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Abstract 

 

Purpose Schizophrenia is a debilitating psychiatric disorder characterized by an 
abnormal dopamine production. Right now, there is a lack of quantifiable 
biomarkers applied in its diagnosis and no way other than empirically to 
determine the patient's response to standard antipsychotic treatment. Radiomics 
is an image analysis technique which allows to analyze patterns not recognizable 
by the human eye, that may be of help for the creation of more reliable 
biomarkers. 
Methods Radiomics features were extracted from 18F-DOPA PET scans of the 
striatal area and compared between patients and controls first, responders to 
standard treatment and non-responders second. The dataset consisted in 141 
healthy controls and 137 patients (71 responders, 64 non-responders). Features 
were extracted from the SUVr signal using MIRP. Reproducibility analysis was 
conducted on separate test-retest scans and an ICC = 0.80 was applied as a 
threshold on the computed features. The remaining features were grouped using 
hierarchical clustering based on Spearman correlation. ANOVA testing was 
conducted on the two groups. 
Results 15 features were selected. Linear regression showed an influence of 
gender and age on most features in patients. No difference was found between 
patients and controls. 10 features were significantly different between 
responders and non-responders. The feature with the highest area under the 
curve was the joint maximum (AUC = 0.66). Stepwise logistic regression did 
not show any improved performance using the combined features. 
Discussion This study seems to confirm the influence of gender and age on the 
development of the disease. No difference was found between controls and 
patients, but patients came from a dataset too heterogenous. The differences 
between responders and non-responders seem to highlight that in responders the 
dopamine production is higher and creates a more irregular signal. Joint 
maximum was able to differentiate between responders and non-responders 
better than the SUVr mean, which is what is currently used in clinical practice.  
Validation on an independent cohort and the use of more complex classification 
algorithms may improve the results. 
Conclusion Radiomics features may be a support for the creation of a biomarker 
able to predict treatment response in psychotic patients. 
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Chapter 1 

 

Introduction 

 

1.1 Schizophrenia 

Schizophrenia is a debilitating psychiatric disorder which affects 

approximately 1% of the global population. More than 50% of the diagnosed 

individuals present intermittent but long-term psychiatric problems, and around 

20% of them are affected by chronic symptoms. [1] The severity of these 

symptoms often causes issues related to the independence of patients and the 

way they interact with the social environment: as a result, around 25% of patients 

suffer from clinical depression, substance abuse and have a higher risk of 

suicide. [2]  

The disease is related to a broad number of symptoms which present themselves 

in different ways in each individual, but can essentially be divided into three 

categories: positive symptoms, negative symptoms and cognitive 

impairment.  

Positive symptoms are also common to every form of psychosis and include 

delusions, hallucinations and disorganized thoughts and speech. They tend 

to relapse and remit, while the other types of symptoms are usually chronic. 

[3] 

Negative symptoms are characterized by the lack of normal emotional 

responses and thought processes: they include forms of apathy and 

diminished verbal and non-verbal expression. [3] 

The cognitive impairment affects multiple domains (executive function, 

attention/vigilance, working memory, verbal fluency, visuospatial skills, 
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processing speed, and social cognition) and appears in nearly four out of five 

individuals who suffer from schizophrenia. [4] 

The disease is equally present in men and women, although usually the onset 

appears later in the female population: the first episode of psychosis usually 

happens between the late teens and the early twenties in men, and around the 

mid-twenties and early thirties in women. [5] The onset can be sudden without 

any previous episode, although it is common to observe a prodromal stage in 

around 75% of the patients, during which the first symptoms develop and 

dysfunctions in cognitive abilities or social withdrawals may be observed. [6] 

Right now, there is no certainty regarding the causes of the development of this 

disease. Many studies have found a genetic disposition in patients affected by 

schizophrenia, [7] however a specific gene related to the disease does not seem 

to exist, and it is more likely that more genetic loci, each one with a small effect, 

determine the risk that the individual will develop schizophrenia. [8] 

While genetic disposition plays a role, it has also been observed that the presence 

of specific environmental factors during several stages of the individual’s 

development has an influence on the possibility of the appearance of psychotic 

symptoms. These factors have cumulative/additive effects, which makes it likely 

that schizophrenia is a product of the interaction of the genetic factors and 

environmental ones. [7] Several studies have been conducted during this phase, 

searching for proper biomarkers from different points of view (structural and 

functional brain imaging, cerebrospinal fluid and blood analysis): the results 

seem to indicate that, while there are some promising findings, complex 

multimodal models which integrate different kinds of information are needed to 

properly understand this stage. [9] 

The underlying mechanisms of the disease are unknown, and right now there are 

no anatomical or functional alterations in the brain which have been observed in 

subjects with schizophrenia only. [10] 

At the moment, the prominent hypotheses are related to the dopaminergic and 

glutamatergic dysfunction which have been consistently observed in 

schizophrenic patients, [11] [12] [13] although the exact correlation between 

these abnormalities and the presence of symptoms is not well understood. 
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1.2 The dopamine hypothesis 

Dopamine is a neurotransmitter involved in several brain pathways, playing a 

role in motor control, motivation, reward, cognitive function, maternal, and 

reproductive behaviors. [14] Its structure is depicted in Figure 1.1. 

It has been repeatedly observed that presynaptic dopamine synthesis and release 

is altered in patients with schizophrenia, especially in the striatum. [10] 

This was firstly hypothesized after observing that administering compounds 

which increase the extracellular concentrations of dopamine creates symptoms 

similar to those observed in schizophrenia. [15] Additionally, drugs which 

reduce dopamine levels show a reduction of psychotic symptoms, [16] [17] and 

a connection exists between their clinical effectiveness and the affinity with 

dopamine receptors. [18] [19] 

Both post-mortem and in vivo studies have identified abnormalities in the 

presynaptic and post-synaptic system in patients with schizophrenia, [20] with a 

focus on D2 receptors, which are the main targets of antipsychotic drugs. 

The link between the dopamine alteration and the psychotic symptoms however 

is not perfectly clear, and different theories have been proposed. [21] 

Since it has been observed that midbrain dopamine neurons are activated by 

unexpected salient events, the dopamine alterations present in the brain may 

cause an attribution of importance to irrelevant stimuli, causing the onset of 

psychosis. [22] 

Additionally, the striatum works as an integrative hub which works as a 

moderator between the limbic and motor regions [23]: the aberrant dopamine 

signaling may create a noise which is the cause of the impairments observed in 

schizophrenia by disrupting the integration of cortical inputs. [20] [24] 

The striatum is also involved in pathways related to motor signals responsible 

for making the individual understand that a specific motor act is self-authored 

and not caused by an external agent [25] (called efference copies), and dopamine 

alterations may disrupt those signals and contribute to the feeling of passivity 

reported by schizophrenic patients. [20] 

There are also studies which suggest that increased striatal dopamine signaling 

leads to negative symptoms, which may be related to impaired reward-based 

learning. [26] [27] 
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Figure 1.1: Dopamine structure 

 

 

It must however be noted that the abnormalities observed in the dopamine 

system are not able to fully explain the symptoms observed in patients, and a 

direction of causality has not been determined yet. One of the main limitations 

to this hypothesis is the response to currently available antipsychotics: while it 

is true that their administration is generally followed by a decrease in the 

psychotic symptoms, around one third of patients does not respond to this 

medication [28] and need to turn to clozapine treatment, which is a stronger 

antipsychotic with significant side effects. 

It appears that patients not responding to standard antipsychotic medications 

show a significantly lower dopamine synthesis capacity compared to responders, 

[29] which may indicate the existence of sub-types of schizophrenia which 

happen with different modalities. 

