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ABSTRACT 

Background 

Breast cancer is the most common malignancy among women and a leading 

cause of mortality worldwide. Early detection significantly improves prognosis 

and is the rationale for screening programs. Screening programs typically 

consist of biennial mammography, with more comprehensive annual protocols 

for high-risk women. However, mammography has lower sensitivity in patients 

with dense breasts. Contrast-enhanced mammography (CEM) addresses this 

limitation by improving mass visibility, offering sensitivity similar to MRI but at 

a lower cost with faster results. In recent years, there has been increasing 

interest in using generative models in many imaging tasks including contrast 

generation in CT and MRI. However, this area remains unexplored in CEM. 

Motivation 

Improve diagnostic performance and reduce risks associated with contrast 

media by utilizing generative models to create CEM images from 

mammography without the use of contrast agents. 

Objective 

Develop a generative model to produce dual-energy subtracted (DES) images 

of CEM from low-energy (LE) ones, enhancing the visibility of tissues and 

masses without the use of contrast agents. 

Materials and Methods 

This retrospective study at Veneto Institute of Oncology (IOV) analyzed 8073 

breast images from 557 women from an intermediate and high-risk screening 

group and a consultation group. The images were split into train and validation 



 
 

 

 

groups and subsequently categorized as "With Mass" or "Without Mass". A 

third category labeled “Mass Only” was created based on the mass 

segmentation of the “With Mass” images. A Generative Adversarial Network 

(GAN) model was developed and trained on multiple raw and processed image 

channel combinations. The Validation group was divided into adipose breasts 

(BI-RADS density a-c) and dense breasts (BI-RADS density d). Mean Absolute 

Error (MAE) of both the whole segmented breast and the mass alone were 

used to evaluate each model.  

Results 

In the segmented breast images, the model trained on both raw and processed 

images exhibited the best performance in both "Without Mass" and “With Mass” 

categories across all subgroups (MAEBreast: “Without Mass” Overall = 6.2; “With 

Mass” Overall = 8.2). In the “Mass Only” category, the model trained on 

oversampled raw and processed images achieved the best performance 

across all subgroups (MAEMass: Adipose Breast = 39.5, Dense Breast = 35.1, 

Overall = 37.3), with the lowest MAEMass observed in the dense breast 

subgroup. Models trained only on processed images performed the worst. 

Conclusions 

This study presents a novel approach to generating DES images from 

mammographic images using GANs. The models showed promise across 

various categories, suggesting the possibility of offering CEM diagnostic 

performance for breast cancer diagnosis while minimizing patient risks 

associated with radiation and contrast agents. 

 

  



 
 

 

 

RIASSUNTO 

Background 

Il cancro della mammella è la forma più comune di tumore tra le donne a livello 

mondiale e una delle principali cause di mortalità legata al cancro. La diagnosi 

precoce migliora notevolmente la prognosi, rendendo cruciale l'identificazione 

tempestiva. I programmi di screening del cancro al seno sono rivolti 

principalmente a donne di età compresa tra 40 e 74 anni, attraverso 

mammografie biennali e/o annuali. Tuttavia, la mammografia standard ha una 

bassa sensibilità nel rilevare il cancro nelle donne con tessuto mammario 

denso. La mammografia con contrasto (CEM) affronta questa limitazione 

attraverso l’utilizzo del mezzo di contrasto iodato e dei raggi X a due energie, 

migliorando significativamente la visibilità delle lesioni con una sensibilità 

paragonabile alla risonanza magnetica, ma a un costo inferiore. 

Obiettivo 

L'obiettivo di questo studio è di migliorare la performance diagnostica della 

mammografia attraverso l'utilizzo di modelli generativi, creando immagini a 

contrasto virtuale da mammografie, senza l'uso di agenti di contrasto reali. 

Questo approccio mira a ridurre o eliminare i rischi associati ai mezzi di 

contrasto.  

Materiali and Metodi 

Lo studio ha analizzato retrospettivamente 8073 immagini mammografiche di 

557 donne presso l'Istituto Oncologico Veneto. Le immagini sono state 

suddivise nei gruppi di training e validazione e successivamente categorizzate 

in "With Mass" o "Without Mass". Una terza categoria, denominata “Mass Only” 

è stata creata utilizzando le segmentazioni delle masse della categoria “With 



 
 

 

 

Mass”. Il modello generativo, basato su una rete avversaria generativa (GAN), 

è stato allenato su diverse combinazioni di canali di immagini grezze e 

processate. Il gruppo di validazione è stato suddiviso in base alla densità 

mammaria in mammelle adipose (BI-RADS a-c) e dense (BI-RADS d). La 

Mean Absolute Error (MAE) è stata usata come la metrica principale per la 

valutazione di ciascun modello. 

Risultati 

I risultati hanno mostrato un'alta consistenza tra le prestazioni del training e 

della validazione, con il modello migliore ottenuto combinando immagini grezze 

e processate nelle categorie “Without Mass” e “With Mass” (MAEBreast: “Without 

Mass” Overall = 6.2; “With Mass” Overall = 8.2). Nella categoria “Mass Only”, 

il miglior modello ottenuto è stato quello allenato sull’oversampling delle 

immagini grezze e processate (MAEMass: Adipose Breast = 39.5, Dense Breast 

= 35.1, Overall = 37.3). I modelli allenati solo sulle immagini processate sono 

risultati i meno performanti. 

Conclusioni 

I modelli dimostrano la capacità potenziale di ottenere le stesse performance 

della CEM senza l’uso del mezzo di contrasto, minimizzando i rischi per le 

pazienti associati alla radiazione e ai mezzi di contrasto. 
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1. INTRODUCTION 

1.1. Breast cancer 

Breast cancer (BC) is an important global health concern, representing the 

most common malignancy in women and a significant cancer related mortality. 

It is estimated that in 2024, there will be about 2 million new cancer cases and 

600,000 cancer related deaths in the United States alone, with BC contributing 

considerably to these figures 1. 

BC is a multifactorial disease influenced by hormonal, environmental, lifestyle, 

and genetic risk factors. Hormonal risk factors include prolonged exposure to 

endogenous estrogens, which can result from early menarche, late 

menopause, or nulliparity. External risk factors involve hormone replacement 

therapy, obesity, alcohol consumption, and sedentary lifestyle 2. 

As for genetic risk factors, 5-10% of BC are hereditary and primarily driven by 

genetic mutations in high-penetrance genes, such as breast cancer gene 1 

(BRCA1) and breast cancer gene 2 (BRCA2) 2,3. These mutations lead to a 

lifetime risk of 70-90% of BC as well as an increased risk of early-onset BC, 

bilateral disease, ovarian cancer and pancreatic cancer 4,5. 

The stages of BC range from 0 to IV. Stage 0 is non-invasive, also known as 

carcinoma in situ. Stage I depicts a tumor not exceeding 2 cm in size with no 

involvement of the lymph nodes. Stage II tumors are greater than 2 cm in size 

or may affect one to five nearby lymph nodes. Stage III suggests a locally 

advanced tumor, involving more distant lymph nodes. Stage IV is characterized 

by metastasis to distant organs such as bones, liver, or lungs. Early detection 

is important, as patient survival rates decrease with each stage.  
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13.4% of the patients are diagnosed at stage 0.  

42% at stage I, 32.2% at stage II, 8.7% at stage III, and 3.8% at stage IV 6. 

