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Introduction

This Thesis develops a new affine term structure model providing a short rate that
is allowed to take negative values and is bounded from below by a randomly varying
level. With this approach we conveniently represent many of the most relevant empirical
features of the financial market that raised after the financial crisis of 2007-08, when the
spread of negative rates became not only realistic but real.

To achieve analytical and computational tractability we define a model described
by an affine jump-diffusion process. Under suitable technical conditions, its conditional
Laplace transform can be explicitly specified in terms of the solutions of a family of
ordinary differential equations (ODEs) that are the essence of our affine short rate model.

This work is structured as follows. In the first Chapter, we describe the main chal-
lenges originated from from the global financial crisis, in particular the beginning of the
negative rates environment and the consequent need of formulation of new mathematical
models. To this aim we present the available time series of the EONIA and ECB deposit
facility rates (observed from January 1999 to May 2020). In the euro area these two rates
are the proxies for the risk-free short-term rate and its lower bound, respectively. We
analyse their behaviour in order to correctly define a new short rate model which is able
to capture these empirical features. We also present a brief overview of the works which
deal with negative rates highlighting their main characteristics. In particular, we describe
the affine term structure model with stochastic lower bound introduced by Monfort et
al. in [52]. We consider their model as a starting point to develop a more sophisticated
model in continuous time.

The second Chapter concerns the formulation of our affine short rate model. The short
rate process (rt)t≥0 is specified as a linear combination of a deterministic function used to
achieve a fit to the initially observed term structure, a Rd+-valued affine diffusion process
(Xt)t≥0 of macroeconomic factors and a stochastic lower bound (SLBt)t≥0 defined by a
bivariate counting process arising from Hawkes processes’ framework. This corresponds
to setting rt as

rt := h(t) + 〈`,Xt〉+ SLBt for t ≥ 0,

for some ` ∈ Rd+. We prove that this model belongs to the class of affine short rate models
since it is completely described by a (d + 4)-dimensional affine jump-diffusion process
(Zt)t≥0. This feature appears to be particularly useful in providing both flexibility to
capture many of the empirical features as well as computational tractability. Indeed,
under suitable technical conditions the affine property allows to derive a closed-form
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6 INTRODUCTION

expression of the following discounted transform

E
[
e−

∫ T
t r(Zs,s) dse〈u,ZT 〉

∣∣∣Ft] = eφ(t,T,u)+〈ψ(t,T,u),Zt〉 for u ∈ Cd+4. (1)

The functions φ : [t, T ] → C and ψ : [t, T ] → Cd+4 defining this relationship are the
solutions of a generalised Riccati ODEs system which therefore uniquely characterizes
the model. We investigate the validity of the affine transform formula (1) in terms
of the existence and uniqueness of the solutions φ and ψ. In addition, we prove that
the conditional distribution of the stochastic lower bound process (SLBt)t≥0 can be
computed directly from the affine transform formula (1).

We have so far introduced the affine short rate model for the process (rt)t≥0 with re-
spect to the physical probability measure P . However, the analytical tractability deriving
from the affine property of the model may be lost under a change of measure. Therefore,
we characterize the risk-neutral measures Q which preserve the affine structure of the
model. Firstly, we suppose that the density process defining the change of measure is
an exponential-affine form in (Zt)t≥0 and then generalize this approach. We investigate
these changes of measures and give sufficient conditions under which the affine structure
of the model is preserved, from the physical P to an equivalent probability measure Q.

In the third Chapter we focus on the empirical behavior of our short rate model
simulating the process (rt)t≥0 by means of the software Matlab. For simplicity we set the
short rate process as a linear combination of the affine diffusion (Xt)t≥0 and the stochastic
lower bound (SLBt)t≥0, only. In order to generate paths of the affine diffusion process
(Xt)t≥0 we analyse different approximation methods that may be seen as modifications
of the Euler or the Milstein schemes. Then, we focus on the simulation of the bivariate
counting process that determines the stochastic lower (SLBt)t≥0. To this aim we apply
the Ogata’s algorithm.

Finally, in Appendix A we set a common notation and terminology giving a brief
description of point processes, analyzing in detail Hawkes processes. We introduce the
main concepts for the study of affine jump-diffusion processes and prove general results
needed for our analysis. Some notions on stochastic integration are summarized in Ap-
pendix B. In Appendix C we report the Matlab code used to simulate the short rate
process (rt)t≥0 and its stochastic lower bound (SLBt)t≥0.



Chapter 1

Challenges in the post-crisis
framework

In this Chapter we aim at introducing the main challenges arisen from the global financial
crisis of 2007-08. What we call global financial crisis is a crisis of credit markets whose
roots can be traced back to the fallout from the housing market in the United States
in early 2007. Unfortunately it spread to economies and financial markets all round
the world with significant effects, such as slow growth, fall in the inflation rate and
increasing financial uncertainty. In this sluggish and severe scenario banks took too
much risk becoming weak and consequently they reported persistent large-scale losses.
Then, some of these financial institutions became insolvent and had to be taken over or
saved by their governments.

Not only national governments but also the main central banks took numerous actions
to prevent the crisis from spreading further and lowering their official policy rates was one
of the main operations. Reference rates reached negative values and this was contrary
to the theoretical assumption of mathematical models that interest rates could not drop
below zero. Consequently, there was a need to create new mathematical foundations able
to provide adequate models for negative interest rates.

In this Chapter, first of all we will give a brief description of the introduction of
increasingly negative central bank policy rates and analyze its impact on the study of
theoretical models. We will investigate whether the no-longer valid assumption of non-
negativity of interest rates was true and to this aim we will follow the ideas introduced
in [39] which provides a theoretical economy approximating the reality in which the zero
lower bound on interest rates is inadequate. This crucial change has led to the necessity
to provide new mathematical solutions on the formulation of models and for this purpose
we will describe some models which deal with negative rates, in particular the affine term
structure model with stochastic lower bound introduced by Monfort et al. in [52]. Their
discrete-time model is characterized by the presence of a time-varying lower bound on
interest rates which takes value in R and therefore it allows to provide negative rates. In
Chapter 2 we will take this model as a reference to develop a continuous-time one.
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8 CHAPTER 1. CHALLENGES IN THE POST-CRISIS FRAMEWORK

1.1 Post-crisis circumstances

For most of history interest rates have been positive and indeed economists have tradi-
tionally assumed they cannot fall below zero. However, based on the empirical evidence,
this assumption of a zero lower bound has become inadequate: in fact, after the financial
crisis of 2007-08 several central banks around the world have reacted to economic changes
with the introduction of unconventional policies keeping their policy rates below zero to
provide monetary stimulus with the aim of encouraging economic growth and stabilizing
inflation expectations, as it is richly explained in [4] (Section 2.1).

In June 2014 the ECB (European Central Bank) became the first major central bank
to lower one of its policy rates to negative territory and it was from that moment that
negative interest rates came to global attention as a major phenomenon. In the ECB’s
press release dated 5 June 2014 there was communicated the decision to cut the interest
rate on the deposit facility to −0.10%. The introduction of negative rates was part of a
policies’ package aimed at fending off deflationary risks, as it is studied in [4] (Section
3.1). In other words, in the euro area in those years inflation was below its target rate of
2% and the ECB intended to stimulate economic activity by encouraging bank lending
because, with the introduction of negative deposit rate, commercial banks were charged
for their deposits at the central bank and therefore were penalized for holding overnight
deposits.

Subsequently, in December 2014 the SNB (Swiss National Bank) announced the in-
troduction of negative interest rate on sight deposit account balances which was imposed
at −0.25%. Bech et al. in [12] (Section Context for negative policy rates) explain that
the goal was to take the three-month Libor into negative territory replying to foreign
capital inflow pressures and discouraging them. These reasons are also written in the
SNB’s press release dated 18 December 2014, where it is explained that the SNB’s aim
was the minimum exchange rate of 1.20 Swiss francs per euro. Furthermore, the adop-
tion of negative interest rates was accompanied by the introduction of a tiered reserve
system where negative rates only apply to reserves above a certain exemption threshold
(for details see [12] (Box 2)).

These previously thought as unconventional policies not only have been adopted
by the ECB and the SNB but most recently also by the BoJ (Bank of Japan). On
January 2016 it announced that it would apply a negative rate of −0.10% to part of
the balances in current accounts with the aim of achieving price stability and providing
more accommodative financial conditions. These justifications are reported in the press
release dated 29 January 2016 and in this document the BoJ illustrated that it would
be adopted a remuneration schedule that divides deposits at the central bank into three
tiers, to each of which a positive interest rate, a zero interest rate, or a negative interest
rate would be applied, respectively, allowing that negative interest rate only applies to
a fraction of bank reserves, as it is deeper analyzed in [4] (Section 3.7). It is similar to
what happened in Switzerland, the difference is that the SNB has fixed only two tiers
for the banks’ reserves.

However, negative policy rates were not entirely new. The SNB sporadically intro-
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duced negative interest rates on foreign deposits during the 1970s in order to reduce
capital inflows and excessive appreciation of Swiss franc, as Arteta et al. call to mind in
[7] (Section 1). Moreover, yields on some Japanese government bonds were negative for
a brief period in late 1990s. Despite these events, economists thought that these were
minor occurrences and they paid no attention to negative rates until the financial crisis
of 2007-2008.

Summing up, over the past few years in order to stimulate economic recovery or
reduce foreign capital inflows central banks have resorted to low rate policies more and
more overcoming the zero lower bound. Roughly speaking, central banks made financial
institutions pay to hold overnight deposits at them, nevertheless some banks have chosen
to hold higher balances at central banks because of uncertain financial environment. This
is in contradiction with what happened before the global crisis, when financial institutions
were used to minimize holdings in excess reserves because central banks deposit rates are
below money market rates.

1.1.1 Measures of risk-free rates in the euro area

In the euro area the global financial crisis of 2007-2008 has another substantial conse-
quence because it has posed a number of challenges for measuring risk-free rates. The
deposit rate cuts to negative territory have been transmitted directly to other interest
rates, in particular government bond yields which fell below zero. Additionally, as a
consequence of sluggish growth and unsure financial market, it followed credit rating
downgrades that have mechanically shrunk the pool of AAA government bonds, in turn
making the AAA curve less representative of the euro area as a whole. As it is analyzed
in [26] (Section 4.3) the development of the overnight index swap OIS market provided
an alternative way of measuring euro area risk-free rates taking a crucial role in this
framework. Therefore, the yield measures chosen were no longer based on government
bonds, but instead on OIS rates based on EONIA, which is the overnight unsecured
interbank rate in the euro area, making them particularly informative from a monetary
policy perspective.

In light of what has been said, we may consider the EONIA rate as the proxy for the
risk-free short-term rate in the euro area. Therefore, we want to analyse its behaviour
with the aim of outlining its fundamental and characterizing features in order to be able
to define a short rate model as likely as possible. We will define this model in Chapter
2. To this purpose we need to study Figure 1.1 which depicts the current and historical
values assumed by the EONIA and ECB deposit facility rates.

In Figure 1.1 we recognize that the ECB deposit facility rate (marked by the blue
dotted line) provides a lower bound to the EONIA rate (marked by the yellow line).
Indeed, the overnight money market rate does not fall below the deposit facility rate
because it would not make sense for a bank to park its reserves overnight with another
bank that pays an interest rate below the deposit facility rate. This sentence is the
consequence of the fact that commercial banks generally hold deposits at the ECB that
pays an interest on banks’ excess reserves, that is the deposit facility rate. Therefore,
the deposit facility rate is the overnight interest rate on reserves above the minimum
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level paid by the ECB to a bank that deposits money with it, whereas EONIA expresses
the weighted average of unsecured overnight interbank lending. This is the reason why
EONIA does not fall below the ECB deposit facility rate that is its lower bound, therefore.
The distance between these two rates depends on the monetary policy implementation
and other macroeconomic factors. It was almost constant around 100 basis points until
the onset of the financial crisis, whereas after 2008 the difference between the EONIA
and ECB deposit facility rates has shrunk, and nowadays their values are very close with
an average distance of 10 basis points.

Another empirical observation is that the lower bound (the ECB deposit facility rate)
has a step behavior. We notice correlated jumps’ successions: there is a persistence of
growing phases, in which the deposit facility rate is moving upward in progression and
similarly periods of negative decrease, as we experienced in recent years. The Figure 1
shows that since 2012 the ECB deposit rate has lowered to zero, and subsequently from
June 2014 to negative values (it crossed the red line that represents the zero level). Even
now the ECB deposit rate is negative.

Moreover, unlike the piecewise constant behaviour of its lower bound, we can observe
that the EONIA rate is more variable and this is because it is an average decided every
day by the main banks and therefore it is more susceptible to the market. Although
EONIA is not directly influenced by the ECB, the change in the reference policy rates
alters its trend. The Figure 1 shows frequent spikes in the EONIA rate but since 2012
its behaviour has changed quite substantially and the rate turned less volatile and stuck
to its lower bound.

Figure 1.1: Current and historical EONIA and ECB deposit facility rates.
Historical data 04/01/1999 - 13/05/2020 from the website http://sdw.ecb.europa.eu
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1.2 Literature review

Before 2008 interest rates were usually positive, or at most zero, and therefore economists
viewed the zero lower bound on interest rates as unlikely to be relevant and thus it was
not considered to be a constraint to develop term structure models. However, as analyzed
in the previous section, the recent empirical evidence shows that this is not the case.

In [39] Jarrow studies this matter and concludes that the belief that there exists a
zero lower bound on interest rates is wrong and consequently such a bound interferes
negatively with the estimation of term structure of interest rates. The object of his
paper is to explore the possible non-existence of a zero lower bound. To argue this he
extends the Heath-Jarrow-Morton model to include the cash trading, i.e. cash is a traded
asset which can be exchanged, developing a theoretical economy composed by consumers,
firms, non-bank financial institutions and banks. He provides realistic constraints on the
trading activity and proves that negative interest rates are consistent with an arbitrage-
free environment.

Justified by the presence of this model and the recent empirical evidence reported in
the previous section, we say that the zero lower bound does not necessarily reflect the
reality because interest rates can take negative values. Then, we proceed by presenting
the existing term structure models which may perform negative rates. We analyse the
literature works that concern the European area and highlight their main features.

1.2.1 The SABR model

The SABR model was first introduced by Hagan et al. in [34] for a rate (rt)t≥0 and its
volatility (vt)t≥0 satisfying the following stochastic differential equations (SDEs) under
the risk-neutral probability measure:

drt = rβt vtdW
1
t , r0 = r̄

dvt = γvtdW
2
t , v0 = v̄

with (W 1
t )t≥0 and (W 2

t )t≥0 Brownian motions with correlation E[dW 1
t dW 2

t ] = ρdt and
β, r̄, γ and v̄ constants such that the power parameter satisfies 0 ≤ β < 1. In this model
rates are assumed to be positive and the simplest way to take into account negative rates
is to shift the SABR process with a constant strictly positive shift s:

drt = (rt + s)βvtdW
1
t

dvt = γvtdW
2
t .

This shifted model is characterized by a constant lower bound −s which cannot change
over time. Another limitation is represented by the absorbing property of the lower
bound: upon reaching the value −s the rate should stay there forever. However, these
features are not realistic.

A different extension of the SABR model which does not require determining a shift
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is presented by Antonov et al. in [5]. It is the free boundary SABR model:

drt = |rt|βvtdW 1
t , r0 = r̄

dvt = γvtdW
2
t , v0 = v̄

for 0 ≤ β < 1
2 . This model can handle negative rates. A great advantage is the existence

of a closed-form formula for the price of the European interest-rate options, the caplets
as an example, in the special case of zero correlation between the Brownian motions
(ρ = 0). For the general case an exact analytical solution to the pricing problem does
not exist but an efficient approximation can be presented in terms of simple integrals.

1.2.2 The shadow-rate models

After the financial crisis economists have reconsidered models based on Gaussian pro-
cesses that lead to the possibility of negative interest rates. Then, to set an appropriate
lower bound for the rates these models started to be based on the shadow-rate concept,
first introduced by Black in [13]. In these shadow-rate models the Gaussian dynamics
drives the shadow short rate st while the short rate is defined as

rt := max{st, LBt} (1.1)

for a specific lower bound LB. That is, rt equals the shadow rate if this is above the
lower bound, while the short rate remains at the lower bound if the shadow rate is below
the bound. This ensures that the short rate does not fall below the given lower bound.

In [48] Lemke & Vladu develop a discrete-time shadow-rate model to analyse the
euro-area yield curve from 1999 to mid-2015. Under the risk-neutral probability measure
three latent factors (Xt)t∈N =

(
(X1

t , X
2
t , X

3
t )>
)
t∈N follow a first-order Gaussian vector

autoregressive process:
Xt = K0 +K1Xt−1 + Σεt (1.2)

where K0 = (K01, 0, 0)>, K1 is diagonal, Σ is lower triangular and εt∼N (0, 13). We
mention that the superscript > indicates transposition. The shadow short rate (st)t∈N is
specified as an affine function of factors:

st := X1
t +X2

t +X3
t . (1.3)

Then, the shadow rate can reach any positive or negative level. The short rate (rt)t∈N
is given by (1.1) for a lower bound LB defined as a step function that assumes three
different values: it is zero until the 2014 and then changes at two points in time, i.e. in
May 2014 at −10 basis points and in September 2014 at −20 basis points.

If we assume that Q is a risk-neutral probability measure, then we can define the
price at time t of a zero-coupon bond that pays one unit at time t+ n as

Pn,t := EQ
[
e−

∑n−1
i=0 rt+i

∣∣∣Ft]
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and the bond yields for maturity n as

yn,t := − 1

n
log(Pn,t).

With the lower bound LB restriction for the short rate it is not possible to find explicit
functions which map factors into bond yields for each maturity n. However, to allow the
bond pricing Lemke & Vladu exploit the analytical approximation for the forward rate
fn,t := (n+ 1)yn+1,t − nyn,t proposed by Wu & Xia in [60].

In [62] Wu & Xia develop a new shadow-rate model for which the short-term
interest rate is defined by (1.1). Similar to the previous model their shadow rate is an
affine function of three latent factors (1.3) whose risk-neutral dynamics follow a first-order
Gaussian vector autoregressive process (1.2) for K0 = (0, 0, 0)>:

Xt = K1Xt−1 + Σεt.

Compared to the Lemke & Vladu’s model the difference is represented by the stochasti-
cally time-varying lower bound (LBt)t∈N. Since it is referred to the euro area, is assumed
to take multiple of 10 basis points, its maximum value to be zero and its minimum −100.

It is computed that the forward rate can be approximated by

fn,t ≈
∫
gn(l,Xt)Q(LBt+n = l|Ft) dl (1.4)

for a non-negative function gn. We highlight that the formula prices taking account
of the uncertainty of the future dynamics of the lower bound. In order to specify the
risk-neutral probability Q(LBt+n = l|Ft) the authors introduce a sequence of random
variables (∆t)t∈N that describes the direction in which the lower bound is moving, that
is ∆t = +1 is the up state and the down state is represented by ∆t = −1. It follows that

Q(LBt+n = l|Ft) = Q(LBt+n = l,∆t+n = +1|Ft) + Q(LBt+n = l,∆t+n = −1|Ft)

and therefore, with some computations, in the pricing formula (1.4) the integral is re-
placed by a finite sum allowing an analytical approximation for the bond prices.

In [61] Wu & Xia modify the previous shadow-rate model such that the lower bound
(LBt)t∈N either stays where it is or moves down by 10 basis points, i.e.

Q(LBt+1 = LBt − 0.1|Ft) = α1,t

Q(LBt+1 = LBt|Ft) = 1− α1,t.

To capture the forecast about the next moves of the lower bound, the authors introduce
two binary random variables ∆t and ∆l

t referred to the immediate monetary policy and
to the future one, respectively. If ∆t = 1 there is a high probability of a cut in an
immediately following period, whereas ∆t = 0 implies that it is more likely the lower
bound to be unchanged. On the other hand, ∆l

t = 1 indicates a high probability of a cut
in longer horizons, whereas ∆l

t = 0 implies a lower possibility for future cuts. It follows
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that in the pricing formula (1.4) the probability Q(LBt+n = l|Ft) can be replaced by the
joint distributions of the lower bound LB and the ∆, ∆l states:∑

d=±1
dl=±1

Q(LBt+n = l,∆t+n = d,∆l
t+n = dl|Ft).

Another discrete-time shadow-rate model is developed by Geiger & Schupp [31].
Similar to [48], it is assumed that the pricing factors (Xt)t = ((X1

t , X
2
t , X

3
t )>) follow a

first-order Gaussian vector autoregressive process (1.2). Then, the shadow rate (st)t∈N
is specified by (1.3) and the short rate (rt)t∈N by (1.1). The lower bound (LBt)t∈N is
time-varying and equal to zero until July 2012 and afterward is defined by

LBt := γtDFRt + (1− γt)DFRt+1 + spt

for the Deposit Facility rate (DFRt)t∈N. The model is characterized by month-end
observations and γt is the fraction of the month from t to t + 1 that stands for the
calendar effect of the ECB’s meets. The ECB does not meet at the end of the month
and at most once a month, then γt represents the number of days between the end of the
current month t and the next meeting date as a fraction of the month from t to t + 1.
Lastly, spt is the spread between the EONIA and the Deposit Facility rate.

Analogously to this set-up, in [46] Kortela focuses on a continuous-time shadow-rate
model that shapes the euro-area data from January 1999 to March 2016. Under the risk-
neutral probability measure three latent factors (Xt)t≥0 evolve as an Ornstein-Uhlenbeck
process:

d

X1
t

X2
t

X3
t

 = −

0 0 0
0 φ −φ
0 0 φ

X1
t

X2
t

X3
t

+ ΣdWt,

where φ is a positive constant and (Wt)t≥0 is a three-dimensional Brownian motion. The
shadow rate is affine in the first two latent factors

st := X1
t +X2

t ,

and the short rate is defined by (1.1) where the lower bound LB is supposed to be
exogenous. The authors introduce four different types of time-varying lower bounds.
The first discussed is the minimum of the observed interest rates across maturities, that
is LBt = min{Rt(τ), 0} where Rt(τ) is the observed OIS interest rate at time t for
maturity τ . Another possibility is to choose the most negative yield in the sample up to
t, that is LBt = min{{Ru(τ)}u≤t, 0}. This lower bound is not increasing, i.e. LBt ≤ LBs
for s ≤ t. The third representation for the lower bound is an estimated sequence of lower
bounds and the last specification is zero or the negative value given by the deposit facility
rate, i.e. LBt = min{DFRt, 0}.
Remark 1.1. The substantial disadvantage of the shadow-rate models is the lack of ex-
plicit formulas for bond prices, only analytical approximations are available. This The-
sis’s aim is to propose an extremely tractable model for which closed-form solutions for
bond prices are computed.
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1.3 An affine term structure model with stochastic lower
bound

The purpose of this Thesis is to provide a term structure model that is able to accom-
modate negative short-term rates and then, following the ideas developed by Monfort et
al. in [52], we want to define a stochastic lower bound SLB on interest rates which takes
values in R, and not only R+. We do not define a possibly negative static lower bound
but incorporate stochastic variations in the level of the interest rate bound to develop a
better approximation of what happens in reality.

In order to get a better understanding of our continuous-time model described in
detail in Chapter 2, we now provide a brief description of the term structure model of
Monfort et al. [52]. We highlight that the authors of this paper are concerned with a
discrete-time model, whereas one of the main objectives of this Thesis is its continuous-
time generalization. The reference affine model discussed in [52] is characterized by
a time-varying lower bound which can take negative values but, to study it we have
first to refer to [51]. This article introduces the uni-variate gamma-zero distribution
characterizing its features end extends it to the dynamic case with an affine process
called autoregressive gamma-zero (ARG-Zero) and its multi-variate affine counterpart
(VARG).

We have to give some important definitions and recall that a gamma distribution is
a two-parameter family of positive probability distributions. The distribution γν(µ) is
defined by a shape parameter ν > 0 and a scale parameter µ > 0. Its probability density
function is given by

f(x; ν, µ) =
e
− x
µxν−1

Γ(ν)µν
1{x>0}.

Because γν(µ) converges to the Dirac distribution at zero when ν goes to zero, the gamma
distribution can be extended to the case ν = 0 if γ0(µ) is considered as the Dirac measure
δ0. We also recall that the Poisson distribution is characterized by an intensity parameter
λ > 0 and its probability density function is given by

f(x;λ) =
λxe−λ

x!
1{x∈N}.

If we consider a Poisson random variable Z, that is Z∼Po(λ) for λ > 0, the non-centered
gamma distribution γν(λ, µ) is a mixture of γν+Z(µ) distributions for ν > 0 and µ > 0.

Definition 1.2. Let X be a non-negative random variable. We say that X∼γ0(λ, µ), that
is X follows a gamma-zero distribution with parameters λ > 0, µ > 0, if its conditional
distribution given a random variable Z∼Po(λ) is(

X|Z
)
∼γZ(µ).

This definition is taken from [51]. We highlight that if X∼γ0(λ, µ), then X = 0 if
and only if Z = 0, and P (Z = 0) = e−λ > 0. Therefore, X equals zero with a strictly
positive probability because the Poisson random variable Z equals zero with a strictly
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positive probability and when Z = 0 the gamma distribution γZ(µ) = γ0(µ) is the Dirac
distribution at zero. This is the key feature of the gamma-zero distribution, i.e. it has a
point-mass at zero.

We now turn to the dynamic case where (Xt)t∈N is a discrete-time random process
that Monfort et al. call autoregressive gamma, denoted by ARGν(α, β, µ) for parameters
α, β, ν and µ (see [51]).

Definition 1.3. (Xt)t∈N is an ARGν(α, β, µ) process if for all t ∈ N the conditional
distribution of Xt+1 given Xt = (Xt, Xt−1, . . . ) is a non-centered gamma distribution,
that is (

Xt+1|Xt

)
∼γν(α+ βXt, µ),

for α ≥ 0, β > 0, ν ≥ 0 and µ > 0.

In the reference article it is proved that the conditional Fourier transform of the
ARGν(α, β, µ) process is exponential-affine in Xt for t ∈ N. The process is called autore-
gressive gamma-zero if the parameter ν = 0, and in this case it follows that, given a Pois-
son random variable Z∼Po(α+βXt), the conditional distribution

(
(Xt+1|Xt)|Z

)
∼γZ(µ)

and therefore, as for the static gamma-zero distribution, the ARG0 process has a zero-
point mass. The previous definition can be generalized to the multi-variate case as follows
(see [52]).

Definition 1.4. Fixed d ∈ N, the Rd-valued process (Xt)t∈N is a VARGν(α, β, µ) process
if for all t ∈ N its scalar components

(
Xi
t+1|Xt

)
are independent conditionally on Xt and

their conditionally distribution is the gamma distribution, that is(
Xi
t+1|Xt

)
∼γνi(αi + 〈βi, Xt〉, µi),

for i = 1, . . . , d and parameters αi ≥ 0, νi ≥ 0, µi > 0 and βi > 0, where 0 is the
d-dimensional null vector and the last inequality is componentwise.

We remark that in the notation of VARGν(α, β, µ) definition α := (α1, . . . , αd),
ν := (ν1, . . . , νd) and µ := (µ1, . . . , µd) denote d-dimensional row vectors, whereas
β := (β1, . . . , βd) is a (d × d) matrix. Moreover, with 〈·, ·〉 we denote the inner product
in Rd.

In Definition 1.4 the assumption of conditional independent components and the affine
property that is deduced from ARGν(α, β, µ) definition make the conditional Fourier
transform of the VARGν(α, β, µ) process an exponential-affine function in Xt for t ∈ N,
and therefore the model of Monfort et al. analytically tractable.

1.3.1 The dynamics under the physical probability measure P

We have defined the main mathematical ingredients that we are going to use in the
construction of the affine term structure model proposed by Monfort et al. in [52], where
the authors introduce the model specifying the involved processes’ dynamics under the
physical probability measure P .
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First of all, let us to define an intensity process (λt)t∈N that is an ARG0(α, β, µ)
process, for parameters α ≥ 0, β > 0 and µ > 0 that will be determined in the calibration
phase. We remark that from this definition λt is non-negative for every t ∈ N. Then,
we introduce a stochastic process (Yt)t∈N such that Yt is determined by the difference
∆Yt = Yt − Yt−1 that is in turn defined by the sum of two discrete processes

∆Yt := ∆N+
t −∆N−t ∈ N,

where
(
∆N+

t |λt,∆N
+
t−1,∆N

−
t−1

)
∼Po(λt) whereas, after fixing a positive constant η,(

∆N−t |λt,∆N
+
t ,∆N

−
t−1

)
∼Po(ηYt−1). We remark that it depends on ∆N+

t , and not
only on ∆N+

t−1. Now, we can determine the stochastic lower bound as

SLBt := −cYt

where the constant c is a scale factor that is multiple of 10 basis points and employed in
order to specify the SLB as a percentage quantity. We remark that from this construction
it follows that (∆N+

t )t∈N is the process responsible of SLB decrease and, on the other
hand, the force responsible of SLB increase is (∆N−t )t∈N.

