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INTRODUCTION 

 

Value at risk (VaR) is a risk measure “used by financial institution and their regulators since it 

was first promoted by J.P. Morgan and RiskMetrics and subsequently adopted in the Basel 

Accords, beginning in 1988” (Allen and Singh (2010)). 

Essentially, it is a number that indicates how much a given portfolio can lose within a certain 

time period and for a certain confidence level; even if VaR seems an easy concept, its 

calculation represents an important statistical issue. 

The relevance of this problem is mainly due to the usage of the VaR as a tool for understanding 

the market risk hold by a financial firm/institution. Thus if it is not properly estimated, it can 

lead to an allocation of capital below or above the optimum, affecting the profitability and/or 

the financial stability of the firm/institution that uses it. 

Therefore, the calculation of the VaR is an issue of great importance that requires “accurate 

knowledge of the distribution of extreme events. This is a difficult task since the distribution of 

portfolio returns is not constant over time” (Kouretas, Zarangas (2005)). 

During the last years, several approaches have been proposed for modelling the VaR, but most 

of them have focused on creating the whole distribution of the returns, relying on rigid 

assumptions of normality or independent and identically distributed returns. An alternative 

approach was introduced by Engle and Manganelli (2002), who used the quantile regression 

methodology to overcome the above strict assumptions. 

In fact, the advantages of quantile regression are essentially three: “First, regression quantile 

estimates are known to be robust to outliers, a desirable feature in general and for applications 

to financial data in particular. Second, regression quantile is a semi-parametric technique and 

as such imposes minimal distributional assumptions on the underlying data generating process 

(DGP). Third, our multivariate framework allows researchers to directly measure the tail 

dependence among the random variables of interest, rather than recovering it indirectly via 

models of time-varying first and second moments” (White, Kim, Manganelli (2015)). 

Thanks to this tool, Engle and Manganelli (2002) created a VaR measure called Conditional 

Autoregressive Value at Risk (CAViaR), which permits to model the evolution of the quantiles 

over time directly in an autoregressive framework. 

 



4 

The purpose of my thesis is to reproduce/test one CAViaR specification introduced by Engle 

and Manganelli and compare the results obtained from the estimation of three models made 

from that CAViaR specification for three comparable portfolios. 

The thesis is divided in five chapters: Chapter 1 reviews the literature on regression quantiles, 

while Chapter 2 introduces the CAViaR models made by Engle and Manganelli (2002). In 

Chapter 3, I will present some implementations and developments on the original CAViaR, 

while in Chapter 4 I will introduce my data sets and my models. Chapter 5 reports the empirical 

results and provides few conclusions. 
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FIRST CHAPTER: QUANTILE REGRESSION 

 

1.1 Introduction 

 

Quantile regression has born trying to solve an issue related to the “linear regression model and 

associated estimation method of least squares” (Koenker (2005)). 

Indeed, the linear regression curve has a huge disadvantage: it explores just the averages of the 

distributions related to the set of covariates. The mean is, in fact, only one of the tools 

statisticians use to investigate the data; other tools (e.g. measures of spread, skewness, 

histograms, kurtosis, boxplots, etc.) are often used to gain further insight on data’s features. 

Therefore, the mean gives a partial picture of a single distribution and, consequently, regression 

curve (that is based on the mean itself) gives an incomplete picture for a set of distributions 

(Mosteller and Tuckey (1977)).  

Koenker tried to overcome this problem proposing a different statistic tool: the Quantile 

Regression. 

 

1.2 Quantile regression 

 

Linear regression represents the dependent variable as a linear function of one or more 

independent variables, subject to a random ‘error’ term; it estimates the mean value of the 

dependent variable for given levels of the independent variables. 

For this type of regression, where we want to understand the central tendency in a dataset, OLS 

(ordinary least squares) is a very effective method. 

The problem arises when we want to go beyond the mean value and/or collecting information 

about the extremes of a data set by exploring the quantiles; in these cases, OLS loses its efficacy. 

It is inside this framework that the quantile and the concept of quantile regression grew. 

The quantiles ’objective is to divide a dataset into parts and Quantile Regression tries to extend 

this idea to the estimation of conditional quantile functions, i.e., as Allen and Singh (2009) said, 

“models in which quantiles of the conditional distribution of the response variable are expressed 

as functions of observed covariates”. 
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This was technically achieved by Koenker thanks to a method that can be seen as an extension 

of classical least squares estimation of conditional mean models: ordinary least squares 

minimizes the differences between the observed dependent variable and the responses predicted 

by the linear approximation of the independent variables (i.e. the error). Instead, median 

regression (i.e. the central special case), also known as least-absolute-deviations (LAD) 

regression, minimizes a sum of absolute errors. The remaining conditional quantile functions 

are found by minimizing an asymmetrically weighted sum of absolute errors.  

 

The group of estimated conditional quantile functions offers a more complete view of the effect 

of the independent variables on the features of the distribution (location, scale, shape, etc.) of 

the dependent variable (Allen and Singh (2009)). 

 

1.3 Linear regression vs Quantile regression 

 

The purpose of analyzing a data set by a regression is to find out the behavior of a dependent 

variable given the information contained in a group of explanatory/independent variables. 

For doing so, we can use the so-called Ordinary Least Squares approach: it permits us to specify 

a linear regression model and estimate its unknown parameters by minimizing the sum of its 

squared errors. 

 

OLS can achieve some good properties called “BLUE” (i.e. it can became the best, linear, and 

unbiased estimator) if four assumptions are respected: 

 

1. The independent variables are non-stochastic 

2. The expectations of the error term are zero 

3. Homoscedasticity, i.e. the variance of the error terms is constant 

4. No autocorrelation 

 

These assumptions are quite strict and it is very common that data violate some of them, with 

the consequence that OLS is not the best, linear, unbiased estimator anymore (Montenegro 

(2001)). 

 

In this case, Quantile Regression can be used to deal with issues arise from the usage of OLS.  
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For instance, in the very common case in which the error terms are not constant across a 

distribution, Quantitative Regression (QR) is more robust than OLS. 

Indeed, if the errors are highly non-normal distributed, the homoscedasticity assumption of 

OLS is violated and it is not efficient anymore. On the contrary, QR is more flexible for 

modeling data with heterogeneous conditional distributions (it is considered a semiparametric 

model as it avoids assumptions about the parametric distribution of the error process). 

Data of this type are common in many fields, including econometrics, survival analysis, and 

ecology (Koenker and Hallock (2001)). 

 

Another important issue that arises from the usage of OLS regression is that it assumes that the 

independent variables affect only the location of the conditional distribution of the response. 

On the contrary, QR provides a richer description of the data: it allows us to consider the impact 

of an independent variable on the entire distribution of the dependent one, and not just on its 

conditional mean. 

In fact, as Koenker (2005) said, “different measures of central tendency and statistical 

dispersion can be useful to obtain a more comprehensive analysis of the relationship between 

variables”. 

 

Another important advantage of quantile regression, with respect to the OLS regression, is that 

the QR estimates are more robust to extreme outliers. 

“In quantile regression, the median estimator minimizes the symmetrically weighted sum of 

absolute errors (where the weight is equal to 0.5) to estimate the conditional median function, 

other conditional quantile functions are estimated by minimizing an asymmetrically weighted 

sum of absolute errors, where the weights are functions of the quantile of interest. This makes 

quantile regression robust to the presence of outliers” (Allen and Singh (2009)). 

 

Furthermore, QR is invariant to monotonic transformations, so the quantiles of ℎ(�) (a 

monotone transformation of y) are ℎ(��(�)), and the inverse transformation can be used to 

translate the results back to y. 

This is not possible for the mean as ��ℎ(�)	 ≠ ℎ��(�)	 (Baum (2013)). 

 

1.4 Quantiles via Optimization 
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Quantile regression is the result of a simple idea: the generalization of the concept of a 

univariate quantile to a conditional quantile given one or more independent variables (Colin 

(Lin) Chen). 

Therefore, for understanding quantile regression is necessary to introduce and comprehend 

quantiles. Gilchrist (2001) describes a quantile as "simply the value that corresponds to a 

specified proportion of an (ordered) sample of a population…Quantiles hereby mark the 

boundaries of equally sized, consecutive subsets”. 

From a statistic point of view: 

Let X be any real-valued random variable, characterized by its (right-continuous) distribution 

function 

�(�) = ����(� ≤ �) 

We can define the τth quantile of X as the inverse function 

���(�) = �����: �(�) ≥ �� 

where 0 < � < 1. 

In particular, the median, ��� "�#$, plays a key role. 

 

Quantiles are strictly related to the operations of ordering and sorting the sample observations; 

therefore, it is easy to understand that we can define them through a simple alternative expedient 

(i.e. an optimization problem). The idea is well expressed by Koenker and Hallock (2001): “just 

as we can define the sample mean as the solution to the problem of minimizing a sum of squared 

residuals, we can define the median as the solution to the problem of minimizing a sum of 

absolute residuals”. 

In particular, from a technical point of view, for guaranteeing that there are the same number 

of observations above and below the median, we should have a symmetrical piecewise linear 

absolute value function (this permits that the minimization of the sum of absolute residuals is 

equal to the number of positive and negative residuals). 

 

From a mathematical point of view, this can be written as: 

For a random sample ���, �#, … , �'� of (, the sample median is 
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)��*∈ℝ - |�/ − 1|'
/2�

 

 

Since the symmetry of the absolute value produces the median, thus if we minimize a sum of 

asymmetrically weighted absolute residuals (i.e. giving different weights to positive and 

negative residuals) we can get the quantiles. 

This can be reached by solving 

 

)��*∈ℝ - 34(�/ − 1)'
/2�

 

 

Where 34(∙) is the tilted absolute value function as shown in Figure 1. 

This minimization problem gives the �6ℎ sample quantile as its solution. 

To see that this is true, it is only necessary to compute the directional derivative of the objective 

function with respect to 1, taken from the left and from the right (Allen and Singh (2009)). 

 

For concluding this Section, it is important to highlight the most important thing we have done, 

i.e. the “the fact that we have expressed the problem of finding the τth sample quantile, a 

problem that might seem inherently tied to the notation of an ordering of the sample 

observations, as the solution to a simple optimization problem. In effect, we have replaced 

sorting by optimizing. This will prove to be the key idea in generalizing the quantiles to a much 

richer class of models” (Koenker (2005)). 
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Figure 1. Quantile regression ρ function 

 

where 34(7) = 7(� − 8(7 < 0)), with 0 < � < 1 

 

1.5  From Quantiles to Quantile Regression 

 

The observation that the unconditional quantiles can be expressed as the solution of an 

optimization problem, leads us to express conditional quantiles in an analogous way. 

QR transforms a conditional distribution function into a conditional quantile function by cutting 

it into segments. These segments describe, with the use of quantiles, the cumulative distribution 

of a dependent variable conditional to some explanatory variables (wikibooks.org (2014)). 

This can be well illustrate by comparing QR with OLS: 

For a random sample ���, �#, … , �'�, we know that the sample mean (i.e. an estimate of the 

unconditional population mean) solves the problem 

 

)��9∈ℝ -(�/ − :)#'
/2�

 

 

If we now replace the scalar : by a parametric function :(�, ;) and solve  
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)��<∈ℝ= -(�/ − :(�/ , ;))#'
/2�

 

 

we obtain an estimate of the conditional expectation function �((|�). 

In quantile regression, we proceed exactly in the same way. 

Let focus on the median case:  

Since the sample median (i.e. a scalar), solves 

 

)��*∈ℝ -|�/ − 1|'
/2�

 

 

To obtain an estimate of the conditional median function, we simply replace the scalar ξ in the 

previous equation by the parametric function 1(�/, ;) and set τ = 0.5. 

Now, to obtain the estimates of the other conditional quantile functions we just replace absolute 

values by 34(∙), and solve 

 

)��*∈ℝ= - 34(�/ − 1(�/ , ;))'
/2�

 

 

It should be noticed that here, as opposed to OLS, the minimization is done for each subgroups 

defined by 34 where the estimation of the �6ℎ quantile function is reached with the parametric 

function 1(�/ , ;). 

The minimization problem, when 1(�/, ;) is expressed as a linear function of parameters, can 

be solved very efficiently by linear programming methods (Koenker and Hallock (2001)). 

 

1.6 Linear Quantile Regression 
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Let > = (��, … , �') denote the matrix of n observed vectors of the random vector �, and let 

� = (��, … , �') denote the n observed responses. The model for linear quantile regression is 

 

� = >?; + A 

 

where ; = (;�, … , ;B)′ is the unknown p-dimensional vector of parameters and A =
(A�, … , A')′ is the n-dimensional vector of unknown errors. 

As was described in previous section, the �6ℎ quantile regression estimator is a solution of 

 

)��<∈ℝ=� - �|�/ − �/?;|
/∈D/:EFGHFI<J

+ - (1 − �)|�/ − �/?;|	
/∈D/:EFKHFI<J

 

 

The �6ℎ conditional quantile function is just the linear function composed by the �6ℎ regression 

quantile ;(�) and the inverse of the matrix consisting of n observed vectors of the random 

vector, i.e. 

 

�E(�|>) = >′;(�) 

 

What about the computational aspects? 

The minimization problem seen above can be reformulated as a linear programming problem 

 

)��<L,<M,NL,NM∈ℝOP×ℝLOR��1'? 7S + (1 − �)1'? 7�|�(;S − ;�) + 7S − 7� = (� 

 

where 

;TS = max (;T, 0), ;T� = −min (;T, 0) 
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7TS = max (7T , 0), 7T� = −min (7T , 0) 

 

This linear programming problem can be efficiently solved using some specific simplex 

algorithm. 

For instance, the median regression algorithm of Barrodale and Roberts (1974) was largely used 

and can be easily modified for general quantile regression problems. 

The way the algorithm works was well described by Koenker and Hallock (2000): “The 

Barrodale and Roberts approach typifies the class of exterior point algorithms for solving linear 

programming problems: we travel from vertex to vertex along the edges of the polyhedral 

constraint set, choosing at each vertex the path of steepest descent, until we arrive at the 

optimum”. 

 Theoretically, the number of iterations can grow very fast with the sample size; nevertheless, 

this algorithm is still very used when the data set contains less than tens of thousands of 

observations (Colin (Lin) Chen). 

For solving the problems arising from large data sets, some alternative approaches have been 

developed; among them, we can find the interior point approach of Karmarkar (1984). The way 

it works was described by Colin (Lin) Chen: it “solves a sequence of quadratic problems in 

which the relevant interior of the constraint set is approximated by an ellipsoid: instead of 

traversing the outer surface, it takes Newton steps from the interior of a deformed version of 

the constraint set toward the boundary”. 

In addition to this algorithm, other approaches can work quite well when we use a huge data 

set; in fact, “Portnoy and Koenker (1997) have shown that a combination of interior point 

methods and effective problem preprocessing render large scale quantile regression 

computation competitive with least squares computations for problems of comparable size” 

(Colin (Lin) Chen).  