BC is categorized into four main subtypes based on molecular and histological 

features, as presented in Figure 1. The luminal A and luminal B subtypes are 

the most common, accounting for 70-80% of the cases. These subtypes are 

estrogen or progesterone receptor positive. The HER2-enriched subtype 

represents 10-20% of all cases and is characterized by the overexpression of 

human epidermal growth factor receptor 2 (HER2). Triple-negative breast 

cancer (TNBC) accounts for 10-20% of cases. This subtype lacks the 

expression of estrogen or progesterone receptors and does not overexpress 

HER2 receptors. TBNC is associated with a more aggressive disease and a 

worse prognosis 4,7.  

Figure 1: Characteristics of BC molecular subtypes. Abbreviations: BC, breast cancer, ER, 

estrogen receptor; HER2, human epidermal growth factor receptor 2; PR, progesterone 

receptor; TNBC, triple-negative breast cancer. Source: Breast Cancer Treatments: Updates 

and New Challenges. A Burguin et al. (2021). 
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Histologically, BC can be classified as ductal carcinoma in situ (DCIS, 20%) or 

invasive BC (80%). The most common invasive types are invasive ductal 

carcinoma (IDC, 64%) and invasive lobular carcinoma (ILC, 8%) 1,6. 

The most common symptom of BC is a palpable lump, recognized by up to 83% 

of women. Other signs include nipple changes (tenderness, inversion, 

discharge), skin alterations (redness, scaling, "orange peel" texture), and 

unexplained breast size changes or pain 8. The therapeutic approach to BC 

incorporates a combination of surgery, radiation, chemotherapy, endocrine 

therapy, targeted therapy, and immunotherapy, tailored to the specific 

characteristics of the disease 7,9. 

Most BC cases occur between the ages of 55 and 74 years, with the highest 

incidence among women aged 70 to 74 years, at about 470 cases per 100,000 

women 10. The incidence of BC has also been gradually increasing at a rate of 

about 0.6% per year since the mid-2000s 4. These trends emphasize the need 

for effective screening, diagnostic capabilities, and prevention strategies to 

address the growing burden of BC. 

Despite the rising incidence, mortality rates have greatly improved, with a 42% 

decrease from 1989 to 2021. This reduction has prevented over 500,000 

deaths and is primarily attributed to advancements in early detection and 

increased awareness, as well as improvements in treatment modalities 4.  

Breast cancer screening is a vital tool for early detection, allowing for timely 

and more effective interventions by identifying cancer at a preclinical stage, 

often before symptoms appear 11. To effectively apply it, the United States 

Preventive Services Task Force recommends bi-annual mammography 

between the ages of 40 and 744. In the European union, the general 

recommendation for bi-annual mammography is between the ages 50 and 69. 

In some European union countries, such as Italy and Sweden, it extends to 74. 
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In recent years, personalized screening strategies are becoming increasingly 

relevant, as risk factors such as genetic predisposition, breast density, and 

family history can significantly influence an individual's likelihood of developing 

breast cancer.  

Available screening methods include breast self-examination, clinical breast 

examination, mammography, and digital breast tomosynthesis (DBT) 12. 

1.2. Mammography 

Mammography is a well-established soft tissue imaging technique used for the 

early detection of BC. As the primary method for mass screening, 

mammography is one of the most thoroughly investigated areas of medicine, 

with robust evidence supporting its role in mortality reduction by up to 50% 13. 

Mammography has a high diagnostic accuracy, ranging from 79% to 97% 14,15. 

Furthermore, it is designed to meet several key objectives: early BC detection, 

acceptable side effects for the screened population, reproducibility of results, 

and cost-effectiveness when applied at regular intervals 16.  

The standard views in mammography include craniocaudal (CC) and 

mediolateral-oblique (MLO), which help in visualizing different parts of the 

breast and improve the detection of abnormalities near the chest wall 17. 

Another frequently captured one is the mediolateral (ML) view. 

Figure 2 illustrates the process of positioning the breast for the correct 

mammographic view, the entire list of views, and the resulting images paired 

with the corresponding breast view illustration. 
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Figure 2: Mammographic views. (a) The process of positioning the breast for the correct 

mammographic view; (b) all mammographic view orientations; (c) the resulting images paired 

with the corresponding breast view illustration. Sources: (a) Breast Imaging: Mammography, 

Digital Tomosynthesis, Dynamic Contrast Enhancement. Ebrahimi et al. (2019); (b) Instituto de 

Física Corpuscular, topics, diagnose breast; (c) Radiological Anatomy, Gnanavel et al. (2023). 

Abbreviations: CC, craniocaudal; FB, from below; ISO, inferosuperior oblique; LM, 

lateromedial; LMO, lateromedial oblique; ML, medio lateral; MLO, medio lateral oblique; SIO, 

superoinferior oblique. 
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The physics behind mammography involves the attenuation of X-rays as they 

pass through different breast tissues, as demonstrated in figure 3, where 

glandular and adipose tissues exhibit different attenuation coefficients 18. 

Figure 3: physics of digital mammography. (a) X-rays passing through compressed breast 

tissue, creating a latent image which is then detected by the detector and converted into a 

mammography image. (b) Attenuation of different breast tissues. Abbreviations: keV, Kilo 

electron volt. Source: Bushberg, et al. The Essential Physics of Medical Imaging, 2nd ed., p. 

193.10 (2002). 

In mammography, contrast is an important factor that can determine the 

visibility of breast tissue abnormalities such as tumors. The main source of 

contrast in mammographic images is the variations in X-ray attenuation 

between the glandular and the adipose tissues. Glandular tissue appears 

relatively denser; hence, contrast should be optimized to better distinguish 

between healthy and potentially malignant regions 17. Lower energy X-rays 
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produce greater differential attenuation between the tissues, increasing the 

visibility of small abnormalities18. However, contrast optimization can also 

introduce noise that reduces the quality of the image as it conceals subtle 

details. To reduce noise, advanced image processing techniques that balance 

noise reduction with the preservation of diagnostic information are applied. The 

effects of contrast levels and noise levels are illustrated in Figure 4. 

Figure 4: The effect of contrast and noise on mammographic image quality. 

Processing is a distinct feature of mammography because it enables improved 

visualization of breast structures. Obtained mammography images are initially 

raw with low intrinsic contrast. Processing algorithms are applied to these 

images to improve contrast, highlight areas of interest, and adjust for 

differences in breast tissue density, as demonstrated in figure 5. This leads to 

a processed image with clearer visualization of both peripheral and internal 

regions. This procedure ensures simpler abnormalities identification by 

radiologists 17. 
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Figure 5: The effect of different processing algorithms on mammography, from raw (a) 

to fully processed (b) images. Source: Breast Imaging Physics in Mammography (Part II). 

Fico et al. (2023).  

Mammography, however, has some limitations in that it uses a two-dimensional 

(2D) image for a three-dimensional object (3D), leading to overlapping tissues 

of different densities. This can lower the sensitivity, particularly in women 

with dense breast tissue as the glandular tissues may obscure underlying 

tumors or create artificial ones. These limitations are more apparent in 

screening compared to diagnostic settings, where other modalities such as 

ultrasound (US) can add more information 15. 

Increased breast density significantly impacts mammography performance and 

BC risk. Women with dense breasts have a 4-6 times higher risk of BC 19. 

Mammographic sensitivity greatly decreases in denser breasts, leading to a 10-

20% reduction in both sensitivity and specificity 20,21. The impact of density on 

cancer risk and detection persists for at least 8 years and is more pronounced 

in younger women 19.  