We adopt the same notation of the reference article [52] and identify the process
driving the SLB as (X̃t)t∈N = ((λt, Yt)

>)t∈N. Then, we introduce a new process (Xt)t∈N
independent of the already defined (X̃t)t∈N and impose that (Xt)t∈N is a 4-dimensional
VARG process, i.e. for parameters αi ≥ 0, βi > 0, µi > 0 and νi ≥ 0(

Xi
t+1|Xt

)
∼γ0(αi + 〈βi, Xt〉, µi) for i = 1, 2,(

Xi
t+1|Xt

)
∼γνi(αi + 〈βi, Xt〉, µi) for i = 3, 4.

In other words, (Xt)t∈N is composed by conditionally independent factors with gamma-
zero and gamma distributions. Therefore, X1

t and X2
t can stay at zero for every t ∈ N.

We denote the global process

(Zt)t∈N := (X>t , X̃
>
t )>t∈N.

In [52] the risk-free rate between times t and t+ 1, and known at t, is denoted by rt and
it is assumed that it is given by

rt := SLBt +X1
t +X2

t . (1.5)

If we want to rewrite (1.5) in terms of the global process we obtain that

rt = 〈δ, Zt〉 (1.6)

if δ = (1, 1, 0, 0, 0,−c)>. We see that the interest rate process (rt)t∈N is a linear combi-
nation of (Zt)t∈N.

We can conclude that the model proposed by Monfort et al. allows analytical
tractability and, in the meantime, is flexible enough to match relevant empirical facts.



18 CHAPTER 1. CHALLENGES IN THE POST-CRISIS FRAMEWORK

Indeed, recalling Figure 1.1 we can state that this model is appropriate to fit the observed
features characterizing the EONIA and ECB deposit facility rates.

The model is described by the SLB which is proportional to (Yt)t∈N that is in turn the
difference of two non-negative processes. Therefore, the SLB can handle negative values
and is determined by a sequence of jumps that simulates the step behaviour of the ECB
deposit facility rate. Furthermore, the interest rate defined by (1.5), or equivalently by
(1.6), is a linear combination of the SLB and the first two components of (Xt)t∈N which
are determined by the gamma-zero distribution. It follows that the interest rate can
never fall below the SLB.

The affine term structure model described in [52] is flexible and particularly efficient
in matching the remarkable empirical features observed from the onset of the financial
crisis that the already existing models could not explain. This justifies our interest in
extending it to continuous time, and we will do it in Chapter 2.



Chapter 2

The model

In Chapter 1 we have described the properties that appeared from the description of the
EONIA and ECB deposit facility rates and presented a discrete-time model which can
provide negative rates and exhibit the other analysed features. Our aim is to extend
it to a continuous-time framework proposing a mathematically appealing affine term
structure model. Specifically, we want to be able to simultaneously match the following
characteristics

- short rate can take negative values;

- time-varying (stochastically) lower bound.

We will develop a continuous-time generalization of the model of Monfort et al. [52]
recalled at the end of the previous Chapter introducing an affine short rate model for
the process (rt)t≥0 with respect to the physical probability measure P . Precisely, we
will specify the short rate process as a linear combination of the stochastic lower bound
(SLBt)t≥0, a process of macroeconomic factors (Xt)t≥0 and a deterministic function. We
will illustrate the analytical tractability of our model and following the results in [44] we
will investigate the validity of the affine transform formula in terms of the solutions of the
generalized Riccati ODEs which characterize our model. At the end of the Chapter we
will study its structure under a different probability measure Q because we are interested
in characterizing a parametrized family of probability measuresQ which preserve its affine
structure.

Regarding the notations used in this Chapter we refer to Appendix A.

2.1 The characterization of the affine short rate model

In this section we are going to introduce an affine term structure model characterized
by two fundamental ingredients: a multivariate affine diffusion process (Xt)t≥0 which
represents the vector of macroeconomic variables and a bivariate point process (Nt)t≥0

which models the stochastic lower bound SLB.

19
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Let (Ω,F , P ) be a given probability space endowed with a filtration F = (Ft)t≥0

satisfying the usual conditions:

- right-continuity, i.e. Ft = Ft+ := ∩s>tFs for t ≥ 0;

- completeness, i.e. F0 contains all P -null sets of F .

In this presentation P denotes the physical probability measure. We suppose that all
stochastic processes introduced in the following are defined on (Ω,F , P ) and adapted to
the filtration F.

Let (Wt)t≥0 be a d-dimensional Brownian motion on (Ω,F ,F, P ), with d ∈ N. We
consider a stochastic process (Xt)t≥0 taking values in Rd+ whose dynamics is expressed
by

dXt = µ(Xt)dt+ σ(Xt)dWt, X0 = x0. (2.1)

We shall assume the given process may be very general representing a combination of
observed and latent variables which capture salient macroeconomic features. The ob-
served variables can be directly pointed out from market data, whereas the latent factors
cannot be directly measured. They do not have a direct economic meaning but are re-
lated to the general economic trend, expectations, monetary policy shocks and others
directly non-measurable concepts that play a meaningful role in describing the state of
the economy and the determination of the term structure movements.

We assume that (Xt)t≥0 is an affine diffusion process in the sense of Definition A.10.
This means that (Xt)t≥0 is a Markov process and µ : Rd+ → Rd and σ : Rd+ → Rd×d are
measurable functions such that for all x ∈ Rd+

- µ(x) = K0 +K1x for K0 ∈ Rd and K1 ∈ Rd×d;

- σ(x)σ(x)> = H(x) that is a (d× d) matrix with elements for i, j = 1, . . . , d
(σ(x)σ(x)>)ij = H(x)ij = 〈(H1)ij , x〉 for H1 ∈ Rd×d×d.

We notice that the given definition of H(x) differs from (A.14) for the H0 term; in our
framework H0 = 0, where 0 denotes the (d× d) null matrix.

Assumption 2.1. The parameters K0, K1 and H1 satisfy the following conditions:

- K0 ∈ Rd+;

- K1 ∈ Rd×d with (K1)ij ≥ 0 for all i, j = 1, . . . , d with i 6= j;

- Hk
1 is a (d× d) symmetric and positive semi-definite matrix such that

(Hk
1 )ij = (Hk

1 )ji = 0 for all i, j = 1, . . . , d with i 6= k, for k = 1, . . . , d.

Remark 2.2. Assumption 2.1 concerns the admissibility conditions explained in Assump-
tion A.12. As a consequence, it is guaranteed that Xt is Rd+-valued P -a.s..
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We can rewrite the SDE (2.1) as

dXt = (K0 +K1Xt)dt+ σ(Xt)dWt, X0 = x0.

As a direct consequence of Theorem A.14 there is no loss of generality in assuming that
the volatility matrix is of the following simple form

H(x) =

x1 . . . 0
...

. . .
...

0 . . . xd


for x ∈ Rd+. In other words, H(x) = diag(x1, . . . , xd) that is the (d× d) diagonal matrix
with diagonal elements x1, . . . , xd.

It follows that (Xt)t≥0 is specified by the SDE

dXt = (K0 +K1Xt)dt+
√

diag(Xt)dWt, X0 = x0. (2.2)

The notation
√

diag(x) is to be understood componentwise, i.e. it is a diagonal matrix
with elements

(√
diag(x)

)
ii

=
√
xi for i = 1, . . . , d. We highlight that the matrix√

diag(Xt) is well-defined for all t ≥ 0 because (Xt)t≥0 takes values in Rd+.
Similar to [52], we define the stochastic lower bound process (SLBt)t≥0 as a difference

of two point processes responsible of its piecewise constant behaviour. To this aim we
introduce (Nt)t≥0 =

(
(N1

t , N
2
t )>
)
t≥0

that is a bivariate counting process which models
the sequence of jumps of the stochastic lower bound. From Definition A.3 it follows
that (Na

t )t≥0 is a simple point process, for a = 1, 2, and the possibility of simultaneous
occurrence of two jumps is ruled out, i.e.

∆N1
t ∆N2

t = 0 P -a.s. for every t ≥ 0.

We recall that ∆Na
t = Na

t −Na
t− is the jump of the a-th point process at time t ≥ 0 with

the convention that ∆Na
0 = 0, as it is defined in Appendix A.

We intend to uniquely determine the counting process (Nt)t≥0 through its intensity
vector (λt)t≥0 =

(
(λ1
t , λ

2
t )
>)

t≥0
. We use the Hawkes processes setting as a starting point

to characterize it because of the self-excitement property of Hawkes processes, meaning
that each jump increases the likelihood of future jumps. For a = 1, 2 (λat )t≥0 is defined
by

λat := λa0 + 〈Λa, Xt〉+ δa

∫ t

0
e−γa(t−u) dNa

u for t ≥ 0, (2.3)

for λa0 ∈ R++, δa, γa ∈ R+ and Λa ∈ Rd+. This is well-defined according to (A.9).
The likelihood of future jumps directly depends on the occurrence of past jumps of

the same component. In other words, (2.3) describes how jumps of the first process
component (N1

t )t≥0 influence the intensity only of the first component, and analogously
for the second component. This positive influence of the past jumps on the current value
of intensity is the fundamental characteristic deriving from Hawkes processes’ framework
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but it occurs only if δa > 0, for a = 1, 2. The jump intensity component (λat )t≥0 is
determined by jumps in the past with associated weights δae−γa(·); the parameter δa
allows jumps’ clusters and, on the other hand, the coefficient γa accounts for a decay
effect, in the sense that past jumps have a diminishing effect on the intensity over time.

This description reflects the historical trend of the ECB deposit facility rate and
capture its persistence (see Figure 1.1). In fact, we have observed that when a broad
downward trend occurs in the ECB deposit facility rate it is more likely to keep moving
down than up, and vice-versa if it is moving upward.

The stochastic intensity vector defined by (2.3) depends also on the d-variate process
(Xt)t≥0 of macroeconomic factors, thus generalizing the classical intensity specification
used in the context of Hawkes processes.

We assume that the two components of the process (Nt)t≥0 have jumps of unit size.
In other words, ∆Na

t ∈ {0, 1} for all t ≥ 0 and a = 1, 2.
From (2.3) we deduce that the intensity process (λat )t≥0 satisfies the SDE

dλat =δadN
a
t − γaδa

(∫ t

0
e−γa(t−u)dNa

u

)
dt+

d∑
i=1

(Λa)idX
i
t

=δadN
a
t + γa

(
λa0 + 〈Λa, Xt〉 − λat

)
dt+ 〈Λa,dXt〉

=
[
γa
(
λa0 + 〈Λa, Xt〉 − λat

)
+ 〈Λa, (K0 +K1Xt)〉

]
dt

+ δadN
a
t + 〈

√
diag(Xt)Λa, dWt〉.

Recalling Definition A.3 the counting process is associated with a simple point process
(Tn)n≥0 which represents times when (Nt)t≥0 jumps and a sequence of {1, 2}-valued
random variables (Zn)n≥0 that indicates which component jumps. Now, to simplify the
notation used in the following we denote the jump times of the counting component
(Na

t )t≥0 as (T an )n≥0, for a = 1, 2.
We define the stochastic lower bound process as follows

SLBt := c(N1
t −N2

t ) for all t ≥ 0, (2.4)

where c > 0 is a fixed scale factor and it is used to specify the SLB as a percentage
quantity. For example, if we take the ECB deposit facility rate as reference for the SLB
then, we have to set c = 0.1% since the deposit facility rate can be changed by multiples
of 10 basis points.

Adopting the definition of short rate process given in the model of [52] and analyzed
in (1.5) we define (rt)t≥0 by

rt := h(t) + SLBt + 〈`,Xt〉 for all t ≥ 0, (2.5)

where h : R+ → R is an integrable function, i.e.
∫ t

0 h(u) du < ∞, and ` ∈ Rd+. We ob-
serve that (rt)t≥0 linearly depends on the non-negative process (Xt)t≥0 and the counting
process (Nt)t≥0 that models the SLB. The deterministic function h is introducing to
reproduce any observed yield curve, proceeding similarly as in Brigo & Mercurio [17].
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Market data have to be used in order to fit exactly the initial term structure of
interest rates and, therefore, determine the function h. We denote the theoretical price
at time t of a zero coupon bond with maturity date Tm by p(t, Tm) and assume that
p(t, Tm) = Π(t, Tm, Xt, N

1
t , N

2
t ) for a smooth function Π : Rd+2

+ × N2 → R+. We also
suppose that the term structure of discount factors which is currently observed in the
market is given by the smooth function pM (0, ·) : R+ → R+ such that t → pM (0, t).
The initial term structure matches the term structure of interest rate observed in the
market if and only if pM (0, t) = Π(0, t,X0, 0, 0) for all t ≥ 0 and from this equality we
can determine the function h. We will analyse the expression taken by the function h in
a next section after the study of change of probability measure, from the physical P to
a martingale measure Q.

Remark 2.3. The function h can take negative values and therefore for some t ≥ 0 the
short rate rt may fall below the lower bound SLBt according to (2.5). We can enforce
its positivity but this appears to be too restrictive since h is determined by market data.

If h is differentiable, then (rt)t≥0 satisfies the SDE

drt = h′(t)dt+ c(dN1
t − dN2

t ) + 〈`,dXt〉

=
[
h′(t) + 〈`, (K0 +K1Xt)〉

]
dt+ c(dN1

t − dN2
t ) + 〈

√
diag(Xt)`,dWt〉,

where ′ represents the derivative with respect to time t.
Summing up, our short rate model is characterized by an affine diffusion process

(Xt)t≥0 and a stochastic lower bound (SLBt)t≥0, and therefore it can be completely
described by the following system dXt = (K0 +K1Xt)dt+

√
diag(Xt)dWt

SLBt = c(N1
t −N2

t )
rt = h(t) + SLBt + 〈`,Xt〉.

This model relies on several random factors to capture the potential variability of the
market term structure and can generate negative rates which are bounded from below
by the SLB that is not constant, but can vary over time.

We now prove that the model belongs to the class of affine jump-diffusion short rate
models. The analytical tractability of the model will be ensured by this fundamental
property.

Theorem 2.4. Let (Xt)t≥0 be a d-dimensional affine diffusion which takes values in
Rd+ whose dynamic is determined by (2.2) and (Nt)t≥0 a bivariate point process uniquely
determined by the intensity process (λt)t≥0 satisfying (2.3). We specify the short rate
process (rt)t≥0 by (2.5), that is

rt = h(t) + c(N1
t −N2

t ) + 〈`,Xt〉

for c > 0, ` ∈ Rd+ and h : R+ → R a deterministic function such that
∫ t

0 h(u)du < ∞.
Then, this continuous-time model is an affine jump-diffusion short rate model.
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The proof of Theorem 2.4 is fundamental because it introduces the main concepts
that we use in the whole Thesis.

Proof. To prove the statement we construct an affine jump-diffusion process (Zt)t≥0 in
an enlarged state space following the idea developed in [27] (Proposition 4.4).

To this effect, for a = 1, 2 let us define the auxiliary process (λ̃at )t≥0 by

λ̃at := λa0 + δa

∫ t

0
e−γa(t−u) dNa

u for all t ≥ 0. (2.6)

It holds that

dλ̃at = δadN
a
t − γaδa

∫ t

0
e−γa(t−u)dNa

udt

= δadN
a
t − γa

(
δa

∫ t

0
e−γa(t−u)dNa

u + λa0

)
dt+ γaλ

a
0dt

= γa(λ
a
0 − λ̃at )dt+ δadN

a
t .

Now, we define the (d+ 4)-dimensional process (Zt)t≥0 by

Zt :=


Xt

λ̃1
t

λ̃2
t

N1
t

N2
t

 for all t ≥ 0. (2.7)

We aim at verifying that (Zt)t≥0 is an affine jump-diffusion according to Definition A.10.
This is sufficient to prove the Theorem because, clearly, the short rate is a time-dependent
affine function of (Zt)t≥0 since

rt = h(t) +

〈
`
0
0
c
−c

 ,


Xt

λ̃1
t

λ̃2
t

N1
t

N2
t


〉
.

Obviously (Zt)t≥0 is a Markov process by construction. In fact, the process (Xt)t≥0 is
Markov by definition and also (Nt, λ̃t)t≥0 =

(
(N1

t , N
2
t , λ̃

1
t , λ̃

2
t )
>)

t≥0
is a Markov process

(see [10] (Proposition 2)). From the independence of the these two processes it follows
that (Zt)t≥0 is Markov.

We can represent the process (Zt)t≥0 as a solution to the following SDE

dZt = µ̄(Zt)dt+ σ̄(Zt)dW̄t +

2∑
a=1

ζadJ
a
t , Z0 = z0 := (x>0 , λ

1
0, λ

2
0, 0, 0)>. (2.8)



2.1. The characterization of the affine short rate model 25

With (W̄t)t≥0 we denote the Rd+4-valued Brownian motion
(
(W>t ,W

1
t ,W

2
t ,W

3
t ,W

4
t )>

)
t≥0

which is composed by (Wt)t≥0, i.e. the d-dimensional Brownian motion that we have
already introduced in (2.1), and four independent uni-dimensional Brownian motions
(W i

t )t≥0 for i = 1, . . . , 4 (see [19] (Proposizione 2.30)). Then, with (Jat )t≥0 we identify
the Nd+4-valued pure jump process composed by (d+4) identical point processes (Na

t )t≥0,
for a = 1, 2. We remark that this construction is coherent with Definition A.8.

Now, we have to correctly determine the coefficients which appear in (2.8). We use
similar symbols for the coefficients of (Zt)t≥0 and (Xt)t≥0 to avoid further notation.

For all z ∈ Rd+2
+ × N2 we recognize that the drift coefficient is

µ̄(z) = K̄0 + K̄1z =


K0

γ1λ
1
0

γ2λ
2
0

0
0

+


K1 0 0 0 0
0 −γ1 0 0 0
0 0 −γ2 0 0
0 0 0 0 0
0 0 0 0 0

 z,

whereas the volatility matrix is defined by

σ̄(z)σ̄(z)> = H̄(z) =


diag((z1, . . . , zd)

>) 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

We highlight that in the matrices’ writing 0 indicates both the null vector (column or
row) in Rd and the scalar, but the difference is sufficiently clear from the held position.
Following the notation of Definition A.10 we deduce that H̄0 is the ((d + 4) × (d + 4))
null matrix, i.e. H̄0 = 0, and the only non-null elements of the volatility tensor H̄1 are
(H̄1)i,i = ε(i) for i = 1, . . . , d, where ε(i) denotes the (d + 4)-dimensional vector whose
i-th component is 1 and all the other are equal to 0.

Looking at (2.8) the jump matrices in R(d+4)×(d+4) are defined by

ζ1 =


0 0 0 0 0
0 δ1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

 and ζ2 =


0 0 0 0 0
0 0 0 0 0
0 0 δ2 0 0
0 0 0 0 0
0 0 0 0 1

 . (2.9)
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The intensities of the jump processes (J1
t )t≥0 and (J2

t )t≥0 are

λ1(z) = l10 + 〈l11, z〉 = 0 +

〈
Λ1

1
0
0
0

 , z

〉
,

λ2(z) = l20 + 〈l21, z〉 = 0 +

〈
Λ2

0
1
0
0

 , z

〉
.

(2.10)

Moreover, their probability jump distributions are

ν1 =
(
δ>{1}, δ{1}, δ{1}, δ{1}, δ{1}

)>
= ν2, (2.11)

where δ{1} represents the Dirac measure with point mass at 1.
To conclude the proof we need to prove that the coefficients (K̄0, K̄1, H̄0, H̄1, l0, l1, ν)

satisfy the admissibility conditions of Assumption A.12, where we identify m = d + 4
and consequently I = {1, . . . , d+ 4} and J = ∅. It is an easy check:

- K̄0 ∈ Rd+4
+ because of K0 ∈ Rd+, γ1, γ2 ∈ R+ and λ1

0, λ2
0 ∈ R++;

- (K̄1)ij ∈ R+ for i, j = 1, . . . , d+ 4 with i 6= j because (K1)ij ∈ R+ for i, j = 1, . . . , d
with i 6= j and the other non-diagonal elements are null;

- H̄0 is a symmetric and positive-semi-definite matrix because trivially H̄0 = 0;

- for every k = 1, . . . , d H̄k
1 is the ((d + 4) × (d + 4)) matrix such that the only

non-null element is (H̄k
1 )kk = 1, it is symmetric and positive semi-definite because

every principal minor is non-negative and evidently for i, j = 1, . . . , d+ 4 with i 6= k
(H̄k

1 )ij = (H̄k
1 )ji = 0;

- for every k = d + 1, . . . , d + 4 H̄k
1 = 0, it is trivially symmetric and positive semi-

definite and (H̄k
1 )ij = (H̄k

1 )ji = 0 for i, j = 1, . . . , d+ 4 with i 6= k;

- for every a = 1, 2 la0 ∈ R+ because it is simply null;

- for every a = 1, 2 la1 ∈ Rd+4
+ because Λa ∈ Rd+ by definition;

- for every a = 1, 2 (ζa)i,i ∈ R+ for i = 1, . . . , d+4 because the only non-null diagonal
elements are δa ∈ R+ and 1.

Therefore, we have proved that the constructed process (Zt)t≥0 is an affine jump-
diffusion. We can conclude that our continuous-time model belongs to the class of affine
jump-diffusion short rate models, as considered in Appendix A (Section A.3).
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To complete the description of the modeling framework we have to compute the jump
transforms and the parameters defining the short rate process. We start by computing
the jump transforms for the probability jump distributions ν1 and ν2, that is

θa(c) =

∫
Nd+4

e〈c,u〉 dνa(u) for c ∈ Cd+4, a = 1, 2.

From (2.11) we identify ν1 = ν = ν2 and it follows that for every c ∈ Cd+4

θ1(c) = θ2(c) =

∫
Nd+4

e〈c,u〉 dν(u) = e
∑d+4
i=1 ci . (2.12)

If we express the short rate process (rt)t≥0 defined in (2.5) as a function of (Zt)t≥0, then
this relation is determined by the parameters

ρ0(t) = h(t) and ρ1(t) = ρ1 =


`
0
0
c
−c

 . (2.13)

Indeed, from (2.5) we obtain that

rt = h(t) + c(N1
t −N2

t ) + 〈`,Xt〉

= h(t) +

〈
`
0
0
c
−c

 ,


Xt

λ̃1
t

λ̃2
t

N1
t

N2
t


〉

= ρ0(t) + 〈ρ1, Zt〉.
(2.14)

2.2 The affine transform formula

In this section we aim at characterizing the discounted Laplace transform of the affine
processes (Zt)t≥0. We follow the approach developed by Duffie et al. [24] which is
reviewed in detail in Appendix A.

We recall that (see equation (A.24) in the appendix)

Ψ(u, Zt, t, T ) = E
[
e−

∫ T
t r(Zs,s) dse〈u,ZT 〉

∣∣∣Ft] for u ∈ Cd+4. (2.15)

In Appendix A we show that under integrability conditions this transform is easy to
compute because it becomes an exponential affine expression on Zt and it is explicitly
known up to the solution of some ODEs, precisely a generalized Riccati system. In some
cases the solution of this system is known exactly, whereas in other cases one has to
resort to suitable numerical schemes, such as the Runge-Kutta method.

We state the next proposition to find the characterizing ODEs system related to the
affine process (Zt)t≥0.
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Proposition 2.5. Let (u, T ) ∈ Cd+4 × R+ and suppose that χd = (K̄, H̄, l1, l2, θ1, θ2, ρ)
are well-behaved at (u, T ) (see Definition A.15). Then, the transform Ψ defined in (2.15)
is given by

Ψ(u, Zt, t, T ) = eφ(t,T,u)+〈ψ(t,T,u),Zt〉,

where φ ∈ C and ψ ∈ Cd+4 solve the following generalized Riccati system:

dφ

dt
(t, T, u) =h(t)− 〈(K>0 , γ1λ

1
0, γ2λ

2
0, 0, 0)>, ψ(t, T, u)〉 (2.16)

φ(T, T, u) =0,

dψ

dt
(t, T, u) =


`
0
0
c
−c

+


−K>1 ψ

∣∣
d(t, T, u)

γ1ψd+1(t, T, u)
γ2ψd+2(t, T, u)

0
0



− 1

2


(ψ2

1(t, T, u), . . . , ψ2
d(t, T, u))>

0
0
0
0

 (2.17)

−


Λ1

1
0
0
0


(
eδ1ψd+1(t,T,u)+ψd+3(t,T,u) − 1

)

−


Λ2

0
1
0
0


(
eδ2ψd+2(t,T,u)+ψd+4(t,T,u) − 1

)

ψ(T, T, u) =u.

With the notation ψ
∣∣
d(t, T, u) we denote the restriction of ψ(t, T, u) ∈ Cd+4 to the first

d components, that is (ψ1(t, T, u), . . . , ψd(t, T, u))>.

We observe that (2.16) is a trivial ODE. Indeed, if ψ denotes the solution to (2.17)
then the function φ can be obtain by direct integration, that is

φ(t, T, u) = −
∫ T

t

(
h(s)− 〈(K>0 , γ1λ

1
0, γ2λ

2
0, 0, 0)>, ψ(s, T, u)〉

)
ds. (2.18)

Proof. This proposition is a consequence of Theorem A.16. It suffices to verify that the
system defined previously by (2.16) and (2.17) coincides with that identified by equations
(A.26) and (A.27), where we have to replace the coefficients of the model.



2.2. The affine transform formula 29

For brevity of notation we omit the dependencies on T and u of the functions φ and
ψ and, with some abuse of notation, we denote both the scalar and the null vector (row
or column) of Rd by 0.

In our modeling framework the ODE (A.26) becomes:

dφ

dt
(t) =ρ0(t)− 〈K̄0, ψ(t)〉 − 1

2
〈ψ(t), H̄0ψ(t)〉 −

2∑
a=1

la0
[
θa(ζaψ(t))− 1

]

=h(t)−
〈

K0

γ1λ
1
0

γ2λ
2
0

0
0

 , ψ(t)

〉
− 1

2
〈ψ(t),0ψ(t)〉 − 0

=h(t)−
〈

K0

γ1λ
1
0

γ2λ
2
0

0
0

 , ψ(t)

〉
,

where 0 denotes the null matrix of dimension ((d+ 4)× (d+ 4)), as usual.
Before analyzing directly (A.27) we have to do some work. First of all

ζ1ψ(t) =


0 0 0 0 0
0 δ1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0



ψ
∣∣
d(t)

ψd+1(t)
ψd+2(t)
ψd+3(t)
ψd+4(t)

 =


0

δ1ψd+1(t)
0

ψd+3(t)
0

 ,

where 0 is the d-dimensional null vector. From this equivalence we obtain that

θ1(ζ1ψ(t)) = θ1
(
(0, δ1ψd+1(t), 0, ψd+3(t), 0)>

)
= eδ1ψd+1(t)+ψd+3(t). (2.19)

Analogously from

ζ2ψ(t) =


0 0 0 0 0
0 0 0 0 0
0 0 δ2 0 0
0 0 0 0 0
0 0 0 0 1



ψ
∣∣
d(t)

ψd+1(t)
ψd+2(t)
ψd+3(t)
ψd+4(t)

 =


0
0

δ2ψd+2(t)
0

ψd+4(t)

 ,

it follows that

θ2(ζ2ψ(t)) = θ2
(
(0, 0, δ2ψd+2(t), 0, ψd+4(t))>

)
= eδ2ψd+2(t)+ψd+4(t). (2.20)
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Therefore we can compute

dψ

dt
(t) =ρ1 − K̄>1 ψ(t)− 1

2
ψ(t)>H̄1ψ(t)−

2∑
a=1

la1
[
θa(ζaψ(t))− 1

]

=


`
0
0
c
−c

−

K>1 0 0 0 0
0 −γ1 0 0 0
0 0 −γ2 0 0
0 0 0 0 0
0 0 0 0 0



ψ
∣∣
d(t)

ψd+1(t)
ψd+2(t)
ψd+3(t)
ψd+4(t)



− 1

2



∑d+4
i,j=1 ψi(t)(H̄

1
1 )ijψj(t)

. . .∑d+4
i,j=1 ψi(t)(H̄

d
1 )ijψj(t)∑d+4

i,j=1 ψi(t)(H̄
d+1
1 )ijψj(t)

. . .∑d+4
i,j=1 ψi(t)(H̄

d+4
1 )ijψj(t)



−


Λ1

1
0
0
0

[θ1(ζ1ψ(t))− 1
]
−


Λ2

0
1
0
0

[θ2(ζ2ψ(t))− 1
]
.

From the proof of Theorem 2.4 we see that for k = 1, . . . , d the only non-null elements
of the ((d + 4) × (d + 4)) matrix H̄k

1 are (H̄k
1 )kk = 1. While H̄k

1 is the null matrix for
k = d+ 1, . . . , d+ 4. Therefore

dψ

dt
(t) =


`
0
0
c
−c

−

K>1 ψ

∣∣
d(t)

−γ1ψd+1(t)
−γ2ψd+2(t)

0
0

− 1

2



ψ1(t)2

. . .
ψd(t)

2

0
. . .
0



−


Λ1

1
0
0
0

[eδ1ψd+1(t)+ψd+3(t) − 1
]
−


Λ2

0
1
0
0

[eδ2ψd+2(t)+ψd+4(t) − 1
]
,

thus proving (2.17).