Other approaches, besides the interior point method, have been provided for solving the linear 

programming problems. One of these is the finite smoothing algorithm of Madsen and Nielsen 

(1993): it approximates the objective function “with a smoothing function, so that the Newton-

Ralphon algorithm can be used iteratively to obtain the solution after a finite number of 

loops…The smoothing algorithm extends naturally to general quantile regression” (Colin (Lin) 

Chen). 
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1.7 Properties of Quantile Regression 

 

Quantile regression estimator has some important properties that can help to better understand 

regression results. 

Several of these properties can be grouped together and identified by a specific name (i.e. 

equivariance). 

If ;Z(τ; y, X) denotes a τth regression quantile based on observations (y, X), the four basic 

equivariance properties of ;Z  (τ; y, X) are the followings: 

 

� Scale equivariance 

For any [ > 0 and any 0 < � < 1 

 

;Z(�; [(, �) = [;Z(�; (, �) 

;Z(�; −[(, �) = −[;Z(1 − �; (, �) 

   

� Shift equivariance 

For any ^ ∈ ℝ_and any 0 < � < 1 

 

;Z(�; ( + �^, �) = ;Z(�; (, �) + ^ 

 

� Equivariance to reparametrization of design 

Let > any ` × ` nonsingular matrix and 0 < � < 1 

 

;Z(�; (, �>) = >��;Z(�; (, �) 

 

It is important to highlight that also the least-squares estimators share these three properties, 

even if this is not commonly true for other regression estimators. 

 

In addition to the previous properties, Quantiles enjoy another equivariance property: 

� Invariance to monotone transformations 
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Let ℎ(∙) be a nondecreasing function on ℝ. Then for any random variable ( 

 ℎ(�a|b(�)) ≡ �d(a)|b(�) 

 

that is, the quantiles of the transformed random variable h(Y)  are simply the transformed 

quantiles of the original Y.  

Example: let ( = ln (f) and �a|b(�) = �;(�), then �g|b(�) = exp (�;(�)) ) 

This property is much stronger than the other properties; in fact, the mean does not share it: 

 �ℎ(() ≠ ℎ(�(()) 

With the exception of particular cases, i.e. for affine h or other exceptional circumstances 

(Koenker (2005)). 

 

Besides the equivariance properties there are also some asymptotic properties: 

� Asymptotics for the univariate sample quantile 

Let ���, �#, … , �'� be an i.i.d. random sample with distribution �, and 

 

1�j = [�k)��* - 34(�/ − 1)
/

 

 

Then 

 

√� m1�j − 1�n ~ p q0, �(1 −  �)r#m��� (�)ns 

 

where � = �′ 
� Asymptotics for linear models 

�/ =  �/┬ ;4 + u/, where u/~�/ and �/��(�) = 0 

then the join distribution 
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√� v'��#m;Z4_ − ;4_n_2�w  ~ p(0, 8') 

       

where 

   x'(�) =  ��� ∑ �/�/┬ r/(0)  and Dn = ��� ∑ �/�/┬ ; 

   v' = �(�_ ⋀ �{ − �_�{)x'(�_)��|'x'(�{)��	_,{2�w  

 

Based on the asymptotic normality of the estimators we can find the direct estimation of their 

variance-covariance matrix: 

In an i.i.d. error model, 

�/ =  �/┬ ; +  u/,  u/~�/ 
The variance covariance matrix of ;Zτ is 

 

} �(1 − �)
rm���(�)n#~ (�┬�)�� 

 

where �m���(�)n is the common error density evaluated at  ���(�) 

In a non i.i.d. error model, 

�/ =  �/┬ ; +  u/,  u/~�/ 
The variance covariance matrix of ;Zτ is 

 

(�(1 − �))((�┬� �)��((�┬�)(�┬��)�� 

 

where 
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� = ��[k��m����(�)n, �#m�#��(�)n, … , �'(�'��(�))� 

 

and �/ is the density function of u/evaluated at its τth quantile �/��(�) 

 

Direct estimation of the asymptotic variance-covariance matrix is not always satisfactory. For 

this reason, inference for quantile regression parameters can be made with other methods, as 

regression rank-score tests (it avoids direct estimation of the error densities) and bootstrap 

methods (it avoids direct estimation of variance-covariance matrix) (He, Wei (2005)). 

 

1.8 Strengths and weaknesses of Quantile Regression 

 

To give an objective overview of the most important features of QR, we can critically 

summarize them into a short outline: 

 

� Robustness. From the outset, an important feature of QR has been its robustness to 

outliers in the response variable. 

While mean regression tends to follow a single outlier in a close way, the influence of 

an outlying observation on ;Z4 is limited. Indeed, if we move observations away from 

the QR, they have no effect in the y-direction whatsoever on the fit. This insensitivity 

is intrinsic to the nature of the quantiles. 

Nevertheless, we should highlight that outliers are still influential in QR, but the 

problem is not as severe as in the OLS case. 

 

� Heteroscedasticity. QR is a more flexible method with respect to the OLS one, this is 

because it is a semi-parametric technique and, consequently, it “imposes minimal 

distributional assumptions on the underlying data generating process” (White, Kim, 

Manganelli (2015)). This feature permits QR to be superior to OLS, which need to 

impose strict assumption on the data to give good results. 
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� Endogeneity. In 2000, Abadie, Angrist, and Imbens proposed a weighted quantile 

regression approach to estimate endogenous treatment effects in observational studies 

(Koenker, Hallock (2000)). After that, several studies have been conducted to find out 

causality through the usage of QR. 
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SECOND CHAPTER: CONDITIONAL AUTOREGRESSIVE VALUE 

AT RISK 

 

2.1 Introduction 

 

The importance of effective risk management has never been greater: the last financial disasters, 

happened since the early 90s, have emphasized the need for accurate risk measures for financial 

institutions. 

The financial crisis of 1997-1998 as well as the bankruptcy of several financial institutions have 

led to the increased price volatility and financial uncertainty. 

Such financial uncertainty have increased the possibility of financial institutions to suffer 

important losses as a result of their exposure to unpredictable market changes. 

These events have made investors to become more suspicious in their investment decisions 

while it has also led for the increased need for a more careful study of price volatility in financial 

markets. 

A direct consequence of this is an intensive research from academics, financial institutions and 

regulators of the banking and financial sectors to better understand the operation of capital 

markets and develop sophisticated models to analyze market risk. 

 

The market risk is one of the four types of risk that financial institutions can expose themselves 

(the other three are the credit, the liquidity and the operational risk). 

It is considered as the most significant one since it represents the possible economic loss caused 

by unpredictable movements in market prices, interest rates, exchange rates and in the volatility 

of options (causing consequently the reduction in the market value of a portfolio). 

 

The existence of market risk and the financial disasters of last decades have raised the need for 

the development of practical risk management tools for financial institutions. This need has 

been reinforced by the Basel Committee of Banking Supervision (1996), that has called for the 

use of internal market risk management to capital requirement by the financial institutions such 

as banks and investment firms (Kouretas, Zarangas (2005)). 

“As the nature of the risks has changed over time, methods of measuring these risks must adapt 

to recent experience. The use of quantitative risk measures has become an essential 

management tool to be placed in parallel with models of returns. These measures are used for 

investment decisions, supervisory decisions, risk capital allocation, and external regulation. In 
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the fast-paced financial world, effective risk measures must be as responsive to news as are 

other forecasts and must be easy to grasp in even complex situations” (Engle, Manganelli 

(2004)). 

 

In this framework, Value at Risk (VaR) has gained, throughout the years, a lot of popularity, 

until it became the standard measure of market risk used by financial institutions and their 

regulators. 

The main reason why this instrument has achieved a great success is “essentially due to its 

conceptual simplicity: VaR reduces the (market) risk associated with any portfolio to just one 

monetary amount” (Engle, Manganelli (2004)). 

In practice, VaR is an estimate of the maximum loss a certain portfolio can suffer under normal 

market conditions over a specified period of time and with a specified level of confidence. 

“The confidence level represents ‘extreme market conditions’ with a probability that is usually 

taken to be 99% or 95%. This implies that in only 1% (5%) of the cases [we] will lose more 

than the reported VaR of a specific portfolio” (Kouretas, Zarangas (2005)). 

 

The use of a single number to summarize many complex bad outcomes is essentially a 

compromise between the needs of different users and, during the years, this compromise has 

received the approval of many operators and regulators (Engle, Manganelli (2002)). “VaR is 

probably the most used measure of risk since the 1996 amendment to the Basel Capital Accord, 

which proposed that commercial banks with significant trade activity could use their own VaR 

measure to define how much capital they should set aside to cover their market risk exposure” 

(Allen, Singh (2010)). 

 

Beside the advantages, the use of VaR brings also some weaknesses: 

 

• This measure is just a numerical indication of the maximum potential amount of losses; 

consequently, it gives us just a partial picture of the situation. A way to deal with this 

problem is to use VaR side by side with other financial tools (e.g.  CVaR, scenario 

analysis, stress tests, etc.); 

• There is no utility function associated with this measure; 

• VaR assumes that assets can be sold at their market price without taking into 

consideration the liquidity problem; 

• This measure is not considered a coherent risk measure. Indeed, a risk measure is 

coherent if it satisfies four main features: “First. It should not exceed the maximum 
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possible loss to occur. Second, the proposed risk measure should be greater than the 

mean loss implying capital adequacy to cover losses. Third, in the event that there is a 

proportional change in the loss then we require that the risk measure change 

proportionally as well. Finally, it must satisfy the property of superadditivity, implying 

that the risk measure calculated for two separate losses should be equal to the risk 

measure calculated on the sum of the two portfolios” (Kouretas, Zarangas (2005)). 

 VaR methodology does not satisfy the properties of subadditivity and excess of the mean 

 loss. Given these issues regarding the use of VaR, several alternative risk 

 measures have been developed throughout the years (among them, we can find CVaR, 

 which satisfies all the coherency criteria). 

 

Even if VaR suffers from these weaknesses, it is a measure of risk still widely used, because of 

its simplicity that permits it to be easily understood. 

Moreover, as we said above, it is not useless as a financial tool: if we use it side by side with 

other financial instruments, VaR can give us a more complete analysis of our portfolio, creating 

a number that can help us to better understand the entire financial situation we hold (and act 

consequently). 

 

Even if VaR is theoretically simple, its measurement is a huge statistic challenge and only few 

methodologies developed so far gives satisfactory solutions (Engle, Manganelli (2002). Indeed, 

the calculation of VaR requires precise knowledge of the distribution of extreme events, task 

that results difficult since the distribution of portfolio returns is not constant over time. In 

addition, we must find an appropriate model for time varying conditional quantiles, since VaR 

appears to be “nothing more than a specific quantile of future portfolio values subject to current 

information” (Kouretas, Zarangas (2005)). 

 

As was said by Engle and Manganelli (2002), the main statistic problem consists in forecasting 

“a value that in each period will be exceeded with probability (1-θ) by the current portfolio, 

where θ ∈ (0,1) represents the confidence level associated to the VaR”. 

This problem can be summarized in the following statistic problem: 

 

If we denote the time series of portfolio returns by  �y���2��  and the sample size by T, we want 

to find VaRt such that Pr[yt < -VaRt |Ωt ] = θ, where Ωt  denotes the information set at the end 

of time t-1. 

 



22 

For solving this problem, we need a methodology that must be reasonable and to be like this, a 

methodology should solve the following three issues: “1) Provide a formula for calculating 

VaRt as a function of variables known at time t-1 and a set of parameters that need to be 

estimated; 2) Provide a procedure (namely, a loss function and a suitable optimization 

algorithm) to estimate the set of unknown parameters; 3) Provide a test to establish the quality 

of the estimate” (Engle, Manganelli (2002)). 

  

Consequently, the central problem to find an appropriate model for time varying conditional 

quantiles is strictly connected to the issue of finding accurate estimates of the chosen 

distribution of portfolio returns. In fact, as Engle and Manganelli (2004) argued, if we do not 

properly estimate the underlying market risk then we cannot reach an efficient allocation of the 

capital, with the consequence of a reduction of the profitability and/or the financial stability of 

banks or investment firms, that use this incorrect methodology.  

 

During the years, a lot of methodologies have been developed to estimate the distribution of 

portfolio returns, but, as was said by Kouretas and Zarangas (2005), “these alternative 

methodologies have mainly focused on modeling the entire distribution of returns and they are 

based on the strict assumptions of normality or i.i.d. (independent and identically distributed) 

returns”. 

Engle and Manganelli (2004) have proposed an innovative approach that does not model the 

entire distribution: it just focuses on the regression quantile, which does not entail the strict 

assumptions seen above. 

This innovative methodology, called CAViaR (Conditional Autoregressive Value at Risk), 

“uses an autoregressive process in order to model the evolution of the regression quantile over 

time” and “the estimation of the unknown parameters is done with the use of the framework 

suggested by Koenker and Bassett (1978)”  (Kouretas and Zarangas (2005)). 

In addition, as was demonstrated by Engle Manganelli (2002), CAViaR estimators are 

asymptotically efficient and consistent. 

 

2.2 Value at risk models 

 

VaR methodology was created in the 90’s with the purpose of giving senior management of 

financial institutions a single number that could quickly and easily offer a summary about the 

risk of a portfolio. 
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Nowadays, it is largely used: in fact, it helps management to better estimate the cost of positions 

in terms of risk, allowing to allocate risks more efficiently (Engle, Manganelli (2004)). 

In addition, VaR is an instrument used by regulators to require financial institutions such as 

banks and investment firms to meet capital requirements to cover the market risks that they 

incur because of their normal operations (we can still find it in Basel III in the form of “stressed 

VaR”). 

“However, if the underlying risk is not properly estimated, these requirements may lead 

financial institutions to overestimate (or underestimate) their market risks and consequently to 

maintain excessively high (low) capital levels. The result is an inefficient allocation of financial 

resources that ultimately could induce firms to move their activities into jurisdictions with less 

restrictive financial regulations” (Engle, Manganelli (2004)). 

Another probable consequence of the inefficient allocation of capitals is a financial disaster: the 

best example of this is the 2008 credit crisis, that was the result of the huge underestimation of 

the risk from toxic mortgage products and of the permission for banks to enjoy excessive levels 

of leverage on their trading positions (Financial Times, 2012). 

 

During the 90s, many alternative modeling methodologies were proposed to estimate the VaR. 

The motivation behind that must be found in the characteristics of financial data, which have 

been firstly documented by Mandelbrot (1963) and Fama (1965). To give a grand summary, 

these characteristics suggest that the returns of financial assets have leptokurtic distributions, 

their distributions are negatively skewed and, finally, they exhibit volatility clustering. 

 

The existing models for calculating VaR differ in many aspects, but, as Engle and Manganelli 

(2001, 2004) pointed out, these alternative methodologies adopted a common general structure, 

which can be summarized in three points:”1) the portfolio is marked-to-market on a daily basis; 

2) the distribution of the portfolio returns is estimated; 3) the VaR of the portfolio is computed”. 

The main difference among the alternative methodologies is linked to the estimation of the 

appropriate distribution of the portfolio returns (i.e. the second point). 

For a better understanding of this point, we present a classification of VaR methodologies. 

 

At first, these methodologies can be ordered into two broad categories: a) factor models such 

as RiskMetrics (1996), b) portfolio models such as historical quantiles. 

