
University of Padova
Department ofMathematics “Tullio Levi-Civita”

Master Thesis in Computer Science

An Algorithmic Approach to the
15-Minute City

Supervisor Master Candidate
Prof. Francesco Silvestri Hou Cheng Lam
University of Padova

Student ID
2072114

Academic Year
2023-2024

ii

vi

Abstract

The 15-Minute City is an urban planning concept introduced in the last decade that pro-
motes accessibility. It emphasises that residents should be able to meet basic needs—such
as groceries, education, healthcare, and leisure—within a 15-minute travel time from their
homes. The concept aims to deliver environmental, social, and economic benefits by reduc-
ing reliance on automobiles, encouraging active transportation, and enhancing residents’
quality of life through easy access to essential services and amenities. The concept has gained
traction during the COVID-19 pandemic, which highlighted the significance of local services
and amenities in urban settings.

The 15-Minute City concept has been explored across various research fields, including
urban planning, transportation, and environmental science. Within the field of Computer
Science, although methodologies have been developed for the topic, a generalised purpose
algorithmic approach to identify a 15-Minute City is still lacking. Most existing studies are
data-driven, focusing on specific cities with solutions that are often neither algorithmic nor
generalised.

This thesis aims to develop a general, adaptive, and efficient algorithm to identify city areas
that can be classified as a 15-Minute City. It examines several existing algorithms for graph
data structures, such as Breadth-First Search, Dijkstra’s algorithm, Johnson’s algorithm, and
their variations. The proposed 15-Minute City algorithm synthesises ideas and techniques
from these algorithms to offer a comprehensive and efficient solution for determining 15-
Minute City areas.

vii

viii

Contents

Abstract v

List of figures xi

List of tables xiii

1 Introduction 1

2 Preliminary 3
2.1 Graphs . 3
2.2 Graph Search Algorithms . 4

3 Review of literature 9
3.1 Graph Representation . 9
3.2 Grid Tessellation . 13
3.3 Flow Data . 16
3.4 Walk Score . 17
3.5 Other work . 19

4 Problem Statement 23
4.1 Graph Search Algorithms to the 15-Minute City 25

5 Proposed Solutions 27
5.1 Dijkstra’s Algorithm . 27
5.2 Uniform Cost Search Adaption . 34
5.3 Inspiration from Johnson’s algorithm . 34
5.4 Adaption to existing papers . 37

6 Implementation & Experiments 41
6.1 Implementation . 41
6.2 Data Preparation . 42
6.3 Experiment . 43
6.4 Adaption to existing papers . 50

7 Discussion 59

ix

8 Conclusion 65

9 Appendix 67

References 79

x

Listing of figures

2.1 Konigsberg Bridges and its graph representation 4

6.1 Graph simplification . 44
6.2 Service location insertion . 45
6.3 15-Minute City of Padua . 47
6.4 t-Minute City heatmap of Padua . 49
6.5 Rome’s 15-Minute City Comparison . 51
6.6 Paris’s 15-Minute City Comparison . 52
6.7 London’s 15-Minute City Comparison . 52
6.8 London’s 15-Minute City . 53
6.9 Parma’s 15-Minute City Comparison . 54
6.10 NEXI Categories in detail . 55
6.11 Ferrara’s 60-Minute City Comparison . 56
6.12 The 60-Minute City of Bologna . 57

9.1 Rome’s 15-Minute City . 68
9.2 Paris’s 15-Minute City . 69
9.3 London’s 15-Minute City (cropped) . 70
9.4 London’s 15-Minute City . 71
9.5 Ferrara’s 60-Minute City . 72
9.6 Bologna’s 60-Minute City . 73
9.7 Rome’s 15-Minute City Comparison . 74
9.8 London’s 15-Minute City Comparison . 75
9.9 Paris’s 15-Minute City Comparison . 76

xi

xii

Listing of tables

3.1 Summary of relevant previous works . 10

6.1 Summary of input data type . 42
6.2 Padua t-Minute City . 48
6.3 Summary of Rome, London and Paris . 51
6.4 Summary of Ferrara and Bologna. 56

7.1 Complexity in practice . 61

xiii

xiv

1
Introduction

The 15-Minute City is an urban design concept that promotes accessibility to essential urban
functions within a 15-minute travel from the homes of residents. The concept was first pro-
posed byMoreno in 2016 as a solution to build safer, more resilient, sustainable and inclusive
cities and to harmonise the notion of Smart Cities [1]. In 2021, Moreno et al. discussed the
relationship between the concept of the “15-Minute City” to Urban Planning Pandemic Re-
sponse, its Emerging Variations (i.e. 20 minute city [2]), walkable neighbour [3] smart cities.
The formal “15-Minute City Concept” proposed byMoreno et al. in 2016 argues that

residents should be able to enjoy a higher quality of life where they will be able to effectively
fulfil six essential urban social functions to sustain a decent urban life. These include

1. Living

2. Working

3. Commerce

4. Healthcare

5. Education

6. Entertainment

Later in 2021, the authors then proposed the “modified 15-Minute City” framework, de-
picting the four identified dimensions that could be incorporated with the already existing
one proposed.

1. Density

2. Proximity

3. Diversity

4. Digitisation

1

Since COVID-19 pandemic, this topic has gained a tremendous amount of attention and
has growth exponential in popularity [4, 5] among various research fields in literature, espe-
cially in urban design research [4]. The concept of the 15-Minute City has been studied and
shown that it brings benefits to the society including environmental, social, and economical
impacts [5]. Although the 15 minutes threshold has attracted the most attention, the notion
of the t-Minute City has also been considered [1]. Some examples are the 20-Minute City in
Tempe, Arizona [2], the 30-Minute City in Sydney, Australia [6] and Olivari et al. studied 5
to 60Minute City in Ferrara, Italy [7].
Most 15-Minute City studies in literature have employed data-driven approaches, these

studies focus on a specific city or location and their methodologies are therefore only applica-
ble to the specific location of interest. For example, Weng et al. [3] and Olivari et al.[7] relied
on census data on population density for their respective studies which may not be available
for some countries and regions. The choice of amenities to be included in the 15-Minute
City is subjective and varies from one study to another. There is also a lack of research on the
complexities and computational challenges of implementing the 15-Minute City concept in
practice.
In 2023, Lima and Costa noted that computational approaches to 15-Minute City design

presents significant challenges such as “data availability and quality”, “computational cost”
and “adaptability” [4]. In this thesis, we aim to address the latter two challenges mentioned
by Lima et al. [4]. We propose an algorithmic approach to the 15-Minute City concept that
is general, adaptable and efficient. The algorithm developed will be implemented in Rust
programming language, we will show that it satisfies the latter two challenges by Lima et al.
by evaluating its performance through a number of case studies and applying the algorithm
to a series of cities in Europe of different sizes. Finally, we will also compare the “15-Minute
City” generated by the proposed algorithm to some existing solutions in literature.
The structure of the thesis is the following: in Chapter 2, we will introduce the graph data

structure and any relevant existing graph search algorithms. Chapter 3 will discuss a series of
existing research on the 15-Minute City. In Chapter 4, we will formally define our problem
statement for the thesis, the proposed solutions will be discussed and analysed in Chapter 5.
The proposed solution will then be implemented in Chapter 6, where we will apply the algo-
rithm to a number of European cities including Padua, Chapter 7 will cover any discussions
and observations we have made from the case studies.

2

2
Preliminary

We begin by defining the graph data structure and exploring several well-known graph search
algorithms, which will be used or adapted throughout this thesis.

2.1 Graphs
Graph is a mathematical data structure in Graph Theory representing pairwise relationships
between objects. The earliest scientific paper related to graphs was the “Seven Bridges of
Königsberg” by Leonhard Euler published in the 18th century. The “Seven Bridges of Königs-
berg” was proven to have no solution to the problem of crossing each of the seven bridges
exactly once and returning to the starting point. Euler represented the problem by a graph,
where the land masses were represented by vertices and the bridges were represented by edges.

In general, a graph can be defined asG(V,E), whereV is the set of vertices and E ⊆ V× V
is the set of edges. The edges can be directed or undirected, and weighted or unweighted. La-
bels can also be assigned to the vertices and edges, which can be used to represent additional
information about the graph. For example, in “Seven Bridges of Königsberg”, the vertices
could be labelled with the names of the islands/areas and the edges could be labelled with the
names of bridges. Furthermore, the edges could be weighted with the length of the bridges.

3

Figure 2.1: Konigsberg Bridges and its graph representation

2.2 Graph Search Algorithms
In this section, we will discuss 3 types of graph search algorithms, the graph traversal prob-
lem, minimum spanning tree and the shortest path problem. The graph traversal problem is
a problem of visiting all the nodes in a graph, while the shortest path problem is a problem
of finding the shortest path between two nodes in a graph. The algorithms discussed in this
section are fundamental graph algorithms and we will discuss their characteristics, properties.

2.2.1 Graph Traversal Problem
The Graph Traversal Problem is a problem of visiting all the nodes in a graph. There are two
types of graph traversal algorithms, Breadth-First Search (BFS) and Depth-First Search (DFS).
Both algorithms can be used to search for connected components of a graph and search for
cycles, and have complexityO(V+ E).

Breadth-first Search (BFS)

Breadth-first Search algorithm is a single-source graph search algorithm for graphs containing
unweighted, undirected edges. The algorithm searches the graph from the source node level
by level, that means the algorithm will search all nodes adjacent to the source node, before
moving on to searching all nodes adjacent to these nodes. The visited nodes will be marked so

4

that the algorithm will not be stuck in a cycle. An example of an application of this algorithm
is maze solving, where it can be used to find the shortest path through a maze from the source
node (i.e. entrance/exit).

Depth-First Search (DFS)

Depth-First Search algorithm is another popular single-source graph search algorithm for
graphs with unweighted, undirected edges. Depth-First Search starts from the source node,
travels along one of its edges and visits the adjacent node, the algorithm then repeats the pro-
cess to this adjacent node and so on. Once the algorithm gets to the final node (i.e. there are
no edges connected to this node where the adjacent node has not been visited), the algorithm
travels to the previous level and checks if that node has an alternate adjacent node through
a different edge. This process is then repeated until all nodes have been visited which can be
reached to from our source node. Similar to Breadth-first Search algorithm, this algorithm
can be used to detect connected components of a graph and search for cycles.

2.2.2 Minimum Spanning Tree
Minimum Spanning Tree (MST) is a Graph Theory problem of finding a tree that connects
all the nodes in a graph with the least possible total edge weight and without any cycles. There
are several algorithms that can be used to solve the minimum spanning tree problem, such as
Prim’s algorithm and Kruskal’s algorithm. These algorithms can be used to find the mini-
mum spanning tree in a weighted, undirected graph.

Prim’s Algorithm

Prim’s algorithm is used for finding the MST within a weighted, undirected graph. Prim’s
algorithm starts from the source node, it keeps a record of the nodes it has selected. It repeat-
edly searches for the edge with the smallest weight that connects a node from the selected set
of node and another node outside of this set. Prim’s algorithm is a greedy algorithm and an
example of an application is used in network design problems to find the minimum cost to
connect all nodes in a network. The complexity of Prim’s algorithm isO(|E|+ |V| log |V|).

Kruskal’s Algorithm

Kruskal’s algorithm is similar to Prim algorithm that it is a greedy algorithm which finds
a MST in a weighted, undirected graph. The algorithm finds and records the minimum

5

weighted edge, and selects the 2 nodes connected by the edge. It then searches and records
for the next smallest weighted edge and the nodes connected by it. The algorithm repeats the
process until all nodes have been selected and the edges recorded form the minimum span-
ning tree. Kruskal’s algorithm can be used in clustering problems where the objective is to
group similar items together while minimising the total dissimilarity. It has a complexity of
O(|E| log |V|).

2.2.3 Shortest Path Problem
The Shortest Path Problem is a problem of finding the shortest path between a pair of nodes
in a graph. There are several algorithms that can be used to solve the shortest path prob-
lem, such as Dijkstra’s algorithm, Bellman-Ford algorithm, Floyd-Warshall algorithm, and
Johnson’s algorithm. These algorithms can be used to find the shortest path in a graph with
weighted edges. Two applications for these algorithms would be network routing to find the
shortest paths in computer networks and GPS navigation to find the shortest route between
two locations.