We are interested in investigating the meaning of well-behaved for the discounted
characteristics χd = (K̄, H̄, l1, l2, θ1, θ2, ρ) at (u, T ) ∈ Cd+4×R+. According to Definition
A.15 χd are well-behaved if the generalized Riccati system defined by (2.16) and (2.17)
is solved uniquely and if for 0 ≤ t ≤ T the following integrability conditions hold:
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1. E
[
|κt|

]
<∞ for κt = e−

∫ t
0 r(Zs,s)dseφ(t,T,u)+〈ψ(t,T,u),Zt〉;

2. E
[( ∫ t

0 〈ηs, ηs〉ds
) 1

2
]
<∞ for ηt = κtψ(t, T, u)>σ̄(Zt);

3. E
[ ∫ t

0 |γs| ds
]
<∞ for γt = κt

∑2
a=1 λ̄

a(Zt)
[
θa(ζaψ(t, T, u))− 1

]
.

To this end, we first have to determine explicitly the processes (κt)t≥0, (ηt)t≥0 and (γt)t≥0

in terms of the model coefficients. It follows that

κt = e−
∫ t
0 (h(s)+c(N1

s−N2
s )+〈`,Zs|d〉)dseφ(t,T,u)+〈ψ(t,T,u),Zt〉,

where Zt|d coincides with Xt because the first d coordinates of the vector Zt correspond
to Xt. Then

E
[
|κt|

]
=e−

∫ t
0 h(s)ds E

[ ∣∣∣e−∫ t0 (cN1
s+〈`,Xs〉)dse

∫ t
0 cN

2
s dseφ(t,T,u)+〈ψ(t,T,u),Zt〉

∣∣∣ ]
=e−

∫ t
0 h(s)ds E

[
e−

∫ t
0 (cN1

s+〈`,Xs〉)dse
∫ t
0 cN

2
s ds
∣∣∣eφ(t,T,u)+〈ψ(t,T,u),Zt〉

∣∣∣ ]
≤e−

∫ t
0 h(s)ds E

[
e
∫ t
0 cN

2
s dseRe(φ(t,T,u))+〈Re(ψ(t,T,u)),Zt〉

]
.

In the last line we have employed the fact that
∫ t

0

(
cN1

s + 〈`,Xs〉
)
ds ∈ R+, therefore the

exponential is less than 1. It follows that in order to verify the first integrability condition
the last written expected value has to be finite. Considering that for all z ∈ Rd+2

+ × N2

σ̄(z) = diag
(
(
√
z1, . . . ,

√
zd, 0, 0, 0, 0)>

)
we compute

ψ(t, T, u)>σ̄(Zt) =
(
ψ1(t, T, u)

√
(Zt)1, . . . , ψd(t, T, u)

√
(Zt)d, 0, 0, 0, 0

)
and therefore the second integrability condition becomes

E
[(∫ t

0
〈ηs, ηs〉ds

) 1
2

]
=E
[(∫ t

0
κ2
s

d∑
i=1

(
ψi(s, T, u)2(Xs)i

)
ds
) 1

2

]
<∞.

From (2.10) it follows that for all z ∈ Rd+2 × N2

λ̄1(z) = 〈Λ1, z|d〉+ zd+1 = 〈Λ1, x〉+ λ̃1 and λ̄2(z) = 〈Λ2, z|d〉+ zd+2 = 〈Λ2, x〉+ λ̃2.

Therefore, regarding the last integrability condition from (2.19) and (2.20) it holds that

γt =κt

(
λ̄1(Zt)

[
θ1(ζ1ψ(t, T, u))− 1

]
+ λ̄2(Zt)

[
θ2(ζ2ψ(t, T, u))− 1

])
=κt

((
〈Λ1, Xt〉+ λ̃1

t

)[
eδ1ψd+1(t,T,u)+ψd+3(t,T,u) − 1

]
+
(
〈Λ2, Xt〉+ λ̃2

t

)[
eδ2ψd+2(t,T,u)+ψd+4(t,T,u) − 1

])
.

We can not further analyze the three integrability conditions since they depend on the
specific values of the model coefficients that are yet to be determined.
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Continuing our analysis of the definition of well-behaved characteristics we are inter-
ested in studying the existence and uniqueness of solutions of (2.16) and (2.17). Clearly
φ is uniquely determined by ψ, as we showed in (2.18), and consequently we have to
study only the Riccati ODEs system (2.17) that can be written as

dψ

dt
(t, T, u) = f(t, ψ(t, T, u))

ψ(T, T, u) = u,
(2.21)

for a C∞-function f : [0, T ] × Cd+4 → Cd+4 (we remark that the smoothness of f
is deduced from its definition because f is a sum of C∞-functions). We refer to [45]
(Theorems 8.1, 8.2) and apply these uniqueness and existence theorems to the real and
the complex part of (2.21) and then it follows that it is locally solved uniquely. In other
words, in a neighbourhood of (T, u) there exists a unique function ψ that solves (2.21)
and consequently (2.17).

We are interested in discussing the existence of a closed-form solution for (2.17) in the
real domain, that is for every final condition u ∈ Rd+4 we aim at determining an explicit
function ψ : [0, T ] → Rd+4 which solves the Riccati system. From the structure of the
system it follows that the final two components of ψ verify an easily solvable system
composed by two independent ODEs. In other words, ψd+3 satisfies the ODE

dψd+3

dt
(t, T, u) = c for 0 ≤ t ≤ T with ψd+3(T, T, u) = ud+3,

and ψd+4 the following one

dψd+4

dt
(t, T, u) = −c for 0 ≤ t ≤ T with ψd+4(T, T, u) = ud+4.

It is easily deduced that ψd+3(t, T, u) = c(t−T )+ud+3 and ψd+4(t, T, u) = c(T−t)+ud+4.
If we replace these solutions in the equations that define the system (2.17), then ψd+1

solves the ODE

dψd+1

dt
(t, T, u) = γ1ψd+1(t, T, u)− eδ1ψd+1(t,T,u)+c(t−T )+ud+3 + 1

ψd+1(T, T, u) = ud+1,
(2.22)

whereas ψd+2 verifies the following one

dψd+2

dt
(t, T, u) = γ2ψd+2(t, T, u)− eδ2ψd+2(t,T,u)+c(T−t)+ud+4 + 1

ψd+2(T, T, u) = ud+2.
(2.23)

Now, we aim at analysing the previous ODEs in order to find exact solutions ψd+1 and
ψd+2. We notice that (2.22) and (2.23) are non-linear first-order ODEs but we are not
able to find closed-form solutions if γ1 and δ1 are different from zero simultaneously, as
well as γ2 and δ2.
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If δ1 = 0 then (2.22) can be rewritten in

dψd+1

dt
(t, T, u) = γ1ψd+1(t, T, u)− ec(t−T )+ud+3 + 1.

It is a linear ODE and, for γ1 6= 0 and γ1 6= c its solution is

ψd+1(t, T, u) = e
∫ t
T γ1ds

(
ud+1 +

∫ t

T

(
1− ec(s−T )+ud+3

)
e−

∫ s
T γ1duds

)
= eγ1(t−T )

(
ud+1 −

eγ1T

γ1

(
e−γ1t − e−γ1T

)
− e(γ1−c)T+ud+3

c− γ1

(
e(c−γ1)t − e(c−γ1)T

))
= ud+1e

−γ1(T−t) +
e−γ1(T−t)

γ1
− 1

γ1
+

eud+3

c− γ1
e−γ1(T−t) − eud+3

c− γ1
e−c(T−t)

=

(
ud+1 +

1

γ1
+

eud+3

c− γ1

)
e−γ1(T−t) − 1

γ1
− eud+3

c− γ1
e−c(T−t).

If δ1 = γ1 = 0 and c 6= 0 the function ψd+1 is determined by

ψd+1(t, T, u) = ud+1 −
∫ t

T
ec(s−T )+ud+3ds+ t− T

= ud+1 +
eud+3

c

(
1− e−c(T−t)

)
+ t− T.

If δ1 = γ1 = c = 0, then ψd+1 is specified by

ψd+1(t, T, u) = ud+1 +
(
eud+3 − 1

)(
T − t

)
.

Lastly, if δ1 = 0 and γ1 = c 6= 0 the function ψd+1 is

ψd+1(t, T, u) =

(
ud+1 +

1

γ1
+ eud+3

(
T − t

))
e−γ1(T−t) − 1

γ1
.

Remark 2.6. If δ1 = 0, then the jump intensity component (λ1
t )t≥0 is simply defined by

λ1
t = λ0

1 + 〈Λ1, Xt〉 and therefore we can assume that γ1 = 0 without loss of generality.
We have analyzed also the case γ1 6= 0 for completeness.

By means of analogous computations, if δ2 = 0 and γ2 6= 0 then (2.23) becomes a
linear ODE with explicit solution defined by

ψd+2(t, T, u) =

(
ud+2 −

1

γ2
− eud+4

c+ γ2

)
e−γ2(T−t) − 1

γ2
+

eud+4

c+ γ2
ec(T−t).

If δ2 = γ2 = 0 and c 6= 0 the function ψd+2 is specified by

ψd+2(t, T, u) = ud+2 +
eud+4

c

(
ec(T−t) − 1

)
+ t− T.

Whereas, if δ2 = γ2 = c = 0

ψd+2(t, T, u) = ud+2 +
(
eud+4 − 1

)(
T − t

)
.
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On the other hand, if δ1 6= 0 but γ1 = 0 then (2.22) becomes

dψd+1

dt
(t, T, u) = −eδ1ψd+1(t,T,u)+c(t−T )+ud+3 + 1. (2.24)

Remark 2.7. The case γ1 = 0 represents the absence of the decay effect of past jumps,
that is the intensity process (λ1

t )t≥0 is defined by

λ1
t = λ1

0 + 〈Λ1, Xt〉+ δ1

∫ t

0
dN1

u = λ1
0 + 〈Λ1, Xt〉+ δ1N

1
t .

This is well-defined since the L1-property (A.7) is satisfied. It follows that (N1
t )t≥0 is

non-explosive.

By means of replacement ψd+1(t, T, u) → wd+1(t, T, u) := e−δ1ψd+1(t,T,u) the non-
linear ODE (2.24) becomes a linear ODE such that

dwd+1

dt
(t, T, u) = δ1e

c(t−T )+ud+3 − δ1wd+1(t, T, u)

wd+1(T, T, u) = e−δ1ud+1 .

Its solution is

wd+1(t, T, u) =e−
∫ t
T δ1ds

(
e−δ1ud+1 +

∫ t

T
δ1e

c(s−T )+ud+3e
∫ s
T δ1duds

)
=

(
e−δ1ud+1 − δ1

c+ δ1
eud+3

)
eδ1(T−t) +

δ1

c+ δ1
eud+3e−c(T−t).

Then, we can revert the change and deduce that ψd+1(t, T, u) = − logwd+1(t,T,u)
δ1

. We
remark that this last step is permitted only if wd+1(t, T, u) > 0, that is if

log
( δ1

c+ δ1

)
+ δ1ud+1 + ud+3 ≤ 0, (2.25)

or if the following conditions hold

log
( δ1

c+ δ1

)
+ δ1ud+1 + ud+3 > 0;

t > T +
1

c+ δ1

(
log
( δ1

c+ δ1
eud+3 − e−δ1ud+1

)
− log

( δ1

c+ δ1

)
− ud+3

)
.

In the same spirit, we use a similar change of variable in case of δ2 6= 0 and γ2 = 0
in (2.23), i.e. ψd+2(t, T, u) → wd+2(t, T, u) := e−δ2ψd+2(t,T,u). Therefore, the non-linear
ODE (2.23) becomes a linear ODE of the following form

dwd+2

dt
(t, T, u) = δ2e

c(T−t)+ud+4 − δ2wd+2(t, T, u)

wd+2(T, T, u) = e−δ2ud+2 .
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For δ2 6= c its explicit solution is

wd+2(t, T, u) =

(
e−δ2ud+2 − δ2

δ2 − c
eud+4

)
eδ2(T−t) +

δ2

δ2 − c
eud+4ec(T−t).

Consequently, ψd+2(t, T, u) = − logwd+2(t,T,u)
δ2

by reverting the change of variable if

δ2 > c;

log
( δ2

δ2 − c

)
+ δ2ud+2 + ud+4 ≤ 0,

(2.26)

or if
δ2 > c;

log
( δ2

δ2 − c

)
+ δ2ud+2 + ud+4 > 0;

t > T +
1

δ2 − c

(
log
( δ2

δ2 − c
eud+4 − e−δ2ud+2

)
− log

( δ2

δ2 − c

)
− ud+4

)
,

or if
δ2 < c;

t > T − 1

c− δ2

(
log
( δ2

c− δ2
eud+4 + e−δ2ud+2

)
− log

( δ2

c− δ2

)
− ud+4

)
.

If γ2 = 0 and δ2 = c 6= 0 it follows that

wd+2(t, T, u) =
(
e−δ2ud+2 − δ2e

ud+4
(
T − t

))
eδ2(T−t)

and, therefore, ψd+2(t, T, u) = − logwd+2(t,T,u)
δ2

if

t > T − 1

δ2
e−δ2ud+2−ud+4 .

In conclusion, if δ1 = δ2 = 0 we are able to find explicit closed-form solutions ψd+1

and ψd+2 to (2.22) and (2.23), respectively. However, in this particular case for a = 1, 2
the intensity process (λat )t≥0 defined by (2.3) loses its particular characteristic deriving
from Hawkes processes’ framework. In other words, λat = λa0 + 〈Λa, Xt〉. The intensity
is only a linear combination of the process (Xt)t≥0 and, as a consequence, the counting
process (Na

t )t≥0 does not influence its value. On the other hand, in the previous analysis
we have achieved solutions ψd+1 and ψd+2 also if γ1 = γ2 = 0 and δ1 6= 0 6= δ2. In
this case λat = λa0 + 〈Λa, Xt〉 + δaN

a
t and it follows that the counting process (Na

t )t≥0

influences the intensity value but without a decay effect over time.

2.2.1 From Riccati ODEs system to the affine transform formula

In Proposition 2.5 we have showed that if the characteristics χd = (K̄, H̄, l1, l2, θ1, θ2, ρ)
are well-behaved at (u, T ) ∈ Cd+4 × R+, then

E
[
e−

∫ T
t r(Zs,s) dse〈u,ZT 〉

∣∣∣Ft] = eφ(t,T,u)+〈ψ(t,T,u),Zt〉. (2.27)
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Nevertheless, verifying that χd are well-behaved is onerous and for this reason we aim
at simplifying this condition. The article [44] of Keller-Ressel & Mayerhofer addresses
this problem; the authors first show that the affine transform formula (2.27) holds for
u ∈ Rd+4 up to the maximal lifetime T of the solutions φ and ψ of the generalized Riccati
system (2.16) and (2.17) and finally perform the extension for complex exponents. We
highlight that Keller-Ressel & Mayerhofer use the notion of minimal solution since their
article deals with general affine process and therefore the solution of the related ODEs
system may not be unique. In our case, the solution’s uniqueness is guaranteed by the
smoothness of the functions which determine the derivatives of φ and ψ.

We first consider the real case and state the following Lemma which is a direct
consequence of the main result of [44] (Theorem 2.14).

Lemma 2.8. Let u ∈ Rd+4 and suppose that the ODEs system (2.16) and (2.17) with
terminal condition u has solutions φ and ψ up to time T . Then

E
[
e−

∫ T
t r(Zs,s) dse〈u,ZT 〉

∣∣∣Ft] = eφ(t,T,u)+〈ψ(t,T,u),Zt〉 for 0 ≤ t ≤ T.

It follows that in order to verify the validity of the affine transform formula in the real
case we have only to analyse the existence of solutions ψ and φ of the generalized Riccati
system. We have already observed that (2.16) is easy to solve once we know the function
ψ and its solution φ is determined by (2.18). Therefore, we can focus our analysis on
(2.17), i.e. the ODEs which characterize the function ψ.

Let T > 0 be fixed. To simplify the notation we introduce the function y such that
y(t) := ψ(T − t) for all t ≥ 0. Consequently, we write the ODEs satisfied by y as follows:

dy

dt
(t) = g(t, y(t))

y(0) = u,
(2.28)

for u ∈ Rd+4 and the C∞-function g : [0, t(u))×Rd+4 → Rd+4. With t(u) we denote the
lifetime of the solution y, i.e. either t(u) = +∞ or limt→t(u) ‖y(t)‖ = +∞.

In the previous section we have already observed that in a neighbourhood of (0, u)
there exists a unique function y that solves (2.28). By analysing these Riccati ODEs we
aim at identifying every initial value u ∈ Rd+4 such that there exists a unique global
solution y that is not in general guaranteed due to the presence of the quadratic term. In
other words, we want to study if the function y blows up in finite time, i.e. t(u) < +∞.
We remark that this is equivalent to study the existence of a global solution ψ that
satisfies (2.17), or equivalently (2.21), for any final time T .

Firstly, in the previous section we have computed the closed-form expressions of ψd+3

and ψd+4 which are linear in the time variable and therefore we derive that yd+3 and
yd+4 do not explode at any finite time. Then, to study the existence of a global solution
y to (2.28) we replace the found expressions of yd+3 and yd+4 and investigate this system.
We note that the ODEs which describe the derivative of yd+1 and yd+2 are independent
from y|d. It follows that we can investigate them and find sufficient conditions in order
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to guarantee global solutions yd+1 and yd+2. Then, we study the first d ODEs and finally
analyse if their solution y|d is global, in turn.

Before continuing the analysis of the existence of a global solution y to (2.28) we
enunciate a result stated in [28] (Corollary 10.5).

Lemma 2.9. We define H := {x ∈ R|x ≥ 0} the half space in R and consider the
continuous map b : R+ × R→ R satisfying for t ≥ 0

b(t, x) ≥ 0 for all x ∈ ∂H
b(t, x) = b(t, x+) for all x ∈ R,

where + denotes the positive part. Then, any solution f of the ODE df
dt (t) = b(t, f(t))

with f(0) ∈ R+ verifies f(t) ∈ R+ for all t ≥ 0.

Recalling that y(t) = ψ(T − t) for all t ≥ 0, from (2.22) and (2.23) we deduce the
ODEs which describe yd+1 and yd+2 in order to analyze if they are global solutions:

dyd+1

dt
(t) = −γ1yd+1(t) + eδ1yd+1(t)−ct+ud+3 − 1 =: gd+1(t, yd+1(t))

yd+1(0) = ud+1,

dyd+2

dt
(t) = −γ2yd+2(t) + eδ2yd+2(t)+ct+ud+4 − 1 =: gd+2(t, yd+2(t))

yd+2(0) = ud+2.

(2.29)

Proposition 2.10. The solutions yd+1, yd+2 : [0,+∞) → R of (2.29) are global if one
of the following conditions are verified

1. δ1 = 0;

2. γ1 = 0, δ1 6= 0 and log
(

δ1
c+δ1

)
+ δ1ud+1 + ud+3 ∈ R−;

3. ud+1, ud+3 ∈ R−,

and another one among

1. δ2 = 0;

2. γ2 = 0, δ2 > c and log
(

δ2
δ2−c

)
+ δ2ud+2 + ud+4 ∈ R−;

3. c = 0 and ud+2, ud+4 ∈ R−.

In order to prove this Proposition we exploit the closed-form expressions that we have
computed in the previous section for the functions ψd+1 and ψd+2.

Proof. To study the ODE characterizing yd+1 we have to distinguish different cases. For
δ1 = 0 we have computed an explicit global solution, whereas for γ1 = 0 6= δ1 there exists
an unique global solution only if

log
( δ1

c+ δ1

)
+ δ1ud+1 + ud+3 ≤ 0. (2.30)
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This is a direct consequence of (2.25). A sufficient condition for (2.30) to be satisfied is
ud+1, ud+3 ∈ R−. Lastly, if δ1 6= 0 6= γ1 we can not compute a closed-form solution yd+1.
Nevertheless, if ud+1, ud+3 ∈ R− we consider b(t, x) := −γ1x

+ − e−δ1x+−ct+ud+3 + 1 for
x ∈ R and analyse the function f : R+ → R satisfying

df

dt
(t) = b(t, f(t))

f(0) = −ud+1.

From Lemma 2.9 we deduce that the function f takes value in R+. Then,

df

dt
(t) = −γ1f(t)+ − e−δ1f(t)+−ct+ud+3 + 1 = −γ1f(t)− e−δ1f(t)−ct+ud+3 + 1.

Setting f(t) = −yd+1(t) for all t ≥ 0 it follows that yd+1 has to take values in R− for
every initial point ud+1 ∈ R−. We deduce that

|gd+1(t, yd+1(t))| =
∣∣− γ1yd+1(t) + eδ1yd+1(t)−ct+ud+3 − 1

∣∣ ≤ γ1|yd+1(t)|+ 1

and therefore gd+1 is linearly bounded with respect to yd+1. From [45] (Proposition 7.8)
we conclude that there exists a global negative solution yd+1 for every ud+1, ud+3 ∈ R−.

Accordingly, if δ2 = 0 an explicit global solution was computed in the previous section,
whereas if γ2 = 0 6= δ2 an unique global solution yd+2 exits whether (2.26) holds, i.e.

δ2 > c;

log
( δ2

δ2 − c

)
+ δ2ud+2 + ud+4 ≤ 0.

If c = 0 and ud+4 ∈ R−, then yd+2 takes negative values for every ud+2 ∈ R− as a
consequence of Lemma 2.9. Therefore,

|gd+2(t, yd+2(t))| =
∣∣− γ2yd+2(t) + eδ2yd+2(t)+ud+4 − 1

∣∣ ≤ γ1|yd+2(t)|+ 1

and we can conclude that a global negative solution yd+2 exists.

Corollary 2.11. If c = 0 and ud+1, ud+2, ud+3, ud+4 ∈ R−, then yd+1 and yd+2 are
negative global solutions of (2.29).

Up to this point we have imposed some sufficient conditions for guaranteeing global
solutions yd+1, yd+2, yd+3 and yd+4. Now, we investigate the blow-up behaviour of the
first d components of y which satisfy the following Riccati ODEs system:

dy|d
dt

(t) =− `+K>1 y|d(t) +
1

2
(y2

1(t), . . . , y2
d(t))

>

+ Λ1(eδ1yd+1(t)−ct+ud+3 − 1) + Λ2(eδ2yd+2(t)+ct+ud+4 − 1)

=:− `+K>1 y|d(t) +
1

2
(y2

1(t), . . . , y2
d(t))

> + Λ1α(t) + Λ2β(t)

y|d(0) =u|d.

(2.31)
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Proposition 2.12. Suppose that K1 is an upper triangular matrix. If c = 0, ud+1, ud+2,
ud+3, ud+4 ∈ R− and u ∈ Rd−, then there exists a unique global negative solution y|d to
(2.31).

Proof. We remark that if these hypotheses are satisfied, then from Corollary 2.11 we
deduce that yd+1 and yd+2 are negative global solutions of (2.29). Consequently, the
functions α and β defined in (2.31) are R−-valued.

To prove the Proposition we begin with the observation that y|d has to take negative
values. We demonstrate this statement by induction on the index i employing similar
arguments of the proof of Proposition 2.10. For i = 1, because of the upper triangular
shape of the matrix K1 the function y1 satisfies the ODE

dy1

dt
(t) =− `1 + (K1)11y1(t) +

1

2
y2

1(t) + (Λ1)1α(t) + (Λ2)1β(t).

From Lemma 2.9 we deduce that y1 has to take negative values. Now, suppose that yk
is negative-valued for k = 1, . . . , i− 1. Then, the i-th component yi verifies

dyi
dt

(t) =− `i +

i−1∑
j=1

(K1)jiyj(t) + (K1)iiyi(t) +
1

2
y2
i (t) + (Λ1)iα(t) + (Λ2)iβ(t). (2.32)

Setting b(t, x) = `i −
∑i−1

j=1(K1)jiyj(t) + (K1)iix
+ − 1

2(x+)2 − (Λ1)iα(t)− (Λ2)iβ(t) and
f(t) = −yi(t) in the statement of Lemma 2.9 it follows that the solution yi of (2.32)
takes value in R− for every initial point ui ∈ R−. By induction we can conclude that y|d
is Rd−-valued. From this property we deduce that

d ‖y|d(t)‖2

dt
=2
[
− 〈y|d(t), `〉+ 〈y|d(t),K>1 y|d(t)〉+

1

2

(
y3

1(t) + · · ·+ y3
d(t)

)
+ 〈y|d(t),Λ1〉α(t) + 〈y|d(t),Λ2〉β(t)

]
≤C(t)(1 + ‖y|d(t)‖2),

for a positive function C. Consequently,

‖y|d(t)‖2 ≤ ‖u|d‖2 +

∫ t

0
C(s)

(
1 + ‖y|d(s)‖2

)
ds.

Then, Gronwall’s Lemma (see [11] Lemma 1.1) implies that ‖y|d(t)‖ is finite for every
t ≥ 0, that is y|d is a global negative solution.

Remark 2.13. From Corollary 2.11 and Proposition 2.12 we can conclude that if K1 is an
upper triangular matrix, u ∈ Rd+4

− and c = 0, then there exists an unique solution to the
Riccati system (2.28) which does not explode in finite time. Therefore, the exponential
transform (2.27) holds for every final time T > 0 as a consequence of Lemma 2.8.
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Now, we focus on the problem of the existence of the exponential transform formula
without discounting, that is we analyse the following conditional expectation

E
[
e〈u,ZT 〉

∣∣∣Ft] for u ∈ Rd+4. (2.33)

We observe that (2.33) is equivalent to the transform (2.27) if we consider the short
rate process identically null, that is h(t) = 0 for t ≥ 0, c = 0 and ` = 0 because of its
definition rt = h(t) + c(N1

t −N2
t ) + 〈`,Xt〉. Then, from Proposition 2.12 we can deduce

that if K1 is an upper triangular matrix then the exponential transform formula without
discounting holds for u ∈ Rd+4

− .

Corollary 2.14. If K1 is an upper triangular matrix, then for every u ∈ Rd+4
− and T > 0

it holds that

E
[
e〈u,ZT 〉

∣∣∣Ft] = eφ̃(t,T,u)+〈(ψ̃(t,T,u),ud+3,ud+4)>,Zt〉 for 0 ≤ t ≤ T, (2.34)

where, omitting T and u dependencies, φ̃ : [0, T ]→ R− is defined by

φ̃(t) =

∫ T

t

(
〈K0, ψ̃|d(s)〉+ γ1λ

1
0ψ̃|d+1(s) + γ2λ

2
0ψ̃|d+2(s)

)
ds (2.35)

and ψ̃ : [0, T ]→ Rd+2
− is the unique solution of the following ODEs

dψ̃

dt
(t) =

−K>1 ψ̃|d(t)γ1ψ̃d+1(t)

γ2ψ̃d+2(t)

− 1

2

ψ̃2|d(t)
0
0


−

Λ1

1
0

(eδ1ψ̃d+1(t)+ud+3 − 1
)
−

Λ2

0
1

(eδ2ψ̃d+2(t)+ud+4 − 1
) (2.36)

with final condition ψ̃(T ) = u|d+2. With the notation ψ̃2|d(t) we mean the square of each
component of ψ̃|d(t), that is the Rd-vector defined by

(
ψ̃2

1(t), . . . , ψ̃2
d(t)

)>.
Remark 2.15. We highlight that the previous ODEs system (2.36) is exactly (2.17) in
which we have fixed ` = 0 and c = 0. Analogously, (2.35) is similar to (2.18) considering
h as the null function.

To complete the treatment of exponential moments we want to extend the validity
of the affine transform formula to the complex case giving an analogue of (2.34). This
extension is permitted under the hypothesis that the Riccati system (2.36) with real-
valued final condition is solvable until time T . We state a result proved in [44] (Theorem
2.26).

Lemma 2.16. Let u ∈ Cd+4 and suppose that the ODEs system (2.36) admits a unique
real-valued solution up to time T with terminal value Re(u|d+2). Then the system (2.36)
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has a unique complex solution ψ̃ that exists up to time T and satisfying the terminal
condition ψ̃(T ) = u|d+2. It follows that

E
[
e〈u,ZT 〉

∣∣∣Ft] = eφ̃(t,T,u)+〈(ψ̃(t,T,u),ud+3,ud+4)>,Zt〉 for 0 ≤ t ≤ T.

The function φ̃ is determined by (2.35).

2.3 The probability of future jumps

We aim at finding the explicit expression for the conditional probability of future jumps
of the stochastic lower bound SLB. That is, the purpose of this section is computing
closed-form formulas that express the probability that the lower bound rises or falls by
a certain amount on a certain future horizon.

Let t and T two time horizons such that 0 ≤ t ≤ T . For all s ∈ cZ we investigate

P(∆SLBT = s|Ft) = P(SLBT − SLBt = s|Ft).

Recalling the SLB definition in (2.4)

P
(
∆SLBT = s|Ft

)
=
∞∑
n= s

c

P
(

∆N1
T = n,∆N2

T = n− s

c

∣∣∣Ft)1{s>0}

+

∞∑
n=0

P
(

∆N1
T = n,∆N2

T = n− s

c

∣∣∣Ft)1{s≤0}.

(2.37)

To simplify the notation used in the following we denote

pt(n, s, T ) := P
(

∆N1
T = n,∆N2

T = n− s

c

∣∣∣Ft). (2.38)

Proposition 2.17. If K1 is an upper triangular matrix, then it holds that

pt(n, s, T ) =
1

n!

1

(n− s
c )!

