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Introduction

The core of this thesis is the Brunn-Minkowski inequality.
In Chapter 1 we prove the Brunn-Minkowski inequality in the Euclidean space,

m(A+B)
1

n ≥ m(A)
1

n +m(B)
1

n .

As a corollary, we prove the Isoperimetric inequality in the Euclidean space. At the end
of this chapter we introduce the “geodesic” version of the Brunn-Minkowski inequality in
the Euclidean space

m(Zt(A,B))
1

n ≥ (1− t)m(A)
1

n + tm(B)
1

n ,

and the so called Measure Contraction Property.
Subsequently, we investigate the validity of the geodesic generalization of the Brunn-

Minkowski inequality in the Heisenberg group, which is the simplest example of sub-
Riemannian manifond. Indeed, this space is invariant under left translations and homo-
geneous of degree one with respect to a family of dilations as the Euclidean space. Then,
we prove that the Euclidean geodesic generalization of the Brunn-Minkowski inequality
is false. Nevertheless there exists a modified version of the Brunn-Minkowski inequality
which holds in the Heisenberg group,

m(Zt(A,B))
1

3 ≥ (1− t)
5

3m(A)
1

3 + t
5

3m(B)
1

3 ,

but it does not imply the Isoperimetric inequality.
Furthermore, we provide geometric evidence of the exponent involved in the Measure

Contraction Property in the Heisenberg group, and we give a sketch of its proof. So
as to pursue our purpose, in Chapter 2, we give a brief introduction of the Heisenberg
group, specifically we focus on the metric structure given by the Carnot-Carathéodory
distance. In particular, we discuss the notion of horizontal curves and length minimizers
and provide a sketch of the calculation thereof.
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Chapter 1

The Brunn-Minkowski inequality in
the Euclidean space

In this chapter we prove the Brunn-Minkowski inequality in R
n and the “piecewise C2 case”

of the isoperimetric inequality. To this end, we start presenting some tools concerning the
Lebesgue outer measure, namely the measurable hull and the set of points of density 1.

1.1 Notation and statement of the theorem

We begin recalling the definition of Lebesgue outer measure. Let F be the family of all
rectangular boxes (a1, b1)×· · ·× (an, bn), where ai, bi ∈ R and ai < bi ∀i ∈ {1, ..., n}, for
every U ∈ F we set m0(U) =

∏n
i=1(bi− ai). Then the Lebesgue outer measure of A ⊂ R

n

is:

m(A) = inf

{ ∞
∑

j=1

m0(Uj) : A ⊂
∞
⋃

j=1

Uj, Uj ∈ F ∀j ∈ N

}

, (1.1)

and, being the σ-algebra of the Lebesgue measurable sets denoted by L, then m|L is the
Lebesgue measure by virtue of Carathéodory theorem.

Definition 1.1. (Minkowski sum) Let A and B be two nonempty subsets of Rn, we define
the Minkowski sum:

A+B := {a+ b : a ∈ A , b ∈ B}.

Remark 1.1. Given A and B two nonempy Borel sets of Rn, we observe that A + B is a
Borel set for the map A×B ∋ (a, b) 7−→ a+ b ∈ A+B is continuous thus measurable; it
is also open. Note that if two sets are only measurable, the Minkowski sum of those, in
general, is not measurable as shown in [11].

With this in mind, we are ready to state the general version of the Brunn-Minkowski
inequality in R

n, in other words we make no assumption on the sets involved in the
inequality, nonemptiness aside.

Theorem 1.1. (Brunn-Minkowski inequality) If A and B are two nonempty subsets of
R

n, then
m(A+B)

1

n ≥ m(A)
1

n +m(B)
1

n .
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Chapter 1. The Brunn-Minkowski inequality in the Euclidean space

Figure 1.1: The Minkowski sum of a square and a disk. Immage rendered by [6]

1.2 Proof of the theorem

Before proving the Brunn-Minkowski inequality we need some preliminary results about
the Lebesgue outer measure. The next proposition assures the existence of a measurable
hull for every subsets of Rn. We must observe that this existence is strictly related to the
σ−finiteness of the Lebesgue measure and the regularity thereof.

Proposition 1.1. (Measurable hull) For every A ⊂ R
n, there exists a measurable hull E

of A, i.e. E is measurable, A ⊂ E, and for every F measurable such that A ⊂ F we have
that m(E \ F ) = 0.

Proof. Case 1 : Suppose m(A) < ∞, by regularity of the Lebesgue measure there for any
k ∈ N there exists an open set Ek such that A ⊂ Ek and

m(Ek) ≤ m(A) +
1

k
.

Define E = ∩kEk, then E is a measurable since countable intersection of measurable and
A ⊂ E. Let F measurable, A ⊂ F , thenm(E) = m(E∩F )+m(E\F ) ≥ m(A)+m(E\F ),
hence m(E \ F ) = 0.

Case 2 : Due to the σ-finiteness of R
n, there exists a family {Rj}∞j=0 of Lebesgue

measurable sets, which can be assumed disjoint without loss of generality, such that
R

n =
⋃∞

j=1 Rj and m(Rj) < ∞ for all j. Given A ⊂ R
n, we can write A =

⋃

j(A ∩ Rj)
and consider Ej the measurable hull of A ∩ Rj which exists by virtue of Case 1 as
m(Rj) < ∞. Note that if Ej is a measurable hull of A ∩Rj also Ej ∩Rj is a measurable
hull of A ∩Rj. We set E =

⋃

j(Ej ∩Rj) which is measurable and A ⊂ E. Moreover if F
is measurable and A ⊂ F , we have

m(E \ F ) = m

(

⋃

j

(Ej ∩Rj) \
⋃

j

(A ∩Rj)

)

= m

(

⋃

j

((Ej ∩Rj) \ (A ∩Rj))

)

= 0
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Chapter 1. The Brunn-Minkowski inequality in the Euclidean space

Remark 1.2. One can readily see that if E is a measurable hull of A, we have that
m(A ∩ T ) = m(E ∩ T ) for every measurable set T .

Consequently we define the set of all elements of density 1 needed for the proof of the
theorem.