Dijkstra’s Algorithm

Dijkstra’s algorithm finds the shortest path from a single source node to all other nodes
in a non-negative, weighted graph. It begins from the source node, in every iteration, Di-
jkstra’s algorithm considers all of the current node’s neighbours and update their tenta-
tive distances through the current node. If this distance is smaller than the previously as-
signed distance then update the assigned distance to the new one. The current node is then
marked as visited and its tentative distance is then fixed. The algorithm then repeat the same
steps on each of the neighbour nodes in the ascending order of their temporary tentative dis-
tances, until all nodes in the graph have been visited. Dijkstra’s algorithm has a complexity of
O((|V|+ |E|) log |V|).

UniformCost Search

Uniform Cost Search is a variant of Dijkstra’s algorithm which finds the shortest path from
a single source node to all other nodes in a non-negative graph. The main difference is that
while Dijkstra’s algorithm initialises the priority queue with the distance of the source node
to 0 and all other nodes to∞within the graph, Uniform Cost Search initialises these only
when they are needed. This has a benefit of reducing the space complexity of the algorithm,

6

especially in a large graph. The time complexity of Uniform Cost Search is however, the same
as Dijkstra’s Algorithm atO((|V|+ |E|) log |V|).

Bellman-Ford Algorithm

Bellman-Ford algorithm is another algorithm which finds the shortest path from a single
source node to all other nodes in a graph with negative edge weights and no negative weights
cycles. The algorithm relaxes the edges in the graph by updating the distance of the destina-
tion node if the distance of any possible source node plus the weight of the edge is less than
the current distance of the destination node. The algorithm then repeats the process for all
edges in the graph until no more updates can be made. The algorithm then checks for nega-
tive cycles in the graph by relaxing the edges one more time. The complexity of Bellman-Ford
algorithm isO(|V||E|).

Floyd-Warshall’s Algorithm

Floyd-Warshall’s algorithm finds the shortest path from every node in a graph to every other
nodes. The algorithm works by considering all possible paths between two nodes and updat-
ing the shortest path if a shorter path is found. The algorithm then repeats the process for all
pairs of nodes in the graph. The algorithm is able to handle negative edge weights and nega-
tive cycles in the graph. The complexity of Floyd-Warshall’s algorithm isO(|V|3).

Johnson’s Algorithm

Johnson’s algorithm is similar to Floyd-Warshall’s algorithm that it finds the shortest path
from every node in a graph to every other nodes with negative edge weights. The algorithm
works by first adding a new node to the graph and connecting it to all other nodes with an
edge weight of 0. The algorithm then runs the Bellman-Ford algorithm on this new graph to
find the shortest path from the new node to all other nodes. The algorithm then reweighs the
edges in the graph to remove the negative edge weights. The algorithm then runs Dijkstra’s
algorithm on the reweighed graph to find the shortest path from the source node to all other
nodes. This algorithm utilises the benefits of both Bellman-Ford and Dijkstra’s algorithm to
find the shortest paths in a graph with negative edge weights. The complexity of Johnson’s
algorithm isO(|V||E| + |V|2 log |V|). Hence, Johnson’s algorithm is more efficient than
Floyd-Warshall’s algorithm in a sparse graph, where the number of edges is less than the num-
ber of nodes squared.

7

8

3
Review of literature

As mentioned in the Introduction, the 15-Minute City concept has been well-studied in a
variety of research fields, especially since the 2021 global pandemic. In this section, a selected
number of previous studies related to the 15-Minute City concept will be discussed. These
works will be grouped according to their methodologies and approaches, which include
graph representation, grid tessellation, flow data, Walk Score, and other related studies.
Table 3.1 provides a short description of these different methodologies in determining the

“15-Minute City” concept, as well as the references to the papers which we will cover in the
remaining of this chapter. Each of these papers will be studied and discussed in detail in their
respective sections in the sections below. In the final section of this chapter, we will also cover
studies conducted in other research areas and the general concept of the 15-Minute City.

3.1 Graph Representation
A graph in the context of Graph Theory, it contains a set of vertices (nodes) and a set of edges
that connect pairs of vertices. In the settings of city planning, a map can be represented as
a graph where the vertices are the discrete locations, such as an interaction, an address etc.
The edges can be used to represent the streets, with a weight which could be the length of the
particular street, or any relevant measures. The graph representation is a common approach
to model and visualise the urban environment and it can be useful to find the 15-Minute
City.

9

Table 3.1: Summary of relevant previous works

Approach Paper Description

Graph Representation [8], [9],
[10]

Maps represented by graphs
as a mathematical structure

Grid Tessellation [11], [7],
[12]

Maps divided according to various
shapes and 15-MC calculations are
applied to each area independently

Flow Data [13], [6] Use foot travel data to
incorporate human mobility patterns

Walk Score [14], [3] Proprietary methodology
based on sets of specific factors

3.1.1 Graph Representation of the 15-Minute City: A Comparison
between Rome, London, and Paris

Barbieri et al. defined the general t-Minute City (hereafter t-MC) on an urban graph with re-
spect to a given set of services [8]. The urban graph is represented by a planer graphG(V,E),
where an urban graph is a connected graph can be drawn without any edges crossing.

In this urban graph, the nodes ofG are the intersections of the roads, and the lengths of
the edges are proportional to the travel time with a coefficient, which is the speed of the
pedestrians. Services f ∈ V are then placed by adding an extra node to the graph, or label
the nearest junction with the service.
Given a list ofNi services of type i, (Ci

1 ,Ci
2, ...,Ci

Ni) are the nodes that reach f
i in less than

15 minutes. The set of vertices that form a 15-MCwith respect to services of type i is given
by the union of all these vertices

Ci =
Ni⋃

j=1

Ci
j ⊆ V

If services fp, fq of the same type are far enough, it is possible that Cp∩Cq = ∅. The authors
noted that these “gaps” can be recognised as “the places where it is necessary to intervene to
reconnect”. Then forK types of services, the set of the 15-minute vertices is

C =
K⋂

i=1

Ci =
K⋂

i=1

⎛

⎝
Ni⋃

j=1

Ci
j

⎞

⎠ ⊆ V

10

Finally, the authors defineGC as the graph induced onG by the vertices C, such that the
15-MC graph is the subgraphGC of the urban graphG. To formalise, let the service matrix s
contains all service types of interest and their locations, then the set C depends on the travel
time t, the service matrix s, and the travel speed v, the graph of the 15-MC can be defined as

GC = GC(C,EC; t, s, v) ⊆ G

Ametric/ratio γ(r, x0; t, s, v)was also defined as a function of the radius rwith respect to a
given origin x0, which can be used to characterise the 15-MC and compare different cities or
areas of the same city, where

γ(r, x0; t, s, v) ≡ |C(r, x0; t, s, v)|/|E|

A possible generalisation of the index was then suggested which takes into account the
properties or weights w(e), e ∈ E of each edge, such as the length of the path, the population
density or the slope of the streets

γ =
∑

c∈C w(c)∑
e∈E w(e)

If w(·) is the population density, the edges of the parks and archaeological area have w = 0,
and the index γ is not biased.
The authors then applied the model to the cities of Rome, Paris, and London, they claimed

to have used a “shortest path search algorithm” for graph search [15] to calculate for fi for ser-
vice types pharmacies, post offices and supermarkets.

This paper transforms map data into planar graphs, the algorithm starts from services
rather than address, this reduces computational complexity due to the fact that there are less
services than overall locations in a map. The authors referenced an article about Dijkstra algo-
rithm for graph search algorithm but their implementation was not mentioned.

3.1.2 Exploring the 15-minute neighbourhoods
According to the authors (Caselli et al.), “in the proposed study, the 15-Minute City theme
is addressed with an analytical model designed and developed using GIS to assess existing
conditions of accessibility to neighbourhood services for all the resident social groups.” [9]
The GIS-model is implemented by improving and integrating a Territorial Information

system (managed with ArcGIS software). Extracting the pedestrian paths feature class to gen-

11

erate a link-node graph with all walking routes available. The model also considers that users
“might choose to walk along road margins or cross in the proximity of road intersections.”

The paper studied the area covered that can be travelled to “neighbour cores” within 15
minutes by the following calculation:

Length(km)/(3km/h× 60min) +DF(min)

where DF is the delay factor at crossings, with DF = 20 seconds for non-signalised cross-
ings and 40 seconds for signalised.
The authors applied the calculations to the Cittadella District in Parma, Italy. They then

compared this area with its population distribution to study the proportion of population
covered by the 15-Minute City.
The authors did not explicitly define the neighbour cores, only by “urban nodes well

served by necessities shops and services, such as supermarkets, grocery stores, bars, drugstores,
and banks.” However, using such nodes to calculate for 15-Minute City contributes to faster
running time. The actual 15-Minute City search approach was not mentioned, and popula-
tion data may not be a widely available data source for a generalised solution.

3.1.3 The inclusive 15-Minute City: Walkability analysis with side-
walk networks

The paper proposed a framework for assessing multi-factor walkability on a sidewalk network
model [10]. The sidewalk network model is defined as a graph where the nodes are intersec-
tions or crosswalks, the edges have 3 types: sidewalks, crosswalks, and pedestrian-only paths
and 4 attributes: length, width, slope, and pedestrian hazard. The pedestrian-only paths in-
cludes pedestrianised streets, living streets, and paths through parks and plazas. Pedestrian
hazard is a metric to describe how dangerous each sidewalk segment by using a fine-grained
map of estimated pedestrian safety in Barcelona [16] and by exploiting Deep Learning tools.
The resulting network is denser than the road network (approximately 4 to 1 in both nodes
and edges). Each node of the graph has also been assigned a population according to census
data.
This network is then simplified by a percolation analysis according to the sidewalks’ prop-

erties (i.e., width, slope, or hazard). The authors then noted that an average, 1260 metres can
be travelled in 15 minutes at a walking speed of 1.4 m/s, in accordance with literature [17].
Using government data, the authors selected a list of services.

12

To find such a set of links, the authors extended the classic Dijkstra algorithm to

1. explore all nodes within the threshold time from a single source, and

2. record all edges that can be traversed within the threshold, not only the ones that form
part of a shortest path.

The implementation of the proposed solution was written in Python, using the igraph
library [18]. The authors then studied the impact of population size of the largest and second
largest connected component of Barcelona’s sidewalk networks by changing the parameters
of percolation analysis.
This model takes hazard as a factor. The percolation analysis is a main focus of the study.

The Supplementary notes included the modification of Dijkstra algorithm. However, popu-
lation data and the list of services originated from government data, which could be a limita-
tion.

3.2 Grid Tessellation
Grid Tessellation methods divide the map into a grid of “cells”, where each cell is considered
as a separate area. This method is useful to divide the map into smaller areas and calculate the
15-Minute City for each area independently. This method could be useful to reduce compu-
tational complexity and to study the 15-Minute City in a more granular level.

3.2.1 Urban accessibility in a 15-Minute City a measure in the city
of Naples, Italy

The authors (Gaglione et al.) in this paper proposed a 4 steps methodology through a GIS
environment to define the areas accessible in 15 minutes within a given location [11].

1. With a systemic approach, 17 variables have been identified by

• The characteristics of the population.
• The characteristics of urban fabrics, in particular their shape.
• The physical characteristics relating to safety, amenities and pleasantness of the
pedestrian. network.

13

2. The relationships among different groups of characteristics were identified through a
(Pearson) correlation analysis to remove some variables.

3. Relating the demand (users) to the supply (local urban services). The authors used a
proximity analysis by calculating the Euclidean distances from the centroids of the cen-
sus sections to the related closer local urban services, then study how users can move
along the pedestrian network by labelling 13 characteristics on each pedestrian path.
The authors noted that the urban areas accessible in 15 minutes are defined “on the
basis of the travel times defined on each link of the pedestrian network and the distri-
bution and location of all the local services examined.”

4. The population density is then compared with the 15-minute accessible areas. Individ-
ual age groups are also studied in this context.

The authors then explored the effect of choosing different grid size, shapes etc. in terms of
the results of the minute city. In this paper, the authors did not specifically state the walking
speeds used by each age group and by the whole population for the model. This paper once
again uses the population distribution to study the proportion of population covered by the
15-Minute City. The authors did not mention the algorithm used to calculate the 15-Minute
City.