∂2n−s/c

∂vn1 ∂v
n−s/c
2

(
eφ̃v1v2 (t,T,0)+〈ψ̃v1v2 (t,T,0),(X>t ,λ̃

1
t ,λ̃

2
t )
>〉
)∣∣∣∣v1=0

v2=0

. (2.39)

We recall that λ̃at = λa0 + δa
∫ t

0 e
−γa(t−u) dNa

u , for a = 1, 2. The R-valued function φ̃v1v2
is determined by

φ̃v1v2(t, T, 0) =

∫ T

t

〈
K0, (ψ̃v1v2)|d(s, T, 0)

〉
ds

+

∫ T

t

(
γ1λ

1
0(ψ̃v1v2)d+1(s, T, 0) + γ2λ

2
0(ψ̃v1v2)d+2(s, T, 0)

)
ds

(2.40)
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and the Rd+2-valued function ψ̃v1v2 satisfy the following ODEs system

dψ̃v1v2
dt

(t, T, 0) =

−K>1 (ψ̃v1v2)|d(t, T, 0)

γ1(ψ̃v1v2)d+1(t, T, 0)

γ2(ψ̃v1v2)d+2(t, T, 0)

− 1

2

(ψ̃2
v1v2)|d(t, T, 0)

0
0


−

Λ1

1
0

(eδ1(ψ̃v1v2 )d+1(t,T,0)+log(v1) − 1
)

(2.41)

−

Λ2

0
1

(eδ2(ψ̃v1v2 )d+2(t,T,0)+log(v2) − 1
)

with terminal condition ψ̃v1v2(T, T, 0) = 0. We highlight that 0 denotes the null vector of
Rd+2.

Remark 2.18. In the statement of Proposition 2.17 we require that K1 is an upper tri-
angular matrix in order to the ODEs system (2.41) admits a unique global solution (see
Proposition 2.12).

Proof. Following the approach of [27] (Section 2.6), to prove the statement it suffices to
compute the conditional probability generating function of the bivariate counting process
(Nt)t≥0 =

(
(N1

t , N
2
t )>
)
t≥0

, that is

E
[
v
N1
T−N

1
t

1 v
N2
T−N

2
t

2

∣∣∣Ft] =
∞∑

n1=0
n2=0

vn1
1 vn2

2 P
(
N1
T −N1

t = n1, N
2
T −N2

t = n2

∣∣Ft) (2.42)

for v1, v2 ∈ (0, 1); in this case the sum of the right-hand side of (2.42) is guaranteed to
converge and, therefore, the conditional expected value exists (see [37] (Chapter 7)).

We have that

E
[
v
N1
T−N

1
t

1 v
N2
T−N

2
t

2

∣∣∣Ft] =
1

v
N1
t

1 v
N2
t

2

E
[
v
N1
T

1 v
N2
T

2

∣∣∣Ft]
=

1

v
N1
t

1 v
N2
t

2

E
[
elog(v1)N1

T elog(v2)N2
T

∣∣∣Ft]
=

1

v
N1
t

1 v
N2
t

2

E
[
e〈(0

>,log(v1),log(v2))>,ZT 〉
∣∣∣Ft],

(2.43)

where we recall that ZT = (XT , λ
1
T , λ

2
T , N

1
T , N

2
T )>. Then, the conditional probabil-

ity generating function can be obtained as a direct consequence of Corollary 2.14. In
fact, the expected value (2.43) is exactly the left-hand side of (2.34) if we consider
u = (0>, log(v1), log(v2))> ∈ Rd+4

− .
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It follows that

E
[
v
N1
t+h−N

1
t

1 v
N2
t+h−N

2
t

2

∣∣∣Ft] =
1

v
N1
t

1 v
N2
t

2

eφ̃v1v2 (t,T,0)+〈(ψ̃v1v2 (t,T,0),log(v1),log(v2))>,Zt〉

=eφ̃v1v2 (t,T,0)+〈ψ̃v1v2 (t,T,0),(X>t ,λ̃
1
t ,λ̃

2
t )
>〉

(2.44)

for the functions φ̃v1v2 and ψ̃v1v2 which satisfy (2.40) and (2.41), respectively.
Differentiating the probability generating function we can recover all probabilities

pt(n, s, T ) for every n ∈ N (see [56] (Section 3.3, Remark 2)). In fact, pt(n, s, T ) is
represented by the coefficient of vn1 v

n−s/c
2 in the expansion of (2.44) into a power series.

Then, the conditional probability of SLB’s future jumps is determined by

P
(
∆SLBT = s|Ft

)
=
∞∑
n= s

c

pt(n, s, T )1{s>0} +
∞∑
n=0

pt(n, s, T )1{s≤0}

for pt(n, s, T ) given in (2.39).

Corollary 2.19. If K1 is an upper triangular matrix, then it holds that

P
(
SLBs = SLBt for all t ≤ s ≤ T |Ft

)
= eφ̃(t,T,0)+〈ψ̃(t,T,0),(X>t ,λ̃

1
t ,λ̃

2
t )
>〉, (2.45)

where the function φ̃ is determined by

φ̃(t, T, 0) =

∫ T

t

〈
K0, ψ̃|d(s, T, 0)

〉
ds

+

∫ T

t

(
γ1λ

1
0ψ̃d+1(s, T, 0) + γ2λ

2
0ψ̃d+2(s, T, 0)

)
ds

(2.46)

and ψ̃ satisfy the following system:

dψ̃

dt
(t, T, 0) =

−K>1 ψ̃|d(t, T, 0)

γ1ψ̃d+1(t, T, 0)

γ2ψ̃d+2(t, T, 0)

− 1

2

ψ̃2|d(t, T, 0)
0
0

+

Λ1

1
0

+

Λ2

0
1

 . (2.47)

Remark 2.20. From the system (2.47) it follows that the last two components of ψ̃ verify
two easily solvable independent ODEs and therefore they are determined by

ψ̃d+1(t, T, 0) =
1

γ1

(
e−γ1(T−t) − 1

)
,

ψ̃d+2(t, T, 0) =
1

γ2

(
e−γ2(T−t) − 1

)
.
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Proof. The result is a direct consequence of Proposition 2.17 since the following events’
equality holds:

S := {SLBs = SLBt for all t ≤ s ≤ T} = {∆N1
T = 0,∆N2

T = 0} =: N .

Clearly, S ⊇ N due to the SLB’s definition. We show the opposite inclusion by contra-
diction: if ∆N1

T 6= 0 (or equivalently ∆N2
T 6= 0), then there exists t ≤ s̄ ≤ T such that

∆N1
s̄ = N1

s̄ − N1
t 6= 0 (∆N2

s̄ 6= 0). It necessarily follows that SLBs̄ 6= SLBt since the
possibility of simultaneous occurrence of two jumps is ruled out.

In view of this equality we can compute the conditional probability that the stochastic
lower bound SLB remains unchanged in the time interval [t, T ] since

P
(
SLBs = SLBt for all t ≤ s ≤ T |Ft

)
= pt(0, 0, T ). (2.48)

If K1 is an upper triangular matrix, from (2.39) it results that

P
(
SLBs = SLBt for all t ≤ s ≤ T |Ft

)
= lim

v1→0
v2→0

eφ̃v1v2 (t,T,0)+〈ψ̃v1v2 (t,T,0),(X>t ,λ̃
1
t ,λ̃

2
t )
>〉,

for the C∞-functions φ̃v1v2 and ψ̃v1v2 which verify (2.40) and (2.41), respectively. Since

lim
v1→0

eδ1(ψ̃v1v2 )d+1(t,T,0)+log(v1) = 0,

lim
v2→0

eδ2(ψ̃v1v2 )d+2(t,T,0)+log(v2) = 0

we derive that the conditional probability (2.48) is determined by

P
(
SLBs = SLBt for all t ≤ s ≤ T |Ft

)
= eφ̃(t,T,0)+〈ψ̃(t,T,0),(X>t ,λ̃

1
t ,λ̃

2
t )
>〉,

for the functions φ̃ and ψ̃ which satisfy (2.46) and (2.47), respectively.

2.4 Equivalent changes of measures

The short rate model introduced so far has been completely described under the physical
probability measure P . We point out that the properties of our framework described
in Section 2.2 may be lost under a change of measure. Therefore, we need to study
the behavior of the model under a change of probability measure, from the physical P
to an equivalent probability measure Q. In particular, we aim at studying sufficient
conditions under which the change of measure preserves the affine structure of the short
rate model. In other words, our purpose is to investigate the structure of the process
(Zt)t≥0 = (X>t , λ̃

1
t , λ̃

2
t , N

1
t , N

2
t )t≥0 under an equivalent change of the probability measure,

as a consequence of Theorem 2.4.
Since throughout this section we deal with more than one probability measure defined

on the same measurable space (Ω,F), we want to make the notation clear. In order to
distinguish we denote by E[·] the expectation with respect to the physical probability
measure P and by EQ[·] the expectation with respect to any other probability measure
Q. Similarly, (Wt)t≥0 is the P -Brownian motion, while (WQ

t )t≥0 denotes a Brownian
motion with respect to Q.
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2.4.1 The exponentially affine change of measure

We focus our attention on the driving element of the short rate model, i.e. the jump-
diffusion process (Zt)t≥0 which satisfies the SDE (2.8) with respect to the physical mea-
sure P . Our goal consists in characterizing an equivalent probability measures Q on
(Ω,F) which ensures that (Zt)t≥0 maintains its affine structure. It follows that (Zt)t≥0

will satisfy an SDE of the type (A.12) on (Ω,F ,F, Q) with respect to an Rd+4-valued
Brownian motion (WQ

t )t≥0 and for some parameters which fulfill the admissibility condi-
tions of Assumption A.12. Then, as a consequence of Theorem 2.4 our model is an affine
short rate model also under the probability measure Q.

We fix a time horizon T > 0. Similar to the density process introduced in [24]
(Appendix C) and recalled in Appendix A (Section A.3.3), we define a positive process
of the form

Lt :=
1

C
ek

∫ t
0 r(Zs,s)dseα(t)+〈β(t),Zt〉 for 0 ≤ t ≤ T, (2.49)

where C := eα(0)+〈β(0),Z0〉 is a normalizing constant, k ∈ R and α : [0, T ] → R and
β : [0, T ]→ Rd+4 are C1-functions.

Theorem 2.21. Let (Lt)t∈[0,T ] be the process defined by (2.49) satisfying for 0 ≤ t ≤ T
the following integrability conditions:

1. E
[
ek

∫ t
0 (〈`,Xs〉+cN1

s−cN2
s )dse〈β(t),Zt〉

]
<∞;

2. E
[ ∫ t

0 Ls
(
eδ1βd+1(s)+βd+3(s) − 1

)(
Λ1Xs + λ̃1

s

)
ds
]

+ E
[ ∫ t

0 Ls
(
eδ2βd+2(s)+βd+4(s)−1

)(
Λ2Xs + λ̃2

s

)
ds
]
<∞;

3. E
[(∑d

i=1

∫ t
0 L

2
sβi(s)

2(Xs)ids
) 1

2
]
<∞,

for α : [0, T ]→ R and β : [0, T ]→ Rd+4 which solve the ODEs system:

dα

dt
(t) = −kρ0(t)− 〈K̄0, β(t)〉

dβ

dt
(t) = −kρ1 − K̄>1 β(t)− 1

2
β(t)>H̄1β(t)

−
(
eδ1βd+1(t)+βd+3(t) − 1

)
l11 −

(
eδ2βd+2(t)+βd+4(t) − 1

)
l21,

(2.50)

where β(t)>H̄1β(t) is the Rd+4-valued vector with k-element
∑d+4

i,j=1 βi(t)(H̄1)ijkβj(t).
We recall that l11 = (Λ>1 , 1, 0, 0, 0)> and l21 = (Λ>2 , 0, 1, 0, 0)>.

Let Q be a probability measure on (Ω,F) such that dQ
dP = LT . Then, the process

(Zt)t∈[0,T ] is an affine jump-diffusion process under the probability measure Q with char-
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acteristics χQ =
(
K̄Q, H̄Q, lQ, θQ

)
uniquely specified by

K̄Q
0 (t) = K̄Q

0 = K̄0;

K̄Q
1 (t) = K̄1 + H̄1β(t);

H̄Q
0 (t) = 0;

H̄Q
1 (t) = H̄Q

1 = H̄1;

laQ0 (t) = 0 for a = 1, 2;

laQ1 (t) = la1θ
a(ζaβ(t)) for a = 1, 2;

θaQ(c, t) =
θa(c+ ζaβ(t))

θa(ζaβ(t))
for c ∈ Cd+4, a = 1, 2.

(2.51)

Remark 2.22. We have made the structure of the process (Zt)t∈[0,T ] more flexible accom-
modating time dependence in its coefficients. In fact, under the probability measure Q
the process is affine but it is described by time-dependent characteristics, whereas under
the physical measure P the characteristics are time-independent.

Remark 2.23. We highlight that the parameter K̄0 remains the same even after the
change of measure, i.e. K̄Q

0 = K̄0, and it is a consequence of the fact that H̄0 = 0 which
is the null matrix of dimension ((d+ 4)× (d+ 4)) (see (A.31)).

We rewrite the previous ODEs system (2.50) componentwise:

dα

dt
(t) = −kh(t)− 〈K0, β|d(t)〉 − γ1λ

1
0βd+1(t)− γ2λ

2
0βd+2(t)

dβi
dt

(t) = −k`i −
d∑
j=1

(K1)jiβj(t)−
1

2
β2
i (t) for i = 1, . . . , d

−
(
eδ1βd+1(t)+βd+3(t) − 1

)
(Λ1)i −

(
eδ2βd+2(t)+βd+4(t) − 1

)
(Λ2)i

dβd+1

dt
(t) = γ1βd+1(t)− eδ1βd+1(t)+βd+3(t) + 1

dβd+2

dt
(t) = γ2βd+2(t)− eδ2βd+2(t)+βd+4(t) + 1

dβd+3

dt
(t) = −kc

dβd+4

dt
(t) = kc.

(2.52)

From this we notice that the ODEs system defined by (2.50) is similar to that describ-
ing the discounted Laplace transform in Proposition 2.5 (see (2.16) and (2.17)). It is
a consequence of the fact that the choice of the density process (2.49) is analogous to
that made in (A.30); we have only to change k with −1 and the functions α and β with
φ(t, T, u) and ψ(t, T, u), respectively, for (u, T ) ∈ Cd+4 × R+ such that the discounted
characteristics χd = (K̄, H̄, l1, l2, θ1, θ2, ρ) are well-behaved at (u, T ). Then, since the
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density process defined by (A.30) is employed in the proof of Theorem A.16 (and conse-
quently of Proposition 2.5) the equivalence between the two ODEs systems follows, up
to the stated change.

Proof of Theorem 2.21. We aim at proving that (Lt)t∈[0,T ] is a positive P -martingale
under the required integrability conditions, and therefore may define an equivalent prob-
ability measure Q uniquely determined by the Radon-Nikodym derivative dQ

dP = LT .
For all 0 ≤ t ≤ T

E[|Lt|] = E[Lt] =
1

C
E
[
ek

∫ t
0 r(Zs,s)dseα(t)+〈β(t),Zt〉

]
=

1

C
E
[
ek

∫ t
0 (ρ0(s)+〈ρ1,Zs〉)dseα(t)+〈β(t),Zt〉

]
=

1

C
ek

∫ t
0 ρ0(s)ds+α(t)E

[
ek

∫ t
0 〈ρ1,Zs〉)dse〈β(t),Zt〉

]
.

If we replace the expressions of ρ0(s) and ρ1 made explicit by (2.13), then we obtain

E[Lt] =
1

C
ek

∫ t
0 h(s)ds+α(t)E

[
ek

∫ t
0 (〈`,Zs|d〉+cN1

s−cN2
s )dse〈β(t),Zt〉

]
Since Zt|d = Xt, in order that E[Lt] <∞ we have to verify that

E
[
ek

∫ t
0 (〈`,Xs〉+cN1

s−cN2
s )dse〈β(t),Zt〉

]
<∞ (2.53)

which is exactly the first integrability condition of the Theorem. Then, (Lt)t∈[0,T ] is a
P -martingale if E[Lt|Fs] = Ls for 0 ≤ s ≤ t ≤ T . By applying Itô’s formula we derive
that

Lt − L0 =

∫ t

0
Ls

[
kr(Zs, s) + α′(s) +

〈
β′(s), Zs

〉]
ds

+

∫ t

0
Lsβ(s)>dZcs

+
1

2

∫ t

0
Ls
〈
β(s), σ̄(Zs)σ̄(Zs)

>β(s)
〉
ds+

∑
0<s≤t

∆Ls.

Recalling (2.8) it follows that

Lt − L0 =

∫ t

0
Ls

[
kr(Zs, s) + α′(s) +

〈
β′(s), Zs

〉
+ 〈µ̄(Zs), β(s)〉+

1

2

∥∥∥σ̄(Zs)
>β(s)

∥∥∥2 ]
ds

+

∫ t

0
Lsβ(s)>σ̄(Zs)dWs +

2∑
a=1

∑
0<Tan≤t

(LTan − LTan−),

(2.54)
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where we remind that T an denotes the n-th jump time of the counting process (Na
t )t∈[0,T ].

It follows that

E
[ 2∑
a=1

∑
t<Tan≤s

(LTan − LTan−)

∣∣∣∣Ft] =

= E
[ 2∑
a=1

∑
t<Tan≤s

E
[
LTan − LTan−

∣∣Na
Tan−, T

a
n

]∣∣∣∣Ft]

= E
[ 2∑
a=1

∑
t<Tan≤s

E
[
LTan−

(
e
〈β(Tan ),ζa∆Ja

Tan
〉 − 1

)∣∣∣Na
Tan−, T

a
n

]∣∣∣∣Ft].
The first equality is a consequence of the fact that LTan − LTan− is generated only by
the jump of the process (Na

t )t∈[0,T ] at time T an and, therefore, it does not depend on the
whole history Ft. In the third line we have made the difference LTan −LTan− more explicit.
We use the definition of jump transform:

E
[ 2∑
a=1

∑
t<Tan≤s

(LTan − LTan−)

∣∣∣∣Ft] =

= E
[ 2∑
a=1

∑
t<Tan≤s

LTan−
(
θa(ζaβ(T an ))− 1

)∣∣∣∣Ft]

= E
[ 2∑
a=1

∫ s

t
Lv−

(
θa(ζaβ(v))− 1

)
dNa

v

∣∣∣∣Ft]

= E
[ 2∑
a=1

∫ s

t
Lv−

(
θa(ζaβ(v))− 1

)
λa(Zv)dv

∣∣∣∣Ft]

= E
[ 2∑
a=1

∫ s

t
Lv
(
θa(ζaβ(v))− 1

)
λa(Zv)dv

∣∣∣∣Ft].
The third equality follows from [15] (Theorem T8) because the a-th counting process has
intensity (λ̄a(Zt))t∈[0,T ] and (κt−(θ(ζaψ(t, T, u))− 1))t∈[0,T ] is an Ft-predictable process.
However, in order to apply that theorem for 0 ≤ t ≤ T we have to check that

E
[ 2∑
a=1

∫ t

0
Ls |θa(ζaβ(s))− 1|λa(Zs)ds

]
<∞. (2.55)

If we insert (2.9) in (2.55) it derives that

E
[ ∫ t

0
Ls

( ∣∣∣θ1
(
(0>, δ1βd+1(s), 0, βd+3(s), 0)>

)
− 1
∣∣∣λ1(Zs)

+
∣∣∣θ2
(
(0>, 0, δ2βd+2(s), 0, βd+4(s))>

)
− 1
∣∣∣λ2(Zs)

)
ds

]
<∞,
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where 0 is the null vector of Rd. Then, using (2.12) for the definitions of the jump
transforms θ1 and θ2 and (2.10) for the intensities’ parameters it follows that we have to
verify that

E
[ ∫ t

0
Ls

( ∣∣∣eδ1βd+1(s)+βd+3(s) − 1
∣∣∣ (Λ1Xs + λ̃1

s

)
+
∣∣∣eδ2βd+2(s)+βd+4(s)−1

∣∣∣ (Λ2Xs + λ̃2
s

))
ds

]
<∞,

(2.56)

corresponding to the second integrability condition in the statement of the theorem.
Going back to (2.54), we add and subtract

∑2
a=1

∫ t
0 Ls

(
θa(ζaβ(s))− 1

)
λa(Zs)ds:

Lt − L0 =

∫ t

0
Ls

[
kr(Zs, s) + α′(s) +

〈
β′(s), Zs

〉
+ 〈µ̄(Zs), β(s)〉

+
1

2

∥∥∥σ̄(Zs)
>β(s)

∥∥∥2
+

2∑
a=1

(
θa(ζaβ(s))− 1

)
λa(Zs)

]
ds

+

∫ t

0
Lsβ(s)>σ̄(Zs)dWs

+

2∑
a=1

[ ∑
0<Tan≤t

(LTan − LTan−)−
∫ t

0
Ls
(
θa(ζaβ(s))− 1

)
λa(Zs)ds

]
.

We specify all the affine dependence on (Zt)t∈[0,T ] of the drift parameters and therefore
obtain that

Lt − L0 =

∫ t

0
Ls

[
kρ0(s) + α′(s) + 〈K̄0, β(s)〉

+
〈{

kρ1 + β′(s) + K̄>1 β(s) +
1

2
β(s)>H̄1β(s)

+
(
eδ1βd+1(s)+βd+3(s) − 1

)
l11 +

(
eδ2βd+2(s)+βd+4(s)−1

)
l21

}
, Zs

〉]
ds

+

∫ t

0
Lsβ(s)>σ̄(Zs)dWs

+

2∑
a=1

[ ∑
0<Tan≤t

(LTan − LTan−)−
∫ t

0
Ls
(
θa(ζaβ(s))− 1

)
λa(Zs)ds

]
.

It follows that (Lt)t∈[0,T ] is a martingale because

E
[(∫ t

0
L2
s〈β(s)>σ̄(Zs), β(s)>σ̄(Zs)〉ds

) 1
2

]
= E

[( d∑
i=1

∫ t

0
L2
sβi(s)

2(Xs)ids
) 1

2

]
<∞

and the ODEs system (2.50) is verified.
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Then, from the martingale property of the density process (Lt)t∈[0,T ] we can conclude
that dQ

dP = LT is well-defined and, consequently, an equivalent probability measure Q on
the measurable space (Ω,F) can be determined.

Under the probability measure Q the affine structure of the process (Zt)t∈[0,T ] is pre-
served. It also follows that its characteristics satisfy (2.51) under Q and, consequently,
the admissibility conditions of Assumption A.12 are fulfilled. We can omit these com-
putations because they are analogous to those made in the proof of Theorem A.17. It is
a direct consequence of the fact that the Radon-Nikodym derivative (2.49) is similar to
that defined in Appendix A, as we have already noticed.

Through the density process (Lt)t∈[0,T ] defined by (2.49) we have considered a family
of probability measures parameterized by the constant k and functions α and β which
preserves the affine structure of the process (Zt)t∈[0,T ] and, therefore, of the short rate
model.

After the change of measure the parameters that characterize the affine structure of
(Zt)t∈[0,T ] are modified and our purpose is to analyze them in details. Let

W̄Q
t := W̄t −

∫ t

0
σ̄(Zs)

>β(s)ds for 0 ≤ t ≤ T. (2.57)

By computations analogous to those made in the proof of Theorem A.17 it follows that
(2.57) defines an Rd+4-valued Brownian motion under Q. Then, from (2.8) we can write
the SDE satisfied by (Zt)t∈[0,T ] under the new probability measure Q:

dZt = µ̄Q(Zt, t)dt+ σ̄(Zt)dW̄
Q
t +

2∑
a=1

ζadJ
a
t , Z0 = z0 := (x>0 , λ

1
0, λ

2
0, 0, 0)>, (2.58)

where

µQ(z, t) = K̄Q
0 (t) + K̄Q

1 (t)z = K̄0 + (K̄1 + H̄1β(t))z

=


K0

γ1λ
1
0

γ2λ
2
0

0
0

+


K1 + diag((β1(t), . . . , βd(t))

>) 0 0 0 0
0 −γ1 0 0 0
0 0 −γ2 0 0
0 0 0 0 0
0 0 0 0 0

 z,

because for the definition of H̄1 the non-null elements of the ((d + 4) × (d + 4)) matrix
H̄1β(t) are 〈(H̄1)ii, β(t)〉 = βi(t) for i = 1, . . . , d.

From (2.51) we can compute the Q-intensity process of the jump process (Jat )t∈[0,T ],
for a = 1, 2. It is determined by

λaQ(z, t) = θa
(
ζaβ(t)

)
λa(z).

For a = 1 we obtain that

λ1Q(Zt, t) = eδ1βd+1(t)+βd+3(t)〈l11, Zt〉

= eδ1βd+1(t)+βd+3(t)
(
〈Λ1, Xt〉+ λ̃1

t

)
,
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meanwhile, for a = 2

λ2Q(Zt, t) = eδ2βd+2(t)+βd+4(t)〈l21, Zt〉

= eδ2βd+2(t)+βd+4(t)
(
〈Λ2, Xt〉+ λ̃2

t

)
.

We recall that λ̃at = λa0 + δa
∫ t

0 e
−γa(t−u) dNa

u , for a = 1, 2 (see (2.6)).
We conclude that the affine structure of the model is preserved under the change

of probability measure if the hypotheses of Theorem 2.21 are satisfied. Therefore, the
properties of our framework described in Section 2.2 are unchanged under Q and, as
a consequence, we can obtain an explicit expression for the conditional characteristic
function of the joint process (Zt)t∈[0,T ] under both the physical P and another equivalent
probability measure Q (see Proposition 2.5).

2.4.2 A more general change of measure

To determine a new probability measure equivalent to the physical P we have chosen
the process (Lt)t∈[0,T ] defined in (2.49) as density process since it arises naturally when
we price interest rate derivatives. Now our goal is to generalize that approach. To this
purpose we fix a time horizon T > 0 and introduce the process (ξt)t∈[0,T ] which satisfies
the following SDE

dξt
ξt−

= θ>t dWt + γ1
t dM1

t + γ2
t dM2

t , ξ0 = 1, (2.59)

whereMa
t := Na

t −
∫ t

0 λ
a
sds denotes the compensated counting process, for a = 1, 2, while

(θt)t∈[0,T ], (γ1
t )t∈[0,T ] and (γ2

t )t∈[0,T ] are integrable processes which take values in Rd,
(−1,+∞) and (−1,+∞), respectively. We characterize them in the following Theorem
(see [29] (Theorem 3.2) as a reference)).

Theorem 2.24. Let (θt)t∈[0,T ], (γ1
t )t∈[0,T ] and (γ2

t )t∈[0,T ] be the processes introduced in
(2.59). We suppose that θt = θ(Xt, t) and γat = γa(Zt, t), for a = 1, 2, such that

1.
∫ t

0

〈
θ(Xs, s), θ(Xs, s)

〉
ds <∞ P -a.s.;

2.
∫ t

0 |γ
a(Zs, s)|λasds <∞ P -a.s..

Furthermore, we require that√
diag(Xt)θ(Xt, t) = (KQ

0 (t)−K0) + (KQ
1 (t)−K1)Xt, (2.60)

for functions KQ
0 : [0, T ] → Rd+, K

Q
1 : [0, T ] → Rd×d such that (KQ

1 )ij : [0, T ] → R+ for
i, j = 1, . . . , d with i 6= j, and

γa(t, Zt) :=
(laQ0 (t)− la0) +

〈
(laQ1 (t)− la1), Zt

〉
la0 + 〈la1 , Zt〉

(2.61)



52 CHAPTER 2. THE MODEL

for laQ0 : [0, T ] → R+ and laQ1 : [0, T ] → Rd+4
+ such that for 0 ≤ t ≤ T it is verified that

laQ0 (t) + 〈laQ1 (t), Zt〉 > 0 P -a.s..
If E[ξT ] = 1, then we define the probability measure Q via the Radon-Nikodym deriva-

tive dQ
dP = ξT . It is a probability measure equivalent to P such that it preserves the affine

structure of the short rate model.

Remark 2.25. If Xt does not have null components, then the (d× d) matrix
√

diag(Xt)
is non-singular. Consequently, θ(t,Xt) is completely determined by

θ(Xt, t) :=
(√

diag(Xt)
)−1(

(KQ
0 (t)−K0) + (KQ

1 (t)−K1)Xt

)
,

where −1 indicates the inverse matrix.

Remark 2.26. We point out that (2.61) is well-defined because the denominator is strictly
positive. Indeed, from the definition of Zt given in (2.7) and the intensities’ parameters
(2.10) we deduce that

la0 + 〈la1 , Zt〉 ≥ λ̃at ≥ λa0 > 0.

In addition, rearranging terms in (2.61) we notice that γa(t, Zt) > −1:

γa(Zt, t) =
laQ0 (t) + 〈laQ1 (t), Zt〉

la0 + 〈la1 , Zt〉
− 1 > −1

because laQ0 (t) + 〈laQ1 (t), Zt〉 > 0. In order to get this condition, it is sufficient to assume
that laQ0 : [0, T ] → R++ or (laQ1 )d+a : [0, T ] → R++. If laQ0 is a R++-valued function,
then the assertion is obviously verified. Otherwise, if (laQ1 )d+a : [0, T ]→ R++ then〈

laQ1 (t), Zt
〉
≥ (laQ1 )d+a(t)λ̃

a
t ≥ (laQ1 )d+a(t)λ

a
0 > 0.