To overcome this limitation, newer technologies were developed including 

contrast-enhanced magnetic resonance imaging (MRI), DBT, and contrast-

enhanced mammography (CEM). 

DBT is based on geometric subtraction, where several X-ray images are taken 

from various angles and then reconstructed into thin slices. Temporal 
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subtraction is used in contrast-enhanced MRI by comparing images taken at 

different times. CEM uses intravenous contrast agents and energy subtraction 

to better represent abnormal vascularization, which is commonly associated 

with malignancies; thus, it is particularly strong in detecting tumors on women 

who have dense breast tissue 17. 

1.3. Contrast-Enhanced Mammography (CEM)  

CEM is an advanced imaging technique designed to improve BC detection, 

specifically in women with dense breast tissue 22. This technique merges 

morphological and functional information by using dual-energy subtraction to 

increase the visibility of potential malignancies.  

A CEM exam begins with the intravenous injection of an iodinated contrast 

agent 2 minutes before the image acquisition begins. Next, as shown in Figure 

6, two views are taken for each breast, producing the right CC view, right MLO 

view, left CC view, and left MLO view. 

Figure 6: CEM examination. A single contrast agent injection followed by the capturing of two 

views (craniocaudal, Medio-lateral obliques) for each breast (1 and 2). Abbreviations: CC, 

craniocaudal; CEM, contrast-enhanced mammography; MLO, medio-lateral oblique. Source: 

Contrast enhanced mammography: Techniques, current results, and potential indications. 

M.B.I Lobbes et al. (2013).  
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The absorption peak of iodine is approximately 33.2 KeV, which is compatible 

with the 25-49 kV range used in mammography. CEM utilizes two distinct X-

ray energy beams for improved contrast between tissues. The first beam, with 

a lower energy, typically falls below the iodine peak absorption. The second 

one, with a higher energy, surpasses the iodine absorption peak 23.  

For each mammography view, these two beams are captured and used to 

produce two images:  

1. Raw low-energy (LE) image - similar to a standard mammography, for 

X-ray energy spectrum below the iodine absorption peak at (33.2 keV). 

2. Raw high-energy (HE) image - accounting for X-ray energy above 33.2 

keV to maximize absorption by the contrast agent.  

The two images and the corresponding X-ray spectrums are described in 

Figure 7. 

 

Figure 7: Dual energy spectrums divided by the absorption of iodine with the resulting 

captured raw images. The darker gray curve represents photons in the lower energy spectrum 

absorbed by a rhodium (Rh/Rh) filter and translated to the raw LE image. The lighter gray curve 

represents photons in the higher energy spectrum absorbed by rhodium/copper (Rh/Cu) filter 

and translated to the raw HE image. The black line represents the iodine absorption, with the 

peak resulting at approximately 33.2 KeV. Abbreviations: HE, high-energy; LE, low-energy; 

keV, kilo-electron volts. 
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The raw LE image is first processed, creating a processed LE image equivalent 

to standard mammography image 24. Subsequently, the processed LE image 

and raw HE images are combined through a process called dual-energy 

subtraction (DES), creating a hybrid image denominated by the same name 

(DES) that reduces anatomical noise caused by overlapping tissues and 

improves the detection of malignancies 25. The steps from acquisition to the 

creation of the final DES image are described in Figure 8. 

Figure 8: CEM, from raw LE to DES. The sequential steps from image acquisition to the 

creation of the final DES image. (1) Initially, the raw LE image is processed to generate a 

processed LE image. (2) This processed LE image is then combined with the raw HE image 

through dual-energy subtraction, resulting in a hybrid DES image. Abbreviations: CEM, 

contrast-enhanced mammography; DES, dual-energy subtraction; HE, high-energy; LE, low-

energy. 
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When interpreting a CEM study, radiologists are presented only with processed 

LE and DES images. The raw LE and HE images are not directly viewed or 

interpreted, as they are used solely for obtaining the processed LE and DES 

images. The interpretation is performed with both the processed LE and DES 

images viewed for comparison, as presented in Figure 9 26. 

Figure 9: Representative normal CEM study with standard 8 views showing the LE and 

DES. Adapted from Contrast enhanced mammography: focus on frequently encountered 

benign and malignant diagnoses. Mindy L. Yang et al. (2023). Abbreviations: CC, craniocaudal; 

DES, dual-energy subtraction; LE, low-energy; MLO, mediolateral oblique. 
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Compared to mammography, CEM further improves contrast by using an 

iodinated contrast agent, which highlights areas of increased vascularity, such 

as tumors, offering better differentiation from normal breast tissue. This 

technique is especially beneficial for detecting lesions in dense breasts, where 

traditional mammography may struggle to provide sufficient contrast 17.  

Furthermore, CEM has emerged as a highly effective imaging technique, 

offering high sensitivity and specificity that rivals MRI, while being more cost-

effective and accessible 27,28. 

Despite its advantages, CEM does have some limitations, including increased 

radiation dose compared to standard mammography, and a low risk of allergic 

reactions related to the iodine-based contrast agents.27,29.  

Studies have shown that the radiation dose for CEM is about 30% higher than 

that of standard mammography, attributed to the dual-energy approach used 

in this technique 30. Such an increment was close to the dose increase reported 

for DBT, which is already used in both screening and diagnostic settings. 

Despite the increased dose, the diagnostic benefits of CEM, especially in dense 

breast tissue, often outweigh the risks, making the higher radiation dose a 

manageable concern in clinical practice. 

In addition to the radiation dose, the administration of iodinated contrast agents 

in CEM introduces potential risks, which can be classified into immediate and 

delayed reactions.  

Immediate reactions are the ones that occur within the first hour of contrast 

administration and are usually anaphylactoid or IgE dependent. These 

reactions may be mild and include pruritus, urticaria, and flushing, but they can 

also be life threatening and include cardiovascular shock, cardiac arrhythmia, 

and even cardiac arrest 31. 
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Delayed reactions, however, can take between one hour and seven days after 

the administration of the contrast. These reactions are generally T-cell 

mediated and the manifestations are mainly cutaneous including 

exanthematous reactions and erythema multiforme. Less common delayed 

reactions include severe conditions such as Stevens-Johnson syndrome and 

toxic epidermal necrolysis. 

Contrast-induced nephropathy (CIN) is another dangerous complication of the 

use of iodinated contrast media, especially among patients with prior kidney 

disease or other risk factors such as diabetes and advanced age 31. Cancer 

patients are more prone to CIN because of the more-frequent requirement for 

contrast-enhanced imaging studies and exposure to nephrotoxic 

chemotherapy drugs 32. 

Another limitation of CEM is the uptake of contrast medium by normal 

fibroglandular breast tissue, known as background parenchymal enhancement 

(BPE). This also occurs in breast MRI but can be mitigated by timing the exam 

to coincide with the menstrual and proliferative phases of the cycle 33. 

Nonetheless, CEM is generally well-tolerated by patients, often better than 

breast MRI, and is considered a safe procedure when proper precautions are 

taken 34. These precautions include assessing renal function, confirming the 

absence of known allergies, and obtaining informed consent before 

administering the contrast medium. 

In summary, while CEM does involve higher radiation exposure and the use of 

contrast agents that carry some risk of adverse reactions, these risks are 

generally outweighed by its significant benefits in BC detection. Reducing or 

eliminating these risks without compromising diagnostic accuracy could 

lead to even broader clinical adoption of this powerful imaging technique. 
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1.4. Breast Imaging Reporting and Data System 

The Breast Imaging Reporting and Data System (BI-RADS), developed by the 

American College of Radiology (ACR), is a standardized system designed to 

enhance the consistency of breast imaging reports and improve 

communication among healthcare providers 35. BI-RADS includes a lexicon of 

descriptors, numerical assessment categories (0-6), and breast composition 

categories (A-D).  