3.2.2 Are Italian cities already 15-minute?
Olivari et al. proposed a data-driven approach solution by defining the NExt proXimity In-
dex (NEXI), which exploits the data to answer the question: “Which parts of your city or
town already follow the 15-minute model?” [7]
A list of service categories is selected, including Education, Entertainment, Grocery, Health,

Post Office, Banks, Parks, Restaurants, Cafes, Bars and Shops. The nodes of the road net-
work are the intersection points of the network geometries and the points of interest are the
geographical location of the various services. For each node the algorithm computes the time
needed to reach at an average walking speed, to the closest point of interest of any given cat-
egory, being constrained to move only on roads accessible to pedestrians. More specifically,
the time needed to reach the points of interest is computed as t = l/s , where:

• l is the length of the shortest route to the PoI (Point of Interest), on a road network
made only of walkable roads,

• s is the approximate walking speed of an average person, that is 5 km/h.

14

If all categories can be reached within 15 minutes, the node is then considered to be a 15-
minute node. Using a 5 km/h speed, the maximum reachable distance in 15 minutes is 1250
metres. “if the average time to reach all the categories from the nodes in that area is lower or
equal to 15 minutes”.
The algorithm computes the level of proximity of a given area as the mean of the levels of

proximity of the nodes inside that area. Therefore, an area is 15-minute if the average time
to reach all the categories from the nodes in that area is lower or equal to 15 minutes. The
authors used hexagons with a diameter of 250 metres as the smallest resolution unit.
In this paper, 3 NEXI indices are proposed by the authors:

1. The NEXI-Minutes assigns to each category for each area a value of time which is the
average time to reach each category.

2. The NEXI-Global takes inspiration from theWalk Score methodology, measuring the
global proximity to all service categories on a scale that goes from 0 − 100, where 0
means that none of the categories is at least within a 30-minute walk, while 100 means
that all categories are within a 15-minute walk and all values in between describe an
intermediate situation.

3. A discomfort index which takes population into account, where

Discomfort = (100− Global)× Population

The approach deployed in this paper is data-driven, it can be considered as a Grid Tessel-
lation method built on top of a graph representation method, as the authors first calculated
travel times from each node of the graph to each service category, then applied Grid Tessella-
tion to calculate for each NEXI scores. The paper uses population census data and the graph
search algorithm is not mentioned.

3.2.3 Travel-time in a grid: modelling movement dynamics in the
“minute city”

Pezzica et al. claimed to “provide initial insights and recommendations for developing more
robust 15-Minute City models” and emphasised “the importance of technical modelling
steps in determining the mapping outputs which support the assessments of 15-minute
cities” [12]. In the paper, the authors experimented on evaluating grid-based methods and
identified four noteworthy variables:

15

1. Grid tessellation choices

2. Software application pick

3. Speed selection for travel-time calculations

4. Classification rules’ adoption for mapping urban functions against mapped amenities

The authors emphasised that the lack of standardised modelling protocols in grid-based
t-Minute City assessments can lead to inconsistent planning decisions, which can hinder
synchronic comparisons and foster the formulation of exclusive policies and inconsistent
planning decisions. Hence, it is crucial to undertake concerted efforts towards standardisa-
tion, including by bridging the gap between the planning practice and software development
communities, to effectively address the existing challenges in t-Minute City modelling and
representation. This entails establishing shared modelling protocols, algorithms (across vari-
ous software applications), and standardised data inputs. All these can substantially enhance
the consistency and reliability of grid-based t-Minute City assessments focused on travel-time
estimates. Ultimately, advancing research, fostering collaboration, and promoting knowl-
edge sharing, can elevate the quality of evidence generated through spatial analysis, leading to
better-informed decisions in t-Minute City planning.

3.3 FlowData

3.3.1 Towards a 15-minute city: A network-based evaluation frame-
work.

In the context of 15-Minute City, it is suggested that the allocation of facilities should ac-
count for how people access and use local service and amenities rather than merely consider-
ing population size [19].
The authors in this paper proposed a methodological framework for evaluating 15-Minute

City based on network science approaches. The paper proposes a network-based approach
to evaluating 15-Minute City [13]. This approach differs frommostly used accessibility mea-
surements by accounting for human mobility patterns.
The network-based evaluation framework contains 3 parts:

1. Optimal mobility network is estimated based on the spatial distribution of urban
amenities and population using a maximum flow algorithm.

16

2. The actual origin-destination network is obtained using mobile phone signalling data.

3. The differences between actual origin-destination network and the optimal network
are measured to provide insights on the extent to which human mobility patterns,
as a reflection on the usage patterns of urban amenities, match or do not match the
schemes of urban planning and construction.

The authors then applied the framework model to a case study in Nanjing, China. This
paper relies on data which may not be available in all cities, including population census data
and mobile phone signalling data.

3.3.2 Measuring polycentricity via network flows, spatial inter-
action and percolation

This paper studied polycentricity based on inflow and outflow trip data and considered 3
network-based centricity metrics [6], including

1. Trip-based centricity Index

2. Density-based centricity Index

3. Accessibility-based centricity index

In particular, accessibility-based centricity index computes the total number of jobs avail-
able and the number of workers available within a time threshold from a location. The time
threshold was set to 30 minutes in the study to align with the polycentricity-inspired mas-
terplan proposed by The Greater Sydney Commission (GSC) in 2018 which applies to the
Sydney-GMR (Sydney Greater Metropolitan Region), noting that “access to jobs, goods and
services is provided to the community in three largely self-contained regions.”

3.4 Walk Score

3.4.1 Walk Score
Walk Score is a proprietary measure of how walkable a location is based on the distance and
availability of nearby amenities, such as grocery stores, restaurants, schools, parks, etc. The
higher the Walk Score, the more walkable the location is.

17

According to theWalk Score methodology [14], for each address, hundreds of walking
routes to nearby amenities are analysed. Points are awarded based on the distance to ameni-
ties in each category. Amenities within a 5 minute walk (0.25 miles, about 0.4 kilometres) are
given maximum points. A decay function is used to give points to more distant amenities,
with no points given after a 30 minute walk. Walk Score also measures pedestrian friendli-
ness by analysing population density and road metrics such as block length and intersection
density. Walk Score utilises data sources include Google, Factual, Great Schools, Open Street
Map, the U.S. Census, Localise, and places added by the user community.
TheWalk Score calculation can be summarised into 4 steps

1. Assigning raw weights for selected amenities

2. Calculating distances from each location (community, data from government) to the
selected amenities

3. Computing the total scores based on the distances and modifying the scores according
to decay factors (e.g. street intersections and block length)

4. Normalising scores to 0− 100

Walk Score ranges from 0 to 100, with the following descriptions:

• 90− 100 :Walker’s Paradise. Daily errands do not require a car.

• 70− 89 :VeryWalkable. Most errands can be accomplished on foot.

• 50− 69 : Somewhat Walkable. Some errands can be accomplished on foot.

• 25− 49 :Car-Dependent. Most errands require a car.

• 0− 24 :Car-Dependent. Almost all errands require a car.

Although theWalk Score algorithm is not open source, it is interesting to note that it con-
siders walking distance between 5 to 30 minutes. Its calculation has been validated [20].

3.4.2 The 15-MinuteWalkable Neighbourhoods: Measurement,
Social Inequalities and Implications for BuildingHealthy
Communities in Urban China

In this paper, Weng et al. noted some of the limitations of the Walk Score calculation [3],
such as

18

1. It targets at overall population and the walking demands of different pedestrian groups
have not been included in the assessment.

2. The decay effect of amenity varies greatly among population groups and categories of
amenities.

3. Actual traffic situation has not been considered when calculating distances based on
Euclidean distance.

The authors proposed a modified method to measure 15-minute walkable neighbour-
hoods based on theWalk Score metric, taking into account pedestrians’ characteristics and
amenity attributes (scale and category). 6 categories of amenities were studied in the city of
Shanghai, China, including education, medical care, municipal administration, finance and
telecommunication, commercial services, and elderly care. A questionnaire was conducted
to 132 respondents to conclude the parameters considered in the metric. A decay factor was
also used to account for different age groups etc in terms of walking speed. The map data
of Shanghai was captured from BaiduMap. This paper did not discuss any algorithms used
and modification on theWalk Score calculation is heavily based on a questionnaire of a small
sample size.

3.5 Otherwork

3.5.1 A Grammar-Based Optimisation Approach for Designing Ur-
ban Fabrics and Locating Amenities for 15-Minute Cities

This paper uses a geometric grammar based approach to explore computation to support
decision-making concerning the layout of urban fabrics and the location of amenities in a
neighbourhood [21]. The authors (Lima et al.) used an inductive method for qualitative
content analysis. However, the authors noted that this solution “does not address irregular or
non-orthogonal urban block patterns, and the influence of nearby amenities located outside
the studied fabric was not considered.”

3.5.2 The Quest for Proximity: A Systematic Review of Computa-
tional Approaches towards 15-Minute Cities

Lima and Costa developed a comprehensive overview of the use of computational tools to
support the analysis and design of 15-Minute Cities using a systematic literature review [4].

19

They noted that the topic of the 15-Minute City has growth exponentially in popularity and
especially in the field of urban design. They concluded that computational approaches to
15-minute city design presents significant challenges such as “Data availability and quality”,
“Computational cost” and “Adaptability”.

3.5.3 The 15-minute city: Urban planning and design efforts to-
ward creating sustainable neighbourhoods

Khavarian-Garmsir et al. collected 103 documents, dealing with underlying principles, sus-
tainability advantages, and critics of the 15-Minute City concept [22]. The authors defined 7
dimensions which constitute the 15-Minute City:

1. Proximity

2. Density

3. Diversity

4. Digitisation

5. Human scale urban design

6. Flexibility

7. Connectivity

The authors summarised the sustainability contributions in social, economical and envi-
ronmental aspects in the society by 15-Minute City and also the barrier of implementations.

3.5.4 The Theoretical, Practical, and Technological Foundations
of the 15-Minute CityModel: Proximity and Its Environmen-
tal, Social and Economic Benefits for Sustainability

15-Minute City has four main cornerstones (proximity, diversity, density, and digitisation).
The authors in this paper (Allam et al.) explored the proximity dimensions of the 15-Minute
City and how it could influence mixed land use to yield environmental, social, and economic
benefits [5].

20

3.5.5 Urban Transition and the Return of Neighbourhood Plan-
ning. Questioning the Proximity Syndrome and the 15-Minute
City

Marchigiani and Bonfantini developed an evidence-based approach to a deeper analysis of
policy design and implementation of the 15-Minute City [23]. They concluded that the im-
plementation and effectiveness of the 15-Minute City depend on the concrete and contextual
conformation of each city. The authors ended the paper stating that city development “needs
some design framework and structure capable of addressing transformations, and their space
and time location and sequences” on top of the “15 minute device” and that “it needs a syn-
tax for an urban planning course of action that is incremental and adaptive but not limited to
the contingent, blurred, and agnostic appeal of a catchy label.”

21

22

4
Problem Statement

In the previous chapter (3), several studies have discussed the needs for standardisation in the
methodology used in the 15-Minute City. In particular, Pezzica et al. argued that “the ab-
sence of standardised modelling protocols imposes significant limitations on the application
of Minute City models, hinders synchronic comparisons, and can indirectly foster the formu-
lation of exclusive policies and inconsistent planning decisions” [12]. Lima and Costa also
noted that “introducing computational approaches to 15-Minute City design presents sig-
nificant challenges and potential bottlenecks. On the other hand, exploring these challenges
as opportunities for inserting new research is also possible since the theme is rising”, some of
these challenges are “data availability and quality”, “computational cost” and “adaptability”
[4]. Furthermore, Marchigiani et al. found that the approach to 15-Minute City needs to be
changed and adapted to each location case by case [23].
A number of other literature studies discussed in Chapter 3 have mentioned the use of a

graph search algorithms to find the 15-Minute City or the travelling time from the source
location of interest. Notably, Caselli et al. (Section 3.1.2, [9]) defined 15-Minute City from
the “neighbour cores” and Rhoads et al. (Section 3.1.3, [10]) used a modified Dijkstra’s al-
gorithm to compute a 15-Minute City on side-walk networks with a walkability analysis.
The grid tessellation approaches used by Gaglione et al. (Section 3.2.1, [11]) and Olivari et
al. (Section 3.2.2, [7]) also searched for travelling time in a spatial space.
With these in mind, the aim of this thesis is to develop a general, adaptable algorithm to

identify the 15-Minute City, where a person can travel to all their essential needs within 15

23

minutes from their home. Graph Theory is a well-established field and there exist many effi-
cient graph search algorithms. In this thesis, we will develop an algorithm by adapting various
techniques from existing algorithms, along with inspirations from a number of approaches
explored in literature which we discussed in the previous chapter (3).
The solution proposed in this thesis should be able to support different types of graphs

and service locations. The designed algorithm will focus on the “computational cost” and
“adaptability” challenges listed by Lima and Costa [4]. The algorithm should allow for an
arbitrary set of service types. The edge weights in the graph use time unit, as this promotes
the freedom for the users to incorporate different characterise to the roads which could affect
the travelling time, such as the the street width, slope, mode of transportation, or the safeness
of travelling through a particular street. Therefore, the solution to the problem stated in this
section can be considered as an adaption or a modification to the existing approaches to the
15-Minute City problem, specifically with an improvement of the computational efficiency
in mind.
Formally, the algorithm to the 15-Minute City problem should satisfy the following prop-

erties.