 

 

 

1.3 18F-DOPA 

l-6-[18F]fluoro-3,4-dihydroxyphenylalanine is a radiotracer used in combination 

to PET imaging to quantify the dopaminergic presynaptic function. It is labelled 

with the isotope fluorine-18 (18F) and has a half-life of 110 minutes. [30] The 

compound is actively transported through the blood-brain barrier, after entering 

the cells the aromatic amino acid decarboxylase enzyme (AADC) transforms l-

DOPA into dopamine, which is stored in presynaptic vesicles and is then 
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Figure 1.2: [18]F-DOPA structure [35] 

 

released during neurotransmission.  [31] 

Its structure is depicted in Figure 1.2. 

FDOPA has previously shown potential to be used as a biomarker to differentiate 

between schizophrenic patients and healthy subjects, [32] as well as between 

responders and non-responders to antipsychotic treatment. [33] 

Furthermore, the compound produces a signal that has shown high test-retest 

reproducibility, especially regarding the striatal area, [34] which makes it a 

perfect tool to investigate dopaminergic signaling in schizophrenia. 

 

 

 

1.4 Radiomics 

Radiomics is an image analysis technique which extracts quantitative features 

from diagnostic measures. Radiomics features can describe imaging patterns 

relative to tissue properties that may be difficult to notice by human eye alone. 

These features are related to the intensity of the voxels in an image, with a focus 

on the roughness of the texture and the heterogeneity of the signal. 

Official guidelines for radiomics feature extraction have been defined by the 

Image Biomarker Standardization Initiative (IBSI), [36] which has defined 11 

feature classes for a total of 169 features, along with digital phantoms to assess 
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the accuracy of the software used for feature extraction. [37] 

To get a general idea, radiomics features can be divided in histogram-based, 

texture-based, shape-based, transform-based and model-based. [38] 

Histogram-based features are derived from the intensity histogram of the image 

and based on the single voxels, while texture-based features caption specific 

relationships between voxels, reflecting the eventual presence of spatial patterns 

or the uniformity of the texture. 

Shape-based features describe the geometrical aspects of the region of interest, 

while the last two categories are currently still being defined by IBSI and are of 

no interest for this study. 

Radiomics can be applied to several imaging modalities, both in 2D and 3D, and 

may be used to capture tissue and lesion properties, making it of particular 

interest in oncology. [38] This is because these features better allow to capture 

the heterogeneity in a specific area, which in the case of tumors has been proved 

to be linked to survival rates, [39] and offer a wider view compared to a biopsy, 

which focuses only on a selected portion of cells. 

Usually, a large number of features is extracted and then machine learning 

techniques are applied: radiomics data are mineable, making them optimal to 

discover unknown markers and patterns in a disease. [38] 

In fact, it has been shown that radiomics is capable to successfully predict 

clinical endpoints, [40] response to treatment, [41] tumor staging. [42] 

 

 

1.5 Purpose of the study 

The need for objective, quantifiable biomarkers capable of providing biological 

insight into the pathophysiology of schizophrenia is evident and urgent. 

Furthermore, currently in clinical practice there is no way to determine if a 

patient will respond to standard antipsychotics other than empirically, which 

leads to long delays before the patient is able to undergo clozapine treatment. 

[43] 

This study aims to apply radiomics tools to a dataset of FDOPA PET imaging to 

investigate brain alterations of dopamine synthesis capacity in patients with 

schizophrenia. 

By combining the specificity of FDOPA PET signal to dopamine system and the 
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ability of radiomics to unveil imaging patterns not recognizable by the human 

eye, we hypothesized that radiomics features may highlight new aspects of this 

disease and be used as a tool for classification. 

Specifically, we will investigate to which degree FDOPA PET radiomics is 

capable of identifying significant differences between patients and controls. 

Moreover, we will evaluate whether FDOPA PET radiomics may be a useful 

tool in the prediction of the patient’s response to antipsychotics. 

Due to its high signal uptake and interlink with the disease, striatum is chosen 

as the main region of interest for radiomics analysis.  

Interestingly, while some radiomics studies have been conducted on 

schizophrenia, [44] [45] none of them focused on dopamine synthesis nor on the 

striatum: given the small amount of research currently available, additional 

investigation may be able to highlight previously unknown aspects of this 

disease and determine whether this may be a promising direction in medical 

research. 
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Chapter 2 

 

Methods 

 

2.1 Dataset 

Data used for this study came from the institutional FDOPA PET data repository 

available at the Institute of Psychiatry Psychology and Neuroscience (IoPPN) at 

King’s College London. [46] A total of six studies were used, collected from 

three scanning sites and five different scanners. 

A total of 278 scans were available for the study, composed of 141 healthy 

controls (82 males and 59 females, age 28.47 ± 7.81 years) and 136 patients (99 

males and 37 females, age 32.07 ± 10.79 years). Among the patients, 72 were 

classified as responders to standard antipsychotic treatment and 64 were non-

responders or treatment resistant. 

Clinical scores (PANSS positive, negative, general and total) were available for 

only a subset of patients. 

Informed written consent was obtained for all the participants and the studies 

were conducted following the Declaration of Helsinki and Good Clinical 

Practice. All the research protocols for data acquisitions were approved by local 

ethics committees and institutional revision boards. 

A summary of the available information is reported in Table 2.1, while full 

details about study design and participant inclusion and exclusion criteria are 

reported in the original reference. 
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Table 2.1: datasets used for the study 

 

 

2.2 Data acquisition 

Data were all acquired with the same experimental protocol and processed with 

the same analysis pipeline. [46] 

All FDOPA PET imaging sessions were acquired with a continuous dynamic 

acquisition (no blood sampling), with scanning beginning with the tracer 

injection and lasting for 90-95 minutes. All participants received carbidopa (150 

mg) and entacapone (400 mg) orally ~1 hour before imaging. The FDOPA tracer 

(injected dose ranging from 86.4 to 414.4 MBq) was administered by 

intravenous bolus injection after the acquisition of a brain CT or MRI for 

attenuation correction, depending on the scanner availability at each imaging 

site. PET data reconstruction varied across imaging sites and scanner types, but 

all included correction for random noise, scatter, and tissue attenuation.  

 

 

2.3 Data processing 

The analysis of FDOPA PET imaging data was performed using an automated 

analysis pipeline written in Python and integrated in XNAT and it can be 

described as follows. First, dynamically non-attenuated and attenuated FDOPA 
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PET images are inputted into the pipeline. 

The non-attenuated dynamic images are motion corrected frame-to-frame to a 

single reference frame with a linear transformation using Statistical Parametric 

Mapping (SPM) realign function. [47] The motion information is then used to 

realign the attenuated dynamic images, which are then summed together to 

create a motion-corrected individual static PET image. A tracer-specific 

template and atlas defining the striatum and cerebellum are co-registered to each 

individual motion-correct static PET image, using SPM 12 

(https://www.fil.ion.ucl.ac.uk/spm/). Two parameters of interest are derived 

from image quantification as index of dopamine synthesis capacity. From 

dynamic imaging, Ki (unit 1/min) is computed using the Gjedde-Patlak graphical 

approach [48] [49] both region-wise and voxel-wise, with the cerebellum used 

as the reference region. 

The Standardized Uptake Value Ratio (SUVr) at 60 minutes is also calculated 

as the ratio of the tracer activity to that in the cerebellum. 

After this process, two subjects were removed from the study as the quality of 

the scans was not high enough due to the presence of motion artifacts. 

 

 

2.4 Feature extraction 

The volume of interest (VOI) target of radiomics analysis was defined on the 

dynamic scans using Python. The image segmentation was based on Ki estimates 

since population statistics over a larger number of subjects was previously 

available. [50] This permitted to determine a threshold for the VOI segmentation 

under which the signal in the voxels was not significant due to the presence of 

motion artifacts. 