“In the first case, the universe of assets is projected onto a limited number of factors whose 

volatilities and correlations have been forecast. Thus, time variation in the risk of a portfolio is 

associated with time variation in the volatility or correlation of the factors. The VaR is assumed 
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to be proportional to the computed standard deviation of the portfolio, often assuming 

normality.” (Engle, Manganelli (2004)). 

In the second case, the portfolio models create historical returns that reproduce the past 

performance of the current portfolio; then these historical returns are used to build the current 

VaR by using a statistical model; consequently, the relation between changes in the risk of a 

particular portfolio and its historical experience is very tight. 

Even if some issues may arise in the construction of the historical returns, the most interesting 

modeling problem concerns how to forecast the quantiles – in fact, VaR is nothing more than a 

quantile of a distribution of returns (Engle, Manganelli (2002)). 

Many different approaches have been employed and Engle and Manganelli (2004) gave a 

general description of them: “some first estimate the volatility of the portfolio, perhaps by a 

generalized autoregressive conditional heteroscedasticity (GARCH) or exponential smoothing, 

and then compute VaR from this, often assuming normality. Others use rolling historical 

quantiles under the assumption that any return in a particular period is equally likely. A third 

approach appeals to extreme value theory”. 

 

From this very general description, we can start to focus on each of these approaches. 

 

The first class of approaches are fully parametric and includes models such J.P. Morgan’s 

Riskmetrics (1996) and GARCH models. “These procedures combine an econometric model 

with the assumption of conditional normality for the returns series. Specifically, these models 

rely on the specification of the variance equation of the portfolio returns and the assumption 

that the standardized errors are i.i.d. Additionally, when the GARCH methodology is applied 

we are also required to specify the distribution of the errors, which is usually taken to be the 

normal one, while it is assumed that the negative returns follow the same process like the rest 

of portfolio returns” (Kouretas and Zarangas (2005)). 

 

The second approach for estimating the distribution returns is the non-parametric historical 

simulation. The main features of these approaches are that they do not make any assumption 

about the distribution of the portfolio returns and that they estimate the VaR as the quantile of 

the empirical distribution of historical returns from a moving window. 

The idea at the base of these methodologies is to select a window, drawn from recent periods 

(usually anywhere between 6 months to 2 years), and assume that any portfolio return can occur 

with the same probability. In particular, all the returns that fall outside the selected window 

have zero probability to occur (Kouretas, Zarangas (2005)). 
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The so-called hybrid approach (developed by Boudoukh et al. (1998)) falls within this group of 

VaR models: it combines the historical simulation and Riskmetrics (i.e. the volatility method). 

“This methodology applies weights to past portfolio returns that decline exponentially” 

(Kouretas, Zarangas (2005)). 

 

The semiparametric models create the final group. 

The advantage of this approach is that it is based on rigorous statistical theory: in fact, as was 

said by Kouretas and Zarangas (2005), it “offers a parametric form for the tail of a distribution”. 

In particular “This approach focuses on the asymptotic form of the tail, rather than modeling 

the complete distribution of portfolio returns and therefore we are able to obtain more efficient 

forecasts of the risk associated with a particular market position” (Kouretas, Zarangas (2005)). 

 

Obviously, each of these models bring some weaknesses: 

 

1) The parametric methodologies have a tendency to assume that the negative extremes follow 

the same process as the rest of the returns and to create coefficients that underestimate the 

VaR (this happens because these methodologies fail to take into account the characteristic 

that the distribution of the portfolio returns have heavy tails). “This underestimation of the 

VaR as well as possible misspecifications with respect to the variance equation along with 

the distribution of errors can be corrected by allowing alternative distributions of the errors 

such as the Gaussian, Student’s t and Generalized Error Distribution. However, it 

is…shown that the GARCH-type models provide satisfactory estimates of the quantile only 

when a bad event has already occurred” (Kouretas, Zarangas (2005)). 

 

2) The non-parametric historical simulation methodology has several problems: it assumes 

that for a certain time window (e.g., one year) any return has the same probability to happen, 

but a return older than a year has zero probability of occurring. 

“It is easy to see that the VaR of a portfolio will drop dramatically just one year after a very 

bad day. Implicit in this methodology is the assumption that the distribution of returns does 

not vary over time at least within a year” (Engle, Manganelli (2004)). 

Therefore, this methodology is unsuitable to provide extreme quantiles since it is impossible 

for us to extrapolate beyond past data. 

“The proposed solution to this problem is the increase of the sample of observations but this 

would lead to estimates of the VaR which are biased downwards (or upwards) since we 
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have a mixture of periods with low volatility with periods of high volatility” (Kouretas, 

Zarangas (2005)). 

 

3) Although the hybrid approach improves the previously methodologies, it has some 

problems: indeed, the selection of the parameters and the calculation of the VaR do not 

depend on rigorous statistical theory but they seem to be created ad hoc and built on 

empirical basis (Kouretas, Zarangas (2005)). 

 

4) Even if the semiparametric models are very interesting, they have two main problems. First, 

these approaches perform well at very low quantiles but they fail to provide accurate 

estimations of VaR when the levels are not such extreme (e.g. probability levels of 5%). 

Second, and most important, these models are made inside a framework of i.i.d. variables, 

which is not consistent with the characteristics of most financial dataset. Consequently, this 

framework creates a situation where the risk of a portfolio cannot vary with the conditioning 

information set. 

“Recently, McNeil and Frey (2000) suggested fitting a GARCH model to the time series of 

returns and then applying the extreme value theory to the standardized residuals, which are 

assumed to be i.i.d. Although it is an improvement over existing applications, this approach 

still suffers from the same criticism applied to the volatility models” (Engle, Manganelli 

(2004)). 

 

2.3 CAViaR 

 

Engle and Manganelli (2004) proposed an alternative semiparametric approach for estimating 

the VaR, the so-called CAViaR (Conditional Autoregressive Value at Risk). 

 

This technique is based on this simple idea: “it is better to model directly the quantile as it 

evolves through time instead of attempting to model and estimate the entire distribution of 

portfolio returns. [ In fact ] modelling the quantile instead of the entire distribution has the main 

advantage that we are not required to adopt the set of extreme assumptions which are invoked 

by alternative methodologies, among them normality or that returns are i.i.d.” (Kouretas, 

Zarangas (2005)). 

 

Another simple intuition, at the base of the CAViaR creation, is linked to the characteristics of 

financial data that have been verified by numerous empirical works; in particular, one of these 
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characteristics is the volatility clustering of portfolio. This feature of portfolio returns leads to 

the understanding that the corresponding distributions are autocorrelated. 

Consequently, as Engle and Manganelli (2004) said, “the VaR, which is tightly linked to the 

standard deviation of the distribution, must exhibit a similar behavior”. 

Therefore, a natural way to formalize this characteristic, as was suggested by Engle and 

Manganelli (2004), is to “use some type of autoregressive specification”. To do so, they 

proposed a conditional autoregressive quantile specification, which they called Conditional 

Autoregressive Value at Risk (CAViaR). 

 

Following Engle and Manganelli (2004), we consider  �y���2��  as a vector of portfolio returns 

that is observable. Let denote by � the probability related to VaR, by �� a vector of observable 

variables at time 6 and by ;4 a `-vector of unknown parameters. We also define ��(;) =
 �(����, ;�) to be the � - quantile of the distribution of the portfolio returns at time 6 which has 

been formed at time 6 − 1, where we suppressed the � subscript from ;� for notational 

convenience 

Therefore, a general formulation of CAViaR can be written as follows: 

 

��(;) = ^� + - /̂
�

/2�
���/(;) + - [/�(���/ , �)B

/2�
 

 

where ;? = (�?, ^?, �?) and � is a function of a finite number of lagged values of observables. 

Moreover, Engle and Manganelli use the autoregressive terms ^/���/(;), � = 1, … , �  for 

ensuring that the quantile changes “smoothly” over time. 

Finally, they use the term �(���/, �) to provide a relationship between the � - quantile ��(;) 

and the observable variables, which are included in the information set. 

We could consider the lagged portfolio returns as the natural choice for ����. Indeed as Engle 

and Manganelli (2004) pointed out “we would expect the VaR to increase as ���� becomes very 

negative, as one bad day makes the probability of the next somewhat greater. It might be that 

very good days also increase VaR as would be the case for volatility models. Hence VaR could 

depend symmetrically upon |����|.” 

 In other words, as ���� becomes negative then we should expect the VaR to increase while it 

should decline in good days. Thus, we expect that changes in ���� will affect symmetrically the 

VaR (Kouretas, Zarangas (2005)). 
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From this general setting, we can estimate different models by choosing different specifications 

for the function �. Engle and Manganelli (2002) proposed four alternative CAViaR 

specifications. 

 

The first specification is called Adaptive, which takes the following formulation: 

 ��(;�) = ����(;�) + ;���1 + exp(������ − ����(;�)	)	�� − �� 

 

where G is some positive finite number. 

As G→ ∞, the last term converges almost certainly to ;��8m���� ≤ ����(;�)n − ��, where 8(∙) 

represents the indicator function; for finite G this model is a smoothed version of a step 

function. 

 

The intuition behind the adaptive specification tells us that: “whenever you exceed your VaR 

you should immediately increase it, but when you don’t exceed it, you should decrease it very 

slightly” (Engle, Manganelli (2004)). Such a strategy can reduce the probability to observe a 

sequence of hits but, at the same time, it does not bring the number of hits to zero (Kouretas, 

Zarangas (2005)). 

 

Engle and Manganelli (2002) also pointed out that this CAViaR specification “learns little from 

returns which are close to the VaR or which are extremely positive. [In fact] it increases the 

VaR by the same amount regardless of whether the returns exceeded the VaR by a small or a 

large margin”. They also highlighted that this model specification has a unit coefficient on the 

lagged VaR. 

 

A second specification is called Symmetric Absolute Value (SAV) and its formulation is given 

by: 

 ��(;) = ;� + ;#����(;) + ;�|����| 
 

“This model responds symmetrically to past portfolio returns and it is mean reverting since the 

coefficient of the lagged VaR is not constrained to equal one. Furthermore, we could properly 

specify this quantile specification using a GARCH model with the standard deviation (and not 
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the variance) is considered to follow a symmetric distribution with i.i.d. errors” (Kouretas, 

Zarangas (2005)). 

 

The Asymmetric Slope (AS) is the third model created by a specification of the � function. It is 

written as follows: 

 ��(;) = ;� + ;#����(;) + ;�(����)S + ;�(����)� 

 

where (�)S = max (�, 0), (�)� = −min (�, 0) 

The Asymmetric Slope model allows for an asymmetric response to positive and negative past 

portfolio returns and it is mean reverting.  

“As with SAV model, this specification would be correctly specified by a GARCH process with 

the standard deviation following this time an asymmetric distribution with i.i.d. errors” 

(Kouretas, Zarangas (2005)). 

 

The last specification is called Indirect GARCH(1,1) which is mean reverting and responds 

symmetrically to past returns (as we saw in the SAV specification). 

“This specification can be correctly modeled under the assumption that the underlying data 

process follows a true GARCH(1,1) with an i.i.d. error distribution” (Kouretas, Zarangas 

(2005)). 

The mathematical expression of this specification is: 

 

��(;) = (;� + ;#�#���(;) + ;�����# )�/# 

 

It is interesting to note that CAViaR specifications are more general than the fitted GARCH 

models, in fact, they can allow for modelling various forms of non-i.i.d. error distributions. 

“These models can be used for situations with constant volatilities, but changing error 

distributions, or situations where both error densities and volatilities are changing” (Engle and 

Manganelli (2004)). 

 

2.4 Estimation of parameters & Variance and Covariance Matrix 

 

The next step to the analysis is the estimation of the parameters of the different CAViaR models. 
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They are estimated using linear and non-linear quantile techniques that we have already 

discussed in the first chapter; consequently, we are going to give just the mathematical 

expressions: 

 

Let consider a sample of observations ��, … , ��  generated by the following model: 

 �� = ��?;� + ��� �7[�6�(���|��) = 0 

 

where ��  is a ` - vector of regressors, �7[�6�(���|��) is the � - quantile of ��� conditional on 

�� and r�(;) ≡ ��; 

Then the ��d regression quantile is defined as any ;Z that solves:  

 

)��< 1� �� − 8m�� < ��(;)n���� − ��(;)	 
 

It is important to remember that within this framework, the only assumption required is the 

appropriate specification of the quantile process and, in particular, we do not need to specify 

the entire distribution of the error terms (Kouretas, Zarangas (2005)). 

 

Let now focus on the derivation of the variance-covariance matrix: for estimating it, Engle and 

Manganelli (2004) considered the case where ;Z is a non-linear regression quantile estimator 

and they showed that this estimator is consistent and asymptotically normal. In addition, they 

proved that there is a consistent estimator of the variance-covariance matrix and they derived 

its asymptotic distribution (Kouretas, Zarangas (2005)). 

 

Let consider the model: 

 

  �� = �(����, ����, … , ��, ��; ;�) + ��� �7[�6�(���|Ω�) = 0 

 

  ≡ ��(;�) + ���  6 = 1, … , � 

 

 

where ��(β�) represents some given initial condition, �� is a vector of exogenous variables,  

(1) 

(2) 
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;� ∈  ℝB is the vector of true unknown parameters and Ω� = �����, ����, … , ��, ��, ��(;�)	 is 

the information set available at time 6.  

Let ;Z  be the parameter vector that minimizes (1) 

 

Let then consider the following Theorems, created and developed by Engle and Manganelli 

(2002): 

 

• Theorem 1 (Consistency) – In model (2), under C0-C7 in Appendix A, 

 

;Z B→ ;� 

 

where ;Z  is the solution to (1). 

 

• Theorem 2 (Asymptotic Normality) – In model (2), under AN1-AN4 in Appendix A and 

the conditions of Theorem 1, 

 

� ��(1 − �) >�
��# |�m;Z − ;�n �→ �(0, 8) 

 

where >� = �����∇?�(;�)∇�(;�)	, |� = �����∇?�(;�)H∇�(;�)	 and x is a diagonal 

matrix with typical entry ℎ�(0|Ω�). 

 

• Theorem 3 (Variance-Covariance Matrix Estimation) – Under VC1-VC2 in Appendix 

A and the conditions of Theorem 1 and 2, 

 

     >Z� B→ >�  and |j� B→ |�  

 

where >Z� = ���∇?�(;Z)∇�(;Z)  

and |j� = (2��̂�)�� ∑ 8(|�� −��2� ��m;Zn| < �̂�)∇′��m;Zn∇��m;Zn 

 

We denote the conditional density of ��� evaluated at 0 by ℎ�(0|Ω�), the (1, `) gradient of ��(;) 

by ∇��(;) and define ∇�(;)  to be a (�, `)matrix with typical row ∇��(;). 

Appendix A is formed by technical assumptions, which permits these results to hold. 
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If we want to summarize the results of the theorems, we can say that Theorems 1 and 2 prove 

that ;Z  (i.e. the non-linear regression quantile estimator) is consistent and asymptotically normal, 

while Theorem 3 provides a consistent estimator of the variance-covariance matrix. 