The breast composition categories include 35–37: 

1. Category A - Almost entirely fatty breast  

2. Category B - Scattered areas of fibroglandular density  

3. Category C - Heterogeneously dense breast 

4. Category D - Extremely dense breast 

These categories, often referred to as BI-RADS density categories, are used 

as a qualitative measurement for tissue density and can be applied across 

mammography, US, and MRI, making it a versatile tool in breast imaging.  

Breast density is a key factor in both BC risk and the effectiveness of 

mammographic screening. Women with dense breasts, characterized by 

higher proportions of fibroglandular tissue, have a 4-6 times greater risk of 

developing breast cancer and face reduced mammographic sensitivity, which 

drops from 87% in fatty breasts to 62.9% in extremely dense breasts, and a 

decrease in specificity from 96.9% to 89.1% 19,20. The dense tissue can obscure 

tumors, complicating cancer detection and leading to higher rates of interval 

cancers, especially in women with BI-RADS category D density 38.  

Figure 10 demonstrates the BI-RADS density categories as an illustration 

paired with a corresponding mammography image. 
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Figure 10: BI-RADS density categories both illustrated and in mammography. Abbreviations: 

BI-RADS, Breast Imaging Reporting and Data System. Source: ACR BI-RADS Atlas, Breast 

Imaging Reporting and Data System (2013). 

In recent years, software tools have been developed to assess the density of 

the breast in a more reproducible manner using quantitative measures instead 

of qualitative ones 39. These methods include area-based measures, which 

analyze specific areas of the image, and volumetric measures, which assess 

x-ray attenuation properties to quantify breast tissue composition providing 

volumetric breast density as a percentage 40. 



17 
 

 

 

1.5. Generative AI in Medical Imaging 

Medical imaging is a cornerstone of modern healthcare, facilitating early 

diagnosis and the development of efficient treatment plans. Commonly used 

imaging modalities, including X-ray, computed tomography (CT), MRI, and US, 

are indispensable for diagnosing and monitoring conditions such as cancer, 

cardiovascular diseases, and neurological disorders. These technologies have 

revolutionized clinical practice by enabling accurate and high-resolution 

imaging, which has improved diagnosis, treatment planning, and outcome 

assessment. 

In recent years, generative artificial intelligence (AI) has further enhanced 

medical imaging by facilitating labor-intensive tasks 41. Models such as 

generative adversarial networks (GANs), diffusion models, and variational 

autoencoders (VAEs) are employed to synthesize realistic medical images by 

assigning higher probabilities to more plausible images. These models have 

several applications, such as data augmentation, image synthesis, and image-

to-image translation 42,43. 

In data augmentation, generative AI models create synthetic medical images 

to increase dataset size. This approach helps improve the performance of 

machine learning models while mitigating issues such as patient privacy 

concerns, high imaging costs, rarity of certain conditions, and improving model 

generalization 44,45.  

Another application for generative AI is simulating disease progression and 

predicting patient outcomes, enhancing clinical decision-making. One such 

application is the generation of counterfactual images, which allow clinicians to 

visualize alternative scenarios, such as the effect of a tumor being surgically 

removed, thereby aiding in treatment planning 46. 
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Another application is in image completion, reconstructing missing or corrupted 

sections of scans, such as incomplete MRIs, enhancing the overall quality and 

usability of these images 47. Furthermore, generative models can aid with 

image normalization, adjusting images for consistency, making them easier to 

interpret across different cases 48. Additionally, super-resolution techniques 

allow these models to produce higher-resolution versions of existing medical 

images, which can be particularly valuable for detailed tissue analysis and 

diagnosis 45. 

A promising application within this field is image-to-image translation, where AI 

models learn the relationships between features in an image from the source 

domain (e.g., style, structure, or content) and how to associate them with 

corresponding features in the target domain. Examples for image translation 

from a source domain to a target domain are demonstrated in Figure 11. 

Figure 11: image translation from source domains to target domains. Abbreviations: BW, 

black and white. Source: Image-to-Image Translation with Conditional Adversarial Networks P. 

Isola et al. (2018) 
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This technique is particularly useful when certain imaging modalities are 

unavailable, such as in cases where MRI machines are inaccessible, or when 

lower-cost alternatives like CT scans are preferred. Recent works focusing on 

cross-modality image synthesis, such as translating between MRI and CT 

images, demonstrated that AI models can leverage the unique information 

provided by different modalities, making the diagnostic process more efficient 

and cost-effective 44,49,50.  

In mammography, several generative models were developed in recent years. 

The MAM-E pipeline utilizes diffusion models for mammographic image 

synthesis, generating specific lesions by text prompts51. MammoGANesis, a 

GAN based framework, can synthesize mammographic images 52. Moreover, 

ROImammoGAN focuses on synthesizing regions of interest in mammographic 

images, addressing the challenge of data scarcity 53.  

A particularly interesting application of image-to-image translation in recent 

years is to reduce patient risk, for instance, by avoiding or reducing the use of 

contrast agents in imaging. 
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1.6. Contrast generation in breast imaging 

Contrast media has recently become a central interest in generative AI 

application due to its ability to significantly improve the diagnostic accuracy on 

one hand, and possibly induce side effects on the other. That is why, in recent 

years, generative AI models have emerged as a powerful tool creating "virtual" 

or "augmented" contrast media.  

Virtual contrast refers to the creation of enhanced images from non-contrast 

scans using AI models, while augmented contrast amplifies the effects of low-

dose contrast administration. This approach aims to reduce the reliance on 

traditional contrast agents, thereby mitigating their associated risks 54,55 

For example, in brain MRI, AI-generated virtual contrasts have been employed 

to address the potential risks of gadolinium-based contrast agents, particularly 

for patients with renal failure 56. Similarly, in abdominal CT, recent models have 

shown potential in producing synthetic contrast-enhanced images, improving 

lesion detection in non-contrast CT scans 57.  

Generative tasks are not without challenges, as they might lead to the 

introduction of unrealistic information 58 and require geometrical alignment 

between the non-contrast and contrast-enhanced images 57. Despite the 

challenges, these models offer great possibilities if successfully implemented. 

In the context of breast imaging, contrast generating models have focused so 

far on MRI. 

GANs have shown promise in synthesizing contrast-enhanced MRI images 

from non-contrast scans. For instance, works from Kim et al. and Osuala et al. 

have shown GAN developed to synthesize contrast-enhanced MRI images 



21 
 

 

 

from pre-contrast T1-weighted images. The resulting images enhance tumor 

visibility without the need for invasive contrast administration 59,60.  

Despite its diagnostic potential, generative models in CEM are relatively rare 

due to the technical challenges involved. These models face high-resolution 

images, making the data processing complex and resource intensive. 

Additionally, CEM is a newer technique with a more limited amount of available 

data compared to other imaging modalities, which further complicates the 

development of robust generative models. Furthermore, there is an elevated 

inter-manufacturer variability.  

1.7. Generative adversarial networks and pix2pix 

GANs and the pix2pix framework are significant advancements in the field of 

generative models, particularly for image synthesis and translation tasks.  