The striatal mask was derived for each subject from the Martinez atlas 

(previously co-registered in subject space), [51] two binary dilations were 

performed and voxels with a signal under 0.007 min-1 were removed. 

The radiomics analysis was performed on the static scans using the SUVr 

parametric maps. 

Radiomics features were extracted using the MIRP Python package, [52] which 

is IBSI compliant. [53] They were computed over the whole striatal area (both 
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left and right hemispheres combined), therefore not taking into consideration 

any possible laterality of the signal. 

Prior to the feature computation, each scan was re-segmented using a threshold 

of 1.50, which was estimated as a lower bound for the SUVr signal in the region 

of interest after visual inspection of the signal’s distribution. This was done so 

that it would be possible to discretize the images with the fixed bin size method, 

which is usually recommended for the SUVr signal since it maintains the 

relationship with the original intensity scale. [37] A fixed bin size of 0.0125 was 

set. 

Features were computed with the 3D average aggregation method. A total of 172 

radiomics features were obtained. 

 

 

2.5 Feature selection 

A sample of 7 controls and 7 patients from two independent studies was selected 

to conduct a reliability analysis of the features with the purpose to select the most 

reproducible ones for studies regarding the striatal FDOPA PET signal. [54] 

Test-retest scans were available for each subject.  

As reproducibility index, the intraclass correlation coefficient (ICC) index [55] 

was computed separately both for controls and patients, following the formula 
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where BMS and EMS are the subject and error sum of squares respectively and 

k is the number of repeated sessions.  

Only reproducible radiomics features with an ICC > 0.80 for both patients and 

controls were retained for the rest of the study. 

Moreover, radiomics features are known to often bring redundancy in 

information and to generally be highly correlated. [56] This is due to the fact 

that many features describe the same aspect from different points of views and 
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are often equivalent from a mathematical perspective. 

Dimensionality was reduced through hierarchical clustering based on Spearman 

correlation. [57] Clusters were created in order to group together features which 

had an absolute correlation coefficient ρ of at least 0.90.  

From each cluster, the feature with the highest ICC was selected. Since two ICC 

indexes were available for each feature (the patients and the controls one), the 

lowest between the two of them was assigned to each feature and then the 

selection was performed on those values. 

 

 

2.6 Feature harmonization 

Harmonization to correct for batch effects was applied directly to the selected 

features. [58]  

Combat is a statistical approach which assumes the presence of site-specific shift 

and scaling factors, which are estimated using empirical Bayes. [59] It is 

possible to preserve the contribution of specific biological covariates to the data, 

which need to be identified priorly to the harmonization step. [60] 

For this study the NeuroCombat function from the NeuroCombat python library 

version 0.2.10+ (https://github.com/Jfortin1/neuroCombat) was employed. 

Harmonization was performed separately for controls and patients, using the 

same reference scanner.  

The effects of age and sex as covariates were preserved. 

Comparison of the distribution of the complexity feature across scanners before 

and after harmonization is depicted in Figure 2.1. 
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Figure 2.1: Complexity feature in the different scanners before and after harmonization in 

controls group 

 

 

2.7 Statistical analysis 

All statistical tests were performed in Matlab. 

Groups were compared with the χ2 test for categorical variables and the 

Wilcoxon test for continuous variables.  

Regression analysis was performed in order to evaluate the influence of 

biological variables on the computed features. 

Statistical differences between the features in patients and controls were 

evaluated with the ANOVA test, taking into consideration gender and age effect 

and corrected according to the False Discovery Rate (FDR) method. Area under 

the curve (AUC) was computed for all the features which resulted significantly 

different to analyze their performance. 

The same statistical analysis was done to evaluate differences between 

responders and non-responders. 
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Chapter 3 

 

Results 

 

3.1 Feature selection 

A total of 146 features survived the reproducibility selection in the patients’ 

group, while 85 features survived in the controls. Only features with an ICC > 

0.80 in both groups were further considered. In the end, 81 features out of 172 

resulted reproducible in both groups. 

These features were hence grouped in clusters based on the Spearman correlation 

index. 

This resulted in 15 clusters, from each one of them the feature with the highest 

ICC was selected.  

The features selected are reported in Table 3.1 along with their physiological 

meaning. 
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Table 3.1: Reproducible features selected for each cluster: definition and meaning 
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3.2 Controls – patients comparison 

Study population 

 

Outliers were identified by applying a threshold of mean ±3 σ to each radiomics 

feature by considering the full data sample. Two subjects were found to be 

outliers in more than three features and were therefore removed from the study.  

The remaining subjects were 273, 138 controls and 135 patients. The two groups 

were unmatched both in terms of gender (χ2 test, p = 0.011) and age (Wilcoxon 

rank sum test, p = 0.013). 

A summary of the demographic of the dataset, along with the results of the 

statistical analyses, is available in table 3.2. 

 

 

 
Table 3.2: gender and age distribution in controls and patients, along with the p-values 

obtained after χ2 and Wilcoxon testing 

 

 

Linear regression analysis 

 

A linear regression model using gender and age was computed for each feature 

to check for the eventual influence of the two covariates. 

In the controls group, 4 features (the morphological ones) were significantly 

related to gender and 2 related to age. In the patients, 12 features were 

significantly influenced by gender, and 6 by age. 

The significant p-values of the regression analysis, after being adjusted 

according to FDR correction, are reported in table 3.3. An example is reported 

in Figure 2.1, where the complexity feature is plotted against age in controls and 

patients and a regression line is plotted for each gender. 
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Figure 3.1: Complexity feature plotted against age in controls and patients. A regression line is 

plotted for males (blue) and women (red) 

 

 

 

 

 

 
 

Table 3.3: significant adjusted p-values of the linear regression model accounting for gender 

and age for each feature 
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ANOVA analysis 

 

ANOVA testing was performed on radiomics features to test for differences 

between patients and controls. Given the association of gender and age with 

radiomics features, they were included as covariates. After FDR correction, no 

features were found to significantly differentiate between the two groups. 

There were differences related to gender in 7 features, and differences related 

to age in 5 features. 

The resulting adjusted p-values are reported in Table 3.4 

 

 

 

 

Table 3.4: significant adjusted p-values after ANOVA comparison between controls and 

patients, taking into account gender and age 

 

 

Within studies comparison 

 

Given the observed heterogeneity between the different studies which composed 

the data used for this study, a separate ANOVA analysis has been conducted on 

each dataset separately. Three out of six studies employed both controls and 

patients, their demographics can be observed in table 3.5. 

ANOVA was performed adding gender and age as covariates, but no significant 

difference was found.  
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Table 3.5: age and gender of patients and controls in the three different studies used, along with the 

p-values obtained from the χ2 and Wilcoxon test 

 

 

3.3 Responders – non-responders comparison 

Study population 

 

The patients group was further divided into one group composed of responders 

to standard antipsychotic treatment (71 subjects) and one composed of non-

responders or treatment resistant patients (64 subjects). The two groups resulted 

matched both in gender (p = 0.480) and age (p = 0.281) after χ2 and Wilcoxon 

testing. 

Group’s demographics, along with the results of statistical analyses, are reported 

in Table 3.7. 

 

 

 

 

 

Table 3.7: gender and age distribution in responders and non-responders, along with the p-

values obtained after χ2 and Wilcoxon testing 
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Correlation with clinical symptoms 

 

PANSS score values (positive, negative, general psychopathology, total score) 

were available for 62 patients. Multilinear regression was performed to evaluate 

if there was an influence of the overall symptoms on the radiomics features, but 

no significant values were found. Linear regression was also performed 

separately for each PANSS index, but again no significant correlation was found. 