The proofs are simple extensions of Weiss (1991) and Powell (1984, 1986, and 1991) and are 

omitted. 

 

“Regarding the variance-covariance matrix, note that  >Z� is simply the outer product of the 

gradient. Estimation of the |j� matrix is less straightforward, as it involves the term ℎ�(0|Ω�). 

Following Powell(1984, 1986, 1991), we propose an estimator that combines kernel density 

estimation with the heteroskedasticity-consistent covariance matrix estimator of White (1980)” 

(Engle, Manganelli (2002)). 

 

The asymptotic distribution of the estimator ;Z  allowed Engle and Manganelli to conduct 

hypothesis tests on the quantile models. They also proposed a new test for the evaluation of the 

alternative specifications, which has better power properties than other existing tests (Kouretas, 

Zarangas (2005)). 
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THIRD CHAPTER: IMPLEMENTATION & DEVELOPMENTS 

 

3.1 Introduction 

 

In this section, we will present the way to implement the CAViaR model via statistical software. 

We will start from the description of Engle and Manganelli’s approach and then we will try to 

translate it into codes; it is important to highlight that we will focus just on one CAViaR 

specification (the Symmetric Absolute Value one). 

We are going to use some empirical data for reproducing the CAViaR model and for 

understanding if it works properly. 

At the end of the chapter, I will present and discuss some improvements on the original model. 

 

3.2  The original model 

 

Engle and Manganelli (2004) gave a description on how to implement the theory they developed 

on CAViaR by using an empirical experiment. 

 

As was said by Engle and Manganelli (2004), the first step for implementing CAViaR 

methodology on real data is to “construct the historical series of portfolio returns and to choose 

a specification of the functional form of the quantile”. 

For this reason, they took a sample of 3,392 daily prices from Datastream for two companies 

(General Motors (GM) and IBM) and one index (the S&P 500). Then they computed the daily 

returns as 100 times the difference of the log of the prices (the samples covered a period of 14 

years (from April 7, 1986, to April 7, 1999)). 

Then, they split the sample into two parts: the first 2,892 observations and the last 500 

observations; this was done for making some final tests. 

 

To give a comprehensive example of the theory and to understand which model was more 

appropriate for the data sets, Engle and Manganelli (2004), estimated the 1% and the 5% 1-day 

VaRs, using all the four CAViaR specifications described in Section 2.3. 

In particular, they highlighted how all the four models considered satisfy assumptions C1, C7 

and AN1 of Appendix A and how all the models are both continuous and continuously 

differentiable in ; (the other assumptions  in Appendix A are technical assumptions that are 

impossible to verify in finite samples). 
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For computing the VaR series with the CAViaR models, it is important to set an optimization 

routine. 

This routine should be initialize in its first step/quantile (i.e. ��(;)) and Engle and Manganelli 

chose to do it by using the empirical �-quantile of the first 300 observations.  

 

For making all the computation, the two researchers used as software MATLAB 6.1 and as 

optimization routines the Nelder–Mead simplex algorithm and a quasi-Newton method; Engle 

and Manganelli chose to use the functions fminsearch and fminunc as optimization algorithms 

and the loops to compute the recursive quantile functions were coded in C. 

 

What is very interesting in the computational part is the procedure they followed for optimizing 

the model: 

Engle and Manganelli started by trying to find out the best initial values to feed the optimization 

algorithm; for doing so, they generated n vectors using a uniform random number generator 

between zero and one.  

Then, they computed the following regression quantile (RQ) function 

 

)��< 1� �� − 8m�� < ��(;)n���� − ��(;)	 

 

 for each of these n vectors. 

 

After this step, they selected the m vectors, which produced the lowest RQ criterion, as initial 

values for the optimization routine.  

The researchers set, arbitrary, n = [104, 105, 104, 104] and m = [10, 15, 10, 5] respectively for, 

the symmetric absolute value, the asymmetric slope, the Indirect GARCH, and the adaptive 

models.  

 

The second step for optimizing the model was to run the simplex algorithm for each of these m 

initial values. The two researchers then fed the optimal parameters found (i.e. the ;’s) to the 

quasi-Newton algorithm and chose the new optimal parameters as the new initial conditions for 

the simplex. 

For finding the best values (i.e. to reach the global minimum instead of a simple local 

minimum), they repeated this procedure until the convergence criterion was satisfied.  
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In particular, tolerance levels for the function and the parameters values were set to 10−10. 

Finally, Engle and Manganelli selected the vector that produced the lowest RQ criterion as 

optimal parameters. 

 

It is important to highlight that there exists alternative optimization routines (as the interior 

point algorithm for nonlinear regression quantiles, suggested by Koenker and Park (1996)), but 

I will not treat them because I preferred to focus on Engle and Manganelli’s optimization loop, 

trying to analyze and improve it. 

 

A further natural step is to understand if the parameters are well estimated (i.e. if they are 

significantly different from zero) and for doing this, we need a statistical test. 

For this reason, I chose the so-called t-test, which requires to compute the standard errors and 

the variance–covariance matrix; for making them, Engle and Manganelli used the formulas 

described in Theorems 2 and 3 in Section 2.4: 

 

After computed  

>Z� = ���∇?�(;Z)∇�(;Z) and 

 |j� = (2��̂�)�� ∑ 8(|�� −��2� ��m;Zn| < �̂�)∇′��m;Zn∇��m;Zn 

 

The variance-covariance matrix is: 

 

v¡)[6��� =  �(1 − �) ∗ (|j�\>Z�/ |j�)/� 

 

Where the formula to compute |j�  were implemented using k-nearest neighbor estimators, with 

k = 40 for 1% VaR and k = 60 for 5% VaR. 

 

3.3 The translation of the model into codes 

 

At this point is important to translate all Engle and Manganelli’s work into codes; we will then 

use these codes as the base for analyzing some specific models and data sets. 
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As the two researchers said, the first step for implementing the methodology on real data is to 

choose the data set and create the historical series of portfolio returns; for this reason (and also 

for make comparisons with the results of the two researchers)  I took a sample of 3,581 daily 

prices of the S&P 500 index from Datastream. The sample covered a period of approximately 

15 years (from August 27, 2001, to November 23, 2015).  

 Then I computed the daily returns as 100 times the difference of the log of the prices (as was 

done by Engle and Manganelli). 

 

The “second” initial step is to choose a “specification of the functional form of the quantile” 

(Engle, Manganelli (2004)). My choice focused on the Symmetric Absolute Value (SAV) model: 

 ��(;) = ;� + ;#����(;) + ;�|����| 
 

This model responds symmetrically to past portfolio returns (i.e. positive or negative returns 

have a symmetric impact on VaR.) and it is mean reverting. 

 

For the remaining computations, I completely followed the two researchers’ procedure, except 

for two things: 

1) For initializing the optimization routine, I used the entire sample to compute the 

empirical �-quantile (instead of the first 300 observations); 

2) All the codes, loops and computations were made using just one software: MATLAB 

R2014a. 

 

 In the following table, we can see the results for the 1% and the 5% VaR (;’s and associated 

p-values) 

 

 

 

Table 1. The 1% & 5% original CAViaR estimations for the S&P 500 index 
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The results presented in the Table above share many common characteristics with those 

presented by Engle and Manganelli (2004) for their US data set (which contained General 

Motors, IBM and the S&P 500 index). One of these matching characteristics is that the 

autoregressive term is always very significant, suggesting us, that “the phenomenon of 

clustering of volatilities is relevant also in the tails” (Engle, Manganelli (2004)). 

 

It is important to highlight that the data set I chose is different with respect to the one picked 

by Engle and Manganelli: even if we both chose to extrapolate the data set from the same index 

(i.e. the S&P 500), the years we took are different and  so are the results. 

In particular, the period I extrapolated takes also into account the years of the global financial 

crisis started in 2008: this huge volatility period has a strong influence on the results. 

Nevertheless, the parameters are all statistically significant (with the exception of the constant 

term in the 5% VaR, which is significant just at the 5% level) and both the autoregressive 

components and the absolute values have a strong economic impact. 

I would conclude that the model is well coded and give me interesting results from both a 

statistic and an economic point of view. 

 

3.4 Improvements 

 

Analyzing data and reaching good estimation is very important from an economic point of view, 

but also time is precious: if you reach good estimation in less time you become more efficient 

and you can take decision faster, that led, at the end, to earn (or not to lose) money. 

This is exactly the way through which I tried to improve Engle and Manganelli’s codes, i.e. 

reducing the time of the calculations, while maintaining the quality of the estimations. 

 

For doing so, I experimented four different types of procedure for optimizing the model: 

 

1) I diminished the number of the n vectors (i.e. the vectors created by a uniform random 

number generator between zero and one) used to find out the most suitable initial values to 

put inside the optimization routine. 
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I used 103 vectors instead of 104. 

 

2) I diminished the initial n vectors to 102 and I fed them directly inside the optimization 

algorithm. Then, I chose the initial vector that produced the lowest RQ criterion as optimal 

parameters. 

In particular, I just used the simplex algorithm and I used it once per vector. 

 

3) I diminished the number of the n vectors from 104 to 103. Moreover, I removed from the 

optimization algorithm the quasi-Newton algorithm. 

Manganelli himself suggested this choice in his own publications (“VAR for VaR: 

Measuring tail dependence using multivariate regression quantiles”, 2015). 

 

4) Instead of using n initial vector, I chose to use an algorithm that finds the best initial vector 

of parameters to feed then into the optimization algorithm. This algorithm is called Genetic 

Algorithm and it is a heuristic method that can minimize a given function. 

In other words, I used two minimization functions: the first one to find out the best 

parameters that will be used to initialize the second function. 

The second minimization algorithm is equal to the one described in the third method: it just 

uses the simplex algorithm (i.e. I dropped out the quasi-Newton one). 

 

The next step is to understand which procedure is the best one. 

For this reason, I ran all of them and I analyzed both the precisions of the results and the time 

they took to complete all their iterations (I used the same data set used in previous Section). 

 

The results, for all the four methods, are the same I showed in Table 1 in previous Section; this 

does not came as a surprise, because I tried to find out the processes that can produce me, at 

least, the same quality of results that I found with the original procedure. 

The most interesting results are the times the four methods took with respect to the original one: 

• the original process took 14 seconds 

• the first one took 8 seconds 

• the second one took 18 seconds 

• the third one took 6 seconds 

• the last one took 5 seconds 
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It is easy to analyze the time results: the best method seems to be the one that uses the Genetic 

Algorithm to find out the best initial values. 

Nevertheless, we can also make some considerations about the other procedures: if we move 

from the original to the first process, we save more than 40% of the time; this is reasonably due 

to the reduced number of initial vectors that I used. This strategy appears to be also one of the 

reason why the third method gives us such a good time-result. In particular, if we compare the 

third and the original method, we could conclude that by diminishing the number of initial 

vectors and by eliminating the quasi-Newton algorithm, we can save a lot of time (more than 

57%), without diminishing the quality of the results. 

The second procedure appears to be the worst one; the most likely reason could be the usage of 

100 vectors that I fed directly to the optimization loop and, even if the loop is less heavy than 

the one used in the original process, this requires a huge amount of time. 

It is important to highlight that all the consideration made above are restricted to the case of a 

model composed by three parameters. Nevertheless, we can learn something from this 

experiment and start to orientate our decision to use, in future analysis, some procedures than 

others. 

 

In this section, we introduced a new kind of algorithm (Genetic Algorithm), which can give us 

some advantages in saving time during the computational process. For this reason, it is 

important to know something more about it. 

 

3.5 The Genetic Algorithm 

 

“The genetic algorithm is a method for solving both constrained and unconstrained optimization 

problems that is based on natural selection, the process that drives biological evolution. The 

genetic algorithm repeatedly modifies a population of individual solutions. At each step, the 

genetic algorithm selects individuals at random from the current population to be parents and 

uses them to produce the children for the next generation. Over successive generations, the 

population "evolves" toward an optimal solution.” (The MathWorks, Inc. (2014)). 
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This algorithm can solve different optimization problems that are not well suited for standard 

optimization algorithms, comprising problems where the objective function is discontinuous, 

nondifferentiable, stochastic, or highly nonlinear. (The MathWorks, Inc. (2014)) 

 

To give an overview on how the algorithm works, it is necessary to introduce some specific 

terminology and basic concepts: 

 - The fitness function is the function we want to optimize (in standard optimization 

 algorithms it is usually called objective function). 

 - The fitness value of an individual is the value that the fitness function receives for that

 individual (it is also called score of the individual) 

 - An individual is any point to which we can implement the fitness function. Sometimes, 

 an individual can be called genome and the vector that entries an individual is called 

 genes. 

 - A population is a selection of individuals. At each iteration, the genetic algorithm 

 makes some computational steps on the current population to produce a new one. Each 

 following population is called a new generation. 

 - Diversity denotes the average distance between individuals in a population. It is a 

 crucial element for the algorithm; in fact, it permits the algorithm to search for a larger 

 region of the space to find new individuals. 

 - The genetic algorithm creates the next generation by choosing certain individuals in 

 the current population (called parents), and uses them to create individuals in the 

 next generation (called childrens). It is more likely that the algorithm chooses parents 

 with a better fitness values. 

 - “The selection function chooses parents for the next generation based on their scaled 

 values from the fitness scaling function” (The MathWorks, Inc. (2014)). The algorithm 

 can choose an individual more than once for becoming a parent; in this case, it gives its 

 genes to more than one child. 

 (The MathWorks, Inc. (2014)) 
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Let now focus on the steps the algorithm takes when it runs (let remember that all the 

consideration we are going to make are restricted to the Genetic Algorithm created by Matlab 

developers): 

 

1. The algorithm starts creating a random initial population. 

 

2. The algorithm creates a series of new populations. 

In every step, the algorithm creates the new generation by using individuals in the current 

generation. 

To create the new generation, the algorithm performs the following steps: 

 

a. Scores each member of the current population by computing its fitness value (i.e. 

the value of the target function - in our case the RQ function) 

b. Scales the raw fitness scores to convert them into a more functional range of values. 

c. Choses members (i.e. the parents) based on their fitness value. 

d. Moves certain individuals directly to the next generation; these are called élite and 

are formed by some of the individuals with the lower fitness value in the current 

population.  

e. Creates children from the parents. Children are made with two methods: by 

mutation (it inserts random changes into a single parent’s genes) or by crossover 

(it combines two parents’ genes). 

f. Substitutes the current population with the children to form the next generation. 

 

3. The algorithm stops when one of the stopping criteria is met  

(The MathWorks, Inc. (2014)) 

 

As we have just seen, there are three ways to create the next population; among them, the most 

interesting are the crossover and the mutation techniques:  

 

• Crossover children are “the result of the combination of pairs of parents in the current 

population. At each coordinate of the child vector, the default crossover function randomly 

selects an entry, or gene, at the same coordinate from one of the two parents and assigns it 
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to the child. For problems with linear constraints, the default crossover function creates the 

child as a random weighted average of the parents” (The MathWorks, Inc. (2014)).  

 

• Mutation children are “the result of a randomly change of the genes of individual parents. 