In the statement of Theorem 2.24 we have required that (ξt)t∈[0,T ] is a true martingale
under the probability measure P . To have this hypothesis satisfied it is sufficient that

E
[ ∫ T

0
ξ2
s−〈θ(Xs, s), θ(Xs, s)〉ds+

2∑
a=1

∑
0≤s≤T

ξ2
s−(γa(Zs, s))

2∆Na
s

]
<∞. (2.62)

Indeed,

[ξ, ξ]T =[ξ, ξ]cT +
∑

0≤s≤T
(∆ξs)

2

=

∫ T

0
ξ2
s−
〈
θ(Xs, s), θ(Xs, s)

〉
ds+

∑
0≤s≤T

ξ2
s−
(
γ1(Zs, s)∆N

1
s + γ2(Zs, s)∆N

2
s

)2
=

∫ T

0
ξ2
s−
〈
θ(Xs, s), θ(Xs, s)

〉
ds

+
∑

0≤s≤T
ξ2
s−(γ1(Zs, s))

2∆N1
s +

∑
0≤s≤T

ξ2
s−(γ2(Zs, s))

2∆N2
s .
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The last equality is a direct consequence of the fact that the point processes (N1
t )t∈[0,T ]

and (N2
t )t∈[0,T ] do not have common jumps by definition. If (2.62) is verified, then

E
[
[ξ, ξ]T

]
<∞ and, consequently, (ξt)t∈[0,T ] is a square-integrable P -martingale (see [55]

(Chapter II, Corollary 3)).

Proof of Theorem 2.24. From [55] (Section II, Theorem 37) we deduce that the unique
solution of the SDE (2.59) is

ξt =e
∫ t
0 θ(Xs,s)

>dWs+
∫ t
0 γ

1(Zs,s)dM1
s+

∫ t
0 γ

2(Zs,s)dM2
s− 1

2

∫ t
0 〈θ(Xs,s),θ(Xs,s)〉ds∏

0<s≤t

(
1 + γ1(Zs, s)∆N

1
s + γ2(Zs, s)∆N

2
s

)
e−γ

1(Zs,s)∆N1
s−γ2(Zs,s)∆N2

s

=e
∫ t
0 θ(Xs,s)

>dWs−
∫ t
0 γ

1(Zs,s)λ1sds−
∫ t
0 γ

2(Zs,s)λ2sds− 1
2

∫ t
0 〈θ(Xs,s),θ(Xs,s)〉ds∏

0<s≤t

(
1 + γ1(Zs, s)∆N

1
s + γ2(Zs, s)∆N

2
s

)
.

(2.63)

Hence, we infer that ξt > 0 because γa(Zt, t) > −1 and ∆Na
t ∈ {0, 1}, for 0 ≤ t ≤ T

and a = 1, 2. We conclude that (ξt)t∈[0,T ] is a positive P -local martingale and, as a
consequence of Fatou’s lemma, it is a supermartingale. Therefore, (ξt)t∈[0,T ] is a true
martingale because E[ξT ] = 1. It follows that dQ

dP = ξT is well-defined and a new proba-
bility measure Q on the measurable space (Ω,F) can be determined.

Now, our purpose is to study how this change of measure reflects on the parameters
which characterize the model. Let

W̄Q
t := Wt −

∫ t

0
θ(Xs, s)ds for 0 ≤ t ≤ T. (2.64)

For Girsanov’s theorem it is a Q-Brownian motion on Rd. Then, from (2.2) it follows
that the SDE satisfied by the process (Xt)t∈[0,T ] under the probability measure Q is

dXt =
(
µ(Xt) +

√
diag(Xt)θ(Xt, t)

)
dt+

√
diag(Xt)dW

Q
t

=
(
KQ

0 (t) +KQ
1 (t)Xt

)
dt+

√
diag(Xt)dW

Q
t ,

(2.65)

where the second equality is a consequence of (2.60). We can conclude that (Xt)t∈[0,T ] is
an affine diffusion under Q where the time-dependent drift is represented by

µQ(x, t) = KQ
0 (t) +KQ

1 (t)x.

The hypotheses in the statement of the Theorem on the functions KQ
0 : [0, T ]→ Rd+ and

KQ
1 : [0, T ]→ Rd×d guarantee that the admissibility conditions of Assumption A.12 are

fulfilled.
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To analyse the Q-intensity of the counting process (Na
t )t∈[0,T ] for a = 1, 2 we refer to

[38] (Section III, Theorem 3.11). It follows that

MaQ
t = Ma

t −
∫ t

0

1

ξs−
d〈ξ,Ma〉s

=
(
Na
t −

∫ t

0
λasds

)
−
∫ t

0
γasλ

a
sds

= Na
t −

∫ t

0
λas
(
1 + γa(Zs, s)

)
ds

is a Q-local martingale. Then, by the martingale characterization of intensity (see [15]
(Chapter II, Theorem T9)) we derive that

λaQt =
(
1 + γa(Zt, t)

)
λat

=

(
laQ0 (t) + 〈laQ1 (t), Zt〉

λat

)
λat = laQ0 (t) +

〈
laQ1 (t), Zt

〉
is the intensity associated to (Na

t )t∈[0,T ] under the probability measure Q. We observe
that the positivity of the Q-intensity process, i.e. λaQt > 0 for 0 ≤ t ≤ T and a = 1, 2, is
guaranteed by the hypotheses of the Theorem.

Computations similar to those in the proof of Theorem 2.4 show thatQ is a probability
measure which preserves the affine structure of the short rate model. This means that
under the measure Q the (d+4)-dimensional process (Zt)t∈[0,T ] is an affine jump-diffusion
process satisfying the SDE

dZt = µ̄Q(Zt, t)dt+ σ̄(Zt)dW̄
Q
t +

2∑
a=1

ζadJ
a
t , Z0 = z0 := (x>0 , λ

1
0, λ

2
0, 0, 0)>, (2.66)

where (W̄Q
t )t∈[0,T ] denotes the Brownian motion on Rd+4 for which W̄Q

t |d = WQ
t that

is defined in (2.64), and the remaining components are identified with independent uni-
dimensional Brownian motions (W i

t )t∈[0,T ], for i = 1, . . . , 4.
For every z ∈ Rd+2

+ × N2 we identify

µQ(z, t) = K̄Q
0 (t) + K̄Q

1 (t)z =


KQ

0 (t)
γ1λ

1
0

γ2λ
2
0

0
0

+


KQ

1 (t) 0 0 0 0
0 −γ1 0 0 0
0 0 −γ2 0 0
0 0 0 0 0
0 0 0 0 0

 z

and for a = 1, 2 the intensity of the jump process (Jat )t∈[0,T ] is determined by

λaQ(z, t) = laQ0 (t) +
〈
laQ1 (t), z

〉
.
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2.4.3 Comparison between the two density processes

Since we have discussed about two changes of measure, we aim at comparing the two
proposed Radon-Nikodym derivatives through which we have defined the probability
measures Q equivalent to the physical one P . We recall that the process (ξt)t∈[0,T ]

satisfies
dξt
ξt−

= θ(Xt, t)
>dWt + γ1(Zt, t)dM

1
t + γ2(Zt, t)dM

2
t , ξ0 = 1.

On the other hand, from the definition of (Lt)t∈[0,T ] given in (2.49) using Itô’s formula
we obtain that

dLt
Lt−

=
(
krt + α′(t) + 〈β′(t), Zt〉+ β(t)>K̄0 + β(t)>K̄1Zt +

1

2
〈β(t), σ̄(Zt)σ̄(Zt)

>β(t)〉
)

dt

+ β(t)>σ̄(Zt)dW̄t +
(
e〈β(t),∆Zt〉 − 1

)
dN1

t +
(
e〈β(t),∆Zt〉 − 1

)
dN2

t

=
(
−
(
θ1(ζ1β(t))− 1

)〈
l11, Zt

〉
−
(
θ2(ζ2β(t))− 1

)〈
l21, Zt

〉)
dt

+ β(t)>σ̄(Zt)dW̄t +
(
eδ1βd+1(t)+βd+3(t) − 1

)
dN1

t +
(
eδ2βd+2(t)+βd+4(t) − 1

)
dN2

t ,

where the second equality is a consequence of the ODEs system (2.50). Computing the
jump transforms θ1 and θ2 it follows that

dLt
Lt−

= β(t)>σ̄(Zt)dW̄t+
(
eδ1βd+1(t)+βd+3(t)−1

)
dM1

t +
(
eδ2βd+2(t)+βd+4(t)−1

)
dM2

t , L0 = 1.

To connect the two Radon-Nikodym derivatives it is sufficient to compare the SDEs that
define them since they have the same initial value and satisfy the conditions of Theorem
117 of [57] which guarantees the pathwise uniqueness of SDEs’ solutions. Consequently,
if for 0 ≤ t ≤ T we consider the following equivalences

θ(Xt, t) =

β1(t)
√

(Xt)1

. . .

βd(t)
√

(Xt)d


γ1(Zt, t) = γ1(t) = eδ1βd+1(t)+βd+3(t) − 1

γ2(Zt, t) = γ2(t) = eδ2βd+2(t)+βd+4(t) − 1,

then we relate the change of measure characterized by the density process (ξt)t∈[0,T ] to
the exponentially affine one defined by the Radon-Nikodym derivative dQ

dP = LT .

2.5 Fitting the initial term structure

In this section we will define the deterministic function h : R+ → R introduced in
equation (2.5). Proceeding similarly as in Brigo & Mercurio [17] we will find the exact
expression of h in order to fit the term structure of interest rates observed at time t = 0.

We suppose that Q is a risk-neutral measure equivalent to P such that dP
dQ = ξT

for the density process (ξt)t∈[0,T ] characterized by the dynamics (2.59) for a fixed time
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horizon T > 0. The measure Q is chosen in such a way that the affine structure of the
model is preserved.

We denote the theoretical price at time t of a zero coupon bond with maturity date
Tm ≤ T and unit face value by p(t, Tm) so that

p(t, Tm) = EQ
[
e−

∫ Tm
t r(Zs,s)ds

]
.

If we suppose that the discounted characteristics χdQ = (K̄Q, H̄Q, lQ, θQ, ρ) are well-
behaved at (0, Tm) ∈ Rd+4 × [0, T ], then from Theorem A.16 it follows that

p(t, Tm) = EQ
[
e−

∫ Tm
t r(Zs,s)ds

]
= eφ(t,Tm,(0)+〈ψ(t,Tm,(0),Zt〉 =: Π(t, Tm, Zt),

where Π : Rd+4
+ ×N2 → R+ is a C1-function because so are φ and ψ. We recall that the

function φ is defined by

φ(t, Tm, 0) =−
∫ Tm

t
h(s)ds+

∫ Tm

t
〈K̄Q

0 (s), ψ(s, Tm, 0)〉ds

+
1

2

∫ Tm

t

〈
ψ(s, Tm, 0), H̄Q

0 (s)ψ(s, Tm, 0)
〉
ds (2.67)

+
2∑

a=1

∫ Tm

t
laQ0 (s)

(
θaQ(ζaψ(s, Tm, 0), s)− 1

)
ds,

whereas ψ verifies

dψ

dt
(t, Tm, 0) =(`>, 0, 0, c,−c)> −

(
K̄Q

1 (t)
)>
ψ(t, Tm, 0)

− 1

2
ψ(t, Tm, 0)>H̄Q

1 (t)ψ(t, Tm, 0)−
2∑

a=1

laQ1 (t)
(
θaQ(ζaψ(t, Tm, 0), t)− 1

)
,

ψ(T ) =0.

We assume that the term structure which is currently observed in the market is given
by the C1-function pM (0, ·) : R+ → R+ such that t → pM (0, t). In order to identify
h we require that the initial term structure matches the term structure of interest rate
observed in the market, therefore the following equality is required to hold:

pM (0, t) = Π(0, t, Z0) for 0 ≤ t ≤ T. (2.68)

We take into account that a new short rate model is defined considering (r̃t)t∈[0,T ] in
place of (rt)t∈[0,T ], where rt − r̃t = h(t). It follows that

p̃(t, Tm) = EQ
[
e−

∫ Tm
t r̃(Zs,s)ds

]
= eφ̃(t,Tm,0)+〈ψ̃(t,Tm,0),Zt〉 = Π̃(t, Tm, Zt)
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for ψ̃ : [0, Tm] → Rd+4 such that ψ̃(t, Tm, 0) = ψ(t, Tm, 0) and φ̃ : [0, Tm] → R which is
determined by

φ̃(t, Tm, 0) =

∫ Tm

t
〈K̄Q

0 (s), ψ(s, Tm, 0)〉ds+
1

2

∫ Tm

t

〈
ψ(s, Tm, 0), H̄Q

0 (s)ψ(s, Tm, 0)
〉
ds

+
2∑

a=1

∫ Tm

t
laQ0 (s)

(
θaQ(ζaψ(s, Tm, 0), s)− 1

)
ds.

Looking at (2.67) it follows that φ̃(t, Tm, 0)−φ(t, Tm, 0) =
∫ Tm
t h(s)ds for all 0 ≤ t ≤ Tm.

In order to verify (2.68) we derive that

pM (0, t) = Π(0, t, Z0) = EQ
[
e−

∫ t
0 r(Zs,s)ds

]
= e−

∫ t
0 h(s)dsEQ

[
e−

∫ t
0 r̃(Zs,s)ds

]
= e−

∫ t
0 h(s)dsΠ̃(0, t, Z0).

By taking the logarithm of both members the previous equality becomes

log
(
pM (0, t)

)
= −

∫ t

0
h(s)ds+ log

(
Π̃(0, t, Z0)

)
= −

∫ t

0
h(s)ds+ φ̃(0, t, Z0) + 〈ψ(0, t, Z0), Z0〉.

(2.69)

Lastly, adopting the notation of [17] (Section 2) for a maturity 0 ≤ t ≤ T we define by
f̃(0, t) and fM (0, t) the instantaneous forward rates at time 0 associated respectively to
the bond prices p̃(0, t) and pM (0, t), that is

f̃(0, t) := −d(log p̃)

dt
(0, t) = −d(log Π̃)

dt
(0, t, Z0) = −φ̃′(0, t, 0)−

〈
ψ′(0, t, 0), Z0

〉
fM (0, t) := −d(log pM )

dt
(0, t)

If we differentiate (2.69) and employ previous definitions, then

−fM (0, t) = −h(t)− f̃(0, t).

We conclude that the model fits the term structure observed at time t = 0 if and only if
it holds that

h(t) =fM (0, t)− f̃(0, t)

=fM (0, t) + φ̃′(0, t, 0) +
〈
ψ′(0, t, 0), Z0

〉
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Substituting the exact expression of the derivatives of φ̃ and ψ:

h(t) =fM (0, t)−
〈
K̄Q

0 (0), ψ(0, t, 0)
〉
− 1

2

〈
ψ(0, t, 0), H̄Q

0 (0)ψ(0, t, 0)
〉

−
2∑

a=1

laQ0 (0)
(
θaQ(ζaψ(0, t, 0), 0)− 1

)
+
〈
`,X0

〉
−
〈(
K̄Q

1 (0)
)>
ψ(0, t, 0), Z0

〉
− 1

2

〈
ψ(0, t, 0)H̄Q

1 (0)ψ(0, t, 0), Z0

〉
−

2∑
a=1

laQ1 (0)
(
θa(ζaψ(0, t, 0), 0)− 1

)
.
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Simulations

We recall that the short rate process is defined by (2.5):

rt = h(t) + SLBt + 〈`,Xt〉 for all t ≥ 0.

We intend to simulate this process by means of the software Matlab in order to investigate
the empirical behavior of our short rate model. To reduce the computation time we
consider a one-dimensional diffusion process (Xt)t≥0 and set h(t) = 0 for all t ≥ 0 for
convenience. It follows that

rt = c(N1
t −N2

t ) + `Xt.

Let T > 0 be a fixed time horizon. We intend to replicate the short rate process over
the time interval [0, T ] simulating the diffusion process (Xt)t∈[0,T ] by means of a simple
recursive method and the bi-dimensional point process (Nt)t∈[0,T ] characterized by the
intensity function (λt)t∈[0,T ] determined by (2.3), i.e.

λat = λa0 + 〈Λa, Xt〉+ δa

∫ t

0
e−γa(t−u) dNa

u , for a = 1, 2.

3.1 The discretization schemes for the affine diffusion pro-
cess

The SDE which defines the dynamics of the R+-valued affine diffusion (Xt)t∈[0,T ] is
represented by (2.2), that is

dXt = (K0 +K1Xt)dt+
√
XtdWt, X0 = x0.

In the following we will simulate the paths of this process discretizing the time interval
[0, T ] and simulating its dynamics. In other words, we will only generate the process
for a finite number of times 0 = t0 < t1 < . . . < tn = T that is the partition of
[0, T ] into segments of the same length ∆t, i.e. ti = iT

n for each i = 0, . . . , n. Doing

59
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so, we approximate the continuous-time process (Xt)t∈[0,T ] by a discrete-time process
introducing errors into the simulation result. It follows that a large number of time steps
may be needed to reduce errors to an acceptable level, thus increasing the computation
time. Even if its convergence rate is slow we use a discretization scheme because it is
simple, direct and easy to implement.

The natural way to simulate the affine diffusion is the Euler method which is deter-
mined by the following recursive scheme:

Xti = Xti−1 + (K0 +K1Xti−1)∆t+
√
Xti−1(Wti −Wti−1) for i = 1, . . . , n

Xt0 = x0.

Nevertheless, the Euler scheme is not well-defined because it can lead to negative values
for which the square root is not defined. To correct this problem Delbaen & Deelstra
[22] consider the following scheme:

Xti = Xti−1 + (K0 +K1Xti−1)∆t+
√
X+
ti−1

(Wti −Wti−1) for i = 1, . . . , n

Xt0 = x0,

while Lord et al. in [50] propose the full truncation scheme:

Xti = Xti−1 + (K0 +K1X
+
ti−1

)∆t+
√
X+
ti−1

(Wti −Wti−1) for i = 1, . . . , n

Xt0 = x0.

Doing so, the schemes may take negative values but they are still well-defined because of
the positive part. Another modification of the Euler method is the implicit Euler scheme
proposed by Brigo & Alfonsi in [16]:

Xti = Xti−1 +
(
K0 +K1Xti −

1

2

)
∆t+

√
Xti(Wti −Wti−1) for i = 1, . . . , n

Xt0 = x0.

We see that
√
Xti appears as a root of a second degree polynomial. The scheme is

well-defined when n is large enough and K0 ≥ 1
2 . For i = 1, . . . , n it holds that

Xti =

(
(Wti−Wti−1 )+

√
(Wti−Wti−1 )2+4(Xti−1+(K0− 1

2 )∆t)(1−K1∆t)

2(1−K1∆t)

)2

. (3.1)

In [2] Alfonsi has proposed another implicit scheme that is obtained from

√
Xti =

√
Xti−1 +

(
K0 − 1

4

2
√
Xti

+
K1

2

√
Xti

)
∆t+

1

2
(Wti −Wti−1) for i = 1, . . . , n

Xt0 = x0.
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Multiplying by
√
Xti we observe that

√
Xti is a root of a second degree polynomial

function. If K0 ≥ 1
4 and n is large enough we get the following value

Xti =

(
1
2 (Wti−Wti−1 )+

√
Xti−1+

√
( 1
2 (Wti−Wti−1 )+

√
Xti−1 )2+4(1−K1

2
∆t)

K0−1/4
2

∆t

2(1−K1
2

∆t)

)2

.

Another discretization method is represented by the Milstein scheme:

Xti =
(√

Xti−1 +
1

2
(Wti −Wti−1)

)2
+
(
K0 −

1

4
+K1Xti−1

)
∆t for i = 1, . . . , n

Xt0 = x0.

This scheme is well-defined only for K1 ≥ 0 and K0 ≥ 1
4 . The following scheme studied

in [2] can be seen as a correction to the Milstein scheme:

Xti =

((
1 + K1

2 ∆t
)√

Xti−1 +
(Wti−Wti−1 )

2(1+
K1
2

∆t)

)2

for i = 1, . . . , n

Xt0 = x0.

It is defined for K0 ≥ 1
4 and for n large enough.

In all the above proposed schemes the Brownian increments (Wti −Wti−1) are inde-
pendent, normally distributed with zero mean and standard deviation equal to

√
∆t, for

every i = 1, . . . , n. Therefore, in the Matlab code each of them will be generated by a
random variable U∼N (0,

√
∆t).

3.2 The Ogata’s algorithm

To simulate the bi-dimensional counting process (Nt)t∈[0,T ] we consider an algorithm
given for past-dependent point processes and introduced by Ogata in [53]. This method
is based on the thinning algorithm which was developed by Lewis and Shedler in [49]
for the simulation of non-homogeneous Poisson processes and relies on the following
fundamental result (see [53] (Proposition 1)).

Lemma 3.1. Consider the bi-dimensional point process (Nt)t∈[0,T ] =
(
(N1

t , N
2
t )>
)
t∈[0,T ]

on the time interval [0, T ] with intensity (λt)t∈[0,T ]. Suppose we can find a one-dimensional
Ft-predictable process (λ∗t )t∈[0,T ] satisfying

λ1
t + λ2

t ≤ λ∗t P -a.s. for 0 ≤ t ≤ T.

We introduce the one-dimensional point process (N∗t )t≥0 characterized by the intensity
(λ∗t )t∈[0,T ] and define

λ0
t := λ∗t − λ1

t − λ2
t for 0 ≤ t ≤ T.

Let t∗1, . . . , t
∗
NT ∗ ∈ (0, T ] be the jump times of the process (N∗t )t≥0. To each of them we

give a mark a = 0, 1, 2 with probability
λa
t∗
j

λ∗
t∗
j

, j = 1, . . . , NT ∗. Then the times with marks

a = 1, 2 provide a bivariate point process (Ñt)t∈[0,T ] such that

Ñt = Nt P -a.s. for 0 ≤ t ≤ T.
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We are going to construct an algorithm based on this Lemma. The intuition is to
generate a faster Poisson process and remove jump times probabilistically so that the
remaining times are characterized by the intensity (λt)t≥0 =

(
(λ1
t , λ

2
t )
>)

t≥0
determined

by (2.3).

Algorithm 3.1. Simulation of the bivariate point process (Nt)t∈[0,T ].

Data: model’s parameters, xmax and T
Result: jumps times τ1 = {T 1

1 , . . . , T
1
n1} and τ2 = {T 2

1 , . . . , T
2
n2}

Initialize n1 = n2 = m = 0, s0 = 0, τ1 = τ2 = ∅ ;
while sm < T do

λ1∗
sm = λ1

0 + 〈Λ1, xmax〉+ δ1
∑

s∈τ1 e
−γ1(sm−s) + δ1;

λ2∗
sm = λ2

0 + 〈Λ2, xmax〉+ δ2
∑

s∈τ2 e
−γ2(sm−s) + δ2;

λ∗sm = λ1∗
sm + λ2∗

sm ;
U ∼ Unif [0, 1] ;
w = − log(U)

λ∗sm
;

sm+1 = sm + w ;
D ∼ Unif [0, 1] ;

if D ≤
λ1sm+1

+λ2sm+1

λ∗sm
then

if λ1
sm+1

≥ Dλ∗sm then
n1 = n1 + 1 ;
τ1 = τ1 ∪ {sm+1};

else
n2 = n2 + 1;
τ2 = τ2 ∪ {sm+1};

end
else

nothing;
end
m = m+ 1;

end

The algorithm provides two times’ lists τ1 = {T 1
1 , . . . , T

1
n1} and τ2 = {T 2

1 , . . . , T
2
n2}

composed by the jump times of the components of the simulated counting process
(Nt)t∈[0,T ]. As input data we supply the time interval [0, T ] that we are considering
for the simulation and the model’s parameters that uniquely identify the point process.
In addition, we have to supply the Rd+-valued constant xmax that represents the max-
imum value assumed by the affine process (Xt)t∈[0,T ]. It is the output of a previous
simulation in which the Euler discretization method is used.

Remark 3.2. We compute xmax in a previous simulation because of the definition of the
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intensity process (λat )t∈[0,T ]. In other words, for a = 1, 2

λat = λa0 + 〈Λa, Xt〉+ δa
∑

0<Tan≤t
e−(t−Tan ),

where the sum is over the jump times in the interval (0, t]. Let 0 < T̄ an < T̄ an+1 be two
consecutive jump times of the a-component process. Then, on [T̄ an , T̄

a
n+1) the intensity

λat is composed by a constant, a random scalar product and a monotonically decreasing
time function:

max
t∈[T̄an ,T̄

a
n+1)

λat = λa0 + max
t∈[T̄an ,T̄

a
n+1)
〈Λa, Xt〉+ δa

∑
0<Tan≤T̄an

e−(T̄an−Tan ).

It follows that we have to compute xmax at an earlier time in order to correctly define
(λ∗t )t≥0 as in Lemma 3.1.

For the initialization we have to look at the counters n1 and n2 for the number of
jumps made by (N1

t )t∈[0,T ] and (N2
t )t∈[0,T ] and the counterm which describes the number

of simulated jumps. Let s0 be the first jump time. It will symbolize the candidate jump
time. The sets τ1 and τ2 in which the jumps of (Nt)t∈[0,T ] are stored are empty at the
beginning since there have not occurred any jumps at the start of the simulation.

The algorithm generates new candidate jumps sm as long as sm < T , so as long as
the m-th candidate jump time is not bigger than the final time of the considered interval
[0, T ]. At each cycle to generate a jump time the algorithm simulates an homogeneous
Poisson process characterized by the intensity λ∗sm . Then, the new inter-arrival time
w is identified by the first jump time of that Poisson process and therefore the new
candidate jump time is equal to the old value plus the generated inter-arrival time, i.e.
sm+1 = sm + w. Then, by means of the result stated in Lemma 3.1 we can verify if the
candidate time sm+1 has to be rejected or accepted. If so, it represents the new jump
times of the point process (Nt)t∈[0,T ] and therefore has to included in τ1 or τ2.

Generating an uniform variable D we check if the jump time sm+1 corresponds to a
jump of (Nt)t∈[0,T ]. If

D ≤
λ1
sm+1

+ λ2
sm+1

λ∗sm
,

then the generated time belongs to the point process (Nt)t∈[0,T ]. In other words, employ-
ing the notation of Lemma 3.1 the mark a = 1 or a = 2 is assigned to sm+1. In order to
understand which mark belongs to the time sm+1, that is to which component process it
belongs, we have to find ā ∈ {1, 2} such that

ā−1∑
a=1

λasm+1
< Dλ∗sm ≤

ā∑
a=1

λasm+1

and therefore assign the jump time sm+1 to the component process (N ā
t )t∈[0,T ]. We raise

its counter nā. We also have to raise the general counter m which numbers the candidate
jump times that we have analysed.
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We start the cycle over again as long as the last candidate time sm < T . If sm ≥ T
the simulation is finished. The only thing we have to do is to check whether the last
found jump time is bigger than T .

Remark 3.3. We note that in the first cycle we generate the first point of an homogeneous
Poisson process characterized by the intensity λ∗s0 . Then, in the second one the intensity
value is λ∗s1 and a new homogeneous Poisson process is generated, and so on. In this way
we do not simulate an homogeneous Poisson process on the whole time interval [0, T ] but
in each cycle we generate a new homogeneous Poisson process which is independent from
the previous Poisson process. Therefore, we simulate a non-homogeneous Poisson process
on [0, T ] (see [15] (Chapter II, Theorem T5)). This counting process is characterized by
the intensity process (λ∗t )t∈[0,T ] defined by

λ∗t = λ∗sm if sm ≤ t < sm+1.

It satisfies

λ1
t + λ2

t ≤ λ∗t P -a.s. for 0 ≤ t ≤ T,

where
(
(λ1
t , λ

2
t )
>)

t∈[0,T ]
is the intensity which defines

(
(N1

t , N
2
t )>
)
t∈[0,T ]

.

3.3 Running the simulations

Based on the Algorithm 3.1 a Matlab code has been written to simulate the stochastic
lower bound (SLBt)t∈[0,T ] and then the short rate process (rt)t∈[0,T ] in order to give an
intuition on how the parameters influence the model’s structure. The code can be found
in Appendix C.

3.3.1 Simulation of the lower bound

We fix a small time interval [0, 10] in which simulations are performed and consider that
the counting process (Nt)t∈[0,T ] is a pure bivariate Hawkes process. In other words, the
parameters Λ1 = Λ2 = 0 and therefore the affine diffusion process do not influence the
intensity vector which is simply defined by λat = λa0 + δa

∫ t
0 e
−γa(t−s)dNa

s , for a = 1, 2.
We recall that

SLBt = c(N1
t −N2

t ).

For the parameters’ choice λ1
0 = λ2

0 = 0.1, δ1 = 0.2, δ2 = 0.8, γ1 = γ2 = 0.6 and c = 0.1
a path of (SLBt)t∈[0,10] is shown in Figure 3.1.
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Figure 3.1: Path of (SLBt)t∈[0,10] for the intensities λ1
t = 0.1 + 0.2

∫ t
0 e
−0.6(t−s)dN1

s ,
λ2
t = 0.1 + 0.8

∫ t
0 e
−0.6(t−s)dN2

s .