Proposition 1.2. Let A be a subset of Rn. We denote with ωn = m(B(0, 1)), where
B(0, 1) = {x ∈ R

n : |x| < 1} , and define

A∗ =

{

y ∈ R
n : lim

r→0+

m(A ∩ B(y, r))

ωnrn
= 1

}

, (1.2)

then A∗ is measurable, m(A \ A∗) = 0 and A ∪ A∗ is a hull of A.

Proof. If C is a hull of A, then

A∗ =

{

y ∈ R
n : lim

r→0+

m(C ∩B(y, r))

ωnrn
= 1

}

,

thanks to Remark 1.2, observe that

lim
r→0+

m(C ∩B(y, r))

ωnrn
= lim

r→0+

1

ωnrn

∫

B(y,r)

χCdx,

where χC is the characteristic function of the set C and dx is the Lebesgue measure.
Thus by virtue of the Lebesgue differentiation theorem A∗ = C almost everywhere, hence
measurable. As a consequence, m(C△A∗) = 0 and the assertions about A∗ follow from
the inclusions:

A \ A∗ ⊂ C \ A∗, A ⊂ A ∪ A∗ ⊂ C ∪ (A∗ \ C).

Note that m(A∗) ≤ m(A ∪ A∗) ≤ m(A∗) +m(A \ A∗) = m(A∗) thence m(A ∪ A∗) =
m(A∗) and m(A) = m(A∗) due to Remark 1.2.

Now we are ready to give a proof of the Brunn-Minkowski inequality.

Proof of Theorem 1.1. Let F be the family of all rectangular boxes P1 × · · · × Pn where
P1, ..., Pn are nonempy, bounded, open subintervals of R.

If A = P1 × · · · × Pn ∈ F and B = Q1 × · · · × Qn ∈ F , then A + B = (P1 + Q1) ×
· · · (Pn +Qn), and m(Pi) +m(Qi) = m(Pi +Qi) for i = 1, . . . , n; now

m(A)
1

n +m(B)
1

n

m(A+B)
1

n

=
n
∏

i=1

(

m(Pi)

m(Pi +Qi)

) 1

n

+
n
∏

i=1

(

m(Qi)

m(Pi +Qi)

) 1

n

≤ 1

n

n
∑

i=1

m(Pi)

m(Pi +Qi)
+

1

n

n
∑

i=1

m(Qi)

m(Pi +Qi)
= 1

thanks to arithmetic-geometric mean inequality.
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Chapter 1. The Brunn-Minkowski inequality in the Euclidean space

Next we treat the case when A =
⋃p

j=1 Gj and B =
⋃q

j=1 Hj for some finite disjoint
subfamilies G = {Gj}pj=1 and H = {Hj}qj=1 of F , by applying induction with respect to
p+ q.

If p > 1, we choose i ∈ {1, . . . , n} and a ∈ R so that each of the two sets

A1 = A ∩ {x ∈ R
n : xi < a}, A2 = A ∩ {x ∈ R

n : xi > a}

contains some elements of G, and also choose b ∈ R such that the sets

B1 = B ∩ {x ∈ R
n : xi < b}, B2 = B ∩ {x ∈ R

n : xi > b}

satisfy the equations
m(Ak)

m(A)
=

m(Bk)

m(B)
for k = 1, 2.

We see that

Ak =

p
⋃

j=1

(Gj ∩ Ak) and Bk =

q
⋃

j=1

(Hj ∩ Bk),

thanks to the above construction there exists at least one j ∈ {1, ..., p}, which can assumed
to be j = p minus reordering, such that Gp ∩ Ak = ∅; for the same reason there could
exist some j ∈ {1, ..., q} such that Hj ∩ Ak = ∅, hence we have that

Ak =

p′
⋃

j=1

(Gj ∩ Ak), with p′ < p, Bk =

q′
⋃

j=1

(Hj ∩ Bk), with q′ ≤ q.

Since A1 +B1 and A2 +B2 are separated by {x ∈ R
n : xi = a+ b}, induction yields

m(A+B) ≥ m(A1 +B1) +m(A2 +B2)

≥
(

m(A1)
1

n +m(B1)
1

n

)n

+
(

m(A2)
1

n +m(B2)
1

n

)n

=
(

m(A)
1

n +m(B)
1

n

)n

.

If A,B are two nonempty compact subsets of Rn, then A+B is also compact, Remark
1.1. From (1.1) we have that for every ε > 0 there exists a sequence {Uj}∞j=1 ⊂ F , which
can be assumed to have finite Measure as the measure of a compact set is finite, such that

∞
∑

j=1

m(Uj) ≤ m(A) + ε,

thus we have that
∑∞

j=1 m(Uj) =
∑N

j=1 m(Uj) + rN with rN → 0 as N → ∞, hence

N
∑

j=1

m(Uj) ≤ m(A) + ε− rN ,

if we choose N big enough, any compact set can be approximated by a finite disjoint
union of boxes, and as a result the Brunn-Minkowski inequality holds in this case.
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Chapter 1. The Brunn-Minkowski inequality in the Euclidean space

If A,B are two nonempty measurable subsets of Rn, there exist two sequence of com-
pact sets {Kj}∞j=1 ⊂ A and {Hj}∞j=1 ⊂ B such that

m(Kj) ≥ m(A)− 1

k
and m(Hj) ≥ m(B)− 1

k
,

then for every j ∈ N we have

m(A+B)
1

n ≥ m(Kj +Hj)
1

n ≥ m(Kj)
1

n +m(Hj)
1

n ≥

≥
(

m(A)− 1

k

) 1

n

+

(

m(B)− 1

k

) 1

n

−→
k→∞

m(A)
1

n +m(B)
1

n .

Finally, if A and B are not measurable, it suffices to consider A∗ and B∗ as in (1.2)
and observe that A∗ +B∗ ⊂ (A+B)∗.

Remark 1.3. Henceforth we shall always assume A and B to be measurable so as to freely
apply the properties of Lebesgue measure and integration, nevertheless this assumption
is not restrictive in that we now know how to treat the excluded case.