By default, for unconstrained problems the algorithm adds a random vector from a Gaussian 

distribution to the parent. For bounded or linearly constrained problems, the child remains 

feasible” (The MathWorks, Inc. (2014)). 

 

Both processes are essential to the genetic algorithm: Crossover permits the algorithm to 

remove the best genes from different parents and recombine them into possibly superior 

children, while, Mutation increases the diversity of a population, enlarging the probability of 

the algorithm to generate individuals with a better fitness value. (The MathWorks, Inc. (2014)) 

 

As we said before, one of the most important elements for the genetic algorithm is the diversity 

of the population; in fact, it determines its performance; consequently, getting the right amount 

of diversity is extremely important: it cannot be too high or too low. 

Another parameter that enters the concept of diversity is the population size, which determines 

the size of the population at each generation. Increasing the population size permits the genetic 

algorithm to search more points and thus find a better result. However, we should find the right 

population size: not too small and not too large; in fact the larger the population size, the longer 

the genetic algorithm takes to compute each generation. (The MathWorks, Inc. (2014)) 

 

The reason why we are interested on the genetic algorithm is that it can help us to find out the 

global minimum, instead of a simple local minimum (result that sometimes is not easy to find 

by optimization algorithms). The genetic algorithm can (sometimes) help us to reach this 

purpose, but only if we implement the right settings and strategies. 

Among them, we can find an interesting strategy (i.e. the one I used in previous Section) called 

hybrid function. It is “an optimization function that runs after the genetic algorithm terminates, 

in order to improve the value of the fitness function. The hybrid function uses the final point 

from the genetic algorithm as its initial point” (The MathWorks, Inc. (2014)). 

Obviously, inserting the right setting, when running the genetic algorithm, is important too: 

setting the right mutation coefficient, the rate at which the average amount of mutation 
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decreases, the diversity, the population size and the stopping criteria can help to find out the 

global minimum we are interested. 
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FOURTH CHAPTER: MY MODEL 

 

4.1 Introduction 

 

The purpose of my thesis is to reproduce/test one CAViaR specification and to compare the 

results obtained from the estimation of new models made from that CAViaR specification for 

three comparable portfolios. 

In this chapter, I will introduce these portfolios and describes their composition.  

I will then illustrate the models I constructed and present some related computational issues, 

trying, at the end, to give few possible solutions. 

 

4.2 The portfolio 

 

To choose my portfolios, I decided to focus my attention on some specific investment funds; 

for this reason, I decided to use the website Morningstar.it to select them. 

I tried to choose three funds that could be comparable to each other; for doing so, I filtered all 

the possible funds by taking a specific category and benchmark.  

At the end of my research, I decided to focus my attention on the “Stock European Large Cap 

Blend” category and on the “MSCI Europe NR EUR” index; consequently, I picked these three 

European investment funds: 

1) “Capital Group European Growth and Income Fund (LUX)” (Class A4 EUR, ISIN 

LU0342012266, SEDOL B2NV7D5), launched October 30, 2002. 

2) “Henderson Horizon Fund - Pan European Equity Fund” (Class A2 EUR, ISIN 

LU0138821268), launched November 30, 2001. 

3) “JPM Europe Dynamic” (Class A (dist) EUR, ISIN LU0119062650), launched 

December 08, 2000. 

 

All the information I collected on the funds come directly from Morningstar.it and the KIID 

(Key Investor Information Document) of Capital Group, Henderson Horizon and JPMorgan 

(i.e. the firms who launched the funds); most of the information are accurate as of 31 December 

2015. 
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The common purpose of the three funds is to gain the capital growth in the long term by 

investing on companies established and/or that work mainly in Europe. Accordingly, the funds 

are more suited to investors with a long-term investment perspective 

(http://www.morningstar.it). In addition, all the funds can use derivatives for hedging or for a 

more efficient management. 

Despite the common features, the funds differ for certain characteristics: 

• The first one does not use tools as short selling and leverage; in addition, the 

management of the fund is based on the evaluation of every single stock, without any 

consideration on the weighting of any index;  

• The second one is more flexible with respect to the possibility to concentrate its 

investments inside the European area; indeed, the fund invests at least 75% of its total 

capital in stocks of firms established in the European Economic Area (EEA). 

• The third one applies an investment process based on the purchase of stocks that respect 

some specific style characteristics, as value, quality, price evolutions and profit trends. 

Indeed, the managers tend to gain the capital growth by exploiting psychological factors 

inherent in the stock markets. 

 

The information about the returns of the investment funds are graphically summarize by these 

figures: 

 

 

 

 

 

http://www.morningstar.it 

Figure 2. Returns of Capital Group European Growth and Income Fund (red line) 
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These graphs contain three lines: the red one is the fund, the green one the benchmark of the 

category (i.e. MSCI Europe NR EUR) and the orange line is the category (i.e. stock European 

Large Cap Blend funds). 

For having a better comparison among the category and the benchmark, I will also give a 

numerical comparison by using the following tables: 

 

         

Year 2008 2009 2010 2011 2012 2013 2014 2015 

Total return -43,14 37,28 7,68 -6,94 20,03 28,89 14,35 10,65 

+/- Category 0,15 8,17 -3,95 4,06 2,22 9,28 9,07 -0,15 

+/- Index 0,51 5,69 -3,42 1,14 2,73 9,07 7,51 2,42 

Percentile in category 41 11 78 16 28 5 2 46 

 

 

http://www.morningstar.it 

http://www.morningstar.it 

Figure 3. Returns of Henderson Horizon Fund - Pan European Equity Fund (red line) 

Figure 4. Returns of JPM Europe Dynamic Fund (red line) 

Table 2. First fund annual returns % (EUR) 
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Year 2008 2009 2010 2011 2012 2013 2014 2015 

Total return -32,54 24,81 13,27 -7,65 19,4 25,17 6,38 15,3 

+/- Category 10,75 -4,3 1,65 3,35 1,59 5,55 1,09 4,51 

+/- Index 11,11 -6,79 2,18 0,43 2,1 5,34 -0,46 7,08 

Percentile in category 7 79 34 20 33 10 36 14 

 

 

         

Year 2008 2009 2010 2011 2012 2013 2014 2015 

Total return -46,66 29,12 15,38 -11,66 23,02 32,72 5,53 12,46 

+/- Category -3,37 0,01 3,76 -0,66 5,21 13,11 0,25 1,67 

+/- Index -3,01 -2,47 4,29 -3,58 5,73 12,9 -1,31 4,23 

Percentile in category 79 51 23 60 9 3 48 33 

 

As we can see from the table, during the last nine years the funds over-performed both the 

benchmark and the category for several years (with the exception of the third fund that over-

performed the benchmark only half of the times). 

 

Obviously, the high returns are associated with high risks, as we can see from the table below: 

 

 First fund Second fund Third fund 

Standard Deviation 12,00% 11,95% 12,47% 

Mean return 18,52% 16,16% 17,21% 

Sharpe ratio 1,42 1,26 1,28 

 

All the three funds present a huge performance, associated with a huge standard deviation; this 

is mainly due to their composition: indeed, the funds invest most of their capital in stocks. 

This is well shown by the following figure: 

 

 

 

 

Table 3. Second fund annual returns % (EUR) 

Table 4. Third fund annual returns % (EUR) 

Table 5. Volatility Measures of the funds (3 years) 
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Let now understand where are concentrated all the stock investments (i.e. in which areas and 

sectors); for this purpose, we can use some figures to visualize them: 
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Figure 5. Investment preferences of the funds 

Figure 6. Investment areas of the funds 
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4.3 My model 

 

For creating the final model, it is essential to find out the risk factors connected to our 

investment funds. 

The very first variable to use as risk factor is, obviously, the benchmark: for this reason, I 

decided to take the “MSCI EMU” that differs very little from Morningstar’s benchmark, but 

has a longer data set. 

For finding other risk factors, it is important to remember the core strategy of the portfolios we 

focused on: in fact, the funds invests mainly in stocks of large companies that work inside 

Europe. Consequently, some important risk factors could be the volatility inside the Europe, 

the price of the commodities and the EUR/US exchange rate (for imports/exports). 

Moreover, the final graph of previous Section can help us to add new variables: indeed, the fact 

that all the three funds invests most of their capital in the financial sector (respectively 25,87%, 

22,91% and 21,14%) suggests us that variables as interest rates (e.g. the Euribor, the Euro rate, 

etc.) can be suitable risk factors. 

 

The second step for building our model is to understand what we want to analyze; in fact, 

CAViaR models can be used to investigate the data from different perspective. For this reason, 

I chose to focus on forecasting the future results: by manipulating the models, I can investigate 
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Third fund
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Figure 7. Investment sectors of the funds 
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the data at time t, and give a value of the (future) VaR at time t+1. Computationally, this 

manipulation consists in lagging all the new variables of my model. 

 

Another purpose that I want to reach in my thesis is to understand if, starting from one Engle 

and Manganelli’s CAViaR specification, I can improve it by adding new variables (i.e. the risk 

factors). 

For this reason, I will create and analyze different CAViaR models/specifications: 

1) The first one, in which I will use as variable just the portfolio returns and I will estimate 

the original SAV specification; 

2) The second one will be made by adding to the “original” model an important risk factor 

(i.e. the benchmark); 

3) The last one will be composed by adding to the second model all the other risk factors 

I chose. 

The last two models are just an “extension” of the original CAViaR model that I have computed 

in the previous Chapter; thus, all the computational aspects are the same as above. Nevertheless, 

some computational issue can still arise, especially in the third model where the number of 

variables increase a lot.  

Therefore, let now focus on the new models and the issues introduced by the variables. 

 

The first model is easy and it is essentially equal to the model we estimated in the previous 

Chapter. In particular, for all the three portfolios, I took a sample of 3,418 daily prices from 

Bloomberg; the samples covered a period of approximately 15 years (from October 30, 2002, 

to December 7, 2015). 

All the computational aspect are the same we have already seen, with the exception of the way 

I initialize the optimization algorithm: as discussed above, we can adopt different 

implementation to make the algorithm running faster, but only two of them are the most 

efficient and they just differ on the technique they use to initialize the algorithm. 

These approaches are the one suggested by Manganelli in one of his paper ((“VAR for VaR: 

Measuring tail dependence using multivariate regression quantiles”, 2015) and the one that use 

the Genetic Algorithm; consequently, from now on, I will use just them. 

The results for the three funds are shown in the tables below: 
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In this case (i.e. in the computation of the original CAViaR), I saw that the genetic algorithm is 

more efficient, because it gives me the same results in less time. For this reason, I will use it to 

make all the computations concerning the first model. 

 

The second model adds the lagged benchmark variable to the first model. In this case, we 

proceed the same way as before: we compute the model by using the two different way to 

initialize the algorithm, but, from the results, we understand that the genetic algorithm cannot 

reach the global minimum. In fact, it tends not to give similar results every time I run it; on the 

contrary, the results seem to be more stable every time I use Manganelli’s model. Thus, the last 

method appears to come closer to the global minimum. 

 

 

 

Table 6. First Model 1% & 5% CAViaR estimations – First Fund 

Table 7. First Model 1% & 5% CAViaR estimations – Second Fund 

Table 8. First Model 1% & 5% CAViaR estimations – Third Fund 
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This is certainly due to the nature of the genetic algorithm that is a heuristic method; 

consequently, it is not sure that it can give every time the best results. Nevertheless, as I said in 

the previous Chapter, this algorithm can sometimes reach the optimum if we choose the right 

settings and strategies. 

For this reason, I created a new setting for the algorithm: instead of using just one initial vector, 

I asked the genetic algorithm to create five initial vectors. Then I computed, for every initial 

vector the regression quantile (RQ) function and I chose three vectors, which produced the 

lowest RQ criterion, as initial values for the optimization routine. 

This new setting guarantees us to have as good results as Manganelli’s are; this is shown in the 

following tables: 

 

 

 

Table 9. Second Model 1% & 5% CAViaR estimations – Manganelli’s approach – First Fund 

Table 10. Second Model 1% & 5% CAViaR estimations – Manganelli’s approach – Second Fund 

Table 11. Second Model 1% & 5% CAViaR estimations – Manganelli’s approach – Third Fund 
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An interesting fact is that both the methods requires the same amount of time to complete the 

loops; for this reason, both the methodologies are well suited to make the computations for this 

model (I preferred to choose the genetic algorithm methodology). 

 

The most interesting case is the third model: because of the huge amount of variables involved 

in this model, the computational aspect is more complicated,  

In fact, for taking into account all the possible relevant risk factors, I chose to create the last 

model by adding forty-seven variables to the second model (all the variables were downloaded 

from Datastream). The consequence of this choice is that both the Genetic and Manganelli’s 

algorithms fail to achieve the vector of parameters that correspond to the global minimum (I 

recognized it thanks to the p-values made from the t-tests and the fact that the coefficients of 

the parameters change every time I start the loops). 

Table 12. Second Model 1% & 5% CAViaR estimations – G.A. approach – First Fund 

Table 13. Second Model 1% & 5% CAViaR estimations – G.A. approach – Second Fund 

Table 14. Second Model 1% & 5% CAViaR estimations – G.A. approach – Third Fund 
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One solution to this issue could be to decrease the number of variables; but one can ask “Which 

variables we should maintain and which ones we should drop off?” 

The answer to this question is easy: the most significant ones. Obviously, this answer rises a 

following natural issue: how can we decide which variables are more significant than the rest? 

Fortunately, it exists a statistical method that can help us solving this problem: it is called 

Principal Components Analysis. 

 

“Principal component analysis is a variable reduction procedure. It is useful when you have 

obtained data on a number of variables (possibly a large number of variables), and believe that 

there is some redundancy in those variables. In this case, redundancy means that some of the 

variables are correlated with one another, possibly because they are measuring the same 

construct. Because of this redundancy, you believe that it should be possible to reduce the 

observed variables into a smaller number of principal components (artificial variables) that will 

account for most of the variance in the observed variables” (SAS Institute Inc.). 

In particular, this procedure is “useful when you need a data reduction procedure that makes no 

assumptions concerning an underlying causal structure that is responsible for covariation in the 

data…[in fact] principal components depend solely on the covariance matrix (or the correlation 

matrix) of the original independent variables. Their development does not require a multivariate 

normal assumption.” (SAS Institute Inc.). 

 

Therefore, even if we have many variables, which together reproduce the total variability of the 

model, by using this method we can find few principal components that can account for much 

of this volatility. If so, there is (almost) as much information in few principal components as 

there is in the original variables; consequently, we can replace the initial variables with the 

principal components. 

In addition, this type of analysis can help us to find out some relationships that were previously 

hidden, thus, allowing for interpreting the data in a different way (Johnson, Wichern (1998)). 

 

From a mathematical point of view, principal components are “particular linear combinations 

of the ` random variables ��, �#, … , �B. Geometrically, these linear combinations represent the 

selection of a new coordinate system obtained by rotating the original system with ��, �#, … , �B 
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as the coordinate axes. The new axes represent the directions with maximum variability and 

provide a simpler and more parsimonious description of the covariance structure” (Johnson, 

Wichern (1998)). 

