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to my grandfather Guido..

measure
etimology: italian misura, french mésure, latin MENSURA, coming from MENSUS, past
participle of the verb METÍRI meanint to measure. This verb has its origins in the in-
doeuropean root MÂ; to be compared with the sanscrit mâti meaning measure, to measure,
mâtram = greek mètron, slavish and serbian mata, celtic mead, meas, ancient alt german
mëz, mâza and the modern Maas, ancient german mezzan and modern messen, gotic mitan
mäta.

This root can also be found in the words meter - the fundamental unit to measure
lenghts, imitate, mimic - the act of ’measuring’ someone or something in order to reproduce
it, mathematics (since this root gained also the metaphorical meaning of ”thinking”, moon
- since the lunar period was the fundamental unit to measure months ’ duration - and hence
month.
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Introduction

Modern gravitational waves interferometers are currently limited in mid and low frequencies
by the thermal noise. Thermal noise is modeled by means of the fluctuation dissipation
theorem, which itself sits on the hypothesis of thermodynamic equilibrium. However, the
suspension fibers and mirrors, whose thermal noise affects the sensitivity operate rather in
non equilibrium condition, due to heat fluxes generated by the absorbed laser power and by
thermal compensation techniques. So far, the theoretical knowledge of thermal noise extends
only to the thermodynamical equilibrium condition, whereas the nonequilibrium condition
has been little explored.

On the other hand, nonequilibrium driving is expected to increase in the future genera-
tions of interferometers: thus it is now mandatory to understand what the impact would be
on the estimation of the thermal noise. Some measurements in conditions similar to those in
GW detectors have already been performed in a metal system by the ’Rarenoise’ experiment,
within the VIRGO collaboration. Measurements suggested that in a nonequilibrium state
the noise can depend not only on the (local) thermodynamic temperature but also on the
heat flux. However, the outcome of somewhat similar measurements on silicon differ.

What is then needed is a phenomenological relation between the thermal noise level and
the parameters that characterize the non-equilibrium condition. A better comprehension of
this problem would help the future interferometer’s design, so to minimize heat fluxes if they
prove to affect the thermal noise level. For example, the beam size could be re-defined in
order to minimize the temperature gradients in the mirrors.

In this thesis I am going to collaborate with the Rarenoise experiment. The target is to try
to improve the ’Rarenoise’ experiment by substituting its previously used capacitive readout
with an interferometric one. The capacitive measurements were affected by a systematic
error due to calibration issues. The interferometric readout should be instead independent
on this. I am going to build and characterize the interferometric readout setup, bringing its
sensitivity down to the desired level of 10−29m2/Hz in the 100-2000 Hz frequency band.
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Chapter 1

Gravitational Waves Detection

1.1 Gravitational Waves

I will summarize here the basic concepts about Gravitational Waves (GW). For a more
general argumentation see [7] or [8].

GW have been predicted by Albert Einstein in 1915 in the context of the General Relativ-
ity theory. Thanks to the equivalence principle, gravity is no longer described as a distance
interaction between massive bodies but as the curvature of the space-time’s geometry in-
duced by the mass and energy distribution. The spacetime is described as a Riemannian
manifold, whose properties are summarized in the symmetric metric tensor gµν(x). Ein-
stein’s field equations [1.1] relate the energy-momentum tensor Tµν(x) to the metric tensor
as it follows:

Rµν −
1

2
Rgµν =

8πG

c4
Tµν (1.1)

where G is Newton’s constant, c is the speed of light, Rµν is the Ricci tensor and R is the Ricci
scalar. The constant on the right hand side is very small: 8πG

c4
≈ 2.071 × 10−43s2m−1kg−1,

and so a huge amount of matter and energy density is needed to influence the spacetime’s
curvature. In absence of matter, the metric gµν(x) reduces to the flat Minkowsky metric ηµν
= diag(-1, 1, 1, 1).

GWs emerge when trying to study the small perturbations of a metric. For simplicity the
flat metric is chosen. In the weak field approximation the matter-energy density contribution
is very small, and the metric gµν will be barely different from the flat Minkowsky metric.
The small deviation from the flat metric can be enclosed in a symmetric tensor hµν which
respects the following equations:

gµν = ηµν + hµν |hµν | << 1 |∂µhνρ| << 1 (1.2)

The field equations [1.1] can be then linearized, and after some mathematical computations,
one can obtain a wave equation for the tensor h̄µν = hµν − 1

2
ηµνh

ρ
ρ:

�h̄µν =
8πG

c4
Tµν (1.3)

where � is defined as the flat space d’Alambertian � = ηµν∂
µ∂ν , along with the condition

∂µh̄µν = 0 (transverse condition). Equation 1.3 is the basic result for computing the genera-
tion of GWs within linearized theory. To study the propagation or the interaction with test
masses of GWs we are interested to a solution in vacuum (Tµν(x) = 0), which turns out to
be:

�h̄µν = 0 (1.4)

9
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This equation can be solved with the Green function method, and one can obtain

h̄µν = Aµνe
ikρxρ (1.5)

along with the conditions kµAµν = 0 (transverse condition), kρk
ρ = 0 (light speed prop-

agation). Freedom in the gauge choice can be used to set the trace h̄ to 0, making the
wave tensor Transverse and Traceless (TT gauge). For a wave propagating in the z direction
k = (1, 0, 0, 1) and the solution in this gauge is then:

h̄TTµν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 eiω(t− z
c

) (1.6)

where ω is the gravitational wave’s frequency and t − z
c

is the retarded time, since the
waves take time to propagate. As shown, two degrees of freedom are left, as in the case
of the electromagnetic waves. The resulting wave is a superposition of two polarizations,
named respectively + (plus) and × (cross). By defining two polarization tensors ε+ and ε×

ε+µν =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 ε×µν =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 (1.7)

a generic wave can be written as

h̄TTµν =
∑
i=+,×

hiε
i
µνe

iω(t− z
c

) (1.8)

The physical effect of GWs is the following: due to a GW’s transit, the metric varies:

ηµν +GW → gµν = ηµν + hTTµν =


−1 0 0 0
0 1 + h+cos(ω(t− z

c
)) h×cos(ω(t− z

c
)) 0

0 h×cos(ω(t− z
c
)) 1− h+cos(ω(t− z

c
)) 0

0 0 0 1


(1.9)

The proper distance between two points at rest is then modified. Considering only the
+ polarization and two events x1 = (ct, x1, 0, 0), x2 = (ct, x2, 0, 0), ∆x = (0, x1 − x2, 0, 0),
one can obtain:

s2 = ηµν∆x
µ∆xν + hTTµν ∆xµ∆xν → s ≈ (x1 − x2)

(
1 +

1

2
h+cos(ωt)

)
(1.10)

This means that the proper distance between the two events is changing with time. In
the general case we can say that the amplitude of the wave is elongation ratio h ∼ ∆L

L
.

The polarization’s name is due to the effect they singularly have on a a ring of particles
lying on a plane perpendicular to the propagation direction as shown in figure 1.1

As for electromagnetic (EM) radiation , GW radiation is expected to span a wide range
of frequencies, depending on the source.
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Figure 1.1: The effect of + wave (a) and a × wave (b) propagating in direction ζ3 and hitting
a ring of matter lying on the plane defined by ζ1 and ζ2 during one wave cycle. The picture
shows the wave’s effect when ωt is equal respectively to 0, π/2, π and 3π/2. The effect of
the two polarization is the same, but one is rotated with respect to the other one by a π

4

angle on the ring’s plane [8] (figure from [8]).

Figure 1.2: The expected Gravitational Waves Spectrum, with expected sources and current
(or proposed) detection methods. The currently ground-based interferometers are sensible to
GWs in the acoustic band, generated by black holes binaries, neutron star binaries and stellar
supernovas [7]. The planned LISA space interferometer will be sensible at low frequencies
to waves expected to be generated by super massive black holes [?]. To measure even lower
frequencies pulsar timing arrays are used: taking advantage or their very regular spinning
period, they are perfect clocks. If a GW passes between the pulsar and the earth, an anomaly
in the pulsar’s periodicity would be seen [15]. GWs are also expected to have been generated
by quantum fluctuations in the early universe, and to generate a stochastic GW background
as the CMB does with EM waves [16] (figure from [?]).
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1.2 Gravitational Waves Experiments

Since the prediction by Einstein, physicists have inquired if there could be some physical
effect associated to gravitational waves, or if they were just an artifact caused by a bad
coordinate choice, i.e. they could be set to zero with an appropriate coordinate change [7].
After more than four decades of debate, most of the scientific community concluded that the
gravitational waves should have been a physical reality and one could attempt to measure
them [1]. The technological advances of the 40’s and the 50’ made it also feasible to start
some new gravitational experiments [1].

1.2.1 Resonant Bar Detectors

The first experiment for the detection of GW was realized by Joseph Weber. He tried to
”measure the Riemann tensor” [2] using resonant aluminum bars.

The detection principle is the following: an aluminum bar is a high quality factor oscilla-
tor, whose mechanical modes are going to be excited by a transiting GW. Each mode of the
bar can be studied independently. The most relevant one is the lowest frequency longitudi-
nal mode, since it has a higher quadrupole moment, and it is therefore the mode which the
GW transfers more of it’s energy to. The interaction can be explained by simplifying the
bar’s structure to that of two of points separated by a distance r and coupled by a spring.
As a GW passes by, each of the two points is going to try to follow its own geodesic, but
the spring is being so elongated, and the force applied by her would try to get the points
back. One can demonstrate, from the geodesic deviation equation, that under the effect of
a gravitational wave a particle accelerates as if under the effect of a newtonian force

FGW, i =
m

2
ḧTTij ζ

j (1.11)

where ζ i is a vector indicating the point’s spatial position. This effect is resumed in the fol-
lowing equation which puts together acceleration, dissipation force, restoring force, external
force caused by the GW and external force caused by noise (b is the dissipation factor, m is
the mass of each point, k is the spring’s constant) [17]:

ζ̈ +
b

m
ζ̇ +

k

m
ζ =

1

m
(FGW + FN) (1.12)

Resonant bars were huge and heavy (∼ 3 tons) high quality aluminum cylinders [17].
The size was chosen to maximize the GW cross section [17]. The frequency of the first
longitudinal mode determines the frequency the bar is most sensible to. The resonance
frequency was around 1 kHz, which also was the expected wave frequency of supernovae
GW emission [17].

The most relevant issue of these detectors was thermal noise. The average square am-
plitude of oscillation of a cylindrical bar due to thermal fluctuations (Brownian-noise forces
or Langevin forces) was many orders of magnitude larger than the oscillation amplitudes
induced by an expected gravitational wave [1]. To solve this, in the idea was to cool down
the resonant bars to cryogenic temperatures ∼ 4K. Anyway, the bar’s noise was still dom-
inated by the thermal noise (both thermo-mechanical and thermo-electrical). The noise in
the amplifier were other important noise sources (figure 1.4).

AURIGA and NAUTILUS have been the most sensitive resonant GW detectors. Up
to now, resonant bars have made no confirmed detections, and they have been dismissed
because they have been overcome by the GW interferometers.
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Figure 1.3: The NAUTILUS cryogenic resonant detector (open), installed at the ”Laboratori
Nazionali di Frascati” (INFN) in the years 1994-2016 operating at 2 K. [1].

Figure 1.4: Power spectral density of the cryogenic AURIGA detector, installed at the
”Laboratori Nazionali di Legnaro” (INFN) in the years 1998-2016 operating a 4.5 K [1].
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1.2.2 Gravitational Waves Interferometers

Currently interferometry is the physical principle used to detect GWs in the acoustic band.
Since GWs stretch and contract distances (as in figure 1.1), interferometry can be used to
precisely measure if the relative length of two perpendicular paths changes in time due to
the transit of a GW . The used scheme is that of a Michelson Interferometer. In the simplest
case, it consists in a laser source, a beam splitter, two mirrors and a photodiode (a simple
scheme is reported in figure 1.6(a)).

(a) The VIRGO interferometer in Cascina, near Pisa, Italy

(b) The LIGO interferometers in Hanford (Wasington, left) and Livingston
(Louisiana, right) in the United States

Figure 1.5: Pictures of the three currently active ground-based interferometers [?].

The operation is as follows: let the incoming beam be E(r) = E0e
i(kz−ωt) (where k = 2π

λ

is the wave vector, λ is the laser’s wavelength, and z a length parameter along the beam’s
path). The beam’s intensity is then I0 ∝ EE∗ = |E|2. The beam is splitted by a 50% power
beam splitter (BS), obtaining two different beams (U1(r) and U2(r)) propagating along the
two arms, long respectively L1 and L2 and forming a 90◦ angle between them. The beams
are reflected back by the two mirrors at the end of the arms, then they are recombined in the
beam splitter and finally hit the photodiode, where the outcoming intensity Iout is readed. If
the two beams have the opposite phase (modulo 2π) at recombination, the intensity on the
photodiode is the same as the one entering the interferometer. If the length of the two arms
is different, the two beams have a different phase at recombination, and we see interference.
The two beams, once they have gone back and forth the two arms and recombine at the BS,
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singularly are

L1(t)→ E1(r) =
1

2
E0e

i(kz−ωt)ei2kL1(t) (1.13)

L2(t)→ E2(r) =
1

2
E0e

i(kz−ωt)ei2kL2(t) (1.14)

(1.15)

The outcoming beam is the superposition of two beams which have a phase difference between
them. The intensity readed by the photodiode is then:

Iout(t) = |E1(r) + E2(r)|2 = |E1(r)|2 + |E2(r)|2 + E1(r)E2(r)∗ + E1(r)∗E2(r)

=
1

2
E2

0 −
1

2
E2

0cos(2k(L2(t)− L1(t)))

=
1

2
I0(1− cos(2k∆L(t) )

(1.16)

(a) (b)

Figure 1.6: Left: A simple Michelson interferometer scheme, consisting in a laser source, a
beam splitter, two mirrors and a photodiode. Right: Plot of the ideal intensity output in
function of the relative displacement ∆L by an interferometer in equation (1.16).

As we can see, the phase difference ∆φ(t) = 2k(L2(t) − L1(t)) = 4π
λ

∆L(t) originates a
modulation in Iout(t), which is now a periodic function of the displacement ∆L, varying from
0 to I0 and with period equal to λ

2
. When Iout = 0 we have a dark fringe, and when Iout = I0

we have a white fringe. If the phase increases by 2π, the relative position changes, but the
output does not. Looking at the output in figure 1.6(b), in this case a fringe is said to have
been crossed.

Of course the reality is much more complicated than this, and many other devices are
being added in order to measure that λ

2
≈ 1µm displacement with a 10−12 resolution in

the desired frequency band of 100-1000Hz in the 103m long arms of the currently used
interferometers, and reach the expected strain of h = ∆L

L
= 10−21.

With general relativistic computation, [7] demonstrates that the phase difference induced
by a + polarized GW to the laser beams in the two arms if the arms lie respectively on the
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x and y axis and the wave propagates along z is

∆φgw = ωl
2L

c
h0 cos

(
ωgwt+

L

c

)
sinc

(
ωgwL

c

)
(1.17)

where L is the length of the two arms, ωl is 2π times the laser beam’s frequency and ωgw is
2π times the gravitational wave’s frequency. This is the case, if we have only one polariza-
tion propagating perpendicularly to the detector’s plane. In this condition the detector is
completely insensible to the other polarization, since the two arms would be elongated and
contracted simultaneously in the same way. More in general one can calculate the antenna
pattern of the interferometer applying two rotation matrices and obtain (a shown in [7])

h(t) =
1

2
(1 + cos2(θ))cos(2φ)h+(t) + cos(θ)sin(2φ)h×(t) (1.18)

The antenna pattern is shown in figure 1.7: where θ and φ are respectively the zenith and
azimuthal angles of the GW source.

Figure 1.7: The antenna pattern for an interferometer decomposed into its sensitivity in the
+ polarization (left) and the × polarization (right) [5].

The main noise sources affecting interferometers are the quantum noise form the laser
beam, gravity gradients from the earth and again thermal noise, in the mirror coatings and
in the mirror suspension. The noise spectrum of VIRGO and LIGO is reported in figure 1.8:

(a) The noise spectrum of both LIGO and VIRGO
[21]

(b) The estimated noise causes in the VIRGO detec-
tor. Note the blue and the red line, which indicate
the thermal noise contribution. [4].

