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Abstract

Social contagion shapes how information spreads through networks, influencing critical pro-
cesses ranging from the dissemination of news and job opportunities to the propagation of
social movements and potentially misleading content. The structure of social networks plays
a pivotal role in determining the reach and impact of these diffusion processes, with network
topology critically modulating how individuals access and interpret information.
Within this context, link prediction (LP) emerges as a crucial mechanism for understand-

ing and potentially manipulating network structures. The primary goal of LP is to determine
whether two nodes in a network are likely to form a connection, thereby potentially reshaping
the network’s information transmission capabilities. While numerous LP methods have been
proposed in the literature, along with various methodologies, biases research, and evaluation
approaches, the relationship betweenLP and social diffusion processes remains less thoroughly
explored, particularly concerning Graph Neural Network (GNN)-based LP algorithms.
In this study, we systematically analyze four distinct GNN-based LP models to investigate

how predicted network structures influence social contagion dynamics. Our research employs
six diverse datasets, characterized by comprehensive node-level centrality measures and graph-
level topological metrics. By leveraging this methodological variability, we aim to provide a
nuanced understanding of hownetwork characteristics correlate with social diffusion and how
they are modulated by different LPmodels. We model social contagion using both simple and
complex contagion frameworks through epidemic modeling techniques.
Our findings reveal that LP models consistently reshape network structures in ways that

significantly influence contagion dynamics. By introducing structural shortcuts or targeting
hub nodes, these models enhance information diffusion, particularly in denser networks with
high average degrees and clustering coefficients. Additionally, we observe that the impact of
LP varies between simple and complex contagion processes, with attention-based models like
GraphTransformers facilitatingbroaderpropagation andGraphConvolutionalNetworks (GCNs)
forming localized clusters under specific conditions. Critically,measures such asComplex Path
Centrality and node degree emerge as key predictors of contagion susceptibility, highlighting
the intricate interplay between network topology and social diffusion behavior.
This work contributes a comprehensive overview of GNN-based LPmethods, network and

node characterization, and social contagion modeling, taking an initial step toward bridging
existing literature gaps and advancing the understanding of LP’s impact on social dynamics.
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1
Introduction

Social media has become an integral part of daily life worldwide, influencing how people con-
nect, communicate, and consume information. In Italy alone, there were 42.80 million social
media users as of January 2024, representing 72.8% of the population [3]. Italian users spend
an average of over 23 hours per month on platforms such as Facebook, X (formerly Twitter),
and LinkedIn [4]. This extensive adoption underscores the central role that social media now
plays in modern society, not only as a tool for interaction but also as a dominant channel for
accessing and sharing information.
In today’s digital age, people’s personalities, interests, and even political views are signifi-

cantly shaped by the content they encounter on social media. Traditional news sources are
increasingly being supplanted by social media networks as primary channels for current events
and breaking news. This fundamental shift has radically restructured the relationship between
journalism, media organizations, and their audiences, creating a dynamic and often problem-
atic information ecosystem [5].
Media outlets have rapidly adapted to this new landscape, developing strategies that priori-

tize algorithmic engagement over traditional journalistic principles. The rise of clickbait tech-
niques has become a defining characteristic of modern digital journalism, where headlines and
content are meticulously crafted to maximize algorithmic visibility and user interaction. Jour-
nalists andmedia organizations now design content with social media algorithms in mind, em-
ploying strategies like sensationalist headlines, emotionally charged language, and provocative
framing to increase shares, comments, and follows [5, 6].
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These algorithmic adaptations have profound implications for information dissemination.
Newsorganizations increasinglyprioritize content that generates immediate emotional responses
and viral potential over depth, nuance, and factual comprehensiveness. The metrics of success
have shifted from journalistic integrity to engagement rates, likes, and algorithmic recommen-
dation.
Similarly, politicians have become particularly adept at manipulating these algorithmic dy-

namics. By crafting provocative, emotionally charged statements designed to trigger immediate
reactions, they can instantly dominate media cycles and amplify their messaging. Social media
platforms enable political figures to bypass traditionalmedia gatekeepers, directly communicat-
ing with followers through carefully curated narratives. This direct communication allows for
rapid response to global events, but also creates an environment where inflammatory rhetoric
and polarizing statements can quickly gain unprecedented visibility and spread [7].
This phenomenon is not uniform across ideological lines. Research shows that right-leaning

content enjoys structural and algorithmic advantages on social media, amplifying its visibility
and engagement relative to left-leaning content. This “amplification of the right” stems from
factors like greater audience susceptibility tomoralized content and algorithmic curation favor-
ing partisan narratives. For instance, during movements like Black Lives Matter, even in pro-
gressive networks, right-leaning outlets dominated the discourse, illustrating how social media
often favors polarizing and extreme content [8].
The 2024 U.S. presidential elections provide a contemporary example of this phenomenon.

Donald Trump, in tandem with ElonMusk’s amplified presence on X, leveraged the platform
todominatepublic attention. Trump’s campaignusedhashtags like #TooBigToRig and#StopTheSteal
to frame narratives around election integrity, while Musk’s algorithmic influence and live dis-
cussions helped spread conspiracy theories and reinforce echo chambers. Together, their strat-
egy overwhelmed the information space, fostering polarization and shaping public discourse
in ways that mirrored the algorithmic incentives of social media platforms [9].
This algorithmic logic incentivize extreme, divisive, and simplified narratives over balanced,

complex reporting. As a result, the boundary between news, opinion, and pure entertainment
becomes increasingly blurred, challenging traditional notions of journalistic objectivity and
public information consumption. Media organizations, politicians, and individual users are
now participants in a complex ecosystem where algorithmic logic increasingly mediates social
understanding and public discourse.
Insteadof receiving anunbiased and comprehensive viewof theworld, users encounter infor-

mation largely filtered through the perspectives of individuals, organizations, and influencers
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within their networks. This networked structure influences not only what they see but also
how they interpret and form opinions. The position individuals hold within these networks—
and the connections they forge — directly shapes their information exposure to information
and, ultimately, their social capital [10, 11].
The impact of social media structures is in the spotlight today. The design of major plat-

forms and the algorithms that power their content have far-reaching effects, shaping public
opinion and even impacting national election outcomes [12, 13]. These systems determine
the information users encounter, often amplifying certain voices while suppressing others, fos-
tering echo chambers [14] and marginalizing minority perspectives [15]. As a result, social
media’s role in shaping political views and behaviors has emerged as a central concern in both
public discourse and academic research.
Social networks continuously evolve, shaped by both organic growth and algorithmic inter-

ventions. At the heart of many online platforms lies link prediction (LP), also known as link
recommendation, a crucial technology that reshapes these networks by recommending connec-
tions through features like “People You May Know” on LinkedIn or “Suggested Friends” on
Facebook. Operating as a predictive task, LP determines whether a connection exists or will
form between network nodes by analyzing various factors, including neighbor similarities, net-
work topology, and node features [16, 17, 18]. While its applications extend beyond social
platforms— from uncovering protein interactions in biological networks [19] to predicting ci-
tations in academic networks [20] — LP has become foundational for modern recommender
systems and network analysis.
Previous research has extensively studied network structures and their effect on social conta-

gion— the complex process through which ideas, behaviors, or information propagate across
networks [21, 22, 23]. Drawing parallels from epidemiology, social contagion is often mod-
eled using epidemic spreading frameworks, where information or behaviors spread like diseases
through apopulation [24]. Thesemodels typically distinguishbetween two fundamental types
of contagion processes: simple contagion, where spread occurs through direct contact with a
single source (like sharing news, viral memes, or basic information), and complex contagion,
where adoption requires social reinforcement frommultiple sources (like adopting new behav-
iors, beliefs, or technologies, where individuals need substantial social proof or validation be-
fore changing their state). These processes fundamentally shape how information flows, opin-
ions form, and behaviors spread across social networks [22, 25].
The intersection of LP algorithms and social contagion presents a fascinating yet underex-

plored research frontier. When LP algorithms modify network structures by suggesting new
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connections, they may inadvertently create or remove pathways for information flow, poten-
tially altering the dynamics of both simple and complex contagion processes. For instance, by
connecting previously distant communities, LP algorithms might accelerate the spread of in-
formation across diverse groups. Conversely, by strengthening existing clusters, they could
intensify echo chambers and contribute to opinion polarization. At both the local (node) and
global (graph) levels, these algorithmic interventions might fundamentally reshape network
vulnerability to misinformation, alter the speed of information diffusion, and influence the
formation of community structures.
This study aims to take the first steps in addressing this gap by exploring how different LP al-

gorithms influence social contagion processes across different network structures. While tradi-
tional LPmethods rely on heuristic approaches like common neighbors or path-based metrics,
we focus exclusively on Graph Neural Network-based LP algorithms, which have emerged as
the state-of-the-art approach in recent years [26, 27, 28, 29].
Graph Neural Networks (GNNs) are a class of deep learning models specifically designed

to operate on graph-structured data [30]. GNNs have demonstrated superior performance
by leveraging their ability to simultaneously process both graph topology and rich node/edge
feature information through their message-passing architecture and learned representations
This enables them to effectively model relationships and dependencies, making them highly
suitable for tasks like LP. Their flexibility in incorporating node and edge features further en-
hances their capability to understand complex network dynamics. At the core of these GNN-
based LP methods is the use of node embeddings — low-dimensional vector representations
of nodes that capture information about their local and global neighborhood structures—.
Node embeddings are generated through dimensionality reduction techniques, condensing
high-dimensional graph data into compact, informative vectors that can then be leveraged for
tasks such as node classification, clustering, and LP [2, 31, 32].
This research aims to take an initial step toward bridging gaps in the existing literature and

advancing the understanding of LP and its impact on social dynamics. While the focus remains
on static LP and link reconstruction — rather than dynamic network evolution — this study
will explore the structural changes induced by LP models at both graph and node levels. By
examining these structural impacts, the research seeks to uncover how LP algorithms shape
the underlying network in ways that influence social contagion and information diffusion pro-
cesses.
To this end, we will employ a variety of state-of-the-art GNN architectures for LP tasks,

including Graph Convolutional Networks (GCNs) [33], Graph Attention Networks (GATs)
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[34], SuperGAT [35], and GraphTransformers [36]. These models offer diverse approaches
to capturing graph topology and node feature interactions. GCNs leverage spectral graph the-
ory to aggregate neighborhood information, while GATs introduce attention mechanisms to
weight the importance of different neighbors. SuperGAT builds on GAT by incorporating
self-supervised learning signals for enhanced edge-level attention, and GraphTransformers ex-
tend the transformer paradigm to graphs, enabling the modeling of long-range dependencies
and more complex structural relationships. Together, these models provide a comprehensive
toolkit for investigating how different LPmechanisms influence the underlying network struc-
ture.
This investigation will delve into the effects of LP algorithms at two complementary scales:

Graph-Level Analysis:

• Comprehensive exploration of network topologies using advanced metrics: average de-
gree, clustering coefficient, and Gini coefficient for centrality measures.

• Rigorous performance evaluation using AUC-ROC scores across different LP models.

• In-depth analysis of LP-induced structural changes and their impact on social contagion
processes.

• Comparative assessment of diffusion dynamics, including contagion stabilization time,
total infection size, and infection propagation rate.

• Comparative analysis between predicted and real network contagion patterns.

Node-Level Analysis:

• Comprehensive node’s structural assessment using centrality measures such as degree
centrality, eigenvector centrality, diffusion centrality, and complex path centrality.

• Evaluation ofLPperformance usingVCMPR@k scores, a localmeasure used inLP tasks
involving node embeddings in graphs [37].

• Detailed examination of nodes’ roles in contagion dynamics, including node’s vulnera-
bility and recency.

• Comparative analysis between node’s predicted and real neighbours contagion metrics.