For the sake of completeness, we specify the equality condition for Theorem 1.1, a
detailed dissertation is available in [9].

Theorem 1.2. If A and B are two nonempty compact subsets of Rn, then the equality
in Theorem 1.1 holds if and only if A and B are homotetic and m(conv(A) \ A) =
m(conv(B) \ B) = 0, where conv(A) is the convex hull of A, i.e. the smallest convex set
in which A is contained.

1.3 Applications and possible generalizations

As a corollary of the Brunn-Minkowski inequality, we are able to prove the isoperimetric
inequality.

Theorem 1.3. Let A be measurable and bounded set of Rn, with Lipschitz boundary,
then

H
n−1(∂A) ≥ nω

1

n

n m(A)
n−1

n ,

denoting with H n−1 the n−1-dimensional Hausdorff measure and with ωn = m(B(0, 1)).
Moreover the equality holds if and only if A is, up to translations and sets of measure 0,
a ball.

Proof. We only prove the case in which ∂A is C2, and in fact piecewise C2. For a general
proof one may consult [5].

Fix r > 0, consider Ar = {x ∈ R
n : d(x,A) < r} with d(x,A) = infa∈A |x − a|.

Observe that this definition is equivalent to Ar = A+rB(0, 1). Note that sincem(A) < ∞
eventually m(Ar) < ∞, thus the following inequality is well defined

m(Ar \A) = m(Ar)−m(A) ≥
(

m(A)
1

n + rω
1

n

n

)n

−m(A) = rnω
1

n

n m(A)
n−1

n + o(r), (1.3)

11



Chapter 1. The Brunn-Minkowski inequality in the Euclidean space

due to the Brunn-Minkowski inequality and Newton’s Binomial Theorem. In order to
prove the theorem, we have to show that

lim
r→0+

m(Ar \ A)
r

= H
n−1(∂A), (1.4)

in that, if (1.4) were true, we would have

H
n−1(∂A) ≥ lim

r→0+

rnω
1

n

n m(A)
n−1

n + o(r)

r
= nω

1

n

n m(A)
n−1

n

thanks to (1.3), as claimed.
Let f be the function x 7−→ d(x,A), one can show that if ∂A is C2, f ∈ C2(Ar \ A)

and |∇f | = 1 on Ar \ A. Firstly observe that

lim
r→0+

∫

Ar\A
∆f(x)dx ≤ lim

r→0+
∥∆f∥∞m(Ar \ A) = 0, (1.5)

as f ∈ C2(Ar \ A). Recall that ∆f = div(∇f), being div the divergence operator. Thanks
to (1.5) we have

0 = lim
r→0+

∫

Ar\A
∆f(x)dx = lim

r→0+

(∫

{f=r}
⟨∇f,∇f⟩dH n−1 −

∫

∂A

⟨∇f,∇f⟩dH n−1

)

=

= lim
r→0+

H
n−1({f = r})− H

n−1(∂A),

by virtue of the Divergence Theorem. Hence the function r 7−→ H n−1({f = r}) is
continuous at r = 0. We conclude due to the Fundamental Theorem of Calculus and
Coarea Formula:

m(Ar \ A)
r

=
1

r

∫

Ar\A
|∇f(x)|dx =

1

r

∫ r

0

H
n−1({f = t})dt −→

r→0+
H

n−1(∂A).

From Theorem (1.2) we know that the Brunn-Minkowski equality condition holds if
and only if A is, up to translations and sets of measure 0, a ball, then (1.3) is an equality
and we conclude.

Now we give a more “dynamical” version of Theorem 1.1. In so doing, we need the
following

Definition 1.2. (t-intermediate set) Let A,B ⊂ R
n be measurable nonempty sets and

t ∈ [0, 1]. The set Zt(A,B) of t-intermediate points is the set of all points γ(t), where
γ : [0, 1] → R

n is a minimizing geodesic such as γ(0) ∈ A and γ(1) ∈ B.

Recall that the minimizing geodesic in R
n joining two points x and y is

γ : [0, 1] −→ R
n

t 7−→ x+ t(y − x).

12



Chapter 1. The Brunn-Minkowski inequality in the Euclidean space

As a consequence, in the Euclidean case the explicit formula for the set Zt(A,B) of
Definition 1.2 is

Zt(A,B) = A+ t(B − A) = {a+ t(b− a) : a ∈ A, b ∈ B}.

Now we can state the “geodesic” version of the Brunn-Minkowski inequality, and in par-
ticular we show that it is equivalent to Theorem 1.1.

Proposition 1.3. Let A,B ⊂ R
n be nonempty and measurable, then:

Theorem 1 is equivalent to

m(Zt(A,B))
1

n ≥ (1− t)m(A)
1

n + tm(B)
1

n ∀t ∈ [0, 1]. (1.6)

Proof. For the necessity: adopt the following substitution: A → (1−t)A and B → tB then
the assertion is true by virtue of Lebesgue measure property under linear transformation.
For the sufficiency: consider the time t = 1/2, then substitute A → 2A and similarly for
B.

Remark 1.4. If in the (1.6) A is a singleton {x} with x ∈ R
n we have the so called Measure

Contraction Property
m(Zt(x,B)) ≥ tnm(B) ∀t ∈ [0, 1]. (1.7)

Figure 1.2: A graphic representation of the Measure Contraction Property, general case.
This picture is courtesy of [4].

Furthermore, we note that (1.7) in the Euclidean case is an equality which readily
descends from the invariance under translation of the Lebesgue measure.

In Chapter 3, we study the “geodesic” Brunn-Minkowski inequality in the Heisenberg
group.

13



Chapter 1. The Brunn-Minkowski inequality in the Euclidean space

x
y

Zt(x,Br(y))

Br(y)

Figure 1.3: A visual interpretation of the Measure Contraction Property in R
2.
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Chapter 2

The Heisenberg Group

In this chapter we introduce the Heisenberg group viewed as a sub-Riemannian manifold.
Once that the basic notions are given, we shall focus on the concept of length-minimizers.