Introduced by Goodfellow et al. (2014), GANs use a competitive framework 

involving two neural networks: a generator and a discriminator. The 

generator creates synthetic data, while the discriminator differentiates between 

real and synthetic samples. These two adversaries train at alternating times, 

refining both networks through a process of adversarial training 61.  

The core idea of GANs lies in this adversarial relationship, where the generator 

aims to produce data that is indistinguishable from real samples, and the 

discriminator's task is to identify which samples are real and which are fake. 

The generator initially starts by producing random noise as data and gradually 

learns to generate more realistic samples over time.  

Through this alternating iterative process, illustrated in Figure 12, the generator 

improves its ability to create increasingly realistic samples (represented as 

creating soy hamburgers from meat hamburgers), while the discriminator 



22 
 

 

 

becomes better at detecting generated samples (represented as distinguishing 

between soy and meat hamburgers). This unique approach has proven to be 

highly effective in tasks that require generating new data that mirrors the 

characteristics of the original dataset, making GANs widely adopted in various 

domains 61. 

Figure 12: The adversarial process of GANs. This figure illustrates the core adversarial 

process of GANs as “Meat vs Soy Hamburger”, where the generator is represented as a "soy 

factory" attempting to produce soy hamburgers that resemble real meat hamburgers. The 

discriminator, depicted as a "blindfolded food critic" aims to distinguish between real meat 

hamburgers and fake soy hamburgers. Through this iterative process, the generator improves 

its ability to create more convincing soy hamburgers, while the discriminator sharpens its skill 

in identifying which hamburgers are real. This adversarial relationship is key to generating 

realistic data in GAN models. Abbreviations: GAN, generative adversarial network. 

GANs have improved how we approach the generation of realistic images, as 

the adversarial training leads to sharper details compared to VAEs which tend 

to have more blurry images 62–65. 
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GANs have certain limitations. One of which is that the generator’s ability to 

produce discrete data, such as a word or a character, is restricted. Another 

limitation is that the generator produces only a limited variety of outputs, even 

when more diverse outputs are expected, confining GANs to tasks where 

generating a narrow range of outputs is acceptable 65. 

Building on the GAN architecture, Isola et al. (2016) introduced the pix2pix 

framework for image-to-image translation 66. Unlike the original GAN 

framework, where the input is typically random noise, pix2pix takes an image 

from one domain (e.g., a grayscale image) and translates it to a target domain 

(e.g., a colored image). The discriminator in pix2pix distinguishes between the 

generated output and the ground truth image, further refining the quality of the 

generated images. To achieve this task, pix2pix framework requires a “paired” 

dataset, containing both the origin and the target images. Several 

modifications, such as feature-matching loss and style transfer techniques, 

have been introduced to enhance the performance of pix2pix for more complex 

tasks 67. 

Hence, effectively building a generative model for CEM requires the 

gathering of a large enough image sample from the same manufacturer and 

model, with verified ground-truth annotation. Once such a dataset is 

prepared, pix2pix would be the architecture to begin with, as it is a well-

established model for image-to-image translation with demonstrated strong 

performance across similar tasks across the various imaging techniques 68. 
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2. THESIS PURPOSE 

Our goal is to harness recent advancement in generative AI to create the dual-

energy subtracted images of contrast enhanced mammography from low-

energy images without the need for contrast agents, as illustrated in Figure 13.  

We argue that by training generative AI models on a large dataset of these 

images, we can generate realistic and accurate images that could offer the 

same diagnostic performance as contrast-enhanced mammography without 

the risks involved in radiation and contrast agents. 

 

Figure 13 - Generating DES images using GANs. (a) Regular CEM, involving the injection 

of a contrast agent, capturing of HE and LE images and for the creation of a DES image. (b) 

Virtual CEM, eliminating the need for a contrast agent, captures only LE images (just as a 

regular mammography) and uses pix2pix to generate the DES images for them. Abbreviations: 

CEM, contrast-enhanced mammography; DES, dual-energy subtraction; HE, high-energy; LE, 

low-energy.  
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3. MATERIALS AND METHODS 

The study protocol was approved by the appropriate institutional ethics 

committee. Given its retrospective nature, the study was exempted from the 

requirement for individual informed consent. All patient images were 

anonymized, and the study was conducted in compliance with relevant ethical 

standards. 

3.1. Study population 

This study is a retrospective observational analysis conducted at the Veneto 

Institute of Oncology (IOV – IRCCS), Padua, Italy.  

The study includes two major groups of patients: (1) Intermediate and high-risk 

screening group, and (2) consultation group. 

The intermediate and high-risk screening protocol group includes women 

undergoing annual surveillance, with intermediate-risk individuals receiving 

mammography and US, while high-risk individuals also undergo MRI. 7014 

images were acquired from a total of 488 patients in this group between April 

2019 and October 2022. 

The consultation group includes patients who arrived at the IOV - IRCCS for 

second opinions, suspected cases, or biopsies. This cohort comprises 2184 

images acquired from 148 patients between March 2019 and January 2024. 

Inclusion Criteria: 

● Availability of CEM images (LE Raw, LE Processed, DES) 

● Ground truth established by either biopsy results for masses or at least 

1 year of follow-up for negative cases. 
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Exclusion Criteria: 

● Missing images or clinical report 

● Marked BPE in DES 

● Presence of breast implants 

● Presence of Image artifacts 

● Contrast injection error 

● DCIS subtype (due to lack of contrast uptake in CEM) 

● Non-mass enhancement 

The final population for this study consists of 557 women and 8073 breast 

images, as described in figure 14. 
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Figure 14: Study inclusion and exclusion criteria. Flowchart of the datasets included in the 

analysis, detailing patient and image selection criteria. Ground truth established by biopsy 

results for masses or at least 1 year of follow-up for negative cases. Abbreviations: BPE, 

Background Parenchymal Enhancement; CEM, Contrast-Enhanced Mammography; DES, 

Digital Energy Subtraction; IOV-IRCCS, Istituto Oncologico Veneto - Istituto di Ricovero e Cura 

a Carattere Scientifico. 
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3.1.2. Image acquisition 

All images were acquired and interpreted by three experienced breast 

radiologists at the IOV. For each breast, the CC, MLO, and ML views were 

acquired. For each view, four images: raw LE, raw HE, processed LE, and 

DES, were stored in the picture archiving and communication system (PACS).  

3.1.3. Image preprocessing 

Based on the ground truth, each image was further classified based on the 

presence or absence of contrast uptaking masses and labeled as "With Mass" 

or "Without Mass" images. 

All the images were extracted from their original 12-bit or 13-bit DICOM file 

format, converted and saved as 8-bit grayscale images in TIFF format. The 

grayscale 8-bit image is represented by a single array, defined as a channel, 

with pixel values ranging from 0 to 255 reflecting the intensities of the grayscale 

spectrum.  

3.2. Train and validation distribution 

To estimate the model’s performance, the study population (n=557 patients) 

was divided into a training group of 519 patients (93.2%) and a validation group 

of 38 patients (6.8%) with similar clinical characteristics. This resulted with 7593 

images in the training group and 480 images in the validation group.  

The validation group further stratified based on BI-RADS density categories 

derived from the LE images. As almost 50% of the validation subset was 

classified as BI-RADS category d, the images were divided into adipose 

(categories a-c) and dense breast (category d) subgroups. The number of 

patients in each subgroup is represented in table II of the results section. 
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3.3. GAN model 

We developed an architecture based on the pix2pix model, which extends the 

principles of GANs specifically for translating one image domain to another. 