5



By integrating these node-level and graph-level analyses, this research provides a comprehen-
sive framework for understanding the dual-scale impact of LP algorithms on network struc-
tures and their subsequent influence on contagion processes.
The thesis is organized as follows. Chapter 2 presents a comprehensive review of the related

literature on the main topics of this thesis. Chapter 3 introduces GNNs, their mathematical
formalisms, and the specific GNN models that will be employed for our LP task. Chapter
4 details the LP task, its common frameworks, and evaluation metrics. Chapter 5 explores
social contagion dynamics and their prevalent modeling approaches. The research results are
presented in Chapter 7, with concluding remarks provided in Chapter 8.
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2
RelatedWork

Earlier groundwork on processing structured data using neural networks was laid by Sperduti
et al. [38], which introduced the generalized recursive neuron. This concept extended neural
networks to classify structured patterns, like trees and logic terms, overcoming the limitations
of feature-based methods. These foundational advances in learning algorithms for structured
data gradually paved the way for graph neural networks (GNNs), an emerging field that would
soon attract significant research attention.
As GNNs emerged, researchers began providing comprehensive reviews and frameworks to

systematize this evolving domain. Bronstein et al. [39] introduced the term geometric deep
learning and provided a foundational overview of deep learning techniques applied to non-
Euclidean domains, such as graphs and manifolds. While this pioneering work represents the
first comprehensive survey on GNNs, its primary focus is on convolutional GNNs. Similarly,
Hamilton et al. [2] synthesized graph representation learning techniques, introducing GNN
formalism and emphasizing solutions to network embedding problems, although with cover-
age limited to a subset of GNN models. Battaglia et al. [40] introduced the graph networks
(GN) framework, which defines a class of functions specifically designed for relational reason-
ing over graph-structured data. This framework generalizes and extends several established ap-
proaches, including GNNs, message-passing neural networks (MPNNs), and neural logic net-
works (NLNNs) [41, 42, 43]. By providing a unified perspective, the GN framework enables
the construction of complex architectures from simple and modular building blocks, offering
a robust foundation for relational reasoning in graph-based representations. Lee et al. [44] pro-
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vided a focused review onGNNs employing attentionmechanisms, presenting a partial survey
of this specialized subset of models. In contrast, Wu et al. [1] offered a comprehensive survey
of GNNs, leveraging abundant resources to analyze existing limitations and proposing a new
taxonomy.
Beyond general overviews, significant research also addresses the limitations and challenges

inherent in GNNs. Alon et al. [45] identified the bottleneck problem, describing howGNNs
struggle to propagate information across long paths in a graph, which adversely affects message
aggregation between distant nodes. Shchur et al. [46] highlighted issues in experimental setups,
particularly the common practice of relying on a single train/validation/test split. Their find-
ings demonstrated that a simple GraphConvolutional Network (GCN) can outperformmore
complex GNN architectures when consistent hyperparameter tuning and training procedures
are applied, and results are averaged across multiple data splits. Finally, Dong et al. [47] in-
vestigated how GNNs may produce biased outcomes against certain demographic subgroups.
Their work underscores the importance to develop effective and fair GNN models that miti-
gate the influence of biased structures in the input network, ensuring these do not serve as a
significant source of bias.
The issue of bias in LP models has also garnered considerable attention in recent research,

particularly regarding fairness in predicting connections within social networks. Studies have
shown that LP algorithms often exhibit biases, such as favoring intra-group connections or
amplifying the visibility of certain groups over others. For example, accuracy disparity in LP
models, as discussed by Li et al. [48], reveals that inter-group links are often predicted with
less accuracy than intra-group links. This research identifies imbalanced link densities as a root
cause, proposing a mitigation method (FAIR-LP) to equalize link distributions while preserv-
ing network structure.
The homophily principle [49] also plays a crucial role in LP bias, as highlighted byMasrour

et al.[50], who show that LP algorithms often reinforce filter bubbles by favoring connections
between similar nodes. Karimi et al. [15] further demonstrate that this effect increases network
segregation, reducing exposure to diverse perspectives and potentially disadvantagingminority
groups by limiting their opportunities to connect with majority groups or access new informa-
tion. Approaches to mitigate this issue include introducing fairness criteria that enhance link
diversity, promoting more heterogeneous network structures.
Further, research on degree bias shows that LPmodels often favor high-degree nodes, which

skews results and can amplify “rich-get-richer” effects. As noted by Aiyappa et al.[51], this bias
can lead algorithms to overemphasize node degree, resulting in deceptively high performance
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scores. They argue that the standard LP benchmark has a substantial inherent bias that dispro-
portionately rewards models exploiting node degree information. This degree bias stems from
edge sampling in performance evaluations: when edges are randomly sampled from a graph, a
node with k edges is k times more likely to be chosen than a node with only one edge (k = 1).
In contrast, negative edge samples are taken from randomly selected unconnected node pairs,
lacking this degree-based skew. To address this, they propose a degree-corrected task for amore
balanced and fair link prediction evaluation.
Meanwhile, Subramonian et al. [52] dives into within-group fairness and reveals that some

LPmethods, especiallyGCNs, have a built-in bias toward high-degree nodes. Theirwork intro-
duces new fairnessmetrics to assess these effectswithin groups, aiming tomitigate degree-based
disparities.
While extensive research has investigated the bias effects of LP models and the influence of

link recommendation algorithms on dynamics such as polarization [53] and network central-
ities [54], the relationship between LP and diffusion processes remains less understood. Ex-
isting literature has primarily focused on accurately estimating classification performance for
missing links [16, 55], with limited attention to the impact of LP on a network’s spreading
capacity. An initial study by Weng et al. [56] provided evidence from a meme dataset that
information diffusion plays a significant role in shaping network evolution. Similarly, Li et
al. [57], using data from a micro-blogging platform, demonstrated that information diffusion
influences the creation of new links. Their analysis concluded that incorporating diffusion pro-
cesses as a feature in link recommendation algorithms yields better results than relying solely on
topological properties. However, neither study evaluated specific LP strategies nor proposed a
general framework for assessing or characterizing the networks that evolve under these dynam-
ics.
In an early study, Vega et al. [58] examined how traditional LP algorithms — such as Sim-

Rank [59], PageRank [60], CommonNeighbors [16] , andAdamic-Adar [61]—affect various
diffusion processes, including epidemic, information, and rumor spread, in dynamic networks.
They calculated each network’s initial spreading capacity for different diffusion models and
generated evolved versions by adding edges recommended by each LP method, also keeping
an eye on the structural properties of the LP-evolved networks. Their findings suggest that
adding new edges does not always enhance spreading capacity; LP methods that maintain or
lower network complexity tend to achieve better spreading results. Changes in structural prop-
erties like the number of triangles, modularity, and assortativity did not consistently correlate
with improved diffusion. However, Vega et al.’s work is limited to traditional heuristics and
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does not investigate the effects of GNN-based LPmodels, leaving a gap in understanding how
more advanced models might influence diffusion dynamics.
Research on social contagion has grown significantly in recent years, driven by the increas-

ing reliance on social media and our interconnected roles within these artificial social networks.
Mønsted et al. [62] provided experimental evidence that the complex contagion model better
describes observed information diffusion behavior on Twitter compared to simple contagion.
Their study employed ‘social bots’ to orchestrate coordinated attempts at spreading informa-
tion. Sassine et al. [63] explored hownetwork structure influences the speed and reach of social
contagions, highlighting the pivotal role of topology in shaping diffusion processes. Banerjee et
al. [23] investigated how the network positions of initial information recipients affect the dif-
fusion of new products. To study this, a microfinance institution entered 43 villages in India,
offering microfinance loans and collecting detailed network data through household surveys.
Their findings introduced diffusion centrality, a novel measure of a node’s effectiveness as an
injection point for diffusion processes. Jackson et al. [11] further advanced the field by pro-
viding a typology of social capital, breaking it into seven distinct forms, each tied to different
node characteristics and centrality measures. Guilbeault et al. [64] expanded on this by in-
troducing measures such as complex path length and complex-path centrality, improving the
identification of key individuals and network structures critical for complex contagion.
Despite these advancements, significant gaps remain in understanding how LP algorithms

interact with social contagion processes. While prior studies have laid a strong foundation for
understanding the interplay between network structure, centrality, and contagion, the influ-
ence of GNN-based LP on the spread of information is unexplored.
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3
Graph Neural Networks

Researchers have developed neural networks that operate on graph-structured data for over a
decade [1]. Unlike traditional neural networks that process structured data such as images —
ConvolutionalNeuralNetworks (CNNs) [65]—or sequences—RecurrentNeuralNetworks
(RNNs) [66]—, Graph Neural Networks (GNNs) [30] work directly with graphs, defined as
G(V , E), where V = u1, u2, . . . , un represents the set of vertices or nodes, and E denotes the
set of edges connecting these nodes. GNNs process a graph G(V , E) along with node features
X ∈ Rd×|V| to generate node embeddings zu.
Earlymethods for node embedding involve projecting nodes onto a lower-dimensional space

by estimating the graph’s intrinsic dimensionality using spectral techniques on the adjacency
matrix. Examples include approaches like Locally Linear Embedding (LLE) [67] and Isomap
[68]. However, a key limitation of these early techniqueswas their inability to scalewell to large
networks. Later, more robust statisticalmodels emerged, where node parameters are derived by
optimizing a global objective function to preserve graph structure. The underlying principle
is that similar nodes in the original graph should remain close in the lower-dimensional space.
This notionof graphproximity is oftendefinedbyneighboringnodes, reflecting thehomophily
principle [49], where connected entities tend to share characteristics.
Randomwalk-based methods [69, 31] leverage this concept of neighboring connections, as

information and labels propagate along the network, leading connected nodes to be positioned
closely in the latent space. Going a step further, GNNs have proven particularly powerful in
this context, as they learn node embeddings dynamically during training. This allows GNNs
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Figure 3.1: (left) 2D Convolution: Images can be represented as a regular grid in the Euclidean space. Analogous to a graph,
each pixel is taken as a node where neighbors are determined by the filter size. The 2D convolution takes the weighted
average of pixel values of the red node along with its neighbors, which are ordered and have a fixed size.
(right) Graph Convolution: To get a hidden representation of the red node, a simple graph convolutional operation involves
taking the average value of the node features of the red node along with its neighbors. Unlike image data, the neighbors of
a node in a graph are unordered and variable in size.
Source: Adapted fromWu et al. [1].

to capture complex, non-linear relationships inherent in graph data.
Interestingly, images can also be interpreted as graphs, where pixels are treated as nodes and

edges connect neighboring pixels based on spatial proximity. In this framework, convolutional
operations, fundamental to CNNs, can be generalized to graphs. In standard CNNs, the con-
volution operation aggregates features fromapixel’s local neighborhood (e.g., a 3×3 kernel) us-
ing predefined spatial relationships. Similarly, in GNNs, convolution is redefined as a message-
passing mechanism, where features of a node are updated by aggregating information from
its neighbors according to the graph structure [2]. As shown in Figure 3.1, an image can be
viewed as a specific instance of a graph, where pixels are connected by adjacent pixels. . Analo-
gous to 2D convolution, graph convolutions can be performed by taking the weighted average
of a node’s neighborhood information.
The cornerstone of GNN architecture is neural message passing, where nodes exchange and

update vectormessages through neural networks. The intuition behindmessage passing is that
a node’s characteristics (or features) are influenced by its neighboring nodes in a graph. There-
fore, during training, a GNN learns how to optimally aggregate and propagate information
from each node’s neighbors, updating the node’s embeddings to capture the underlying struc-
ture of the graph. This generalization allowsGNNs to extend convolutional principles to irreg-
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Figure 3.2: Illustration of a single node aggregatingmessages from its local neighborhood. Each neighboring node contributes
information that has been aggregated from its own respective neighborhood, creating a recursive flow of information. This
visualization demonstrates a two‐layer structure of the message‐passing model.
Source: Adapted from Hamilton et al. [2].

ular, non-Euclidean domains, enabling their application to a wide range of problems beyond
grid-like data.

3.1 Message Passing Process

The GNNs message-passing framework follows an intuitive progression: during each itera-
tion, nodes aggregate information from its local neighborhood, and as these iterations progress
eachnode embedding gradually incorporates information from increasingly distant parts of the
graph. Specifically, after the first iteration (k = 1), every node embedding contains informa-
tion from its 1-hop neighborhood, i.e., every node embedding contains information about the
features of its immediate graph neighbors; after the second iteration (k = 2) every node em-
bedding contains information from its 2-hop neighborhood (see Figure 3.2); and in general,
after k iterations every node embedding contains information about its k-hop neighborhood
[2]. Figure 3.3 illustrates a basic GNN architecture.
The message-passing process can be broken down into several stages that occur across mul-

tiple layers of the GNN:

1. Initialization: Each node starts with its initial feature representationXi ∈ Rd , derived
from domain-specific attributes (such as user profiles in social networks or atomic prop-
erties in molecular graphs).

13



Figure 3.3: Overview of a basic GNN architecture. The input graph structure and features are processed through multiple
hidden layers, where message‐passing occurs. Each hidden layer aggregates information from neighboring nodes, applies
a ReLU activation function, and propagates updated node representations to subsequent layers, culminating in the output
graph representation.

2. Aggregation: At each layer of the network, a node collects (aggregates) information from
its neighboring nodes. This aggregation step combines the features of the neighboring
nodes, allowing the target node to update its representation based on its local neighbor-
hood.

3. Update: After aggregation, a transformation step— typically a learnable function, like
a linear layer followed by a non-linear activation function— is applied to the aggregated
information. This transforms the node’s features into a new representation that incor-
porates the neighborhood’s influence. As layers stack, nodes progressively gather infor-
mation from increasingly larger neighborhoods, capturing more of the global structure
of the graph.