2.1 Definition of the Heisenberg group

Definition 2.1. The Heisenberg group is the manifold H = R
3 endowed with the group

product

x · y =

(

x1 + y1, x2 + y2, x3 + y3 +
1

2
(x1y2 − x2y1)

)

. (2.1)

The Heisenberg group is a non commutative Lie group, the identity element is 0 =
(0, 0, 0) and the inverse of x is −x = (−x1,−x2,−x3).

We define the left translation by p ∈ H to be the map τp : H −→ H where τp(x) = p ·x.
Observe that the left-translation map can be written as

τp(x) = p+ dτpx where dτp =





1 0 0
0 1 0

−p2
2

p1
2

1





In addition, for every λ > 0 we define the map δλ : H −→ H where δλ(x) =
(λx1, λx2, λ

2x3) is called dilation. Note that δλ(x) = ∆x where ∆ = diag(λ, λ, λ2).

Let E ⊂ H be measurable, then by applying the change of variables theorem and the
invariance under tlanslations of the Lebesgue measure we have that

m(τp(E)) = m(E) and m(δλ(E)) = λ4m(E).

We introduce the Lie algebra of left-invariant vector fields of H. X is a left-invariant
vector field if X(p) = dτpX(0). Those vectors together with the Lie bracket form a Lie
algebra h called Heisenberg Lie algebra. The algebra h is spanned by the vector fields

X1 = ∂1 −
1

2
x2∂3, X2 = ∂2 +

1

2
x1∂3, T = ∂3. (2.2)

15



Chapter 2. The Heisenberg Group

The vector fields (2.2) satisfy

Xi(p) = dτpXi(0) for i = 1, 2 and T (p) = dτpT (0).

The distribution Dp = span{X1(p), X2(p)} is called horizontal distribution and it is
bracket-generating for [X1, X2] = T and dimRspan{X1, X2, [X1, X2]} = 3.

Before introducing a metric structure on H, we need some definitions and remarks.

Definition 2.2. Let I ⊂ R be a closed interval. A Lipschitz curve γ : I −→ H is
horizontal if γ̇(t) ∈ Dγ(t) for a.e. t ∈ I. Equivalently γ is horizontal if there exist
functions u1, u2 ∈ L∞(I) such that

γ̇ = u1X1(γ) + u2X2(γ) a.e. on I. (2.3)

Observe that Definition 2.2 is equivalent to ask the curve to have their velocities in
the kernel of ω = −dx3 +

1
2
(x1dx2 − x2dx1).

We denote the set of horizontal curve connecting x and y with Hx,y. Note that in the
latter set we are considering only the support of the curves, not the parametrizations.

We set the sub-Riemannian norm in the Heisenberg group by the relation

∥a1X1 + a2X2∥2H = |a21 + a22|2,

where | · | is the Euclidean norm in R
3. As a consequence, we define the sub-Riemannian

length of an horizontal curve to be

ℓ(γ) =

∫

I

∥γ̇(t)∥Hdt =
∫

I

√

u2
1(t) + u2

2(t)dt.

Moreover, observe that the sub-Riemannian length of an horizontal curve is exactly the
Euclidean length of its projection onto the plane {x3 = 0}:

ℓ(γ) =

∫ 1

0

√

u2
1 + u2

2dt =

∫ 1

0

√

ẋ2
1 + ẋ2

2dt =

∫ 1

0

|(π(γ))′|dt = ℓe(π(γ))

With the following proposition, we characterise the behaviour of the length of an
horizontal curve under some geometric transformations.

Proposition 2.1. Let γ be an horizontal curve, then

1. ℓ(τp(γ)) = ℓ(γ) for every p ∈ H,

2. ℓ(δλ(γ)) = λℓ(γ) for every λ > 0,

3. ℓ(ρθ(γ)) = ℓ(γ) for every θ ∈ R,

4. ℓ(sym(γ)) = ℓ(γ)

where ρθ is the rotation around the x3-axis of on angle θ and sym(x1, x2, x3) = (x1,−x2,−x3).

Proof. 1. True by definition as X1 and X2 are left-invariant vector fields.

16



Chapter 2. The Heisenberg Group

2. From the identities: Dδλ(p)Xi = λXi(δλ(p)) for i = 1, 2.

3. From the identities Dρθ(p)X1 = cos(θ)X1(ρθ(p)) + sin(θ)X2(ρθ(p)) and
Dρθ(p)X2 = − sin(θ)X1(ρθ(p)) + cos(θ)X2(ρθ(p)).

4. From the identities Dsym(p)X1 = X1(sym(p)) and Dsym(p)X2 = −X2(sym(p))

Now we try to understand the geometry of horizontal curves starting from the origin.
Given γ : [0, 1] → H such that γ(0) = 0, and γ(1) = p, by Definition 2.2 we have

{

γ̇i = ui i = 1, 2

γ̇3 = −γ2
2
u1 +

γ1
2
u2.

In particular, given u1 and u2 we find:

γi(t) =

∫ t

0

ui(s)ds i = 1, 2

γ3(t) =

∫ t

0

(

−γ2(s)

2
u1(s) +

γ1(s)

2
u2(s)

)

ds =
1

2

∫ t

0

(γ1γ̇2 − γ̇1γ2)ds =

=

∫

γ

1

2
(x1dx2 − x2dx1) =

∫

γη

1

2
(x1dx2 − x2dx1) =

∫

R

dx1 ∧ dx2 = H
2(R),

where [0, 1] ∋ t 7−→ η(t) = (1 − t)p ∈ H whose contribution to the integral is null as
η1η̇2 − η̇1η2 = 0, γη is the composition of paths, and R is the region enclosed by γη.

With the following remark, we show that the Heisenberg group is connected via hori-
zontal curves.

Remark 2.1. (Connectivity of H) Observe that due to the left-invariance of the vector
fields X1 and X2, so as to find an horizontal curve joining p and q, it suffices to calculate
the curve from 0 to p−1 · q and then apply τp to that curve. Now we exhibit an horizontal
curve of finite length joining 0 and p.