Figure 1.8: The noise in the LIGO and VIRGO detectors

As shown in this plot, the thermal noise in the suspension system and in the mirror
coatings is limiting the sensitivity of the interferometer at mid and low frequency.
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1.3 The Detected GW signals

Anyway the sensitivity reached by the interferometers was high enough that after one hun-
dred years of experimental effort, on September 14, 2015 the event called GW140915 was
finally detected by the LIGO interferometers (figure 1.9). The signal came from a black hole
binary merger, and corresponded to a relative displacement of the interferometer arms at
the level of 10−18m [18]. Since it was detected only by two interferometers, the sky location
of the event primarly determinated by the relative time arrival of the signal, and the 90%
confidence level sky area was of 600 deg2 [18] (figure 1.10(b) ).

Figure 1.9: The gravitational-wave event GW150914 observed by the LIGO Hanford (H1,
left column panels) and Livingston (L1, right column panels) detectors. GW150914 was
generated by the inspiral and merger of two black holes of masses m1 = 36+5

−4M� and m2 =
29+4
−4M� at a luminosity distance of 410+160

−180 Mpc. The resulting Black Hole had a mass of
M = 62+4

−4M�. The missing mass of 3+0.5
−0.5M� was radiated away as gravitational waves. On

the top row, the strain measured by the two LIGO. On the second row, the gravitational-
wave strain projected onto each detector, with solids lines showing a numerical relativity
waveform from a system with parameters consistent with those recovered from GW150914.
On the third row, the residuals after subtracting the filtered numerical relativity waveform
from the filtered detector time series. On the bottom row a time-frequency representation of
the strain data. The signal’s frequency increasing over time as predicted by GR is evidenced.
Picture from [18].

The O1 LIGO run ended with an other detection, GW151226 [19], and with a third possi-
ble detection, LVT151012, which was not confirmed because of it’s low statistical significance
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of 1.7 σ [20]. LIGO was running again in from November 30, 2016, and some time after, on
August 1, 2017, VIRGO started running to [?], and during the joined run GW170814 was
the first event detected by three interferometers [21]. Putting together the information from
the three interferometers, the event’s localization was much more precise, going from a 90%
credible region of 1160 deg2 using only the LIGO information to a 90% credible region of
60deg2 using also that of VIRGO (improvement of a factor ∼ 20 in the precision) [21](see
figure 1.10(b) ).

Figure 1.10: Left: the detected BH-BH waveforms. Right: the sky location of the detected
events. In both pictures the event GW170608 is not reported. Pictures from [6].

Three days after GW170817 was detected by the LIGO interferometers, while VIRGO
did not see it, even though his sensitivity was good enough to detect it. The source was well
localized in one of VIRGO’s blind spots [22]. It turned out that the signal was generated by
a binary neutron star merger [22]. Since the neutron stars’ masses were much smaller than
those of the previously detected black holes, and hence the signal lasted much more. The
source was then searched with the telescopes the and detected less than 11 hours after [23].
Having seen both electromagnetic and gravitational radiation from the same source gave
officially birth to the multimessanger astronomy. Light from the source was observed fading
in the days after [23] (see figure 1.12) .
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Figure 1.11: All of the detected GW signals. Since the masses were much smaller, GW170817
event’s duration is much longer with respect to the binary black holes ones. Picture from [?]

Figure 1.12: The light detected from the source of the GW170817 event in the 606nm-1.6µm
wavelength band. The smaller pictures show how the emitted intensity evolved respectively
5, 9 and 11 days later. Picture from [?]



20 CHAPTER 1. GRAVITATIONAL WAVES DETECTION



Chapter 2

Thermal Noise and Thermodynamic
Equilibrium

2.1 Thermal Noise

Thermal noise originates one of the fundamental limits in the precision of mechanical mea-
surements and high-sensitivity galvanometers [7]. It is caused by the thermal kinetic energy
of the atoms in the detector and the most straightforward way to prevent it is cooling down
the experimental apparati to cryogenic temperatures.

Thermal noise can be thought as a stochastic force Fth acting on each atom of the
apparatus. Because it’s randomness, only statistical hypothesis can be made on it, as it
having a null time average 〈Fth(t)〉 = 0. The Fluctuation Dissipation Theorem (FDT) states
that thermal noise’s power spectral density (PSD) (see appendix A) in a mechanical system
is [12]

SFthFth(ω) = 4kBTR(ω) (2.1)

where R(ω) is the mechanical resistance of the system, defined as the real part of the impe-
dence Z = F/ẋ [12].

For a particle subject to a velocity damping (VD), a restoring force and to thermal noise,
the equation of motion is

mẍ(t) + fẋ(t) + kx(t) = Fth(t) (2.2)

where m is the mass of the particle, f is the velocity damping coefficient and k is the
spring’s constant [12]. The thermal noise’s spectrum in case of velocity damping can be
straightforward computed:

R(ω)V D = <
[
F

ẋ

]
= <

[
ẍ+ fẋ+ kx

ẋ

]
= <

[
iωm+ f +

k

iω

]
= f (2.3)

resulting in a white noise spectrum SFthFth(ω) = 4kBTf [12] .
The PSD of the mass’s position Sxx(ω) induced by thermal noise can be then computed

solving equation (2.2) in the frequency domain and finding the transfer function H(ω) of
thermal noise and position:

x(ω) =
1

−mω2 + iωf + k
Fth(ω) = H(ω)Fth(ω) (2.4)

Finally the PSD of the mass’s position is [12]

Sxx, V D(ω) = |H(ω)|2SFthFth(ω) =
4kBTf

(k −mω2)2 + (ωf)2
(2.5)
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In the description of a solid, which is the case of this thesis, the damping is modeled as
internal damping (ID) [12], an extension of Hooke’s law which uses a complex spring constant
so that the restoring force is Fs = −k(1 + iφ(ω))x [12]. The imaginary part of the spring
constant causes a lag between the spring’s response and the force, and a fraction 2πφ(ω) of
the energy stored in the spring is be dissipated in each cycle [12]. The PSD of thermal noise
in the case of internal damping is:

SFthFth ID(ω) = 4kBTkφ(ω)ω−1 (2.6)

and is not white anymore. The PSD of the position of a particle subject to internal damping
is [12]:

Sxx, ID(ω) = |H(ω)|2SFth(ω) =
4kBTkφ(ω)

ω[(k −mω2)2 + (kφ(ω))2]
(2.7)

The sharpness of the resonance is determined by the quality factor Q defined as the ratio
between the resonant frequency ω0 and the full-width-at-half-maximum (FHWH). In the
case of VD Q = mω0/f and for ID Q = 1/φ(ω0) [12]. For low loss systems the PSD of the
position is sharply peaked around ω0 [12]. A plot of equation the two modeled spectra is
reported in figure 2.1:

Figure 2.1: Examples of the PSD of the mass’s position if subject to VD and ID with m = 1g,
ω0 = 1000Hz, T = 300K and Q = 100, 1000.

The integral in frequency domain of the two spectra (2.5, 2.7) gives a mean-square dis-
placement of the mass’s position [12]: 〈

x2
th

〉
= kBT/k (2.8)

consistently with the equipartition theorem, stating that each quadratic term in the energy
has a mean value of 1

2
kBT .
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2.2 Thermal Noise in GW Interferometers

As shown in figure 1.8, GW interferometers are limited in the mid and low frequency band
by thermal noise originated in the mirror coatings and in the mirror suspensions. Thermal
noise’s is currently modeled by means of the FDT, which sits on the hypothesis of thermody-
namic equilibrium [28]. Whereas thermal noise prediction made with FDT are well verified in
precision experiments, GW interferometer can not be considered equilibrium devices. This
thermodynamical picture of interferometers is not fully justified, since it has been shown
that non-equilibrium conditions arise [28]. A non-equilibrium modeling should be preferred,
but currently there is no complete theory in statistical mechanics explaining thermal noise
in solids in non equilibrium states. A first investigation has been started by the Rarenoise
Experiment (see [13]), but more experimental data is needed.

Currently the detectors are being upgraded, and new experimental techniques are being
added in order to achieve better sensitivity. Many proposals for the upgrades of new de-
tectors foresee substantially higher circulating optical powers, often paired with cryogenic
operation. Absorbed laser powers and thermal compensation techniques are going to add
many thermal gradients and non-thermodynamical equilibrium situations. The inevitable
heat flows present in these conditions make the approximation of equilibrium for thermal
noise hardly applicable. It is therefore important to study how thermal noise behaves in non
equilibrium conditions, and the impact this may have in particular on the performance of
GW detectors.

2.3 The ”Rarenoise” Experiment

The Rarenoise Experiment (see [13]) consists in the high precision measurement of the vi-
brations of a mechanical resonator, i.e. the low-frequency acoustic modes of vibration of
a macroscopic and monolithic aluminum piece, in both thermodynamical equilibrium and
non-thermodynamical equilibrium steady states (NESS). The aluminum piece is hosted in
a vacuum environment and isolated from external perturbations with a cascade of mechan-
ical filters. The dominant noise force acting on the aluminum piece is of thermal origin,
at least in the frequency range where the lowest transverse and longitudinal acoustic mode
resonate [13]. (see figure 2.2 (b), (c) ).

The resonator is machined from a single piece of Al5056, a material with low intrinsic
mechanical losses. The resonator consist in a squared cross section, 10cm rod kept in vertical
position. The top is clamped and the bottom is loaded with a 4.35cm cuboid mass of about
0.25 kg, which is free to move. Dimensions are chosen after a FEM modeling, so that
the first longitudinal and transverse modes resonate in a frequency range high enough so
that the mechanical filter is effective but no internal resonances of its structure are present.
The first transverse mode resonates at ∼ 320Hz and the first longitudinal mode resonates
at ∼ 1420Hz. In the first version of the experiment, which I will refer to as Rarenoise-
Capacitor, parallel to the vertical rod, two protrusions hold a metal plate used to realize
a capacitive readout (figure 2.3) to measure the vibrations of the resonator. The capacitor
is formed by the metal plate and by the cuboid mass’s surface. The plate is electrically
insulated from the protrusions by a 100um thick teflon spacer.

The oscillators can be driven out of thermal equilibrium by means of a thermal source
heating the cuboid mass (see figure 2.2(a) ). Temperature is measured on the top of the rod
(T1) and on the cuboid mass (T2) (see figure 2.2, 2.3) to detect the induce thermal difference
∆T .
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Figure 2.2: Schematic drawing of the elastic body, consisting in a rod with one extreme fixed
and the other loaded by a mass free to move. (a) A NTC thermometer is used to measure
the temperature T1 on the top of the rod, while a contactless thermopile is used to read the
temperature of the cuboid mass T2. A heater heats the cuboid load mass. The rest of the
experiment is at room temperature. The first longitudinal mode (b) expected around 1.4
kHz and the first transverse mode (c) around 300 Hz. In figures (b) and (c) the metal plate
used for the capacitive readout is also represented. Figure from [13].

Figure 2.3: Picture of one resonator from the Rarenoise experiment. The resonator in the
center, while the two side protrusions are used to hold the plate beneath the resonator,
used to realize the capacitive readout. The thermopile is visible, while the heater is on the
opposite side of the oscillator. Figure from [14].

The PSD (see appendix A) of the measured position was computed. In correspondence
of the modes’ resonances at ∼ 300Hz and ∼ 1400Hz, peaks stood off on the PSD: these
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peaks were then fitted around the resonance using a lorentzian curve [13]

y(f) =
2

π
A

w

4(f − f0)2 + w2
+ y0 (2.9)

where f0 is the resonant frequency, w is the full width at half maximum (FHWH), A is the
area of the Lorentzian curve and y0 is the constant fitting the additive background noise level.
Equation (2.9) is a good approximation of both equations (2.5, 2.7) near the resonance.

The area of the curve can be used as an estimate of the time averaged mean square vibra-
tion 〈x1(t)〉 of the oscillator. At thermodynamic equilibrium with low losses and in absence
of external noise, the root-mean-squared vibration induced by thermal noise is related to the
thermodynamic temperature (see equation 2.8), hence an effective temperature Teff can be
estimated from the area of the peaks:

Teff =
m1ω

2
1 〈x1(t)2〉
kB

(2.10)

where m1 is the mass of the longitudinal mode that resonates at ω1.
The equilibrium measurements first confirmed that Teff was a good extimation of the

resonator’s temperature.
The same kind of measurement were repeated in presence of stationary heat fluxes.

This originated nonequilibrium steady states which were characterized by the temperature
difference ∆T = T2 − T1 and Tavg = 1

2
(T1 + T2). As reported in figure 2.4, an increase of

the PSD around the resonance was observed [13]. The results of these measurements can be
comprehended better by plotting RNEQ/EQ = Teff/TEQ against the temperature difference at
the rod extremes, normalized by Tavg (figure 2.5). TEQ is the thermodynamical temperature
Teff measured in equilibrium condition.

The most evident feature is that RNEQ/EQ > 1 [13]. At the maximum relative tempera-
ture difference, RNEQ/EQ > 1 by more than 4 standard deviations. A 4% relative temperature
difference is enough to increase the nonequilibrium Teff by 20% for the longitudinal mode,
and hence over the hottest physical temperature present in the piece. For the transverse
mode this effect is even more evident: the nonequilibrium Teff increases by a factor of 3-4.
This means that in NESS Teff is not a valid estimate of the physical temperature anymore,
and that energy equipartition may be not valid in non-equilibrium conditions [13].

Parallely a numerical experiment using a 1D chain of oscillators was made. The results
qualitatively match the experimental data, and are also reported in figure 2.5.

Measurements suggest that in non-equilibrium condition the energy is not anymore
equiparted between the modes, and hence different modes have different temperatures. These
results have been interpreted as a correlation between the modes, which are normal in equi-
librium condition, but in non-equilibrium are not normal anymore.
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Figure 2.4: The time averaged power spectral densities (PSD) of the measured position
around the first longitudinal mode in equilibrium (Tavg = 288.14 K, blue triangles) and in
the non-equilibrium steady state (NESS) (∆T = 9.3K,Tavg = 292K, red circles). PSDs were
taken with the same sensitivity of the capacitive readout (about 2×10−6V/m). The gray line
is the fit of the equilibrium PSD using equation (2.9) : Teff = [319± 5(stat.)± 18(syst.)] K.
The black line fits the NESS PSD Teff = [402±6(stat.)±18(syst.)] K. The peak’s frequency
is changed due to the thermal elongation of the rod. Pictures from [13]
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Figure 2.5: (a) Plot of RNEQ/EQ vs ∆T/Tavg for the transverse (blue triangles) and longitu-
dinal (red circles) acoustic modes in NESS. The error bars show the statistical uncertainty.
Stars show the result of the numericical experiment with their errorbars. The gray line is
the best fit of the numerical data with a theoretical model ( [13], equation (11)). (b) zoom
on the longitudinal mode of figure (a). Figure from [13].
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Chapter 3

The Interferometric Readout

Despite being sensitive enough to detect a deviation of thermal noise from the behavior
expected at equilibrium, the capacitive readout used in the Rarenoise-Capacitor experiment
had a few limitations. These measurements are affected by a 5% systematical error, mainly
caused by the thermal expansion of the aluminum rod and that of the cuboid mass which
were changing the reference capacity. Furthermore the calibration of the sensing capacity
would change during the heating transients, which made the calibration more complicated
adding a bigger error in the transient’s estimation.

To improve the measurements already performed by RareNoise and possibly extend them
to transient states, we decided to implement an interferometric readout which (in principle)
is self-calibrated and is able to track the mass’s motion with no systematic error due to
the thermal expansion of the resonator, allowing calibrated measurements during heating
transients.

We observe that a standard interferometer is not suitable to follow the mass motion
during thermal transients. A homodyne interferometer does not measure distance ’directly,
but measures the cosine of a relative displacement (cos(2k∆L) ). Information from the
cosine inevitably has some ’blind spots’, since where the derivative of intensity with respect
to position (or to phase) vanishes, no information about the motion can be extracted. In
our case, the root-mean-square (rms) of displacement due to thermal motion at the resonant
modes we are interested to monitor is much smaller than the wavelength, as shown in figure
2.4. On the other hand, the aluminum thermal expansion coefficient is αAl = 23× 10−6K−1.
This means, that a ∆T = 10K induced temperature difference on a L ∼ 0.1m long object
would cause an expansion of ∆L = 1

2
αAl · ∆T · L ≈ 12 × 10−6m. Thermal expansion will

make the interferometer cross one of this blind spots, and during these periods measurements
would have a very low accuracy.