This process can be formally expressed as:

h(k)
u = UPDATE(k−1)

(
h(k−1)
u ,AGGREGATE(k−1)

({
h(k−1)
v , ∀v ∈ N (u)

}))
(3.1)

= UPDATE(k−1)
(
h(k−1)
u ,m

(k−1)
N (u)

)
, (3.2)

where h(k)
u represents the embedding of node u ∈ V at iteration k, N (u) denotes u’s neigh-

borhood,mN (u) represents the aggregated message fromN (u), and UPDATE and AGGRE-
GATE are neural networks [2].
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After runningK iterations of message passing —K layers orK Graph Neural blocks [40]
—, the final node embeddings are defined as:

zu = h(K)
u , ∀u ∈ V . (3.3)

Notably, since the AGGREGATE function operates on sets, these GNNs are inherently
permutation equivariant, which is essencial as there is nonatural ordering of node’s neighbours
[2].
Through this iterative process, GNNs capture both local interactions and global patterns,

enabling nodes to develop rich, contextual representations that reflect their position and rela-
tionships within the graph structure

3.2 Learning in GNNs

GNNs address two fundamental learning challenges:

1. Aggregation Learning: The GNN needs to learn how to effectively aggregate informa-
tion from neighboring nodes. A good aggregationmethod should preserve useful infor-
mation from the neighbors while filtering out noise, enabling each node to update its
representation in a meaningful way.

2. Representation Learning: The model must learn node embeddings that serve down-
stream tasks effectively. For example, in node classification, the learned embeddings
should enable the model to distinguish between different node classes. In link predic-
tion tasks the embeddings should capture the likelihoodof edges (relationships) forming
between pairs of nodes.

The power of GNNs lies in their ability to learn representations that encode both node-
specific features and neighborhood structural properties, making them powerful tools for di-
verse graph-based applications.

3.3 The Basic GNN

The standard GNNmessage-passing mechanism is defined as [70, 30]:

h(k)
u = σ

W
(k)
selfh

(k−1)
u +W

(k)
neigh

∑
v∈N (u)

h(k−1)
v + b(k)

 , (3.4)
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where W(k)
self ,W

(k)
neigh ∈ Rd(k)×d(k−1) are trainable parameter matrices, σ denotes an element

wise non-linearity, such as a tanh or ReLU function, and b(k) ∈ Rd(k) is the bias term. The
graph-level equation is written as follows:

H(k) = σ
(
H(k−1)W

(k)
self +AH(k−1)W

(k)
neigh

)
, (3.5)

whereH(k) ∈ R|V |×d denotes thematrix of node embeddings at layer k andA is the adjacency
matrix. The bias term has been omitted for simplicity.
In abasicGNNframework,message passing resembles operations in a traditionalmulti-layer

perceptron (MLP), involving linear transformations followed by an elementwise non-linear ac-
tivation.
Often, the input graph is simplified by adding self-loops, eliminating the need for an explicit

update step:

h(k)
u = AGGREGATE

(
{h(k−1)

v , ∀v ∈ N (u) ∪ {u}}
)
, (3.6)

where aggregationnow includes both the neighborsN (u) and the nodeu itself. This approach
can help reduce overfitting but restricts the GNN’s expressiveness, as the information coming
from the node’s neighbours cannot be differentiated from the information from the node itself.
For basicGNNs, incorporating self-loops is equivalent to sharing parameters between theWself

andWneigh matrices, which gives the following graph-level update:

H(k) = σ
(
(I+A)H(k−1)W(k)

)
. (3.7)

This foundational framework sets the stage for exploring specialized GNN architectures,
including Graph Convolutional Networks (GCNs) [33], Graph Attention Networks (GATs)
[34], SuperGATs [35], and GraphTransformers [71, 36], each implementing distinct message-
passing mechanisms.

3.4 Graph Convolutional Networks (GCNs)

In Eq.3.4, the aggregation operator of the basic GNN simply takes the sum of the neighbor
embeddings:

mN (u) = AGGREGATE(k)
(
{h(k−1)

v , ∀v ∈ N (u)}
)
=
∑

v∈N (u)

hv . (3.8)
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This approach is unstable and highly sensitive. A straightforward solution is to sum the em-
beddings of neighboring nodes and then normalize it by the degree of the target node:

mN (u) =

∑
v∈N (u) hv

|N (u)|
. (3.9)

In 2016, Kipf et al. [33] extended this approach by proposing a symmetric normalization
technique, which scales each neighboring node’s contribution based on the degrees of both the
target node and each neighboring node:

mN (u) =
∑

v∈N (u)

hv√
|N (u)||N (v)|

. (3.10)

This adjustment became a defining feature of GCNs, as it ensures that each neighbor’s contri-
bution is weighted according to the connectivity patterns of the graph. GCNs became one of
the most influential GNN models, combining this symmetric-normalized aggregation opera-
tion with self-loop updates. The GCNmessage passing function is defined as follows [2]:

h(k)
u = σ

W(k)
∑

v∈N (u)∪{u}

hv√
|N (u)||N (v)|

 . (3.11)

InGCNs, this aggregationmechanism is coupledwith a feature transformationvia theweight
matrixW(k) and a non-linear activation function σ, such as ReLU, to improve model expres-
sivity. The key aspect of the GCN approach is that we can build powerful models by stacking
very simple graph convolutional layers. A basic GCN layer is defined in Kipf et al. [33] as:

H(k) = σ
(
ÃH(k−1)W(k)

)
, (3.12)

where Ã = (D+ I)−
1
2 (I+A)(D+ I)−

1
2 is the normalized variant of the adjacency matrix

(with self-loops), andD is the diagonal node degree matrix.

By iterating over this propagation rule, GCNs enable each node to incorporate informa-
tion from increasingly larger neighborhoods, allowing deeper insights into the graph structure.
Thus, the concept ofmessage-passing can be interpreted as a simple formof graph convolution,
enhanced by the integration of trainable weights and non-linear activation functions [2]. This
approach balances simplicity and effectiveness, making GCNs one of the most widely used
architectures in the field of graph neural networks.
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3.5 Graph AttentionNetworks (GATs)

Real-world graphs frequently contain noisy connections between unrelated nodes, which can
lead GNNs to learn less effective representations [35]. Although normalizing neighborhood
information can improve GNN performance, more sophisticated methods exist to further re-
fine the aggregation process. Instead of simply summing or averaging neighboring embeddings,
an effective approach is to apply an attentionmechanism, as initially popularized by Bahdanau
et al. in neural machine translation [72]. The attention mechanism assigns unique weights to
each neighbor, determining their relative importance during aggregation. Veličković et al. in-
troduced this approach toGNNs through their GraphAttentionNetwork (GAT)model [34],
where the aggregation step becomes a weighted sum of neighbor embeddings:

mN (u) =
∑

v∈N (u)

αu,vhv . (3.13)

Then, the message-passing mechanism operator is:

h(k)
u = α(k)

u,uW
(k)h(k−1)

u +W(k)
∑

v∈N (u)

α(k)
u,vh

(k−1)
v . (3.14)

Here αu,v represents the attention weight for neighbor v ∈ N (u) when aggregating informa-
tion for node u. In the original GATmodel, these attention weights are calculated as:

α(k)
u,v =

exp
(
LeakyReLU

(
a(k)⊤[W(k)h

(k−1)
u ⊕W(k)h

(k−1)
v ]

))
∑

v′∈N (u)∪{u} exp
(
LeakyReLU

(
a(k)⊤[W(k)h

(k−1)
u ⊕W(k)h

(k−1)
v′ ]

)) , (3.15)

where a is a learnable attention vector,W is a trainable matrix, and⊕ denotes the concatena-
tion operation [2, 34]. This setup enables the GAT to give different levels of influence to each
neighbor based on their relevance to the target node, in other words, the degree of importance
of each of the neighbors to represent the center node. Thus graph attention results in a flexible
and adaptive aggregation process.
To further enhance the effectiveness of GATs, especially in noisy graphs, Supervised Graph

AttentionNetworks (SuperGAT) introduce amechanism that supervises the attention process.
Proposed by Kim Et. Al. [35], SuperGAT builds on the GATmodel by using supervision sig-
nals to help the model prioritize informative edges and down-weight irrelevant connections.
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SuperGATmodifies the attention mechanism by adding an auxiliary task that penalizes atten-
tion weights for edges that are likely to be noisy or uninformative, while boosting weights for
edges aligned with label information or prior knowledge, guiding attention with the presence
or absence of an edge between a node pair. This supervisory signal adjusts the attention scores
αu,v, refining the aggregation process to prioritize relevant neighborhood information.

In the original paper, the authors introduce four types of SuperGAT models, each defined
by a specific attention mechanism. This work focuses on the variant called MX, which com-
bines two attention mechanisms: the original GAT attention — referred to as GO attention
in the paper — and the dot-product attention (DP). The GO attention computes attention
coefficients using a single-layer feed-forward network parameterized by a learnable attention
vector a [34], as defined in Eq.3.15. Meanwhile, theDP attention employs a dot-product oper-
ation between node feature vectors [73, 74]. Mathematically, these attention mechanisms are
expressed as follows:

eGOu,v = a(k)⊤[W(k)h(k−1)
u ⊕W(k)h(k−1)

v ] , (3.16)

eDPu,v =
(
W(k)h(k−1)

u

)⊤ ·W(k)h(k−1)
v , (3.17)

eMX
u,v = eGOu,v · σ(eDPu,v) . (3.18)

The combined attention αMX
u,v is then computed as:

α(k)
u,v =

exp
(
LeakyReLU

(
eMX
u,v

))∑
v′∈N (u)∪{u} exp

(
LeakyReLU

(
eMX
u,v′

)) . (3.19)

Additionally, SuperGAT employs a self-supervised task of LP to enhance the learning of
attention weights. In this task, the attention values are used to predict the likelihood ϕMX

u,v of
an edge existing between two nodes:

ϕMX
u,v = σ

((
W(k)h(k−1)

u

)⊤ ·W(k)h(k−1)
v

)
. (3.20)

In Kim et al. [35], SuperGAT demonstrates significant improvements in robustness com-
pared to traditional GATs, particularly in noisy and complex graph environments. By leverag-
ing a hybrid attentionmechanism and self-supervised tasks, SuperGAT is able to capture more
nuanced relationships in the graph, resulting in highly accurate and expressive node representa-
tions. These improvementsmake it a promisingmodel for applications requiring robust graph-
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based learning, such as social network analysis, recommendation systems, and knowledge graph
completion.

3.6 Graph Transformer

In recent years, the graph transformer has emerged as a powerful and versatile approach for
graph learning, garnering significant interest across both academic and industry sectors [75].
Graph transformer research is inspired by the success of transformers in natural language pro-
cessing (NLP) [73] and computer vision (CV) [76], combinedwith the established strengths of
GNNs. By integrating graph-specific inductive biases — such as inherent assumptions about
structural relationships and properties — graph transformers offer a robust framework to pro-
cess complex graph data effectively. Furthermore, they can adapt to dynamic and heteroge-
neous graphs, leveraging both node and edge features and attributes.
The literature on graph transformers is extensive, addressing various approaches to applying

transformers to graph-structured data [71]. In this project, we leverage the multi-head atten-
tionmechanismproposed by Shi et al. [36]. This approach adapts the traditional self-attention
mechanism for graph data, aligning with the principles of the GAT [34], which restricts nodes
to attend primarily to their local neighbors. Shi et al. extend this concept by adopting the
vanilla multi-head attention framework from the original transformer architecture [73] and
customizing it for graph learning tasks.
Formally, the message-passing step is:

h(k)
u = W

(k)
1 h(k−1)

u +W
(k)
2

∑
v∈N (u)

α(k)
u,vh

(k−1)
v , (3.21)

where the attention coefficients αu,v are computed using a multi-head dot-product attention
mechanism:

αu,v = softmax

(
(W

(k)
3 h

(k−1)
u )⊤(W

(k)
4 h

(k−1)
v )√

d

)
, (3.22)

whereW1,W2,W3 andW4 are learnable weight matrices, and d is a scaling factor based on
the dimensionality of the hidden layer.
This multi-head attention mechanism enables the model to capture a wide range of rela-

tional patterns by attending to different aspects of neighborhood information across multiple
heads. This approach facilitates themodel’s ability to discern complex relationships and depen-
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dencies within the graph, setting a new standard for high-performance graph-based learning
tasks.
In the next chapter, we delve into one of the most impactful applications of GNNs: Link

Prediction.
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4
Link Prediction

The primary goal of link prediction (LP) is to determine whether two nodes in a network are
likely to form a connection [16]. Illustrated in Figure 4.1, for undirected, unweighted graphs,
the LP problem seeks to identify missing edges in a partial or incomplete version of the graph,
denoted as G ′, which is a subset of the complete graph G.
Given the prevalence of networks across various domains, LP has numerous applications.

For example, in criminal networks [77, 78], LP aids law enforcement by analyzing relationships
and interactions to uncover illicit activities, such as drug trafficking or money laundering, and
identifying connections between individuals involved. In social networks [61, 79], LP facili-
tates the discovery of potential connections, helping users find people theymay know but have
not yet connected with. Similarly, in recommender systems [80, 81], LP predicts new items,
products, or services for users based on their preferences and actions, enhancing customer sat-
isfaction and driving sales. Lastly, in biological networks, particularly for predicting protein
interactions [82, 83], LP algorithms infer new interactions between proteins based on exist-
ing data, enabling researchers to propose hypotheses about the roles of previously unknown
proteins.
As discussed in the Related Work — Chapter 2 — LP algorithms are not only essential for

these applications but also influence network properties such as social dynamics, connectiv-
ity, and information diffusion [58]. Previous studies, for example, have highlighted concerns
around biases in LP models, which may inadvertently create “filter bubbles” [15] or reinforce
high-degree nodes, potentially leading to a “rich-get-richer” effect [51, 52].
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Figure 4.1: Illustration of the link prediction problem: the left side depicts the complete graph G , while the right side shows
its incomplete version, G′, where the model will be applied to predict the missing edges.