The generator (G) was implemented with a U-Net architecture with skip 

connections to better retain essential spatial information. The implementation 

is illustrated in Figure 15. 

Figure 15: GAN architecture - both illustrated and realistic. (a) Illustration representing the 

concept of the generator and discriminator in a GAN. (b) Scheme describing the components 

of the CEM GAN as well as the MAE and MSE losses involved in its training. Abbreviations: 

CEM, contrast-enhanced mammography; DES, dual-energy subtraction; GAN, generative 

adversarial network; LE, low-energy; MAE, Mean Absolute Error; MSE, Mean Squared Error. 



30 
 

 

 

To optimize the performance of our model, we incorporated two measures 

aimed at evaluating the similarity between generated images and the original 

ones: Mean Absolute Error (MAE) loss and Mean Squared Error (MSE) loss 

during training, both loss calculations are represented in Figure 16. 

MAE measures the average absolute differences between the predicted 

images and the target images. Attempting to minimize the MAE, the model aims 

to produce images that are structurally similar to the target.  

MSE calculates the average squared differences between the predicted and 

target images, penalizing larger errors more heavily. 

Figure 16: Loss calculation. (a) Real and generated paired images are selected; (b) Pixel-

level differences are calculated between each pixel of the two images; (c) MAE is calculated 

as the sum of the absolute of each pixel difference divided by the total number of pixels; (d) 

MSE is calculated as the sum of the squared values of each pixel difference divided by the total 

number of pixels. Abbreviations: MAE, mean absolute error; MSE, mean squared error. 
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3.3.1 Stacked channel combinations 

The raw LE images undergo an image processing procedure that results in 

processed images containing similar, though not identical, information.  

Each image can be described as consisting of "channels", described in Figure 

17, which represent the positions where information is stored. Grayscale 

images typically have a single channel, while colored images typically have 

stacked three (red, green, and blue), but both can represent the same object. 

To explore how variations in the information affect model performance, multiple 

channel combinations from the original LE images were created and tested. 

Figure 17: Channels in images. (a) Red, green, and blue channels are combined to create 

one three channel color RGB image. Source: A primer on deep learning and convolutional 

neural networks for clinicians. Lloret et al. (2021). (b) Raw LE image and processed LE image 

are combined to create a two-channel raw and processed LE image. Abbreviations: LE, low 

energy; RGB, red, green blue. 
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Three primary channel combinations were created for each image to be used 

as training combinations for the model: 

1. Raw Only: A single-channel image containing only the raw LE image. 

2. Processed Only: A single-channel image derived from the processed 

LE image. 

3. Raw and Processed: A stacked two-channel image where the first 

channel contains the raw LE image and the second channel contains 

the processed LE image. 

The three channel combinations are summarized in Figure 18. 

3.3.2. Oversampling 

The training group had fewer “With Mass” images compared to “Without Mass” 

images, while the validation group had the same amount of each category. To 

test the impact of this imbalance, another training combination was formed by 

employing oversampling techniques to increase the amount of “With Mass” 

images. This new training combination was named “Oversampled Raw and 

Processed”. 

3.3.3. Model training 

For each training combination, a separate model was created and trained 

exclusively on that specific combination. The training process was conducted 

over 300 epochs for each model (the entire list of hyperparameters can be 

found in statistical analysis). Images were randomly flipped horizontally during 

training to expose the model to a broader range of variations within the dataset. 

The MAE and MSE values were continuously monitored and recorded for each 

epoch.  
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To allow faster training during exploration, the model also incorporated a 

preprocessing step that converted the images from their original 2048x2394 

pixels resolution to 512x512 pixels 69. 

All the training combinations and the image types they contain are described in 

Figure 18. 

 

Figure 18: Training combinations. Raw Only, including only raw LE images; Processed Only, 

including only processed LE images; Raw and Processed: stacked two-channel image where 

the first channel contains the raw LE image and the second channel contains the processed 

LE image. Oversampled Raw and Processed: similar channels to “Raw and Processed”, with 

increased representation of “With Mass” images using oversampling techniques. 
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3.4. Model performance metrics  

The primary task for each model was to generate DES images based on the 

corresponding LE image combination that the model was trained on. The 

evaluation of model performance was centered on MAE, calculated at three 

levels: 

1. MAEImage - the MAE between the whole generated image and the whole 

real DES images. 

2. MAEBreast - calculated as MAE between generated and real DES 

images, but only for the breast area. 

3. MAEMass - the MAE between the generated and real DES images in the 

“With Mass” category, focused only on the mass area. 

The calculation of these performance metrics is illustrated in Figure 19. 

Figure 19: The calculation of MAEImage, MAEBreast, and MAEMass. (a) Image selection;  

(b) pixel-level difference at three levels: whole image (green), breast (yellow), and mass (red); 

(c) MAE calculations based. Abbreviations: MAE, mean absolute error.  
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To calculate the metrics for the breast area, breast segmentation was 

performed by applying a Gaussian Blur to the raw LE images, acquiring a 

segmentation mask of the breast and pectoral muscle area in the image. 

For the evaluation of mass-specific performance, the "Mass Only" category 

was established, focusing exclusively on the mass regions within the "With 

Mass" validation images. Mass segmentation was performed by two readers. 

3.5. Statistical analysis 

The MAE of the 300th epoch, representing the final state of the model and 

presented as MAEImage, was used to estimate the overall performance of each 

model on the respective channel combinations. As MAEImage tends to be 

smaller than the other MAE-based metrics, MAEImage values were multiplied by 

100 and are presented as 100*MAEImage. 

MAEBreast was calculated for every segmented breast image in the “Without 

Mass" and "With Mass" categories. MAEMass was also calculated for each 

segmented mass in the “Mass Only” category.  

Subsequently, averages were computed for each metric in each category, both 

as the overall average as well as stratified by breast density into adipose and 

dense breasts. Lower MAE values indicated a higher degree of similarity 

between the generated and original images. 

The generated images of the best performing model in each analysis were 

presented and divided based on the variability in performance. The mean 

performance was termed as “Average” while the first and third quartiles were 

termed as “Above Average” and “Below Average” correspondingly. 
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The models were trained using the hyperparameters listed in Table I. For the 

“raw only” and “processed only” models, the input number of channels 

(input_nc) was set to 1, while for the other two models, it was set to 2. The 

preprocess flag was defined as "resize_and_crop". Only the model trained on 

resampled raw and processed images had “resample_dataset” set to true, 

while for the rest it was set to false. 

 

 

Table I: Model training hyperparameters 

All statistical analyses were conducted using Python 3.10.14. The training was 

carried out on a single Nvidia V100 graphic processing unit (GPU) available 

through Google Cloud Platform (GCP) and required approximately 18 hours 

per model. 
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4. RESULTS 

4.1. Study population characteristics 

Table II presents the demographic and clinical characteristics of the study 

population, with a total of 557 patients divided into a train group of 519 patients 

(93.2%) and a validation group of 38 patients (6.8%). The median patient age 

was similar across both groups, with a median age of 50.0 years (IQR, 45.0-

57.5) in the train group and 50.5 years (IQR, 46.0-60.75) in the validation group.  

The percentage of patients in each menopausal state was similar between the 

groups, including premenopausal patients (Train = 45.9%, Validation = 44.7%), 

perimenopausal (Train = 10.2%, Validation = 10.6%) and postmenopausal 

(Train = 43.9%, Validation = 44.7%).  