Inputs

1. A graphG(V,E) representing the area of which t-Minute City is computed. V is the
set of vertices representing locations within the area, and E is the set of weighted, undi-
rected edges such that E ⊆ V × V and the weights w : E → R+ of the edges are
proportional to the time required to travel along the corresponding edge, in minutes.

2. For every vertex v ∈ V, v contains the label v.l ∈ {0, 1}p, where v.l[i] represents the
availability of service type i of the location.

3. A time threshold t in minutes.

Output
A set of verticesR ⊆ Vwhich can reach to at least one location of each service type within

tminutes. i.e. denote d(v,w) as the shortest path distance between v and w, and v.r[i] ∈
{0, 1}p as a binary vector indicating whether v can reach a location of service type iwithin t
minutes, such that

v.r[i] = 1 ⇐⇒ ∃w ∈ V, w.l[i] = 1 : d(v,w) ≤ t

24

then, we have
∀v ∈ R, v.r = 1

In this setting, a location v ∈ V in this graph could be a location of an amenity of interest,
or a road junction, such that v.l ∈ {0}p. More specifically, given a list of services of p distinct
types and their locations, each location can be inserted into the graph by

• Labelling the closest node in the graph by the service type, or

• Adding a vertex toV along an existing edge in E, in such a way that the distance from
the vertex to the nearest road junction is minimised.

4.1 Graph Search Algorithms to the 15-Minute City
In Chapter 2, we have discussed the graph data structure and the algorithms that could po-
tentially assist in solving the 15-Minute City problem. It can be seen that the Minimum
Spanning Tree problem is not directly applicable to the 15-Minute City problem, as the
problem is not about connecting all the nodes in a graph with the least possible total edge
weight. As for the Graph Traversal algorithms BFS and DFS, these algorithm are designed for
unweighted graphs which are not enough for us to represent city maps.
The All-Source-Shortest-Path algorithms such as Floyd-Warshall’s algorithm and John-

son’s algorithm are not suitable for the 15-Minute City problem either, as it is unnecessary to
find the shortest path between every pair of nodes in the graph, while 15-Minute City prob-
lem is about finding the reachable essential needs within 15 minutes from residence. This
leaves us with the Single-Source-Shortest-Path algorithms such as Dijkstra’s algorithm, and
Bellman-Ford algorithm. While Bellman-Ford algorithm has an advantage of supporting neg-
ative edge weights, it is not useful for our problem as the edge weights in our graph use time
unit and therefore, non-negative. Finally, Dijkstra’s algorithm and Uniform Cost Search are
the most suitable algorithms for the 15-Minute City problem. Therefore, our proposed solu-
tion will be based on Dijkstra’s algorithm and Uniform Cost Search.

25

26

5
Proposed Solutions

5.1 Dijkstra’s Algorithm
During the development of the 15-Minute City algorithm, a number of approaches were
considered which were unfeasible in the end. As mentioned earlier in Chapter 4, All-Source-
Shortest-Path algorithms such as Floyd-Warshall’s algorithm are not best suited to our prob-
lem as it is unnecessary to search from all nodes in the graph. However, another approach to
the All-Source-Shortest-Path problem is simply to run Dijkstra’s algorithm repeatedly from
each node.
Taking inspiration from the approach used by Barbieri et al. ([8], 3.1.1), the 15-Minute

City algorithm will use the modified Dijkstra’s algorithm to find the 15-Minute City with
the service locations of each service type as the source nodes, rather than searching from every
vertex in the graph. This approach is expected to be more efficient as the number of service
locations is expected to be far smaller than the number of vertices in the graph, i.e. S ⊂ V ⇒
|S| < |V|. Therefore, the first solution proposed in this thesis is a modified version of Dijk-
stra’s algorithm, adapting the methodologies used by Pezzica et al. [24], which incorporate
the Dijkstra’s algorithm with a (Minimum) Priority Queue data structure. The data struc-
ture maintains a dynamic setQ of elements, each set element inQ has a key and it supports
the following dynamic-set operations.

• INSERT(Q; x; k): inserts element xwith key k into setQ.

27

• MINIMUM(Q): returns element ofQwith smallest key.

• EXTRACT-MIN(Q): removes and returns element ofQwith smallest key.

• DECREASE-KEY(Q; x; k): decreases value of element x’s key to k. Assuming k ≤ x’s
current key value.

All operations takeO(log n) time in an n-element heap with the exception of MINIMUM(Q)
being Θ(1).
We extend the algorithm so that the algorithm will stop once all nodes within tminutes

have been visited. For each node considered in the algorithm, a new label v.d is created where
v.d ∈ R≥0 representing the distance from the current source node of the algorithm, ini-
tialised to∞.
As the 15-Minute City concept is primarily used to study cities’ characteristics, the input

graph of the algorithm is expected to be far larger than a single “15-Minute City”. There-
fore, it is necessary to stop the algorithm once all nodes within tminutes have been visited to
prevent the algorithm from running indefinitely. The modified algorithm is shown in Algo-
rithm 5.1.
The modified Dijkstra’s algorithm shown above only searches for vertices within tminutes

from a single source node. For our context of the 15-Minute City, this needs to run for each
location of each service type. The 15-Minute City algorithm as the solution of the problem is
shown in Algorithm 5.2.

5.1.1 Analysis
The time complexity of the modified Dijkstra’s algorithm depends on the following:

• Initialisation: O(|V|)

• INSERT: |V| · O(|INSERT|) = O(|V| · |INSERT|)

• EXTRACT-MIN: |V| · O(|EXTRACT-MIN|) = O(|V| · |EXTRACT-MIN|)

• DECREASE-KEY: |E| · O(|DECREASE-KEY|) = O(|E| · |DECREASE-KEY|)

The time complexity of the algorithm is also affected by the data structure used to im-
plement the priority queue. A binary heap is a common choice for implementing a prior-
ity queue, which has a time complexity ofO(log |V|) for INSERT, EXTRACT-MIN and

28

Algorithm 5.1Modified Dijkstra’s Algorithm
Input: A graphG(V,E), weights w : E→ R≥0, source vertex s,

time threshold t and i denotes the index of the service type
Output: Assign v.r[i] = 1 for vertices that can reach to source node swithin threshold t
for each vertex v ∈ V do

v.d←∞
end for
s.d← 0
Q← ∅
for each vertex v ∈ V do

INSERT(Q, v)
end for
whileQ ̸= ∅ do

v←EXTRACT-MIN(Q)
if v.d > t then

Q← ∅
else

v.r[i]← 1
for each vertex u ∈ Adj[v] do

if u.d > v.d+ w(u, v) then
u.d← v.d+ w(u, v)
DECREASE-KEY(Q, u, u.d)

end if
end for

end if
end while

29

Algorithm 5.2 15-Minute City Algorithm
Input: A graphG(V,E), weights w : E→ R≥0, a time threshold t

and a list S of service vertices of p types
Output: SetR ⊆ V representing the t-Minute City
for all vertex v ∈ V do

v.r← {0}p
v.l← {0}p

end for
for all service v ∈ S do

v.l[i]← 1 for each service type iwhich belongs to vertex v
end for
for each service type i ∈ {1, ..., p} do

for each vertex swhere s.l[i] = 1 do
Modified_Dijkstra(G,w, s, t, i)

end for
end for
R← ∅
for each vertex v ∈ V do

if v.r = 1 then
R← R ∪ {v}

end if
end for

30

DECREASE-KEY operations. However, if a Fibonacci heap is used instead, the time com-
plexity of the operations is reduced to Θ(1),O(log |V|) and Θ(1) respectively.
As the latter two operations in the algorithm dominates the former two operations, the

time complexity of algorithm 5.1 isO((|V| + |E|) log |V|) if a binary heap is implemented.
This can be reduced toO(|V| log |V|+ |E|) if a Fibonacci heap is considered instead.

For the complete 15-Minute City Algorithm 5.2, the algorithm is run for each location
of each service type. Denote q as the maximum number of locations for any service type, the
time complexity of the algorithm isO(p·q·(|V| log |V|+|E|)) if a binary heap is implemented
andO(p · q · (|V| log |V| + |E|)) if a Fibonacci heap is implemented. In both cases, the time
complexity consider the size of the entire graph, which could be arbitrarily large when a city
or a large area is studied. Due to the fact that the modified Dijkstra’s algorithm stops once all
nodes within weight t are searched, it is important to note that the actual complexity of the
algorithm could be potentially much smaller.

(a) Example of a grid city (b) Example of a tree city at 2 levels

As for the complexity of the algorithm as a whole, we need to consider 2 cases: the first is a
general case where we assume the size of the graph is larger than the size of the subgraph that
is the 15-Minute City. The second case is the case where the entire graph is classified as the
15-Minute City. In the second case, the complexity of the algorithm is then lower than the
complexity of the first case.

31

1. Cases where the city is larger than the “15-Minute City”

Example Consider a city with only square grids and each edge has a weight of 1 (figure
5.1a). The algorithm will effectively search a total of 1, 024 edges and 545 nodes for t = 15, as
these are the number of nodes and edges that is possible to be traversed in 15 steps. In general,
for a grid city (where each node has a degree of 4) given a time threshold t, the number of
nodes and edges searched by the modified Dijkstra’s algorithm can be calculated as follows:

|Edges| = (2 · (t+ 1))2

|Vertices| = 1+ 2 · (t+ 1) · (t+ 2)

This structure of a grid-like city can be applicable to cities such as New York and Barcelona.

Generalisation However, if the graph of interest has the following characteristics:

• Starting from the source node s.

• Every node has d successors with d edges of weight 1.

An illustration of the graph with 2 levels and d = 4 are shown in figure 5.1b. In this ar-
rangement, given a time threshold t and d the number of nodes branching out from each
parent node, the number of nodes and edges need to be visited are as follows:

|Edges| =
t+1∑

l=1

dl = d ·
(
1− dt+1

1− d

)

|Vertices| = 1+ |Edges|

For example, setting t = 15 and d = 4, the graph will have |E| = 5, 726, 623, 060 and
|V| = 5, 726, 623, 061.
By limiting the maximum degree for each node in the graph, this graph structure can be

considered as the worst case in time complexity for the algorithm with the maximum possible
degree of d + 1 with time threshold t. Fixing the degree of the nodes, any other arrangement
of the graph (such as a clique) will have an equal or smaller time complexity, as the number
of nodes visited will be smaller, and the number of edges unchanged. The time complexity of
the modified Dijkstra’s algorithm is then:

O(|V|) = O(
t+1∑

l=1

dl) = O(dt+1)

32

O(|E|) = O(1+
t+1∑

l=1

dl) = O(dt+1)

and

O(|V| log |V|+ |E|) = O(dt+1 log dt+1 + dt+1) = O(dt+1 log dt+1)

Therefore, the time complexity of the 15-Minute City algorithm on this graph is:

O
(
p · q · dt+1 log dt+1)

To generalise this notation to edge weights other than 1, define ε as the minimum edge
weight in the graph. Then the algorithm can travel at most ⌊t/ε⌋ edges in tminutes. There-
fore, the time complexity of the algorithm can be expressed as:

O
(
p · q · d1+⌊t/ε⌋ log d1+⌊t/ε⌋)

The space complexity of Dijkstra’s algorithm isO(|V| + |E|). In the modified version
of this algorithm, this is simplyO(d1+⌊t/ε⌋ + d1+⌊t/ε⌋) = O(d1+⌊t/ε⌋). Therefore, the space
complexity of the 15-Minute City algorithm on this graph is:

O
(
p · q · d1+⌊t/ε⌋)

2. Cases where the city is smaller than the “15-Minute City”

In this case, the city is smaller than the 15-Minute City, the algorithm will search all nodes in
the graph. The time and space complexity of the algorithm are simply just

O(|V| log |V|+ |E|) andO(|V|+ |E|)

Therefore, the 15-Minute City algorithm in this case is then

O (p · q · (|V| log |V|+ |E|)) andO (p · q · (|V|+ |E|))

as the modified Dijkstra’s algorithm will be run p · q repetitions.