Existing LPmethods can be categorized into three main types: heuristic, latent-feature, and
content-based approaches [84]. Heuristic methods predict link likelihoods by calculating simi-
larity scores betweennodepairs. These approaches are further dividedbased on the scope of the
information they use: local, quasi-local, and global indices [85]. Local indices rely on the imme-
diate neighborhood of nodes, considering paths of length less than two. Prominent examples
include the Common Neighbors metric [16], the Adamic-Adar Index [61], the Preferential
Attachment Index [86], and the Jaccard Index [87]. Global indices, on the other hand, utilize
information from the entire network, considering paths longer than two. Notable examples
include the Katz Index [88], Random Walk-based methods [89], and SimRank [59]. Quasi-
local indices strike a balance between the two, combining the efficiency of local methods with
the broader perspective of global ones. These include techniques like the Local RandomWalk
[90] and the Local Path Index [91], which account for paths up to a distance of two.

Latent-feature methods, on the other hand, compute low-dimensional latent representa-
tions of nodes, typically obtained by factorizing a matrix derived from the network, such as
the adjacency matrix or the Laplacian matrix. These latent features are not directly observable
andmust be learned through optimization processes. Unlike explicit node features, where each
dimension corresponds to a specific, interpretable property, the dimensions of latent features
lack interpretability; their meaning is not inherently understood.

One of the most widely used latent-feature approaches is matrix factorization [92], originat-

24



ing from the recommender systems literature. Prominent network embedding techniques such
as DeepWalk [31], LINE [32], and node2vec [69] are also categorized as latent-feature meth-
ods, as they implicitly perform matrix factorization [84]. These methods incorporate global
network properties and long-range effects into the learned node representations. Since the op-
timization involves all node pairs, the final embedding of a node is influenced by every other
node within the same connected component of the graph. However, latent-feature methods
exhibit certain limitations. They fail to capture structural similarities between nodes [84]; for
instance, two nodes with identical neighborhood structures may not be assigned similar em-
beddings. Additionally, these methods often require extremely high-dimensional embeddings
to represent even simple heuristics effectively [17], which can lead to worse performance com-
pared to heuristic methods in certain scenarios. Both heuristic and latent-feature methods rely
on the network’s existing structure to infer potential or missing links.
In contrast, content-based methods leverage explicit node attributes or features, rather than

network topology alone, to make predictions [84]. Combining these node features with the
network structure has been shown to enhance prediction accuracy [17, 18]. Recently, Graph
Neural Networks (GNNs) have emerged as powerful tools for LP, integrating information
from both graph topology and node or edge features. GNNs typically outperform traditional
approaches [26, 27, 28, 29].
GNNs provide a powerful framework for handlingmultiple classification tasks in graphs, in-

cluding graph, node, and edge classification. LP is specifically an edge classification task, where
the GNN learns to predict the presence or absence of an edge between pairs of nodes. In other
words, the model determines if an edge E(i, j) = 1 (exists) or E(i, j) = 0 (does not exist)
between nodes (i, j), effectively addressing LP as a binary classification problem at the edge
level.
WithinGNN-basedLP, twomainparadigmshave gainedpopularity: node-based and subgraph-

based methods. Node-based approaches learn node representations through GNNs and then
aggregate pairs of these representations to construct link representations. Examples include
the Graph Convolutional Network (GCN) [33], the Graph Attention Network (GAT) [34],
the SuperGAT [35], and the GraphTransformer [71, 36], each implementing distinct message-
passingmechanisms. Subgraph-based approaches, alternatively, extract local subgraphs around
each target link and apply a graph-level GNN (using pooling) to these subgraphs to create link
representations. A prominent example of thismethod is SEAL [28]. Our experimentationwill
only cover node-based models.
It is worth to point out the importance of negative sampling in GNN-based LP models. A
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widely-used LP benchmark evaluatesmethods by their ability to classify pairs of nodes as either
connected or unconnected [51]. The connected node pairs are randomly sampled from exist-
ing edges as the hidden positive set, and an equal number of node pairs are randomly chosen
from unconnected node pairs, which are far more common because of the sparsity of edges in
graphs [93]. By including a balancedmix of positive and negative samples during training, neg-
ative sampling helps the model to differentiate real connections from random node pairs, thus
enhancing the predictive power of LP models and avoiding overfitting to the training data.

4.1 Framework andMetrics

The commonly benchmark for LP consists in the following procedure. First, a subset of edges
from the edge setE is randomly selected as positive examples, representing a fraction of the to-
tal edges. Then, an equal number of non-connected node pairs are randomly chosen from the
node setV as negative examples. Anynegative edges that create loops or overlapwith either pos-
itive or test edges are resampled to avoid duplication. After preparing the dataset, a LPmethod
assigns a score sij to each node pair (i, j), where higher scores indicate a stronger likelihood of
an edge existing between the nodes. Themethod’s predictive performance is then evaluated by
calculating the Area Under the Receiver (AUC-ROC), which reflects the probability of assign-
ing a higher score to positive edges over negative ones. While there are alternative approaches
thatmight vary in negative sampling or use differentmetrics, this particular framework remains
widely accepted in the field [51, 94, 95, 96, 97, 98].
The Area Under the Receiver (AUC-ROC) is the area under the Receiver Operating Char-

acteristic Curve (ROC) [99], which is a measure of the model’s ability to distinguish between
positive and negative links. The ROC curve plots the true positive rate (TPR) — also called
recall— against the false positive rate (FPR) at various threshold levels, effectively summarizing
the trade-off between sensitivity and specificity across different decision boundaries. TPR and
FPR can be computed using the following formulas:

TPR =
TP

TP + FN
, (4.1)

FPR =
FP

FP + TN
. (4.2)

An AUC-ROC score of 0.5 indicates no discriminative power, equivalent to random guess-
ing, while a score of 1.0 represents perfect discrimination between positive and negative links.
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In the context of LP, a higherAUC-ROCreflects themodel’s ability to correctly rank true links
(existing edges) higher than false links (non-existent edges). This metric is particularly valuable
because it is threshold-independent, meaning it evaluates the model’s overall ranking perfor-
mance rather than its accuracy at a specific threshold, making it robust across diverse datasets
and applications.
The AUC-ROC score is commonly used as a primary evaluation metric for training LP

models. However, as highlighted in [37, 51], relying solely on AUC-ROCmay not provide a
complete picture of a model’s performance. To address this, an additional local measure called
VCMPR@k is often computed aftermodel training. According to [37], thewidely-usedAUC-
ROCmetric for LP using node embeddings can bemisleading, as it does not account for sparse
ground truths effectively. Their findings suggest that low-dimensional embeddings, often eval-
uatedwithAUC-ROC, struggle to capture sparse relationships when similarity is based on dot
products, leading to inflated AUC scores that do not reflect true predictive quality.
Given that LP ground truth is typically sparse, they propose a vertex-centric measure of per-

formance, called the VCMPR@k. For each pair of vertices (i, j), the model computes a score
based on which it predicts an edge. For a given vertex i of nonzero degree di, all other vertices
j are ranked in decreasing order of their scores, and pairs fromEtrain are removed. From this
ordered list, the top k scores are selected and ti(k) is defined as the number of ground truth
edges within these top k predictors. VCMPR@k differs from AUC-ROC in that it is a local
metric, evaluated individually for each vertex, rather than a global metric.
For a given vertex i with nonzero degree di, the metric is defined in Aiyappa et al. [51] as

follows:

VCMPR@k for vertex i =
ti(k)

max(k, dtesti )
, (4.3)

where ti(k) counts the number of true edges between vertex i and other vertices within the
top k predictions, and dtesti is the degree of vertex i in the test set. This formulation balances
between precision@k

(
ti(k)
k

)
and recall@k

(
ti(k)
dtesti

)
.

It is worth noting that the objective of this work is not to perfectly optimize LP performance
as measured by VCMPR@k or AUC-ROC. Instead, we aim to understand how these models
impact social diffusion processes on the resulting networks. Thus, our focus is on the effects of
LP models in this context, rather than maximizing predictive accuracy.
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5
Social Contagion Dynamics

Most collective behaviors spread through social contact, making social networks crucial for
understanding a wide range of phenomena. From the emergence and reinforcement of social
norms to thewidespread adoption of technological innovations and the growth of social move-
ments, these behaviors often propagate as “social contagions” across the connections between
individuals. The pathways and mechanisms of these contagions are strongly influenced by the
underlying network structure.

Studies of social diffusion dynamics have consistently shown that the topology of a social
network—its arrangement of nodes and edges—plays a pivotal role in shaping how collective
behaviors emerge and spread [64]. Key structural features, such as network density, clustering,
centralities, and thepresence ofweakor strong ties, candetermine the speed, reach, and stability
of these behaviors. For instance, tightly clustered networksmay facilitate the adoption of social
norms through reinforcement, while networks with diverse bridges between communitiesmay
enable innovations to diffuse more broadly [63]. These insights highlight the critical interplay
between network structure and the dynamics of social contagions, offering valuable tools for
predicting and influencing collective behavior.

Contagion processes on networks, whether modeling disease transmission, information dif-
fusion, or thepropagationof social behaviors, canbebroadly categorized into two types: simple
contagion and complex contagion. These types differ in themechanisms by which a contagion
event occurs:
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• Simple Contagion: A single interaction between a susceptible and an infected node is
sufficient for the contagion to propagate. This type of contagion is commonly used to
model phenomena such as infectious disease spread.

• Complex Contagion: Multiple reinforcing interactions are required for a contagion
event. This is more representative of social behaviors or innovations, where peer influ-
ence and thresholds play a crucial role.

For simple contagions, the transmission mechanism operates at the level of individual con-
nections, with each interaction having an independent probability of causing transmission. In
contrast, complex contagions rely on cumulative exposure: a node becomes “infected” only
when a sufficient proportion of its neighbors are already infected. This distinction highlights
the divergent requirements for propagation in different contexts. For example, while simple
contagions thrive in randomor sparsely connectednetworkswith long ties, complex contagions
require clustered networks that facilitate reinforcement through local interactions [22, 25].
The consequences of these dynamics are profound. In small-world networks, simple con-

tagions accelerate due to the presence of shortcuts that reduce path lengths. Conversely, com-
plex contagions often stall in such networks because long ties do not provide the reinforcement
necessary for transmission. For complex contagions to succeed, clustered structures with wide
bridges—multiple paths of interaction—are essential [25]. As a result, the interplay between
network topology and contagion type shapes not only the speed and reach of diffusion but also
its vulnerability to disruptions [63].
To simplify the analysis, the Susceptible-Infected (SI) framework is commonly adopted,where

eachnode in thenetwork exists in oneof two states: susceptible (S) or infected (I). In thismodel,
infected nodes do not recover, making it particularly suitable for studying the unidirectional
spread of phenomena. The processes are analyzed in discrete time, with variations arising solely
from the mechanisms governing the transition from the susceptible to the infected state:

• Simple Contagion: Each susceptible node can independently be infected by its infected
neighbors with a probability β per unit time.

• Complex Contagion: Modeled as a threshold process, a susceptible node u becomes in-
fected when the fraction of its infected neighbors exceeds its predefined threshold θu.
The thresholds for nodes are drawn from a truncated normal distributionwith specified
mean µθ and standard deviation σθ.

These two processes capture the core differences between simple and complex contagion.
The following section delve into the details of the SI model. Figure 5.1 illustrates the funda-
mental mechanisms of simple and threshold contagion.
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Figure 5.1: Mechanisms of contagion: (left) simple contagion propagates through pairwise interactions with probability β
per unit time for each edge; (right) complex contagion occurs when the fraction of infected neighbors exceeds a threshold θ
(here θ = 0.5).

5.1 Susceptible-InfectiousModel

TheSI (Susceptible-Infectious)model is oneof the simplest frameworks for studying contagion
processes on networks. In this model, each node in the network exists in one of two states: Sus-
ceptible (S) or Infected (I). Themodel assumes that once a node becomes infected, it remains in
that state indefinitely, meaning there is no recovery or removal mechanism. The dynamics of
the SI model are entirely governed by the interactions between susceptible and infected nodes,
making it an ideal framework formodeling the early stages of an outbreak or processes without
recovery. The network’s degree distribution, clustering coefficient, and average path length are
critical factors that determine the speed and reach of the contagion.

In simple contagion the probability of a susceptible node u becoming infected at time t can
be expressed as:

P (node u becomes infected at time t) = 1−
∏

v∈N (u)

(1− βδv(t− 1)), (5.1)

whereN (u) denotes the set of neighbors of node u, δv(t− 1) is an indicator function that
equals 1 if node v is infected at time t−1, and 0 otherwise, andβ is the transmission probability.