To start with, consider p = (x, 0, z) with z ≥ 0. Define κ : [0, 1] −→ H

κx,z(t) =































5t(x, 0, 0) t ∈
[

0, 1
5

]

(x, 0, 0) + (5t− 1)(0,−√
z,−√

z x
2
) t ∈

[

1
5
, 2
5

]

(x,−√
z,−√

z x
2
) + (5t− 2)(

√
z, 0, z

2
) t ∈

[

2
5
, 3
5

]

(x+
√
z,−√

z, z−x
√
z

2
) + (5t− 3)(0,

√
z, z+x

√
z

2
) t ∈

[

3
5
, 4
5

]

(x+
√
z, 0, z) + (5t− 4)(−√

z, 0, 0) t ∈
[

4
5
, 1
]

,

(2.4)

is horizontal since

κ̇x,z(t) =































5xX1(κ) t ∈
[

0, 1
5

]

−5
√
zX2(κ) t ∈

[

1
5
, 2
5

]

5
√
zX1(κ) t ∈

[

2
5
, 3
5

]

5
√
zX2(κ) t ∈

[

3
5
, 4
5

]

−5
√
zX1(κ) t ∈

[

4
5
, 1
]

.

(2.5)
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In addition, we see that ℓ(κ) = |x|+ 4
√
z. If z < 0 we can consider the curve sym(κx,−z)

which satisfies our purpose. For a generic point p = (x, y, z), supposing z ≥ 0, consider
the curve ρθ(κr,z) where r =

√

x2 + y2 and θ = tan−1(y/x).

Figure 2.1: Graphic representation of κ1,1.

Finally we are ready to define a metric structure on H.

Proposition 2.2. (Carnot-Carathéodory distance) The function d : H×H −→ [0,∞)

d(x, y) = inf{ℓ(γ) : γ ∈ Hx,y} (2.6)

is a distance on H.

Proof. For any x, y ∈ H we have that d(x, y) < ∞, thus the function d is well defined by
virtue of Remark 2.1. d(x, y) ≥ 0 for any x, y ∈ H. Moreover if d(x, y) = 0, we have that
for any γ ∈ Hx,y, γ̇ = 0 a.e. on I thus γ is constant as it is continuous. Symmetry follows
from the definition of Hx,y. For the triangular inequality consider x, y, z ∈ H. For any
γ ∈ Hx,y, γ

′ ∈ Hx,z, γ
′′ ∈ Hy,z, we have that the composition of path γ′γ′′ ∈ Hx,y, and

ℓ(γ′γ′′) = ℓ(γ′) + ℓ(γ′′), hence the conclusion.

Thanks to Proposition 2.1 the distance d is left invariant and homogeneous of degree
1 with respect to dilations, i.e. for every x, y, z ∈ H we have:

d(x · y, x · z) = d(y, z), d(δλ(x), δλ(y)) = λd(x, y).

18
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2.2 Length-minimizers in the Heisenberg group

In this section we consider the problem of finding length-minimizers, namely the shortest
curve joining two points in H with respect to the Carnot-Carathéodory metric introduced
in Proposition 2.2.

Remark 2.2. As the length of an horizontal curve is invariant up to reparametrization, we
can freely assume that it is parametrized on [0, 1].

Definition 2.3. An horizontal curve γ : [0, 1] −→ H is a length minimizer if ℓ(γ) =
d(γ(0), γ(1)).

Remark 2.3. • Every horizontal curve γ is the reparametrization of an horizontal
curve with constant speed and ℓ(γ) is invariant up to reparametrization, thus hence-
forth we shall deal with curves constant speed parametrized.

• Constant speed curves realize the following equality:

(∫ 1

0

∥γ̇∥Hdt
)2

=

∫ 1

0

∥γ̇∥2
H
dt, (2.7)

note that in general is only true with ≤. Defining the sub-Riemannian energy J(γ) =
1
2

∫ 1

0
∥γ̇∥2

H
dt, (2.7) becomes ℓ(γ)2 = 2J(γ). Hence, in order to find length-minimzers from

x to y we have to compute
inf{J(γ) : γ ∈ Hx,y}

where Hx,y is the set of all horizontal curves joining x and y. Observe that this is an
optimal control problem:











inf
∫ 1

0
(u2

1 + u2
2)dt

x(0) = 0, x(1) = y

ẋ(t) = u1(t)X1(x(t)) + u2(t)X2(x(t)).

Now, we would like to compute the length-minimizers, we give a brief scketch of the
computations, a complete and exhaustive formulation of this optimal control problem can
be found in [1].

We write the sub-Riemannian Hamiltonian

H =
1

2
(h2

1 + h2
2) where

h1 = p ·X1(x) = p1 −
x2

2
p3

h2 = p ·X2(x) = p2 +
x1

2
p3.

It is a good idea to write down the equation with these coordinates (x1, x2, x3, h1, h2, h0)
where

h0 = p · [X1, X2](x) = p3.
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The Hamiltonian equations are:










ẋ1 = h1

ẋ2 = h2

ẋ3 =
1
2
(x1h2 − x2h1)











ḣ1 = −h0h2

ḣ2 = h0h1

ḣ0 = 0

Solving the vertical part with the initial condition (cos θ0, sin θ0, h0) we obtain:










h1(t) = cos(θ0 + h0t)

h2(t) = sin(θ0 + h0t)

h0(t) = h0

If h0 = 0 we observe that the horizontal equations describe a straight line starting from
the origin, otherwise we have:











x1(t) =
1
h0
(sin(θ0 + h0t)− sin(θ0))

x2(t) = − 1
h0
(cos(θ0 + h0t)− cos(θ0))

x3(t) =
1

2h2
0

(h0t− sin(h0t)).

(2.8)

Remark 2.4. We observe that the projection of (2.8) onto the x1x2-plane describes an arc
of circle whose center is C = 1

h0
(− sin θ0, cos θ0) and radius ρ = 1

|h0| . Moreover one can

show that the curve in (2.8) is a length minimizer if and only if h ∈ [−2π, 2π] and it is
unique if and only if the extremes of the interval are excluded; a proof thereof can be
found in [2].