Although Figure 3.1 performs only a simulation, we can observe that as soon as a
jump occurs in the second component process (N2

t )t∈[0,10] representing downward jumps,
then a cluster of downward jumps comes in succession. This feature is not so clear
in the first component (N1

t )t∈[0,10] and this difference is due to the parameter δ which
determines the scale of the positive influence of past jumps. Since δ1 < δ2, then a jump of
the second component process has more impact on the intensity (λ2

t )t∈[0,T ] with respect
to a jump of the first component on (λ1

t )t∈[0,T ].

Figure 3.2: Path of (SLBt)t∈[0,10] for the intensities λ1
t = 0.1 + 0.2

∫ t
0 e
−0.6(t−s)dN1

s ,
λ2
t = 0.1 + 0.8

∫ t
0 e
−1.2(t−s)dN2

s .
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To investigate the meaning of the parameter γ we run another simulation considering
c = 0.1, λ1

0 = λ2
0 = 0.1, δ1 = 0.2, δ2 = 0.8, γ1 = 0.6 and γ2 = 1.2. With respect to

the first parameters’ choice γ2 is doubled. If we compare the second component process
drawn in Figure 3.1 with respect to the one represented in Figure 3.2, then we distinctly
notice that in the second figure the cluster effect of (N2

t )t∈[0,10] is less evident. In fact,
in the second simulation the decay effect controlled by the parameter γ2 is amplified .

3.3.2 Model’s simulation

The purpose of this section is to investigate how our short rate model behaves in com-
parison to the time series of the EONIA and ECB deposit facility rates that are shown
in Figure 1.1. In order to do this we fix the parameter c = 0.1 since the deposit facility
rates moves by multiples of 10 basis points. To lower the computation time we focus on
a restricted time period, namely from 2 January 2014 to 31 December 2019 since this
period is characterized by negative rates. In the following those dates will be identified
by Tmin and Tmax, respectively.

Firstly, we set Λ1 = Λ2 = 0 and simulate the short rate process (rt)t∈[Tmin,Tmax], i.e.

rt = SLBt + 0.9 ·Xt,

and (SLBt)t∈[Tmin,Tmax] that is described by the bivariate counting process identified by
the following intensities

λ1
t = 0.0001 + 0.00001

∫ t

0
e−20(t−s)dN1

s ,

λ2
t = 0.004 + 0.00001

∫ t

0
e−20(t−s)dN2

s .

We set δa = 0.00001 and γa = 20, for a = 1, 2, in order to reduce the jumps’ positive
influence on the intensity value and increase the decay effect since in the reference time
interval [Tmin, Tmax] the ECB deposit facility rate does not change frequently. In addi-
tion, λ1

0 < λ2
0 because the ECB deposit facility rate is decreased in four points in time

from 2 January 2014 to 31 December 2019, and never increased.
To reproduce the paths of the affine diffusion process (Xt)t∈[Tmin,Tmax] we employ the

discretization scheme described in (3.1) with discretization step ∆t = 0.1. We use it
since in [2] Alfonsi shows that this scheme converges strongly, i.e.

lim
n→0

E
[

max
0≤i≤n

|X̄ti −Xti |
]

= 0,

where X̄ti defines the approximation of Xti by means of the scheme (3.1). We consider
the following dynamics

dXt = (0.5− 0.01 ·Xt)dt+
√
XtdWt, X0 = 0.169.

We choose the parameter K0 = 0.5 since the discretization scheme (3.1) is well-defined
only for K0 ≥ 0.5 and the parameter K1 = −0.01 in order to ensure mean reversion of
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the affine diffusion. We highlight that from this coefficients’ choice it follows that the
zero value is precluded because 2 · K0 = 1 (see for example [1] (Proposition 1.2.15)),
and therefore rt > SLBt for all Tmin ≤ t ≤ Tmax. This is because in the reference time
interval the EONIA rate is always greater than the ECB deposit facility rate. Lastly, the
initial value X0 is set equal to 0.169 in order that

r0 = SLB0 + 0.9 ·X0 = 0.9 · 0.169 = 0.152.

That is, the initial value of the simulated short rate process (rt)t∈[Tmin,Tmax] matches
the EONIA rate observed at date 2 January 2014 which is the first point in time of our
reference interval [Tmin, Tmax].

The results of the simulation are shown in Figure 3.3.

Figure 3.3: Paths of (rt)t∈[Tmin,Tmax] and (SLBt)t∈[Tmin,Tmax] for the intensities
λ1t = 10−4 + 10−5

∫ t

0
e−20(t−s)dN1

s , λ2t = 4 · 10−3 + 10−5
∫ t

0
e−20(t−s)dN2

s .

First of all, Figure 3.3 shows that the model works correctly since it can reproduce
negative rates and the stochastic lower bound (SLBt)t∈[Tmin,Tmax] provides a floor for the
short rate (rt)t∈[Tmin,Tmax]. In addition, their distance is almost constant around 20 basis
points in 2014, whereas from 2015 onward it shrinks, and this reflects the real behaviour
of the EONIA and ECB deposit facility rates observed in Figure 1.1. Nevertheless,
the model does not fit the market values correctly because we did not have calibrate the
model’s parameters since it is outside the scope of this Thesis. The aim of this simulation
is simply to give some visual evidence and intuition of the features which characterize
the model that we have introduced.

Now, we set Λ1 = 0.01 and Λ2 = 0.1. We choose these parameters so that the values
assumed by the intensities (λ1

t )t∈[Tmin,Tmax] and (λ2
t )t∈[Tmin,Tmax] do not become too high.

For the same reason we modify the parameters λ1
0 = 0.00001 and λ2

0 = 0.0004. Then,



68 CHAPTER 3. SIMULATIONS

the jump intensities become

λ1
t = 0.00001 + 0.01 ·Xt + 0.00001

∫ t

0
e−20(t−s)dN1

s ,

λ2
t = 0.0004 + 0.1 ·Xt + 0.00001

∫ t

0
e−20(t−s)dN2

s .

We perform another simulation and the results are plotted in Figure 3.4.

Figure 3.4: Paths of (rt)t∈[Tmin,Tmax] and (SLBt)t∈[Tmin,Tmax] for the intensities
λ1t = 10−5 + 10−2Xt + 10−5

∫ t

0
e−20(t−s)dN1

s , λ2t = 4 · 10−4 + 10−1Xt + 10−5
∫ t

0
e−20(t−s)dN2

s .



Conclusions

The aim of this Thesis was to propose a new affine term structure model able to provide
a short rate bounded from below by a randomly varying level. This stochastic lower
bound is allowed to take negative values since negative rates can be rightfully regarded
as the most relevant feature of financial markets in the post-crisis environment.

Under the physical probability measure P we have introduced our short rate model
and given suitable admissibility conditions in order to get an affine model, as it is stated
in Theorem 2.4. We have analysed that the affine nature allows for a great analytical
tractability proving the validity of the affine transform formula for the functions φ and
ψ solving the generalized Riccati ODEs (2.16) and (2.17). Since the affine nature of
our framework may be lost under a change of measure from the physical P to a risk-
neutral probability measure Q, we studied some sufficient conditions under which the
affine structure is preserved.

To investigate the empirical behavior of our model we have simulated the short rate
process. We studied how to approximate the continuous-time affine diffusion (Xt)t≥0 by
a recursive scheme, whereas to simulate the bi-dimensional counting process (Nt)t≥0 we
considered the Ogata’s algorithm.

In the results of the simulations plotted in Figure 3.3 and Figure 3.4 we have remarked
that our short rate model does not correctly fit the real market values of the EONIA and
ECB deposit facility rates. Precisely, the spiky jumps that characterizes the historical
behaviour of the EONIA rate (see Figure 1.1) are not replicated by our model since we
have specified the macroeconomic factors (Xt)t≥0 as an affine diffusion on Rd+. In order
to overcome this limit we can allow the presence of jumps on (Xt)t≥0.

In the one-dimensional case we can generalize our affine short rate model considering
that the macroeconomic factors follow an α-CIR process for the parameter 1 < α ≤ 2,
that is

dXt = (K0 +K1Xt)dt+
√
XtdWt + σ α

√
Xt−dZt, X0 = x0,

where K0 ∈ R+, K1 ∈ R, σ ∈ R+ and (Zt)t≥0 is a compensated spectrally positive
α-stable Levy process, independent of the Brownian motion (Wt)t≥0. The α-CIR process
is the natural extension of the affine diffusion process employed in our model; adding a
jump part driven by the α-stable Lévy process we introduce a jump behavior on (Xt)t≥0.
In [42] Jiao et al. study this process and its properties and prove that it is an affine
process. Therefore with this generalization the affine structure of our short rate model
is preserved and therefore the results discussed in the Thesis can be adapted in order to
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study a more general setting presenting a good balance between analytical tractability
and flexibility.



Appendix A

Mathematical tools

In this appendix we introduce basic definitions and results that we use in the whole
dissertation for the study of affine jump-diffusion processes. First of all, we set a common
notation and terminology giving a brief description of point processes, analyzing in detail
Hawkes processes. Then we introduce jump-diffusions and discuss the generalized version
of the Itô formula. We concentrate on affine jump-diffusions that open the way to term
structure models consistent with availability of closed-form bond-pricing formulas, as
analyzed by Duffie et al. in [24] and later by Errais et al. in [27].

Let (Ω,F , P ) be the probability space defined in Chapter 1 endowed with the filtration
F = (Ft)t≥0 satisfying the usual conditions. We suppose that the stochastic processes
introduced in the following are defined on this probability space and adapted to the
filtration F.

A.1 Point processes

A point process aims to describe events that occur randomly over time. On the filtered
probability space (Ω,F ,F, P ) a point process can be viewed in two different ways: a
sequence of non-negative random variables representing jumps times or via its associated
counting process which increases in unit steps and is constant between these times. They
are two equivalent representations and therefore we use them interchangeably in the text.
We follow the point processes’ theory developed in [15], unless otherwise specified.

Definition A.1. A simple point process (Tn)n≥0 is a sequence of random variables such
that

T0 = 0;

Tn ≤ Tn+1 and Tn < Tn+1 if Tn <∞.

This sequence models the times when jumps occur. We define the explosion time
as the random variable T∞ := limn→∞ Tn and say that if T∞ = +∞, then (Tn)n≥0 is
non-explosive.
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The counting process (Nt)t≥0 associated to (Tn)n≥0 is defined as

Nt =
∑
n≥1

1{Tn≤t} for t ≥ 0 with N0 = 0.

Therefore, (Nt)t≥0 increases by one unit at times (Tn)n≥0 and between these times is
constant. We note that Nt counts the number of jumps that occurred up to time t.

Since we have assumed that all processes are Ft-adapted, then it follows that the
random variables (Tn)n≥0 are Ft-stopping times. Therefore, since the counting process
(Nt)t≥0 is Ft-adapted then for all t ≥ 0 it is true that Ft 3 {Nt ≤ n} = {Tn+1 > t} for
every n ≥ 0.

We can give an alternative definition of counting process.

Definition A.2. A counting process (Nt)t≥0 is defined by

Nt :=

{
n if t ∈ [Tn, Tn+1)

+∞ if t ≥ T∞.

From this definition we deduce that equivalently the point process is non-explosive
if Nt < ∞ P -a.s. for t ≥ 0. We want to remark that the counting process is locally
integrable and even locally bounded because NTn ≤ n for every n ≥ 0.

The standard Poisson process can be defined as a counting process without explosion
whose increments are independent and stationary, as it is showed in [40] (Section 8.2.1).

Definition A.3. Let (Tn)n≥0 be a simple point process and (Zn)n≥0 a sequence of
{1, 2, . . . , A}-valued random variables representing A different types of jumps. Then the
double sequence (Tn, Zn)n≥0 is called an A-variate point process. Define

Na
t :=

∑
n≥1

1{Tn≤t}1{Zn=a} for t ≥ 0 and 1 ≤ a ≤ A.

The A-vector process (Nt)t≥0 =
(
(N1

t , . . . , N
A
t )>

)
t≥0

is the A-variate counting process
associated with (Tn, Zn)n≥0.

From the above definition it follows that (Na
t )t≥0 is a simple point process for ev-

ery a = 1, . . . , A. Furthermore, we emphasize that the possibility of the simultaneous
occurrence of two events (of either the same or different types) is ruled out.

A.1.1 Stochastic intensity

Given a counting process (Nt)t≥0 its probability structure can be uniquely characterized
via its intensity. The intensity (λt)t≥0 is a non-negative Ft-progressively measurable
process defined heuristically by Bacry et al. in [10] as

λt := lim
∆→0

E[Nt+∆ −Nt|Ft]
∆

P -a.s.,

provided that the limit exists. For a rigorous definition we refer to [15] (Chapter II,
Definition D7).
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Definition A.4. Let (Nt)t≥0 be a simple point process and (λt)t≥0 a non-negative
Ft-progressively measurable process such that for all t ≥ 0∫ t

0
λsds <∞ P -a.s.. (A.1)

The point process admits the intensity (λt)t≥0 if for all non-negative predictable processes
(Ct)t≥0 it holds that

E
[ ∫ ∞

0
CsdNs

]
= E

[ ∫ ∞
0

Csλsds
]
. (A.2)

Following the result stated in [15] (Chapter II, Theorem T8) the subsequent integra-
tion theorem holds.

Theorem A.5. The counting process (Nt)t≥0 with intensity (λt)t≥0 is non-explosive and
the process

(
Nt −

∫ t
0 λsds

)
t≥0

is a local martingale.

Proof. To prove the non-explosion property we define for all n ≥ 0

τn =

{
inf
{
t :
∫ t

0 λsds ≥ n
}

if
{
t :
∫ t

0 λsds ≥ n
}
6= ∅

+∞ otherwise.

(τn)n≥0 is an increasing sequence of stopping times such that limn→+∞ τn = +∞ because
of (A.1). If we evaluate (A.2) with the predictable process (1{t≤τn})t≥0 for a fixed n ≥ 0,
then we conclude that E[Nτn ] = E

[ ∫ τn
0 dNs

]
= E

[ ∫ τn
0 λsds

]
≤ n < ∞. Therefore,

Nτn < ∞ P -a.s. for n ≥ 0 and this property implies the non-explosion property of the
counting process since limn→+∞ τn = +∞.

To prove the local martingale property, for 0 ≤ u ≤ v and B ∈ Fu we consider the
predictable process

(
1B1{t≤Tn}1{u<t≤v}

)
t≥0

where (Tn)n≥0 is the point process associated
to the counting process. Consequently (A.2) becomes

E
[
1B(Nv∧Tn −Nu∧Tn)

]
= E

[
1B

∫ v∧Tn

u∧Tn
dNs

]
= E

[
1B

∫ v∧Tn

u∧Tn
λsds

]
. (A.3)

In particular, for u = 0, s = t and B = Ω it follows that E
[
Nt∧Tn

]
= E

[ ∫ t∧Tn
0 λsds

]
.

Hence, by definition of Tn it holds that E
[ ∫ t∧Tn

0 λsds
]
<∞ since Nt∧Tn ≤ n. Rearrang-

ing terms in (A.3) we obtain:

E
[
1B

(
Nv∧Tn −

∫ v∧Tn

0
λsds

)]
= E

[
1B

(
Nu∧Tn −

∫ u∧Tn

0
λsds

)]
.

From the arbitrariness of times 0 ≤ u ≤ v and B with B ∈ Fu we deduce that the
process

(
Nt∧Tn −

∫ t∧Tn
0 λsds

)
t≥0

is a martingale for every fixed n ≥ 0. Then, (Tn)n≥0 is
a sequence of stopping times with limn→+∞ Tn = +∞ and therefore (Nt−

∫ t
0 λsds)t≥0 is

a local martingale.
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Consequently, following the argument of the proof for all n ≥ 0 and 0 ≤ u ≤ t

E
[
Nt∧Tn −Nu∧Tn

∣∣Fu] = E
[ ∫ t∧Tn

u∧Tn
λsds

∣∣∣∣Fu] P -a.s.,

letting n→ +∞ we argue that

E
[
Nt −Nu

∣∣Fu] = E
[ ∫ t

u
λsds

∣∣∣∣Fu] P -a.s.. (A.4)

This is a consequence of the fact that limn→+∞ Tn = +∞ because (Nt)t≥0 is a non-
explosive point process.

A.1.2 Hawkes processes

A particular class of multivariate point processes consists of Hawkes processes. They
are characterized by a stochastic intensity vector that is a simple linear function of past
jumps and thus they are path-dependent point processes. Each jump excites the process
increasing the likelihood of subsequent jumps (self-exciting property). In this subsection
we give the definition of a Hawkes process and introduce the main properties adopting
the approach of Bacry et al. [10].

Definition A.6. We consider a A-variate counting process (Nt)t≥0 =
(
(N1

t , . . . , N
A
t )>

)
t≥0

whose associated intensity vector is (λt)t≥0 =
(
(λ1
t , . . . , λ

A
t )>

)
t≥0

. A Hawkes process is a
counting process (Nt)t≥0 such that the intensity vector is given by

λat := ua +
A∑
b=1

∫ t

0
gab(t− s) dN b

s for a = 1, . . . , A, (A.5)

where ua ∈ R+ and gab : R+ → R+ is a measurable L1-integrable function, for all
a, b = 1, . . . , A.

In literature the parameter ua is called the baseline intensity and gab the kernel
function. In equation (A.5) the Lebesgue-Stieltjes integral with respect to the counting
process (Nt)t≥0 is defined pathwise as

A∑
b=1

∑
n≥1

gab(t− Tn)1{Tn≤t}1{Zn=b}. (A.6)

Looking at the previous expression, or equivalently (A.5), we notice that between jumps
the intensity process (λat )t≥0 is constant if gab are constant functions for a, b = 1, . . . , A.

By Definition A.6 we highlight the self-exciting property that identifies Hawkes pro-
cesses. In fact, the Hawkes process is characterized by the intensity (A.5) which in turn
changes in response to jumps of the counting processes (N b

t )t≥0 for b = 1, . . . , A.
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For all a, b = 1, . . . , A we require that the function gab is L1-integrable, that is

‖gab‖L1 :=

∫ +∞

0
gab(s)ds <∞. (A.7)

From this property we derive that the Hawkes process (Na
t )t≥0 is non-explosive. To prove

this statement we fix t ≥ 0 and define T̄n := t ∧ Tn for every n ≥ 0, where we recall
that (Tn)n≥0 is the point process associated to (Nt)t≥0. It follows that Na

T̄n
≤ n and,

therefore, from (A.5) we derive that

E
[
Na
T̄n

]
= uaE

[
T̄n
]

+
A∑
b=1

E
[ ∫ T̄n

0

∫ t

0
gab(t− s) dN b

s dt

]

= uaE
[
T̄n
]

+

A∑
b=1

E
[ ∫ T̄n

0

∫ T̄n

s
gab(t− s) dt dN b

s

]

= uaE
[
T̄n
]

+
A∑
b=1

E
[ ∫ T̄n

0

∫ T̄n−s

0
gab(t) dt dN b

s

]
(A.8)

where in the second line we have used Fubini’s theorem (see [25] (Theorem 3.29)). If we
define the function Gab(u) :=

∫ t
0 gab(t)dt, then integrating by parts we deduce that

0 = Gab(T̄n − T̄n)N b
T̄n
−Gab(T̄n − 0)N b

0

=

∫ T̄n

0

(dGab
ds

(T̄n − s)
)
N b
s ds+

∫ T̄n

0
Gab(T̄n − s) dN b

s

= −
∫ T̄n

0
gab(T̄n − s)N b

s ds+

∫ T̄n

0
Gab(T̄n − s) dN b

s .

It follows that
∫ T̄n

0

∫ T̄n−s
0 gab(t) dt dN b

s =
∫ T̄n

0 gab(T̄n − s)N b
s ds and inserting this last

equality in (A.8) it holds that

E
[
Na
T̄n

]
= uaE

[
T̄n
]

+

A∑
b=1

E
[ ∫ T̄n

0
gab(T̄n − s)N b

sds

]
.

Since limn→+∞NT̄n = Nt we can conclude that

E
[
Na
t

]
= uat+

A∑
b=1

E
[ ∫ t

0
gab(t− s)N b

s ds

]
.

We remind that gab is an L1-integrable function for every a, b = 1, . . . , A and thus
E
[
Na
t

]
< ∞ for any t ≥ 0. It follows that the intensity process (A.5) is well-defined

because (A.1) is satisfied. In fact, by means of analogous computations to (A.8) and
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definition of L1-norm we deduce that

E
[ ∫ t

0
λasds

]
= uat+

A∑
b=1

E
[ ∫ t

0

∫ t−u

0
gab(s) ds dN b

u

]

≤ uat+
A∑
b=1

‖gab‖L1 E
[
N b
t

]
<∞.

A Hawkes process is stationary if its distribution does not change under time shift.
Adopting the notation of [30] the point process (Nt)t≥0 is stationary if the process
((δsN)t)t≥0 has the same distribution as (Nt)t≥0 for any s > 0, where δs is the shift
operator defined by (δsN)t := Nt+s for t ≥ 0, i.e. it is a shift by s units of time. This im-
plies that a stationary Hawkes process (Nt)t≥0 has stationary increments. Consequently,
for every t ≥ 0 and a = 1, . . . , A the distribution of λat does not depend on the time
variable. Then, from

E
[
λat
]

=uat+ E
[ A∑
b=1

∫ t

0
gab(t− s) dN b

s

]

=uat+ E
[ A∑
b=1

∫ t

0
gab(t− s)λbs ds

]
it follows that

λa =ua +

A∑
b=1

λb
∫ +∞

0
gab(t)dt.

For the univariate case, i.e. A = 1, if we assume the stationary property we deduce that
λ = u+ λ ‖g‖L1 . Rearranging terms we agree that

λ =
u

1− ‖g‖L1

.

The intensity must be positive and therefore ‖g‖L1 < 1. We state the following result
provided by [36] (Theorem 1).

Lemma A.7. If u > 0 and the kernel function satisfies the property ‖g‖L1 < 1, then there
exists a stationary counting process (Nt)t≥0 characterized by a finite intensity process
which satisfies (A.5) for A = 1.

When the kernel functions gab are set to be exponentially decaying, then (A.5) be-
comes

λat = ua +
a∑
b=1

δab

∫ t

0
e−γab(t−s) dN b

s for a = 1, . . . , A, (A.9)

for some δab, γab ∈ R+. Because of parameters’ non-negativity gab is L1-integrable and
thus the associated Hawkes process is well-defined. For a = 1, . . . , A the jump intensity
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λat is raised by each jump before time t, that is ∆N b
s with s < t and b = 1, . . . , A. The

parameters δab determine the scale of the positive influence of past jumps, whereas γab
determine its time decay. Hence, the response of previous jumps on the intensity function
in t decays exponentially and is driven by the parameters γab.

In this particular case the couple consisting of the jump process and its intensity
(Nt, λt)t≥0 is a Markov process, and also the intensity process itself is a Markov process,
as is it stated in [10] (Proposition 2).

A.2 Jump-diffusions

We define the main family of stochastic processes used in this dissertation: jump-diffusion
processes. Loosely speaking, they are processes whose dynamics are driven by a Brownian
motion and a jump process. We recall the following fundamental definitions adopting
the notation of [27, 40].

Definition A.8. A pure jump process (Jt)t≥0 on Rd is defined by

Jt :=
∑
n≥1

Zn1{Tn≤t} =

Nt∑
n=1

Zn for t ≥ 0 with J0 = 0, (A.10)

where (Tn)n≥0 is a non-explosive simple point process with associated counting process
(Nt)t≥0 and (Zn)n≥0 a sequence of independent identically distributed Rd-valued random
variables. By convention we set Z0 = 0. The sequence (Zn)n≥0 is supposed to be inde-
pendent from the point process.

We recognize that (Jt)t≥0 is a discontinuous stochastic process which has a jump of
size Zn at time Tn and is constant between two consecutive jumps. Therefore, the point
process (Tn)n≥0 represents jump times and the variables (Zn)n≥0 jump sizes.

Denoting the left limit by Jt− := lims→t,s<t Js for t > 0 with the convention that
J0− = J0 = 0, we describe the jumps of the process as ∆Jt := Jt − Jt−. Consequently,
∆Jt is non-null only if t = Tn for some n ≥ 1 and in this case ∆Jt = ∆JTn = JTn−JTn−.
We emphasize that from the non-explosion property of the point process it follows that
for every fixed time t ≥ 0 the number of jumps before t is finite P -a.s..

Equivalently, we adopt the definition of [27] (Section 4) and define (Jt)t≥0 as a tem-
porally consistent Rd-valued point process, i.e. all the components of the process share
jump times (Tn)n≥0 and differ only for jump sizes, that is

Jt = (J1
t , . . . , J

d
t )> for t ≥ 0,

where J it :=
∑Nt

n=1 Z
i
n for each i = 1, . . . , d and (Zin)n≥0 is a sequence of random variables

taking values in R.
Otherwise specified from now on we refer to Definition A.8 and uniquely characterize

the jump process (Jt)t≥0 through the intensity of the point process (λt)t≥0 and the jump
distribution ν on Rd that specifies the probability distribution of (Zn)n≥0.
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Definition A.9. An Rd-valued jump diffusion process (Xt)t≥0 is a strong solution to the
SDE

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt + dJt, (A.11)

where (Wt)t≥0 is a d-dimensional Brownian motion and two measurable functions are
assigned, µ : R+ × Rd → Rd and σ : R+ × Rd → Rd×d.

It follows that the driving terms in (A.11) are the Brownian motion (Wt)t≥0 and
the jump process (Jt)t≥0. Adopting the notation of [40] (Section 9.1.2) we observe that
(Xt)t≥0 is made up of a continuous process (Xc

t )t≥0 and a purely discontinuous one
(Jt)t≥0. Indeed, we can write

Xt −X0 =

∫ t

0
µ(Xs, s)ds+

∫ t

0
σ(Xs, s)dWs +

∫ t

0
dJs

=Xc
t +

∑
0<s≤t

∆Js

=Xc
t + Jt,

From the previous equation it can be easily deduced that (Jt)t≥0 is the jump part of
(Xt)t≥0, and therefore the jump times of the process (Xt)t≥0 are those of (Jt)t≥0 and for
all t ≥ 0 the jump size is ∆Xt = Xt −Xt− = ∆Xc

t + ∆Jt = ∆Jt P -a.s..
For t ≥ 0 we define Yt := f(Xt, t) for a C2,1

x,t function1 f : R+ × Rd → R, thus the
Itô’s formula becomes (see [38] (Chapter I, Theorem 4.57))

f(Xt, t)− f(X0, 0) =

∫ t

0

∂f

∂s
(Xs, s)ds+

d∑
i=1

∫ t

0

∂f

∂xi
(Xs, s)dX

ci

s

+
1

2

d∑
i,j=1

∫ t

0

∂2f

∂xixj
(Xs, s)d[Xci , Xcj ]s

+
∑

0<s≤t,∆Js 6=0

f(Xs− + ∆Js, s)− f(Xs−, s−),

where the last addend is equal to∑
0<Tn≤t

f(XTn− + ∆JTn , Tn)− f(XTn−, Tn−).

The sum is finite P -a.s. for any t ≥ 0. The enunciated Itô’s formula is also valid when the
function f is complex-valued and in this case we consider the real and purely imaginary
parts separately.

1C2,1
x,t means C2 with respect to x and C1 with respect to t.
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A.3 Affine jump-diffusions

This section introduces affine jump-diffusion processes. We provide the definition and
further technical restrictions that the coefficients which characterize the process have to
satisfy. This section is based on [24, 27].

Definition A.10. The process (Zt)t≥0 taking value in some state space D ⊆ Rd is an
affine jump-diffusion if it is a Markov process and a strong solution to the SDE

dZt = µ(Zt)dt+ σ(Zt)dWt +

A∑
a=1

ζadJ
a
t , Z0 = z, (A.12)

where the drift µ : D → Rd is supposed to be continuous and the diffusion function
σ : D → Rd×d measurable such that σ(z)σ(z)> =: H(z) is continuous in z. We impose
the affine structure given by

µ(z) = K0 +K1z for K0 ∈ Rd, K1 ∈ Rd×d K = (K0,K1); (A.13)

(H(z))ij = (H0)ij + 〈(H1)ij , z〉 for H0 ∈ Rd×d, H1 ∈ Rd×d×d H = (H0, H1). (A.14)

Each ζa is a d-dimensional diagonal matrix and (Jat )t≥0 a pure jump process on Rd+, for
a = 1, . . . , A. Therefore, the components of each process Na share event times and differ
only in jump sizes. We determine (Jat )t≥0 by means of a fixed probability distribution νa

on Rd+ independent of the state process and the intensity process (λa(Zt))t≥0 for some
affine function λa : D → [0,∞):

λa(z) = la0 + 〈la1 , z〉 for la0 ∈ R, la1 ∈ Rd la = (la0 , l
a
1). (A.15)

Following the convention of Duffie et al. [24] H1 is a tensor of dimension d × d × d.
We remark that if we fix the first two indices i and j, then the tensor turns into a
Rd-valued vector determined by (H1)ij =

(
(H1

1 )ij , . . . , (H
d
1 )ij
)>. Analogously, fixing the

third index k the tensor is reduced to a (d× d)-matrix Hk
1 with elements (Hk

1 )ij .
Loosely speaking, an affine jump-diffusion process is a jump-diffusion for which the

drift, the covariance matrix and the intensity of each jump process are determined by
some affine functions of the process (Zt)t≥0.