 

 

ANOVA analysis 

 

A total of 10 features resulted significantly different between the two groups 

after FDR correction. Differences due to gender and age were present in a large 

amount of features (13 and 6 respectively). Significant adjusted p-values are 

reported in table 3.8. The distribution of the 10 features is plotted in Figure 3.2. 

 

 

 

 

Table 3.8: significant adjusted p-values after ANOVA testing between responders and non-

responders 
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Figure 3.2: distribution of the features which resulted significantly different between 

responders and non-responders 
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Area under the curve performance 

 

The p-values from ANOVA tests and AUC observed for each significant feature 

are reported in Table 3.9. The feature with the highest value was the joint 

maximum, with an AUC = 0.66, which is higher than the one from SUVr mean 

(AUC = 0.61). The two ROC curves are plotted in Figure 3.3. The other features 

had similar values. 

 

 

 

 

 

 

Table 3.9: p-value of ANOVA test and area under the curve for each significant feature 

 

 

Stepwise logistic regression 

 

An additional stepwise logistic regression was performed using all the 

significant features to see if their combined performance may improve the 

results. Only the joint maximum was the one which was found to add significant 

value to the regression model, with p < 0.001. 
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Figure 3.3: comparison of ROC curve performance of SUVr mean and joint maximum in 

differentiating between responders and non-responders 

 

 

Within studies comparison 

 

Given the observed heterogeneity between the different datasets used, a separate 

ANOVA analysis has been conducted within each one of them. Four out of six 

datasets contained psychotic subjects. In each study, responders and non-

responders were matched both in gender and age. The demographics for each 

dataset are reported in Table 3.10. 

The significant adjusted p-values are reported in Table 3.11. 

Except for FDOPA04, a large number of radiomics features were shown to be 

significantly different between the two groups. They were generally the same 

features which were shown to differentiate between the two groups on the 

ANOVA analysis of the whole dataset.  
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Table 3.10: gender and age distribution of responders and non-responders cohorts in each 

study, along with the p-values obtained after statistical comparison 

 

 

 

Table 3.11: adjusted p-values after ANOVA testing within the different datasets between 

responders and non-responders groups 
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Chapter 4 

 

Discussion 

This study extracted radiomics features from FDOPA PET scans of the striatal 

area in schizophrenic patients and healthy controls. While no consistent 

differences were found between patients and healthy controls, ten out of the 

fifteen most reproducible features resulted significantly different between 

patients responding to standard treatment and non-responders. In particular, the 

joint maximum was the feature which showed the highest classification 

accuracy, indicating that values related to striatal dopamine production are 

informative for prediction of treatment response in psychosis. 

 

 

Covariates analysis  

 

Our covariate analysis of radiomics features showed that gender and age were 

associated with data obtained from patients, much less with controls. 

In controls, gender turned out to be related only to the morphological features, 

which describe the geometrical properties of the region of interest, in this case 

the striatum. 

This might be explained by anatomical properties of the area, as the striatum 

tends to be smaller in women. [61] A minor influence of age was observed, as it 

resulted significant in only two features, but it is not enough to argue that it has 

a significant influence on dopamine signaling. 

There was a bit of uncertainty whether to include morphological features in the 

cross-sectional analysis: many of these measures are related to the sphericity of 

the region of interest, which are directly linked to the aggressiveness of the 

tumor, but of little importance when measuring the striatum. 

It does however seem that some changes in the morphology of this area appear 

in schizophrenic patients. While there are different opinions regarding the 

presence of a volume difference in patients compared to controls, [62] [63] 

changes in shape do exist [64] and may also be influenced by the assumption of 
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medication. [65] While it is not certain that morphological features may be able 

to capture these variations in a significant way, there was no reason to exclude 

them from this analysis.  

Furthermore, the region of interest was extracted using the FDOPA PET signal, 

which quantifies dopamine production. While the production is concentrated in 

the striatal area, it may be more or less extended depending on the presence of 

the disease. It must also be noted that the selected morphological features do not 

penalize the information that may have been otherwise brought by other features, 

since features were selected through clustering based on correlation. 

The situation is different in patients, where a large group of features was 

influenced both by gender and age. There currently is some evidence that gender 

causes differences in cognitive functions and neuroanatomy in patients with 

schizophrenia, but the findings are not consistent enough. [66] [67] It is however 

known for certainty that the age at which the first psychotic symptoms appear 

varies between men and women [64], and these findings seem to support the 

hypothesis that it has an influence on other aspects of the disease as well. 

Among the morphological features, two do no result significantly different in 

the patients group, which was expected given the results in the controls. They 

are features which quantify the eccentricity and the flatness of the ROI, which 

are therefore not directly linked to its volume, so this may be why they did not 

show any gender-based difference, or it may be due to sample bias. 

Age has been shown to be related to cognitive changes in schizophrenic patients 

different than those observed in a healthy population, [68] so it may influence 

other aspects of the disease as well.  

These findings seem to confirm that both these factors play a role in the 

development of schizophrenia, and possibly in the abnormalities observed in 

dopamine production. 

 

 

Cross-sectional analysis 

 

ANOVA testing showed that there were differences in the radiomics features 

between patients and controls which were due to gender and age, but none of 

them was able to differentiate between the two groups. 

No literature exists right now to compare these results to, since none of the 



31 
 

radiomics studies on schizophrenia focused on PET imaging related to dopamine 

production.  

These results may be partially explained by the fact that there was a lot of 

heterogeneity between the patients enrolled for this study: data came from 

several datasets, which were composed of subjects at different stages of the 

treatment and the development of the disease. Treatment does influence the 

dopamine production, since the D2 occupancy increases after antipsychotic 

assumption, [69] and may therefore cause too much variation among the signal 

measured from patients. 

The study may benefit by focusing on a more clinically homogeneous group, 

ideally unmedicated.  

For this reason, an additional ANOVA analysis was conducted separately on 

each dataset, with however poor results: no difference due to group, gender or 

age was found. This may be a further indicator that the differences previously 

found were only related to the heterogeneity of the datasets, but it must also be 

taken into consideration that few subjects (from 83 to 36) were available for each 

dataset, which makes the results of inferential statistics less powered. 

Except for the morphological features, the majority of the radiomics features 

selected focused on the distribution of the signal in the region of interest. The 

results seem to imply that, although it is known that there are abnormalities in 

dopamine production in patients, there is no substantial difference in the 

distribution or uniformity of the signal in one group or the other. The unexpected 

result was the median, since the signal was expected to be higher in patients. 

It must however be noted that usually these comparisons are made by 

differentiating between responders and non-responders, as there are important 

differences between the two groups that cannot be overlooked. 

ANOVA testing between controls and non-responders did not reveal any 

difference, which is to be expected given that dopamine production in non-

responders should be close to the normal range. 

There were however differences with the responders, which did not survive FDR 

correction. The number of analyzed features was particularly high and many 

tests were performed, therefore further feature reduction in order to focus only 

on few important aspects could give different results and highlight some of the 

differences observed before FDR. 
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Analysis of treatment response 

 

In the responders – non-responders comparison, ten out of fifteen features 

resulted to be significantly different between the two groups, with an influence 

of gender and age always present. 

From a visual inspection, it can be observed that generally responders have 

higher values than non-responders. The majority of features are related to the 

irregularity of the analyzed texture, which means that in responders the 

distribution of the signal is more irregular and less uniform. The fact that the 

median of the signal is also higher implies that in these individuals there is more 

dopamine production, therefore there is more activity in the striatal area which 

creates more irregularities in the patterns created by the signal. 

The elongation of the region of interest is also higher. A value close to 1 reflects 

a sphere-like shape, while lower values express a greater elongation in the ROI. 