 

4.4 Principal Components Analysis & the Third Model 

 

My analysis on principal components focused on forty-seven variables and did not take into 

account the benchmark; in fact, as we saw from the results of second model, this variable is 

every time very significant both from a statistic and from an economic point of view. 

 

I computed the principal components by using a Matlab function; the results suggested me to 

use five principal components as new variables for the third model, in fact, they can together 

explain approximately 90% of the total population variance. 

 

To interpret each principal component is necessary to calculate the correlation matrix between 

the components and the original forty-seven variables; in addition, we also have to compute the 

significance of every elements inside the correlation matrix (results are shown in Appendix B) 

and the total variance every principal components can explain. 

 

Before analyzing the principal components is important to set some rules: these are necessary 

to separate the significant elements from the non-significant ones. 

For this purpose, we can rely both on the p-value matrix (deciding to take the elements with a 

p-value<0.01) or on a constraint set on the correlation matrix (deciding to take just the elements 

that have a value greater or equal to 50%). 

To better interpret the principal components, I chose to use the 50% constraint; in fact, the 

number of elements that have a significant p-value is too large to help us making any 

discrimination. 

 

Let now analyze the results: 

 

1) The first principal component explains 39.73% of the total variance in the “original” 

independent variables. The only variables that satisfy the 50% constraints are the S&P 

GSCI Commodity index, the crude oil prices, the VSTOXX and a similar volatility 

index for the US market (which are marked in the tables using the yellow color) 
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The first two are positively correlated with the principal component while the second 

two have a negative correlation; thus, the first principal component can be seen as a 

measure of stability in the market: in fact, it rises when the commodities grow and 

decreases when the volatilities grow. In particular, when the prices of all the 

commodities in the market grow, this indicates a situation of stability and growth in the 

economy, while an increase in the volatility indicates a situation of instability in the 

markets. 

2) The second principal component explains 23.81% of the total variance of the 

independent variables. The significant variables that constitute the second principal 

components are the crude oil prices, the VSTOXX and a similar volatility index for the 

US market (they are marked in yellow). 

All these variables are positively correlated with the principal component; thus, this 

component could be interpret as a measure of instability. In fact, it rises when both the 

price of oil and the volatility grow (typical situation of instability in the markets).   

3) The third principal component explains about 10.6% of the total volatility. By using the 

50% constraint on the correlation elements, we end up with several significant variables 

that are mainly composed by many interest rate price indices and few interest rates 

spreads (yellow color). 

Consequently, this principal component can be interpreted as a measure of interest rates 

levels in the period we took (from October 30, 2002, to December 7, 2015). 

4) When we filter the forth principal component, we do not find any significant variables. 

In fact, the most weighted variables reach just a weight of 45.67% (the VSTOXX) and 

of -41.67% (volatility index for the US market); these are marked in the table using a 

brown color. This is not a big issue, in fact, this principal component explains only 

8.27% of the total variability of the independent variables, and thus it is not very 

relevant for the model. 

5) The last principal component contains only 6.55% of the total volatility and it is 

mainly composed by the EUR/USD exchange rate and the S&P GSCI Commodity 

index (yellow color), which are both positively correlated with the principal 

component. We could interpret it as a price of the inputs and, thus, a measure of 

competition of the European economy; in fact, the price of euro and inputs are two of 

the most important variables for the profitability of European big firms. 
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Thanks to the principal components technique we reduced the number of independent variables 

to be added in our third model; in fact, now, the model must find just a total amount of 

parameters equal to nine, thus, now there are more chances that our algorithms can come closer 

the global minimum point. 

 

As, we discussed above, the genetic algorithm can be a good method for finding out the global 

minimum only if we set it correctly; for this reason, I created another new setting for the genetic 

algorithm: I increased the number of initial vectors (from five to fifteen). Then, as I did above, 

I computed for every initial vector the regression quantile (RQ) function and I chose five vectors 

(instead of three), which produced the lowest RQ criterion, as initial values for the optimization 

routine. 

This new setting improved the results, but, as I said, we are never sure that a heuristic method 

can reach the global minimum; for this reason, I implemented, for every fund of investment, 

some comparisons between the new Genetic Algorithm and Manganelli’s algorithm: 

 

1) For the first fund, I saw that the two methods give me approximately the same results, 

with the difference that the genetic algorithm spent less time than Manganelli’s one 

(around five seconds less); thus, I chose to use the genetic approach to compute the third 

model (and its future estimations) for the first fund. The results are shown in the table 

below: 

 

 

 

 

2) For the second fund, I noticed that the genetic algorithm gives me “weak” results (in 

fact, by running the algorithm several times, I saw that they are not always close to 

Table 15. Third Model 1% & 5% CAViaR estimations – G.A. approach – First Fund 
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Manganelli’s outcomes). Consequently, I preferred to use Manganelli’s method, even if 

it requires more time to be computed (about 8 seconds more). We can see the results in 

the following table: 

 

 

 

  

 

3) Similar conclusions can be made for the last fund: even if the genetic algorithm takes 

less time (seven seconds less), it is not as precise as Manganelli’s loops. Consequently, 

I chose to use it for making all the computations for the third model on the third fund. 

The table below shows the results: 

 

 

 

 

Before concluding this chapter, I would like to highlights few things I consider relevant: 

 

Table 16. Third Model 1% & 5% CAViaR estimations – Manganelli’s approach – Second Fund 

Table 17. Third Model 1% & 5% CAViaR estimations – Manganelli’s approach – Third Fund 
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1) It is not easy to find the global minimum, especially when we increase the number of 

independent variables; in this case, most of the algorithms fail or require a huge amount 

of time. Sometimes we must find a compromise that can give us a local minimum quite 

close to the global one and that does not require us an exaggerate amount of time. 

2) The genetic algorithm is a heuristic method that can help us to reach the optimal solution 

very quickly, but it requires the right setting, which imply many experiments and 

comparisons. Nevertheless, as we saw, it can also fail and alternative methods can be 

preferred. 
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FIFTH CHAPTER: EMPIRICAL RESULTS 

 

5.1 Introduction 

 

In this Chapter, I will describe and analyze the final computations I made.  

In the first part, I will introduce the technique that permitted me to investigate the data in a more 

rigorous fashion; then I will present a test about the accuracy of my models. 

Lastly, I will introduce some issues and give some overall conclusions on the analysis. 

 

5.2 The rolling window method 

 

As we have seen in the previous chapter, the usage of an entire time-series data set gives us just 

one estimation of the parameters we are interested; this is not very useful if we want to make 

some comparisons and analysis among different models and different portfolios. In fact, the use 

of just one estimation of parameters for each model and each fund can lead to misinterpret the 

results; consequently, for making rigorous analysis we need to estimate a bigger amount of 

parameters. 

For doing this, we can use a rolling window method. 

This technique consists in using a time window and making the estimation of the parameters 

on this “restricted” time series data set; then, after the computation, we move the time window 

further in the data set and estimate another set of parameters. We repeat this procedure until the 

last data contained in the window is equal to the last data contained in the entire data set. 

 

In my case, for each fund and model, I have a times series consisting of 3,418 observations for 

each variable and, consequently, by using a rolling window of 1000 observations, I end up with 

2,418 vectors of estimated parameters. This huge amount of estimated parameters can help us 

to better analyze the results, but, as I mentioned several times in my thesis, we have also to pay 

attention to the amount of time we spend for reaching the outcomes. 

For this reason, I decided not to use all the 2,418 rolling windows for computing the vectors of 

parameters, but only 484 windows: in fact, for every five windows, I estimated only the vector 

of parameters of the first window, extending it to the other following four windows. This 

permitted me to calculate the quantiles and the p-values (on the estimated parameters) for every 

window, thus, reducing remarkably the amount of time spent. 
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The negative side of this methodology is that it gives us less estimated parameters and that it is 

not completely precise: in fact, it extends the estimated coefficients of an initial time window 

to the following four windows for computing their quantiles and p-values. 

 

Consequently, also in this case, we have an issue concerning the tradeoff between accuracy and 

timing of estimations. Fortunately, our methodology is jet a good compromise between 

precision and time saving: extending a coefficients estimation to four following windows does 

not distort dramatically the calculation of quantiles and p-values. Thus, we can use this 

methodology without problems with the huge advantage of saving a lot of time in the 

computations. 

 

For a better analysis of the results, I created some tables in which I summarized the most 

interesting features of the outcomes; in particular, the first two columns of the tables concern 

the number of estimated coefficients and the number of significant estimated coefficients (i.e. 

those that have a p-value less than 1%). The other columns refer to the significant coefficients 

and include the mean, the standard deviation, the minimum value, the maximum value, the 

number of positive coefficients and the number of negative coefficients. 

All the results are presented in Appendix C. 

 

As we can see from the table (yellow color), the autoregressive quantile coefficients seem to be 

the most stable in all the models and for every fund: the number of significant coefficients on 

the number of estimated coefficients is every time very high (at least higher than 80%). On the 

contrary, the other variables are much more unstable: few of them reach a percentage of 

“significance” higher than 50% and, moreover, this result does not persist for every model and 

for every fund (this conclusion is shown in the table using the brown color). 

 

These outcomes permit us to make some first conclusions: the fact that the coefficients of the 

autoregressive term are always very significant permits us to say “that the phenomenon of 

clustering of volatilities is relevant also in the tails” (Engle, Manganelli (2002)). 

 

We now turn into a second analysis that allows us to understand if our model are precise or not; 

for doing so, we are going to use a test that was entirely created by Engle and Manganelli: the 

so-called Dynamic Quantile (DQ) test. 
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5.3 The DQ-Test 

 

If our models are the true DGP (Data Generating Process), “then Prm�� < ��(;�)n = � . This 

is equivalent to requiring that the sequence of indicator functions �8���2�� = D8m�� <
��(;�)nJ�2��

be independent and identically distributed. Hence, a property that any VaR estimate 

should satisfy is that of providing a filter to transform a (possibly) serially correlated and 

heteroskedastic time series into a serially independent sequence of indicator functions” (Engle, 

Manganelli (2002)). 

For doing this, Engle and Manganelli (2002) proposed a test, which has better power properties 

than other existing tests: the Dynamic Quantile Test (DQ-Test). In fact, even if most of the tests 

can “detect the presence of serial correlation in the sequence of indicator functions �8���2�� , this 

is only a necessary, but not sufficient condition to assess the performance of a quantile model. 

Indeed, it is not difficult to generate a sequence of independent �8���2��   from a given sequence 

of �����2�� ” (Engle, Manganelli (2002)). 

Indeed, as was pointed out by Allen and Singh (2010), “A relevant VaR model should also 

feature a sequence of VaR violations which are not serially correlated”. 

 

Engle and Manganelli achieved this result by using a Hit function of this type: 

 

x�6�(;�) = 8m�� < ��(;�)n − � 

 

Where the function x�6�(;�) takes a value (1 − �) every time ��  falls below the quantile, and 

it takes the value −�  in all the other circumstances. The equation above indicates that the 

expectation of x�6�(;�) is equal to zero. Additionally, based on the definition of the quantile 

“we also assume that the conditional expectation of x�6�(;�) given a set of information at 

period 6 − 1 is zero. This implies that x�6�(;�) must be uncorrelated with its own lagged values 

as well as with ��(;�) and its expected value should equal zero. If these assumptions hold for 

x�6�(;�) then we are certain that we have no misspecification error introduced, there is no 

autocorrelation in the hits, and we will obtain the correct fraction of exceptions” (Kouretas, 

Zarangas (2005)). 

 

Based on these considerations, Engle and Manganelli (2002) proposed the following test: 
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� → ∞ � → ∞ 

If � symbolizes the number of in sample observations and � the number of out of sample 

observations, a natural way to build a test is to check whether the test statistic �¦? (;Z�)x�6¦m;Z�n 

is significantly different from zero, where �'? (;Z�),  � = � + 1, … , � + �. 

The typical row of �¦(;Z) (possibly depending on ;Z), is a �-vector measurable-Ω' and 

x�6¦m;Zn = �x�6�S�m;Zn, … , x�6�S¦m;Zn	′ . 
Accordingly, the two researchers proposed this out of the sample version of the Dynamic 

Quantile (DQ) test statistic: 

 

|�� ≡  x�6¦? m;Z�n�¦m;Z�n��¦? m;Z�n�¦m;Z�n����¦? m;Z�nx�6¦m;Z�n�(1 − �) �→ §�# 

 

provided that �¦? m;Z�n�¦m;Z�n is nonsingular. The limit for � → ∞ is required to ensure that    

;Z� B→ ;� (Engle and Manganelli (2002)). 

 

This test is very useful, in fact as Engle and Manganelli (2002) revealed, it “can be used by 

regulators to check whether the VaR estimates submitted by a financial institution satisfy some 

basic requirements every good quantile estimates must have, such as unbiasedness, independent 

hits and independence of the quantile estimates. [Additionally,] the nicest features of the out-

of-sample DQ test are its simplicity and the fact that it does not depend on the estimation 

procedure: to implement it, the evaluator (either the regulator or the risk manager) just needs a 

sequence of VaR’s and the corresponding values of the portfolio”. 

 

Let now move to the computational aspect; from this point of view I completely followed Engle 

and Manganelli’s method with two main exceptions: 

 

1. The instruments used in the out-of-sample DQ test were the lagged returns, the square 

of the lagged returns, the lagged VaR forecast and the first four lagged hits (instead of 

a constant, the VaR forecast and the first four lagged hits, as used by Engle and 

Manganelli). 

2. For creating the out-of-sample DQ test, Engle and Manganelli divided the historical data 

into two parts: they used the first 2,892 observations to estimate the model and the last 

500 for out-of-sample testing. I proceeded in a similar but not the same fashion: by using 

the rolling method seen above, I estimated 2,418 vectors of parameters and, for each 

estimation, I created the future quantile. In other words, for the period t+m I can obtain 
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the quantile for t+m+1; this is possible because all my independent variables are lagged 

(thus I just need the information set at t+m for estimating the t+m+1 quantile). Then I 

aggregated the series of t+m+1 quantiles (obtained for different values of t) and on this 

sequence I computed the out-of-sample DQ-test. 

 

 The results for the percentage of times the VaR is exceeded and the p-value of the Dynamic 

Quantile tests are shown in the following tables: 

 

 

 

 

 

 

 

 

 

As we can see from the results, all the models are very precise (according to the p-values of 

DQ-tests), even if some of them exceeds the 1% or 5% of hits (especially the first and second 

fund in the third model - both for the 1% and 5% VaR case). “This shows that looking only at 

the number of exceptions (as suggested by the Basle Committee on Banking Supervision 

Table 18. Hits and DQ-test for out-of-sample 1% VaR  

Table 19. Hits and DQ-test for out-of-sample 5% VaR  
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(1996)) may be a very unsatisfactory way of evaluating the performance of a VaR model” 

(Engle, Manganelli (2002)). 

 

5.4 Crossings and Conclusions 

 

Let now turn into a very relevant issue concerning the quantiles, i.e. the quantiles crossings. 

The problem is well explained by Bondell, Reich and Wang (2010): “when an investigator 

wishes to use quantile regression at multiple percentiles, the quantile curves can cross, leading 

to an invalid distribution for the response. Given a set of covariates, it may turn out, for example, 

that the predicted 95th percentile of the response is smaller than the 90th percentile, which is 

impossible”. 