The infinitesimal generator A of (Zt)t≥0 is defined at a C2-function with compact
support f : D → R by

Af(z) =〈∇f(z), µ(z)〉+
1

2
tr
[
Hf(z)σ(z)σ(z)>

]
+

A∑
a=1

λa(z)

∫
Rd+

[f(z + ζau)− f(z)] dνa(u),
(A.16)

where Hf(z) denotes the Hessian matrix. The affine dependence of this generator on the
value z emphasizes the fact that the process (Zt)t≥0 which satisfies (A.12) is an affine
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jump-diffusion. In other words, we can identify the affine dependencies with respect to
(Zt)t≥0 from the generator’s structure. Indeed, rewriting (A.16) it follows that

Af(z) =〈∇f(z), (K0 +K1z)〉

+
1

2
tr
[
Hf(z)

(
H0 + 〈H1, z〉

)]
+

A∑
a=1

(
la0 + 〈la1 , z〉

) ∫
Rd+

[
f(z + ζau)− f(z)

]
dνa(u),

where with 〈H1, z〉 we denote the (d× d) matrix with elements (〈H1, z〉)ij = 〈(H1)ij , z〉.
For c ∈ Cd we define the jump transforms

θa(c) :=

∫
Rd+
e〈c,u〉 dνa(u) (A.17)

and suppose that these integrals are well-defined for all a = 1, . . . , A.
Until now we have introduced the fundamental components which describe the affine

jump-diffusion process (Zt)t≥0 uniquely. We denote l := (l1, . . . , lA), ν := (ν1, . . . , νA)
and θ := (θ1, . . . , θA). The parameters (K,H, l, θ) determine the distribution of the
process totally. We adopt the notation used in [24] (Section 2.2) and define χ.

Definition A.11. The process (Zt)t≥0 is said to have the characteristics χ = (K,H, l, θ).

We follow the approach described in [28] (Section 10.2) and from now on we assume
that the state space is of the canonical form D = Rm+ × Rn for integers m,n ≥ 0 with
m+n = d. We define the index sets I := {1, . . . ,m} and J := {m+1, . . . , d}. Intuitively,
the set I collects the indices of the first m elements of the D-valued process (Zt)t≥0, that
is the components taking values in R+, while the set J collects the remaining ones taking
values in R. We have to ensure that (Zt)t≥0 does not leave the set D.

Assumption A.12. The parameters (K0,K1, H0, H1, l0, l1, ν) are called admissible if

- H0, Hk
1 for k ∈ I ∪ J are symmetric and positive semi-definite matrices

- (H0)ij = 0 for i, j ∈ I (and so for i ∈ I, j ∈ J and i ∈ J , j ∈ I)

- Hk
1 = 0 for k ∈ J

- (Hk
1 )ij = (Hk

1 )ji = 0 for k ∈ I, i ∈ I\{k}, j ∈ I ∪ J

- K0 ∈ Rm+ × Rn

- (K1)ij = 0 for i ∈ I, j ∈ J

- (K1)ij ∈ R+ for i ∈ I, j ∈ I\{i}

- la0, (la1)i ∈ R+ for i ∈ I, for every a = 1, . . . , A
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- (la1)j = 0 for j ∈ J , for every a = 1, . . . , A

- (ζa)i,i ∈ R+ for i ∈ I, for every a = 1, . . . , A

Before giving an intuitive interpretation of these conditions we have to state a result
proved by Filipović in [28] (Lemma 10.11). It considers only the case of affine diffusions,
that is A = 0.

Lemma A.13. Suppose that µ : D → Rd and σ : D → Rd×d in (A.12) admit a con-
tinuous and measurable extension to Rd, respectively, and such that H : Rd → Rd×d is
continuous. Let u ∈ Rd\{0} and define S := {z ∈ Rd| 〈u, z〉 ≥ 0}.

Fix z ∈ ∂S and let (Zt)t≥0 be a solution of (A.12) with initial condition Z0 = z. If
Zt ∈ S for all t ≥ 0, then necessarily

〈u,H(z)u〉 = 0 and 〈u, µ(z)〉 ≥ 0. (A.18)

Conversely, if (A.18) holds for all z ∈ Rd\S̊, where S̊ denotes the interior, then for any
solution (Zt)t≥0 with Z0 ∈ S it holds that Zt ∈ S for all t ≥ 0.

Now we can illustrate the admissibility conditions formulated in Assumption A.12.
We suppose that (Zt)t≥0 is an affine jump-diffusion with characteristics χ = (K,H, l, θ)
and taking values in D = Rm+ × Rn. We rewrite equations (A.13) and (A.14) obtaining

µ(z) =

(K0)1

. . .
(K0)d

+
∑
h∈I

(K1)1h

. . .
(K1)dh

 zh +
∑
h∈J

(K1)1h

. . .
(K1)dh

 zh,

H(z) = H0 +
∑
k∈I

Hk
1 zk +

∑
k∈J

Hk
1 zk.

Obviously, H(z) is a symmetric and positive semi-definite matrix for all z ∈ D if and
only if H0, Hk

1 are symmetric and positive semi-definite for k ∈ I and Hk
1 = 0 for all

k ∈ J , where 0 defines the null (d× d) matrix.
Now, let z be a point at the boundary of D and so zl = 0 for some l ∈ I. If we denote

the l-th vector of the canonical basis of Rd with el, then Lemma A.13 implies that

〈
el,

(
H0 +

∑
k∈I\{l}

Hk
1 zk

)
el

〉
= 0,

〈
el,

{(K0)1

. . .
(K0)d

+
∑

k∈I\{l}

(K1)1k

. . .
(K1)dk

 zk +
∑
h∈J

(K1)1h

. . .
(K1)dh

 zh

}〉
≥ 0.

The previously defined conditions ensure that (Zt)t≥0 does not cross the boundary of D
and they have to hold for all zk ≥ 0 with k ∈ I\{l} and zh ∈ R with h ∈ J . Then, for all
l ∈ I it follows that H0el = 0 and Hk

1 el = 0 for all k ∈ I\{l}, where 0 denotes the null



82 APPENDIX A. MATHEMATICAL TOOLS

vector in Rd. Furthermore, K0 ∈ Rm+ × Rn and for all l ∈ I, (K1)lk ≥ 0 for k ∈ I\{l}
and (K1)lk = 0 for k ∈ J .

Lastly, we analyse the jump terms. For a = 1, . . . , A the intensity of the a-th jump
process is λa(z) = l0 + 〈l1, z〉. It has to be positive for all z ∈ D and, consequently,
la0 ∈ R+, la1 ∈ Rd+ and (la1)j = 0 for all j ∈ J . If the process is at z, a point at the
boundary of D and so zl = 0 for some l ∈ I, we have to force that it does not leave the
set Rm+ ×Rn with a jump. It is sufficient to require that the diagonal element (ζa)ll ∈ R+

for all l ∈ I. Therefore, up to a renaming of the indexes, the discussed conditions are
equivalent to Assumption A.12.

A.3.1 Affine diffusions

If the previously defined affine process (Zt)t≥0 is characterized by continuous paths, then
it does not satisfy the SDE (A.12) but the following one

dZt = µ(Zt)dt+ σ(Zt)dWt, Z0 = z, (A.19)

with the usual hypotheses, i.e. µ : D → Rd continuous and σ : D → Rd×d measurable
such that H(z) = σ(z)σ(z)> is continuous.

Making explicit the coefficients’ affine dependence with respect to the process we
rewrite equation (A.19) as

dZt = (K0 +K1Zt)dt+ σ(Zt)dWt, Z0 = z, (A.20)

such that (σ(z)σ(z)>)ij = (H0)ij+ < (H1)ij , z > for i, j = 1, . . . , d. Our aim is to
convert the above equation by a linear transformation into a canonical representation
in which the matrix H is of special form. Specifically, developing the contents of [28]
(Section 10.4) we use Itô’s formula and obtain that for every invertible (d× d) matrix Λ,
the linear transform y = Λz satisfies

dYt = (ΛK0 + ΛK1Λ−1Yt)dt+ Λσ(Λ−1Yt)dWt, Y0 = Λz. (A.21)

Therefore the drift and the diffusion matrix of (Yt)t≥0 are affine in y:{
µy = ΛK0 + ΛK1Λ−1y
Hy = Λσ(Λ−1Yt)(Λσ(Λ−1Yt))

> = ΛH(Λ−1y)Λ>.
(A.22)

Consequently, the existence and uniqueness of a strong solution to SDE described in
(A.20) is invariant with respect to non-singular linear transformations. We will show
that there exists a classification method ensuring a unique canonical representation. The
diffusion matrix H(z) can always be brought into block-diagonal form by a regular linear
transform Λ with Λ(Rm+ × Rn) = Rm+ × Rn. This feature is showed in the next result
based on [28] (Lemma 10.5). We recall that I = {1, . . . ,m} and J = {m+ 1, . . . , d}.

Theorem A.14. There exists an invertible (d×d) matrix Λ with Λ(Rm+×Rn) = Rm+×Rn
such that ΛH(Λ−1y)Λ> is block-diagonal of the form

ΛH(Λ−1y)Λ> =

(
diag(y1, . . . , yq, 0, . . . , 0) 0

0 p+
∑

i∈I yiπi

)
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for 0 ≤ q ≤ m and some symmetric positive semi-definite (n×n) matrices p, π1, . . . , πm.
We notice that diag(y1, . . . , yq, 0, . . . , 0) denotes the (m ×m) matrix with diagonal ele-
ments y1, . . . , yq, 0, . . . , 0.

Proof. From the affine dependence on the state variable we know that ΛH(Λ−1y)Λ> is
block-diagonal for every z = Λ−1y if and only if ΛH0Λ> and ΛHk

1 Λ> are block-diagonal
for all k ∈ I. By permutation and scaling of the first m coordinate axes, we may assume
that there exists an integer 0 ≤ q ≤ m such that (H1

1 )11 = . . . = (Hq
1)qq = 1 and

(Hk
1 )kk = 0 for q < k ≤ m. Hence H0 and Hk

1 for q < k ≤ m are already block-diagonal
of the form

H0 =

(
0 0
0 {H0}i,j∈J

)
and Hk

1 =

(
0 0
0 {Hk

1 }i,j∈J

)
,

where {H0}i,j∈J denotes the (n×n) matrix composed by the elements (H0)ij for i, j ∈ J
of the (d× d) matrix H0, and similarly for Hk

1 .
We notice that for 1 ≤ k ≤ q we may have non-zero off-diagonal elements in the k-th

row {(Hk
1 )kj}j∈J . We thus define the (n×m) matrix D := (δ1, . . . , δm) with k-th column

δk := −{(Hk
1 )kj}j∈J and set

Λ :=

(
1m 0
D 1n

)
,

where 1m and 1n are identity matrices of dimension m and n, respectively. D is invertible
and maps Rm+ ×Rn onto Rm+ ×Rn. Moreover, if we use the same notation that we defined
above, D{Hk

1 }i,j∈I = −{Hk
1 }i∈J,j∈I for k ∈ I. From here it follows that

ΛHk
1 =

(
1m 0
D 1n

)(
{Hk

1 }i,j∈I {Hk
1 }i∈I,j∈J

{Hk
1 }i∈J,j∈I {Hk

1 }i,j∈J

)
=

(
{Hk

1 }i,j∈I {Hk
1 }i∈I,j∈J

0 D{Hk
1 }i∈I,j∈J + {Hk

1 }i,j∈J

)
.

And thus

ΛHk
1 Λ> =

(
{Hk

1 }i,j∈I {Hk
1 }i∈I,j∈J

0 D{Hk
1 }i∈I,j∈J + {Hk

1 }i,j∈J

)(
1m D
0 1n

)
=

(
{Hk

1 }i,j∈I D{Hk
1 }i,j∈I + {Hk

1 }i∈I,j∈J
0 D{Hk

1 }i∈I,j∈J + {Hk
1 }i,j∈J

)
=

(
{Hk

1 }i,j∈I 0
0 D{Hk

1 }i∈I,j∈J + {Hk
1 }i,j∈J

)
,

where in the last equality with use the fact that D{Hk
1 }i,j∈I = −{Hk

1 }i∈J,j∈I for k ∈ I
together with the feature of Hk

1 , it is a symmetric matrix. Since ΛH0Λ> = H0 the
assertion is proved.

A.3.2 Transforms

The affine structure permits to reduce the calculation of the Laplace transform of the
process (Zt)t≥0 and of certain related random variables to the solution of an ODEs
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system that can sometimes be solved analytically. We will show that many transforms
used to solve several important problems in asset pricing are computable explicitly as
exponentially affine functions of (Zt)t≥0. We follow the article [24] (Section 2.2) and
derive the ODEs system, and consequently the discounted Laplace transform of (Zt)t≥0.

Let the short interest rate process (r(Zt, t))t≥0 be an affine function

r(z, t) = ρ0(t) + 〈ρ1(t), z〉 ρ = (ρ0, ρ1), (A.23)

for some ρ0 : [0,∞) → R and ρ1 : [0,∞) → Rd L1-integrable functions. A short rate
model of this form is called affine short rate model.

We underline the fact that the process characteristics χ = (K,H, l, θ) and the pa-
rameter ρ capture the distribution of (Zt)t≥0 and the effects of the discounting at rate
r, respectively. Including ρ in the process coefficients we define the discounted charac-
teristics χd = (K,H, l, θ, ρ). It is relevant for pricing because it determines the following
discounted Laplace transform

Ψ(u, Zt, t, T ) := E
[
e−

∫ T
t r(Zs,s) dse〈u,ZT 〉

∣∣∣Ft] (A.24)

for u ∈ Cd. We will show that, under suitable conditions,

Ψ(u, z, t, T ) = eφ(t,T,u)+〈ψ(t,T,u),z〉, (A.25)

where φ(t, T, u) and ψ(t, T, u) are C and Cd-valued functions, respectively, that solve the
following backward ODEs system:

dφ

dt
(t) =ρ0(t)− 〈K0, ψ(t)〉 − 1

2
〈ψ(t), H0ψ(t)〉 −

A∑
a=1

la0
[
θa(ζaψ(t))− 1

]
(A.26)

φ(T ) =0,

dψ

dt
(t) =ρ1(t)−K>1 ψ(t)− 1

2
ψ(t)>H1ψ(t)−

A∑
a=1

la1
[
θa(ζaψ(t))− 1

]
(A.27)

ψ(T ) =u.

We have omitted the dependencies on T and u of the functions φ and ψ for simplicity
of notation. In (A.27) with ψ(t)>H1ψ(t) we have denoted the Cd-valued vector with
k-element

∑
i,j ψi(t)(H1)ijkψj(t).

Looking at (A.27) we note that the ODE for ψ is a system consisting of d one-
dimensional ODEs, while the ODE (A.26) which characterizes φ is only one-dimensional.
The closed-form solution for these ODEs is not always available, and in this case we have
to resort to suitable numerical methods. If (A.27) is solvable, then φ is determined by ψ
via simple integration

φ(t, T, u) =

∫ T

t

(
− ρ0(s) + 〈K0, ψ(s, T, u)〉

+
1

2
〈ψ(s, T, u), H0ψ(s, T, u)〉+

A∑
a=1

la0
[
θa(ζaψ(s, T, u))− 1

])
ds.
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The discounted characteristics χd = (K,H, l, θ, ρ) fully specify the process (Zt)t≥0

and the discounting effects of the associated rate. We give the following definition which
is formulated by Duffie et al. [24] and state the fundamental result of this section (see
[24], Proposition 1).

Definition A.15. Suppose that (A.26) and (A.27) are solved uniquely by φ and ψ. The
characteristics χd = (K,H, l, θ, ρ) are well-behaved at (u, T ) ∈ Cn × R+ if the following
technical integrability conditions hold for 0 ≤ t ≤ T :

1. E
[
|κt|

]
<∞, where κt := e−

∫ t
0 r(Zs,s)dseφ(t,T,u)+〈ψ(t,T,u),Zt〉;

2. E
[( ∫ t

0 〈ηs, ηs〉ds
) 1

2
]
<∞, where ηt := κtψ(t, T, u)>σ(Zt);

3. E
[ ∫ t

0 |γs| ds
]
<∞, where γt := κt

∑A
a=1 λ

a(Zt)
[
θa(ζaψ(t, T, u))− 1

]
.

Theorem A.16. Fix (u, T ) ∈ Cd × R+ and suppose that the discounted characteristics
χd = (K,H, l, θ, ρ) are well-behaved at (u, T ). Then the transform Ψ of (Zt)t≥0 defined
by (A.24) is given by (A.25), that is

E
[
e−

∫ T
t r(Zs,s) dse〈u,ZT 〉

∣∣∣Ft] = eφ(t,T,u)+〈ψ(t,T,u),z〉.

Before giving the theorem’s proof we want to observe that both expected value and
characteristics χ = (K,H, l, θ) are relative to the same probability measure, that is the
coefficients are determined under P and the mean is calculated with respect to the same
measure P .

Proof. It suffices to show that (κt)t∈[0,T ] is a martingale. Consequently κt = E[κT |Ft]
for all 0 ≤ t ≤ T and thus

e−
∫ t
0 r(Zs,s)dseφ(t,T,u)+〈ψ(t,T,u),Zt〉 =E

[
e−

∫ T
0 r(Zs,s)dseφ(T,T,u)+〈ψ(T,T,u),ZT 〉

∣∣∣Ft]
=E
[
e−

∫ T
0 r(Zs,s)dse〈u,ZT 〉

∣∣∣Ft],
where in the last passage we have used the terminal conditions of the ODEs system.
Multiplying by e

∫ t
0 r(Zs,s)ds we get the result.

For 0 ≤ t ≤ T obviously κt is Ft-adapted and from the first integrability condition
we deduce that E

[
|κt|

]
< ∞. It remains to be proved that for 0 ≤ t ≤ s ≤ T it holds

the property κs = E[κt|Fs]. To this aim we have to do some work. To begin we use Itô’s
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formula for 0 ≤ t ≤ T :

κt − κ0 =

∫ t

0
κs

[
− r(Zs, s) + φ′(s, T, u) +

〈
ψ′(s, T, u), Zs

〉]
ds

+

∫ t

0
κsψ(s, T, u)>dZcs

+
1

2

∫ t

0
κs
〈
ψ(s, T, u), σ(Zs)σ(Zs)

>ψ(s, T, u)
〉
ds+

∑
0<s≤t

∆κs

=

∫ t

0
κs

[
− r(Zs, s) + φ′(s, T, u) +

〈
ψ′(s, T, u), Zs

〉
+ 〈µ(Zs), ψ(s, T, u)〉+

1

2

∥∥∥σ(Zs)
>ψ(s, T, u)

∥∥∥2 ]
ds

+

∫ t

0
κsψ(s, T, u)>σ(Zs)dWs +

A∑
a=1

∑
0<Tan≤t

(κTan − κTan−),

where T an = inf{t : Jat = n} denotes the n-th jump time of the jump process (Jat )t∈[0,T ]

for a = 1, . . . , A. Rearranging the terms it follows that

κt − κ0 =

∫ t

0
κsµ

κ
sds+

∫ t

0
ηsdWs +Dt, (A.28)

for

µκt =φ′(t, T, u) +
〈
ψ′(t, T, u), Zt

〉
− r(Zt, t) + 〈µ(Zt), ψ(t, T, u)〉

+
1

2

∥∥∥σ(Zt)
>ψ(t, T, u)

∥∥∥2
+

A∑
a=1

λa(Zt)
[
θa(ζaψ(t, T, u))− 1

]
and

Dt =
A∑
a=1

∑
0<Tan≤t

(κTan − κTan−)−
∫ t

0
γsds,

where γt = κt
∑A

a=1 λ
a(Zt)

[
θa(ζaψ(t, T, u)) − 1

]
as defined in the third condition of

Definition A.15. From ODEs (A.26) and (A.27) it follows that µκt is null for 0 ≤ t ≤ T .
Indeed, omitting T and u dependencies of ψ and φ for brevity of notation it follows that

µκt =φ′(t)− ρ0(t) + 〈K0, ψ(t)〉+
1

2
〈ψ(t), H0ψ(t)〉+

A∑
a=1

la0
[
θa(ζaψ(t))− 1

]
+
〈{
ψ′(t)− ρ1(t) +K>1 ψ(t) +

1

2
ψ(t)>H1ψ(t) +

A∑
a=1

la1
[
θa(ζaψ(t))− 1

]}
, Zt
〉
.

Consequently (A.28) becomes

κt − κ0 =

∫ t

0
ηsdWs +Dt for 0 ≤ t ≤ T. (A.29)
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The second integrability condition implies that the process (ηt)t∈[0,T ] ∈ L2([0, T ]) and
therefore (

∫ t
0 ηsdWs)t∈[0,T ] is a martingale (see [54] (Chapter I, Corollary 4.23)). By the

law of iterated expectations for 0 ≤ t ≤ s ≤ T we obtain that

E
[ A∑
a=1

∑
t<Tan≤s

(κTan − κTan−)

∣∣∣∣Ft] =

= E
[ A∑
a=1

∑
t<Tan≤s

E
[
κTan − κTan−

∣∣JaTan−, T an ]
∣∣∣∣Ft]

= E
[ A∑
a=1

∑
t<Tan≤s

E
[
κTan−

(
e
〈ψ(Tan ,T,u),ζa∆Ja

Tan
〉 − 1

)∣∣∣JaTan−, T an]
∣∣∣∣Ft]

= E
[ A∑
a=1

∑
t<Tan≤s

κTan−
(
θa(ζaψ(T an , T, u))− 1

)∣∣∣∣Ft]

= E
[ A∑
a=1

∫ s

t
κv−

(
θa(ζaψ(v, T, u))− 1

)
dJav

∣∣∣∣Ft]

= E
[ A∑
a=1

∫ s

t
κv−

(
θa(ζaψ(v, T, u))− 1

)
λa(Zv)dv

∣∣∣∣Ft]

= E
[ A∑
a=1

∫ s

t
κv
(
θa(ζaψ(v, T, u))− 1

)
λa(Zv)dv

∣∣∣∣Ft]
= E

[ ∫ s

t
γvdv

∣∣∣∣Ft].
The second line is a consequence of the definition of the process (κt)t∈[0,T ], in other words
for all fixed a = 1, . . . , A the jump ∆κTan = κTan − κTan− is generated only by the jump
of the process (Jat )t∈[0,T ] at the stochastic time T an . In the third line we have made the
jump transform’s definition explicit. While the firth line follows from [15] (Theorem T8)
and in the last line we have only written down the definition of the process (γt)t∈[0,T ]. In
conclusion, (Dt)t∈[0,T ] is a martingale and so is the process (κt)t∈[0,T ].

A.3.3 Change of measure

Let (Zt)t≥0 be an affine jump-diffusion with characteristics χ = (K,H, l, θ) under the
objective measure P . Fix the current date t and a future date T > t. If we are interested
in pricing derivatives with generalized terminal payoff function e〈u,ZT 〉 for u ∈ Rd we
have to compute the expected value of the given payoff under an equivalent risk-neutral
measure Q

EQ
[
e−

∫ T
0 r(Zs,s)dse〈u,ZT 〉

∣∣∣Ft].
We underline the fact that the expected value is given under the measure Q. In the previ-
ous section we showed that the discounted Laplace transform of an affine jump-diffusion
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process has an exponential structure under the measure P . One may ask the question
of whether the affine structure is preserved under an equivalent change of probability.
The answer is positive if the density process which defines the change of measure is of
exponential affine form in the process (Zt)t≥0.

Following the ideas of Duffie et al. [24] (Appendix C) we fix T > 0 and assume that
the characteristics of (Zt)t≥0 χ are well-behaved at (m,T ) for some m ∈ Rd. It follows
that ODEs (A.26) and (A.27) have unique solutions φ and ψ.

In this case the process specified by

ξt := e−
∫ t
0 r(Zs,s)dseφ(t,T,m)+〈ψ(t,T,m),Zt〉 for 0 ≤ t ≤ T (A.30)

is a positive martingale, as proved in Theorem A.16. Consequently, we can define an
equivalent probability measure Q(m) through the following Radon-Nikodym derivative

dQ(m)

dP
=
ξT
ξ0
,

where ξ0 is a scale factor such that E
[dQ(m)

dP

]
= 1. We remark that the new measure

depends on the choice of the parameter m.
The dynamic of the process (Zt)t≥0 changes under the new measure Q(m) and so does

its characteristics but the density process defined above preserves its affine structure, as
we will show in the next theorem. Under Q(m) the process (Zt)t≥0 is an affine jump-
diffusion with different characteristics χ.

Theorem A.17. Under the new measure Q(m) the process (Zt)t≥0 preserves its affine
structure with characteristics χQ(m) =

(
KQ(m), HQ(m), lQ(m), θQ(m)

)
given by

K
Q(m)
0 (t) = K0 +H0ψ(t, T,m);

K
Q(m)
1 (t) = K1 +H1ψ(t, T,m);

HQ(m)(t) = H;

l
aQ(m)
0 (t) = la0θ

a(ζaψ(t, T,m)) for a = 1, . . . , A;

l
aQ(m)
1 (t) = la1θ

a(ζaψ(t, T,m)) for a = 1, . . . , A;

θaQ(m)(c, t) =
θa(c+ ζaψ(t, T,m))

θa(ζaψ(t, T,m))
for c ∈ Cd and a = 1, . . . , A.

(A.31)

Proof. Let

W
Q(m)
t = Wt −

∫ t

0
σ(Zs)

>ψ(s, T,m)ds for 0 ≤ t ≤ T. (A.32)

By integration by parts and [38] (Chapter I, Theorem 4.52) for 0 ≤ s ≤ t ≤ T it follows
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that

ξtW
Q(m)
t =ξsW

Q(m)
s +

∫ t

s
ξu−dWQ(m)

u +

∫ t

s
W

Q(m)
u− dξu

+
∑
s<u≤t

(ξu − ξu−)(WQ(m)
u −WQ(m)

u− ) +

∫ t

s
d[ξ,WQ(m)]cu

=ξsW
Q(m)
s +

∫ t

s
ξu−
(
dWu − σ(Zu)>ψ(u, T,m)du

)
+

∫ t

s
WQ(m)
u dξu

+ 0 +

∫ t

s
ξuσ(Zu)>ψ(u, T,m)du

=ξsW
Q(m)
s +

∫ t

s
ξu−dWu +

∫ t

s
WQ(m)
u dξu.

Since (Wt)t∈[0,T ] and (ξt)t∈[0,T ] are martingales under the measure P , (ξt−)t∈[0,T ] and(
W

Q(m)
t−

)
t∈[0,T ]

predictable processes (see [38] (Chapter I, Section 4.d)) it follows that

both
( ∫ t

0 ξu−dWu

)
t≥0

and
( ∫ t

0 W
Q(m)
u dξu

)
t≥0

are P -local martingales. Hence, the process(
ξtW

Q(m)
t

)
t∈[0,T ]

is a P -local martingale since it is sum of P -local martingales. From [38]

(Chapter III, Proposition 3.8) we deduce that
(
W

Q(m)
t

)
t∈[0,T ]

is a Q(m)-local martingale
because (ξt)t∈[0,T ] is the density process which defines the change of measure.

Since
( ∫ t

0 σ(Zs)
>ψ(s, T,m)ds

)
t∈[0,T ]

is a continuous process of finite variation, from
[38] (Chapter I, Proposition 4.49) we compute[

W
Q(m)
i ,W

Q(m)
j

]
t

=
[
Wi,Wj

]
t
+ 0 = δijt

for every 0 ≤ t ≤ T and i, j = 1, . . . , d. By Lévy’s characterization of Brownian motion
(see [38] (Chapter II, Theorem 4.4)) we derive that

(
W

Q(m)
t

)
t∈[0,T ]

is a Brownian motion
under the measure Q(m).

For 0 ≤ t ≤ T let

M
aQ(m)
t := Jat −

∫ t

0
θa
(
ζaψ(s, T,m)

)
λa(Zs)ds.

By Itô’s formula and [38] (Chapter I, Theorem 4.52) with 0 ≤ s ≤ t ≤ T

ξtM
aQ(m)
t =ξsM

aQ(m)
s +

∫ t

s
ξu−dMaQ(m)

u +

∫ t

s
M

aQ(m)
u− dξu

+
∑
s<u≤t

(ξu − ξu−)(MaQ(m)
u −MaQ(m)

u− ) +

∫ t

s
d[ξ,MaQ(m)]cu

=ξsM
aQ(m)
s +

∫ t

s
ξu−

(
dJau − θa

(
ζaψ(u, T,m)

)
λa(Zu)du

)
+

∫ t

s
M

aQ(m)
u− dξu +

∑
s<u≤t

(ξu − ξu−)(Jau − Jau−) + 0.