As a solution to this problem we chose to implement a homodyne quadrature interferom-
eter. Two superimposed interferometers are built exploiting two orthogonal linear polariza-
tions of light. One interferometer’s output is retarded by π

2
with respect to the other’s one

using an octal-wave plate crossed twice, so if previously we had ITF1 ∼ (1 − cos(2k∆L)),
now we would have also ITF2 ∼ (1− sin(2k∆L), and combining the two informations the
phase can be unambiguously extracted, being independent on fringe crossings. The needed
experimental setup to achieve this is in figure 3.1.

To integrate the interferometric readout in the setup of the Rarenoise-capacitor exper-
iment, a compact optical bench has been designed, for it to be screwed in place fo the
capacitive readout plate. The interferometer’s bench hosts a 50% beam splitter, a reference
high reflectivity mirror (end of the first arm), octal-wave plate, and a mirror used to divert
the horizontally propagating interferometer output downwards. The mass’s surface the end

29
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Laserλ/2 PM fiber

PBS

dumper

BS2

PD5
input 
monitor

BS1λ/8

mirror1
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mirror2
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interferometer
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PD1
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Figure 3.1: Scheme of the interferometer’s setup. The laser source gives a 1064 nm wave-
length beam. Using a PBS only the p̂ polarization is selected. A half-wave plate (λ/2) turns
the polarization angle of 45◦. A pick off (BS2) then reflects half of the beam’s intensity to an
input intensity monitor photodiode (PD5). The transmitted beam heads towards the inter-
ferometer. A 50% beam splitter (BS1) splits the beam into the two arms. Mirror 1 is a fixed
reference mirror, while mirror 2 is the resonator’s surface, which has been mirror-polished.
The octal-wave plate is placed in arm1 to add a phase delay to one polarization with respect
to the other one. The beams from the two arms then recombine in BS1, and get partially
transmitted or reflected. This generates two outputs. A first output from the interferometer
propagates towards the right in figure and a second output propagates downwards, back to
the laser source. The output going back to the laser source is not detected. The output going
right is splitted in its polarization components by (PBS1). The two beams are the detected
by PD1 (detecting FMP) and PD2 (detecting FMS). The elements that will be mounted on
the interferometer bench are drawn inside the gray rectangle. All of the other optics except
mirror 2 are going to be mounted on the optical bench.

mirror of the second arm. The whole experiment is then placed over an air suspended optical
bench, where the remaining components needed for the interferometric readout are mounted.
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3.1 The Intensity Signals - Ideal Case

In this section I compute the signal that can be extracted by the combination of two π/2
shifted interferometers described in section at the beginning of the chapter. For simplicity I
will start with an ideal case, where all mirrors have perfect 100% reflection and all BSs split
the beam’s intensity perfectly in two equal parts (50-50 Beam Splitters). The conceptual
design of the intereformetric readout is depicted in figure 3.1, where mirror2 represents the
oscillator whose motion we want to measure. The linear p-polarization of the incoming beam
is set by the polarizer (PBS) positioned after the laser source. The beam’s electric field is

~E = p̂
√

2E0e
i(kz−ωt) (3.1)

where p̂ (ŝ) is the vector representing the p-polarization (s-polarization). The polarization
angle is then turned by 45◦ using a half-wave plate (λ/2, figure 3.1). This is equivalent to
have two superimposed beams, each of them having half of the intensity it had before, one
polarized in p̂ and the other one polarized in ŝ. Since electromagnetism is linear, the two
beams act as independent. The electric field becomes

~E = (p̂+ ŝ)E0e
i(kz−ωt) (3.2)

Half of the intensity is reflected by BS2 and is acquired by a photodiode (PD5, figure 3.1)
as monitor of the incoming intensity to the interferometer. I then define I0 = |E|2 to be
the intensity of the beam transmitted by BS2. The transmitted beam then goes towards
the interferometer, is splitted by the 50% beam splitter (BS1, figure 3.1) into the two arms.
In arm 2 the beam simply heads towards mirror 2 and is reflected backwards. The electric
field gains a phase 2kL2(t) and a factor 1

2
since it passes twice through the BS1. A factor

eiπ is also gained by the output on the right (see figure 3.1) because of a reflection of the
beam from arm 2 on a material with higher refraction index. The electric field of the beam
heading back from mirror 2 in BS1 is:

~Earm2 =
p̂+ ŝ

2
√

2
E0e

i(kz−ωt)eik2L2(t)eiπ (3.3)

In arm 1 the same happens for a different length L1, but the presence of the octal-wave plate
(λ/8, figure 3.1) adds to one polarization, lets say the ŝ polarization, a π

4
phase with respect

to the p̂ polarization each time the beam goes through it. Since the plate is crossed twice,
this effect cumulates, and the electric field in ŝ earns a total π

2
delay with respect to the

electric field in p̂. The electric field of the beam reflected off of mirror 1 in BS1 is:

~Earm1 =
p̂

2
√

2
E0e

i(kz−ωt)eik2L1(t) +
ŝ

2
√

2
E0e

i(kz−ωt)eik2L1(t)+π
2 (3.4)

The beams recombine and interfere in BS1, and there are two possible outputs: the
output composed by the reflected beam from arm1 and the transmitted beam from arm2 the
output composed by the transmitted beam from arm1 and the reflected beam from arm2.
I will refer to these respectively as forward output (the one heading towards PBS1), and
return output (the one heading back to the laser source).

The electric field in the forward output is:

~Eforward =
E0e

i(kz−ωt)

2
√

2

(
p̂
(
ei(k2L2(t)+π) + eik2L1(t)

)
+ ŝ

(
ei(k2L2(t)+π) + ei(k2L1(t)+π

2
)
))

(3.5)
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Each output contains the information about the interference of the p̂ beam and the
information about the interference of the ŝ beam. The two polarizations in the output beam
can be separated using a polarizing beam splitter (PBS1 in figure 3.1 in the forward output
and PBS2 in figure 3.1 for the return output). The intensity on the p̂ polarization for the
ideal forward output (i.e. on the PBS1 transmission) which I named ”Forward Michelson
P” intensity signal (FMP) is:

FMP (t) =
I0

4
(1− cos(2k∆L(t) )) (3.6)

with ∆L(t) = L2(t) − L1(t) and I0 = E2
0 . This result can be compared with equation 1.16.

The forward ŝ output (the one reflected by the PBS1) ”Forward Michelson S” (FMS) is

FMS(t) =
I0

4
(1− sin(2k∆L(t) )) (3.7)

The beam the retur output follows the incoming beam’s path backwards and is then
half reflected by BS2. PBS2 separates the two polarizations. After the same computations
(no residual eiπ factors are gained this time) the ideal ”Return Michelson P” (RMP) and
”Return Michelson S” (RMS) intensity signal are

RMP (t) =
I0

8
(1 + cos(2k∆L(t) )) (3.8)

RMS(t) =
I0

8
(1 + sin(2k∆L(t) )) (3.9)

Energy must conserve: the consistency of these results can be checked by summing the
intensity of the four outputs (the return outputs are considered before BS2 and have a factor
2 in front. The result is FMP + 2RMP = I0/2, FMS + 2RMS = I0/2 so the intensity in
the two independent beams is conserved. Totally FMP + 2RMP + FMS + 2RMS = I0.

An example of the four outputs (3.6, 3.7, 3.8, 3.9) is shown in figure 3.2.

Figure 3.2: Plot of the signals of the four output photodiodes (3.6, 3.7, 3.8, 3.9) if ∆L(t)
linearly varies from 0 o λ).
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3.2 The Ideal Two Photodiodes Readout

In principle, all the information needed to compute ∆L(t) can be extracted from just two
forward photodiodes. I will concentrate on the forward outputs.

The intensity signals (3.6, 3.7) consist of two parts: a constant term ( I0
4

), which is just
the sum of the intensities of the beams from the two arms as if they had had no interference,
and the interference term, i.e. the modulation due to interferometry ( I0

4
cos(2k∆L)). The

information about the relative motion is encoded inside the interference term, which has to
be isolated and extracted in order to reconstruct the relative motion of the mirrors.

Generically, the extraction of a interferometric signal from an ideal intensity signal can
be done by measuring just the maximum value of the signal: for example, considering FMP:
max(FMP ) = 1

2
I0. At this point I can compute the normalized interference term:

− cos(2k∆L(t) ) =
FMP (t)− 1

2
max(FMP )

1
2
max(FMP )

(3.10)

and similarly extending to FMS. Note that this method requires the intensity signal to go
through it’s maximum at some point.

The phase ϕ = 2k∆L is then computed as the four quadrant arctangent (see figure 3.3) of
the two normalized interferometric signals : The result of this computation, unlike the usual
arctangent, gives a value in the interval [−π, π] . I will refer to this φ value as computed
phase.

φ(t) = 2k∆L = atan2(sin(2k∆L(t) ), cos(2k∆L(t) )) (3.11)

Figure 3.3: The four quadrant arctangent (atan2(y, x) ) is an usual arctangent computation
that takes advantage also of the information of the variable’s signs to extend its’range from
[−π/2, π/2] to [−π, π].

The resulting computed phase angles φ(t) lie in the [−π, π] interval, and need to be
unwrapped (see appendix B) to recover the physical meaning of a continuous motion. Finally
the unwrapped phase ψ(t) is

ψ(t) = unwrap( atan2(sin(2k∆L(t) ), cos(2k∆L(t) ) ) (3.12)
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Then, since ψ(t) = ϕ(t) = 2k∆L(t), the relative motion of the two mirrors ∆L(t) is then
computed as

∆L(t) = ψ(t)
λ

4π
(3.13)

The whole procedure can be summarized as

∆L(t) =
λ

4π
unwrap

(
atan2

(
−
FMS(t)− 1

2
max(FMS)

1
2
max(FMS)

,−
FMP (t)− 1

2
max(FMP )

1
2
max(FMP )

))
(3.14)

Note that in the ideal case there is no need to monitor the input intensity to the inter-
ferometer, since it finds no use in the analysis.

3.3 The Intensity Signals - Realistic Case

Results in section 3.1 are derived assuming no losses, ideal 50% BSs and perfect beam
overlap. In a realistic case though losses are present, the BSs don’t transmit or reflect 50%
and furthermore behave differently with the two polarizations of the beam. The beam’s
intensity fluctuates in time and the overlap of the beams from the two arms is not perfect
and depends on time.

To account for this a series constant and time varying coefficients has to be added to
the previously found relations (equations 3.6, 3.7). As previously I will treat only FMP and
FMS.

Fist of all, I will define the intensity of the beam transmitted by BS2 to be I0. A function
of time ι(t), 〈ι(t)〉 = 1 is used to represent the laser source’s intensity fluctuations.

In the realistic case the polarization rotation angle is not exactly 45◦, and hence an angle
2θ which ideally is equal to 45◦ will describe the polarization rotation. The electric field
going to the interferometer is then

~E = ι(t)E0(cos(2θ)p̂+ sin(2θ)ŝ)) (3.15)

The 2θ polarization rotation means that in general the intensity going to the interferom-
eter in p̂ is not equal to that in the ŝ polarization.

The interferometer’s response has to account for the realistic values of reflectance and
transmission of both mirrors and the two BSs in figure 3.1) in each polarization. BS1 and BS2
can be characterized using some transmission and reflection coefficients for each polarization:
rBS1,p̂, tBS1,p̂, rBS1,ŝ, tBS1,ŝ and rBS2,p̂, tBS2,p̂, rBS2,ŝ, tBS2,ŝ. The two mirrors at the end of the
two arms can be characterized with two coefficients r1 and r2. Reflection and transmission
coefficients are assumed to be constant in time and their value lies in the range [0, 1].

A function of time ε(t) ∈ [0, 1] accounts for the non perfect and time varying overlap of
the two beams coming from the two arms (arm1 and arm 2 in figure 3.1): ε = 0 means no
beam overlap and hence no interference, and ε = 1 means complete overlap and complete
interference.

By taking into account these coefficients I obtain the interferometer outputs:

FMP = ι(t)2I0cos
2(2θ)(rBS1,p̂tBS1,p̂)

2(r2
1 + r2

2 − ε(t) 2r1r2cos(2k∆L)) (3.16)

RMP = r2
BS2,p̂ ι(t)

2I0cos
2(2θ)(r2

1r
4
BS1,p̂ + r2

2t
4
BS1,p̂ + ε(t) 2r1r2r

2
BS1,p̂t

2
BS1,p̂cos(2k∆L))

(3.17)
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The same holds for the s polarization, by substituting p̂→ ŝ and cos() → sin():

FMS = ι(t)2I0sin
2(2θ)(rBS1,ŝtBS1,ŝ)

2(r2
1 + r2

2 − ε(t) 2r1r2sin(2k∆L)) (3.18)

RMS = r2
BS2,ŝ ι(t)

2I0sin
2(2θ)(r2

1r
4
BS1,ŝ + r2

2t
4
BS1,ŝ + ε(t) 2r1r2r

2
BS1,ŝt

2
BS1,ŝsin(2k∆L)) (3.19)

An important parameter for an interferometer quality is the visibility, defined as

V =
Imax − Imin
Imax + Imin

(3.20)

Visibility reaches its maximum when Imin = 0 resulting in V = 1. This was the case with
no losses and perfect 50% BSs. For the forward output

Vforward =
ε(t) 2r1r2

r2
1 + r2

2

(3.21)

and has no dependence on the BS’s transmission and reflectance coefficients or on the beam’s
intensity. It is clearly maximized if ε(t) = 1 and r1 = r2. For the return output

Vreturn =
ε(t) 2r1r2t

2
BS1r

2
BS1

r2
1r

4
BS1 + r2

2t
4
BS1

(3.22)

depends on BS1’s characteristics and on the polarization. Vreturn is generally maximized if
r1r

2
BS1 = r2t

2
BS1.

By substituting the measured reference mirror’s reflectance r2
1 reported in section E.5,

r2
2 to be the oscillator’s surface’s reflectance given in table E.6 and BS1’s reflectance and

transmission coefficients given in section E.1, the visibility values can be computed in the
case of perfect beam overlap (ε(t) = 1). The expected visibility for FMP and FMS is very
close to 1, while the visibility for the return outputs is close to 0.9.

3.4 The Realistic Two Photodiodes Readout (2PDR)

In the realistic situation, the method presented in subsection 3.2 to extract the interfero-
metric signal from the two intensity signals (3.16, 3.18) is no longer correct.

A first naive approach would require a calibration of the interferometeric signal, since it
depends on the beam overlap ε0 and the input intensity I0, which are now treated as constant.
These two parameters can be obtained measuring the maximum and the minimum of the
signal;

Hence the maximum and minimum values for FMP are:

max(FMP ) = I0cos
2(2θ)(rBS1,p̂tBS1,p̂)

2(r2
1 + r2

2 + ε0 2r1r2) (3.23)

min(FMP ) = I0cos
2(2θ)(rBS1,p̂tBS1,p̂)

2(r2
1 + r2

2 − ε0 2r1r2) (3.24)

the constant term can be computed as

max(FMP ) +min(FMP )

2
= I0cos

2(2θ)(rBS1,p̂tBS1,p̂)
2(r2

1 + r2
2) (3.25)

which is independent on ε0.
The interferometric term can be then isolated subtracting the constant term from the

intensity signal:

FMP (t)− max(FMP )−min(FMP )

2
= −I0cos

2(2θ)(rBS1,p̂tBS1,p̂)
2ε(t) 2r1r2cos(2k∆L)

(3.26)
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Note that no error on the constant term is induced by a wrong estimation of ε0.

The amplitude of the interferometric signal has to be accounted for, in order to obtain the
normalized interferometric signal (i.e. just the the sine/cosine). This again can be achieved
using the maximum and minimum information:

|max(FMP )−min(FMP )|
2

= I0cos
2(2θ)(rBS1,p̂tBS1,p̂)

2ε02r1r2cos(2k∆L) (3.27)

The final solution is:

− ε(t)

ε0

cos(2k∆L(t) ) = 2
FMP (t)− max(FMP )−min(FMP )

2

|max(FMP )−min(FMP )|
(3.28)

the same holds for FMS. Note that this time the result is not independent on ε0.

Once the normalized interferometric signals have been obtained, the position computation
can be done as previously (see subsection 3.2). Since atan2(y, x) = atan2(αy, αx) ∀α > 0,
the resulting position is independent on both the factor 1

ε0
induced by the normalization and

on the time variations of the beams’ overlap ε(t):

φ(t) = atan2

(
ε(t)

ε0

cos(2k∆L(t) ),
ε(t)

ε0

sin(2k∆L(t) )

)
(3.29)

∆L(t) =
λ

4π
unwrap(φ(t)) (3.30)

This procedure is though limited by the fact that both the intensity I0 and the beam
overlap ε change in time. The beam overlap is expected to change at very slow frequency,
while laser intensity fluctuations manifest also in the frequency bands we are interested to
and need hence to be taken into account.