(a) Solution to (2.8) with h0 = 3, and θ0 = 0,
length-minimizer

(b) Solution to (2.8) with h0 = 9, and θ0 = 0,
not a length-minimizer

Figure 2.2: Examples of solution of (2.8)

We now characterise a family of horizontal curves needed in Chapter 3.
Let v = (v1, v2) ∈ R

2 \ {0} and h ∈ (−2π, 2π) we can define the following family of
curves:

γv,h(t) =

{

(A v
h
, |v|

2

2
ht−sin(ht)

h2 ) h ̸= 0

(tv, 0) h = 0
where A =

(

cos(ht)− 1 sin(ht)
sin(ht) 1− cos(ht)

)

. (2.9)

With no difficulties, one computes

γ̇(t) = (− sin(ht)v1 + cos(ht)v2)X1(γ) + (cos(ht)v1 + sin(ht)v2)X2(γ),
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thus every curve in this family is horizontal. Furthermore the length of γv,h between a
and b is |v|(b− a). Note that if in 2.9 we use v = (cos(θ), sin(θ)), they are exactly those
in (2.8).

We define the map Γt(v, h) := γv,h(t) which is analytic on R
2 × R × R. In particular

we shall make use of it for t = 1. Note that Γt(v, h) = Γ1(tv, th) for 0 < |t| ≤ 1.
Subsequently we compute the Jacobian determinant of Γt which is needed in later

computations.

Proposition 2.3. The value of the Jacobian determinant of Γt is

det(DΓt)(v, h) =

{

− t|v|2
h4 (th sin(th) + 2 cos(th)− 2) for h ̸= 0

− t5|v|2
12

for h = 0.
(2.10)

thus it does not vanish on D = R
2 \ {0} × (−2π, 2π).

Proof. We split the proof in two cases.
Case 1 : t = 1. Suppose h ̸= 0, the case h = 0 will be obtained as a limit. To

begin with, we prove that if |v| = |v′|, then det(DΓ1)(v, h) = det(DΓ1)(v
′, h). Given

T ∈ SO3(R) so that Tv = v′. Consider now T ′ defined by T ′(v, h) = (Tv, h). As
det(A) ̸= 0 for h ̸= 0 then one readily sees that Γ1 ◦T ′ = T ′ ◦Γ1, hence our assertion. We
use this relation to simplify the computation by choosing v′ = (|v|, 0):

det(DΓ1) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

(cos(h)− 1)/h sin(h)/h |v|
(

− sin(h)
h

− cos(h)−1
h2

)

sin(h)/h (1− cos(h))/h |v|
(

cos(h)
h

− sin(h)
h2

)

|v|h−sin(h)
h2 0 |v|2

2

(

2 sin(h)
h3 − 1+cos(h)

h2

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

=
|v|2
h4

∣

∣

∣

∣

∣

∣

cos(h)− 1 sin(h) − sin(h)
sin(h) 1− cos(h) cos(h)

h− sin(h) 0 1−cos(h)
2

∣

∣

∣

∣

∣

∣

=
|v|2
h4

(h sin(h) + 2 cos(h)− 2).

In addition we have that its continuous limit is

lim
h→0

|v|2
h4

(h sin(h) + 2 cos(h)− 2) = −|v|2
12

.

Now we study the sign on D1. Observe that

h sin(h) + 2 cos(h)− 2 = 2 sin

(

h

2

)(

h

2
cos

(

h

2

)

− sin

(

h

2

))

,

if we prove that the odd function f(u) := u cos(u) − sin(u) is strictly negative on (0, π)
the proof is complete. Observe that f(0) = 0 and f ′(u) = −u sin(u) which is negative on
(0, π). On this interval f is non-increasing and does not vanish. Thus we have:

det(DΓ1)(v, h) =

{

|v|2
h4 (h sin(h) + 2 cos(h)− 2) for h ̸= 0

− |v|2
12

for h = 0,
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and it does not vanish on Dt = R
2 \ {0} × (−2πt, 2πt).

Case 2 0 < |t| ≤ 1. As Γt(v, h) = Γ1(tv, th) = Γ ◦ (tI3)(v, h) where I3 is the identity
matrix of R3, thus

det(DΓt)(v, h) = det(DΓ1)(tv, th) det(tI3)(v, h) = t3 det(DΓ1)(tv, th),

we conclude by virtue of Case 1.

2.3 Measure Contraction Property in the Heisenberg

group

In this section we study the Measure Contraction Property in the Heisenberg group. So
as to do so, we need to better define the “t-intermediate set” of Definition 1.2.

Henceforth we define L = {x ∈ H : (x1, x2) = 0} and U = {(x, y) ∈ H
2 : x−1y /∈ L}

From the previous section we know that the minimizing geodesic in H joining two
points x and y is:

γ : [0, 1] −→ R
n (2.11)

t 7−→ τx ◦ Γt ◦ Γ−1
1 ◦ τx−1(y).

One must observe that (2.11) is well define if and only if (x, y) ∈ U . Nevertheless this in
not an obstacle to our discussion as m(L) = 0.

Thus, given A,B ∈ H with positive measure, the explicit formula for the t-intemediate
set is

Zt(A,B) = {τa ◦ Γt ◦ Γ−1
1 ◦ τa−1(b) : a ∈ A, b ∈ B}. (2.12)

Figure 2.3: An example of s-intermediate set in H. This picture is courtesy of [3].
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In the Heisenberg group the Measure Contraction Property holds with different expo-
nents with respect to the Euclidean case.

In the following computation we set Zt(p, q) = Zt({p}, {q}) and the map

ζt : H −→ H

p 7−→ Zt(0, p).

Theorem 2.1. (Measure Contraction Property in the Heisenberg group) Let A ⊂ H be
a set with positive measure, x ∈ H and t ∈ [0, 1], then

m(Zt(x,A)) ≥ tNm(A) (2.13)

holds if and only if N ≥ 5.