As previously stated, there seems to be an effect of medications on the brain’s 

anatomy, but the findings are not consistent enough. It could also be argued that 

this difference is caused by the increased dopaminergic activity, which may 

change the extension of the area. There is however no difference in the other 

morphological features.  

The only two features where the non-responders had higher values were the joint 

maximum and the energy, which both belong to the grey level co-occurrence 

class. Features in this class are computed after creating a matrix which represents 

the number of occurrences of two consecutive voxels with a set grey level in a 

direction, to put it simply it reports how many times a voxel with grey level x is 

followed by a voxel with grey level y. The probability to observe a certain co-

occurrence can then be extracted from the matrix, from which the energy of the 

probability distribution can be computed. The joint maximum is the probability 

corresponding to the most common co-occurrence observed. The fact that both 

these values are higher in non-responders means that there are higher 

probabilities to observe specific co-occurrences, which means that there is a 

more regular pattern in the distribution of the signal. Again, this is related to the 

fact that the higher activity in responders causes more heterogeneity in the 

signal’s distribution.   

These differences seem to carry on when analyzing each dataset separately, and 

are therefore not dependent on the clinical state of the patients, except for the 
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FDOPA04 group. The group however was composed of subjects who did not 

take medication as regularly as they should have. 

While the features are different between the two groups, the performance of the 

AUC is relatively poor.  

Stepwise regression was performed to observe if the combined features may 

improve the performance, but only joint maximum significantly improved the 

model. This may be caused by the high correlation between the features, which 

therefore brings a lot of redundancy in information. However, more complex 

classification algorithms may still improve these results. 

Still, joint maximum gave a better result than the SUVr mean in differentiating 

between the two groups (AUC = 0.61), which is the index that right now is 

mostly implemented in clinical practice. The mean of the signal was not one of 

the fifteen features used for the study, but it was located in the cluster from which 

the median was selected.  

 

 

Limitations 

 

This study had some limitations. As mentioned, the dataset utilized had 

heterogeneity issues. Patients went from first-episode schizophrenia to chronic 

situations, which may have caused some inconsistency in the findings. 

The study may also improve with a major number of subjects, so that validation 

of the results on an independent cohort may be possible. 

We are also aware of the limitations radiomics brings. Its major issue is related 

to the reproducibility of findings, since the computation of the features is heavily 

dependent on many factors such as the imaging modality, the discretization 

method, the segmentation. [70] 

The process of feature selection was repeated on the test-retest scans with a 

lower number of grey levels, but the results did not change significantly: the 

majority of the selected features remained the same, and the few which changed 

maintained such a high correlation index with the not-selected ones that it is safe 

to assume that no information was lost. The features also had high correlation 

indexes with the ones used for the study.  

 

 



34 
 

 

 

 

 

Conclusion 

 

This study showed that radiomics features highlight significant differences 

between schizophrenic patients who respond to standard antipsychotic treatment 

and those who do not. In particular, the joint maximum feature had the highest 

performance in differentiating between the two groups, with an increase 

compared to the SUVr signal mean, which is what is currently employed in 

clinical studies. 

Future studies on a larger dataset with more complex classification models may 

highly improve the current situation. Radiomics features may be a potential 

support for the creation of a biomarker to early identify responders to 

antipsychotic treatment, and improve the understanding of the underlying 

biology of the disease. 

 

 

 

  



35 
 

 

  



36 
 

 

  



37 
 

 

Bibliography 

 

1. Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet. 2016 Jul 2;388(10039):86-

97. doi: 10.1016/S0140-6736(15)01121-6. Epub 2016 Jan 15. PMID: 26777917; 

PMCID: PMC4940219. 

 

2. Jablensky A., Sartorius N., Ernberg G., Anker M., Korten A., Cooper J.E., Day R., 

Bertelsen A. Schizophrenia: Manifestations, incidence and course in different cultures. 

A World Health Organization ten-country study. Psychol. Med. Monogr. Suppl. 

1992;20:1–97. doi: 10.1017/S0264180100000904. 

 

3.  Batinic B. Cognitive Models of Positive and Negative Symptoms of Schizophrenia 

and Implications for Treatment. Psychiatr Danub. 2019 Jun;31(Suppl 2):181-184. 

PMID: 31158119. 

 

4.  Kar SK, Jain M. Current understandings about cognition and the neurobiological 

correlates in schizophrenia. J Neurosci Rural Pract. 2016 Jul-Sep;7(3):412-8. doi: 

10.4103/0976-3147.176185. PMID: 27365960; PMCID: PMC4898111. 

5.  Schultz SH, North SW, Shields CG. Schizophrenia: a review. Am Fam 

Physician. 2007 Jun 15;75(12):1821-9. PMID: 17619525. 

 

6. George M, Maheshwari S, Chandran S, Manohar JS, Sathyanarayana Rao TS. 

Understanding the schizophrenia prodrome. Indian J Psychiatry. 2017 Oct-

Dec;59(4):505-509. doi: 10.4103/psychiatry.IndianJPsychiatry_464_17. PMID: 

29497198; PMCID: PMC5806335. 

 

7. Wahbeh MH, Avramopoulos D. Gene-Environment Interactions in Schizophrenia: A 

Literature Review. Genes (Basel). 2021 Nov 23;12(12):1850. doi: 

10.3390/genes12121850. PMID: 34946799; PMCID: PMC8702084. 

 



38 
 

8. Schork AJ, Wang Y, Thompson WK, Dale AM, Andreassen OA. New statistical 

approaches exploit the polygenic architecture of schizophrenia--implications for the 

underlying neurobiology. Curr Opin Neurobiol. 2016 Feb;36:89-98. doi: 

10.1016/j.conb.2015.10.008. Epub 2015 Nov 8. PMID: 26555806; PMCID: 

PMC5380793. 

 

9. Goff DC, Romero K, Paul J, Mercedes Perez-Rodriguez M, Crandall D, Potkin SG. 

Biomarkers for drug development in early psychosis: Current issues and promising 

directions. Eur Neuropsychopharmacol. 2016 Jun;26(6):923-37. doi: 

10.1016/j.euroneuro.2016.01.009. Epub 2016 Mar 19. PMID: 27005595. 

 

10. Linden DE. The challenges and promise of neuroimaging in psychiatry. Neuron. 2012 

Jan 12;73(1):8-22. doi: 10.1016/j.neuron.2011.12.014. PMID: 22243743. 

 

11. Grace AA. Dysregulation of the dopamine system in the pathophysiology of 

schizophrenia and depression. Nat Rev Neurosci. 2016 Aug;17(8):524-32. doi: 

10.1038/nrn.2016.57. Epub 2016 Jun 3. PMID: 27256556; PMCID: PMC5166560. 

 

12. Howes OD, McCutcheon R, Owen MJ, Murray RM. The Role of Genes, Stress, and 

Dopamine in the Development of Schizophrenia. Biol Psychiatry. 2017 Jan 1;81(1):9-

20. doi: 10.1016/j.biopsych.2016.07.014. Epub 2016 Aug 6. PMID: 27720198; 

PMCID: PMC5675052. 

 

13. Uno Y, Coyle JT. Glutamate hypothesis in schizophrenia. Psychiatry Clin Neurosci. 

2019 May;73(5):204-215. doi: 10.1111/pcn.12823. Epub 2019 Mar 6. PMID: 

30666759. 

 

14. Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG. 

Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cell 

Mol Neurobiol. 2019 Jan;39(1):31-59. doi: 10.1007/s10571-018-0632-3. Epub 2018 

Nov 16. PMID: 30446950. 

 

15. Lieberman JA, Kane JM, Alvir J. Provocative tests with psychostimulant drugs in 

schizophrenia. Psychopharmacology (Berl) 1987;91:415–33. 