33

5.2 UniformCost Search Adaption
For the space complexity of the proposed algorithm above, it is important to note that the
modification algorithm of Dijkstra’s algorithm inserts all |V| vertices of the graph into the
priority queue setQ, this is repeated for each service location of each type. Therefore, the
space complexity would beO(p · q · |V|). Hence the algorithm proposed may not be suitable
for large graphs for space complexity.
The problem described here can be solved by adapting a technique from the “Uniform

Cost Search” algorithm. The algorithm is an extension of Best-first search, it is similar to
Dijkstra’s algorithm, as well as some of the modification to Dijkstra’s algorithm we proposed
above. However, Uniform Cost Search algorithm does not insert all vertices into the priority
queue. Instead, it only inserts the vertices that are reachable within the time threshold t. A
modification of this algorithm is shown in Algorithm 5.3. This algorithm can then be used in
Algorithm 5.2 to replace the modified Dijkstra’s algorithm in 5.1.

5.2.1 Analysis
In this implementation, the algorithm is more efficient in practice as it only inserts vertices
that are reachable within the time threshold t into the priority queue. However, in the worst
case, both time complexity and space complexity remain unchanged.

5.3 Inspiration from Johnson’s algorithm
Johnson’s algorithm uses both Dijkstra and Bellman-Ford as subroutines and performs bet-
ter than Floyd-Warshall algorithm in sparse graphs. For the goal of the 15-Minute City algo-
rithm, the set of service vertices can be far smaller than the entire graph in size. Thus, all-pairs
shortest path algorithms are not optimal solutions to the problem. However, Johnson’s algo-
rithm’s approach in connecting multiple nodes with a newly inserted node and 0 weight can
be applied to the 15-Minute City problem.
This approach can be applied to the 15-Minute City problem by adding a new vertex s to

the graph and adding edges from the new vertex to all service vertices of the same type. This
allows us to eliminate the inner loop of Algorithm 5.2 where Modified_Dijkstra(G,w, s, t, i)
is called. This alternate approach of the 15-Minute City algorithm is shown in Algorithm
5.4.

34

Algorithm 5.3Modified Dijkstra’s Algorithm 2
Input: A graphG(V,E), weights w : E→ R≥0, source vertex s,

time threshold t and i denotes the index of the service type
Output: Assign v.r[i] = 1 for vertices that can reach to source node swithin threshold t
Q← ∅
INSERT(Q, s)
whileQ ̸= ∅ do

v←EXTRACT-MIN(Q)
if v.d > t then

Q← ∅
else

v.r[i]← 1
for each vertex u ∈ Adj[v] do

if u /∈ Q then
u.d← v.d+ w(u, v)
INSERT(Q, u)

else if u.d > v.d+ w(u, v) then
u.d← v.d+ w(u, v)
DECREASE-KEY(Q, u, u.d)

end if
end for

end if
end while

35

Algorithm 5.4 15-Minute City Algorithm 2
Input: A graphG(V,E), weights w : E→ R≥0, a time threshold t

and a list S of service vertices of p types
Output: SetR ⊆ V representing the t-Minute City
for all vertex v ∈ V do

v.r← {0}p
v.l← {0}p

end for
for all service v ∈ S do

v.l[i]← 1 for each service type iwhich belongs to vertex v
end for
for each service type i ∈ {1, ..., p} do

Create a new vertex s
Add edges from s to all vertices vwhere v.l[i] = 1 and w(s, v)← 0
Modified_Dijkstra_2(G,w, s, t, i)
Remove s and all edges connected to it

end for
R← ∅
for each vertex v ∈ V do

if v.r = 1 then
R← R ∪ {v}

end if
end for

36

5.3.1 Analysis
For each service type, the proposed approach increases the number of vertices by 1 and the
number of edges by the number of service vertices of the same type. Denote qw as the maxi-
mum number of vertices of the same service type, then for each service type, Algorithm 5.3
is run, where the algorithm starts from the newly inserted vertex s, it visits at most qw vertices
and continues its search as before. The time complexity of the Modified_Dijkstra_2 algo-
rithm is then:

O(qw · (d1+⌊t/ε⌋ log d1+⌊t/ε⌋)) = O(d1+⌊t/ε⌋ log d1+⌊t/ε⌋)

and space complexity:

O(qw · d1+⌊t/ε⌋) = O(d1+⌊t/ε⌋)

which are the same as before.
However, the time and space complexity of the 15-Minute City algorithm are now:

O
(
p · d1+⌊t/ε⌋ log d1+⌊t/ε⌋) andO

(
p · d1+⌊t/ε⌋)

respectively, which are smaller by an order of qw compared to the previous algorithm.
As for the case where the 15-Minute City is found to be the entire graph, the time and

space complexity of the algorithm are now

O (p · (|V| log |V|+ |E|)) andO (p · (|V|+ |E|))

as the algorithm is run p times in repetitions instead of p · q times in our first proposed
algorithm.

5.4 Adaption to existing papers
The intuition of our algorithm was inspired by solution approached by Barbieri et al. [8]
which we have discussed in Chapter 3.1.1, where we focus on graph searching from services
and that we define the 15-Minute City as an interaction of the sets of vertices that can reach
to each service type within tminutes, it is easy to see that we can adapt our algorithm into the
mathematical notations used by Barbieri et al. In particular, Barbieri et al. denoted

37

Ci =
Ni⋃

j=1

Ci
j

as the nodes that can be reached by f i, where f i is the set of locations of service type i. It
is immediately to see the the sets Ci for each service type i, is equivalent to the sets of nodes
where v.r[i] = 1. Furthermore, the 15-Minute City C defined by the authors

C =
K⋂

i=1

Ci =
K⋂

i=1

Ni⋃

j=1

Ci
j ⊆ V

is equivalent to our algorithm’s output setR. Our proposed algorithm focuses on effi-
ciency and computational cost while the approach by Barbieri et al. did not mention the
methodology used in calculating the 15-Minute distance. Moreover, Barbieri et al. proposed
to use a planar graph. However, it is not clear if a planar graph would be able to represent
bridges/tunnels etc effectively, as the definition of a planar graph is that it can be drawn on
the plane in such a way that its edges intersect only at their endpoints.
Our algorithm can also be adapted to a number of existing papers which we discussed in

Chapter 3, as most of the work referenced the process of calculating the “15 minutes” dis-
tance without explicitly laying out the steps taken or methodology used, similar to the paper
by Barbieri et al. Notably, Caselli et al. (Section 3.1.2, [9]) defined the “neighbour cores”
within Parma, Italy and determined the 15-Minute City from these locations. Our algorithm
can be adapted to search from these “neighbour cores” instead of service locations.
While Rhoads et al. (Section 3.1.3, [10]) used a modified Dijkstra’s (Egohood) algorithm

to compute a 15-Minute City on side-walk networks with a walkability analysis, their work
was more focusing on the effect of the percolation analysis on the 15-Minute City (or Ego-
hood by their definition). Their algorithm can be found in the supplementary materials and
it is show in Algorithm 5.5, it is interesting to note that the priority queue used in the Ego-
hood is implemented differently to our Modified Dijkstra’s algorithm 5.3. It is not clear how
their priority queue works as the algorithm is not inserting new nodes in the first iteration of
the loop.
If there is a typo in the algorithm, where the most inner if statement is actually

u /∈ Q and u.d > v.d+ w(u, v)

The algorithm is not updating the distance of the vertex u if it is already in the priority

38

queueQ. However, with this problem fixed, the Egohood algorithm is rather similar to our
Modified Dijkstra’s algorithm 5.3.
Lastly, the grid tessellation approaches used by Gaglione et al. (Section 3.2.1, [11]) and

Olivari et al. (Section 3.2.2, [7]) also involve calculating travelling time between nodes. In
particular, the NEXI indices which Olivari et al. have defined requires to search for travelling
times between nodes and services as one would in the Graph Representation approach. Thus,
our algorithm can be adapted to search for travelling time in such an approach with grid tes-
sellation as well.

Algorithm 5.5 Egohood Algorithm
Input: A graphG(V,E), weights w : E→ R≥0, source vertex s, time threshold t
Output: A setGs containing edges that can be travelled by swithin tminutes
Gs ← ∅
s.d← 0
for each vertex v ∈ V \ {s} do

v.d←∞
end for
Q← ∅
INSERT(Q, s)
whileQ ̸= ∅ do

v←EXTRACT-MIN(Q)
for each vertex u ∈ Adj[v] do

if v.d+ w(u, v) ≤ t then
Gs ← Gs ∪ {(u, v)}
if u ∈ Q and u.d > v.d+ w(u, v) then

u.d← v.d+ w(u, v)
INSERT(Q, u)

end if
end if

end for
end while

39

40

6
Implementation & Experiments

In this chapter, we will discuss the implementation of our proposed algorithm in practice.
Recall that we aim to solve the challenges of “computational cost” and “adaptability” [4]
to the 15-Minute City problem with an algorithmic approach, it is important that the algo-
rithm is implemented in a low-level language to promote efficiency in our experiments. The
codes used in this chapter are available on the Github repository at
www.github.com/marcohoucheng/Algorithmic-Approach-to-15-Minute-City/.

6.1 Implementation
Rust is a low-level programming language which has gained significant popularity in the
field of Computer Science in recent years. It is a statically typed language to promote safety
and concurrency. Rust achieves these goals by using a unique ownership model to manage
memory allocation and deallocation at compile time, preventing common errors such as null
pointer dereferencing and data races. This makes Rust an attractive choice for programming
where performance and reliability are critical.

In our implementation of the algorithm, we opted to build the algorithm with the mini-
mum amount of non-official crates (packages for Rust). With this in mind, we have used the
petgraph and the ordered_float crates: petgraph [25] supports an undirected graph
data structure UnGraphMapwhile ordered_float::NotNan [26] is a necessary extension to
the priority queue as the standard library’s Binary Heap implementation only supports Inte-

41

http://www.github.com/marcohoucheng/Algorithmic-Approach-to-15-Minute-City/

ger ordering as according to 754-2008 - IEEE Standard for Floating-Point Arithmetic
[27]. It is important to note that while Fibonacci Heap has been used in our solution, we
have opted to use a built in Binary Heap in our code, it is due to the fact that there is a lack of
suitable implementation of Fibonacci Heaps in Rust.
The implementation of our code takes 2 csv files in inputs, nodes.csv and edges.csv.

nodes.csv contains the nodes identifier in the graph, along with a label field for the type
of the service the node contains, or it can be empty. edges.csv contains the source, target
and weight for every edge in our graph. Precisely, the node identifier fields id, source, and
target should be represented by integers, which is u64 in Rust, where u stands for “un-
signed”. Furthermore, label should be a string or empty, and weight should be of type
float, or f64. The table 6.1 shows a summary of the data types for each input variable.

Table 6.1: Summary of input data type

Input Data Type Rust Type
id Integer u64

source Integer u64
target Integer u64
weight Float f64
label String String

The algorithm is implemented in Rust as a single thread application. In practice, it would
be wise to parallelise the algorithm to take advantage of the concurrency ability of Rust to
utilise the multi-core processors in modern computers.

6.2 Data Preparation
The data preparation for the algorithm is done in Python, this is due to the flexible and well-
supported nature of the programming language. In this experiment, we obtain the map data
fromOpenStreetMap via the OpenStreetMap API and the osmnx library [28]. As oppose to
Google Maps, OpenStreetMap does not require an API key in order to download map data.
The obtained map data is stored as a MultiDiGraph object from the NetworkX library [29],
the MultiDiGraph object supports a directed graph and allows for multiple edges between
any two nodes, this will be converted to a MultiGraph object which represents an undirected
graph and duplicated edges will be removed in the subsequent steps detailed below.

