figure5 = figure;

surf(asse_xv,asse_d,Jh);

xlabel('price')

ylabel('demand')

zlabel('Household profit')
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colorbar

4.3 Graphics and results

In this section, we explain the results obtaining from the implementation

with the set of data showed in subsection 4.1.1.

4.3.1 Outputs for the household's and the biogas pro-

ducer's pro�t without the incentive

First we show two graphs referred to the household and the biogas producer

pro�t without the presence of the incentive (i.e. J0
h and J0

b ):

Figure 4.1: graph of the household's pro�t without the incentive
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Figure 4.2: graph of the biogas producer's pro�t without the incentive

4.3.2 Outputs for the incentive

Now, we show the results of the computation of the incentive.

First let us consider the function

ω̄(d) =

∫ ∞

0

e−rs
E
[

min{Dd(s), yh + yb}
]

ds,

which is the total expected unitary revenue from the incentives based on

self-consumption de�ned in [1]. From (3.13), we know that

E
[

min{Dd(s), yh + yb}
]

= D(s)− Cd
s (k3) =

= de(µd+
1

2
σ2

d
)s −

e−αk3

2π

∫ ∞

−∞

eA
d(w,k3)+Cd(w)s

B(w)
dw,
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(using the notation (3.14)) and this implies that

ω̄(d) =

∫ ∞

0

e−rs

[

de(µd+
1

2
σ2

d
)s −

e−αk3

2π

∫ ∞

−∞

eA
d(w,k3)+Cd(w)s

B(w)
dw

]

ds =

= d

∫ ∞

0

e(µd+
1

2
σ2

d
−r)sds−

e−αk3

2π

∫ ∞

−∞

eA
d(w,k3)

B(w)

∫ ∞

0

e(C
d(w)−r)sdsdw =

=
d

r − µd −
1
2
σ2
d

−
e−αk3

2π

∫ ∞

−∞

eA
d(w,k3)

B(w)(r − Cd(w))
dw.

De�ning Z1 = 70 and Z2 = 110 and implementing numerically Z1 · ω̄(d)

and Z2 · ω̄(d) with d varying from 0.1 to 2, we obtain two curves, which are

respectively a lower and an upper bound of the incentive function ω(d, xv)

de�ned in (3.8), as showed in the following graph:

Figure 4.3: maximum and minimum value of the incentive
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We can �nally show the surface of the incentive with d varying from 0.1 to

2 with step 0.1, and xv varying from 60 to 200 with step 10:

Figure 4.4: graph of the incentive with respect to d and xv, note that it increases

as the demand increases

4.3.3 Outputs for the household's and for the biogas

producer's pro�t with the incentive

Finally, we show the pro�ts of the household and of the biogas producer

with the presence of the incentive.

In �gure 4.5 we have the surface of the household's pro�t:
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Figure 4.5: graph of the household's pro�t with the incentive

Notice that the more the initial price raises, the more the household's pro�t

increases, while the pro�t decreases as the demand increases. This is due

to the de�nition of J0
h (3.2), where the demand a�ects negatively the pro�t

of the household.

Then, in �gure 4.6, we have the surfaces of the biogas producer pro�t with

the incentive:
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Figure 4.6: graph of the biogas producer's pro�t without the incentive

Here we can notice that the biogas producer's pro�t increases as the demand

and the initial price increase.



Chapter 5

Conclusions

In approaching the conclusion of this discussion, we summarize the key

points and the results of this work.

We start from the environmental issues and the importance of renewable

energies, then we introduce Renewable Energy Communities and �nally we

explain the goal of this work.

In this thesis we begin from the model introduced in [1], which examines a

particular type of REC composed of a "representative" household and a bio-

gas producer, where the potential demand of the community is given by the

household's demand, while both members produce renewable energy. The

biogas producer invests in technology to convert biogas into electricity and

sell it in the electricity market at the spot price. However the biogas that

is not transformed into energy can be sold on the market at the gas spot

price. The household invests in photovoltaic panels to reduce the energy

purchased from the market in order to cover its own power demand, more-
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over the household has the possibility to sell the excess of energy not used for

self-consumption. The advantage of entering into a REC for both players is

that their joint self-consumption is rewarded with a governmental incentive.