 



39 
 

16. Carlsson A, Roos BE, Wålinder J, Skott A. Further studies on the mechanism of 

antipsychotic action: potentiation by alpha-methyltyrosine of thioridazine effects in 

chronic schizophrenics. J Neural Transm. 1973;34(2):125-32. doi: 

10.1007/BF01244665. PMID: 4146641. 

 

17. Wålinder J, Skott A, Carlsson A, Roos BE. Potentiation by metyrosine of thioridazine 

effects in chronic schizophrenics. A long-term trial using double-blind crossover 

technique. Arch Gen Psychiatry. 1976 Apr;33(4):501-5. doi: 

10.1001/archpsyc.1976.01770040061011. PMID: 779704. 

 

18. Seeman P, Lee T. Antipsychotic drugs: direct correlation between clinical potency and 

presynaptic action on dopamine neurons. Science. 1975 Jun 20;188(4194):1217-9. doi: 

10.1126/science.1145194. PMID: 1145194. 

 

19. Creese I, Burt DR, Snyder SH. Dopamine receptor binding predicts clinical and 

pharmacological potencies of antischizophrenic drugs. Science. 1976 Apr 

30;192(4238):481-3. doi: 10.1126/science.3854. PMID: 3854. 

 

20. Howes O, McCutcheon R, Stone J. Glutamate and dopamine in schizophrenia: an 

update for the 21st century. J Psychopharmacol. 2015 Feb;29(2):97-115. doi: 

10.1177/0269881114563634. Epub 2015 Jan 13. PMID: 25586400; PMCID: 

PMC4902122. 

 

21. McCutcheon RA, Abi-Dargham A, Howes OD. Schizophrenia, Dopamine and the 

Striatum: From Biology to Symptoms. Trends Neurosci. 2019 Mar;42(3):205-220. 

doi: 10.1016/j.tins.2018.12.004. Epub 2019 Jan 6. PMID: 30621912; PMCID: 

PMC6401206. 

 

22. Winton-Brown TT, Fusar-Poli P, Ungless MA, Howes OD. Dopaminergic basis of 

salience dysregulation in psychosis. Trends Neurosci. 2014 Feb;37(2):85-94. doi: 

10.1016/j.tins.2013.11.003. Epub 2014 Jan 2. PMID: 24388426. 

 

23. Lerner TN, Shilyansky C, Davidson TJ, Evans KE, Beier KT, Zalocusky KA, Crow 

AK, Malenka RC, Luo L, Tomer R, Deisseroth K. Intact-Brain Analyses Reveal 

Distinct Information Carried by SNc Dopamine Subcircuits. Cell. 2015 Jul 



40 
 

30;162(3):635-47. doi: 10.1016/j.cell.2015.07.014. PMID: 26232229; PMCID: 

PMC4790813. 

 

24. Kellendonk C, Simpson EH, Polan HJ, Malleret G, Vronskaya S, Winiger V, Moore 

H, Kandel ER. Transient and selective overexpression of dopamine D2 receptors in 

the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron. 

2006 Feb 16;49(4):603-15. doi: 10.1016/j.neuron.2006.01.023. PMID: 16476668 

 

25. Fee MS. The role of efference copy in striatal learning. Curr Opin Neurobiol. 2014 

Apr;25:194-200. doi: 10.1016/j.conb.2014.01.012. Epub 2014 Feb 21. PMID: 

24566242; PMCID: PMC4153469. 

 

26. Gold JM, Waltz JA, Matveeva TM, Kasanova Z, Strauss GP, Herbener ES, Collins 

AG, Frank MJ. Negative symptoms and the failure to represent the expected reward 

value of actions: behavioral and computational modeling evidence. Arch Gen 

Psychiatry. 2012 Feb;69(2):129-38. doi: 10.1001/archgenpsychiatry.2011.1269. 

PMID: 22310503; PMCID: PMC4406055. 

 

27. Maia TV, Frank MJ. An Integrative Perspective on the Role of Dopamine in 

Schizophrenia. Biol Psychiatry. 2017 Jan 1;81(1):52-66. doi: 

10.1016/j.biopsych.2016.05.021. Epub 2016 Jun 1. PMID: 27452791; PMCID: 

PMC5486232. 

 

28. Mortimer AM, Singh P, Shepherd CJ, Puthiryackal J. Clozapine for treatment-resistant 

schizophrenia: National Institute of Clinical Excellence (NICE) guidance in the real 

world. Clin Schizophr Relat Psychoses. 2010 Apr;4(1):49-55. doi: 

10.3371/CSRP.4.1.4. PMID: 20643629. 

 

29. Demjaha A, Murray RM, McGuire PK, Kapur S, Howes OD. Dopamine synthesis 

capacity in patients with treatment-resistant schizophrenia. Am J Psychiatry. 2012 

Nov;169(11):1203-10. doi: 10.1176/appi.ajp.2012.12010144. PMID: 23034655. 

 

30. Fluorodopa F18 (Systemic). Available at: http://www.drugs.com. Accessed April 24, 

2023. 

 



41 
 

31. Chondrogiannis S, Marzola MC, Rubello D. ¹⁸F-DOPA PET/computed tomography 

imaging. PET Clin. 2014 Jul;9(3):307-21. doi: 10.1016/j.cpet.2014.03.007. Epub 2014 

Apr 29. PMID: 25030394. 

 

32. Bose SK, Turkheimer FE, Howes OD, Mehta MA, Cunliffe R, Stokes PR, Grasby PM. 

Classification of schizophrenic patients and healthy controls using [18F] fluorodopa 

PET imaging. Schizophr Res. 2008 Dec;106(2-3):148-55. doi: 

10.1016/j.schres.2008.09.011. Epub 2008 Oct 11. PMID: 18849151. 

 

33. Veronese M, Santangelo B, Jauhar S, D'Ambrosio E, Demjaha A, Salimbeni H, Huajie 

J, McCrone P, Turkheimer F, Howes O. A potential biomarker for treatment 

stratification in psychosis: evaluation of an [18F] FDOPA PET imaging approach. 

Neuropsychopharmacology. 2021 May;46(6):1122-1132. doi: 10.1038/s41386-020-

00866-7. Epub 2020 Sep 22. PMID: 32961543; PMCID: PMC8115068. 

 

34. Egerton A, Demjaha A, McGuire P, Mehta MA, Howes OD. The test-retest reliability 

of 18F-DOPA PET in assessing striatal and extrastriatal presynaptic dopaminergic 

function. Neuroimage. 2010 Apr 1;50(2):524-531. doi: 

10.1016/j.neuroimage.2009.12.058. Epub 2009 Dec 23. PMID: 20034580; PMCID: 

PMC4096947. 

 

35. National Center for Biotechnology Information (2023). PubChem Compound 

Summary for CID 56494, Fluorodopa (18F). Retrieved April 24, 2023 from 

https://pubchem.ncbi.nlm.nih.gov/compound/Fluorodopa-_18F. 

 

36. Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, 

Ashrafinia S, Bakas S, Beukinga RJ, Boellaard R, Bogowicz M, Boldrini L, Buvat I, 

Cook GJR, Davatzikos C, Depeursinge A, Desseroit MC, Dinapoli N, Dinh CV, 

Echegaray S, El Naqa I, Fedorov AY, Gatta R, Gillies RJ, Goh V, Götz M, 

Guckenberger M, Ha SM, Hatt M, Isensee F, Lambin P, Leger S, Leijenaar RTH, 

Lenkowicz J, Lippert F, Losnegård A, Maier-Hein KH, Morin O, Müller H, Napel S, 

Nioche C, Orlhac F, Pati S, Pfaehler EAG, Rahmim A, Rao AUK, Scherer J, Siddique 

MM, Sijtsema NM, Socarras Fernandez J, Spezi E, Steenbakkers RJHM, Tanadini-

Lang S, Thorwarth D, Troost EGC, Upadhaya T, Valentini V, van Dijk LV, van 

Griethuysen J, van Velden FHP, Whybra P, Richter C, Löck S. The Image Biomarker 



42 
 

Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput 

Image-based Phenotyping. Radiology. 2020 May;295(2):328-338. doi: 

10.1148/radiol.2020191145. Epub 2020 Mar 10. PMID: 32154773; PMCID: 

PMC7193906. 