In threshold contagion, the infection probability is defined as:
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P (node u becomes infected at time t) =

1 if
∑

v∈N (u) δv(t− 1) ≥ θu

0 if
∑

v∈N (u) δv(t− 1) < θu
, (5.2)

where θu is the threshold value of node u, representing the minimum number of infected
neighbors required for u to become infected.
In the next chapter, we will present the datasets and methods employed in this study. This

includes a detailed description of the data used to model and analyze the contagion processes,
as well as the methodologies and algorithms implemented to study the dynamics and evaluate
the outcomes of the proposed frameworks. These foundational elements are crucial for under-
standing the results and insights discussed in the subsequent sections.
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6
Data andMethodology

This chapter provides a comprehensive overview of the foundational components used in this
study, including the datasets, methodologies, and analytical frameworks. First, the datasets em-
ployed for experimentation are introduced, detailing their key characteristics and relevance to
the study. This section also formalizes the graph-level topological metrics and node-level cen-
tralities, which are essential for characterizing the structural properties of the data. Next, the
link prediction (LP) framework is described, outlining its role in modeling and analyzing net-
work connectivity. The chapter then presents the social contagion framework, emphasizing
the mechanisms and assumptions driving the diffusion dynamics. Finally, the metrics derived
from these frameworks are introduced, providing the tools to analyze and interpret the rela-
tionship between LP and the dynamics of social contagion.

6.1 Data

We conducted link prediction (LP) experiments using six diverse datasets sourced from the
PyTorch Geometric (PyG) library [100]. Table 6.1 provides a comprehensive overview of the
key statistical characteristics for each dataset. These datasetswere carefully selected to represent
a wide range of network structures and feature compositions, enabling a robust evaluation of
our proposed method.

• Cora dataset [101, 102]: This citation network comprises 2,708 machine learning pa-
pers categorized into seven classes. Each paper (node) is represented by a binary word
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Dataset Category Nodes Edges Features

Cora Citation Network 2708 10556 1433

CiteSeer Citation Network 3327 9104 3703

Facebook Social Network 4039 88234 1283

Wikipedia Page-Page Network 2405 17981 4973

Twitch ES Social Network 4648 123412 128

LastFMAsia Social Network 7624 55612 128

Table 6.1: Overview of nodes, edges, and feature dimensions for the datasets used in experiments.

vector indicating the absence/presence of the corresponding word from the dictionary.
The dictionary consists of 1433 unique words. Edges indicate citation relationships.
The dataset was collected by parsing research papers categorized by topic and process-
ing their abstracts into a bag-of-words representation, creating an undirected graph for
semi-supervised learning and node classification.

• CiteSeer dataset [102, 103]: Similar to Cora, this citation network comprises 3,327 re-
search papers from the CiteSeer digital library, categorized into six classes. Nodes repre-
sent papers, with features as word vectors, and edges indicate citation links.

• Facebook dataset [104, 105]: This dataset includes anonymized data of users’ ego net-
works on Facebook. Profile and network data were collected from 10 ego-networks, en-
compassing 193 circles and 4,039 users. The authors developed a custom Facebook ap-
plication and surveyed ten users, who manually identified all social circles their friends
belonged to. On average, each user identified 19 circles within their ego-network, with
an average circle size of 22 friends. These circles typically represented social groups such
as university peers, sports teams, family members, and others.

• Wikipedia dataset [105]: This network captures the link structure of Wikipedia pages,
forming a network of articles and their references. It includes thousands of nodes, where
each node represents a Wikipedia article, and edges denote hyperlinks between articles.
The dataset enables analysis of information flow and topic clustering withinWikipedia.

• Twitch ES dataset [106]: This is a network of Twitch users (gamers) in Spain, where
nodes correspond to individual gamers and edges signify followerships between them.
Node features include embeddings that capture the types of games played by each user.
The primary task associatedwith this dataset is to predict whether a user streamsmature
content, making it useful for research on content classification and community detec-
tion within gaming networks.

34



• LastFMAsia dataset [107]: The LastFMAsia graph represents a social network of users
from various Asian countries, such as the Philippines, Malaysia, and Singapore. Nodes
correspond to users of themusic streaming service LastFM,while edges represent friend-
ships between them. This dataset was collected in March 2020 using the LastFM API.
The associated classification task involves predicting a user’s home country based on
their position in the social network and the artists they like.

For a comprehensive exploratory analysis, we present the metrics used to describe network
structures at both the node and graph levels in the following sections. In all cases we use the
undirected, unweighted version of the networks.

6.1.1 Node CentralityMeasures

Beyond simply analyzing a node’s degree, we can gain substantial insights by examining various
centrality measures that capture a node’s influence, connectivity, and strategic position within
the network. Centrality metrics help reveal how integral each node is to network structure
and function—whether it acts as a hub, a bridge, or a well-connected influencer. Each of the
following centralitymeasures provides unique information about a node’s role and significance
in facilitating network dynamics, such as the flow of information or the spread of influence.
We focus on the following centrality measures:

• Degree centrality: Measures the importance of a node based on its number of direct
connections, with a higher degree indicating greater influence within the network [108].
Mathematically, the degree centrality of a node u is:

DC(ui) =
1

N − 1

N∑
j=1

αi,j , (6.1)

whereN is the number of vertices, and αi,j = 1, if there is a direct link between ui and
uj such that ui ̸= uj , or αi,j = 0 if there is no connection of i = j.

• Betweenness centrality: Evaluates the significance of a node by counting how often it
serves as a bridge along the shortest path between two other nodes. This reflects its role
in controlling information flow across the network [108]. Mathematically, the between-
ness centrality of a node u is defined as the sum of the fraction of all-pairs shortest paths
that pass through u:

BC(u) =
∑
s,t∈V

σ(s, t|u)
σ(s, t)

(6.2)
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where V is the set of nodes, σ(s, t) is the number of shortest (s, t)-paths, and σ(s, t|u)
is the number of those paths passing through some node u other than s and t. If s = t,
σ(s, t) = 1, and if u ∈ {s, t}, σ(s, t|u) = 0 [109].

• Eigenvector centrality: Determines a node’s centrality by considering not only its direct
connections but also the centrality of those connected nodes. Nodes linked to highly
connectednodes receivehigher scores, emphasizing influence in thenetwork [108]. Eigen-
vector centrality for a node i is the i-th element of a left eigenvector associated with the
eigenvalue λ of maximummodulus that is positive. Such an eigenvector x is defined up
to a multiplicative constant by the equation

λxT = xTA, (6.3)

whereA is the adjacency matrix of the graph G. Using the properties of matrix multipli-
cation (specifically, the row-column product), we can express each component of this
equation individually

λxi =
∑
j→i

xj, (6.4)

where the summation is over the predecessors of i. Thus, the eigenvector centrality of i
is obtained by adding the eigenvector centralities of its predecessors, multiplied by λ.

• Complex-path centrality [64]: Traditional centrality measures often use simple path
lengths, whichmay overlook the structural featuresmost effective for spreading complex
contagions. To address this, Guilbeault et al. [64] introduce measures of complex path
length and complex-path centrality, significantly enhancing the ability to identify net-
work structures andkey individuals for complex contagion. The complex-path centrality
of a node i is the average length of complex paths originating from its neighborhood, i.e.,
nodes that are at a distance of 1 from i. Here, a complex path between node i and node
j is the sequence of neighborhoods through which a complex contagion must traverse
to travel from the neighborhood of node i,N(i), until reaching j, where i, j ∈ V . For
the contagion threshold parameter T , representing the minimum fraction of activated
peers required for a node to adopt the contagion, we have used T = 0.5.

Mathematically, the complex path length (PLCij
betweenN(i) and node j is expressed

as:
PLCij

= |ϕ(GEOCPij)|, (6.5)

where ϕ(GEOCPij) represents the vertex sequence in the geodesic between node i and
node j within CPij , which also identifies the shortest complex path within CPij . Here,
CPij denotes the induced subgraph formed by nodes activated during the complex con-
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tagion spread from N(i) to node j, which contains the set of possible complex paths
betweenN(i) and node j.
The complex path centrality of node i is then calculated as the average complex path
length, formally expressed as:

PLCi
=

1

n− |V (N(i))|
·
∑
i ̸=j

PLCij
, (6.6)

wheren represents the total number of nodes in the network, and |V (N(i))| is the num-
ber of neighbors of node i.

• Diffusion centrality [11, 23]: This measure relates to Information Capital, i.e., the abil-
ity to acquire valuable information and/or to spread it to other people who can use it
through social connections. It is calculated as the sum, for all nodes j, of the expected
number of times j will receive information originating from node i over T periods.
Mathematically, the diffusion centrality of a node i in a network with an adjacency ma-
trix g, passing probability q, and iterations T , is the i-th entry of the vector

DC(g; q, T ) =

[
T∑
t=1

(qg)t

]
· ⊮ . (6.7)

The probability q is often selected as the inverse of the first eigenvalue of the adjacency
matrix, λ1(g) [23]. In our analysis we set T = 10.

6.1.2 Graph TopologicalMeasures

To describe the structural characteristics and properties of the network, we focus on a set of
graph topological measures. These measures provide insights into the connectivity, clustering
tendencies, and distribution of influence across nodes within the network. By analyzing these
properties, we can better understand how the network is organized and how information, in-
fluence, or resources may flow through it.

• AverageDegree: Thismeasure calculates the averagenumber of connections (edges) each
node has within the graph. It provides a sense of the network’s overall connectivity and
the typical level of interaction between nodes.

• Global Clustering Coefficient: This metric quantifies the average local clustering coef-
ficient of the nodes, measuring the tendency of nodes in a graph to form tightly-knit
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groups or clusters. The local clustering coefficient for undirected graphs can be defined
as:

Ci =
2Ei

ki(ki − 1)
, (6.8)

where ki is the number of neighbours of node i, andEi is the number of actual connec-
tions among these ki.
The global clustering coefficient indicates how well a node’s neighbors are intercon-
nected, highlighting the presence of local connections or ”cliques” within the network.
A higher global clustering coefficient suggests a greater prevalence of these local clusters
[110].

• Gini Coefficient: This measure quantifies inequality in the distribution of a given cen-
trality measure, e.g., degree centrality, betweenness centrality, across nodes in the net-
work. It provides insights intowhether centrality is evenly spreador concentrated among
a few influential nodes [111]. A low Gini Coefficient (close to 0) indicates that most
nodes have similar centrality values, suggesting that the importance or influence is rel-
atively evenly spread across the network. This indicates a decentralized or egalitarian
structure, where no single node has significantly more influence than the others. On
the other hand a high Gini Coefficient (close to 1) suggests that a small subset of nodes
has significantly higher centrality than others,implying a concentration of influence or
control within the network. In this case, a few nodes dominate in terms of their posi-
tion in the network (e.g., acting as hubs or bridges), while the majority of nodes have
low centrality.

6.2 Methodology

Building upon our comprehensive dataset analysis presented earlier, this study delves into the
intricate interplay between link prediction (LP) models and social contagion processes. By
leveraging insights fromthedataset’s structural properties, themethodology is structured around
the following key objectives:

• The impact of LP models: Investigating how different LP models influence the differ-
ence in social diffusion parameters between the real and predicted networks. Also how
variation in the depth of the neural networks or the contagion probability correlate to
diffusion parameters.

• Node characteristics and contagion dynamics: Analyzing how intrinsic node properties,
such as centralities or the degree, correlate with their progression in the contagion pro-
cess.
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Figure 6.1: Experimental workflow for network modeling and diffusion analysis, encompassing graph analysis, model training,
SI simulations, and diffusion metric evaluation.

• Graph topologies and social diffusion parameters: Studying how structural graph-level
properties (e.g., clustering coefficients, degree distributions, or Gini indices) relate to
observed diffusion behaviors.

• Other exploratory analyses: Delving into additional factors influencing the interplay be-
tween network prediction and contagion diffusion.

To systematically address these objectives, we divided the analysis into two levels:

1. Graph-Level Study: Focused on understanding global structural properties and their
relationships with diffusion metrics across entire networks.

2. Node-Level Study: Concentrated on individual nodes, exploring how their characteris-
tics influence their role and performance in the contagion process.

This two-pronged approach allows us to uncover insights that span from overarching net-
work structures to granular node-level dynamics, providing a comprehensive understanding
of the interplay between LP, diffusion, and network topology.

6.2.1 Experimental Framework

Our experimental pipeline, depicted inFig. 6.1, for each combinationofmodel-dataset-contagion
process, proceeds as follows:
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1. Graph Analysis: We begin characterizing each dataset at both graph and node levels by
computing the graph-level topologies and node-level centralities outlined in Sections
6.1.2 and 6.1.1, respectively. This analysis provides foundational insights into the struc-
tural and local properties of the datasets.