 

This is a big issue and should be taken into consideration while analyzing our results, because 

it can lead to misinterpret them; for this reason, I computed the number of crossing between the 

1% and 5% quantiles for each model and each fund. The results are shown in the following 

table: 

 

 

 

 

As we can see from the table, the number of crossing is very low in the first model, while it 

“explodes” for the second and third models; these outcomes suggest us to discard the second 

and third model, in fact they produce biased results. 

It is interesting to note that this last result is shared by all the three funds. 

 

In view of the above, we could make some conclusions: 

 

1) It seems that, for my data sets, only the CAViaR specification introduced by Engle and 

Manganelli can survive all the computations made above; thus, I would say that creating 

Table 20. Crossing between quantiles 
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new models by inserting risk factors inside the “original” model could just make it 

worse. 

2) If we analyze the results in Appendix C just focusing on the first model, we can notice 

that only the autoregressive quantile component is very significant (both in the 1% and 

in 5% VaR). In fact, the constant term and the absolute value parameter are not such 

considerable (in particular, the absolute value estimations improve moving from 1% to 

5% VaR, but they never become significant). This fact could suggest that our “original” 

CAViaR model is not well suited for our data. 

 

These two results introduce an interesting consideration: there are different kind of processes 

for modelling the CAViaR (we saw just few of them in the Second Chapter) and it does not 

exist one that always outperforms the others: the best model depends on the data set and on the 

quantiles. This observation implies an obvious consideration: to reach the best model we have 

to compare different models any time we change the portfolio/s and the quantiles we are 

investigating. 

 

These considerations are in line with Engle and Manganelli’s outputs (2002): in fact, the two 

researchers performed all the models seen in Chapter 2, demonstrating that “the DQ tests select 

different models for different confidence levels”. This result is very important and led to the 

conclusion “that the process governing the tail behavior might change as we move further out 

in the tail. In particular, this contradicts the assumption behind GARCH and RiskMetrics, since 

these approaches implicitly assume that the tails follow the same process as the rest of the 

returns. While GARCH might be a useful model to describe the evolution of volatility, the 

results in this paper show that it might provide an unsatisfactory approximation when applied 

to tail estimation” (Engle, Manganelli (2002)). 
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SUMMARY AND CONCLUDING REMARKS 

 

In my thesis, I introduced a new structure for estimating the VaR of portfolios returns.  

This procedure has been firstly introduced by Engle and Manganelli (1999) and it is a 

semiparametric method “which shifts the analysis of developing a good measure of the VaR 

from the distribution of the portfolio returns directly to the behavior of the quantile” (Kouretas, 

Zarangas (2005)). For doing so, the two researchers proposed the so-called Conditional 

Autoregressive Value at Risk (CAViaR) models, “which specify the evolution of the quantile 

over time using a special type of autoregressive process” (Engle, Manganelli (2002)), utilizing 

a minimization regression quantiles loss function to estimate the unknown parameters. 

Starting from this basis, I chose to focus my attention on one CAViaR specification introduced 

by the two researchers (i.e. the Symmetric Absolute Value) studying its behavior applied to three 

sets of comparable portfolio returns. I also tried to improve the basic model by adding different 

risk factors, ending up with three CAViaR models for each fund, which I compared to find out 

the best VaR predictor model. 

The overall results show that the original CAViaR specification cannot be improved by adding 

risk factors, representing, thus, the best model we found for our data sets. Another important 

outcome is that only one estimated coefficient of the original model is very significant, 

suggesting us that maybe the original CAViaR specification does not perfectly explain our data 

sets of portfolio returns. 

These conclusions are very interesting and important for the financial sector: the fact that it 

does not exist only one right CAViaR specification should suggest the regulators and financial 

firms not to overlook the estimation of VaR, which, when it is accurate, requires a lot of 

experiments and comparisons to be found. 
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Appendix A: Assumptions* 

 

Consistency Assumptions 

C0. (Ω, �, �) is a complete probability space and ����, ���, 6 = 1,2, …, are random vectors on 

this space. 

C1. The function ��(;): ℝ_� × ¨ → ℝ is such that for each ; ∈ ¨, a compact subset of ℝB, ��(;) is measurable with respect to the information set Ω� and ��(∙) is continuous in ¨,      6 = 1,2, …, for a given choice of explanatory variables ����, ����, … , ��, ��. 

C2. Conditional on all the past information Ω�, the error term ��� form a stationary process, 

with continuous conditional density ℎ�(�|Ω�), and continuous joint density ℎ�©,ª(�, �, �). 

C3. There exists ℎ > 0 such that for all 6 ℎ�(0|Ω�) ≥ ℎ. 

C4. |��(;)| < «(Ω�) for each ; ∈ ¨ and for all 6, where «(Ω�) is some (possibly) stochastic 

function of variables that belong to the information set, such that �(|«(Ω�)|¬) ≤ «� < ∞,     � > 1 for some constant «�. 

C5.�(|���|) < ∞ for all 6. 

C6. D�� − 8m�� < ��(;)n���� − ��(;)	J obeys the law of large numbers. 

C7. For every ­ > 0, there exists a � > 0 such that if ||; − ;� || ≥ ­, 
liminf�→¯ ��� - ��|��(;) − ��(;�)| > �	 > 0. 

 

Asymptotic Normality Assumptions 

AN1. ��(;) is differentiable in ¨ and for all ; and ^ in a neighborhood ±� of ;�, such that ||; − ^|| ≤ � for � sufficiently small and for all 6. 

(i) ||∇��(;)|| ≤ �(Ω�), where �(Ω�) is some (possibly) stochastic function of 

variables that belong to the information set and �(|�(Ω�)|�) ≤ �� < ∞, for some 

constant �� 

(ii) ∇��(;) satisfies the Lipschitz condition ||∇��(;) − ∇��(^)|| ≤ ²||; − ^||, where ² < ∞ 

AN2.     (i) ℎ�(�|Ω�) ≤ � < ∞, ∀6 

     (ii) ℎ�(�|Ω�) satisfies the Lipschitz condition     

           |ℎ�(´�|Ω�) − ℎ�(´#|Ω�)| ≤ µ|´� − ´#|, where µ < ∞, ∀6. 
AN3. There exists ­ > 0, such that for any ; ∈ ¨ and � sufficiently large 

det(��� ∑ ���2� �∇? ¹̧(;)∇��(;)	) > ­. 

AN4. D�� − 8m�� < ��(;)n�∇′��(;)J satisfies a central limit theorem 
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Variance Covariance Matrix Estimation Assumptions 

VC1. �̂�/��  B→ 1, where the nonstochastic sequence �� satisfies �� = �(1) and ���� = �(��/#). 

VC2. �(|�(Ω�)|�) ≤ �� < ∞. For all 6 and for some constant ��, where �(Ω�) has been defined 

in AN1 (i). 

 

   

* The present appendix was entirely formulated by Engle and Manganelli (2002) 
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  Appendix B: Principal Components  

 

Table 1. Correlation matrix Pricipal Components 

US $ TO EURO (WMR&DS) - EXCHANGE RATE     0.1543    -0.1137     0.0702     0.0092     0.5197 

S&P GSCI Commodity Total Return - RETURN IND. (OFCL)     0.7411     0.3335     0.0826     0.1956     0.5281 

Crude Oil-Brent Dated FOB EUR/BBL     0.7397     0.6269     0.0136    -0.0546    -0.2309 

BARCLAYS EURO AGG GOVERNMENT (E)    -0.2287     0.0901     0.8299    -0.1988     0.0552 

BARCLAYS EURO AGGREGATE (E)    -0.2462     0.1136     0.8348    -0.1850     0.0424 

BARCLAYS PAN-EUR. AGG (E)    -0.2976     0.1426     0.8349    -0.1529     0.0393 

BD BENCHMARK 10 YEAR DS GOVT. INDEX - CLEAN PRICE INDEX    -0.3940     0.2263     0.7790    -0.0596    -0.0444 

BOFA ML EUR UNION GVT. (E) - TOT RETURN IND    -0.2432     0.1342     0.8187    -0.1811    -0.0336 

BD BENCHMARK 30 YEAR DS GOVT. INDEX - CLEAN PRICE INDEX    -0.3656     0.1950     0.8281    -0.1042    -0.0553 

EMU BENCHMARK 30 YR. DS GOVT. INDEX - CLEAN PRICE INDEX    -0.3620     0.1927     0.8253    -0.1049    -0.0575 

EMU BENCHMARK 10 YR. DS GOVT. INDEX - CLEAN PRICE INDEX    -0.3940     0.2262     0.7785    -0.0594    -0.0445 

FR BENCHMARK 10 YEAR DS GOVT. INDEX - CLEAN PRICE INDEX    -0.2982     0.1436     0.8011    -0.1329     0.0216 

IBOXX EURO CORP. ALL MATS - PRICE INDEX    -0.2029     0.1453     0.6789    -0.1439     0.0066 

IBOXX EURO OVERALL INDEX ALL MATS. - PRICE INDEX    -0.2364     0.1070     0.8263    -0.1734     0.0349 

IBOXX EURO SOVEREIGN EZONE ALL MATS - PRICE INDEX    -0.2183     0.0746     0.8442    -0.2033     0.0601 

IT BENCHMARK 10 YEAR DS GOVT. INDEX - CLEAN PRICE INDEX    -0.0043    -0.0728     0.5477    -0.2496     0.1474 

IT BENCHMARK 30 YEAR DS GOVT. INDEX - CLEAN PRICE INDEX    -0.0137    -0.0551     0.6424    -0.2895     0.1225 

EURO SPOT WEEK FX VOL - EXCHANGE RATE    -0.2427     0.2587    -0.0489    -0.0261    -0.0870 

Vstoxx    -0.7092     0.5269     0.0167     0.4567    -0.0327 

volatility usa    -0.6288     0.5942    -0.2086    -0.4167     0.1774 

EURO RATE 3 MONTH (DS SYNTHETIC) - OFFERED RATE     0.0109     0.0656    -0.0341    -0.0391     0.0385 

EURO RATE 6 MONTH (DS SYNTHETIC) - OFFERED RATE     0.0541     0.0465    -0.0770    -0.0264     0.0259 

EURO RATE 1 MONTH (DS SYNTHETIC) - OFFERED RATE     0.0161     0.0524    -0.0119    -0.0243     0.0256 

EURO RATE 1 YEAR (DS SYNTHETIC) - OFFERED RATE     0.0725     0.0213    -0.1300    -0.0213     0.0102 

(TR) EURO VS EURIBOR 6M IR SWAP 10Y - MIDDLE RATE     0.3362    -0.2010    -0.7081     0.1341     0.0291 

EBF EURIBOR 3M DELAYED - OFFERED RATE     0.0087     0.0607    -0.0282    -0.0348     0.0415 

EBF EURIBOR 6M DELAYED - OFFERED RATE     0.0571     0.0465    -0.0691    -0.0266     0.0203 

IBA EUR IRS ISDAFIX 10Y DELAYED - MIDDLE RATE     0.1916    -0.1248    -0.3706    -0.0180     0.0315 

IBA EUR IRS ISDAFIX 5Y DELAYED - MIDDLE RATE     0.1795    -0.1143    -0.3185    -0.0244     0.0174 

INEU05(CM01)     0.1552    -0.0846    -0.2065     0.0004    -0.0012 

INEU05(CM10)     0.2325    -0.1216    -0.5678     0.0950     0.0422 

INEU05(CM02)     0.2360    -0.1504    -0.4041     0.0530     0.0102 

INEU05(CM03)     0.2601    -0.1571    -0.5123     0.0603     0.0242 

INEU05(CM05)     0.2849    -0.1629    -0.6340     0.0765     0.0205 

EURO SPOT WEEK OIS - MIDDLE RATE     0.0689    -0.0172    -0.0203    -0.0135     0.0341 

EURO 6 MONTH OIS - MIDDLE RATE     0.2823    -0.1907    -0.1910     0.0333     0.0560 

EURO 1 YEAR OIS - MIDDLE RATE     0.2814    -0.1955    -0.3199     0.0664     0.0285 

ECU EURO-ECU 5 MTH - MIDDLE RATE    -0.0135     0.0191    -0.0491    -0.0039     0.0179 

ECU EURO-ECU 1 YEAR - MIDDLE RATE     0.0743    -0.0334    -0.1034    -0.0146     0.0219 

IBA EUR IBK. LIBOR 1M DELAYED - OFFERED RATE     0.0156     0.0526    -0.0122    -0.0245     0.0252 

IBA EUR IBK. LIBOR 6M DELAYED - OFFERED RATE     0.0534     0.0464    -0.0775    -0.0258     0.0260 

IBA EUR IBK. LIBOR O/N DELAYED - OFFERED RATE     0.0295     0.0118    -0.0036     0.0193     0.0300 

(TR) EURO VS EURIBOR 6M IR SWAP 5Y - MIDDLE RATE     0.3070    -0.1996    -0.6163     0.1275     0.0193 

INEU03(CM01)     0.1944    -0.1059    -0.2453     0.0148     0.0022 

INEU03(CM10)     0.2448    -0.1411    -0.6003     0.1003     0.0342 

INEU03(CM05)     0.2845    -0.1627    -0.6269     0.0770     0.0222 

INEU03(CM02)     0.2529    -0.1531    -0.4331     0.0463     0.0154 



71 

  

Table 2. Associated p-values Pricipal Components 

US $ TO EURO (WMR&DS) - EXCHANGE RATE     0.0000     0.0000     0.0000     0.5919     0.0000 

S&P GSCI Commodity Total Return - RETURN IND. (OFCL) 0     0.0000     0.0000     0.0000     0.0000 