The median breast volume was 561.4 cm³ (IQR = 339.2-912.8) in the train 

group and 557.0 cm³ (IQR = 341.3-812.6) in the validation group. BI-RADS 

density categories were similarly distributed, with category D being the most 

common (Train=46.0%, Validation = 44.7%). 

8073 images were analyzed, with 7593 images (94.1%) in the train group and 

480 images (5.9%) in the validation group. The ratio between LE and DES 

images (LE:DES ratio) ratio was consistently 2:1 across both groups. Images 

with masses were more prevalent in the validation group (50.0%) compared to 

the train group (26.1%), while images without masses were more common in 

the train group (73.1%) than in the validation group (50.0%). 
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Table II: Study Population. Characteristics of the patient and image datasets included in the 

analysis. *Derived from the projected percentages. ** Values represented as interquartile 

ranges. Abbreviations: BI-RADS, Breast Imaging-Reporting and Data System; LE, Low-

Energy; DES, Digital Energy Subtraction; N°, number. 
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4.2. Whole-image performance comparison across 

training and validation  

Table III presents the performance of the models on the entire image, denoted 

as MAEImage, demonstrating the difference in performance between the train 

and validation groups across different training combinations. 

The models trained on raw images alone showed the lowest MAEImage in the 

validation group (100*MAEImage = 1.01) as well as the least difference between 

the train and validation groups (100*MAEImage: Train=0.97, Validation=1.01; 

Difference=0.04). 

The model trained on both raw and processed images without oversampling 

had the lowest MAE in the training group (100*MAEImage = 0.81) but the highest 

difference in MAEImage between train and validation among all models 

(100*MAEImage: Train=0.81, Validation=1.17; Difference=0.36).  

Table III: Whole image performance difference between train and validation. The larger the MAE, 

the worse the performance. The oversampling was performed only on the train group aimed at having an 

equal amount of images with and without masses. LE, Low Energy; MAE, Mean Absolute Error. 
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4.3. Visual comparison of model outputs 

Figures 20 and 21 provide a detailed comparison of the model outputs for the 

training and validation image groups, respectively. Each figure is structured to 

highlight the model performance across different channel combinations, with a 

focus on images both with and without masses. 

Figure 20 presents the results for the training images. In the subfigure 

illustrating training images without masses (top half), all models demonstrated 

high similarity, generating images that closely resemble the desired DES 

outputs. However, in the subfigure showcasing images with masses (bottom 

half), the model trained solely on processed images did not accurately generate 

the tumor seen in the desired DES images. The other models produced outputs 

that more closely align with the DES images. 
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Figure 20: Visual comparison of model outputs on training images. Generated images 

marked in red. A comparison of model outputs across four LE image combinations based on 

the training images. The figure is divided into two subfigures: the upper presents images 

without masses, and the lower shows images with masses. For each condition, the subfigure 

includes the LE images combination, the LE image input, the DES-transformed image, and the 

generated image. Abbreviations: LE, Low Energy; DES, Dual Energy Subtraction. 
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Figure 21 depicts the results for the validation images, following the same 

structural layout as Figure 20. The top subfigure includes images without 

masses. Similarly to the results of the training images, all models successfully 

generated outputs similar to the desired DES images, albeit with minor 

variations in the depiction of breast parenchyma. The lower subfigure, which 

focuses on images with masses, reveals once again similarity to the results of 

the training images, where only the models trained on processed images alone 

failed to generate images that correctly depicted the masses present in the 

desired DES images. Notably, the model trained on the resampled raw and 

processed images produced the closest match to the desired output. 

These figures collectively demonstrate that the models generated more similar 

outputs in images without masses compared to those with masses. 

Furthermore, across both the training and validation groups, the model trained 

exclusively on processed images, produced outputs that were the least similar 

to the desired DES images. 
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Figure 21: Visual comparison of model outputs on validation images. Generated images 

marked in red. A comparison of model outputs across four LE image combinations based on 

the validation images. The figure is divided into two subfigures: the upper presents images 

without masses, and the lower shows images with masses. For each condition, the subfigure 

includes the LE images combination, the LE image input, the DES-transformed image, and the 

generated image. Abbreviations: LE, Low Energy; DES, Dual Energy Subtraction. 
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4.4. Model performance on the segmented breast 

Table IV summarizes the model performance on the segmented breast images 

from the validation group, termed MAEBreast. The evaluation was conducted 

across four models, each trained on a different image combination. The 

validation group was further stratified based on two descriptors: the presence 

of a mass ("With Mass" or "Without Mass") and breast density (Adipose or 

Dense breast).  

The model was evaluated using MAEBreast, calculated based on the segmented 

breast instead of the whole image. This metric represents an error 

measurement, thus values which are closer to zero indicate better 

performance. 

In the "Without Mass" category, the model trained on both raw and processed 

images exhibited the best performance, with the lowest MAEBreast
 in every 

subgroup (MAEBreast: Adipose Breast = 6.0, Dense Breast = 6.4, Overall = 6.2). 

This model performed particularly well in the adipose breast subgroup, where 

it achieved a MAEBreast of 6.0. The model trained on the resampled raw and 

processed images was the second best performing one.  

The model trained only on raw images had the lowest performance in the dense 

breast subgroup (MAEBreast = 7.1), which was the lowest performance overall 

in the “Without Mass” category (MAEBreast = 6.8). The model trained only on 

processed images had the lowest performance in the adipose breast subgroup 

(MAEBreast = 6.6). 

In the "With Mass" category, the model trained on raw and processed images 

was also the best performing, achieving the lowest MAEBreast in all subgroups 

(MAEBreast: Adipose breast = 7.3; Dense breast = 9.1, Overall = 8.2). The best 

performance within this category was in the adipose subgroup (MAEBreast = 7.3).  
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The model trained only on processed images had the lowest performance in 

the dense breast subgroup (MAEBreast = 9.9), which was the lowest 

performance in the “With Mass” category. This model also resulted in the lowest 

overall performance in this category (MAEBreast = 8.9). 

For each model and in each of the subgroups, the MAEBreast in the “With Mass” 

category was higher than in the “Without Mass” category. 

Table IV: Performance of models across different segmentation categories and image 

subgroups. The table summarizes the average error per pixel for models evaluated on 

segmented breast images from the validation group. Models were assessed across four 

training combinations and further stratified into adipose breast and dense breast subgroups. 

The performance is grouped into “Without Mass” and “With Mass” categories. The performance 

was evaluated based on MAEBreast. Closer to zero values indicate better performance. Best 

performance in each subgroup as well as overall is marked in bold. Abbreviations: LE, Low 

Energy; MAE: Mean Absolute Error. 
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Figure 22: Images generated by the best performing model in the “Without Mass” 

category stratified by performance quality. Comparison of images generated by the model 

trained on raw and processed images based on their MAEBreast. Generated images are marked 

in red. The relative position of the MAEBreast of the image is demonstrated by the boxplot. 

Abbreviations: LE, low energy; MAE, mean absolute error. 

The best-performing model in the “Without Mass” category (the model trained 

on raw and processed images) for breast segmentations achieved a overall 

MAEBreast of 6.2. The images it generated exhibit minimal variation in 

performance (MAEBreast: Above Average = 5.3, Below Average = 6.8) across 

this category, as depicted in Figure 22. 
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In the “With Mass” category, the same model has an overall MAEBreast of 8.2. 

The images generated by it display great variation, as illustrated in Figure 23. 