2. ModelTraining andLinkPrediction (LP):Drawing insights fromShchur et al.’s compre-
hensive analysis [46], our experimental design employs a robust training methodology.
Specifically, we train ten independent model iterations using different random train-
validation-test splits, consistently maintaining a 60-10-30 data allocation strategy. The
experimental configuration encompasses two primary Graph Neural Network (GNN)
architectures:

• Two-layermodels featuring progressive hidden dimensions of 128 and 64 neurons.

• Three-layer models with hierarchical hidden dimensions of 128, 64, and 64 neu-
rons.

Our training protocol leverages the Adam optimizer with a fixed learning rate of 0.01,
optimizingmodel performance through theBinaryCross-EntropywithLogits loss func-
tion (BCEWithLogitsLoss). For each trained model, we systematically generate pre-
dicted andground-truthnetwork representationsbasedon theheld-out test set, enabling
comprehensive performance evaluation.

While the AUC-ROC serves as our primary evaluation metric for the LP models, re-
cent literature [51, 37] cautions against its exclusive use. AUC-ROC, although widely
adopted, canmask critical nuances inmodel performancebyproviding an aggregatemea-
sure that may not capture local network characteristics. The AUC-ROC score serves as
the main metric for assessing the performance of LP models during training. Never-
theless, as emphasized in [51, 37], depending exclusively on AUC-ROC can overlook
important aspects of a model’s behavior. To provide a more nuanced evaluation, the
VCMPR@k local measure, defined in Eq. 4.3, is also calculated after training the mod-
els. For this metric, k is chosen to be the average vertex degree of the test set.

3. SI Simulations: We conduct onehundred social contagion simulations for eachnetwork,
employing a comprehensive Susceptible-Infected (SI) model—presented in Section 5.1
— that captures the nuanced dynamics of disease transmission across different network
structures.

The simulation framework follows a structured protocol:

(a) Initialization:

• Set all nodes to the susceptible state (S).
• For simple contagion: Randomly select one node to be initially infected (I).
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• For complex contagion: following Guilbeault et al.’s approach [64], the ini-
tialization process begins by randomly selecting an initial node for infection.
Subsequently, thenode’s neighbors are then examined, and anumberofneigh-
bors are infected based on the node’s specific threshold. Specifically, the al-
gorithm determines the number of neighbors to infect as the fraction of the
node’s total neighbor that would equal the threshold. This method captures
the essence of complex contagion,where individuals require substantial social
proof or validation before adopting new behaviors, beliefs, or technologies—
a phenomenon typically observed in group dynamics and community-driven
changes.

(b) InfectionDynamics: At each discrete time step, implement infection propagation:

• For simple contagion: Each infected node attempts to infect its susceptible
neighbors with a fixed probability β ∈ {0.3, 0.5, 0.6, 0.9}.

• For complex contagion: A susceptible node becomes infected only when a
sufficient number of its neighbors are already infected, with node thresholds
drawn froma truncatednormal distributionwithmeanµθ ∈ {0.2, 0.3, 0.4, 0.6}
and standard deviation σθ = 0.2.

(c) State Transition:

• Update the infection status of all nodes based on the specific contagion rules.
• Newly infected nodes are added to the infection pool.

(d) Repeat: Continueuntil the infection stabilizes, i.e., nonewnodes become infected
in the next time step.

Each network undergoes one hundred independent simulations to ensure robust and
statistically meaningful results. This approach allows for a comprehensive exploration
of infection dynamics across different network structures and contagion parameters.

4. Social ContagionAnalysis: To analyze the contagion dynamics across these simulations,
we measure the following metrics:

• Iterations: The number of time steps taken for the contagion to stabilize.
• Infection Size: The proportion of nodes infected by the end of the process.
• Infection Rate: The speed of diffusion, calculated as:

Infection Rate =
Infection Size×Number of Nodes

Iterations
(6.9)
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• Vulnerability of node u: The proportion of simulations in which node u becomes
infected, defined as:

Vulnerability(u) =
Number of simulations where u is infected

Total number of simulations
. (6.10)

• Recency of node u: This metric quantifies how quickly a node typically becomes
infected during the contagion process. It is defined as:

Recency(u) =
1

N

N∑
i=1

1

timestepi(u) + 1
, (6.11)

whereN is the total number of simulations, and timestepi(u)denotes the iteration
at which node u is infected in the i-th simulation. A high Recency value indicates
that the node is generally infected early in the contagion process, often signifying
its importance in the contagionprocess and its high susceptibility tobeing infected.
Conversely, a low Recency value suggests that the node is typically infected later,
indicating a more peripheral role in the contagion dynamics.

This methodology provides a rigorous foundation for conducting an extensive analysis of
the interplay between model architectures, dataset topologies, node-level centralities, and the
dynamics of social contagion processes. In the following section, we delve into a detailed anal-
ysis of our experimental results, analyzing the datasets, exploring the impact of LP models on
the diffusion patterns, the relationship between node characteristics and their infection suscep-
tibility, and other relevant factors.
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7
Results

In this chapter, we present the results of a comprehensive exploratory analysis aimed at un-
derstanding the interplay between network structure, link prediction (LP) models, and social
contagion dynamics. By leveraging the metrics introduced in Section 6.2, we examine both
node-level and graph-level characteristics to uncover patterns and relationships that influence
social contagion diffusion behaviors. The analysis explores how GNN-based LP models affect
diffusion outcomes, the role of structural properties in shaping social diffusion processes, and
how node’s position in the network correlate to their contagion susceptibility, among others.
These results offer important perspectives on the core questions of the study, serving as an ini-
tial step toward bridging gaps in the existing literature and enhancing our understanding of LP
and its impact on social dynamics.

7.1 Initial Exploratory Analysis

We start this chapter by exploring the structural characteristics of our datasets, focusing on
node-level centrality measures and graph-level metrics. These analyses aim to uncover the un-
derlying distribution patterns and topological properties that define each network, providing
a foundation for understanding their influence on diffusion dynamics. Figure 7.1 presents vi-
olin plots of various centrality measures across datasets, offering a detailed view of their distri-
butions. The observed skewness in these metrics, where most nodes have low centrality values
and a few exhibit significantly higher values, underscores the inherent structural inequalities
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Figure 7.1: Distribution of network degrees and centrality measures across datasets, visualized through violin plots. Y‐axes
are truncated at the 95th percentile to highlight the core distribution patterns while excluding extreme outliers.

in these networks. Notably, Facebook and Twitch ES stand out as networks with higher degree
distributions. Among the datasets, Twitch ES demonstrates significantly higher Eigenvector
Centrality, reflecting its unique network dynamics. Furthermore, the distributions ofComplex
Path Centrality are particularly diverse, with lower values observed in Cora and CiteSeer and
higher values in Twitch ES and LastFMAsia. This underscores the distinctive role of Complex
Path Centrality in capturing network properties that differ from other centrality measures.
Additionally, we examine key graph-level measures, as shown in Figure 7.2, including Aver-

age Degree, Clustering Coefficient, and Gini Coefficients for various centrality measures. These
metrics reveal significant variations across datasets, reflecting differences in connectivity, clus-
tering tendencies, and inequalities in the distribution of centralities. Facebook,Wikipedia, and
Cora stand out with higher Clustering Coefficients, while Facebook and Twitch ES exhibit the
highest Average Degree, with CiteSeer having the lowest.
Regarding Gini Coefficients, most datasets exhibit similar values, except for CiteSeer, which

shows notably higher Gini Complex Path Centrality compared to others, where it is generally
low. Conversely, Twitch ES stands out with the lowest Gini Eigenvector Centrality. Facebook
further distinguishes itself with the highest values for both Gini Betweenness Centrality and
Gini Eigenvector Centrality, emphasizing its unique structural inequalities.
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Figure 7.2: Graph‐level measures for each dataset. The top two plots display the Average Degree and Clustering Coefficient
for each dataset, while the larger plot below highlights the Gini Coefficients for various centrality measures, revealing the
diversity in distribution inequality across networks.

7.2 Performance Evaluation

Now, we briefly introduce the link prediction (LP) evaluation metrics, discussed in detail in
Section 4.1, for our models and datasets.

Figure 7.3 presents the bar plots of the AUC-ROC scores for eachmodel across the datasets.
Facebook andWikipedia stand out with the highest AUC-ROC scores, demonstrating strong
performance in accurately predicting links, while CiteSeer and Twitch ES exhibit the lowest
overall scores, suggesting greater challenges for LP in these networks.

Among the LPmodels, GCN-based architectures consistently outperform the others across
almost all datasets, underscoring their effectiveness in leveraging graph structure for LP tasks.
Thenotable exception isLastFMAsia, where the attention-basedmechanismof theGATmodel
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Figure 7.3: Barplots of the AUC‐ROC score for each model and dataset.

surpasses other approaches.
These findings not only emphasize the variability in model performance across datasets but

also underline the importance of selecting suitable LP algorithms tailored to the specific char-
acteristics of the graph.
While the AUC-ROC score is commonly used to evaluate LP models, it may not fully cap-

ture amodel’s performance, particularlywhenground truths are sparse [37, 51]. Low-dimensional
embeddings often evaluated by AUC-ROC can lead to inflated scores, as they fail to effectively
capture sparse relationships. To address this, the VCMPR@kmeasure is used as a local perfor-
mance metric, providing a more accurate evaluation in sparse settings.
Figure 7.4 shows that VCMPR@k distributions are skewed, though not excessively, align-

ing with the observations of Menand et al. [37]. Overall, the various LP models produce com-
parable distributions. Interestingly, the LastFMAsia dataset exhibits the lowest VCMPR@k
scores, a result that contrasts with its relatively strong AUC-ROC scores. Another notable
finding is the performance of the GCN model on the Twitch ES network, which displays a
distinct highly left-skewed distribution compared to other models. This divergence is particu-
larly striking given that the GCNmodel achieved the highest AUC-ROC score in Figure 7.3.
These findings underscore the nuanced differences between graph-level and node-level evalua-
tion metrics.
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Figure 7.4: Distribution of VCMPR@k values across multiple LP models on various graph datasets. Kernel Density Esti‐
mation (KDE) curves reveal the performance variability and distributional characteristics of different graph neural network
approaches.

7.3 Results

In this section, we present the results and visualizations that serve as an initial step toward un-
covering the critical relationships between LP models and diffusion processes, as outlined pre-
viously on this chapter. We begin by examining the simple contagion scenario, followed by an
exploration of the complex contagion process.

7.3.1 Simple Contagion

Graph - Level Analysis

First, we examine how the contagion dynamics — specifically the parameters Iterations, Infec-
tion Size, and InfectionRate—vary across the four differentGNNmodels discussed inChapter
3 in the simple contagion context.
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Figure 7.5: Comparison of contagion metrics — Iterations, Infection Size, and Infection Rate — for real and predicted networks
across different two‐layer and three‐layer models. The contagion setup assumes a simple contagion process with β = 0.5.
Metrics are averaged over ten model versions, each evaluated with 100 simulations (as described in Section 6.2.1). Error
bars represent the standard error. Results indicate that predicted networks consistently facilitate contagion more effectively
than real networks.

The results depicted in Figure 7.5 highlight key distinctions between the contagion dynam-
ics in real and predicted networks. Predicted networks generally exhibit higher values for all
contagion metrics — Iterations, Infection Size, and Infection Rate — compared to their real
counterparts across all datasets, with the exception of the Facebook dataset for the Iterations
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Figure 7.6: Correlation matrix between graph‐level topological measures and contagion metrics for simple contagion pro‐
cesses (β = 0.5). The matrix illustrates relationships between graph‐level properties and key contagion dynamics metrics
(iterations, infection size, and infection rate), including the ROC‐AUC score.

metric, and the Twitch ES dataset for Infection Size. Notably, Facebook, which has the highest
average degree and clustering coefficient (see Figure 7.2), displays a different behavior, poten-
tially due to the influence of its denser structure on diffusion dynamics. Within less than ten it-
erations, the spread of information rapidly stabilizes, effectively reaching the entire population.
This trend suggests that LP algorithms tend to generate network structures that facilitate sim-
ple information diffusion, likely by introducing shortcuts that reduce the average path length
[25]. Additionally, in this figure, the contagion metrics exhibit minimal variation across differ-
ent models andmodel depths, suggesting that the structural changes introduced by various LP
algorithms lead to largely consistent diffusion patterns.
To understand the distinct behavior of the Facebook and Twitch ES networks we analyzed

the Pearson correlation matrix between the graph topological measures (described in Section
6.1.2) and the contagion metrics. *

*We calculated the differences between predicted and true networks’ contagionmetrics as: diff = pred− true.
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Figure 7.6 reveals several significant relationships. First, the difference in stabilization iter-
ations between predicted and real networks (Diff. Iterations) shows strong negative correla-
tions with Average Degree, Clustering Coefficient, and Gini Betweenness Centrality. This ex-
plains why the Facebook dataset, which exhibits the highest values for thesemetrics (Figure 7.2),
demonstrates inverse behavior to other datasets (Figure 7.5).
Second, Infection Size shows strong positive correlationswithAverageDegree andClustering