3.5 The Realistic Three Photodiodes Readout (3PDR)

To get rid of the intensity as calibration parameter we use the information from PD5. Pho-
todiode PD5 measures the intensity reflected by BS2, which is:

I(t) = ι(t)2I0, PD5 (3.31)

where I0, PD5 is the mean value of the intensity of the beam impinging on PD5.

Signals FMP (equation 3.16) and FMS (equation 3.18) can be divided by I(t), obtaining

FMP (t)

I(t)
=

I0

I0, PD5

cos2(2θ)(rBS1,p̂tBS1,p̂)
2(r2

1 + r2
2 − ε(t) 2r1r2cos(2k∆L)) (3.32)

FMS(t)

I(t)
=

I0

I0, PD5

sin2(2θ)(rBS1,p̂tBS1,p̂)
2(r2

1 + r2
2 − ε(t) 2r1r2sin(2k∆L)) (3.33)

This way the intensity fluctuations ι(t) are eliminated, and the signals are divided by the
same factor I0, PD5. The two signals (3.32, 3.33) can undergo the same 2PDR analysis, where
only the visibility needs to be calibrated. The final result is independent on both visibility
and laser intensity.
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3.6 The Four Photodiodes Phase Readout (4PDR)

Another method to be independent on the intensity fluctuations is to make use of all four
outputs (3.16, 3.18, 3.17, 3.19). The two p̂ outputs and the two ŝ outputs can be combined
together to obtain:

Σp̂ = FMP + r−2
BS2,p̂RMP

= ι(t)I0cos(2θ)
2(r2

1r
2
BS1,p̂ + r2

2t
2
BS1,p̂)(r

2
BS1,p̂ + t2BS1,p̂)

= ι(t)I0cos(2θ)
2 ΣITF,p̂ ΣBS1,p̂ (3.34)

∆p̂ = FMP − r−2
BS2,p̂RMP

= ι(t)I0cos(2θ)
2(r2

1r
2
BS1,p̂ − r2

2t
2
BS1,p̂)(r

2
BS1,p̂ − t2BS1,p̂)− 4r1r2r

2
BS1,p̂t

2
BS1,p̂cos(2k∆L)

= ι(t)I0cos(2θ)
2 (∆ITF,p̂ ∆BS1,p̂ − ε(t)Ap̂cos(2k∆L)) (3.35)

Where I defined some auxiliary terms whose value can be computed from the character-
ization of the mirrors and of BS1 reported in chapter E.

ΣITF,p̂ = r2
1r

2
BS1,p̂ + r2

2t
2
BS1,p̂ = 0.935± 0.002 (3.36)

ΣBS1,p̂ = r2
BS1,p̂ + t2BS1,p̂ = 0.976± 0.003 (3.37)

∆ITF,p̂ = r2
1r

2
BS1,p̂ − r2

2t
2
BS1,p̂ = 0.014± 0.002 (3.38)

∆BS1,p̂ = r2
BS1,p̂ − t2BS1,p̂ = −0.025± 0.003 (3.39)

Ap̂ = 4r1r2r
2
BS1,p̂t

2
BS1,p̂ = 0.912± 0.002 (3.40)

The same happens for the ŝ polarization:

Σŝ = ι(t)I0sin(2θ)2 ΣITF,ŝ ΣBS1,ŝ (3.41)

∆ŝ = ι(t)I0sin(2θ)2 (∆ITF,ŝ ∆BS1,ŝ − ε(t)Aŝcos(2k∆L)) (3.42)

with

ΣITF,ŝ = r2
1r

2
BS1,ŝ + r2

2t
2
BS1,ŝ = 0.926± 0.001 (3.43)

ΣBS1,ŝ = r2
BS1,ŝ + t2BS1,ŝ = 0.970± 0.007 (3.44)

∆ITF,ŝ = r2
1r

2
BS1,ŝ − r2

2t
2
BS1,ŝ = −0.062± 0.001 (3.45)

∆BS1,ŝ = r2
BS1,ŝ − t2BS1,p̂ = −0.104± 0.007 (3.46)

Aŝ = 4r1r2r
2
BS1,ŝt

2
BS1,ŝ = 0.891± 0.04 (3.47)

The ratio of ∆ and Σ differs from the normalized interference term due to some coefficients
which can be computed from the characterization of BS1 and of the mirrors. ∆ and Σ do
not depend on the intensity:

∆p̂

Σp̂

=
ι(t)I0cos(2θ)

2 (∆ITF,p̂ ∆BS1,p̂ − ε(t)Ap̂cos(2k∆L))

ι(t)I0cos(2θ)2 ΣITF,p̂ ΣBS1,p̂

=
∆ITF,p̂ ∆BS1,p̂ − ε(t)Ap̂cos(2k∆L)

ΣITF,p̂ ΣBS1,p̂

= −0.00038− 0.999ε(t)cos(2k∆L)

(3.48)
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∆ŝ

Σŝ

=
ι(t)I0sin(2θ)2 (∆ITF,ŝ ∆BS1,ŝ − ε(t)Aŝsin(2k∆L))

ι(t)I0sin(2θ)2 ΣITF,ŝ ΣBS1,ŝ

=
∆ITF,ŝ ∆BS1,ŝ − ε(t)Aŝsin(2k∆L)

ΣITF,ŝ ΣBS1,ŝ

= 0.0072− 0.992ε(t)sin(2k∆L)

(3.49)

Hence we arrive at:

ε(t)cos(2k∆L) =
1

0.999

(
∆p̂

Σp̂

+ 0.00038

)
(3.50)

ε(t)sin(2k∆L) =
1

0.992

(
∆ŝ

Σŝ

− 0.0072

)
(3.51)

The atan2 procedure from here on is the same as in the 2PDR, and makes the final result
independent on the beam overlap ε(t). In this procedure is self-calibrated, and hence does
not need the signals to cross a maximum and a minimum. Note that in equations (3.34,
3.35, 3.41, 3.42) r−2

BS2,p̂ is indicated as the ideal summation coefficient, but in the analysis
the coefficient needs to be estimated from the data since it depends on the reflectivity of the
optics along the beams’path from BS1 to the photodiodes.

Finally, one could think about a five photodiode readout using the four outputs and the
input intensity monitor. Unfortunately the hardware we can use for the digital acquisition
of the data is limited to up to 4 channels. Thus we did not investigate further this possibility
as we would be not able to implement it.



Chapter 4

Interferometer’s Testing

4.1 Laser Beam

Our laser beam is a 1064 nm wavelength laser coming from a Mephisto M500NE laser source
fixed on a optical bench which will from now on refer to as ’squeezer bench’. Since there
was not enough space on the squeezer bench for our experiment, we routed a pickoff of the
laser beam to a different table (from now on named ’Rarenoise bench’) using a polarization
maintaining optical fiber(PM fiber).

The setup on the squeezer bench before the pick-off for the Rarenoise experiment is
reported in figure 4.1. The laser beam is reflected twice, corrected in ellipticity using a
quarter-wave plate and in polarization direction using a half-wave plate1. The Faraday
isolator blocks back reflections from reaching the laser source. We realized a pick-off using a
half-wave plate and a polarizing beam splitter (PBS). By turning the half-wave plate we can
choose how much power we are sending to the interferometer. We then coupled the reflected
beam with the PM fiber’s input collimator.

laser

lens

lensλ/4

λ/2 λ/2PBS

mode
matching
experiment

50mm lens

100mm lensλ/2

Rarenoise
experiment

faraday
isolator

PM fiber

Figure 4.1: The squeezer bench’s setup before the pick off going to the Rarenoise experiment.

Theory about Gaussian beams is reported in appendix C. In order to optimize the mode
matching between the collimator and the laser beam, we profiled the beam coming from
the PBS and the beam coming out from the input collimator of the fiber. The second
step was achieved by coupling the laser beam with the output collimator, and profiling the
beam coming out from the input collimator. We then realized an optical telescope to bring
the beam from the PBS to have a profile close to that of the beam exiting from the input
collimator. The beam profiling measurements are reported in figure 4.2:

1For the wave plates effect on a beam, see appendix D.

39
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(a) Profile of the beam coming out from the PBS. The 0 position value is defined
2.5 cm further of the PBS with respect to the beam’s path. The beam waist is
w0 = (75.68± 0.26)µm. The waist’s position is inside the PBS.

(b) Profile of the beam coming out from the input collimator. The 0 position is
set at the collimator’s entrance. The beam waist is w1 = (239.4 ± 2.2)µm and
the waist position is 4.5 cm before the collimator with respect to the outgoing
beam’s path.

Figure 4.2: Profile of the beam reflected by the PBS (above) and of the beam exiting from
the input collimator (below). The red measurements refer to the horizontal beam’s profile
(x-profile), while the green values refer to the vertical profile (y-profile). The measurements
obtained with the beam profiler were fitted with equation (C.8) adding a fit parameter for

the waist’s position: y = p0 + (x−p1)2

p0(λ/π)2
where p0 is the parameter indicating the square of

beam’s waist and p1 is the parameter indicating the waist’s position. Both beams have low
ellipticity.

The measured beam’s waist is w0 = (75.68 ± 0.26)µm situated 2 cm before the PBS,
while the beam from the input collimator has a (239.4± 2.2)µm waist placed 4.5 cm before
the collimator. Using the optics simulation program JamMt [30] we designed an optical
telescope using a 50mm lens and a 100 mm lens in order to obtain a beam having a waist
of ∼ 240µm without needing more than 50cm of beam propagation path(see figure 4.3(a)).
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I then realized the telescope shown in figure 4.3(b):

(a) The simulation of the optical telescope with the measured incoming beam realized using JamMt
[30]. The number below is the beam’s diameter, resulting to be 440µm situated 20cm away from the
initial beam’s waist position.

(b) Picture of the optical telescope realized to couple the laser beam reflected from the PBS
with the collimator of the PM optical fiber. In this figure part of the setup in figure 4.1 is
visible.

This is the resulting beam profile is reported in figure 4.3):
With careful positioning and alignment of the fiber coupler, we achieved a ∼75% coupling

between the beam and the fiber 2.
The fiber’s coupling is expected to change slowly in time. The PM fiber then gives

in output a linearly polarized beam if the input beam is also linearly polarized, but the

2i.e. the beam coming out of the fiber has ∼75% of the intensity of the beam sent to the fiber’s input
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Figure 4.3: The resulting beam profile after the telescope. The fit was performed using
equation (C.8). The measured waist is of (242.28± 0.14)µm placed 32 cm after the PBS.

Figure 4.4: The fiber’s input collimator, with the half-wave plate in front of it. The fiber’s
collimator has been mounted on a mirror mounting to ease the coupling with the beam. On
the top right of the picture the laser source is visible.

input beam must also be aligned to one of the fiber’s preferential axis. In this condition
the coupling of ambient noise with the fiber’s output is minimum. If the preferential axis
is missed, the output beam’s polarization is not linear, and the ambient noise couples more
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strongly to the output beam.
We found out that placing a PBS after the fiber’s output the transmitted beam intensity

was noisier than the fiber’s output itself, suggesting that the major noise coupling was
with the output beam’s polarization angle. We used this effect to match the input beam’s
polarization alignment. We disturbed the fiber with a monochromatic noise at a frequency
ν0 = 1350Hz (a sound wave generated with a phone app placing the phone next to the
fiber), and looked at the real time PSD of the intensity of the beam transmitted by the PBS,
where a peak appeared at frequency ν0. We added a half-wave plate (see figure 4.1 and 4.4)
before the fiber collimator in order be able to turn the polarization angle. The half-wave
plate angle was finally set where the peak’s height was minimized.

The beam from the fiber’s output then needs to match the interferometer’s requirements.
The beam must be collimated, since we need it’s amplitude not to diverge during an at least
1 ∼ m long path, and we want the beam’s width to be ∼ 1mm when it is reflected on the
interferometer’s mirrors, in order average the small local fluctuations of the cuboid mass’s
surface and average them out, and thus increasing the sensitivity to global motion of the
cuboid mass. We profiled the beam from the output collimator. The measurements are
reported in figure 4.5, and the beam diverges after 30cm.

Figure 4.5: The beam from the output collimator. The measurements were fitted using
equation (C.8).

We realized a second telescope after the polarizer. We designed the telescope using a 300
mm lens and a 500 mm lens in order to obtain, starting from the profile in figure 4.5, a beam
with waist w3 = (640.6± 1.6)µm situated 70 cm away from the output collimator’s position.
We finally profiled the beam after the telescope. A picture of the telescope is reported in
figure 4.6(a) and he beam’s profile is reported in figure 4.6(b).
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(a) Picture of the final telescope on the Rarenoise bench, with the
polarizer placed right after the fiber’s output collimator.

(b) Fit of the final beam’s profile. The resulting waist is w4 = (628.5 ± 4.5)µm
situated in the desired position.
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4.2 Interferometer Bench

The interferometer bench designed in chapter 3 consists in a compact 119.5mm × 65mm
aluminum plate, where the optics are screwed. The center hosts a 50% BS (see figure )
and on the left a support for the reference mirror and a rotator for the octal-wave plate
are mounted. On the right a 45◦ mirror is mounted in order to reflect the output beam
downwards. A second plate (the blue plate in figure 4.6) is screwed into the bench and will
be then screwed into the two protrusions in place of the fixed electrode of the capacitor. The
bench was designed so that when coupled with the oscillator L1 − L2 . 1mm.

Figure 4.6: Above: Design of the interferometer’s bench. The 45◦ mirror on the right has
not been used during testing. Below, left: Picture of the interferometer’s bench mounted on
the optical table during the testing described in section 4.3. Two supports have been added
under the bench to keep it at the right height. Above in the picture the externally mounted
mirror2 is visible. Below, right: Same picture, with the beam’s path evidenced: the beam
comes in from below, and the forward output is being transmitted towards the right. The
return output has not been acquired.
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4.3 Bench Test of the Interferometer

To test the interferometric readout, we placed the interferometer bench (figure 4.6) horizon-
taly on the optical table and used it with a mirror mounted on a piezoelectric crystal as
mirror 2. The outputs FMP and FMS were acquired using the old photodiodes reported in
appendix E. We used a 2PDR analysis (see section 3.4). The intensity of the laser beam
sent to the interferometer was 8mW .

(a) (b)

Figure 4.7: The optical setup on the table used to test the interferometer. The beam from
the fiber output is polarized by the polarizing beam splitter PBS. The transmitted beam
heads towards the interferometer. The polarization is rotated 45◦ by the half-wave plate λ/2.
The beam then goes to the interferometer’s bench. Mirror 2 has been mounted on a piezo
crystal which we send the ramp signal in figure 4.8 to. PD1, PD2 and PDI were respectively
PDZ, PDB and PDTR3, whose calibration is reported in appendix E.

The piezoelectric crystal is a P-016.00H manufactured by Physik Instrumente and with
a nominal deformation coefficient of k = 5µm

1000V
. The piezo was driven with a positive 700V

peak to peak ramp signal at a frequency of 0.005 Hz which I will refer to as V (t) (see figure
4.8). The total expected displacement of the mirror is ∆x = k · 700V = 3438nm, bringing
to a total of 6 or 7 crossed fringes should be in general visible, depending on the starting
position.

The photodiode’s signal was then acquired at low frequency (1 Hz) for a 11 minute run.
Figure 4.9shows the calibrated intensity signals of PD1 and PD2:
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Figure 4.8: The 700 Vpp 0.005 Hz positive ramp signal which was driving the piezo crystal.

Two main features stand out. The second picture 4.9(b) is a 40 seconds long zoom on
the intensity signals, where a low frequency modulation of the intensity stands out. The
signal in the first picture 4.9(a) then appears to be dominated by an other lower frequency
variation, which is the beam overlap ε(t), which varies because mirror2 is being moved by the
piezo. ε(t) appears to be maximum at the mirror’s starting position (where the alignment
was optimized), ad minimum at it’s maximum displacement. Note that when the mirror
goes back to it’s starting position, the initial overlap is recovered.

The visibility of the two interferometers (equation 3.20) is 77.3% for FMP and 78.6% for
FMS at the maximum beam overlap point and 50.2% for FMP and 54.5% for FMS in the
minimum beam overlap point. The visibility is assumed to be the same in p̂ and ŝ: the low
sampling frequency is probably not resolving the maxim of the intensity signals.