In this work we analyze the total expected revenue from the incentive based

on self-consumption and the pro�ts of this simpli�ed REC with the Italian

government incentive taken from [3]. We begin de�ning the gas and electric-

ity spot prices and the household's power demand, afterwards we de�ne the

biogas producer's and household's pro�t functionals without the presence

of the incentive. Then we introduce the total expected revenue from the

incentive based on self-consumption and we de�ne the pro�t of the biogas

producer and the household with the incentive.

Now we start to compute the function of the incentive, �rst with an an-

alytical approach, where we end up with a particular exspression of the

incentive, then with a numerical approach, where we compute numerically

the function of the incentive in particular case. Finally, we show the ob-

tained results through graphs of the incentive and of the pro�ts of both

members with and without the incentive.

We conclude with the hope that this work can help and speed up the transi-

tion to the use of renewable energies with the help of Italian and European

government incentives. Only through collective e�ort and shared will can

we e�ectively address climate problems and build a better future for gener-

ations to come.



Bibliography

[1] A. Awerkin, P. Falbo, T. Vargiolu, Optimal Investment and Fair Shar-

ing Rules of the Incentives for Renewable Energy Communities, URL:

https://arxiv.org/abs/2311.12055.

[2] S. Shreve, Stochastic calculus for �nance 2: Continuous-time models,

Springer, 2004.

[3] Decreto CER, URL: https://www.caor.camcom.it/sites/default/

files/contenuto_redazione/eventi/uploads/documents/

Cer-decreto-approvato.pdf

[4] Fred Espen Benth, Jurate Saltyte Benth, and Steen Koekebakker,

Stochastic Modelling of Electicity and Related Markets, World Scienti�c,

2008.

[5] H. Pham, Continuous-time Stochastic Control and Optimization with

Financial Applications, Springer, Berlin, Heidelberg, 2009.

[6] A. Quarteroni, R. Sacco, F. Saleri,Matematica numerica, Springer 1998.

[7] M. J. Maron, Numerical Analysis: A Practical Approach, Macmillan

1982.



58 Bibliography

[8] P. Carr, D. B. Madan, Option valuation using the Fast Fourier Trans-

form, Journal of computational Finance, 2, 1999, pp. 61-73.

[9] United Nations, What is Climate Change? URL: https://www.un.

org/en/climatechange/what-is-climate-change.

[10] M. Buchanan, C. Horwitz, Pollution and Society URL:

https://web.archive.org/web/20070411002000/http://www.

umich.edu/~gs265/society/pollution.htm.

[11] Biodiversity loss, a risk for the environment and for hu-

manity URL: https://www.iberdrola.com/sustainability/

biodiversity-loss#:~:text=Biodiversity%20loss%20refers%

20to%20the,natural%20patterns%20present%20in%20ecosystems..

[12] United Nations, Renewable energy � powering a safer future

URL: https://www.un.org/en/climatechange/raising-ambition/

renewable-energy.

[13] European Commission, Energy communities, URL: https:

//energy.ec.europa.eu/topics/markets-and-consumers/

energy-communities_en.

[14] European Commission, What is an energy community?,

URL: https://rural-energy-community-hub.ec.europa.eu/

energy-communities/what-energy-community_en.


	Abstract
	Introduction
	Environmental issues
	Climate change
	Pollution
	Biodiversity loss

	Renewable Energies
	Renewable Energy Communities
	About Renewable Energy Communities
	Different types of Renewable Energy Communities

	Renewable Energy Communities in Italy

	Mathematical model
	Introduction to the model and profits without the incentive
	Introduction
	Profit of both biogas producer and household without the incentives
	Calculation of both profits Jb0 and Jh0

	Profits of the biogas producer and of the household with incentives
	Introduction of the incentives
	Profits of the biogas producer and the household

	Fourier methods
	Calculation of the incentive
	Computation of (d,xv)
	Conditions for 
	Condition for r
	Computation of the integrals of (d,xv) in the variable s


	Model implementation
	Introduction to the Matlab implementation
	Initial data
	Computation of the profits and of the incentives

	Code
	Data setting of the problem
	Computation of the incentive and the profits
	Graphic outputs

	Graphics and results
	Outputs for the household's and the biogas producer's profit without the incentive
	Outputs for the incentive
	Outputs for the household's and for the biogas producer's profit with the incentive


	Conclusions