42

The list below lays out the steps taken to obtain the map data in high-level:

1. Download map data as an MultiDiGraph object with the osmnx library and the
network_type set as all. Area could be selected by one of the following:

• City administration boundary
• A bounding box of coordinates
• A user-defined radius from a location given by its coordinates

2. The graph is simplified by merging nodes that are within 20 metres of each other, this
eliminates having too many nodes at junctions and pedestrian areas. (see figure 6.1)

3. The directed graph is transformed into an undirected graph.

4. For the selected service locations

• Locate the closest point of the closest edge (i.e. street) from each location.
• For each location, insert a new node to the graph and replace the original edge by
2 newly inserted edges to connect the new node. (see figure 6.2)

5. Remove parallel edges by only retaining the edge with the minimumweight.

6. Export the graph data into nodes.csv and edges.csv.

6.3 Experiment
The data preparation of the experiments in this thesis are conducted on aMacBook Pro with
a M1 Pro ARM-based processor at 3.2GHz. The machine has 8 CPU cores and 16GB of
RAM.We opted to test the algorithm on an older machine to showcase its usability and
computational efficiency. Therefore, the algorithm implemented in Rust will be tested a
2015MacBook Pro with a dual-core Core i5 (I5-5287U) processor at 2.0GHz with 8GB of
RAM. The Rust compiler version is 1.79.0. The Python version is 3.12.0. The versions of
the Python libraries and Rust crates used are as follows:
Rust crates:

• petgraph: 0.6.5

43

(a)Original graph. The administrative area of the Padua city contains 22783 nodes and 31863 edges.

(b) Simplified graph. The administrative area of the Padua city contains 7953 nodes and 14696 edges.

Figure 6.1: An example of graph simplification showing the train station of Padua and its surrounding areas.

44

Figure 6.2: A simple visualisation of how a service location is inserted into the graph. Left ‐ The original graph and the red
polygon represents the actual location of the service. Right ‐ The graph after the service location has been added, on a
point of the closest edge where the true location is the closest to. The newly inserted node is coloured red.

• ordered_float: 1.0.2

Python libraries:

• osmnx: 1.9.3

• networkx: 3.3

• pandas: 2.1.4

• shapely: 2.0.4

According to Browning et al. [30], the average walking speed is 1.42 m/s, while Murtagh
et al. [31] concluded that it is 1.31 m/s. There are many other scientific studies on average
walking speed for the general population, as well as for specific groups such as the elderly,
children, and people with disabilities. In our experiments, we will use the average walking
speed of 1.22 m/s, which is slower than the the average walking speeds concluded from the 2
studies. However, this is a conservative estimate to account for a wider range of the popula-
tion and also the fact that people may walk slower in urban areas due to congestion, obstacles,
and other factors. The walking speed of 1.22 m/s was also used in the experiments by Barbieri
et al. ([8], 3.1.1). This will allow us to compare our results with theirs in the later section.

45

Similarly, we will follow Barbieri et al.’s suggestion to include 3 types of amenities to in-
clude in our experiment, these are supermarkets, post office and pharmacies. In addiction, we
will include coffee shop. In OpenStreetMap, these are represented by the following tags:

• Supermarket: shop=supermarket or shop=convenience

• Cafe: amenity=cafe or amenity=bar (for Italian cities)

• Pharmacy: amenity=pharmacy

• Post Office: amenity=post_office

Most bars in Italy also serve coffee, so we will include them in the cafe category.

6.3.1 Padua, Italy
For the first experiment of the thesis, the 15-Minute City of Padua is computed, where the
University of Padua is located and where this thesis was conducted. The city of Padua is lo-
cated in the Veneto region in Northern Italy, and it is the capital of the province of Padua.
The map data of Padua is obtained fromOpenStreetMap using the osmnx library in Python
with the administration border of Padua. The map data has been processed and transformed
into a graph data structure as we have mentioned in Section 6.2. In this graph, there are 8458
nodes and 15230 edges, which given an average degree of

2× |E|
|V| = 2× |15230|

|8458| ≃ 3.6

According to the data fromOpenStreetMap, the city of Padua has 110 supermarkets, 316
cafes, 70 pharmacies and 26 post offices. Therefore, in our 15-Minute City algorithm, it cre-
ates a new node for each service type, and they are connected to 110, 316, 70 and 26 nodes in
the graph, respectively. Note that these nodes may not be mutually exclusive, as it is possible
for a node to be labelled with multiple service types.
Based on the data fromOpenStreetMap, the vast majority of the historic city centre, as

well as the area of Arcella of Padua is within a 15-minute walk of a supermarket, cafe, phar-
macy, or post office. This is consistent with the idea of the “15-Minute City” where essential
services are within walking distance of most residents. The results of the algorithm can be
visualised and it is shown in figure 6.3.

46

Figure 6.3: 15‐Minute City of Padua, Italy. Black edges represents the 15‐Minute City.

47

Tomeasure the running time, we can run the algorithm repeatedly for 110 iterations and
take the average running time. The first 10 runs of the algorithm are excluded from the aver-
age to account for the warm-up time of the CPU. The average running time of the algorithm
for the 15-Minute City is 0.385 seconds.

Table 6.2: Padua t‐Minute City

t Number of Nodes time (ms) t Number of Nodes time (ms)
1 2 45.22 18 4899 299.34
2 46 66.99 19 5092 299.23
3 151 87.20 20 5263 321.14
4 355 114.86 21 5443 318.85
5 630 141.96 22 5594 335.31
6 908 166.31 23 5771 336.26
7 1245 197.75 24 5937 432.36
8 1645 200.38 25 6086 321.61
9 2075 235.65 26 6234 352.17
10 2500 221.54 27 6396 367.79
11 2906 262.13 28 6531 374.57
12 3294 256.85 29 6644 368.52
13 3632 280.82 30 6765 382.55
14 3963 267.52 35 7287 399.95
15 4239 385.10 40 7713 397.03
16 4489 323.90 45 7969 425.01
17 4709 456.84 60 8344 415.90

As discussed in Chapter 1, the 15-Minute City is an urban city planning concept which we
have seen many variations of in literature. This includes the study of 10, 20 and 30 minute
cities. Therefore, we can run our algorithmmultiple times to create a heatmap of the city of
Padua for 1 to 30 minute cities. In summary, the number of nodes and the average running
times for the 1 to 30 minute cities can be seen in table 6.2 and the heatmap of the t-Minute
City of Padua can be seen in figure 6.4.

48

Figure 6.4: t‐Minute City heatmap of Padua, Italy. Darker edges represents a smaller t value.

49

6.4 Adaption to existing papers
In this section, we will apply our algorithm and compare with the results of the papers by
Barbieri et al. in the cities of Rome, London and Paris [8], Caselli et al. in the city of Parma,
Italy [9] and Olivari et al. in the cities of Ferrara and Bologna of Italy [7]. We will discuss the
usefulness of our algorithms, the similarities and differences between our results and theirs.
The images are also available in Chapter 9 in higher resolution.

Note that in this section, the visualisation of our experiments will use different colour
schemes to match with the papers presented as closely as possible.

6.4.1 Rome, London and Paris
Noted by Barbieri et al. [8], the planar graph of Rome, London and Paris were obtained
fromOpenStreetMap using the osmnx library in Python. In the paper, the authors have de-
fined 1.22 m/s as the average walking speed, which is the same as our experiment and slower
than the average walking speed to be more inclusive to the population. The authors chose
pharmacies, post office and supermarkets as the selected amenities as the “three primary
needs of food, health, and administration”. Bounding boxes of the 3 cities are also provided
in the paper. However, the authors have not provided the network_type parameter in the
osmnx library, which is important to obtain the correct map data. Furthermore, the authors
have not mentioned any pre-processing steps to the map data, we also found that the bound-
ing boxes provided in the paper are not accurate, as the bounding box of both Paris and Lon-
don did not provide the same area of the city as the figure shown in the paper. Therefore, we
manually defined the bounding box as closely as possible for the city of Paris. The bound-
ing box for London city is bigger than the visualisation shown by the paper of Barbieri et al.,
to test the performance of our algorithm when the number of services increase. Figure 6.8
shows the full area of London captured in this experiment. The bounding boxes used to ob-
tain the areas of Rome, Paris and London fromOpenStreetMap are as follows, where the
bounding boxes are the coordinates in the order of north, south, east, west.

• Rome: (41.9952, 41.7882, 12.6281, 12.3644)

• Paris: (48.9520, 48.7650, 2.4900, 2.2100)

• London: (51.6792, 51.2473, 0.2774,−0.4944)

50

As for our implementation, trying to recreate as close as possible to the map data used
by the authors, we followed the author’s choice of service types to include all supermarkets,
pharmacies and post offices within the bounding boxes. Using the walking speed 1.22 m/s
in the algorithm, table 6.3 shows the summary of the data obtained fromOpenStreetMap
for the 3 cities, as well as the size of the 15-Minute City, number of supermarkets, pharma-
cies and post offices and the running time of the algorithm, on average over 100 iterations as
described in section 6.3.

Table 6.3: Summary of Rome, London and Paris data, where 15‐MC denotes the number of nodes belong to the 15‐Minute
City, and S, P and PO denotes Supermarkets, Pharmacy and Post Office, respectively.

City |V| |E| 15-MC S P PO time (ms)
Rome 41,211 74,491 20,552 921 475 153 1,214.82
London 266,609 436,944 136,890 6,689 1,379 753 7,149.71
Paris 75,899 167,076 63,420 3,915 1,778 483 2,849.83

Furthermore, figures 6.5, 6.7, 6.6 shows the comparison of the 15-Minute City of Rome,
London and Paris, respectively, between our implementation and the results provided by
Barbieri et al.

Figure 6.5: A comparison between Barbieri et al. (L) and our findings (R) of Rome’s 15‐Minute City

51

Figure 6.6: A comparison between Barbieri et al. (L) and our findings (R) of Paris’s 15‐Minute City

Figure 6.7: A comparison between Barbieri et al. (L) and our findings (R) of London’s 15‐Minute City

52

Figure 6.8: The entire graph of London with 266,609 nodes and 436,944 edges.

6.4.2 Parma, Italy
Caselli et al. studied the 15-Minute City for the northern portion of the Cittadella district,
Parma, Italy [9]. In the paper, the authors used a ArcGIS software with a GIS-model which
improved and integrated a Territorial Information system. A walking speed of 3 km/h was
used, which is equivalent to 0.83 m/s, the authors noted that this is due to a recommenda-
tion by the National Research Council (2000) “in urban areas with large numbers of older
pedestrians”. A delay factor is also used in their model where the model adds 20 seconds to
unsignalised crossings and 40 seconds to signalised crossings. This can be incorporated into
our algorithm by adding the delay factor to the edge weights of the graph for crossings. The
models used in this paper defined “neighbour cores” as “urban nodes well served by neces-
sities shops and services, such as supermarkets, grocery stores, bars, drugstores, and banks.”
The 15-Minute City is defined as the area where the “neighbour cores” are within 15 min-
utes of walking distance, the paper also separated the 16-Minute City into “0 − 5 minutes”,

53

“5− 10 minutes” and “10− 15 minutes” regions.
Since the authors did not include the coordinates of the “neighbour cores”, nor the method-

ology used to obtain them. We will try locate these locations on OpenStreetMap manually to
estimate the coordinates used in our algorithm, along with the walking speed of 0.83 m/s.
In the end, we captured the map data of the region by using the centre coordinate point
(44.7908, 10.3349) and a radius of 1500 metres through the OpenStreetMap API. For the
sake of simplicity, we will not include the delay factor in our model. Following our approach
used in Section 6.3, we will compute a heatamp of the 15-Minute City of the northern por-
tion of the Cittadella district, Parma, Italy. The results of our implementation against Caselli
et al. can be seen in figure 6.9. The comparison shows that our algorithm could be use to
replicate the work done by the authors of this paper, as the regions of the “5-Minute City”,
“10-Minute City” and “15-Minute City” are closely matched between both implementa-
tions.