In the below average images (MAEBreast = 8.9), the model failed to generate all 

the expected masses. At average performance (MAEBreast = 8.2), the tumors 

are faintly visible, while above-average images (MAEBreast = 6.1) show them 

clearly. 

Figure 23: Images generated by the best performing model in the “With Mass” category 

stratified by performance quality. Comparison of images generated by the model trained on 

raw and processed images based on their MAEBreast. Generated images are marked in red. The 

relative position of the MAEBreast of the image is demonstrated by the boxplot. Abbreviations: 

LE, low energy; MAE, mean absolute error. 
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4.5. Model performance in the “Mass Only” category 

The performance of the models was also evaluated on mass-specific 

segmentation, focusing on the same density subgroups.  

The evaluation was based on MAEMass, as summarized in Table V. MAEMass is 

an error measurement, thus the lower it is the better the performance. 

The model trained on the oversampled raw and processed images 

demonstrated the best performance in each subgroup as well as overall 

(MAEMass: Adipose Breast = 39.5, Dense Breast = 35.1, Overall = 37.3). 

Notably, the lowest MAEMass was observed in the dense breast subgroup.  

The model trained only on processed images had the highest MAEMass in the 

adipose breast subgroup and overall (MAEMass: Adipose Breast = 41.5, Overall 

= 38.4). The model trained on raw images alone had the highest MAEMass in 

the dense breast group (MAEMass = 36.3). 

Table V: Model performance in the “Mass Only” category. Performance of the models 

trained on the different image combinations across the four subgroups. The performance was 

evaluated based on MAEMass. Closer to zero values indicate better performance. The best 

performance in each subgroup is marked in bold. The best overall training combination is 

marked in bold as well. Abbreviations: LE, Low Energy; MAE, mean absolute error. 

Overall, for each model and in each of the subgroups, the performance in both 

metrics in the “Mass Only” category was worse compared to the performance 

in the “Without Mass” and “With Mass” categories. 
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The best performing model in the “Mass Only” category (the model trained on 

resampled raw and processed images) achieved an overall MAEBreast of 37.3. 

Figure 24 depicts the variability in its performance. Images with average or 

below-average performance (MAEBreast = 37.3–46.0) show the expected tumor, 

but only partially. In contrast, images with above-average performance 

(MAEBreast = 21) clearly show the expected tumors found in the DES images. 

Figure 24: Images generated images by the best performing model in the “Mass Only” 

category stratified by performance quality. Comparison of images generated by the model 

trained on resampled raw and processed images based on their MAEMass. Generated images 

are marked in red. The relative position of the MAEMass of the image is demonstrated by the 

boxplot. Abbreviations: LE, low energy; MAE, mean absolute error.  
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5. DISCUSSION 

In this study, we provided key insights into the development and evaluation of 

GAN models designed to generate DES images from LE CEM images. We 

created and trained several models, each trained on different combinations of 

raw and processed LE images, which were validated on an unseen validation 

group of images. 

The consistency between training and validation groups confirms that the 

models maintained their generative capacity on unseen data. This consistency 

is importante for future applications, as models will need to perform reliably 

across a broad range of patient images. 

Subsequently, we tested each model’s performance across various categories 

and subgroups. The primary categories included whole image generation, 

segmented breast image generation (with or without mass), and mass-specific 

image generation. The subgroups were defined as adipose (BI-RADS category 

a-c) and dense (BI-RADS category d) breasts. Each model was rigorously 

evaluated to determine its effectiveness in generating clinically relevant 

features within these categories and subgroups. 

One of the most significant findings was the superior performance of models 

trained on both raw and processed LE images. The combined-input approach 

allowed the model to leverage detailed information from the raw images, which 

often contain nuanced features that are not retained in the processed images, 

as reflected by the lower MAE. 

The model trained with resampling techniques, designed to increase the 

representation of mass-containing images, demonstrated the best performance 

in mass-specific MAE (MAEMass). This finding aligns with the principle that 

targeted resampling can improve model sensitivity to less frequent but clinically 
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significant features, such as masses. The enhanced performance in detecting 

and accurately replicating masses is a promising result for potential clinical 

applications, where precise mass characterization is essential for early breast 

cancer detection.  

The presence of dense fibroglandular tissue complicates the diagnosis, as it 

can obscure tumors, making interpretation more challenging in dense breasts. 

Thus, adipose breasts with a higher fat content are generally associated with 

simpler mammographic interpretations 70. Interestingly, in the “Mass Only” 

category, the model performed better on the dense breast than on the adipose 

one. The difference can be attributed to the average mass size, which is 2047 

pixels in the adipose breast group compared to 2941 pixels in the dense breast 

group. As the MAE is inversely proportional to the total number of pixels, larger 

masses may lead to a lower relative MAE. 

Building on that notion, the difference in the total number of pixels might explain 

the lower performance in the “Mass Only” category compared to the segmented 

breast categories (“Without Mass” and “With Mass”). The segmented mass 

area, 2000-3000 pixels, is about 20-30 times smaller than the segmented 

breast area, 65,000 pixels on average. As a result, the effect of the number of 

pixels on the MAE is even greater. 

Despite these promising results, several limitations were identified in the study. 

While the current models demonstrated strong performance, there are 

additional factors that could be explored to improve the results. These include 

hyperparameters and clinical parameters such as breast density.  

Another limitation is the size of the dataset, which was sufficient to demonstrate 

the model's potential, but a larger dataset together with the use of K-fold cross-

validation would be necessary to reduce the risk for overfitting. 
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To address these limitations and further enhance the model’s performance, 

future work should focus on integrating breast density into the training process. 

This approach could help optimize the model’s ability to distinguish between 

subtle differences that are critical in clinical imaging. 

Additionally, expanding the dataset and implementing K-fold cross-validation 

will be essential steps in reducing overfitting, validating the model’s robustness 

and ensuring that it performs consistently across diverse patient populations.  

Another limitation may be due to the reduced image resolution (512x512) used 

in this analysis, as the identified strengths and weaknesses might not be 

translatable to the original image resolution (2048x2394). As demonstrated by 

Sabottke and Spieler, the performance of models for radiological imaging 

exhibit varying performance changes relative to increased image resolution 71. 

Thus, the best performing models should be retrained with higher resolution to 

verify that their quality is translatable. 

Finally, before these models can be considered for clinical deployment, it is 

imperative to conduct clinical reader studies. These studies would involve 

radiologists assessing the quality and diagnostic utility of the generated DES 

images, thereby providing direct feedback on the clinical validity of the model. 

Such validation is a critical step in transitioning from research setting to 

practical, real-world applications. 

In summary, generating DES images from LE CEM images using GANs holds 

great promise in assisting BC diagnosis. The generated images based on both 

raw and processed images show high resemblance to the original desired 

ones, demonstrating the potential of this method for reducing patient risks while 

maintaining diagnostic accuracy. 
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6. CONCLUSION 

This study introduces a novel approach to generating dual-energy subtracted 

images from low-energy contrast-enhanced mammography images by 

leveraging deep learning techniques. The models developed in this study were 

rigorously tested across multiple categories and subgroups, demonstrating the 

added value of incorporating both raw and processed images.  

The findings of this study suggest that, following successful clinical validation, 

such models could play a pivotal role in assisting breast cancer diagnosis. 

Moreover, the use of deep learning-generated dual-energy subtracted images 

could potentially offer the same diagnostic performance of contrast-enhanced 

mammography without the need for additional imaging procedures, thereby 

minimizing patient risks associated with radiation exposure and contrast media. 
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