In the following we detail the steps and intermediate results of the 2PDR analysis de-
scribed in section 3.4.

The normalized interferometric signals extraction is the achieved using equation (3.28),
which subtracts from the intensity signal the constant term and divides the interferometric
signal by it’s amplitude. As said, this formula only works if the intensity signal goes through
the maximum and the minimum, which is the case in the analyzed run. The result of this
procedure is shown in figure 4.10:



48 CHAPTER 4. INTERFEROMETER’S TESTING

(a) Plot of the FMP and FMS intensity signals during the whole acquisition run.

(b) 40 seconds long zoom on the intensity signals FMP and FMS. at second 310, one of the piezo’s motion’s
inversion points is visible.

Figure 4.9: The intensity signal acquired by PD1 (FMP) and PD2 (FMS).
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Figure 4.10: Plot of the normalized interferometric signals from FMP (∼ ε(t)
ε0
cos(2k∆L) and

FMS (∼ ε(t)
ε0
sin(2k∆L) during the whole acquisition run. The two acquired signals lie now

in the range [-1, 1] and the constant term has been subtracted.

A fundamental check before computing the atan2 is that of the phase offset between the
two signals: only if it is π

2
the atan2 computation will work. The proper working and setting

of the octal waveplate has to be checked. The best way to do it is to plot one signal versus
the other one. If the offset is correct, the parametric plot of (sin(ϕ), cos(ϕ)) should give an
unitary circle. If the offset is not π

2
the plot is going to be (sin(ϕ+ δ), cos(ϕ)) which is the

parametric plot of an ellipse. The resulting plot is in figure 4.11:
As evident in figure 4.11(a) the offset induced by the octal-wave plate to the signal in

the ŝ polarization with respect to the p̂ polarization is far away from π
2
. This is probably

due to a defect of the plate, as shown in appendix E.
Another step has then to be added to the analysis. The most straightforward way to

correct this is to apply the sine addition equation (4.1):

sin(ϕ+ δ) = sin(ϕ)cos(δ) + sin(δ)cos(ϕ)→ sin(φ) =
1

cos(δ)
(sin(ϕ+ δ)− sin(δ)cos(ϕ))

(4.1)
Where sin(ϕ) is now the correctly phase-offset sine signal, δ is the correction angle and

cos(ϕ) is the other signal, which has to be used as reference signal which establishes the null
phase offset condition. The phase offset δ is chosen in order to make the points of the circle
(y, x) with x ∼ −1 to have y coordinate value as close to 0.
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(a) The uncorrected FMS versus FMP plot

(b) The shifted FMS versus FMP plot

Figure 4.11: The FMS versus FMP plot to check the phase offset. The thickness of the
ellipse is the effect of a non constant beam overlap.
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At this point the atan2 computation can be performed, and as shown in section 3.4 the
result will be independent on the normalization coefficient and on the beam overlap changes
ε(t).

(a) Plot of the interferometer measured phase phi(t) during the whole run.

(b) Zoom of the interferometer measured phase phi(t) along an increasing ramp. The vertical
lines are the discontinuities due to the fringe crossings. A total of 8 fringe crossings is visible.

Figure 4.12: The computed phase φ(t) = atan2(sin(ϕ), cos(ϕ)).

Figure 4.12(b) shows the interferometer measured phase. As evident from the zoomed
region (4.12(b)), the number of fringe crossings between the two inversions is 8, rather than
the 6 or 7 expected. The inversion points of the piezo’s motion, corresponding to the changes
of the ramp signal’s slope, are also visible.

The result of the unwrapping and conversion into length is reported in figure 4.13:
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(a) The reconstructed motion during the full acquisition run.

(b) Zoom on one inversion point of the piezo’s motion.

Figure 4.13: The reconstructed position ∆L(t) = L2(t) − L1(t) of the piezo. L1(t) ≈ L1

while L2(t) ≈ L2, 0 − x(t).

The unwrapping worked correctly, and all of the 2π jumps were removed. The ramp
signal’s shape, which guided the piezo’s motion, is perfectly visible. The ’peak to peak’
amplitude of the motion is ∆L = 4.41, while the predicted amplitude of the piezo’s motion
is ∆x = k∆V = 3.44µm. A ”shark-fin” shape of the piezo’s motion is visible, due to a non
linearity in the piezo’s response, and not to a readout error. Piezo crystals are known to
have a non linear response as shown in [31].

In conclusion, the used method is able to follow the piezo’s motion through more than one
fringe, and the displacement measured with interferometry is compatible with the induced
displacement of the mirror.
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4.4 Test Setup Sensitivity to Temperature

A measurement was taken in the same conditions as picture 4.7 a whole night long to check
what’s is the effect of the room’s temperature T (t) on the interferometer. The analysis
method was the same as previously. I show therefore the relative position of the two mirrors
∆L(t) (figure 4.14).

(a)

(b)

Figure 4.14: Above: the reconstructed relative distance of the two mirrors during the run.
Below: the measured air temperatures during the night run.

The relative distance of the two mirrors ∆L changes quickly at the beginning of the
measurement, and then slowly stabilizes, oscillating around a fixed value.

The temperature of the air in the room show a similar behavior, but with opposite sign
(figure 4.14):

Correlation can be checked rescaling the temperature axis and plotting the temperature
T (t) together with −∆L(t) (see figure 4.16). By zooming in one can see that both the
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temperature and the relative distance oscillate on a 1000 second (20 minutes, 0.001Hz)
scale, and that is the well known time scale of the cycles of the air condition system in the
room.

(a)

(b)

Figure 4.15: Above: Overlap of the two time series, the relative position −∆L(t) = L1(t)−
L2(t) (- Displacement) measured by the two interferometers and the rescaled temperature
of the air. Below: a 1000 seconds long zoom showing three oscillations.

A ∼ 0.03◦C temperature variation in the air is inducing on the mirrors a relative motion
of 0.1 µm. A magnitude square coherence computation (see appendix A) shows that −∆L(t)
and air temperature T (t) are strongly correlated under 0.02Hz with a phase lag of 0.44rad
(∼ 70sec at 0.001Hz) probably due to the thermal inertia of the mirror mountings.
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(a)

(b)

Figure 4.16: Above: magnitude square coherence of −∆L(t) and air temperature T (t).
Below: phase lag between −∆L(t) and air temperature T (t).

This measurement is a direct check of how the setup in figure 4.7 is sensible to the air
temperature’s changes. During the experiment though the interferometer’s bench will be
kept in vacuum, and externally induced thermal effects are expected to be much smaller.
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Chapter 5

Interferometric Measurement of the
Oscillator’s Motion

5.1 The Experimental Setup

After successful testing, we integrated the interferometer into our experiment. The interfer-
ometer bench is screwed to the two protrusions and lies right under the oscillator’s cuboid
mass (figure 5.1).

The oscillator needs to be isolated from noise factors that could excite the oscillator’s
resonance and hide the thermal noise’s contribution. For our experiment, the principal noise
issue is mechanical noise, caused both by sound waves in the atmosphere and seismic activity
of the earth [9]. The oscillator is hence suspended through a cascade of mechanical filters and
housed under vacuum. For the measurements reported in this thesis we re-used a setup that
was developed as a prototype for the RareNoise experiment [9]. An additional mechanical
filter is provided by the optical table supports which are pneumatic vibration isolators.

5.1.1 Heater

The heater (shown in figure 5.1)is a 3.6Ω resistance which heats due to Joule effect emitting
radiation as a black-body at a temperature dependent on the flowing current, eg (6.0V, 1.8A)
→ 975◦C. The resistance is mounted in the focus of a parabolic mirror which reflects all
the radiation towards the cuboid mass of the oscillator. The heater’s datasheet reports that
80% of the radiated power is coupled with the heating target.

5.1.2 The Mechanical Filter

A mechanical filter is a mechanical oscillator resonating at a frequency f0 much lower than
the frequency of interest (the lowest frequency of interest is 300Hz in this case, since it
is the frequency of the first transverse mode of the oscillator). An input vibration is then
suppressed by the transfer function (5.1) in a low-loss regime:

T (ν, ν0) =
ν2

0

ν2
0 − ν2

(5.1)

The experiment re-uses the three-stage mechanical filter developed in the past as suspen-
sion prototype for the RareNoise experiment [9]. The three stages of our mechanical filter
resonate at ν0 ≈ 38Hz, while the whole system obviously exhibits a more complicated mode

57
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(a) (b)

Figure 5.1: (a) Scheme of the oscillator with the interferometer bench mounted under it,
the thermopile and the heater. The beam’s path is marked in red. The incoming beam
is in the center. The forward output exits on the bottom right, and the return outputs
follows the incoming beam’s path the other way round. (b) Picture of the oscillator with the
interferometer bench mounted under it. The interferometer bench hosts BS1, the rotator
where the octal-wave plate is mounted and the reference mirror. In front of the oscillator’s
mass a support is holding the heater. For clarity, in figure (a) the oscillator, the heater and
the thermopile are represented anticlockwise rotated of 90◦ on the vertical axis.

structure. The experimentally measured transfer function of the suspension is reported in
figure 5.3. A picture of the suspension mounted over the vacuum chamber’s base is reported
in figure 5.2..

5.1.3 The Vacuum System

A scheme of the vacuum system is reported in figure 5.4. A glass window has been added on
the base of the chamber to let the laser beam enter and exit. The vacuum chamber is set on
the center of the optical table. The chamber’s base lies on three cylindric 15cm long supports
(figure 5.2). The vacuum pumping system used consists in a first stage dry scroll pump and
in a second stage turbomolecular pump. A vacuum valve is placed between the turbo pump
and the chamber. Three vacuum gauges (VG) are present to measure the pressure at the
head of the first stage pump (VG3), at the head of the turbo pump (VG2), and in chamber
(VG1).

If the turbo were directly connected to the chamber, it could lower the pressure in the
chamber down to ∼ 10−6mbar, but it would induce a high mechanical noise to the optical
table. Since we don’t have vibration-free vacuum pumps available, we decided to add a sand
box between the turbo and the vacuum chamber to absorb the vibrations. The sand box
though has a very narrow vacuum tube inside with reduced conductance. The minimum
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Figure 5.2: (left) Picture of the suspension system laying on the vacuum chamber’s base.
On the right of the suspension the white cables connecting the thermopiles, thermometers
and heater are visible. (right) Picture of the suspension system seen from above. In the
center at the bottom of the vacuum chamber the glass window is visible.

Figure 5.3: (left) Vertical Transfer function of the mechanical filter. The black line is the
experimentally measured transfer function. The gray line is the prediction from the coupling
in cascade of the three stages, which are three oscillators of masses, respectively, 17.4, 17.4,
and 19.8kg and with ν0 = 38Hz. Picture from [9].
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Figure 5.4: Scheme of the vacuum system used. In the vacuum chamber the oscillator is
represented in white and lied over the three-stage mechanical filter. The vacuum in the
chamber is achieved using first stage scroll pump and a second stage turbomolecolar pump.
The pressure is measured in the points of interest with three vacuum gauges. The picture
of the oscillator hosted on the suspension inside the vacuum chamber is taken from [9] and
thus the fixed electrode is shown in place of the interferometer bench.

reached pressure in the chamber is 3 · 10−5mbar.
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5.1.4 Interferometer Setup

After the telescope depicted in figure 4.6(a) the beam is routed to the interferometer. The
planned setup in figure 3.1 has been realized. Two leverage mirrors are used to divert the
horizontally propagating beam upwards to the oscillator and then to divert the vertical,
down propagating beam back to horizontal. The forward and backward outputs and PD5
are detected using SN7-11 characterized in section E.7. A schematic picture of the setup in
the vacuum chamber is reported in figure 5.5. Two pictures of the entire setup are reported
in figure 5.6. A detail of the two outputs is reported in figure 5.7.

5.1.5 Acquisition System

Our acquisition system is based on a National Instruments PXI platform. The outputs of
the four photodiodes are acquired using a 24-bit resolution ADC NI PXI-4462 DAQ board,
which acquired at 8k Samples/sec in a ±10V range (fast channels). All temperature sensors
(room temperature, T1 and T2 on the oscillator) and environmental monitor signals (the
pressure in the chamber and after the pumping stages) are acquired at 1 Sample/sec by NI
9219 24-bit universal analog inputs (slow channels). NI LabView was used to develop the
acquisition software, which during the acquisition also provides live data view from the fast
acquired channels and from the slow channels. Data storage is arranged in txt data format.
Data analysis is carried out offline with Matlab.
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Figure 5.5: Schematic picture of the experimental setup. The oscillator (compare with figure
5.1) is in the center. The two protrusions beside the oscillator hold the interferometer bench.
The top of the rod is holded by a cylindrical plate which is lied over the mechanical filter
(compare with figure 5.2). The first two stages of the mechanical filter system are colored in
purple, and the third stage is gray. The mechanical filter’s bottom springs are screwed to the
chamber’s base. On the chamber’s base the glass windows is drawn. The chamber lies over
three cylindrical supports (only one is shown in this picture) which hold the chamber 15cm
over the optical table. On the table the two 45◦ mirrors reflecting the beam (represented by
the black lines) towards the interferometer are drawn.
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Figure 5.6: (above) Picture of the setup of our experiment. The setup is that of figure 3.1,
where some mirrors and four more polarizers have been added. For a detailed picture of
the outputs see figures 5.7. (below) Picture of the complete setup inside the clean room.
The squeezer bench is on the left, hidden by the curtains. In the center the optical table is
visible. The PM fiber is the blue ’cable’ exiting from the squeezer bench, being hold on the
ceiling and whose output is on the Rarenoise table. The vacuum chamber has then been set
on the center of the bench, while on the right the two used vacuum pumps and the sand box
are visible. The bottom level of the rack on the left is hosting the acquisition system, and
the voltage supply modules.
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(a) Picture of the Forward Output of the interferometer. A lens focalizes the beam
on the photodiodes. PBS1 splits the output beam in the two polarizations compo-
nents. The two outputs are acquired by photodiodes SN7 as PD1 and SN9 as PD2.
On the bottom the fiber’s output and the optical telescope going to the interferom-
eter are visible.

(b) Picture of the Return Output of the interferometer. The input beam is coming
from the right of the picture. Half of the intensity is reflected by BS2 and is detected
by the SN11 photodiode as PD5. Half of the beam is transmitted towards the inter-
ferometer. The returning beam is intercepted by BS2 and reflected towards second
output. A lens focalizes the beam on the photodiodes. The beam is splitted by PBS2
into its two polarizations and reflected towards SN8 as PD3 and SN10 as PD4.

Figure 5.7: Pictures of the two interferometers’ outputs with the beam’s path highlighted.
To improve the polarization selection, four polarizers have been added after PBS1 and after
PBS2 (see section 5.4).
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5.2 Noise Budget

We measured the dark noise of the five readout photodiodes to have a white spectrum from
a 10Hz to 4000 Hz at a 2.5 ·10−8V/

√
Hz level (see figure 5.8). We set the maximum intensity

from the interfering beam to be lower than 2mW, so that the two outputs FMP and FMS
would not distort, exploiting the full 10V range of the ADC. The two outputs RMP and
RMS have half of this intensity and were also acquired in the ±10V ADC range since the
lower setting is ±3.16V . On the ±10V range setting, the noise spectrum from the ADC was
also measured to be a white spectrum at a 7 · 10−8V/

√
Hz level (see figure 5.8).

Figure 5.8: (blue) The dark noise from the SN7 photodiode. The five used photodiodes(SN7,
SN8, SN9, SN10 and SN11) have the same white noise spectrum. The noise spectrum from
the photodiodes is a factor ∼ 3 lower than the acquisition noise. (red) The noise level from
the ADC in the ±10V range measured in the first ADC channel with a 50Ω tap on it. The
noise level in the 4 channels was the same.