Proof. Step 1 : the Measure Contraction Property does not hold if N < 5. Consider
N < 5, we have that Zt(τpq, τpq

′) = τp ◦ Zt(q, q
′) for every p, q ∈ H as the Lebesgue

measure, the Carnot-Carathéodory distance and the geodesics are left-invariant. Thus
is is sufficient to prove that (2.13) does not hold in 0. Let p = (1, 0, 0) = Γ((1, 0), 0)
and Kr the Euclidean ball with center p and radius r < 1. Fix t ∈ (0, 1), define the set
Er = ζt(Kr). Since Kr is contained in H \ L where ζt(p) is a diffeomorphism, we have:

m(Er) =

∫

Kr

|det(Dζt)(q)| dq,

in addition we have

det(Dζt)(p) =
det(DΓt)

det(DΓ1)
◦ Γ−1

1 (p) = t5,

thanks to Proposition 2.3. As a consequence, det(Dζt)(p) < tN and by continuity it is
possible to find a radius r > 0 small enough such that det(Dζt)(q) < tN holds for every
q ∈ Kr. With this choice of r we have t5m(Kr) > m(Er) which contradicts the Measure
Contraction Property.

Step 2 (Sketch): the Measure Contraction Property does not hold if N ≥ 5. Let N
be greater that 5. As in Step 1, we only need to prove (2.13) for x = 0. Consider E a
measurable set with positive measure, and T ∈ (0, 1). The map ζt is a diffeomorphism on
H \ L where it is equal to Γt ◦ Γ−1

1 . If we denote F = ζ−1
t (E), then we have

m(E) =

∫

F\L
| det(Dζt)(q)|dq,

as m(L) = 0. Hence, to obtain (2.13) it is enough to prove that

| det(Dζt)(q)| =
det(DΓt)

det(DΓ1)
◦ Γ−1

1 (q) =
det(DΓt)

det(DΓ1)
(v, h) ≥ tN , (2.14)

when (v, h) ∈ D (in the case h ̸= 0). If h = 0 we have

det(DΓt)

det(DΓ1)
(v, 0) = t5 ≥ tN ,
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which is obviously true. Both side of (2.14) are 0 at t = 0 and 1 at t = 1. Thus we want

to prove that t 7−→ det(DΓt)
det(DΓ1)

1

N (v, h) is concave in t for each (v, h) ∈ D. This last assertion

is equivalent to the concavity of the even function gN(u) = (u sin(u)(sin(u)− u cos(u)))
1

N

on (0, π). We do not prove this fact, instead we plot gN in two cases in Figure 2.4. A
formal proof can be found in [8].

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

1.2

(a) Plot of g5 on (0, π).

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

(b) Plot of g15 on (0, π).

Figure 2.4

We now provide geometric evidence of the exponent involved in the Measure Con-
traction Property showing how it arises for the unit ball BH

1 = {x ∈ H : d(x, 0) < 1}.

Figure 2.5: Graphic representation of BH

1 . This picture is courtesy of D. Barilari.

Recall that the map δt(x) is defined by δt(x) = (tx1, tx2, t
2x3) for every x ∈ H.

For t ∈ (0, 1), the set ζt(B
H

1 ) is certainly contained in the contraction BH

t = δt(B
H

1 )
whose volume is t4m(BH

1 ). Nevertheless, Theorem 2.1 asserts that m(ζt(B
H

1 )) ≥ t5m(BH

1 ),
rescaling we get

m(δ1/tζt(B
H

1 )) ≥ tm(BH

1 ). (2.15)

We compute explicitly the value of the left hand side of (2.15) for small t.
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We can visualize the Heisenberg ball to be the set of the points of the geodesic curve
of length 1, namely

BH

1 = {Γ1(v, h) : |v| < 1, h ∈ (−2π, 2π)}.
Since m(L) = 0 we can work on H \L. Let V be the set {v ∈ R

2 : |v| < 1} × (−2π, 2π)}.

m(δ1/tζt(B
H

1 )) =

∫

BH

1

∣

∣

∣

∣

∣

det(Dδ1/t)

∣

∣

∣

∣

ζt(q)

det(Dζt)

∣

∣

∣

∣

q

∣

∣

∣

∣

∣

dq =

=
1

t4

∫

V

∣

∣

∣

∣

∣

(

det(DΓt)

det(DΓ1)
det(DΓ1)

) ∣

∣

∣

∣

(v,h)

∣

∣

∣

∣

∣

dvdh =

=

∫

V

t|v|2
t4h4

(2− th sin(th)− 2 cos(th))dvdh =

=

∫

V

|v|2t4h4 + o(t4)

12t3h4
dvdh =

t

12

∫ 1

0

(∫ 2π

0

(∫ 2π

−2π

ρ3 + o(t)dh

)

dθ

)

dρ =

= t
π2

6
+ o(t).

This result justifies the factor t in (2.15) and thus it is a geometric evidence of the fact
that the exponent involved in the Measure Contraction Property (2.1) must be greater
than 5.

Figure 2.6: xz-section of the Heisenberg ball, the shaded area is the section of the set
δ1/tζt(B

H

1 ). This picture is courtesy of [8].
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Chapter 3

On the Brunn-Minkowski inequality
in the Heisenberg group

In this chapter we study one possible generalization of the Brunn-Minkowski inequality in
the Heisenberg group. In particular we analyse the geodesic Brunn-Minkowski inequality.

Remark 3.1. In the Heisenberg group there exists an other way to generalise the Brunn-
Minkowski inequality different from considering the geodesic version. This is possible
as the Heisenberg group is endowed with an operation, i.e. the Heisenberg product of
Definition 2.1.

Let A and B two nonempty sets of H, we define A · B = {a · b : a ∈ A, b ∈ B} where
“·” is the Heisenberg product defined in (2.1). Then the following holds

m(A · B)
1

3 ≥ m(A)
1

3 +m(B)
1

3 .

In order to prove the last inequality one has to follow the proof of Theorem 1.1 substituting
the “+” with the Heisenberg product. An explicit proof can be found in [10].

Before discussing in detail the geodesic Brunn-Minkowski inequality we need the fol-
lowing

Definition 3.1. We define the geodesic-inversion map I on H\L by I(p) = Γ−1 ◦Γ−1
1 (p).

The name derives from the fact that for (v, h, t) ∈ D1 × [−1, 1] we have that

I(γv,h(t)) = I(Γ(tv, th)) = Γ−1(tv, th) = γv,h(−t).