Crude Oil-Brent Dated FOB EUR/BBL 0 0     0.4281     0.0014     0.0000 

BARCLAYS EURO AGG GOVERNMENT (E)     0.0000     0.0000 0     0.0000     0.0012 

BARCLAYS EURO AGGREGATE (E)     0.0000     0.0000 0     0.0000     0.0131 

BARCLAYS PAN-EUR. AGG (E)     0.0000     0.0000 0     0.0000     0.0215 

BD BENCHMARK 10 YEAR DS GOVT. INDEX - CLEAN PRICE INDEX     0.0000     0.0000 0     0.0005     0.0094 

BOFA ML EUR UNION GVT. (E) - TOT RETURN IND     0.0000     0.0000 0     0.0000     0.0496 

BD BENCHMARK 30 YEAR DS GOVT. INDEX - CLEAN PRICE INDEX     0.0000     0.0000 0     0.0000     0.0012 

EMU BENCHMARK 30 YR. DS GOVT. INDEX - CLEAN PRICE INDEX     0.0000     0.0000 0     0.0000     0.0008 

EMU BENCHMARK 10 YR. DS GOVT. INDEX - CLEAN PRICE INDEX     0.0000     0.0000 0     0.0005     0.0093 

FR BENCHMARK 10 YEAR DS GOVT. INDEX - CLEAN PRICE INDEX     0.0000     0.0000 0     0.0000     0.2066 

IBOXX EURO CORP. ALL MATS - PRICE INDEX     0.0000     0.0000 0     0.0000     0.6995 

IBOXX EURO OVERALL INDEX ALL MATS. - PRICE INDEX     0.0000     0.0000 0     0.0000     0.0416 

IBOXX EURO SOVEREIGN EZONE ALL MATS - PRICE INDEX     0.0000     0.0000 0     0.0000     0.0004 

IT BENCHMARK 10 YEAR DS GOVT. INDEX - CLEAN PRICE INDEX     0.8013     0.0000     0.0000     0.0000     0.0000 

IT BENCHMARK 30 YEAR DS GOVT. INDEX - CLEAN PRICE INDEX     0.4217     0.0013 0     0.0000     0.0000 

EURO SPOT WEEK FX VOL - EXCHANGE RATE     0.0000     0.0000     0.0043     0.1278     0.0000 

Vstoxx 0     0.0000     0.3278     0.0000     0.0558 

volatility usa 0 0     0.0000     0.0000     0.0000 

EURO RATE 3 MONTH (DS SYNTHETIC) - OFFERED RATE     0.5222     0.0001     0.0464     0.0222     0.0243 

EURO RATE 6 MONTH (DS SYNTHETIC) - OFFERED RATE     0.0016     0.0065     0.0000     0.1224     0.1302 

EURO RATE 1 MONTH (DS SYNTHETIC) - OFFERED RATE     0.3470     0.0022     0.4885     0.1548     0.1351 

EURO RATE 1 YEAR (DS SYNTHETIC) - OFFERED RATE     0.0000     0.2141     0.0000     0.2139     0.5506 

(TR) EURO VS EURIBOR 6M IR SWAP 10Y - MIDDLE RATE     0.0000     0.0000 0     0.0000     0.0887 

EBF EURIBOR 3M DELAYED - OFFERED RATE     0.6095     0.0004     0.0987     0.0417     0.0152 

EBF EURIBOR 6M DELAYED - OFFERED RATE     0.0008     0.0066     0.0001     0.1194     0.2360 

IBA EUR IRS ISDAFIX 10Y DELAYED - MIDDLE RATE     0.0000     0.0000     0.0000     0.2915     0.0655 

IBA EUR IRS ISDAFIX 5Y DELAYED - MIDDLE RATE     0.0000     0.0000     0.0000     0.1546     0.3103 

INEU05(CM01)     0.0000     0.0000     0.0000     0.9833     0.9461 

INEU05(CM10)     0.0000     0.0000     0.0000     0.0000     0.0135 

INEU05(CM02)     0.0000     0.0000     0.0000     0.0019     0.5514 

INEU05(CM03)     0.0000     0.0000     0.0000     0.0004     0.1570 

INEU05(CM05)     0.0000     0.0000 0     0.0000     0.2297 

EURO SPOT WEEK OIS - MIDDLE RATE     0.0001     0.3150     0.2364     0.4287     0.0464 

EURO 6 MONTH OIS - MIDDLE RATE     0.0000     0.0000     0.0000     0.0514     0.0010 

EURO 1 YEAR OIS - MIDDLE RATE     0.0000     0.0000     0.0000     0.0001     0.0957 

ECU EURO-ECU 5 MTH - MIDDLE RATE     0.4303     0.2631     0.0041     0.8175     0.2949 

ECU EURO-ECU 1 YEAR - MIDDLE RATE     0.0000     0.0510     0.0000     0.3933     0.2008 

IBA EUR IBK. LIBOR 1M DELAYED - OFFERED RATE     0.3617     0.0021     0.4762     0.1522     0.1413 

IBA EUR IBK. LIBOR 6M DELAYED - OFFERED RATE     0.0018     0.0067     0.0000     0.1316     0.1280 

IBA EUR IBK. LIBOR O/N DELAYED - OFFERED RATE     0.0843     0.4895     0.8353     0.2588     0.0795 

(TR) EURO VS EURIBOR 6M IR SWAP 5Y - MIDDLE RATE     0.0000     0.0000 0     0.0000     0.2583 

INEU03(CM01)     0.0000     0.0000     0.0000     0.3865     0.8977 

INEU03(CM10)     0.0000     0.0000 0     0.0000     0.0455 

INEU03(CM05)     0.0000     0.0000 0     0.0000     0.1951 

INEU03(CM02)     0.0000     0.0000     0.0000     0.0068     0.3690 
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Appendix C: Rolling window results  

 

 

A)  1% CAViaR 

 

  Coeff estimated Signif Coeff Mean Std. Dev. Min Max Positive Coeff Negative Coeff 

Constant Fund1 484 1 -0,12819 0 -0,12819 -0,12819 0 1 

Constant Fund2 484 0 0 0 0 0 0 0 

Constant Fund3 484 30 -1,08097 1,069567 -3,77116 -0,2666 0 30 

AutoregQuant Fund1 484 483 0,889657 0,032772 0,787419 0,964299 483 0 

AutoregQuant Fund2 484 413 0,843087 0,072131 0,58581 0,9415 413 0 

AutoregQuant Fund3 484 481 0,835215 0,174716 -0,73484 0,970482 477 4 

Abs Comp Fund1 484 29 -0,19793 0,024271 -0,22162 -0,08435 0 29 

Abs Comp Fund2 484 26 -0,201 0,016426 -0,25367 -0,16853 0 26 

Abs Comp Fund3 484 77 -0,32483 0,107844 -0,53703 -0,1455 0 77 

 

 

 

  Coeff estimated Signif Coeff Mean Std. Dev. Min Max Positive Coeff Negative Coeff 

Constant Fund1 484 313 -0,12938 0,038384 -0,45223 -0,01609 0 313 

Constant Fund2 484 447 -0,32245 0,184299 -0,92875 -0,08907 0 447 

Constant Fund3 484 303 -0,28269 0,337705 -4,00572 -0,05276 0 303 

AutoregQuant Fund1 484 482 0,891534 0,039453 0,622989 0,998767 482 0 

AutoregQuant Fund2 484 481 0,755364 0,137107 0,354382 0,964309 481 0 

AutoregQuant Fund3 484 474 0,847915 0,109879 0,506282 0,9836 474 0 

Abs Comp Fund1 484 142 -0,20928 0,036314 -0,30152 0,018615 1 141 

Abs Comp Fund2 484 151 -0,37496 0,083379 -0,51931 -0,24727 0 151 

Abs Comp Fund3 484 14 -0,29572 0,244762 -0,8819 -0,16915 0 14 

Benchmark Fund1 484 397 0,270008 0,050587 0,082794 0,457363 397 0 

Benchmark Fund2 484 468 0,394812 0,122882 0,191148 0,613193 468 0 

Benchmark Fund3 484 372 0,30001 0,102338 0,065542 0,688683 372 0 

 

 

 

 

 

 

Table 1. Results for the First Model 1% VaR 

Table 2. Results for the Second Model 1% VaR 
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  Coeff estimated Signif Coeff Mean Std. Dev. Min Max Positive Coeff Negative Coeff 

Constant Fund1 484 105 -0,17289 0,310252 -2,78532 -0,05016 0 105 

Constant Fund2 484 390 -0,4122 0,300045 -1,41047 -0,03167 0 390 

Constant Fund3 484 356 -0,60913 0,761122 -4,04113 -0,08091 0 356 

AutoregQuant Fund1 484 479 0,870586 0,086259 -0,44177 0,970082 478 1 

AutoregQuant Fund2 484 434 0,758269 0,183545 0,254116 1,000163 434 0 

AutoregQuant Fund3 484 394 0,844517 0,121714 0,298894 0,979254 394 0 

Abs Comp Fund1 484 46 -0,2464 0,118867 -0,4147 0,394522 1 45 

Abs Comp Fund2 484 134 -0,63471 0,187605 -1,12386 0,057552 1 133 

Abs Comp Fund3 484 88 -0,54367 0,215752 -0,94995 -0,10346 0 88 

Benchmark Fund1 484 68 0,327933 0,095326 0,143472 0,516445 68 0 

Benchmark Fund2 484 205 0,483252 0,160316 0,094452 0,680628 205 0 

Benchmark Fund3 484 143 0,581262 0,365042 -0,09691 1,091565 140 3 

P.C. 1 Fund 1 484 27 0,086292 0,050953 -0,1224 0,142767 26 1 

P.C. 1 Fund 2 484 87 0,122978 0,055698 0,06284 0,214601 87 0 

P.C. 1 Fund 3 484 157 -0,01399 0,048162 -0,06699 0,077506 39 118 

P.C. 2 Fund 1 484 236 -0,124 0,022621 -0,1601 -0,05494 0 236 

P.C. 2 Fund 2 484 117 -0,17695 0,082547 -0,31347 -0,06731 0 117 

P.C. 2 Fund 3 484 190 0,094858 0,025842 0,047671 0,144071 190 0 

P.C. 3 Fund 1 484 44 0,121572 0,020167 0,052325 0,143241 44 0 

P.C. 3 Fund 2 484 77 0,126429 0,045753 -0,09242 0,215072 76 1 

P.C. 3 Fund 3 484 74 -0,00502 0,096554 -0,07679 0,226624 13 61 

P.C. 4 Fund 1 484 119 0,318252 0,096354 0,12644 0,562598 119 0 

P.C. 4 Fund 2 484 191 0,346089 0,072158 0,213212 0,570215 191 0 

P.C. 4 Fund 3 484 55 -0,13848 0,01959 -0,16905 -0,09866 0 55 

P.C. 5 Fund 1 484 70 -0,22352 0,046552 -0,32626 -0,1354 0 70 

P.C. 5 Fund 2 484 83 -0,25769 0,061304 -0,32839 -0,1054 0 83 

P.C. 5 Fund 3 484 80 -0,07824 0,09434 -0,21521 0,179877 10 70 

 

 

B) 5% CAViaR 

 

  Coeff estimated Signif Coeff Mean Std. Dev. Min Max Positive Coeff Negative Coeff 

Constant Fund1 484 0 0 0 0 0 0 0 

Constant Fund2 484 72 -0,26225 0,481896 -2,25694 -0,11621 0 72 

Constant Fund3 484 5 -1,10775 1,284739 -2,51718 -0,16943 0 5 

AutoregQuant Fund1 484 480 0,890847 0,021701 0,834075 1,003309 480 0 

AutoregQuant Fund2 484 436 0,865633 0,106599 -1,00479 0,993903 435 1 

AutoregQuant Fund3 484 480 0,888351 0,031543 0,829455 1,00737 480 0 

Abs Comp Fund1 484 183 -0,19426 0,028143 -0,26409 -0,10982 0 183 

Abs Comp Fund2 484 276 -0,1833 0,019518 -0,22162 -0,14838 0 276 

Abs Comp Fund3 484 237 -0,21361 0,051574 -0,29109 -0,10417 0 237 

 

Table 3. Results for the Third Model 1% VaR 

Table 4. Results for the First Model 5% VaR 
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  Coeff estimated Signif Coeff Mean Std. Dev. Min Max Positive Coeff Negative Coeff 

Constant Fund1 484 323 -0,06752 0,078685 -0,80403 -0,03178 0 323 

Constant Fund2 484 483 -0,44551 0,199986 -0,88616 -0,07729 0 483 

Constant Fund3 484 444 -0,35745 0,463877 -1,4824 -0,03937 0 444 

AutoregQuant Fund1 484 483 0,905111 0,064109 0,317074 0,945575 483 0 

AutoregQuant Fund2 484 450 0,55583 0,162925 0,19443 0,935855 450 0 

AutoregQuant Fund3 484 404 0,842928 0,125146 0,387922 0,938401 404 0 

Abs Comp Fund1 484 25 -0,15798 0,096116 -0,43147 -0,06913 0 25 

Abs Comp Fund2 484 336 -0,33721 0,044483 -0,50173 -0,21163 0 336 

Abs Comp Fund3 484 87 -0,29041 0,081176 -0,45832 -0,10157 0 87 

Benchmark Fund1 484 482 0,141066 0,041781 0,089137 0,423618 482 0 

Benchmark Fund2 484 483 0,450297 0,084127 0,236671 0,622527 483 0 

Benchmark Fund3 484 480 0,251127 0,108662 0,116277 0,54975 480 0 

 

 

  Coeff estimated Signif Coeff Mean Std. Dev. Min Max Positive Coeff Negative Coeff 

Constant Fund1 484 209 -0,42433 0,309367 -1,83963 -0,03829 0 209 

Constant Fund2 484 474 -0,55983 0,161476 -0,8608 -0,09247 0 474 

Constant Fund3 484 411 -0,45636 0,372968 -1,30127 -0,05685 0 411 

AutoregQuant Fund1 484 443 0,805913 0,208035 -0,63799 0,979598 442 1 

AutoregQuant Fund2 484 453 0,421842 0,142345 0,180519 0,866951 453 0 

AutoregQuant Fund3 484 406 0,706191 0,216695 0,264747 0,959161 406 0 

Abs Comp Fund1 484 163 -0,33805 0,130751 -0,54587 -0,08387 0 163 

Abs Comp Fund2 484 359 -0,35433 0,067049 -0,57622 -0,12538 0 359 

Abs Comp Fund3 484 111 -0,27695 0,07574 -0,53073 -0,16257 0 111 

Benchmark Fund1 484 181 0,409449 0,155824 0,112472 0,620183 181 0 

Benchmark Fund2 484 444 0,410027 0,104335 0,144161 0,699568 444 0 

Benchmark Fund3 484 166 0,380274 0,084761 0,125141 0,5548 166 0 

P.C. 1 Fund 1 484 51 0,051176 0,017429 0,030223 0,086651 51 0 

P.C. 1 Fund 2 484 138 0,143947 0,032874 0,063898 0,221757 138 0 

P.C. 1 Fund 3 484 282 -0,03752 0,011049 -0,06431 -0,02101 0 282 

P.C. 2 Fund 1 484 286 -0,09223 0,011967 -0,13224 -0,06055 0 286 

P.C. 2 Fund 2 484 90 -0,19358 0,077594 -0,3263 -0,0465 0 90 

P.C. 2 Fund 3 484 283 0,070932 0,010002 0,031851 0,104719 283 0 

P.C. 3 Fund 1 484 144 0,103186 0,01111 0,061914 0,143099 144 0 

P.C. 3 Fund 2 484 105 0,174571 0,041966 0,069351 0,257052 105 0 

P.C. 3 Fund 3 484 30 -0,0544 0,004187 -0,06103 -0,04253 0 30 

P.C. 4 Fund 1 484 281 0,245902 0,053538 0,150036 0,43874 281 0 

P.C. 4 Fund 2 484 367 0,347073 0,078434 0,154956 0,469969 367 0 

P.C. 4 Fund 3 484 11 -0,04619 0,068696 -0,09404 0,102028 2 9 

P.C. 5 Fund 1 484 113 -0,14304 0,028695 -0,23305 -0,09044 0 113 

P.C. 5 Fund 2 484 253 -0,1988 0,042455 -0,30968 -0,11387 0 253 

P.C. 5 Fund 3 484 46 -0,14183 0,060745 -0,20574 0,185136 1 45 

 

Table 5. Results for the Second Model 5% VaR 

Table 6. Results for the Third Model 5% VaR 
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