The expected noise level caused by shot noise for a 2mW beam is:

S
1
2
shot noise =

√
I~

2πc

λ
= 5.9 · 10−12W/

√
Hz (5.2)

Using the calibration from the photodiodes, the shot noise level corresponds to 3.0·10−8V/
√
Hz,

and hence the photodiodes are shot noise limited.
We then computed the displacement noise induced by the :

I(∆L) = I0(1 + cos(2k∆L))→ dI

d∆L
(∆L) = I0sin(2k∆L)2k (5.3)

As expected, the sensitivity with respect to position of a single interferometer depends on
where the interferometer is sitting in the fringe, and is the reason why we are using a quadra-
ture homodyne interferometer. In a naive approach, taking into account one interferometer
at a time, when one interferometer’s sensitivity is low, the other π/2 offset interferometer’s
sensitivity is high and vice versa. The worse combined sensitivity happens when both in-
terferometers sit at 2k∆L = π/4 and sin(2k∆L) =

√
2

2
. Hence one can evaluate the voltage



66CHAPTER 5. INTERFEROMETRICMEASUREMENTOF THE OSCILLATOR’S MOTION

sources contribution in the case of worse sensitivity using

d∆L

dI
=

λ

2
√

2πI0

(5.4)

and

S
1/2
∆L(ω) =

d∆L

dI

dI

dV
S

1/2
V (ω) (5.5)

where dI
dV
∼ 0.2mW

V
is the calibration of the photodiodes (see appendix E). Comparing the

three noise sources we conclude that the spectrum is dominated by the acquisition noise, and
that the minimum achievable sensitivity with the setup is slightly below 2 · 10−15m/

√
Hz.

A plot of shot noise, photodiodes noise and ADC noise is reported in figure 5.9.

Figure 5.9: Plot of the noise level from shot noise ∼ 8.2 · 10−16m/
√
Hz, photodiodes noise

∼ 6 · 10−16m/
√
Hz and ADC noise ∼ 1.2 · 10−15m/

√
Hz
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5.3 Three Photodiodes Phase Readout Results

We report the analysis results of a 10 minute long acquisition using the 3PDR described in
section 3.5. Outputs FMP, FMS and the input intensity were acquired.

During this measurement, the measured ∆L(t) in smaller than one wavelength, and both
interferometers are sitting at a fourth of the fringe, and hence the photodiodes measure a
low intensity (see figure 5.10. Therefore to provide the calibration of the signal, at the end
of the run we hit the suspended optical bench supporting the chamber thus making the
two interferometer arms undergo a full fringe of relative motion. The measured visibilities
are VFMP = 97.5% and VFMS = 98.4%. Visibility is expected to be the same for the two
outputs. The difference is probably caused by a non perfect polarization selection by PBS1.
The setup is using the additional polarizers shown in figure 5.7.

Figure 5.10: Histogram of the intensity measured by FMP (left) and FMS (right) during the
run.

The measured phase angle can be shown plotting (y, x) = (sin(φ(t)), cos(φ(t))) as shown
in figure 5.11. The correction angle was different from the angle used during the testing in
section 4.3 because while attaching the interferometer to the oscillator we did a few attempts
to optimize the octal wave-plate rotation; however we were not able to obtain the desired
π/2 offset between the two interferometers (see section E.6).

We finally computed the PSD of the measured relative position ∆L(t). Figure 5.12 shows
the difference in performance between the Two Photodiode Readout and the 3PDR. The
two perfectly match under 50Hz, but then differ when laser intensity fluctuations domi-
nate the noise. Laser intensity fluctuations limit the 2PDR’s spectrum to reach a best of
∼ 10−13m/

√
Hz sensitivity around 600Hz while the Three Photodiode Readout reaches a

flat noise level of 4.8 · 10−15m/
√
Hz above 1350Hz. This can be again checked plotting

the magnitude-square-coherence of the input intensity I(t) and relative displacement ∆L(t)
(figure 5.13). Correlation between input intensity and relative displacement above 150Hz
is strongly suppressed by adding the input intensity information to the analysis. The phase
lag plots show that the lag is a continuous function of the frequency where the two signals
are correlated.
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Figure 5.11: Plot of (y, x) = (sin(φ(t)), cos(φ(t))). The ŝ signal has been shifted by a 24.15◦

angle using equation (4.1). This plot can be compared with an unitary radius circle indicated
by S1 and a 0.95 radius circle indicated by 0.95*S1.

Figure 5.12: (blue) Square root of the time average PSD of ∆L(t) estimated with 3PDR.
(red) Square root of the time average PSD of ∆L(t) estimated with 2PDR. The two spectra
were computed from the same sample with a 0.194Hz resolution.
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Figure 5.13: Magnitude square coherence and phase lag of input intensity I(t) and relative
displacement ∆L(t) measured with the 2PDR (above) and 3PDR (below).
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5.4 Four Photodiodes Phase Readout Results

We report here the analysis result of the 4PDR (section 3.6). From a histogram of the
measured intensities (figure 5.14) one can see that the p̂ interferometer was sitting in the
middle of a fringe while FMS was in the minimum and RMS at the maximum.

Figure 5.14: Histograms of the four acquired outputs.

The first step of the analysis is the estimation of the summation coefficients for p̂ and
ŝ. This can be done by plotting (y, x) = (RMP (t), FMP (t)) and performing a linear fit.
In a simplified representation FMP: ∼ αf − βcos(ϕ) and RMP ∼ kp(αr + βcos(ϕ)), hence
expressing RMP as a function of FMP:

(y, x) = (kp(αr + βcos(ϕ)), αf − βcos(ϕ) )→ (y(x), x) = (k(αr + α2 − x), x) (5.6)

The slope of the linear fit kp multiplied by −1 gives the summation coefficient.
This procedure turned out to be useful also as diagnostic tool, being a strong check of

the polarization selection by PBS1 and PBS2. The first time we tried this analysis, instead
of two lines, two narrow ellipses appeared, manifesting a phase delay between the two same-
polarization outputs. An example of this is reported in figure 5.15 . This was due to a
non perfect separation of the two polarizations and hence a small part of the s-interfering
signal was measured by the p̂ photodiodes and vice versa. Therefore four more polarizers
have been added to the setup, two before PD1 and PD3 selecting p̂ and two before PD2 and
PD4 selecting ŝ, obtaining a much better polarization selection as shown in figure 5.16. The
spectra from the 3PDR would not have the current noise floor if no 4PDR diagnostic had
been made.
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Figure 5.15: (above) Plot of (y, x) = (RMP (t), FMP (t)). The linear fit gives kp = 0.4518±
0.0005. (below) Plot of (y, x) = (RMS(t), FMS(t)). The linear fit gives ks = 0.5010±0.0002.
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Figure 5.16: Plot of RMS versus FMS when the polarizers still were not added to the outputs.
Instead of the straight line expected from theory, the result is a narrow ellipse.

The plot (y, x) = (sin(φ), cos(φ)) is reported in figure 5.17:

Figure 5.17: Plot of (y, x) = (sin(φ(t)), cos(φ(t))). The ŝ signal has been shifted of a 24.15◦

angle using equation (4.1). This plot can be compared with an unitary radius circle indicated
by S1 and a 0.95 radius circle indicated by 0.95*S1.

We then report the computed relative displacement PSD, which also proved to have a
lower noise level than the spectrum computed from the 3PDR, probably due to a better vis-
ibility fluctuation rejection. A 4-hour long sample was measured to achieve better resolution
and more averages. The 4PDR measured spectrum is reported in figure 5.18.
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The noise level in the spectra measured with the 4PDR is at the level of 3 ·10−15m/
√
Hz

above 1000Hz, and is close to the noise from the ADC. In the 200− 700Hz frequency band
the noise level is again lower using the 4PDR. In the 80−200Hz frequency band noise is lower
with the 3PDR, due to ha mechanical mode transient affecting the 4PDR measurement.

Using the 4PDR readout, a 500 seconds long measurement was performed closing the
valve and turning the vacuum pumps off. The vacuum tubes to the chamber (shown in
figure 5.6) were also disconnected. We report the measured spectra in figure 5.18(below):
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Figure 5.18: Above: (blue) Square root of the time averaged PSD of ∆L(t) measured with
the 4PDR from a 4 hours long sample with a 0.18Hz resolution. (red) Square root of the time
averaged PSD of ∆L(t) measured with the 3PDR also shown in figure 5.12. (yellow) The
displacement noise caused by the ADC reported in figure 5.9. Below: (red) same spectrum
as the red one above in this figure. (purple) Square root of the PSD of ∆L(t) measured with
the 4PDR and vacuum pumps off with 0.5Hz frequency resolution. (yellow) same spectrum
as the yellow one above in this figure.

The noise induced by the vacuum pumping system is causing the structures in the 350−
1350Hz frequency band visible in the spectrum. The best measured spectrum is the spectrum
with pumps off in figure 5.18. The spectrum is dominated by residual mechanical noise in
low frequencies (< 200Hz), where the noise consists in a high structure at 29Hz and in its
superior harmonics (probably due to a non linearity in the system) which gradually decrease
in amplitude. At higher frequencies noise is probably dominated by the ADC noise.

Because of the better performance, all the measurements from here on were made using
the 4PDR.
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5.5 Measurement of the Heated Oscillator

We finally tested the interferometer to see if during the heating transients it is able to achieve
the same sensitivity reached in the steady states measurements and if the total measured
elongation of the arm’s length corresponded to that computed using the aluminum’s thermal
expansion coefficient. We heated the cuboid mass of the oscillator giving a 2.5V supply to
the heater, and hence a 9W power was hitting the cuboid mass. The oscillator was heated
for a 5 hour time. We then started to measure the interferometer’s signal, and turned off
the heater 10 minutes later so that the oscillator cooled down and it’s length reverted back
to it’s room temperature length.

Figure 5.19: Above: ∆L(t) measured by the interferometer during the cool down. Below:
(blue) cuboid mass temperature T2(t) measured by the thermopile. (red) temperature at the
top T1(t) of the rod measured by the NTC thermometer.

The outputs of the interferometer and temperature measurements are shown in figure
5.19. The maximum temperature difference ∆T = T2−T1 was 8.8K, while at the end of the
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measurement the temperature difference was 1.7K We modeled the oscillator’s temperature
as if the cuboid mass had an uniform temperature T2 and the rod had an uniform temperature
gradient ∆T/L where L is the rod’s length. This model would predict a 17.7µm elongation
of the oscillator, while the elongation measured by the interferometer was of 16.9µm. These
two results are consistent considering how we have approximated the temperature profile of
the oscillator. A total of 34 fringe crossings hence happened during the measurement.

We report in figure 5.20 some of the spectra computed using the ∆L(t) data measured
during the cooldown transient. The noise level did not change, and was not affected by the
34 fringe crossings that happened during the measurement. The readout hence achieved the
scope it was designed for.

Figure 5.20: Plot of five spectra taken from a 10 minute long acquisition during the oscil-
lator’s cooldown. The legend shows the average temperature of the cuboid mass during the
sample the PSD was computed from. The sensitivity during the transient is the same as in
figure 5.18, with a noise level of 3 · 10−15m/

√
Hz at 1400Hz.
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5.6 Oscillator Modes’ Peaks

Investigation of the thermal noise out of equilibrium falls out of the scope of this work, which
was aimed at developing the interferometric readout. However, after reaching a sufficient
sensitivity, we looked for the oscillator’s modes on the spectra (see figure 2.2 for a description
of the modes). The longitudinal mode at ∼ 1400Hz is detected by the interferometer
according to its working principle, since it consists a displacement of mirror 2 in a direction
parallel to the path of the beam. The transverse mode at ∼ 320Hz couples instead because
of an unwanted, or at least uncalibrated, cross-talk. The mode is in fact described by
the torsion angle, and the interferometer sees the angular displacement multiplied for the
distance between where the beam is hitting the oscillator and the rotation pole, which we
have not carefully controlled. Hence the amplitude information from the transverse mode
cannot be used in quantitative considerations. The two mode’s peaks are expected to have
a high quality factor (∼ 103) because of the material the oscillator is made with, and are
expected to decrease their resonance frequency with rising temperature, since the aluminum’s
stiffness decreases with temperature.

We used this last information to search for the longitudinal mode’s peak around 1400Hz
in the cooldown measurement. In figure 5.21 we report a zoom of figure 5.20 in the area
where the longitudinal mode is expected to appear.

Figure 5.21: Zoom of figure 5.20 around 1400Hz. The shown spectra were acquired ad
various temperatures of the cuboid mass, which are reported in the legend.

We found two peaks: a wide peak at 1418Hz and a narrow peak at 1388Hz. Only
the narrow peak at 1388Hz appears to change its resonance frequency with temperature,
and is behaving in the expected way, increasing it’s resonance frequency while temperature
decreases; it also shows a high quality factor. On the other hand, the dependence on tem-
perature of the frequency of the peak at 1420 Hz is not clear, and its much lower Q suggests
that it is probably not an oscillator mode. Pending further checks, we thus assume the peak
at 1388 Hz to correspond to the longitudinal mode, while we have not yet investigated the
source of the 1420Hz peak. In figure 5.22 we report the variation of the resonance frequency
of the mode with the temperature of the cuboid mass for the longitudinal mode during the
cooling transient. The variation of the resonance frequency with temperature is expected to
be quadratic, but, since the explored region was small, a linear fit has been performed. We
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found that the longitudinal mode’s resonance frequency decreases by approximately of 1Hz
when the cuboid mass’s temperature increases by 4K.

Figure 5.22: Fit of the variation of the resonance frequency with the cuboid mass’s temper-
ature.

Using the data of the 4-hour-run we computed a spectrum with high frequency resolution.
THe peak was fitted using the laurentian function in equation 2.9 and the result is reported
in figure 5.23.

Figure 5.23: Fit of the peak at 1388Hz using function 2.9. The used spectrum was averaged
300 times and has a 0.0167Hz frequency resolution. The fitted laurentian function is missing
the resonance frequency’s estimation, probably due to a wrong modeling of the noise. The
resulting quality factor of the mode is Ql = 1245.

The resulting fit parameters are reported in table 5.1

The temperature of the mode can be straightforward calculated using equation 2.10
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parameter name symbol value
readout noise (m2/Hz) p0 1.022e-29 ± 9e-32

peak area× 2
π

(m2) p1 6.884e-29 ± 6e-31
FWHM (Hz) p2 1.14 ± 0.01

resonance frequency (Hz) p3 1387.693 ± 0.004

Table 5.1: Resulting parameters of the laurentian fit (equation 2.9 reported in figure 5.23.

resulting in

Teff, l = 2πp1
2

π
(2πp3)2k−1

B = (347.8± 0.3)K (5.7)

The excess with respect to room temperature is probably due to residual external mechanical
excitation of the peak. We hence report in figure 5.24 a detail of figure 5.18(below) which
shows that the pumping system is exciting the longitudinal mode, since the area and the
height of the peak decreased in the spectrum with pumps off. The need for a vibration-free
pumping system is an open issue of the experiment.

A laurentan fit has been performed on the longitudinal mode as in figure 5.23 using
the data measured with the vacuum pumps turned off reported in figure 5.24(above). The
resulting fit parameters are reported in table 5.2

parameter name symbol value
readout noise (m2/Hz) p0 8.767e-30 ± 1e-31

peak area× 2
π

(m2) p1 6.241e-29 ± 2e-30
FWHM (Hz) p2 1.07 ± 0.06

resonance frequency (Hz) p3 1387.68 ± 0.03

Table 5.2: Resulting parameters of the laurentian fit (equation 2.9) reported in figure 5.24(be-
low).

The resulting temperature of the longitudinal mode from the fit in figure 5.24 is (321.5±
10)K, and the result is compatible with the room’s temperature, stating that the peak’s
area was compatible with that expected by thermal noise excitation, and that the readout
is sensitive enouth to detect the thermal noise excitation caused by thermal noise.

We searched also for the transverse mode’s peak with the same method. In figure
5.26(above) we report a detail of figure 5.20. The zoomed region is dominated by noise.
Noise structures show peaks at the same frequencies in the 5 spectra. A narrow peak hardly
stands over the noise and has the expected behavior of frequency vs temperature. The plot
of the transverse mode’s resonance frequency vs the cuboid mass’s temperature is reported in
figure 5.26(below). Again, the expected relation is quadratic, but a linear fit was performed
since the temperature variation was small. The resonance frequency of the transverse mode
has a smaller dependence on the cuboid mass’s temperature with respect to what happens
with the transverse mode.

We then fitted the peak using the equilibrium data using the curve expected from internal
damping (equation 2.7), since the laurentian function 2.9 did not fit the data. The used
function for the internal damping fit is (5.8):〈

x2(ω)
〉

=
4kBT

mω

ω2
0φ(ω)

(ω2 − ω2
0)2 + ω4

0φ(ω)2
→ y(ν) = p0 +

p1p2p
2
3

ν((ν2 − p2
3)2 + p4

3p
2
2)

(5.8)

where a parameter p0 has been added to estimate the readout noise approximated as a
constant, p1 = 4kBT

m
where T is the absolute temperature, kB = 1.38 · 10−23kg s−2m2K−1 is
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Figure 5.24: (Above) Zoom of figure 5.18(below) around the candidate transverse mode
peaks. (Below) Fit of the longitudinal mode with the vacuum pumps off using the same
data used to compute the spectrum in figure 5.18(below).