 

37. Zwanenburg A, Leger S, Vallieres M, Lock S. Image biomarker standardisation 

initiative. arXiv.org website. https://arxiv.org/abs/1612.07003. Published December 

21, 2016. Accessed October 06, 2022 

 

38. Mayerhoefer ME, Materka A, Langs G, Häggström I, Szczypiński P, Gibbs P, Cook 

G. Introduction to Radiomics. J Nucl Med. 2020 Apr;61(4):488-495. doi: 

10.2967/jnumed.118.222893. Epub 2020 Feb 14. PMID: 32060219; PMCID: 

PMC9374044. 

 

39. Yang F, Wang Y, Li Q, Cao L, Sun Z, Jin J, Fang H, Zhu A, Li Y, Zhang W, Wang Y, 

Xie H, Gustafsson JÅ, Wang S, Guan X. Intratumor heterogeneity predicts metastasis 

of triple-negative breast cancer. Carcinogenesis. 2017 Sep 1;38(9):900-909. doi: 

10.1093/carcin/bgx071. PMID: 28911002. 

 

40. Sala E, Mema E, Himoto Y, Veeraraghavan H, Brenton JD, Snyder A, Weigelt B, 

Vargas HA. Unravelling tumour heterogeneity using next-generation imaging: 

radiomics, radiogenomics, and habitat imaging. Clin Radiol. 2017 Jan;72(1):3-10. doi: 

10.1016/j.crad.2016.09.013. Epub 2016 Oct 11. PMID: 27742105; PMCID: 

PMC5503113. 

 

41. Yip SS, Aerts HJ. Applications and limitations of radiomics. Phys Med Biol. 2016 Jul 

7;61(13):R150-66. doi: 10.1088/0031-9155/61/13/R150. Epub 2016 Jun 8. PMID: 

27269645; PMCID: PMC4927328. 

 

42. Mu W, Chen Z, Liang Y, Shen W, Yang F, Dai R, Wu N, Tian J. Staging of cervical 

cancer based on tumor heterogeneity characterized by texture features on (18)F-FDG 

PET images. Phys Med Biol. 2015 Jul 7;60(13):5123-39. doi: 10.1088/0031-

9155/60/13/5123. Epub 2015 Jun 17. PMID: 26083460. 

 



43 
 

43. Howes OD, McCutcheon R, Agid O, de Bartolomeis A, van Beveren NJ, Birnbaum 

ML, Bloomfield MA, Bressan RA, Buchanan RW, Carpenter WT, Castle DJ, Citrome 

L, Daskalakis ZJ, Davidson M, Drake RJ, Dursun S, Ebdrup BH, Elkis H, Falkai P, 

Fleischacker WW, Gadelha A, Gaughran F, Glenthøj BY, Graff-Guerrero A, Hallak 

JE, Honer WG, Kennedy J, Kinon BJ, Lawrie SM, Lee J, Leweke FM, MacCabe JH, 

McNabb CB, Meltzer H, Möller HJ, Nakajima S, Pantelis C, Reis Marques T, 

Remington G, Rossell SL, Russell BR, Siu CO, Suzuki T, Sommer IE, Taylor D, 

Thomas N, Üçok A, Umbricht D, Walters JT, Kane J, Correll CU. Treatment-

Resistant Schizophrenia: Treatment Response and Resistance in Psychosis (TRRIP) 

Working Group Consensus Guidelines on Diagnosis and Terminology. Am J 

Psychiatry. 2017 Mar 1;174(3):216-229. doi: 10.1176/appi.ajp.2016.16050503. Epub 

2016 Dec 6. PMID: 27919182; PMCID: PMC6231547. 

 

44. Shi D, Zhang H, Wang G, Yao X, Li Y, Wang S, Ren K. Neuroimaging biomarkers 

for detecting schizophrenia: A resting-state functional MRI-based radiomics analysis. 

Heliyon. 2022 Dec 10;8(12):e12276. doi: 10.1016/j.heliyon.2022.e12276. PMID: 

36582679; PMCID: PMC9793282. 

 

45. Carrasco-Poves A, Ruiz-Espana S, Brambilla CR, Neuner I, Rajkumar R, Ramkiran S, 

Lerche C, Moratal D. Analysis of New Biomarkers for the Study of Schizophrenia 

Following a Radiomics Approach on MR and PET Imaging. Annu Int Conf IEEE Eng 

Med Biol Soc. 2022 Jul;2022:234-237. doi: 10.1109/EMBC48229.2022.9871543. 

PMID: 36086347. 

 

46. Nordio G, Easmin R, Giacomel A, et al. An automatic analysis framework for FDOPA 

PET neuroimaging. Journal of Cerebral Blood Flow & Metabolism. 2023;0(0). 

doi:10.1177/0271678X231168687 

 

47. K. Friston, “A short history of SPM,” in Statistical Parametric Mapping: The Analysis 

of Functional Brain Images, 2007, pp. 3–9. doi: 10.1016/B978-012372560-8/50001-2. 

 

48. C. S. Patlak, R. G. Blasberg, and J. D. Fenstermacher, “Graphical evaluation of blood-

to-brain transfer constants from multiple-time uptake data.,” J. Cereb. blood flow 

Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab., vol. 3, no. 1, pp. 1–7, Mar. 1983, 

doi:10.1038/jcbfm.1983.1. 



44 
 

 

49. C. S. Patlak and R. G. Blasberg, “Graphical evaluation of blood-to-brain transfer 

constants from multiple-time uptake data. Generalizations.,” J. Cereb. blood flow 

Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab., vol. 5, no. 4, pp. 584–590, Dec. 

1985,doi: 10.1038/jcbfm.1985.87. 

 

50. Giovanna Nordio, Rubaida Easmin, Alessio Giacomel, Ottavia Dipasquale, Daniel 

Martins, Steven Williams, Federico Turkheimer, Oliver Howes, Mattia Veronese 

(2022). Digital data repository and automatic analysis framework for FDOPA PET 

neuroimaging. 10.1101/2022.04.14.488129. 

 

51. Martinez D, Slifstein M, Broft A, et al. Imaging Human Mesolimbic Dopamine 

Transmission with Positron Emission Tomography. Part II: Amphetamine-Induced 

Dopamine Release in the Functional Subdivisions of the Striatum. Journal of Cerebral 

Blood Flow & Metabolism. 2003;23(3):285-300. 

doi:10.1097/01.WCB.0000048520.34839.1A 

 

52. Zwanenburg A, Leger S, Agolli L, Pilz K, Troost EG, Richter C, Löck S. Assessing 

robustness of radiomic features by image perturbation. Scientific reports. 2019 Jan 

24;9(1):614. 

 

53. Bettinelli A, Marturano F, Avanzo M, Loi E, Menghi E, Mezzenga E, Pirrone G, 

Sarnelli A, Strigari L, Strolin S, Paiusco M. A Novel Benchmarking Approach to 

Assess the Agreement among Radiomic Tools. Radiology. 2022 Jun;303(3):533-541. 

doi: 10.1148/radiol.211604. Epub 2022 Mar 1. Erratum in: Radiology. 2022 

May;303(2):E30. PMID: 35230182. 