Coefficient, while displaying a strong negative correlation with Gini Complex Path Centrality.
This indicates that denser networks withmore uniformComplex Path Centrality distributions
experience larger contagion spread. This finding is exemplified by theCiteSeer network, which
has the highestGini Complex Path Centrality and, consequently, the lowest Infection Size.
Finally, we observe that Infection Rate positively correlates with both Average Degree and

Gini Degree. This suggests that simple contagion processes are accelerated in networks where
high average degree is driven by a few highly connected nodes, rather than by uniformly high
connectivity across all nodes. The behavior of the Twitch ES network exemplifies this phe-
nomenon, with its high average degree and low clustering coefficient driving an increased In-
fection Rate due to the presence of such structural configurations.
To better understand howmodels influence the differences in diffusionmetrics between pre-

dicted and real networks, we present a visualization of these relationships in Figure 7.7. The
figure reveals that different models lead to varying discrepancies in social contagion outcomes
across networks. For instance, networks with a larger Average Degree, such as Facebook and
Twitch ES (see Table 6.1), exhibit smaller variations between models in diffusion differences
compared to smaller networks.
Interestingly, a higher Gini Degree correlates with a more pronounced effect of LP models

on the resulting Infection Size and Infection Rate. This observation implies that datasets char-
acterized by an average degree driven by a few highly connected nodes — e.g., the Twitch ES
dataset — are more susceptible to the impact of LP models. The mechanism behind this rela-
tionship likely stems from how LP algorithms, which often create shortcuts, can significantly
influence diffusionwhen the prediction involves these highly connected nodes. Such shortcuts
could alter the network’s structure inways that amplify or diminish contagionprocesses, partic-
ularly when they create new connections to or between hub nodes. Additionally, we observe
a strong negative correlation between Diff. Iterations and network features such as Average
Degree and Clustering Coefficient, reinforcing earlier findings about the relationship between
network density and diffusion speed.
However, while these structural patterns are evident, the reasons why certain LP models
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Figure 7.7: Graph topological metrics versus differences in diffusion metrics between predicted and true networks for simple
contagion processes (β = 0.5) in two‐layer models. Each dataset is represented by a distinct color and each model by a
different marker.

increase specific diffusion metrics compared to others remain less clear. The complexity of
these relationships suggests that model performance might depend on how well they preserve
or modify critical network features that influence diffusion dynamics.
To explore this even deeper, we analyze how some of the correlations from Figure 7.6 vary

among contagion probabilities andmodels, seeking to uncover whether these relationships are
consistent across different diffusion scenarios or if they exhibit model-specific characteristics.
Figure 7.8 shows how the correlations between the diffusion metrics and the dataset topologi-
cal features vary across the contagion probability β. Notably, we observe some possible linear
evolutions in the correlations with the Average Degree and the Clustering Coefficient. These
patterns suggest a strong dependency of the correlation values on the contagion probability.
These correlations are computed using aggregated data from all models.
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Figure 7.8: Correlation matrix between graph‐level topological measures and contagion metrics for simple contagion pro‐
cesses on a range of contagion probabilities: β ∈ {0.3, 0.5, 0.6, 0.9}. The matrix is computed using simulations from all
models.

To further dissect these relationships, we examine how the network’s structural properties
influence these correlation patterns. Figure 7.9 presents a detailed analysis of correlation dy-
namics across different diffusionmetrics and contagion probabilities β, with specific attention
to model dependencies. Each subplot focuses on the correlation between a specific diffusion
metric and either the Average Degree or Clustering Coefficient. The models are color-coded to
highlight their distinct behavioral patterns, enabling direct comparison of their evolutionary
trajectories.
The trends reveal several noteworthy insights into the relationship betweendiffusionmetrics

and network topological features across contagion probabilities andmodels. Correlationswith
theAverageDegree display relatively linear trends, particularly formetrics such as Infection Size
(Pred) and Infection Rate (Pred). However, for correlations with theClustering Coefficient, the
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Figure 7.9: Evolution of correlations between diffusionmetrics and topological features (AverageDegree, ClusteringCoefficient)
across contagion probabilities β ∈ {0.3, 0.5, 0.6, 0.9} on simple contagion simulations for different models. Lines are
color‐coded to indicate model types.

behavior across models become more variable, especially forDiff. Infection Rate.

Notably, the contagion probability β plays a crucial role in shaping these correlations. As β
increases, the correlation between Iterations (Pred) andboth theAverageDegree andClustering
Coefficient becomes increasingly negative. Meanwhile, the correlation of Infection Size (Pred)
decreases, and the correlation of Infection Rate (Pred) strengthens positively. This highlights
the significant dependence of contagion spread on node connectivity.

At higher values of β, the contagion process becomesmore accessible to all nodes, regardless
of their position in the network. This reduces the influence of high connectivity on the Infec-
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tion Size and Infection Rate. Additionally, a strong negative correlation between topological
features and the number of iterations required for contagion stabilization is observed even at
relatively low β values. This suggests that these features are critical for accelerating the stabiliza-
tion of contagion.
Model-specific characteristics also emerge from these trends. Models such as GCN, GAT,

and SuperGAT exhibit similar sensitivities to both Average Degree and Clustering Coefficient,
often following comparable trajectories. In contrast, the GraphTransformer demonstrates dis-
tinct deviations, leveraging its global attention mechanism. This approach sometimes reduces
correlations, particularly for differential diffusionmetrics likeDiff. Infection Size andDiff. In-
fection Rate, while at other times increases correlations, notably for Infection Size (Pred) and
Infection Rate (Pred). These patterns likely highlight the model’s capacity to effectively inte-
grate global structural information.
Finally, a clear distinction emerges between “pred” metrics and their “diff” counterparts.

The former generally exhibit smoother and more consistent correlation trends across β, while
the latter amplify structural effects ,accentuating the modifications induced by LP on the net-
work and their interaction with contagion probability. This highlights the role of β as a mag-
nifier of structural changes introduced by LP algorithms.

Node-Level Analysis

We now examine how specific node properties correlate with their behavior in the simple diffu-
sion process. This analysis focuses on the relationships between node centrality measures (in-
troduced in Section 6.1.1) and two key diffusion metrics: Vulnerability and Recency (detailed
in Section 6.2.1). We investigate how these relationships are modulated by both the contagion
probability β and the various LP algorithms.
Figure 7.10 reveals how nodes participate in the simple contagion process across different

datasets and how their roles are affected by LP-generated edges. With β = 0.5, most datasets
exhibit a common pattern: the majority of nodes show high Vulnerability and low Recency.
CiteSeer presents a notable exception to this pattern, displaying lower overall susceptibility to
contagion. This distinctive behavior aligns with our previous observations of CiteSeer’s lower
Complex Path Centrality andDegree distributions, which correlate with reduced Infection Size
(as shown in Fig. 7.1).
The LP models introduce subtle but significant modifications to these distributions, gener-

ally enhancing nodes’ susceptibility to contagion. This observation supports our earlier find-
ings regarding the impact of LP algorithms on graph-level diffusion characteristics, as discussed
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Figure 7.10: Distribution analysis of Vulnerability and Recency metrics in Simple Contagion processes (β = 0.5) across
different datasets and LP models. Each violin plot is split to show the distribution in true networks (left side) versus predicted
networks (right side).

in Section 7.3.1.
Figure 7.11 illustrates the evolution of correlations between node characteristics and conta-

gion metrics across different contagion probabilities β. Unlike the graph-level correlations ob-
served in Figure 7.8, these node-level correlations exhibit notablyweaker relationships. Among
the node features analyzed,Complex Path Centrality andDegree emerge as themost influential
factors in determining a node’s susceptibility to the contagion process.
Extending the analytical framework established in Section 7.3.1, the subsequent analysis

delves deeper into how different model architectures modify network parameters that poten-
tially impact contagion spread. Figure 7.12 shows that correlations tend to change monotoni-
cally, sometimes accentuated by specific models.
The correlation between Vulnerability and most centrality measures decreases as the prob-

ability β increases. This observation aligns with the phenomenon discussed in the previous
section. As the probability of contagion rises, nodes become more susceptible to infection,
diminishing the effect of neighborhood characteristics, connection quality, or the number of
neighbors on infection likelihood.
However, twocentralitymeasures exhibit uniquebehavior: BetweennessCentrality andCom-

plex Path Centrality. The correlation with Betweenness Centrality increases slightly for most
models, though minimally and potentially attributable to noise. In contrast, Complex Path
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Figure 7.11: Correlation matrices between node‐level centrality measures and contagion metrics for simple contagion pro‐
cesses on a range of contagion probabilities: β ∈ {0.3, 0.5, 0.6, 0.9}. The matrices is computed using simulations from
all models. They also include the correlations with the VCMPR@k score.

Centrality’s correlation strengthens as the probability increases, stabilizing around β = 0.5—
an effect particularly pronounced in the Graph Transformer model. This pattern reflects the
Complex Path Centrality definition, which relates to the average length of complex paths in a
node’s neighborhood. A node’s positional context is crucial in determining infection probabil-
ity during an epidemic. However, at high contagion probabilities, the node’s network position
becomes less significant compared to its inherent susceptibility, as the infection can more read-
ily reach remote nodes.

Recency-related correlations demonstrate a similar phenomenon. As contagion probability
increases, the number of iterations required for a node to become infected becomes increas-
ingly influenced by its centralitymeasures, with this correlation plateauing at certain contagion
probabilities.
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Figure 7.12: Evolution of correlations between node diffusion metrics and centrality features across contagion probabilities
β ∈ {0.3, 0.5, 0.6, 0.9} on simple contagion simulations for different models. Lines are color‐coded to indicate model
types.

The different model architectures exhibit distinct effects on the relationships between the
predicted and actual network node properties, as well as their correlations with centrality mea-
sures. Among these, the Graph Transformer model stands out for its unique behavior. Specif-
ically, it dampens the correlation between the differences in predicted and actual nodeVulner-
ability andRecency, causing these correlations to approach zero at lower contagion probability
values compared to other models. Furthermore, the Graph Transformer consistently exhibits
correlation values that differ from those of other models, which often display similar trends.
For instance, in its correlation with Complex Path Centrality, networks generated from edges

57



predicted by the GraphTransformermaintain a lower correlation even at high contagion prob-
abilities, distinguishing its behavior from that of the other architectures.

7.3.2 Complex Contagion

Now, we present the results of the complex contagion simulations. As previously explained,
in the complex contagion model, a susceptible node becomes infected only when a sufficient
number of its neighbors are already infected. Node thresholds are drawn from a truncated
normal distribution, with the mean threshold µθ taking values in the set {0.2, 0.3, 0.4, 0.6},
and the standard error set to σθ = 0.2. This threshold-based mechanism introduces a more
nuanced contagion process compared to the simplemodel, where adoption requires social rein-
forcement from multiple sources. In this context, individuals need substantial social proof or
validation— such as adopting new behaviors, beliefs, or technologies— before changing their
state. This captures scenarios where a single influence is not enough to induce change, and a
critical mass of infected neighbors is necessary for a node to adopt the infection.

Graph-Level Analysis

As with the simple contagion analysis, we begin by examining how contagion dynamics vary
across the four GNNmodels discussed in Chapter 3.
The results, shown in Figure 7.13, reveal significant differences between the contagion dy-

namics in real and predicted networks. Overall, the trends are similar to those observed in the
simple contagion model. In both contagion scenarios, a consistent pattern emerges: LP algo-
rithms often produce network structures that facilitate more efficient information diffusion.
Notably, as seen with simple contagion, the Facebook dataset exhibits a unique behavior. In
the predicted network, all nodes are reached — i.e., Infection Size = 1— in fewer iterations
compared to the real network, which fails to reach all individuals. This difference stems from
the increased contagion rate in the LP-affected network, a phenomenon also observed in the
simple contagion analysis (Figure 7.5).
Figure 7.14 depicts the the Pearson correlation matrix between the graph topological mea-

sures and the contagion metrics for µθ = 0.2. Similar trends to those observed in simple
contagion emerge: the disparity in stabilization iterations between predicted and real networks
(Diff. Iterations) exhibits strong negative correlations with Average Degree, Clustering Coef-
ficient, and Gini Betweenness Centrality. Meanwhile, Infection Size correlates positively with
Average Degree and Clustering Coefficient but negatively with Gini Complex Path Centrality.
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Figure 7.13: Comparison of contagion metrics — Iterations, Infection Size, and Infection Rate — for real and predicted net‐
works across different two‐layer models. The contagion setup assumes a complex contagion process with µθ = 0.2 and
σθ = 0.2Metrics are averaged over ten model versions, each evaluated with 100 simulations (as described in Section 6.2.1).
Error bars represent the standard error.