Figure 6.9: A comparison between Caselli et al. (L) and our findings (R) of Parma’s 15‐Minute City

6.4.3 Ferrara and Bologna, Italy
In the paper by Olivari et al. [7], the authors defined the “Next Proximity Index” and pro-
posed the questions of whether the cities of Ferrara and Bologna, Italy are “15-Minute”. Al-
though the 15-Minute City approach here is Grid Tessellation based, the first “Next Proxim-
ity Index”, NEXI-Minute for each service type is calculated by the time taken to reach to the
closest service of the type, averaged from all nodes within the grid area. The other two NEXI
indices are built on top of the first index. Therefore, our algorithm can be used to aid with
calculating the time taken to travel from each node to each service type. In this paper, the au-
thors opted to use a walking speed of 5 km/h (1.39 m/s) without giving any specific reasons,

54

and they have selected the following list of service types which are “mainly inspired by the
Walk Score methodology” [14].

1. Commerce & Retail

2. Education

3. Entertainment

4. Grocery

5. Healthcare

6. Post/bank offices

7. Public parks

8. Restaurants

Figure 6.10 shows the specific details of all service types included in their study.

Figure 6.10: NEXI Categories in detail

Olivari et al. obtained the map data of Ferrara and Bologna fromOpenStreetMap using
the pandana library in Python and with the network_type as walk. The authors provided
a map visualising the averaged NEXI-Minute index over all service types of Ferrara. We will
try to recreate the 60-Minute City of Ferrara and Bologna by using the service types men-
tioned by the authors in our algorithm, along with the walking speed of 1.39 m/s. The map
data we have obtained fromOpenStreetMap is summarised in table 6.4. In the paper by Oli-
vari et al., one of the results shown was the average NEXI-Minute index over all service types
in each grid. In this section, we attempted to use our implementation of the t-Minute City
between 5 to 60 minutes on the same area of Ferrara, as we don’t have the necessary informa-
tion to find the areas of each grid specified by Olivari et al. The results of our implementa-
tion against Olivari et al. for the city of Ferrara can be seen in figure 6.11. Although we were

55

not able to compute the average NEXI-Minute for each grid, our implementation of the
15-Minute City still closely aligns with the result achieved by Olivari et al. Figure 6.12 also
shows our implementation applied to the city of Bologna.

Table 6.4: Summary of Ferrara and Bologna.

City Ferrara Bologna
|V| 10,323 15,923
|E| 15,741 24,782

Education 114 328
Entertainment 29 135

Grocery 157 605
Health 76 264

Posts and Banks 68 281
Parks 399 583

Sustenance 408 1,502
Shops 349 1679
15-MC 2,576 10,232

Running time (ms) 486.83 1,167.75

Figure 6.11: A comparison between Olivari et al. (L) and our findings (R) of Ferrara’s 60‐Minute City

56

Figure 6.12: The 60‐Minute City of Bologna

57

58

7
Discussion

In the previous chapter, we presented the results of our experiments on a number of selected
cities. We have shown that our 15-Minute City algorithm is computationally efficient, as
the running time on a single thread implementation is less than 10 seconds even for a city as
large as London. We have also shown that the algorithm is flexible and can be used to mea-
sure the accessibility of different types of amenities, such as coffee shops, post offices, and
supermarkets. Our algorithm can be used in many approaches to the 15-Minute City con-
cept, as many existing solutions relay on calculating an area reachable within 15 minutes (or t
minutes) from a given location as the first step.
However, while conducting these experiments, we have encountered several challenges.

The first challenge was the quality of the data. The data we used was obtained fromOpen-
StreetMap, which is a crowd-sourced map of the world. While OpenStreetMap is a valuable
resource, it may not always accurate or complete. The map data we received was very messy,
for example, there could be multiple edges between the same node, which resulted in a graph
that could be simplified further. However, in our experiment, it was difficult to remove the
“correct” nodes and edges without messing with the good quality data. The network_type
parameter in the osmnx library also did not solve this problem, as driving network does
not include pedestrian paths, while walk network does not include small roads that may be
shared with pedestrians without the presence of pedestrian paths. The technique we em-
ployed to insert service locations into the graph was also not fool-proof, as we relay on the
coordinates given by the OpenStreetMap API, which may not always be accurate. Even if the

59

coordinates are correct, there is no guarantee that the entrances of these services are facing the
closest edge.
The second challenge was the data processing time. The data processing time was very

long, especially for large cities like London. The data processing time was also dependent on
the number of amenities we wanted to measure the accessibility of, as we needed to insert a
node that is the closest to the service, create two new edges between the node and the service,
and remove the original edge. This process was repeated for each service, which resulted in
a long processing time. In our experiments, the processing time for the largest city, London,
was over 14 hours and 25 minutes for 6,689 supermarkets, 1,379 pharmacies and 753 post
offices. Recalling the 3 challenges according to Lima and Costa, in order to bridge the gap
between the planning practice and software development communities: “data availability
and quality”, “computational cost” and “adaptability” [4]. In this thesis, we have addressed
the latter two challenges. However, the first challenge, “data availability and quality”, clearly
is still a significant challenge that needs to be addressed. An efficient algorithm to the 15-
Minute City would not be useful if there is a lack of a comprehensive framework for urban
space planning and other users such as researchers from other fields outside of Computer
Science.
The weights of the graph to our algorithm was purposely set to be the time required to

travel along the corresponding edge, in minutes. This promotes the freedom for the users to
incorporate different characterise to the roads which could affect the travelling time, such as
the the street width, slope, and density of (foot or not) traffic. For example, service locations
in a building such as a shopping mall may seem close to each other on a 2Dmap, our input
graph allows for the possibility to modify travelling time based on the level of the building
the service is located. Locations where it may be unpleasant to travel such as roads without
pavements, paths with cobblestone or unsafe paths could also have artificial time added to the
edge weights.
Given that every city studied in this thesis is larger than their respective “15-Minute City”,

we have studied in section 5.3 that the theoretical complexity of the proposed algorithm in
this setting is

O
(
p · d1+⌊t/ε⌋ log d1+⌊t/ε⌋)

where p denotes the number of service types.
The proposed algorithm was implemented in Rust. In the table 7.1, we have noted the

60

time taken to run the algorithm for the “15-Minute City” of Padua, Rome, London, Paris,
Parma, Ferrara and Bologna, along with the number of nodes and edges in each graph and the
size of the 15-Minute City. The same algorithm was also implemented in Python for compar-
ison. We found that on average, Python takes about 3 times longer to run for the computa-
tion against Rust.

Table 7.1: Complexity in practice, where p denotes the number of service types.

City |N| |E| p |15-MC| Time (ms)
Padua 8,458 15,230 4 4,265 385.10
Rome 41,211 74,491 3 20,552 1,214.82
London 266,609 436,944 3 136,890 7,149.71
Paris 75,899 167,076 3 63,420 2,849.83
Parma 1,375 2,505 1 234 3.26
Ferrara 10,323 15,741 8 2,576 486.83
Bologna 15,923 24,782 8 10,232 1,167.75

It is clear that although the term qw, the maximum number of locations for an unique ser-
vice type, is not the dominant term in the complexity of the algorithm, it is still an important
factor in practice. We have also seen the effect of t to the running time of the algorithm in
table 6.2. Moreover, although the size of the graph (i.e. the number of nodes and edges) is
not the dominant term in the complexity of the algorithm in this setting, it is clear that the
size of the graph still plays a role in the algorithm’s complexity. It is also safe to assume that
the number of service locations is positively correlated to the size of the city, therefore affects
complexity.
There are a number of improvements that can be considered in the future. A notable im-

provement would be to allow the algorithm to calculate the t-Minute City for multiple t at
once. In our current implementation, we repeat the algorithmmultiple times for each t of
interest. However, this is inefficient as the graph search algorithm always start from the same
nodes and stop when we reach to tminutes. A suggestion of the modification would be to
assign a number to each reachable node, representing the least amount of time required to
reach to all services. In this setting, the algorithm only needs to be run once for multiple t-
Minute City calculations. An example of this algorithm is shown below in algorithm 7.1 and
7.2.
Another improvement is to allow the algorithm to run in parallel. In our current imple-

mentation, the algorithm is run on a single core. However, the algorithm can be parallelised

61

so that different service types can be searched within the graph by multiple threads. At the
end of the parallelised process, each thread should return the label array v.r for each node v in
the graph. The main thread can then combine the results from each thread to obtain the final
result.

Algorithm 7.1Modified Dijkstra’s Algorithm 3
Input: A graphG(V,E), weights w : E→ R≥0, source vertex s,

time threshold t and i denotes the index of the service type
Output: Assign v.r[i] = 1 for vertices that can reach to source node swithin threshold t
Q← ∅
INSERT(Q, s)
whileQ ̸= ∅ do

v←EXTRACT-MIN(Q)
if v.d > t then

Q← ∅
else

if ⌊v.d⌋ < v.r[i] then
v.r[i]← ⌊v.d⌋

end if
for each vertex u ∈ Adj[v] do

if u /∈ Q then
u.d← v.d+ w(u, v)
INSERT(Q, u)

else if u.d > v.d+ w(u, v) then
u.d← v.d+ w(u, v)
DECREASE-KEY(Q, u, u.d)

end if
end for

end if
end while

62

Algorithm 7.2 15-Minute City Algorithm 3
Input: A graphG(V,E), weights w : E→ R≥0, a time threshold t

and a list S of service vertices of p types
Output: DictionaryRwhere the keys are 1, ..., t and the values are

sets of vertices representing each t-Minute City
for all vertex v ∈ V do

v.r← {∞}p

v.l← {0}p

end for
for all service v ∈ S do

v.l[i]← 1 for each service type iwhich belongs to vertex v
end for
for each service type i ∈ {1, ..., p} do

Create a new vertex s
Add edges from s to all vertices vwhere v.l[i] = 1 and w(s, v)← 0
Modified_Dijkstra_3(G,w, s, t, i)
Remove s and all edges connected to it

end for
for each t′ ∈ {1, ..., t} do

R.insert(t′ : ∅)
end for
for each vertex v ∈ V do

t′ ← 0
for each service type i ∈ {1, ..., p} do

if v.r[i] > t′ then
t′ ← v.r[i]

end if
end for
if t′ ∈ [1, t] then

R[t′]← R[t′] ∪ {v}
end if

end for

63

64

8
Conclusion

In this thesis, we explored the concept and implementation of the 15-Minute City. By re-
viewing a number of existing papers from various research areas, we identified the need for an
algorithmic approach to the 15-Minute City problem. Our goal was to create an adaptable
algorithm suitable for any t-Minute City, not just the 15-Minute City.
The 15-Minute City is often represented on a map, and from a Computer Science per-

spective, this naturally translates to a graph data structure. Consequently, our proposed
algorithm draws inspiration from popular graph search algorithms, particularly Dijkstra’s
algorithm and Johnson’s algorithm. The time and space complexities of our algorithm were
derived and found to depend on the degree of the nodes in the graph, the t in t-Minute City,
and the number of service locations.
We implemented the algorithm in both Rust and Python, testing it in the city of Padua for

both a 15-Minute City and a range from 1-Minute City to 30-Minute City. As anticipated,
the Rust implementation was significantly more efficient. Additionally, we demonstrated
that our algorithm could be adapted to replicate existing non-algorithmic case studies, in-
cluding Rome, London, Paris, Parma, Ferrara, and Bologna. We showed that our algorithm is
efficient in practice as the 15-Minute City was computed within 10 seconds for all test cases
on a 9 year old MacBook Pro.
Future research on the 15-Minute City should focus on developing a robust and efficient

framework for obtaining accurate map data, as data gathering and processing proved to be
the primary bottlenecks in our experiments. The 15-Minute City concept has become a sig-

65

nificant urban planning paradigm in recent years, aiming to provide environmental, social,
and economic benefits by ensuring essential amenities are accessible within a short distance.
Therefore, it is crucial to establish a comprehensive framework to enhance our society effec-
tively.

66

9
Appendix

In the following pages, we will present higher resolution versions of the images previously
included in this thesis.

67

Figure 9.1: Rome’s 15‐Minute City

68

Figure 9.2: Paris’s 15‐Minute City

69

Figure 9.3: London’s 15‐Minute City (cropped)

70

Figure 9.4: London’s 15‐Minute City

71

Figure 9.5: Ferrara’s 60‐Minute City

72

Figure 9.6: Bologna’s 60‐Minute City

73

Figure 9.7: A comparison between Barbieri et al. (Top) and our findings (Bottom) of Rome’s 15‐Minute City

74

Figure 9.8: A comparison between Barbieri et al. (Top) and our findings (Bottom) of London’s 15‐Minute City

75

Figure 9.9: A comparison between Barbieri et al. (Top) and our findings (Bottom) of Paris’s 15‐Minute City

76

Acknowledgments

I am grateful and would like to express my gratitude to my supervisor, Professor Silvestri, for
his invaluable guidance and feedback throughout this thesis.