 

54. Ligero M, Torres G, Sanchez C, Diaz-Chito K, Perez R, Gil D. Selection of Radiomics 

Features based on their Reproducibility. Annu Int Conf IEEE Eng Med Biol Soc. 2019 

Jul;2019:403-408. doi: 10.1109/EMBC.2019.8857879. PMID: 31945924. 

 

55. Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol 

Bull. 1979 Mar;86(2):420-8. doi: 10.1037//0033-2909.86.2.420. PMID: 18839484. 

 



45 
 

56. Orlhac F, Soussan M, Maisonobe JA, Garcia CA, Vanderlinden B, Buvat I. Tumor 

texture analysis in 18F-FDG PET: relationships between texture parameters, 

histogram indices, standardized uptake values, metabolic volumes, and total lesion 

glycolysis. J Nucl Med. 2014 Mar;55(3):414-22. doi: 10.2967/jnumed.113.129858. 

Epub 2014 Feb 18. PMID: 24549286. 

 

57. Leger, S., Zwanenburg, A., Pilz, K. et al. A comparative study of machine learning 

methods for time-to-event survival data for radiomics risk modelling. Sci Rep 7, 13206 

(2017). https://doi.org/10.1038/s41598-017-13448-3 

 

58. Orlhac F, Boughdad S, Philippe C, Stalla-Bourdillon H, Nioche C, Champion L, 

Soussan M, Frouin F, Frouin V, Buvat I. A Postreconstruction Harmonization Method 

for Multicenter Radiomic Studies in PET. J Nucl Med. 2018 Aug;59(8):1321-1328. 

doi: 10.2967/jnumed.117.199935. Epub 2018 Jan 4. PMID: 29301932. 

 

59. Fortin JP, Cullen N, Sheline YI, Taylor WD, Aselcioglu I, Cook PA, Adams P, 

Cooper C, Fava M, McGrath PJ, McInnis M, Phillips ML, Trivedi MH, Weissman 

MM, Shinohara RT. Harmonization of cortical thickness measurements across 

scanners and sites. Neuroimage. 2018 Feb 15;167:104-120. doi: 

10.1016/j.neuroimage.2017.11.024. Epub 2017 Nov 17. PMID: 29155184; PMCID: 

PMC5845848. 

 

60. Fortin JP, Parker D, Tunç B, Watanabe T, Elliott MA, Ruparel K, Roalf DR, 

Satterthwaite TD, Gur RC, Gur RE, Schultz RT, Verma R, Shinohara RT. 

Harmonization of multi-site diffusion tensor imaging data. Neuroimage. 2017 Nov 

1;161:149-170. doi: 10.1016/j.neuroimage.2017.08.047. Epub 2017 Aug 18. PMID: 

28826946; PMCID: PMC5736019. 

 

61. Koikkalainen J, Hirvonen J, Nyman M, Lötjönen J, Hietala J, Ruotsalainen U. Shape 

variability of the human striatum--Effects of age and gender. Neuroimage. 2007 Jan 

1;34(1):85-93. doi: 10.1016/j.neuroimage.2006.08.039. Epub 2006 Oct 23. PMID: 

17056276. 

 



46 
 

62. Lauer M, Beckmann H. The human striatum in schizophrenia. I. Increase in overall 

relative striatal volume in schizophrenics. Psychiatry Res. 1997 Feb 7;68(2-3):87-98. 

doi: 10.1016/s0925-4927(96)02946-0. PMID: 9104756. 

 

63. Roiz-Santiañez R, Suarez-Pinilla P, Crespo-Facorro B. Brain Structural Effects of 

Antipsychotic Treatment in Schizophrenia: A Systematic Review. Curr 

Neuropharmacol. 2015;13(4):422-34. doi: 10.2174/1570159x13666150429002536. 

PMID: 26412062; PMCID: PMC4790397. 

 

64. Gutman BA, van Erp TGM, Alpert K, Ching CRK, Isaev D, Ragothaman A, 

Jahanshad N, Saremi A, Zavaliangos-Petropulu A, Glahn DC, Shen L, Cong S, Alnaes 

D, Andreassen OA, Doan NT, Westlye LT, Kochunov P, Satterthwaite TD, Wolf DH, 

Huang AJ, Kessler C, Weideman A, Nguyen D, Mueller BA, Faziola L, Potkin SG, 

Preda A, Mathalon DH, Bustillo J, Calhoun V, Ford JM, Walton E, Ehrlich S, Ducci 

G, Banaj N, Piras F, Piras F, Spalletta G, Canales-Rodríguez EJ, Fuentes-Claramonte 

P, Pomarol-Clotet E, Radua J, Salvador R, Sarró S, Dickie EW, Voineskos A, 

Tordesillas-Gutiérrez D, Crespo-Facorro B, Setién-Suero E, van Son JM, Borgwardt 

S, Schönborn-Harrisberger F, Morris D, Donohoe G, Holleran L, Cannon D, 

McDonald C, Corvin A, Gill M, Filho GB, Rosa PGP, Serpa MH, Zanetti MV, 

Lebedeva I, Kaleda V, Tomyshev A, Crow T, James A, Cervenka S, Sellgren CM, 

Fatouros-Bergman H, Agartz I, Howells F, Stein DJ, Temmingh H, Uhlmann A, de 

Zubicaray GI, McMahon KL, Wright M, Cobia D, Csernansky JG, Thompson PM, 

Turner JA, Wang L. A meta-analysis of deep brain structural shape and asymmetry 

abnormalities in 2,833 individuals with schizophrenia compared with 3,929 healthy 

volunteers via the ENIGMA Consortium. Hum Brain Mapp. 2022 Jan;43(1):352-372. 

doi: 10.1002/hbm.25625. Epub 2021 Sep 8. PMID: 34498337; PMCID: 

PMC8675416. 

 

65. Taylor S, Christensen JD, Holcomb JM, Garver DL. Volume increases in striatum 

associated with positive symptom reduction in schizophrenia: a preliminary 

observation. Psychiatry Res. 2005 Oct 30;140(1):85-9. doi: 

10.1016/j.pscychresns.2005.06.004. Epub 2005 Sep 27. PMID: 16194599. 

 



47 
 

66. Mendrek A, Mancini-Marïe A. Sex/gender differences in the brain and cognition in 

schizophrenia. Neurosci Biobehav Rev. 2016 Aug;67:57-78. doi: 

10.1016/j.neubiorev.2015.10.013. Epub 2015 Dec 30. PMID: 26743859. 

 

67. Canuso CM, Pandina G. Gender and schizophrenia. Psychopharmacol Bull. 

2007;40(4):178-90. PMID: 18227787. 

 

68. Maltais JR, Gagnon G, Garant MP, Trudel JF. Correlation between age and MMSE in 

schizophrenia. Int Psychogeriatr. 2015 Nov;27(11):1769-75. doi: 

10.1017/S1041610215000459. Epub 2015 Apr 15. PMID: 25872525. 

 

69. Baron JC, Martinot JL, Cambon H, Boulenger JP, Poirier MF, Caillard V, Blin J, 

Huret JD, Loc'h C, Maziere B. Striatal dopamine receptor occupancy during and 

following withdrawal from neuroleptic treatment: correlative evaluation by positron 

emission tomography and plasma prolactin levels. Psychopharmacology (Berl). 

1989;99(4):463-72. doi: 10.1007/BF00589893. PMID: 2574481. 

 

70. Park JE, Kim HS. Radiomics as a Quantitative Imaging Biomarker: Practical 

Considerations and the Current Standpoint in Neuro-oncologic Studies. Nucl Med Mol 

Imaging. 2018 Apr;52(2):99-108. doi: 10.1007/s13139-017-0512-7. Epub 2018 Feb 1. 

PMID: 29662558; PMCID: PMC5897262. 

 

 

 