We see that I ◦ I is the identity on H \L and this is why the pair (p, I(p)) will be called
I-conjugate points. Now we establish the connection between Z and I.

Proposition 3.1. Let p ∈ H \ L then Z1/2(I(p), p) is well defined and is 0 if and only if
the h-coordinate of Γ−1

1 (p) verifies |h| < π, i.e. p ∈ Γ1/2(D1).

Proof. The proof can be found in [8].
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3.1 Geodesic Brunn-Minkowski inequality in the Heisen-

berg group

In this section we disprove the “natural” generalization of the Brunn-Minkowski inequality
in the Heisenberg group, and show that the version which holds in the Heisenberg group
does not imply the isoperimetric inequality.

Theorem 3.1. GivenA,B ⊂ H with positive measure, then the geodesic Brunn-Minkowski
inequality

m(Zt(A,B))
1

N ≥ (1− t)m(A)
1

N + tm(B)
1

N (3.1)

is false for any N ∈ N.

Proof. It is enough to show that there are two compact sets K,K ′ ⊂ H such that

m(K) = m(K ′) > m(Z1/2(K,K ′)), (3.2)

As a consequence, if (3.1) were true, thanks to (3.2) we would have

m(Z1/2(K,K ′))
1

N ≥ 1

2
m(K)

1

N +
1

2
m(K ′)

1

N > m(Z1/2(K,K ′))
1

N ,

which is a contradiction.
Now we build the two sets K and K ′. Let us consider γ = γ((1,0),0) on the interval

[−1, 1]. As 0 < 2π this is the unique geodesic defined on [−1, 1] from p′ = (−1, 0, 0) to
p = (1, 0, 0): the points p and p′ are I-conjugate, thus their midpoint is 0. Consider Kr =
B(p, r) = {x ∈ H : |x − p| ≤ r} and K ′

r = I(Kr). By continuity we can choose r small
enough such that Kr ⊂ Γ1/2(D1) and Kr ×K ′

r ⊂ U . As Γ1 and Γ−1 are diffeomorphisms
between the same sets we have:

m(K ′
r) = m(Γ−1(Γ

−1
1 (Kr))) = m(Γ1(Γ

−1
1 (Kr))) = m(Kr). (3.3)

Note that:

Z1/2(Kr, K
′
r) =

⋃

a,b∈Kr

Z1/2(I(a), b) =
⋃

a,b∈Kr

Z1/2(I(a), a+ (b− a)). (3.4)

For any q ∈ H \ L let Mq = Z1/2(q, ·). We now write

Z1/2(I(a), a+ (b− a)) = Z1/2(I(a), a+ (b− a)) +
[

DMI(a)(a)(b− a)−DMI(a)(a)(b− a)
]

+

+ [DMp′(p)(b− a)−DMp′(p)(b− a)] = DMp′(p)(b− a)+

+
[(

DMI(a)(a)−DMp′(p)
)

(b− a)
]

+
[

Z1/2(I(a), a+ (b− a))−DMI(a)(a)(b− a)
]

.
(3.5)

For a and b close to p, and for r close to zero we have

sup
a,b∈Kr

∣

∣

(

DMI(a)(a)−DMp′(p)
)

(b− a) + Z1/2(I(a), a+ (b− a))−DMI(a)(a)(b− a)
∣

∣ = o(r).

28



Chapter 3. On the Brunn-Minkowski inequality in the Heisenberg group

Therefore, as {a − b ∈ R
3 : a, b ∈ B(p, r)} = B(0, 2r), (3.4) and (3.5) give the following

set inclusion
Z1/2(Kr, K

′
r) ⊂ DMp′(p)B(0, 2r) + B(0, ε(r)r), (3.6)

where ε(r) is a non-negative function which tends to zero as r tends to zero.
Recall that τp(q) = p · q and then det(Dτp)(q) = 1 for any p, q ∈ H. In addition

τp′−1 = τ−1
p′ hence we have

det(DMp′)(p) = det(D(τp′ ◦ Γ1/2 ◦ Γ−1
1 ◦ τp′−1))(p) = det(D(Γ1/2 ◦ Γ−1

1 ))(p′−1 · p) =

det(D(Γ1/2 ◦ Γ−1
1 ))(Γ1(((2, 0), 0))) = − 1

25
. (3.7)

From (3.6) and (3.7) we have

m(Z1/2(Kr, K
′
r)) ≤ m(DMp′(p)B(0, 2r)) + o(r) =

1

25
m(Kr)(1 + o(r)),

we can choose r small enough and the proof is finished.

Notwithstanding Theorem 3.1, there exist geodesic version of the Brunn-Minkowski
inequality which holds in the Heisenberg group given by the following statement.

Theorem 3.2. Let t ∈ [0, 1] and A,B nonempty measurable sets of H. Then the following
inequality holds

m(Zt(A,B))
1

3 ≥ (1− t)
5

3m(A)
1

3 + t
5

3m(B)
1

3 . (3.8)

Proof. The proof uses heavily the theory of optimal transport and can be found in [3].

We observe that Theorem 3.2 implies directly the sharper Measure Contraction Prop-
erty in H, i.e. Theorem 2.1.

Remark 3.2. Differently from the Euclidean case, in the Heisenberg group it is not possible
to derive the isoperimetric inequality from (3.8). Suppose A to be a measurable subset
of H with C2 boundary. Working along the lines of Theorem 1.3, we set Ar = {x ∈ H :
dH(x,A) < r} = A+ ζr(B

H

1 ), then

m(Ar \ A) = m(A+ ζr(B
H

1 ))−m(A) ≥ (m(A)
1

3 +m(ζr(B
H

1 )
1

3 )3 −m(A) ≥
≥ 3r

5

3m(A)
2

3m(BH

1 )
1

3 + o(r
5

3 ).

Hence we only get

H
2(∂A) = lim

r→0+

m(Ar \ A)
r

≥ 0

which is trivial.

As can be seen by the latter example, despite the fact that Theorem 3.2 is a possible
generalization of the Brunn-Minkowski inequality in the Heisenberg group, it does not
bring as much information as in the Euclidean case since it does not imply the isoperi-
metric inequality.
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