Special thanks to the friends I have made in Padua for their support and for sharing an incred-
ible journey with me during my time in this city.

Finally, I would like to dedicate this thesis to my family for their unconditional support
throughout my educational journey.

Marco Lam

77

78

References

[1] C. Moreno, Z. Allam, D. Chabaud, C. Gall, and F. Pratlong, “Introducing
the “15-Minute City”: Sustainability, Resilience and Place Identity in Future
Post-Pandemic Cities,” Smart Cities, vol. 4, no. 1, pp. 93–111, Jan. 2021. [Online].
Available: https://www.mdpi.com/2624-6511/4/1/6

[2] D. Capasso Da Silva, D. A. King, and S. Lemar, “Accessibility in Practice: 20-Minute
City as a Sustainability Planning Goal,” Sustainability, vol. 12, no. 1, p. 129, Dec. 2019.
[Online]. Available: https://www.mdpi.com/2071-1050/12/1/129

[3] M. Weng, N. Ding, J. Li, X. Jin, H. Xiao, Z. He, and S. Su, “The
15-Minute Walkable Neighborhoods: Measurement, Social Inequalities and
Implications for Building Healthy Communities in Urban China,” Journal
of Transport & Health, vol. 13, pp. 259–273, Jun. 2019. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S2214140518305103

[4] F. T. Lima and F. Costa, “The Quest for Proximity: A Systematic Review of
Computational Approaches towards 15-Minute Cities,” Architecture, vol. 3, no. 3, pp.
393–409, Jul. 2023. [Online]. Available: https://www.mdpi.com/2673-8945/3/3/21

[5] Z. Allam, S. E. Bibri, D. Chabaud, and C. Moreno, “The Theoretical, Practical,
and Technological Foundations of the 15-Minute City Model: Proximity and Its
Environmental, Social and Economic Benefits for Sustainability,” Energies, vol. 15,
no. 16, p. 6042, Aug. 2022. [Online]. Available: https://www.mdpi.com/1996-1073/
15/16/6042

[6] S. Sarkar, H. Wu, and D. M. Levinson, “Measuring polycentricity via network
flows, spatial interaction and percolation,” Urban Studies, vol. 57, no. 12, pp.
2402–2422, Sep. 2020. [Online]. Available: http://journals.sagepub.com/doi/10.
1177/0042098019832517

[7] B.Olivari, P. Cipriano,M.Napolitano, and L.Giovannini, “Are Italian cities already 15-
minute? Presenting the Next Proximity Index: A novel and scalable way to measure it,

79

https://www.mdpi.com/2624-6511/4/1/6
https://www.mdpi.com/2071-1050/12/1/129
https://linkinghub.elsevier.com/retrieve/pii/S2214140518305103
https://www.mdpi.com/2673-8945/3/3/21
https://www.mdpi.com/1996-1073/15/16/6042
https://www.mdpi.com/1996-1073/15/16/6042
http://journals.sagepub.com/doi/10.1177/0042098019832517
http://journals.sagepub.com/doi/10.1177/0042098019832517

based on open data,” Journal of UrbanMobility, vol. 4, p. 100057, Dec. 2023. [Online].
Available: https://linkinghub.elsevier.com/retrieve/pii/S2667091723000134

[8] L. Barbieri, R. D’Autilia, P. Marrone, and I. Montella, “Graph Representation
of the 15-Minute City: A Comparison between Rome, London, and Paris,”
Sustainability, vol. 15, no. 4, p. 3772, Feb. 2023. [Online]. Available: https:
//www.mdpi.com/2071-1050/15/4/3772

[9] B. Caselli, M. Carra, S. Rossetti, and M. Zazzi, “Exploring the 15-minute
neighbourhoods. An evaluation based on the walkability performance to public
facilities,” Transportation Research Procedia, vol. 60, pp. 346–353, Jan. 2022. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S2352146521009455

[10] D. Rhoads, A. Solé-Ribalta, and J. Borge-Holthoefer, “The inclusive 15-minute
city: Walkability analysis with sidewalk networks,” Computers, Environment and
Urban Systems, vol. 100, p. 101936, Mar. 2023. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/S0198971522001806

[11] F. Gaglione, C. Gargiulo, F. Zucaro, and C. Cottrill, “Urban accessibility
in a 15-minute city: a measure in the city of Naples, Italy,” Transportation
Research Procedia, vol. 60, pp. 378–385, 2022. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/S2352146521009509

[12] C. Pezzica, D. Altafini, F. Mara, and C. Chioni, “Travel-time in a grid:
Modelling movement dynamics in the “minute city”,” in Innovation in Urban
and Regional Planning, A. Marucci, F. Zullo, L. Fiorini, and L. Saganeiti, Eds.
Cham: Springer Nature Switzerland, 2024, pp. 657–668. [Online]. Available:
https://doi.org/10.1007/978-3-031-54118-6_58

[13] S. Zhang, F. Zhen, Y. Kong, T. Lobsang, and S. Zou, “Towards a 15-minute
city: A network-based evaluation framework,” Environment and Planning B: Urban
Analytics and City Science, vol. 50, no. 2, pp. 500–514, Feb. 2023. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/23998083221118570

[14] “Walk score,” https://www.walkscore.com/methodology.shtml, accessed: 2024-03-06.

80

https://linkinghub.elsevier.com/retrieve/pii/S2667091723000134
https://www.mdpi.com/2071-1050/15/4/3772
https://www.mdpi.com/2071-1050/15/4/3772
https://www.sciencedirect.com/science/article/pii/S2352146521009455
https://linkinghub.elsevier.com/retrieve/pii/S0198971522001806
https://linkinghub.elsevier.com/retrieve/pii/S0198971522001806
https://linkinghub.elsevier.com/retrieve/pii/S2352146521009509
https://linkinghub.elsevier.com/retrieve/pii/S2352146521009509
https://doi.org/10.1007/978-3-031-54118-6_58
http://journals.sagepub.com/doi/10.1177/23998083221118570
https://www.walkscore.com/methodology.shtml

[15] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
Mathematik, pp. 269–271, Dec. 1959. [Online]. Available: https://doi.org/10.1007/
BF01386390

[16] C. Bustos, D. Rhoads, A. Solé-Ribalta, D. Masip, A. Arenas, A. Lapedriza,
and J. Borge-Holthoefer, “Explainable, automated urban interventions to
improve pedestrian and vehicle safety,” Transportation Research Part C: Emerging
Technologies, vol. 125, p. 103018, Apr. 2021. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/S0968090X21000498

[17] E. Bosina and U. Weidmann, “Estimating pedestrian speed using aggregated
literature data,” Physica A: StatisticalMechanics and its Applications, vol. 468, pp.
1–29, Feb. 2017. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S0378437116306604

[18] “igraph,” http://igraph.org/, accessed: 2024-03-06.

[19] Y.Chai, C. Li, andY. Zhang, “Anew time-geography research framework of community
life circle,” Progress in Geography, vol. 39, no. 12, pp. 1961–1971, 2020. [Online].
Available: http://www.progressingeography.com/CN/10.18306/dlkxjz.2020.12.001

[20] L. J. Carr, S. I. Dunsiger, and B. H. Marcus, “Validation of Walk Score
for estimating access to walkable amenities,” British Journal of Sports Medicine,
vol. 45, no. 14, pp. 1144–1148, Nov. 2011. [Online]. Available: https:
//bjsm.bmj.com/lookup/doi/10.1136/bjsm.2009.069609

[21] F. T. Lima, N. C. Brown, and J. P. Duarte, “A Grammar-Based Optimization
Approach for Designing Urban Fabrics and Locating Amenities for 15-Minute
Cities,” Buildings, vol. 12, no. 8, p. 1157, Aug. 2022. [Online]. Available:
https://www.mdpi.com/2075-5309/12/8/1157

[22] A. R. Khavarian-Garmsir, A. Sharifi, and A. Sadeghi, “The 15-minute city: Urban
planning and design efforts toward creating sustainable neighborhoods,” Cities, vol.
132, p. 104101, Jan. 2023. [Online]. Available: https://linkinghub.elsevier.com/
retrieve/pii/S0264275122005406

[23] E. Marchigiani and B. Bonfantini, “Urban Transition and the Return of
Neighbourhood Planning. Questioning the Proximity Syndrome and the 15-Minute

81

https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://linkinghub.elsevier.com/retrieve/pii/S0968090X21000498
https://linkinghub.elsevier.com/retrieve/pii/S0968090X21000498
https://linkinghub.elsevier.com/retrieve/pii/S0378437116306604
https://linkinghub.elsevier.com/retrieve/pii/S0378437116306604
http://igraph.org/
http://www.progressingeography.com/CN/10.18306/dlkxjz.2020.12.001
https://bjsm.bmj.com/lookup/doi/10.1136/bjsm.2009.069609
https://bjsm.bmj.com/lookup/doi/10.1136/bjsm.2009.069609
https://www.mdpi.com/2075-5309/12/8/1157
https://linkinghub.elsevier.com/retrieve/pii/S0264275122005406
https://linkinghub.elsevier.com/retrieve/pii/S0264275122005406

City,” Sustainability, vol. 14, no. 9, p. 5468, May 2022. [Online]. Available:
https://www.mdpi.com/2071-1050/14/9/5468

[24] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms, fourth
edition. MIT Press, 2022. [Online]. Available: https://books.google.it/books?id=
HOJyzgEACAAJ

[25] “petgraph,” https://crates.io/crates/petgraph, accessed: 2024-06-10.

[26] “ordered_float,” https://crates.io/crates/ordered_float, accessed: 2024-06-10.

[27] IEEE, “Ieee standard for floating-point arithmetic,” IEEE Std 754-2008, pp. 1–70,
2008.

[28] G. Boeing, “Modeling and analyzing urban networks and amenities with osmnx,”
2024. [Online]. Available: https://geoffboeing.com/publications/osmnx-paper/

[29] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure, dynamics,
and function using networkx,” in Proceedings of the 7th Python in Science Conference,
G. Varoquaux, T. Vaught, and J. Millman, Eds., Pasadena, CAUSA, 2008, pp. 11 – 15.

[30] R. C. Browning, E. A. Baker, J. A. Herron, and R. Kram, “Effects of obesity
and sex on the energetic cost and preferred speed of walking,” Journal of
Applied Physiology, vol. 100, no. 2, pp. 390–398, Feb. 2006. [Online]. Available:
https://www.physiology.org/doi/10.1152/japplphysiol.00767.2005

[31] E. M. Murtagh, J. L. Mair, E. Aguiar, C. Tudor-Locke, and M. H. Murphy,
“Outdoor Walking Speeds of Apparently Healthy Adults: A Systematic Review and
Meta-analysis,” Sports Medicine, vol. 51, no. 1, pp. 125–141, Jan. 2021. [Online].
Available: https://link.springer.com/10.1007/s40279-020-01351-3

82

https://www.mdpi.com/2071-1050/14/9/5468
https://books.google.it/books?id=HOJyzgEACAAJ
https://books.google.it/books?id=HOJyzgEACAAJ
https://crates.io/crates/petgraph
https://crates.io/crates/ordered_float
https://geoffboeing.com/publications/osmnx-paper/
https://www.physiology.org/doi/10.1152/japplphysiol.00767.2005
https://link.springer.com/10.1007/s40279-020-01351-3

	Abstract
	List of figures
	List of tables
	Introduction
	Preliminary
	Graphs
	Graph Search Algorithms

	Review of literature
	Graph Representation
	Grid Tessellation
	Flow Data
	Walk Score
	Other work

	Problem Statement
	Graph Search Algorithms to the 15-Minute City

	Proposed Solutions
	Dijkstra's Algorithm
	Uniform Cost Search Adaption
	Inspiration from Johnson's algorithm
	Adaption to existing papers

	Implementation & Experiments
	Implementation
	Data Preparation
	Experiment
	Adaption to existing papers

	Discussion
	Conclusion
	Appendix
	References