The presence of shortcuts reshapes the network’s structure, potentially enhancing or hinder-
ing contagion, particularly by linking or reinforcing hub nodes. Lastly, Infection Rate shows a
positive correlation with both Average Degree,Gini Degree Centrality andGini Degree.
Using the same framework as the simple contagion analysis, we now examine how the corre-

lations from Figure 7.14 vary across threshold means and models.
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Figure 7.14: Correlation matrix between graph‐level topological measures and contagion metrics for complex contagion
processes (µθ = 0.2). The matrices are computed using simulations from all models. The matrix illustrates relationships
between graph‐level properties (average degree, clustering coefficient, and Gini indices) and key contagion dynamics metrics
(iterations, infection size, and infection rate), including the ROC‐AUC score.

Figure 7.15 illustrates how, in the complex contagion process, the correlation between conta-
gionmetrics (Iterations(Pred), Infection Size(Pred), InfectionRate(Pred)) and network connec-
tivity features (Average Degree, Clustering Coefficient) strengthens as the contagion threshold
mean (µθ) increases. These correlations rise sharply, approaching near-perfect positive values
(i.e., close to 1) by µθ = 0.3, which is relatively low.
This pattern contrastswith that observed in the simple contagionprocess (see Figure 7.9).The

difference lies in the opposing roles of contagion probability (β) and contagion threshold (µθ)
in determining the ease of propagation: while higher β values facilitate contagion, higher µθ

values make propagation more difficult. For high µθ values, nodes require most of their neigh-
bors to be infected before becoming infected, making network connectivity — specifically the
number of neighbors (Average Degree) and clustering tendency (Clustering Coefficient)— crit-
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Figure 7.15: Evolution of correlations between diffusion metrics and topological features (Average Degree, Clustering Coeffi‐
cient) across threshold means µθ ∈ {0.2, 0.3, 0.4, 0.6} on complex contagion simulations for different models. Lines are
color‐coded to indicate model types.

ical for social diffusion. Conversely, at low µθ values, contagion spreads more easily, reducing
the importance of neighborhood structure, local clustering, or the number of neighbors in
determining infection likelihood.

In analyzing the differences betweenmodels, a striking observation emerges for high µθ: the
correlations associated with the GCN model begin to deviate significantly from those of the
othermodels. Specifically, for the correlation between Iterations(Pred) and network connectiv-
ity metrics, the GCN network exhibits a strong negative correlation at µθ = 0.6, whereas the
other models demonstrate strong positive correlations. This means that higher connectivity in
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GCN-predicted networksmight accelerate stabilization, and the opposite in the rest ofmodels.
This divergence suggests that the structural changes induced by the GCN model under high
contagion thresholdsmight hinder the diffusion process, potentially due to an over-reliance on
highly connected nodes or the formation of bottlenecks that limit propagation efficiency. This
could occur because densely connected clusters quickly reach a statewhere all susceptible nodes
are infected, or the remaining uninfected nodes cannot be reached due to the high contagion
thresholds. TheGCN’s emphasis on local smoothingmay create highly cohesive substructures,
which either facilitate complete saturation within clusters or isolate nodes effectively, reducing
the number of iterations required for stabilization.
In contrast, the positive correlations seen in other models imply that higher connectivity in

their predicted networks extends the stabilization process. This might happen because these
models introduce structures, such as additional bridges between clusters or redundant path-
ways, which allow the contagion to spread more widely before stabilization. These differences
suggest that theGCN’s predictionsmay emphasize localized spreadwithin tightly-knit clusters,
whereas other models generate networks that support broader, slower propagation.
A similar anomaly is observed in the correlation involving Diff. Infection Rate. While the

GCN-predictednetworkmaintains a strongpositive correlation across all contagion thresholds,
the other models experience a sharp decline in correlation strength starting at µθ = 0.3. This
consistent strong positive correlation in GCN across all thresholds could reflect its structural
bias in generating denser networks or preserving high-degree nodes. These features likely boost
the predicted infection rate compared to the real network. Conversely, the declining correla-
tions in other models starting at µθ = 0.3 might suggest that their predictions diverge from
the real network’s topology in ways that lower infection rates under stringent threshold condi-
tions. They could be incorporating global topological adjustments that inadvertently reduce
the prominence of hubs or create shortcuts that bypass high-degree nodes, thereby diminishing
infection rates relative to the real network.
For small contagion thresholds, the GATmodel also stands out, as it reduces the strength of

correlations involving Iterations(Pred) and Infection Size(Pred). This attenuationmight reflect
the GAT model’s emphasis on selective attention to specific node features, which could alter
the balance of local versus global connectivity in ways that suppress the impact of network
structure on contagion processes. In contrast, the SuperGAT and GraphTransformer models
display highly similar correlation trends across all features.
These observationspoint topotential trade-offs inmodel design: GCNmayprioritize denser

or more clustered predictions that accelerate contagion stabilization and enhance infection
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Figure 7.16: Distribution analysis of Vulnerability and Recency metrics in complex contagion processes (µθ = 0.2) across
different datasets and LP models. Each violin plot is split to show the distribution in true networks (left side) versus predicted
networks (right side).

rates, while other models might better approximate real-world dynamics by producing net-
works less prone to exaggerated diffusion effects.

Node-Level Analysis

Finally, we delve into analyze the relationship between node properties and complex contagion
progression.
Figure 7.16 shows the participation of nodes in complex contagion across diverse datasets,

revealing how LP-generated edges reshape node vulnerabilities. At µθ = 0.2, most networks
display a consistent pattern of high Vulnerability and low Recency, with CiteSeer emerging as
a distinct outlier. This distinctive behavior, consistently observed across both simple and com-
plex contagionmodels (Figure 7.10), reflects its unique network structure characterized by low
Complex Path Centrality andDegree.
Furthermore, the predicted networks consistently demonstrate elevated nodeVulnerability

compared to their real counterparts. In Facebook, for instance, LP-affected networks achieve
near-total node reach, contrasting with the real network’s more limited spread of 60 − 80%.
These subtle yet significant LP-induced modifications underscore the algorithms’ profound
impact on network diffusion dynamics, extending our previous observations from simple to
complex contagion models.
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Figure 7.17: Correlation matrices between node‐level centrality measures and contagion metrics for complex contagion
processes on a range of threshold means µθ ∈ {0.2, 0.3, 0.4, 0.6}. The matrices are computed using simulations from
all models. They also include the correlations with the VCMPR@k score.

Figure 7.17 presents the evolution of correlations between node characteristics and conta-
gion metrics across varying contagion thresholds. In contrast to the graph-level correlations
shown in Figure 7.14, these node-level correlations are significantly weaker, reflecting more lo-
calized influences. At lower contagion thresholds,Complex Path Centrality andDegree emerge
as the most influential factors in determining a node’s susceptibility to contagion. At higher
contagion thresholds, Degree, Degree Centrality, and Diffusion Centrality become the domi-
nant predictors, underscoring the shifting dynamics of node influence as the contagion process
intensifies.

Figure 7.18 illustrates how different LP models influence these correlation dependencies.
The correlation between a node’s Vulnerability and Recency with most centrality measures
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Figure 7.18: Evolution of correlations between node diffusion metrics and centrality features on a range of threshold means
µθ ∈ {0.2, 0.3, 0.4, 0.6} on complex contagion simulations for different models. Lines are color‐coded to indicate model
types.

weakens as the complex contagion threshold µθ decreases. This trend is consistent with the
dynamics observed in the simple contagion scenario, where higher probabilities of contagion
lead to a greater susceptibility of nodes to infection. Consequently, the impact of neighbor-
hood characteristics, connection quality, or the number of neighbors on the likelihood of in-
fection diminishes.
Interestingly, aswith simple contagion, theComplex PathCentrality emerges as an exception

to this pattern. It maintains a stronger correlation for small µθ, suggesting it captures unique
structural features that remain relevant at high-contagion regimes. This highlights its potential
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as a robust centrality measure in diverse contagion processes.
We further focus on how different model architectures uniquely affect the relationships be-

tween predicted and actual node properties, as well as their correlations with centrality mea-
sures. The GCNmodel stands out as the most distinct, particularly at high contagion thresh-
olds, a trend alreadyhighlighted in the graph-level analysis. At thenode level, theGCN-predicted
network demonstrates consistently lower correlations between Vulnerability and all centrality
measures, as well as between Recency and all centrality measures, with the exception of Com-
plex Path Centrality. This behavior supports the hypothesis proposed earlier: the structural
changes induced by the GCN model under high contagion thresholds may disrupt the social
contagion process. This could stem from an over-reliance on highly connected nodes or the
creation of structural bottlenecks that limit propagation efficiency and suppress the influence
of broader network characteristics.
In contrast, other models exhibit remarkably similar correlation trends, indicating that their

attention mechanisms likely capture network features in comparable ways. This uniformity
suggests a convergence in their modeling approaches, which may be effective in low-contagion
scenarios but less capable of differentiating structural dynamics at higher thresholds.
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8
Conclusion

In the rapidly evolving fields of network science and computational sociology, understand-
ing the dynamics of social contagion is critical. This research introduced a novel approach to
studyinghow link-prediction (LP)models, particularly thoseutilizingGraphNeuralNetworks
(GNNs), reshape network topologies. By suggesting or removing connections, these models
fundamentally alter propagation pathways, influencing both simple and complex contagion
processes. By systematically examining the interplay between edge prediction and contagion
dynamics, we addressed a critical gap in existing literature, bridging advanced machine learn-
ing techniques with complex network behavior.
The graph-level analysis provided insights into global structural properties and their implica-

tions for diffusion metrics, while the node-level study revealed the roles of individual nodes in
propagation. This dual perspective, combinedwith our focus onboth simple and complex con-
tagion scenarios, offers a comprehensive understanding of information and behavior spread.
Moreover, our detailed characterization of networks at these levels underscores the intricate
interplay between topology, centrality and diffusion.
The research employed state-of-the-art Graph Neural Network architectures — including

Graph Convolutional Networks (GCN), Graph AttentionNetworks (GAT), SuperGAT, and
Graph Transformers — to predict network structures. By rigorously comparing these models’
performance and their impact on social diffusion parameters, we contributed to the emerg-
ing field of network reconstruction and predictive modeling. Our comprehensive approach
meticulously evaluated the technical capabilities of GNN-based LP models through a multi-
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faceted assessment strategy. We employed both classical performance metrics like AUC-ROC
and innovative evaluation techniques, such as the Vertex-Centric Max Precision Recall at k
(VCMPR@k), to provide a nuanced analysis of model performance. Beyond technical analy-
sis, we explored the broader implications of LP on the dynamics of social contagion.
From over 100,000 SI simulations, we derived several critical findings:

1. Simple Contagion Dynamics

• LPmodels consistently introduced structural shortcuts, reducing averagepath lengths
and enhancing diffusion efficiency. This phenomenon confirmed prior findings
by Centola et al. [25].

• Contagion metrics exhibited robustness across models and network depths, high-
lighting consistent diffusion patterns.

• Denser networks with high Average Degree and Clustering Coefficient exhibited
larger contagion spreads. More uniform distributions ofComplex Path Centrality
amplified LP effects.

• Networks with high connectivity driven by a few highly connected nodes, experi-
enced faster contagion spread and heightened LP impact on Infection Rate.

• The contagion probability β modulated infection dynamics: higher probabilities
diminished the influence of network topology bymaking nodes uniformly suscep-
tible, reducing the importance of neighborhood characteristics.

• Graph Transformers, leveraging global attention, provided smoother, more stable
diffusion patterns. GCN, GAT and SuperGAT present similar behaviors.

2. Complex Contagion Dynamics

• Whilemany trends from simple contagion persisted, complex contagion exhibited
greater variability between LP models.

• GCNs, under high contagion thresholds, tended to form localized clusters, either
saturating or isolating nodes, in contrast to attention-based models, which facili-
tated broader propagation via network bridges.

Our findings emphasize the importance of considering both graph- and node-level charac-
teristics. Measures like Complex Path Centrality and node degree emerged as pivotal in deter-
mining contagion susceptibility, withComplex PathCentralitydistinguishing itself as uniquely
insightful for capturing the relationship between network topology and contagion behavior.
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This work advances our understanding of how LP models influence contagion dynamics,
demonstrating the potential of machine learning techniques to reveal the mechanisms under-
lying social behavior and information diffusion. However, this study has some limitations.
First, our experiments are conducted on static networks, which may not fully capture the tem-
poral dynamics of real-world social networks. Additionally, while we analyzed diverse datasets,
further research could include larger and more heterogeneous networks, such as those from
communication, transportation, or biological systems, to evaluate the generalizability of the
findings. Finally, although GNN-based LPmodels were the focus, incorporating comparisons
with simpler or hybrid algorithms could provide a more holistic understanding of LP’s impact
on diffusion processes.
Future research could explore real-world applications, such as optimizing network interven-

tions or mitigating misinformation spread, by tailoring LP models to enhance beneficial con-
tagion while suppressing harmful diffusion. Investigating the role of temporal and dynamic
networks could yield further insights into the evolving interplay between LP algorithms and
network behavior. Expanding to multiplex networks, where nodes have multiple types of con-
nections, would offer a richer framework to study layered contagion dynamics. Furthermore,
developing interpretability techniques for GNN-based LP models could also throw light on
the causal mechanisms driving observed effects, paving the way for more transparent and ac-
tionable insights.
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