(A.33)
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We define (∆ξat )t∈[0,T ] as the jump induced by the a-th jump process in (ξt)t∈[0,T ], that
is

∆ξat :=

{
ξt−(e〈ψ(t,T,m),∆Jat 〉 − 1) if t = T an for some n

0 otherwise,

where we remind that T an denotes the n-th jump time of the jump process (Jat )t∈[0,T ].
Consequently (A.33) becomes

ξtM
aQ(m)
t =ξsM

aQ(m)
s +

∫ t

s
ξu−dJau −

∫ t

s
ξuθ

a
(
ζaψ(u, T,m)

)
λa(Zu)du

+

∫ t

s
M

aQ(m)
u− dξu +

∑
s<u≤t

∆ξau

=ξsM
aQ(m)
s +

∫ t

s
ξu−
(
dJau − λa(Zu)du

)
+

∫ t

s
ξuλ

a(Zu)du

−
∫ t

s
ξuθ

a
(
ζaψ(u, T,m)

)
λa(Zu)du+

∫ t

s
M

aQ(m)
u− dξu +

∑
s<u≤t

∆ξau

=ξsM
aQ(m)
s +

∫ t

s
ξu−dMa

u

+

∫ t

s
ξu

[
λa(Zu)− θa

(
ζaψ(u, T,m)

)
λa(Zu)

]
du

+

∫ t

s
M

aQ(m)
u− dξu +

∑
s<u≤t

∆ξau

=ξsM
aQ(m)
s +

∫ t

s
ξu−dMa

u

−
∫ t

s
ξu

[
θa
(
ζaψ(u, T,m)

)
λa(Zu)− λa(Zu)

]
du

+

∫ t

s
M

aQ(m)
u− dξu +

∑
s<u≤t

∆ξau

=ξsM
aQ(m)
s +

∫ t

s
ξu−dMa

u +

∫ t

s
M

aQ(m)
u− dξu + Jξt .

In the third equality we set Ma
t := Jat −

∫ t
0 λ

a(Zs)ds and in the last line

Jξt :=
∑
s<u≤t

∆ξau −
∫ t

s
ξu

[
θa
(
ζaψ(u, T,m)

)
− 1
]
λa(Zu)du.

Since (ξt)t∈[0,T ] and (Ma
t )t∈[0,T ] are P -martingales, referring to [38] (Chapter I, Section

4.d) we state that
( ∫ t

0 ξu−dMa
u

)
t∈[0,T ]

and
( ∫ t

0 M
aQ(m)
u− dξu

)
t∈[0,T ]

are P -local martingales.

Consequently
(
ξtM

Q(m)
t

)
t∈[0,T ]

is a P -local martingale if and only if (Jξt )t∈[0,T ] is a P -
local martingale. By the law of iterated expectations following a reasoning similar to
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that used in the proof of Theorem A.16, for 0 ≤ s ≤ t ≤ T

E
[ ∑
s<u≤t

∆ξau

∣∣∣∣Fs] = E
[ ∑
s<Tan≤t

E
[
∆ξaTan

∣∣∣JaTan−, T an]
∣∣∣∣Ft]

= E
[ ∑
s<Tan≤t

E
[
ξTan−

(
e

〈
ψ(Tan ,T,m),∆Ja

Tan

〉
− 1
)∣∣∣JaTan−, T an]

∣∣∣∣Fs]

= E
[ ∑
s<Tan≤t

ξTan−

(
θa
(
ζaψ(T an , T,m)

)
− 1

)∣∣∣∣Fs]

= E
[ ∫ t

s
ξu−

(
θa
(
ζaψ(u, T,m)

)
− 1

)
dJau

∣∣∣∣Fs]
= E

[ ∫ t

s
ξu

(
θa
(
ζaψ(u, T,m)

)
− 1

)
λa(Zu)du

∣∣∣∣Fs],
where the last equality is a consequence of [15] (Chapter II, Theorem T8) because the
a-th jump process has intensity (λa(Zt))t∈[0,T ] under the measure P and the process(
ξt−
(
θ(ζaψ(t, T,m))− 1

))
t∈[0,T ]

is Ft-predictable.

It follows thatMaQ(m) is aQ(m)-local martingale. By the martingale characterization
of intensity (see [15] (Chapter II, Theorem T9)) we conclude that (Jat )t∈[0,T ] is a counting
process with Q(m)-intensity specified by λaQ(m)(z, t) = l

aQ(m)
0 (t) + 〈laQ(m)

1 (t), z〉.
If we rewrite the SDE (A.12) employing (A.32) the drift term becomes

µQ(m)(z, t) = µ(z) +H(z)ψ(t, T,m),

whereas the volatility coefficient H obviously remains unchanged after the change of
probability measure.

Following the notation already used we employ (∆Jat )t∈[0,T ] to denote the jump of
the a-th jump process. Consequently, ∆Jat is different from zero only if t = T an for some
n, where T an denotes the n-th jump time. For c ∈ Cd and t = T an the following holds:

λaQ(m)(Zt, t)θ
aQ(m)(c, t) = EQ(m)

[
e〈c,∆J

a
t 〉
∣∣∣Ft−]

= EP
[
ξt
ξt−

e〈c,∆J
a
t 〉
∣∣∣∣Ft−].

The first equality is deduced from the independence of the state process (Zt)t∈[0,T ] and
the jump distribution ν = (ν1, . . . , νA)>. In the second line we have expressed the change
of measure through the density process (see [38] (Chapter III, Proposition 3.8)). If we
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make the ratio ξt
ξt−

more explicit remembering that t = T an , then it follows that

λaQ(m)(Zt, t)θ
aQ(m)(c, t) = EP

[
e〈ψ(t,T,m),∆Zat 〉e〈c,∆J

a
t 〉
∣∣∣Ft−]

= EP
[
e〈ζaψ(t,T,m),∆Jat 〉e〈c,∆J

a
t 〉
∣∣∣Ft−]

= EP
[
e〈ζa(ψ(t,T,m)+c),∆Jat 〉

∣∣∣Ft−]
= λa(Zt)θ

a(ζaψ(t, T,m) + c, t)

= λaQ(m)(Zt, t)
θa(ζaψ(t, T,m) + c, t)

θa(ζaψ(t, T,m), t)
.

In the second line we used the relation ∆Zat = ζa∆J
a
t that is deduced from the SDE

(A.12), while the following equality is a consequence of the independence of the state
process (Zt)t∈[0,T ] and the jump distribution ν = (ν1, . . . , νA)>. In the last line we have
substituted the definition of λaQ(m)(t, Zt) = θa(ζaψ(t, T,m))λa(Zt).



Appendix B

Stochastic integration

In this appendix we summarize some notions on stochastic integration that are needed
in the study of affine jump-diffusions.

From now on our attention will be on 1-dimensional processes (the following theory
can be easily extended to dimensions) in the time interval [0, T ] for a fixed T > 0. The
present discussion is based on [54, 55].

B.1 Brownian integration

We work on the filtered probability space (Ω,F , (Ft)t∈[0,T ], P ). The fact that the Brow-
nian motion(Wt)t∈[0,T ] does not have bounded variation prevents us to define pathwise
the integral with respect to (Wt)t∈[0,T ] in the Riemann-Stieltjes sense. On the other
hand, it has finite quadratic variation and this property makes it possible to construct
the stochastic integral for suitable classes of integrands.

Definition B.1. The stochastic process (ut)t∈[0,T ] belongs to the class L2 if

1. u is progressively measurable;

2. u ∈ L2([0, T ]× Ω), that is E
[ ∫ T

0 u2
t dt

]
<∞.

If (ut)t∈[0,T ] ∈ L2 is a simple process of the form

ut =
N∑
n=1

un1(tn−1,tn](t) for 0 ≤ t ≤ T,

where 0 ≤ t0 < t1 < . . . < tN ≤ T is a partition of the interval [0, T ] and for n = 1, . . . , N
un is a Ftn−1-measurable random variable, then the Itô integral is defined in the following
way (see [54] (Chapter 4, Definition 4.2)):∫ T

0
utdWt :=

N∑
n=1

un(Wtn −Wtn−1). (B.1)

93
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We can extend the definition of stochastic integral to all stochastic processes in L2. For
(ut)t∈[0,T ] ∈ L2 there exists a sequence ((unt )t∈[0,T ])n≥0 of simple processes approximating
the process (ut)t∈[0,T ] in L2([0, T ]×Ω) (see [54] (Chapter 4, Lemma 4.8)). Thus we define∫ T

0
utdWt := lim

n→∞

∫ T

0
unt dt in L2(Ω). (B.2)

We use convergence in L2(Ω) because sums in (B.1) do not converge pathwise because
the paths of the Brownian motion are not of bounded variation P -a.s.. Now, we further
extend the class of processes for which the stochastic Brownian integral is defined.

Definition B.2. The stochastic process (ut)t∈[0,T ] belongs to the class L2
loc if

1. u is progressively measurable;

2.
∫ T

0 u2
t dt <∞ P -a.s..

From [54] (Chapter 4, Section 4.4) it follows that for every (ut)t∈[0,T ] ∈ L2
loc there

exists a sequence ((unt )t∈[0,T ])n≥0 of simple processes approximating (ut)t∈[0,T ] in proba-
bility. We define the stochastic integral∫ T

0
utdWt := lim

n→∞

∫ T

0
unt dWt in probability. (B.3)

B.2 Extension of stochastic integration theory

We follow the arguments presented in [55] (Chapter II, Section 4) and consider an increas-
ing process (Ct)t∈[0,T ], that is a càdlàg process whose paths are non-decreasing. Since it
is an increasing process, we can easily use the Lebesgue-Stieltjes integral to define the
stochastic integral with respect to (Ct)t∈[0,T ]. This procedure is based on the idea that
any increasing right-continuous function f can be identified with a unique measure

µ((u, s]) := f(s)− f(u),

for an arbitrary interval (u, s] ⊆ [0, T ]. Then, a non-negative random measure νC is
associated to (Ct)t∈[0,T ] and consequently, if (ut)t∈[0,T ] is a bounded process, then the
integral ∫ t

0
usdCs :=

∫ t

0
usνC(ds) (B.4)

is well-defined for each 0 ≤ t ≤ T . It follows that the constructed integral is a càdlàg
process.

We proceed analogously for a finite variation process (Ct)t∈[0,T ], but in this case the
induced measure νC(ds) is a signed measure. We can define the integral process as in
(B.4), that is ∫ t

0
usdCs :=

∫ t

0
usνC(ds) for 0 ≤ t ≤ T, (B.5)
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where (ut)t∈[0,T ] is a bounded stochastic process.
According to [25] (Chapter 3, Section 3.2) we can replace boundedness of (ut)t∈[0,T ]

by the weaker requirement of local boundedness. In such a case, (B.5) is well-defined
and from [25] (Proposition 3.22) it follows that the constructed stochastic integral is a
càdlàg process with finite variation. Furthermore, it holds that

∆

(∫ t

0
usdCs

)
=

∫ t

0
usdCs −

∫ t−

0
usdCs = ut∆Ct.

If we consider the pure jump process (Jt)t∈[0,T ] given in Definition A.8 as the inte-
grator process, then the definition of stochastic integral is exactly∫ t

0
usdJs :=

∑
n≥1

uTn1{Tn≤t} for 0 ≤ t ≤ T, (B.6)

(ut)t∈[0,T ] is a locally bounded measurable stochastic process. Obviously (Tn)n≥0 are the
jump times related to (Jt)t∈[0,T ]. We highlight that (B.6) is reduced to be a finite sum
from the non-explosion property of the point process (Tn)n≥0 and therefore it has finitely
many jumps in every finite time interval.

We point out that the Lebesgue-Stieltjes integral determined by (A.6) in the Hawkes
intensity definition is exactly (B.6), with the only difference that in that case we are
considering a multivariate counting process.

If the integrator does not have finite variation, then we must introduce suitable con-
ditions such that the stochastic integral is well-defined.

Definition B.3. We let L denote the space of càglàd adapted processes and D indicate the
space of càdlàg adapted processes. The predictable σ-algebra P is the smallest σ-algebra
on [0, T ]× Ω making all processes in L measurable.

Denoting with A the σ-algebra on [0, T ]×Ω generated by all progressively measurable
processes it follows that P ⊆ A.

Definition B.4. A stochastic process (ut)t∈[0,T ] is predictable if it is P-measurable.

Loosely speaking, we can think that (ut)t∈[0,T ] is predictable if ut is Ft−-measurable,
where Ft− stands for the information up to but excluding time t. Let (ut)t∈[0,T ] ∈ L be
a predictable process, then it is simple if it is of the form

ut =

N∑
n=1

un1(tn−1,tn](t) for 0 ≤ t ≤ T,

where 0 ≤ t0 < . . . < tN ≤ T are stopping times and for fixed n = 1, . . . , N un
is a bounded random variable that is Ftn−1-measurable. The stochastic integral of
(ut)t∈[0,T ] ∈ L with respect to a stochastic process (Ct)t∈[0,T ] ∈ D is defined as∫ t

0
usdCs :=

N∑
n=1

un(Ct∧tn − Ct∧tn−) for 0 ≤ t ≤ T. (B.7)
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Because of the space of simple predictable processes is dense in L under the uniform con-
vergence in probability (see [54] (Theorem 14.14)), then for any (ut)t∈[0,T ] ∈ L there exists
a sequence ((unt )t∈[0,T ])n≥0 of simple predictable processes approximating (ut)t∈[0,T ] uni-
formly in probability. Consequently we can define the stochastic integral of a predictable
process (ut)t∈[0,T ] ∈ L as∫ t

0
usdCs := lim

n→∞

∫ t

0
uns dCs uniformly in probability for 0 ≤ t ≤ T. (B.8)

The definition of stochastic integral can be further extended but further generaliza-
tions are beyond the scope of this discussion.



Appendix C

Matlab Implementation

The Matlab code that have been used to simulate the short rate process (rt)t≥0 and
its stochastic lower bound (SLBt)t≥0 is reported in this Appendix. In is based on the
algorithm which is exhaustively explained in Chapter 3.

1 % Model ’ s s imu la t i on
2 %
3 % Res t r i c t i o n : h==0, $\mathbb{R}_+$−valued X
4 %
5 % Inputs :
6 % model ’ s parameters :
7 % X0 = i n i t i a l va lue o f X
8 % dX = (K0 + K1 X) dt + \ sq r t (X) dW_t
9 % r = c (N_1 − N_2) + < e l l , X >

10 % N̂ 1−> lam1 = lambda01 + <Lam1 ,X> + de l ta1 \ int_0^t e^(−gamma1( t−s ) )dN^1_s
11 % N̂ 2−> lam2 = lambda02 + <Lam2 ,X> + de l ta2 \ int_0^t e^(−gamma2( t−s ) )dN^2_s
12 % simulat ion ’ s parameters :
13 % T = f i n a l time (we work on [ 0 ,T] )
14 % sim = number o f time i n t e r v a l s f o r the d i s c r e t i z a t i o n
15 %
16 % Output :
17 % number1 = number o f jumps o f N^1
18 % setT1 = jumps ’ t imes o f N^1
19 % number2 = number o f jumps o f N^2
20 % setT2 = jumps ’ t imes o f N^2
21 % p l o t s f o r X, N_1, N_2, SLB and r
22

23 f unc t i on [ number1 , setT1 , number2 , setT2 ] = simHw(X0 , K0, K1, Lam1 , Lam2 ,
lambda01 , lambda02 , gamma1 , gamma2 , de l ta1 , de l ta2 , T, sim , e l l , c )

24

25 % −> Code to s imulate the d i f f u s i o n proce s s X (dim 1) :
26

27 % Time increments
28 dt = T/sim ; % length o f time i n t e r v a l s
29 J = [ 1 : sim +1] ; % Matlab don ’ t s t a r t from 0
30 x = [ 0 : dt :T ] ;
31

32 % I n i z i a l i z i a t i o n

97
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33 X(1) = X0 ;
34

35 % Maximum of <Lambda^a ,X_t> on [ 0 ,T]
36 max1=Lam1∗X0 ;
37 max2=Lam2∗X0 ;
38

39 % Simulate a t r a j e c t o r y
40 f o r j =2: sim+1 % because 0 , dt , 2dt , . . . , T=ndt ( Matlab can ’ t s t a r t from 0)
41 X( j ) = ( ( ( dt ^2)∗normrnd (0 , 1 )+sq r t ( ( ( dt ^2)∗normrnd (0 , 1 ) )^2+4∗(X( j −1)+(K0

−0.5)∗dt ) ∗(1+K1∗dt ) ) ) ^2) /(2∗(1+K1∗dt ) ) ^2;
42 max1=max(max1 ,Lam1∗X( j ) ) ;
43 max2=max(max2 ,Lam2∗X( j ) ) ;
44 end
45

46 % Vi sua l i z e the t r a j e c t o r y o f X
47 s e t (0 , ’ DefaultAxesColorOrder ’ , [ 0 . 9 290 0 .6940 0 . 1 250 ; 0 0 1 ] ) ;
48 f i g u r e ;
49 p lo t (x ,X) ;
50 x l ab e l ( ’Time t ’ , ’ FontSize ’ ,16)
51 y l ab e l ( ’X ’ , ’ FontSize ’ , 16)
52 t i t l e ( ’ S imulat ion o f a X t r a j e c t o r y ’ )
53

54

55 % −> Code to s imulate the 2−dim Hawkes proce s s :
56

57 % I n i t i a l i z a t i o n
58 n1 = 1 ; % counter f o r the proce s s N^1
59 n2 = 1 ; % counter f o r the proce s s N^2
60 m = 1 ; % counter f o r the candidate po in t s
61 s (1 ) = 0 ; % f i r s t candidate po int o f the Hawkes proce s s
62 setT1 = [ ] ; % array o f event t imes f o r N^1 ( empty )
63 setT2 = [ ] ; % array o f event t imes f o r N^2 ( empty )
64

65 % Determination o f jumps
66 whi le s (m) < T % as long as the candidate po in t s are sma l l e r than T we

generate new po in t s
67 % Determine the value o f lambda bar
68 i f s (m) == 0
69 lambdabar1 (m) = lambda01 + Lam1∗X0 ;
70 lambdabar2 (m) = lambda02 + Lam2∗X0 ;
71 e l s e
72 i f n1 > 1 % check i f the re are a l r eady po in t s in the Hawkes proce s s N

^1 , i f so c a l c u l a t e the r i g h t va lue o f lambda bar
73 sum1 = 0 ;
74 f o r i = 1 : 1 : s i z e ( setT1 , 2)
75 sum1 = sum1 + de l ta1 ∗ exp(−gamma1∗( s (m) − setT1 ( i ) ) ) ; % i f setT1

isn ’ t empty , lambabar i s the sum of the i n t e n s i t y o f the i nd i v i dua l
po in t s and the maximum

76 end
77 lambdabar1 (m) = lambda01 + sum1( end ) + de l ta1 + max1 ; % the new

point i n c r e a s e s the i n t e n s i t y with de l t a1
78 e l s e % when there aren ’ t any po in t s in the Hawkes proce s s N^1 yet
79 lambdabar1 (m) = lambda01 + max1 ;
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80 end
81 i f n2 > 1 % check i f the re are a l r eady po in t s in the Hawkes proce s s N

^2
82 sum2 = 0 ;
83 f o r i = 1 : 1 : s i z e ( setT2 , 2)
84 sum2 = sum2 + de l ta2 ∗ exp(−gamma2∗( s (m) − setT2 ( i ) ) ) ;
85 end
86 lambdabar2 (m) = lambda02 + sum2( end ) + de l ta2 + max2 ;
87 e l s e % when there aren ’ t any po in t s in the Hawkes proce s s N^2 yet
88 lambdabar2 (m) = lambda02 + max2 ;
89 end
90 end
91

92 % Update the candidate po int
93 w(m) = − l og ( rand ) /( lambdabar1 (m) + lambdabar2 (m) ) ;
94 s (m+1) = s (m) + w(m) ; % generate the new candidate po int
95

96 % Determine the value o f the i n t e n s i t y f o r the new candidate po int
97 i f s (m+1) <= T
98 i f s (m+1) == 0
99 lambdanew1 (m) = lambda01 + Lam1∗X0 ;

100 lambdanew2 (m) = lambda02 + Lam2∗X0 ;
101 e l s e
102 c a l = J ( J .∗ dt >= s (m+1) ) ;
103 ind = ca l (1 ) ;
104 i f n1 > 1 % check i f the re are a l r eady po int in the Hawkes proce s s

N^1 , i f so c a l c u l a t e the r i gh t va lue o f lambda
105 sumnew1 = 0 ;
106 f o r i = 1 : 1 : s i z e ( setT1 , 2)
107 sumnew1 = sumnew1 + de l ta1 ∗ exp(−gamma1∗( s (m+1) − setT1 ( i

) ) ) ;
108 end
109 lambdanew1 (m) = lambda01 + sumnew1( end ) + de l ta1 + Lam1∗X( ind )

;
110 e l s e
111 lambdanew1 (m) = lambda01 + Lam1∗X( ind ) ; % there aren ’ t any

po in t s in the Hawkes proce s s N^1
112 end
113 i f n2 > 1 % check i f the re are a l r eady po int in the Hawkes proce s s

N^2 , i f so c a l c u l a t e the r i gh t va lue o f lambda
114 sumnew2 = 0 ;
115 f o r i = 1 : 1 : s i z e ( setT2 , 2)
116 sumnew2 = sumnew2 + de l ta2 ∗ exp(−gamma2∗( s (m+1) − setT2 ( i

) ) ) ;
117 end
118 lambdanew2 (m) = lambda02 + sumnew2( end ) + de l ta2 + Lam2∗X( ind )

;
119 e l s e
120 lambdanew2 (m) = lambda02 + Lam2∗X( ind ) ; % there aren ’ t any

po in t s in the Hawkes proce s s N^2
121 end
122 end
123
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124 % Check the new point
125 D(m+1) = rand ; % generate a random va r i ab l e
126 i f D(m+1) ∗ ( lambdabar1 (m) + lambdabar2 (m) ) <= lambdanew1 (m) + lambdanew2 (

m) % determine i f the po int needs to be r e j e c t e d
127 i f D(m+1) ∗ ( lambdabar1 (m) + lambdabar2 (m) ) <= lambdanew1 (m)
128 setT1 ( n1 ) = s (m+1) ; % i f not r e j e c t e d the po int i s added to the Hawkes

proce s s N^1
129 n1 = n1 + 1 ; % the counter i s r a i s e d by one
130 e l s e
131 setT2 ( n2 ) = s (m+1) ; % i f not r e j e c t e d the po int i s added to the Hawkes

proce s s N^2
132 n2 = n2 + 1 ; % the counter i s r a i s e d by one
133 end
134 end
135 end
136 m = m + 1 ; % otherwi se we go on to the next candidate po int
137 end
138

139 % Remove the f i r s t po int from s s i n c e nothing occurred at time 0
140 s (1 ) = [ ] ; % remove s t a r t i n g po int
141 m = m − 1 ; % one element o f array i s removed thus lower the array l ength
142 n1 = n1 − 1 ; % had to s t a r t at 1
143 n2 = n2 − 1 ; % had to s t a r t at 1
144

145 % Remove po in t s that happened a f t e r T
146 i f m > 0
147 i f s (m) > T % check f o r the Poisson proce s s
148 s (m) = [ ] ; % i f the l a s t va lue i s b i gge r than T we remove i t from the

array
149 m = m − 1 ; % in t h i s case the array s i z e de c r ea s e s by one s i n c e one po int

i s removed
150 end
151 end
152 i f n1 > 0
153 i f setT1 ( n1 ) > T
154 setT1 ( n1 ) = [ ] ;
155 n1 = n1 − 1 ;
156 end
157 end
158 i f n2 > 0
159 i f setT2 ( n2 ) > T
160 setT2 ( n2 ) = [ ] ;
161 n2 = n2 − 1 ;
162 end
163 end
164

165 number1=length ( setT1 ) ;
166 number2=length ( setT2 ) ;
167

168

169 % −> Plot the graphs :
170 s e t (0 , ’ DefaultAxesColorOrder ’ , [ 0 0 .4470 0 . 7 4 1 0 ] ) ;
171 hold on
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172

173 i f isempty ( setT1 ) == 0
174 f i g u r e ;
175 y = @( e ) 0∗ e ;
176 p lo t ( [ 0 setT1 (1 ) ] , y ( [ 0 setT1 (1 ) ] ) , ’− ’ )
177 f o r i =1:1 : n1−1
178 x = l i n s p a c e ( setT1 ( i ) , setT1 ( i +1) , 100) ; % p lo t between two event t imes
179 y = @( e ) 1+y( e ) ;
180 s c a t t e r ( setT1 ( i ) , y ( setT1 ( i ) ) ,80 , ’ . ’ )
181 p lo t (x , y (x ) , ’− ’ )
182 end
183 i f setT1 ( n1 ) ~= T
184 x = l i n s p a c e ( setT1 ( n1 ) , T, 100) ;
185 y = @( e ) 1+y( e ) ;
186 s c a t t e r ( setT1 ( n1 ) , y ( setT1 ( n1 ) ) ,80 , ’ . ’ )
187 p lo t (x , y (x ) , ’−b ’ )
188 e l s e
189 y = @( e ) 1+y( e ) ;
190 s c a t t e r ( setT1 ( n1 ) , y ( setT1 ( n1 ) ) ,80 , ’ . ’ )
191 end
192 x l ab e l ( ’Time ’ )
193 y l ab e l ( ’N^1 ’ )
194 t i t l e ( [ ’ S imulat ion o f the f i r s t component o f N with parameters lambda_0^1 =

’ , num2str ( lambda01 ) , ’ , d e l t a ^1 = ’ , num2str ( de l t a1 ) , ’ and gamma^1 =
’ , num2str (gamma1) ] )

195 end
196

197 i f isempty ( setT2 ) == 0
198 f i g u r e ;
199 y = @( e ) 0∗ e ;
200 p lo t ( [ 0 setT2 (1 ) ] , y ( [ 0 setT2 (1 ) ] ) , ’− ’ )
201 f o r i =1:1 : n2−1
202 x = setT2 ( i ) : 0 .0001 : setT2 ( i +1) ; % p lo t between two event t imes
203 y = @( e ) 1+y( e ) ;
204 s c a t t e r ( setT2 ( i ) , y ( setT2 ( i ) ) ,80 , ’ . ’ )
205 p lo t (x , y (x ) , ’− ’ )
206 end
207 i f setT2 ( n2 ) ~= T
208 x = l i n s p a c e ( setT2 ( n2 ) ,T, 100 ) ;
209 y = @( e ) 1+y( e ) ;
210 s c a t t e r ( setT2 ( n2 ) , y ( setT2 ( n2 ) ) ,80 , ’ . ’ )
211 p lo t (x , y (x ) , ’− ’ )
212 end
213 x l ab e l ( ’Time ’ )
214 y l ab e l ( ’N^2 ’ )
215 t i t l e ( [ ’ S imulat ion o f the second component o f N with parameters lambda_0^2

= ’ , num2str ( lambda02 ) , ’ , d e l t a ^2 = ’ , num2str ( de l t a2 ) , ’ and gamma^2 =
’ , num2str (gamma2) ] )

216 end
217

218 T1T2 = so r t ( [ setT1 ( : ) ’ , setT2 ( : ) ’ ] ) ;
219 n12=length (T1T2) ;
220 i f isempty (T1T2) == 0
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221 f i g u r e ;
222 y = @( e ) 0∗ e ;
223 p lo t ( [ 0 T1T2(1) ] , y ( [ 0 T1T2(1) ] ) , ’− ’ )
224 f o r i =1:1 : n12−1
225 x = l i n s p a c e (T1T2( i ) , T1T2( i +1) , 100) ; % p lo t between two event t imes
226 i f ismember (T1T2( i ) , setT1 ) == 1
227 y = @( e ) c+y( e ) ;
228 e l s e
229 y = @( e ) −c+y( e ) ;
230 end
231 s c a t t e r (T1T2( i ) , y (T1T2( i ) ) ,80 , ’ . ’ )
232 p lo t (x , y (x ) , ’− ’ )
233 end
234 i f T1T2( n12 ) ~= T
235 x = l i n s p a c e (T1T2( n12 ) , T, 100) ;
236 i f ismember (T1T2( i ) , setT1 ) == 1
237 y = @( e ) c+y( e ) ;
238 e l s e
239 y = @( e ) −c+y( e ) ;
240 end
241 s c a t t e r (T1T2( n12 ) , y (T1T2( n12 ) ) ,80 , ’ . ’ )
242 p lo t (x , y (x ) , ’−b ’ )
243 e l s e
244 i f ismember (T1T2( i ) , setT1 ) == 1
245 y = @( e ) c+y( e ) ;
246 e l s e
247 y = @( e ) −c+y( e ) ;
248 end
249 s c a t t e r (T1T2( n1n2 ) , y (T1T2( n1n2 ) ) ,80 , ’ . ’ )
250 end
251 x l ab e l ( ’Time ’ )
252 y l ab e l ( ’SLB ’ )
253 t i t l e ( ’ S imulat ion o f the SLB ’ )
254 end
255

256 f i g u r e ;
257 y=e l l ∗X;
258 f o r i =1:n12
259 c a l=J ( J∗dt>=T1T2( i ) ) ;
260 i f ismember (T1T2( i ) , setT1 ) == 1
261 y ( c a l )=y ( c a l )+c ;
262 e l s e
263 y ( c a l )=y ( c a l )−c ;
264 end
265 end
266 x = [ 0 : dt :T ] ;
267 p lo t (x , y , ’− ’ )
268 x l ab e l ( ’Time ’ )
269 y l ab e l ( ’SLB ’ )
270 t i t l e ( ’ S imulat ion o f the shor t ra t e ’ )
271

272 hold o f f
273 end
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