Boltzmann’s constant and m = 0.234kg [13] is the mode’s mass, which is assumed to be half
of the rod’s mass plus the cuboid’s mass, p2 = φ(ν0) = 1/Q and p3 = ν0 is the resonance
frequency.

The fit using equation 5.8 is reported in figure 5.26
As said, the temperature cannot be inferred from the transverse mode. Using the infor-

mation from the fit with the internal damping equation 5.8, we calculated the quality factor
Qt = 12200± 500.
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Figure 5.25: Above: zoom on figure 5.20 around 300Hz where the peak of the transverse
mode is espected to be. Below: fit of the relation between temperature and resonance
frequency for the transverse mode.
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Figure 5.26: Fit of the transverse mode’s peak using a the internal damping equation 5.8.
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5.7 Future Improvements

The readout is probably limited by the ADC noise (see figure 5.9), which is limiting the ∆L
sensitivity at about 1.5 · 10−15m/

√
Hz. To increase the sensitivity the ADC range should be

reduced. The lower ADC range is at ±3.16V and has a noise level of 2·10−8V/sqrtHz, which
is slightly lower than the noise from the photodiodes (see section 5.2) and anyhow lower than
the expected shot noise of the 2mW laser beam. Being able to reduce the acquisition range
(maintaining the same beam intensity) would bring the readout to be limited by shot noise
at a level of 8.2 ·10−15m/

√
Hz. Shot noise cannot be reduced since the photodiodes saturate

at 2mW .
The most straightforward way to lower to ±3.16V the ADC range would be to decrease

the beam’s intensity. The beam intensity should be lowered to 0.6mW but doing so the shot
noise would overcome the current ADC noise level.

Another solution which is worth to investigate is the realization of a high pass filter with
transfer function T (ω), capable of suppressing at least by a factor 3 the amplitude of the
signal under ∼ 200Hz. The voltage signal from the photodiodes PD(t) lies in the range
[0;−10]V with a 2mW beam, and therefore needs to be acquired in the ±10V ADC range,
but the 10V intensity variations that constrain us to the chosen ADC range happen at a
frequency lower than 50Hz as visible from the measured spectra in sections 5.3 and 5.4. By
adding one of these filters after each acquired photodiode, the ADC would measure T ·PD(t)
in the ±3.16V ADC range. During the analysis the signal would me multiplied by T−1 and
the ADC noise’s contribution would be lowered, taking the noise limit to that set by the
2mW shot noise at 8.2 · 10−15m/

√
Hz.

The setup also needs a vibration free vacuum pump to lower mechanical noise in the
300− 1350Hz frequency band.



84CHAPTER 5. INTERFEROMETRICMEASUREMENTOF THE OSCILLATOR’S MOTION



Conclusions

During this thesis an interferometric readout has been built with the aim to detect the
vibrations induced by thermal noise on a metallic oscillator. The readout needs to reach
a sensitivity comparable to that of the previously used capacitive readout which was ∼
3 ·10−13m/

√
Hz at a 300Hz and 2 ·10−15m/

√
Hz at 1400Hz. The readout needs to maintain

the sensitivity also during the same heating transients, when the oscillator’s length will
incrase of several µm. Self-calibration is also requested.

Quadrature homodyne interferometery has been implemented and tested. The interfer-
ometer has been built and characterized in sensitivity and calibration. Various measurements
procedures and signal extraction algorithms have been studied. We found out that in or-
der to achieve the best sensitivity, all of the 4 outputs from the interferometer need to be
acquired. The achieved sensitivity was 3 · 10−15m/

√
Hz at 1400Hz. The performance was

maintained during the heating transients of the oscillator. As expected the interferometer is
self calibrated and the noise is not affected by fringe crossing

We finally looked for the oscillator’s modes on the spectra, which have been found and
characterized. They seem to be slightly above the thermal noise, problably excited by pumps.

The sensitivity seems to be limited at high frequencies by the noise from the ADC. We
also propose a method to improve the sensitivity by whitening the photodiodes’output before
acquisition so to better expoloit the dynamic range of the ADC.

The experiment is hence ready to perform the nonequilibrium measurements once a
vibration-free pump has been added.
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Appendix A

Power Spectral Density

In a formal definition, the Power Spectral Density (PSD) is the Fourier transform of the
auto-correlation function R(t, t′) = 〈x(t), x(t′)〉. If x(t) is a stationary process then R(t, t′) =
R(τ = t, t′) and the PSD is defined as

Sxx(ω) =

∫ +∞

−∞
dτR(τ)eiωτ (A.1)

The physical meaning of the PSD of a signal is the power density in the frequency space: if
a filter is letting through only frequencies between ω1 and ω2, then the total output power
would be

Pω1,ω2 =

∫ ω2

ω1

Sxx(ω)dω (A.2)

By definition, since the auto-correlation function is real, Sxx(ω) = Sxx(−ω), hence the
one-sided PSD is usually defined as Dxx(ω) = 2Sxx(ω) for ω > 0. The variance of the signal
is the integral of the PSD in the frequency domain: σ2 =

∫∞
0
S(ω)dω.

The PSD computation would need a data set of infinite duration, while on the other hand
measurements can be performed only on a finite amount of time T. In this case the data will
have only Fourier components at fn = n

T
, and the frequency resolution is then ∆f = 1

T
.

Finally, Nyquist theorem states that a signal can be sampled and correctly reconstructed
only if its frequency content is such that fmax <

fs
2

= 1
2ts

, and since the data acquisition in
my experiment is sampling at 8 kHz, the spectra I show never overcome the 4 kHz limit.

If one computes the correlation function between two different variables x(t) and y(t),
its fourier transform is named cross power spectral density (CPSD):

C(τ = t, t′) = 〈x(t), y(t′)〉 → Sxy(ω) =

∫ +∞

−∞
dτC(τ)eiωτ (A.3)

Unlikely the PSD, CPSD is not real. From CPSD, the magnitude square coherence (MSC)
is defined as

M(ω) =
Sxy

S
1
2
xxS

1
2
yy

(ω) (A.4)

which lies the interval [0, 1] and represents the correlation of the two signals in each frequency
band. The imaginary part of the CPSD represents the phase lag between the two signals x(t)
and y(t). For physical reasons, =[CPSD](ω) must be a smooth function of the frequency ω
in order for the CPSD to represent a credible correlation.
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Appendix B

Phase Unwrapping

An interferometer’s output, as shown in equation 1.16, is a periodic function with period λ
4

of the relative position of the two mirrors ∆L(t). The atan2 computation is useful because
its output has a 2π period and hence twice the usual atan’s period, but the problem is not
solved.

The problem of periodicity unwrapping can be thought the problem of counting how
many times a point of coordinates (y, x) = (sin(ϕ), cos(ϕ)) turns around the origin of the
y-x plane using an atan computation. If ϕ increases (or decreases) monotonically, the point
turns around the origin, but an atan computation cannot count how many revolutions the
point has completed, since it gives out just the angle formed by the line joining the point to
the origin and the x-axis.

On the other hand, the atan2 is a monotone function, and hence discontinuities arise
when the point completes a revolution. The unwrapping is the procedure which finds these
discontinuities and removes them ’counting’ the point’s revolutions. For example, in the
case of quadrature interferometry, if the phase ϕ is such that the computed phase φ =
atan2(sin(ϕ), cos(ϕ)) = π− δ with δ > 0, and the mirrors move in order to make ϕ increase
of 2δ, ϕ = 2k∆L → 2k∆L′ = ϕ′ = ϕ + 2δ, then new computed phase would be φ′ =
atan2(sin(ϕ′), cos(ϕ′)) = −π + δ and not π + δ as the continuity of the motion suggests. If
one had to compute the relative mirror’s position as ∆L = φ λ

4π
this would mean that the

mirror has suddenly moved back of a distance ∼ λ/2 (if δ is sufficiently small).

The unwrapping algorithm we used can be summarized as follows. If in a time series
(as φ(t) is) a computed phase value φ(i) differs from the previous one φ(i− 1) by less than
−π → φ(i) − φ(i − 1) < −π) (or more than π → φ(i) − φ(i − 1) > π), to that computed
phase value and to all the following ones a 2π phase quantity is added (subtracted). This
procedure goes on for each discontinuity in the time series.

Of course the result of this algorithm depends on the time series it is applied to: it
cannot be applied to an angle time series where the noise’s amplitude is comparable with
π, because noise would be confused with the searched discontinuities. Even in low noise
signals, the phase difference between each couple of consecutive points must anyway be
much smaller than π, otherwise wrong fringe crossings would be counted: one can check
that this statement translates in a constrain on how the sampling frequency (fs) relates to
the maximum expected time derivative of the differential lenght ∆L(t):

φ(i)− φ(i+ 1) << π → 4π

λ
(∆L(i)−∆L(i+ 1) << π ≈ d

dt
(∆L)f−1

s <<
λ

4
(B.1)

so the sampling frequency must be such that fs > 4 d
dt

(∆L)λ−1. [25]
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Figure B.1 shows the reconstructed phase computation starting from two generic sin(ϕ(t))
and cos(ϕ(t)) time series using (above) atan2 with and without unwrapping and (below) a
single sine or cosine signal (a simple homodyne interferometer), computing the phase as
acos(cos(ϕ(t))) and asin(sin(ϕ(t))).

Figure B.1: Above: Example of simple atan2 computation and unwrapped atan2 computa-
tion. In this plot, the blue line is (y,x) = (atan2( sin(x), cos(x) ) , x) (the computed phase)
with x ∈ [0, 4π], while the red line is (y,x) = (unwrap( atan2( sin(x), cos(x) ) ), x) (the
unwrapped phase) always with x ∈ [0, 4π]. The result of the simple atan2 computation lies
in the range [−π, π], and is a monotone function of the phase x in the atan2’s codomain.
The discontinuities are evident in x = π, 3π. The unwrapping algorithm removes the dis-
continuities adding multiples of 2π. The resulting unwrapped phase (y) is then equal to the
original phase (x). Below: Examples of asin ad acos computations starting from a single
signal. The blue line is (y, x) = (acos( cos(x) ), x) and the red line is (y, x) = (asin (sin (x) ),
x) with x ∈ [0, 4π]. Since the slope changes sign during one period, this operation is not able
to compute the motion. For example, let φ(t) be the computed phase and ϕ(t) = 2k∆L(t)
the original phase. If I had to measure φ̇(t) > 0, I would not be able to distinguish if both
d
dϕ

(acos(cos(ϕ)) > 0 and ϕ̇ < 0 or d
dϕ

(acos(cos(ϕ)) < 0 and ϕ̇ > 0. The same happens with

the sine case. Since no discontinuities are evident here (they manifest on the first derivative)
no direct unwrapping algorithm exists. This does not happen in the atan2 computation.



Appendix C

Gaussian Beams

For a detailed description of gaussian laser beams see [24]. A laser beam is an electromagnetic
field propagating in space. Since the magnetic field mimics the electric field’s behavior, only
one of the two needs to be described, and the electric field is traditionally chosen. A beam
propagating along the z axis can be formalized as

E(x, y, z) = u(x, y, z)e−ikz (C.1)

where E(x, y, z) is the scalar electric field, u(x, y, z) is the complex amplitude and eikz is
the oscillatory term, k is the wave-number k = 2π

λ
= ω

c
. The temporal oscillation eiωt is

neglected. From Maxwell’s equations we know that the electric field obeys the equation

(∇2 + k2)E(x, y, z) = 0 (C.2)

If the anghe between the versors normal to the wavefronts (the 2-dimensional varieties
where the argument of the exponential are constant (−ikz = const) and the beam’s propa-
gation direction is small, the paraxial approximation can be introduced. Equation C.2 can
be approximated into

∂2u

∂x2
+
∂2u

∂y2
− 2ik

∂u

∂z
= 0 (C.3)

assuming ∣∣∣∣∂2u

∂z2

∣∣∣∣ << ∣∣∣∣2k∂u∂z
∣∣∣∣, ∣∣∣∣∂2u

∂x2

∣∣∣∣, ∣∣∣∣∂2u

∂y2

∣∣∣∣ (C.4)

Equation C.3 is often written as

∇2
tu(s, z)− 2ik

∂u

∂z
(s, z) = 0 (C.5)

where ∇2
t is the laplacian relative to the transverse coordinates, and s are the transverse

coordinates.
A Gaussian beam is the lowest order solution to the paraxial wave equation C.3:

u(x, y, z) = E0
w0

w(z)
e
−x

2+y2

w2 −i
(
l x

2+y2

2R(z)
−ψ(z)

)
(C.6)

where w(z) is the beam’s size (i.e. the radius where the intensity of the beam decreases by a
factor e−2), R(z) is the wavefront’s curvature radius, ψ(z) is the Guoy phase (an extra phase
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evolution with respect to a plane wave) and zr is the Rayleigh range, and they are defined
as:

w(z) = w0

√
1 +

(
z

zr

)2

R(z) = z

(
1 +

(
z

zr

)2
)

ψ(z) = atan

(
z

zr

)
zr =

πw2
0

λ
(C.7)

where w0 is the beam waist (the minimum beam’s size) and λ is the beam’s wavelength.
Putting together the first and the last equation from (C.7) one can obtain the beam’s

profile W 2(z), i.e. the beam’s width width as a function of the spatial coordinate z, W 2(z)

W 2(z) = W 2
0 +

z2

W 2
0 (π/λ)2

(C.8)

where the waist is positioned in z = 0. This is the relation I used to fit the gaussian beam’s
profiles in section 4.1. A Gaussian beam’s profile is shown in figure C.1:

(a) A Gaussian beam’s profile along the propagation axis z.
(Credits: www.wikipedia.org)

(b) A Gaussian beam’s intensity profile. (Credits:
www.wikipedia.org)

Figure C.1: A Gaussian beam’s profile



Appendix D

Optics Formalism: Jones Calculus

Jones calculus is an easy way to describe the behavior of the electric field of the laser beams
and its interaction with polarizers and wave plates, which are a key part of this experiment.
I will briefly resume the concepts used in this thesis. A good reference is [26].

This formalism is meant to describe a beam propagating along one axis, let’s name it z.
The electric field ~E is lies in the plane perpendicular to the propagation direction, which
is the 2-dimensional space we are interested to describe. This space then naturally has a
canonical basis

ex =

(
1
0

)
ey =

(
0
1

)
(D.1)

which is then identifying the two possible polarizations, respectively p̂ and ŝ. Polarizations
are fixed by the optical elements, and each optical element has its polarization eigenbasis,
which is formed by the eigenvectors that make the matrix describing it ’diagonal’. From now
on the p̂ versor will identify an electric field direction perpendicular to the optical bench’s
surface, while the ŝ versor will identify the direction parallel to the optical bench’s surface.
A generic beam, or electric field, can be written as:

~E =

(
Ex
Ey

)
(D.2)

while a p̂ polarized beam (in this basis) would have only the ex component. A generic beam’s
intensity is given by it’s square modulus:

I =

(
Ex
Ey

)∗
·
(
Ex
Ey

)
= E∗xEx + E∗yEy (D.3)

A matrix can be associated to each optical element to describe it’s effect on the electric
field crossing it. The simplest optical element is the polarizer, which projects the electric
field on a polarization axis. An ideal linear p̂ polarizer and a ŝ polarizer are described by
the matrices

Px =

(
1 0
0 0

)
Py =

(
0 0
0 1

)
(D.4)

Of course optics (as waveplates) may be set on a rotator, and their eigenbasis is hence
rotated with respect to the p̂ and ŝ versors. In this case we can conserve the description of
each optical element in its proper eigenbasis basis by applying rotation matrix to the optical
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element’s matrix. A p̂ polarizer at a generic angle θ is then described applying a rotation
matrix R(θ) to the matrix describing the polarizer in its eigenbasis:

P (θ) = R(−θ)PxR(θ) =

(
cos2θ sinθcosθ

sinθcosθ sin2θ

)
(D.5)

Of course one can see that a ŝ polarizer is just a p̂ polarizer rotated by 90◦. If a polarizer is
applied at a generic angle to a p̂ polarized beam, the result is:

~E =

(
cos2θ sinθcosθ

sinθcosθ sin2θ

)
·
(
Ex
0

)
= Excosθ

(
cosθ
sinθ

)
(D.6)

The beam’s intensity is then I = |E|2 = E2
xcos

2(θ), and hence a polarizer is able to extinct
a linearly polarize beam.

Wave plates (or phase retarders) have the effect of adding different phases to the p̂ and ŝ
components of the beam that cross them. A matrix describing a wave plate in its eigenbasis
is

R(φx, φy) =

(
eiφx 0
0 eiφy

)
(D.7)

The effect on the laser beam only accounts for the added phase difference φx − φy. For
a half-wave plate φx− φy = π. Half-wave means that the phase delay one polarization gains
with respect to the other one is exactly the phase delay that the beam would have gained
in a λ

2
spatial propagation, in fact π = k λ

2
= 2π

λ
· λ

2
. For a quarter-wave plate φx − φy = π

2
,

and for an octal-wave plate φx − φy = π
4
.

The matrix describing a half-wave plate at a generic angle θ is then

R(φx − φy = π, θ) = R(−θ)R(0, π)R(θ) =

(
cos2θ sin2θ
sin2θ cos2θ

)
(D.8)

The effect of a half-wave plate applied at a generic angle to a linearly p̂ polarized beam
is then

~E =

(
cos2θ sin2θ
sin2θ cos2θ

)
·
(
Ex
0

)
= Ex

(
cos2θ
sin2θ

)
(D.9)

Rotating the half-wave plate’s angle, one can change the polarization direction of a linearly
polarized incoming beam.

If properly aligned with the incoming beam, quarter-wave plates can obtain a circular
polarization starting from a linearly polarized beam, or obtain the inverse effect, as correcting
a beam’s ellipticity, making it linear. The octal-wave plate is used in our experiment to obtain
the same effect of a quarter-wave plate by being crossed twice.

I report now two computations which were useful for the experiment.

Octal-wave plate The matrix describing an octal-wave plate at a generic angle is

R(φx = 0, φy =
π

4
, θ) =

(
cos2θ + ei

π
4 sin2θ (1− eiπ4 )cosθsinθ

(1− eiπ4 )cosθsinθ sin2θ + ei
π
4 cos2θ

)
(D.10)

By sending a linearly p̂ polarized beam to the octal-wave plate in a generic angle θ, and
selecting only the p̂ component, the output is

~E =

(
1 0
0 0

)
·
(
cos2θ + ei

π
4 sin2θ (1− eiπ4 )cosθsinθ

(1− eiπ4 )cosθsinθ sin2θ + ei
π
4 cos2θ

)
·
(
Ex
0

)
= Ex(cos

2θ + ei
π
4 sin2θ)

(D.11)
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The intensity is the square modulus of the electric field:

I = I0

(
1− 2−

√
2

4
sin22θ

)
(D.12)

where I0 = E2
x. The transmitted p̂ intensity has 4 maxima (0, π

2
, π, 3π

2
) and 4 minima

(π
4
, 3π

4
, 5π

5
, 7π

4
) where the intensity value is respectively I0 and (1− 2−

√
2

4
)Io ≈ 0.854 I0.

Ellipticity by small phase delay A linearly polarized beam, with respect to a generic
choice of the axes, can be represented as

~E = E0

(
cosθ
sinθ

)
ei(kz−ωt) (D.13)

where the time and spatial varying component is also reported. If the phase offset between
the p̂ and ŝ components is not exactly 0, the polarization is not linear anymore, but starts to
be elliptical. If the phase offset is π

2
and the amplitude of the two components is the same,

polarization is circular.
The beam splitters had the collateral effect of acting as retardation plates, adding a small

phase angle to one polarization with respect to the other one. In the interferometer’s setup
(see figure 3.1) both BS1 and BS2 are hit by a 45◦ (with respect to their intrinsic axis)
linearly polarized beam, and make it slightly elliptical. This means that if the exiting beam
is sent into a half-wave plate and a polarizer, it is not possible anymore to extinct it. I
report the demonstration: indeed the resulting output electric field is the resulting product
of a 45◦ linearly polarized beam, the beam splitter (neglecting the reflectance), a half-wave
plate and a polarizer. Matrices are applied in the inverse order as the math requires.

~E(θ, δ) =

(
1 0
0 0

)(
cos2θ sin2θ
sin2θ cos2θ

)(
1 0
0 eiδ

)
E0√

2

(
1
1

)
(D.14)

The resulting intensity is

I(θ, δ) =
I0

2
(1 + sin(4θ)cos(δ)) (D.15)

If δ = 0, by varying the θ angle one can obtain both total transmission or null transmission
by the polarizer. But if δ 6= 0 this is not possible. By inverting this relation at the minimum
for the transmitted intensity, I obtained

cos(δ) = 1− 2
I

I0

(D.16)

which is the relation I used to characterize the ellipticity of the polarization and the behavior
of the BS. A 45◦ polarized beam was sent to the BS and I tried to extinct it using a PBS and
a half-wave plate. If the beam is linearly polarized, the minimum transmitted intensity is
determined by the extinction ratio of the PBS. When the minimum transmitted intensity was
higher than that stated by the extinction ratio, I inferred δ from the minimum transmitted
intensity obtained turning the half-wave plate. Measurements are reported in section E.3.



Appendix E

Optics Characterization

Here I report the measurement results and procedures I followed to characterize the optics
used in the interferometer. The measured parameters are crucial for the analysis of the
experimental data.

E.1 Power Beam Splitter Lambda Research Optics NPB-

25.4B-R1064-50 used as BS1

A non polarizing beam splitter nominally splits an incoming beam of intensity Ibeam in two
same intensity beams of intensity Ibeam/2. In the realistic cas this is not true, and the
reflected and transmitted intensities are respectively (equation E.1)

Ireflected = r2
BSIbeam Itransmitted = t2BSIbeam (E.1)

where the reflectance and transmitted parameters are squared since they refer to the
electric field, and Ibeam ∝ |E|2. I measured r2

BS and t2BS of the beam splitter when the
incoming beam was linearly p-polarized and s-polarized. The setup is reported in figure E.1:

Figure E.1: Setup for the measurement of the BS’s reflectance and transmission coefficients
in each polarization.

The half-wave plate is used to set the beam’s polarization, and hence vary the transmitted
or reflected intensity. p̂ characterization is measured using he beam transmitted by the PBS,
and ŝ characteristics are measured using the reflected beam. The intensities of the incident
beam to the BS, of the transmitted beam by the BS and of the reflected beam from the
BS were measured. The measurements were linearly fitted using equation E.1. The fits are
reported in figure E.2. Results are in table E.1. F
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Coefficient Measured
r2
BS,p̂ (47.56 ± 0.02) %
t2BS,p̂ (50.04 ± 0.02) %
r2
BS,ŝ (43.31 ± 0.05) %
t2BS,ŝ (53.72 ± 0.05) %

Table E.1: Non-Polarizing Beam Splitter Lambda Research Optics NPB-25.4B-R1064-50
Transmission and Reflectance in p̂ and ŝ polarizations.

Figure E.2: Non-Polarizing Beam Splitter Thorlabs BS5 Transmission and Reflectance in p̂
and ŝ polarizations.
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E.2 Power Beam Splitter Lambda Research Optics NPB-

25.4B-R1064-50 used as return interceptor

This Non Polarizing Beam Splitter has been characterized in the same way as the one above.
Measurements and fits are reported in figure E.3, results are reported in table E.2.

Figure E.3: Non-Polarizing Beam Splitter Lambda Research Optics NPB-25.4B-R1064-50
Transmission and Reflectance in p̂ and ŝ polarizations.

Coefficient Measured
r2
BS,p̂ (47.10 ± 0.07) %
t2BS,p̂ (49.28 ± 0.07) %
r2
BS,ŝ (48.59 ± 0.03) %
t2BS,ŝ (53.85 ± 0.01) %

Table E.2: Non-Polarizing Beam Splitter Lambda Research Optics NPB-25.4B-R1064-50
Transmission and Reflectance in p̂ and ŝ polarizations.

E.3 Phase Offset induced by the Beam Splitters

We have characterized the interferometer’s p̂ and ŝ outputs when the octal wave-plate was
not inserted, and the input beam was polarized at a 45◦ angle. We noticed that there was
a phase offset between the two outputs, which was not expected to be there, since the two
independent beams in the two polarizations were supposed to behave in the same way. I
found out that the Beam Splitters adds a phase to one polarization with respect to the other
one, behaving so as a wave plate.

This behavior has been accurately characterized in order to minimize it. The used setup
is that planned in D, and is reported in figure E.4.
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Figure E.4: The used setup for the measurement of the phase induced by the BS.

We were sending to the beam splitter, as it happens in the interferometer, a 45◦ linearly
polarized beam with respect to the vertical axis. We were then controlling if both the
reflected and transmitted beam were still linear, by adding a half wave plate and a PBS:
if the beam is still linearly polarized, then the half-wave plate is capable of turning the
polarization into ŝ, and the PBS will not transmit more than its maximum extinction ratio
which is 1:1000. If instead a phase has been added to ŝ with respect to p̂, then the polarization
is not linear, and half-wave plate and PBS is not be capable of extincting the beam, and
the minimum transmitted intensity will give information about the phase offset between the
two polarizations. I computed this in equation (D.16), which I remind here:

∆φ = arccos

(
1− 2

Imin

I

)
(E.2)

Where Imin
I

is the measured extinction ratio obtained using half-wave plate and PBS. The
beam transmitted by the PBS is then monitored with the power meter. We measured this
property for all of the four possible ways of entering the BS. Here are what we obtained for
the two BS:

Position Transmission Extinction ratio Offset(deg) Reflection Extinction ratio Offset(deg)
1 0.003% 6.3 <0.001% <3.6
2 0.002% 5.2 0.003% 6.3
3 0.002% 5.2 0.009% 11
4 <0.001% <3.62 0.006% 8.9

Table E.3: Phase Offset induced to one polarization with respect to the other one by tran-
siting through the BS1.

Position Transmission Extinction ratio Offset(deg) Reflection Extinction ratio Offset(deg)
1 <0.001% <3.6 0.002 5.2
2 <0.001% <3.6 <0.001% <3.6
3 <0.001% <3.62 0.022% 17
4 <0.001% <3.62 0.021% 17

Table E.4: Phase Offset induced to one polarization with respect to the other one by tran-
siting through the BS2.

Then we decided to set the first beam splitter in the interferometer since the induced
phase offsets were smaller. Computations state that BS2 can induce no offset to the inter-
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ferometer, so its worse performance does not matter. The offset is due to the different phase
offsets induced by the two different paths of tea transmitted and reflected beams along the
two arms of the interferometer, and hence to the interferometer beam splitter BS1. After
checking which was the non linearity of a beam being both transmitted and reflected by BS1,
we measured that these two effects are cumulating (and not canceling), and we computed
that the phase offset due to this effect along the beam’s path is

∆φ = (6.3 + 6.3− 8.9− 5.2)◦ = −1.5◦ (E.3)

This offset sums up with that due to the octal wave-plate.

E.4 Aluminum Reflectance Characterization

E.4.1 Aluminum Surface

I measured the reflectance of an aluminum surface polished in the same way as the bottom
surface of the oscillator, which we as using as mirror in one of the two arms of the interfer-
ometer. The reflectance was measured using an incident linearly polarized beam, in order
to test if the reflection by the aluminum preserves the input polarization. I report the used
setup in figure E.5:

Figure E.5: Aluminum Reflectance measurement setup.

I performed the measurement using a p̂ polarized beam (selected using a PBS). The
reflected beam’s intensity was measured both directly and both decomponed in it’s p̂ and ŝ
components, using a second PBS. The residual ŝ polarization in the incident beam was also
checked, in order to measure the PBS polarization quality. The measurement was performed
in the two different incidence angles, 45◦ and 2.2◦ (which is the smallest incidence angle I
could reach).

I figured out that when the beam’s incidence angle was of ∼ 45◦, polarization was not
preserved, while when the incidence angle was very small, polarization is preserved. The
ratios of the reflected beam and the incident beam are reported in table E.5.

E.4.2 Oscillator’s Surface Reflectance

I measured the reflectance of the oscillator’s bottom surface at an angle as close to 0◦. The
measuring setup used is the same as the one shown previously in E.5. Two mirrors in between
to reflect the beam vertically. I measured the same quantities as in section E.4.1, varying the
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angle p(%) s(%) total(%)
45 ◦ r2

p̂→p̂ = 0.491 r2
p̂→s = 0.399 0.894

2.2◦ r2
p̂→p̂ = 0.874 r2

p̂→s = 0.006 0.878

Table E.5: Aluminum surface’s reflectance at a p̂ polarized beam at various angles.

indicent beam’s intensity. I plotted the reflected beam’s intensity versus the incident beam’s
intensity and performed a linear fit with null intercept. The result is r2

2 = 0.920± 0.04 (see
figure E.6):

Figure E.6: The aluminum oscillator’s fit.

Hence the oscillator’s reflectance is slightly different than the surface one. This coefficient
is of fundamental use for the 4PDR.
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E.5 Reference Mirror Reflectance

I measured the reflectance of mirror 1 at it’s working angle of 0◦. I followed the same
procedure a in the case of the oscillator’s surface in section E.4.2. The measured reflectance
is r2

1 = 0.998± 0.001 (see figure E.7).

Figure E.7: The reference mirror’s reflectance

E.6 The Octal-Wave Plate

I characterized the behavior of the octal-wave plate at various angles, by sendint into it a 8.87
mW p̂ polarized beam. I checked the output beam’s polarization components using a PBS
and the power meter using the setup in figure E.8. I measured the minima and the maxima
of the transmitted intensity by the PBS. The expected transmitted intensity as a function
of the octal-wave plate’s rotation angle is reported in equation (D.12). Measurements are
reported in table E.6.

angle (deg) PBS transmission (mW)
5±0.5 8.87 ±0.01
44±0.5 7.88 ±0.01
88±0.5 8.87 ±0.01
135±0.5 7.20 ±0.01
182±0.5 8.82 ±0.01
226±0.5 7.90 ±0.01
268±0.5 8.82 ±0.01
318±0.5 7.25 ±0.01

Table E.6: Measurement of the octal-wave plate behavior at various angles. The angles refer
to the rotator the octal-waveplate was mounted on.

The measured values are not equally spaced by a 45◦ angle as equation D.12 states. As
evident, the octal waveplate exhibits 4 compatible maxima values, and on the other hand
exhibits 2 distinct couples of minima, none of them compatible with the expected value:

Imin, 1
I0

=
7.89

8.87
= 0.8895 6= 0.854

Imin, 2
I0

=
7.20

8.87
= 0.8117 6= 0.854 (E.4)
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Figure E.8: Scheme of the experimental setup used for the characterization of the octal-wave
plate

However, the average value of the two is close to the expected value: 0.8506 ∼ 0.854.
This means that the octal waveplate is adding a phase delay1 φ2 = 50.94◦ if working at
the angles 135◦ and 318◦, and a different phase delay φ1 = 38.83◦ if working at the angles
44◦ and 226◦.. None of this two values is equal to the desired π

4
phase delay, and the two

angles differ from 45◦ by ∼ 6◦. This is why the optimal phase delay of π/2 between the
two interferometer’s outputs cannot be reached experimentally and this effect has to be
corrected during the data analysis. By aligning the waveplate’s angle to one polarization,
the two interferometers should be ofset by an ∼ 90◦ ± 12◦ angle according to the above
measurements. The correction angle is ∼ 24◦ and hence twice the angle extimated by this
reasoning.

1This value can be computed with the same relation used for the BS delay, equation(D.16).
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E.7 The Photodiodes Calibrations

During the test with the piezo mirror (section 4.3) three photodiodes were used. I will refer
to with the names of PDTR3, PDZ and PDB. These photodiodes operate with a voltage
supply of ± 12V. The calibrations are reported here (figurw E.9):

(a) PDZ calibration. (b) PDB calibration.

(c) PDTR3 calibration.

Figure E.9: The old photodiodes’ calibration

The final setup of the experiment requires the use of five photodiodes. Three new photo-
diodes built in EGO2 were available since may, and these were named SN7, SN8, SN9, SN10
and SN11. The EGO photodiodes work with a voltage supply of ± 15V and a bias voltage
of 15V. For the final interferometer’s setup, SN7 is used in FMP, SN9 is used in FMS, SN8
is used in RMP and SN10 is used in RMS. SN11 is used as input intensity monitor. The
calibrations are in figure E.10:

The new photodiodes by EGO work particularly better than the old ones, so a good
improvement for the experiment would be the substitution of the older photodiode.

2European Gravitational Observatory
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(a) SN7 calibration (b) SN8 calibration

(c) SN9 calibration (d) SN7 calibration

(e) SN8 calibration

Figure E.10: The EGO photodiodes’ calibration.
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